MIMXRT1060-EVK
Overview
The i.MX RT1060 adds to the industry’s first crossover processor series and expands the i.MX RT series to three scalable families.
The i.MX RT1060 doubles the On-Chip SRAM to 1MB while keeping pin-to-pin compatibility with i.MX RT1050. This series introduces additional features ideal for real-time applications such as High-Speed GPIO, CAN FD, and synchronous parallel NAND/NOR/PSRAM controller. The i.MX RT1060 runs on the Arm® Cortex-M7® core up to 600 MHz.
Hardware
MIMXRT1062DVL6A MCU (600 MHz, 1024 KB on-chip memory)
Memory
256 Mbit SDRAM
64 Mbit QSPI Flash
512 Mbit Hyper Flash
TF socket for SD card
Display
LCD connector
Ethernet
10/100 Mbit/s Ethernet PHY
USB
USB 2.0 OTG connector
USB 2.0 host connector
Audio
3.5 mm audio stereo headphone jack
Board-mounted microphone
Left and right speaker out connectors
Power
5 V DC jack
Debug
JTAG 20-pin connector
OpenSDA with DAPLink
Sensor
FXOS8700CQ 6-axis e-compass
CMOS camera sensor interface
Expansion port
Arduino interface
CAN bus connector
For more information about the MIMXRT1060 SoC and MIMXRT1060-EVK board, see these references:
External Memory
This platform has the following external memories:
Device |
Controller |
Status |
---|---|---|
IS25WP064AJBLE |
SEMC |
Enabled via device configuration data block, which sets up SEMC at boot time |
IS42S16160J |
FLEXSPI |
Enabled via flash configuration block, which sets up FLEXSPI at boot time. |
Supported Features
The mimxrt1060_evk
board supports the hardware features listed below.
- on-chip / on-board
- Feature integrated in the SoC / present on the board.
- 2 / 2
-
Number of instances that are enabled / disabled.
Click on the label to see the first instance of this feature in the board/SoC DTS files. -
vnd,foo
-
Compatible string for the Devicetree binding matching the feature.
Click on the link to view the binding documentation.
Type |
Location |
Description |
Compatible |
---|---|---|---|
CPU |
on-chip |
ARM Cortex-M7 CPU1 |
|
ADC |
on-chip |
||
ARM architecture |
on-chip |
MCUX XBAR (Crossbar)3 |
|
CAN |
on-chip |
NXP FlexCAN controller2 |
|
on-chip |
NXP FlexCAN CANFD controller1 |
||
Clock control |
on-chip |
i.MX CCM (Clock Controller Module) IP node1 |
|
on-chip |
Generic fixed factor clock provider3 |
||
on-chip |
i.MX CCM Fractional PLL1 |
||
on-chip |
i.MX ANATOP (Analog Clock Controller Module) IP node1 |
||
on-chip |
Generic fixed-rate clock provider4 |
||
Counter |
on-chip |
NXP MCUX Quad Timer (QTMR)4 |
|
on-chip |
NXP MCUX Quad Timer Channel16 |
||
on-chip |
NXP Periodic Interrupt Timer (PIT)1 |
||
on-chip |
Child node for the Periodic Interrupt Timer node, intended for an individual timer channel4 |
||
Cryptographic accelerator |
on-chip |
NXP Data Co-Processor (DCP) Crypto accelerator1 |
|
Debug |
on-chip |
ARMv7 instrumentation trace macrocell1 |
|
Display |
on-chip |
NXP i.MX eLCDIF (Enhanced LCD Interface) controller1 |
|
DMA |
on-chip |
NXP MCUX EDMA controller1 |
|
on-chip |
NXP PXP 2D DMA engine1 |
||
Ethernet |
on-chip |
NXP ENET IP Module2 |
|
on-chip |
|||
on-board |
Microchip KSZ8081 Ethernet PHY device1 |
||
on-chip |
|||
GPIO & Headers |
on-chip |
i.MX GPIO9 |
|
on-board |
GPIO pins exposed on NXP LCD interface1 |
||
on-board |
GPIO pins exposed on NXP LCD touch controller interface1 |
||
on-board |
GPIO pins exposed on Arduino Uno (R3) headers1 |
||
I2C |
on-chip |
||
I2S |
on-chip |
||
Input |
on-board |
Group of GPIO-bound input keys1 |
|
Interrupt controller |
on-chip |
ARMv7-M NVIC (Nested Vectored Interrupt Controller)1 |
|
LED |
on-board |
Group of GPIO-controlled LEDs1 |
|
on-board |
Group of PWM-controlled LEDs1 |
||
MDIO |
on-chip |
||
Memory controller |
on-chip |
NXP FlexRAM on-chip ram controller If the flexram,bank-spec property is specified, then the flexram will be dynamically reconfigured to the configuration specified at runtime1 |
|
on-chip |
NXP Smart External Memory Controller (SEMC)1 |
||
Miscellaneous |
on-chip |
NXP FlexIO controller3 |
|
MMU / MPU |
on-chip |
ARMv7-M Memory Protection Unit (MPU)1 |
|
MTD |
on-board |
NXP FlexSPI NOR1 |
|
on-board |
Fixed partitions of a flash (or other non-volatile storage) memory1 |
||
Pin control |
on-chip |
This compatible binding should be applied to the device’s iomuxc DTS node1 |
|
on-chip |
The node has the ‘pinctrl’ node label set in MCUX RT SoC’s devicetree1 |
||
on-chip |
i.MX IOMUXC1 |
||
PWM |
on-chip |
NXP eFLEX PWM module with mcux-pwm submodules4 |
|
on-chip |
|||
RNG |
on-chip |
Kinetis TRNG (True Random Number Generator)1 |
|
RTC |
on-chip |
NXP SNVS LP/HP RTC1 |
|
SDHC |
on-chip |
||
Sensors |
on-chip |
NXP MCUX QDEC4 |
|
on-chip |
NXP on-die temperature monitor1 |
||
Serial controller |
on-chip |
||
SPI |
on-chip |
||
on-chip |
|||
Timer |
on-chip |
ARMv7-M System Tick1 |
|
on-chip |
NXP MCUX General-Purpose HW Timer (GPT)1 |
||
on-chip |
NXP MCUX General-Purpose Timer (GPT)1 |
||
USB |
on-chip |
||
on-chip |
NXP USB high speed phy that is used on NXP RTxxxx, RTxxx, MCX, LPC and Kinetis platforms if high speed usb is supported on these platforms1 1 |
||
Video |
on-chip |
NXP MCUX CMOS sensor interface1 |
|
Watchdog |
on-chip |
Note
For additional features not yet supported, please also refer to the MIMXRT1064-EVK , which is the superset board in NXP’s i.MX RT10xx family. NXP prioritizes enabling the superset board with NXP’s Full Platform Support for Zephyr. Therefore, the mimxrt1064_evk board may have additional features already supported, which can also be re-used on this mimxrt1060_evk board.
Connections and I/Os
The MIMXRT1060 SoC has five pairs of pinmux/gpio controllers.
Name |
Function |
Usage |
---|---|---|
GPIO_AD_B0_00 |
LPSPI1_SCK |
SPI |
GPIO_AD_B0_01 |
LPSPI1_SDO |
SPI |
GPIO_AD_B0_02 |
LPSPI3_SDI/LCD_RST| SPI/LCD Display |
|
GPIO_AD_B0_03 |
LPSPI3_PCS0 |
SPI |
GPIO_AD_B0_05 |
GPIO |
SD Card |
GPIO_AD_B0_09 |
GPIO/ENET_RST |
LED |
GPIO_AD_B0_10 |
GPIO/ENET_INT |
GPIO/Ethernet |
GPIO_AD_B0_11 |
GPIO |
Touch Interrupt |
GPIO_AD_B0_12 |
LPUART1_TX |
UART Console |
GPIO_AD_B0_13 |
LPUART1_RX |
UART Console |
GPIO_AD_B1_00 |
LPI2C1_SCL |
I2C |
GPIO_AD_B1_01 |
LPI2C1_SDA |
I2C |
GPIO_AD_B1_06 |
LPUART3_TX |
UART BT HCI |
GPIO_AD_B1_07 |
LPUART3_RX |
UART BT HCI |
WAKEUP |
GPIO |
SW0 |
GPIO_B0_00 |
LCD_CLK |
LCD Display |
GPIO_B0_01 |
LCD_ENABLE |
LCD Display |
GPIO_B0_02 |
LCD_HSYNC |
LCD Display |
GPIO_B0_03 |
LCD_VSYNC |
LCD Display |
GPIO_B0_04 |
LCD_DATA00 |
LCD Display |
GPIO_B0_05 |
LCD_DATA01 |
LCD Display |
GPIO_B0_06 |
LCD_DATA02 |
LCD Display |
GPIO_B0_07 |
LCD_DATA03 |
LCD Display |
GPIO_B0_08 |
LCD_DATA04 |
LCD Display |
GPIO_B0_09 |
LCD_DATA05 |
LCD Display |
GPIO_B0_10 |
LCD_DATA06 |
LCD Display |
GPIO_B0_11 |
LCD_DATA07 |
LCD Display |
GPIO_B0_12 |
LCD_DATA08 |
LCD Display |
GPIO_B0_13 |
LCD_DATA09 |
LCD Display |
GPIO_B0_14 |
LCD_DATA10 |
LCD Display |
GPIO_B0_15 |
LCD_DATA11 |
LCD Display |
GPIO_B1_00 |
LCD_DATA12 |
LCD Display |
GPIO_B1_01 |
LCD_DATA13 |
LCD Display |
GPIO_B1_02 |
LCD_DATA14 |
LCD Display |
GPIO_B1_03 |
LCD_DATA15 |
LCD Display |
GPIO_B1_04 |
ENET_RX_DATA00 |
Ethernet |
GPIO_B1_05 |
ENET_RX_DATA01 |
Ethernet |
GPIO_B1_06 |
ENET_RX_EN |
Ethernet |
GPIO_B1_07 |
ENET_TX_DATA00 |
Ethernet |
GPIO_B1_08 |
ENET_TX_DATA01 |
Ethernet |
GPIO_B1_09 |
ENET_TX_EN |
Ethernet |
GPIO_B1_10 |
ENET_REF_CLK |
Ethernet |
GPIO_B1_11 |
ENET_RX_ER |
Ethernet |
GPIO_B1_12 |
GPIO |
SD Card |
GPIO_B1_14 |
USDHC1_VSELECT |
SD Card |
GPIO_B1_15 |
BACKLIGHT_CTL |
LCD Display |
GPIO_EMC_40 |
ENET_MDC |
Ethernet |
GPIO_EMC_41 |
ENET_MDIO |
Ethernet |
GPIO_AD_B0_09 |
ENET_RST |
Ethernet |
GPIO_AD_B0_10 |
ENET_INT |
Ethernet |
GPIO_SD_B0_00 |
USDHC1_CMD/LPSPI1_SCK | SD Card/SPI |
|
GPIO_SD_B0_01 |
USDHC1_CLK/LPSPI1_PCS0 | SD Card/SPI |
|
GPIO_SD_B0_02 |
USDHC1_DATA0/LPSPI1_SDO | SD Card/SPI |
|
GPIO_SD_B0_03 |
USDHC1_DATA1/LPSPI1_SDI | SD Card/SPI |
|
GPIO_SD_B0_04 |
USDHC1_DATA2 |
SD Card |
GPIO_SD_B0_05 |
USDHC1_DATA3 |
SD Card |
GPIO_AD_B1_11 |
ADC |
ADC1 Channel 0 |
GPIO_AD_B1_10 |
ADC |
ADC1 Channel 15 |
GPIO_AD_B1_09 |
SAI1_MCLK |
I2S |
GPIO_AD_B1_12 |
SAI1_RX |
I2S |
GPIO_AD_B1_13 |
SAI1_TX |
I2S |
GPIO_AD_B1_14 |
SAI1_TX_BCLK |
I2S |
GPIO_AD_B1_15 |
SAI1_TX_SYNC |
I2S |
GPIO_AD_B1_02 |
1588_EVENT2_OUT |
1588 |
GPIO_AD_B1_03 |
1588_EVENT2_IN |
1588 |
Note
In order to use the SPI peripheral on this board, resistors R278, R279, R280 and R281 must be populated with zero ohm resistors.
System Clock
The MIMXRT1060 SoC is configured to use SysTick as the system clock source, running at 600MHz.
When power management is enabled, the 32 KHz low frequency oscillator on the board will be used as a source for the GPT timer to generate a system clock. This clock enables lower power states, at the cost of reduced resolution
Serial Port
The MIMXRT1060 SoC has eight UARTs. LPUART1
is configured for the console,
LPUART3
for the Bluetooth Host Controller Interface (BT HCI), and the
remaining are not used.
Board Revisions and Targets
There are three revisions of this board.
Rev A:
Initial version
Rev B:
adds the M.2 connector for Wi-Fi/BLE
adds audio expansion connector J23
USER LED1 changed to GPIO1 pin 8
Rev C:
Replaces audio codec WM8960(EOL) to WM8962
Replaces 32.768 KHz oscillator from ASH7K-32.768KHz-T(EOL)to ASH7KW-32.768KHZ-L-T
Replaces motion sensor from FXOS8700CQ(EOL) to FXLS8974CFR3
Re-assigns Bluetooth Audio PCM with dedicated I2S2
Re-assigns Bluetooth interface UART_CTS, UART_RTS to hardware PIN
This board has two variants that can be targeted,
depending on which flash to set as zephyr,flash
:
mimxrt1060_evk/mimxrt1062/qspi
is the default variant for the out of box setup of the board using the qspi flash.mimxrt1060_evk/mimxrt1062/hyperflash
is for a board that has been reworked to use the hyperflash instead of the qspi flash.This board also has two revisions, the EVKA and EVKB. EVKA is the default target for this board. To target EVKB, the board target string would become
mimxrt1060_evk@B//qspi
, for example.
Programming and Debugging
The mimxrt1060_evk
board supports the runners and associated west commands listed below.
flash | debug | attach | debugserver | rtt | |
---|---|---|---|---|---|
jlink | ✅ (default) | ✅ (default) | ✅ | ✅ | ✅ |
linkserver | ✅ | ✅ | ✅ | ✅ | |
pyocd | ✅ | ✅ | ✅ | ✅ | ✅ |
This board supports 3 debug host tools. Please install your preferred host tool, then follow the instructions in Configuring a Debug Probe to configure the board appropriately.
J-Link Debug Host Tools (Default, Supported by NXP)
LinkServer Debug Host Tools (Supported by NXP)
pyOCD Debug Host Tools (Not Supported by NXP)
Once the host tool and board are configured, build and flash applications as usual (see Building an Application and Run an Application for more details).
Configuring a Debug Probe
Two revisions of the RT1060 EVK exist. For the RT1060 EVK, J47/J48 are the SWD isolation jumpers, J42 is the DFU mode jumper, and the 20 pin JTAG/SWD header is present on J21. For the RT1060 EVKB, J9/J10 are the SWD isolation jumpers, J12 is the DFU mode jumper, and the 20 pin JTAG/SWD header is present on J2.
A debug probe is used for both flashing and debugging the board. This board has an LPC-LINK2 Onboard Debug Probe. The default firmware present on this probe is the LPC-Link2 DAPLink Onboard Debug Probe.
Based on the host tool installed, please use the following instructions to setup your debug probe:
LinkServer Debug Host Tools: Using CMSIS-DAP with LPC-Link2 Probe
pyOCD Debug Host Tools: Using CMSIS-DAP with LPC-Link2 Probe
Using CMSIS-DAP with LPC-Link2 Probe
Follow the instructions provided at LPC-LINK2 CMSIS DAP Onboard Debug Probe to reprogram the default debug probe firmware on this board.
Ensure the SWD isolation jumpers are populated
Using J-Link with LPC-Link2 Probe
There are two options: the onboard debug circuit can be updated with Segger J-Link firmware, or a J-Link External Debug Probe can be attached to the EVK.
To update the onboard debug circuit, please do the following:
Switch the power source for the EVK to a different source than the debug USB, as the J-Link firmware does not power the EVK via the debug USB.
Follow the instructions provided at LPC-Link2 J-Link Onboard Debug Probe to reprogram the default debug probe firmware on this board.
Ensure the SWD isolation jumpers are populated.
To attach an external J-Link probe, ensure the SWD isolation jumpers are removed, then connect the probe to the external JTAG/SWD header
See Using J-Link with MIMXRT1060-EVK or MIMXRT1064-EVK or Using J-Link with MIMXRT1060-EVKB for more details.
Configuring a Console
Regardless of your choice in debug probe, we will use the OpenSDA microcontroller as a usb-to-serial adapter for the serial console. Check that jumpers J45 and J46 are on (they are on by default when boards ship from the factory) to connect UART signals to the OpenSDA microcontroller.
Connect a USB cable from your PC to J41.
Use the following settings with your serial terminal of choice (minicom, putty, etc.):
Speed: 115200
Data: 8 bits
Parity: None
Stop bits: 1
Using SWO
SWO can be used as a logging backend, by setting CONFIG_LOG_BACKEND_SWO=y
.
Your SWO viewer should be configured with a CPU frequency of 132MHz, and
SWO frequency of 7500KHz.
Flashing
Here is an example for the Hello World application.
# From the root of the zephyr repository
west build -b mimxrt1060_evk@A//qspi samples/hello_world
west flash
# From the root of the zephyr repository
west build -b mimxrt1060_evk@B//qspi samples/hello_world
west flash
# From the root of the zephyr repository
west build -b mimxrt1060_evk@C//qspi samples/hello_world
west flash
Open a serial terminal, reset the board (press the SW9 button), and you should see the following message in the terminal:
***** Booting Zephyr OS v1.14.0-rc1 *****
Hello World! mimxrt1060_evk//qspi
Debugging
Here is an example for the Hello World application.
# From the root of the zephyr repository
west build -b mimxrt1060_evk@A//qspi samples/hello_world
west debug
# From the root of the zephyr repository
west build -b mimxrt1060_evk@B//qspi samples/hello_world
west debug
# From the root of the zephyr repository
west build -b mimxrt1060_evk@C//qspi samples/hello_world
west debug
Open a serial terminal, step through the application in your debugger, and you should see the following message in the terminal:
***** Booting Zephyr OS v1.14.0-rc1 *****
Hello World! mimxrt1060_evk//qspi
Troubleshooting
If the debug probe fails to connect with the following error, it’s possible
that the boot header in QSPI flash is invalid or corrupted. The boot header is
configured by CONFIG_NXP_IMXRT_BOOT_HEADER
.
Remote debugging using :2331
Remote communication error. Target disconnected.: Connection reset by peer.
"monitor" command not supported by this target.
"monitor" command not supported by this target.
You can't do that when your target is `exec'
(gdb) Could not connect to target.
Please check power, connection and settings.
You can fix it by erasing and reprogramming the QSPI flash with the following steps:
Set the SW7 DIP switches to ON-OFF-ON-OFF to prevent booting from QSPI flash.
Reset by pressing SW9
Run
west debug
orwest flash
again with a known working Zephyr application.Set the SW7 DIP switches to OFF-OFF-ON-OFF to boot from QSPI flash.
Reset by pressing SW9
If the west flash or debug commands fail, and the command hangs while executing runners.jlink, confirm the J-Link debug probe is configured, powered, and connected to the EVK properly.
Support Resources for Zephyr
MCUXpresso for VS Code, wiki documentation and Zephyr lab guides
NXP’s Zephyr landing page (including training resources)