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Chapter 1

Introduction

The Zephyr OS is based on a small-footprint kernel designed for use on resource-constrained
and embedded systems: from simple embedded environmental sensors and LED wearables to
sophisticated embedded controllers, smart watches, and IoT wireless applications.

The Zephyr kernel supports multiple architectures, including:

• ARCv2 (EM and HS) and ARCv3 (HS6X)

• ARMv6-M, ARMv7-M, and ARMv8-M (Cortex-M)

• ARMv7-A and ARMv8-A (Cortex-A, 32- and 64-bit)

• ARMv7-R, ARMv8-R (Cortex-R, 32- and 64-bit)

• Intel x86 (32- and 64-bit)

• MIPS (MIPS32 Release 1 specification)

• NIOS II Gen 2

• RISC-V (32- and 64-bit)

• SPARC V8

• Tensilica Xtensa

The full list of supported boards based on these architectures can be found here.

In the context of the Zephyr OS, a subsystem refers to a logically distinct part of the operating
system that handles specific functionality or provides certain services. Subsystems can include
components such as networking, file systems, device driver classes, power management, and
communication protocols, among others. Each subsystem is designed to be modular and can be
configured, customized, and extended to meet the requirements of different embedded applica-
tions.

1.1 Licensing

Zephyr is permissively licensed using the Apache 2.0 license (as found in the LICENSE file in the
project’s GitHub repo). There are some imported or reused components of the Zephyr project
that use other licensing, as described in Licensing of Zephyr Project components.

1.2 Distinguishing Features

Zephyr offers a large and ever growing number of features including:
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Extensive suite of Kernel services
Zephyr offers a number of familiar services for development:

• Multi-threading Services for cooperative, priority-based, non-preemptive, and preemp-
tive threads with optional round robin time-slicing. Includes POSIX pthreads compat-
ible API support.

• Interrupt Services for compile-time registration of interrupt handlers.

• Memory Allocation Services for dynamic allocation and freeing of fixed-size or
variable-size memory blocks.

• Inter-thread Synchronization Services for binary semaphores, counting semaphores,
and mutex semaphores.

• Inter-thread Data Passing Services for basic message queues, enhanced message
queues, and byte streams.

• PowerManagement Services such as overarching, application or policy-defined, System
Power Management and fine-grained, driver-defined, Device Power Management.

Multiple Scheduling Algorithms
Zephyr provides a comprehensive set of thread scheduling choices:

• Cooperative and Preemptive Scheduling

• Earliest Deadline First (EDF)

• Meta IRQ scheduling implementing “interrupt bottom half” or “tasklet” behavior

• Timeslicing: Enables time slicing between preemptible threads of equal priority

• Multiple queuing strategies:

– Simple linked-list ready queue

– Red/black tree ready queue

– Traditional multi-queue ready queue

Highly configurable / Modular for flexibility
Allows an application to incorporate only the capabilities it needs as it needs them, and to
specify their quantity and size.

Cross Architecture
Supports a wide variety of supported boards with different CPU architectures and devel-
oper tools. Contributions have added support for an increasing number of SoCs, platforms,
and drivers.

Memory Protection
Implements configurable architecture-specific stack-overflow protection, kernel object and
device driver permission tracking, and thread isolation with thread-level memory protec-
tion on x86, ARC, and ARM architectures, userspace, and memory domains.

For platforms without MMU/MPU and memory constrained devices, supports combining
application-specific code with a custom kernel to create a monolithic image that gets loaded
and executed on a system’s hardware. Both the application code and kernel code execute
in a single shared address space.

Compile-time resource definition
Allows system resources to be defined at compile-time, which reduces code size and in-
creases performance for resource-limited systems.

Optimized Device Driver Model
Provides a consistent device model for configuring the drivers that are part of the plat-
form/system and a consistent model for initializing all the drivers configured into the sys-
tem and allows the reuse of drivers across platforms that have common devices/IP blocks.
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Devicetree Support
Use of devicetree to describe hardware. Information from devicetree is used to create the
application image.

Native Networking Stack supporting multiple protocols
Networking support is fully featured and optimized, including LwM2M and BSD sockets
compatible support. OpenThread support (on Nordic chipsets) is also provided - a mesh
network designed to securely and reliably connect hundreds of products around the home.

Bluetooth Low Energy 5.0 support
Bluetooth 5.0 compliant (ESR10) and Bluetooth Low Energy Controller support (LE Link
Layer). Includes Bluetooth Mesh and a Bluetooth qualification-ready Bluetooth controller.

• Generic Access Profile (GAP) with all possible LE roles

• Generic Attribute Profile (GATT)

• Pairing support, including the Secure Connections feature from Bluetooth 4.2

• Clean HCI driver abstraction

• Raw HCI interface to run Zephyr as a Controller instead of a full Host stack

• Verified with multiple popular controllers

• Highly configurable

Mesh Support:

• Relay, Friend Node, Low-Power Node (LPN) and GATT Proxy features

• Both Provisioning bearers supported (PB-ADV & PB-GATT)

• Highly configurable, fitting in devices with at least 16k RAM

Native Linux, macOS, and Windows Development
A command-line CMake build environment runs on popular developer OS systems. A native
port (native_sim) lets you build and run Zephyr as a native application on Linux, aiding
development and testing.

Virtual File System Interface with ext2, FatFs, and LittleFS Support
ext2, LittleFS and FatFS support; FCB (Flash Circular Buffer) for memory constrained appli-
cations.

Powerful multi-backend logging Framework
Support for log filtering, object dumping, panic mode, multiple backends (memory, net-
working, filesystem, console, …) and integration with the shell subsystem.

User friendly and full-featured Shell interface
A multi-instance shell subsystem with user-friendly features such as autocompletion, wild-
cards, coloring, metakeys (arrows, backspace, ctrl+u, etc.) and history. Support for static
commands and dynamic sub-commands.

Settings on non-volatile storage
The settings subsystem gives modules a way to store persistent per-device configuration
and runtime state. Settings items are stored as key-value pair strings.

Non-volatile storage (NVS)
NVS allows storage of binary blobs, strings, integers, longs, and any combination of these.

Native port
Native sim allows running Zephyr as a Linux application with support for various subsys-
tems and networking.

1.2. Distinguishing Features 3
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1.3 Community Support

Community support is provided via mailing lists and Discord; see the Resources below for details.

1.4 Resources

Here’s a quick summary of resources to help you find your way around:

1.4.1 Getting Started

� Zephyr Documentation
� Getting Started Guide
�� Tips when asking for help
� Code samples

1.4.2 Code and Development

� Source Code Repository
� Releases
� Contribution Guide

1.4.3 Community and Support

� Discord Server for real-time community discussions
� User mailing list (users@lists.zephyrproject.org)
� Developer mailing list (devel@lists.zephyrproject.org)
� Other project mailing lists
� Project Wiki

1.4.4 Issue Tracking and Security

� GitHub Issues
� Security documentation
� Security Advisories Repository
� Report security vulnerabilities at vulnerabilities@zephyrproject.org

1.4.5 Additional Resources

� Zephyr Project Website
� Zephyr Tech Talks

1.5 Fundamental Terms and Concepts

See Glossary of Terms
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Chapter 2

Developing with Zephyr

2.1 Getting Started Guide

Follow this guide to:

• Set up a command-line Zephyr development environment on Ubuntu, macOS, or Windows
(instructions for other Linux distributions are discussed in Install Linux Host Dependencies)

• Get the source code

• Build, flash, and run a sample application

2.1.1 Select and Update OS

Click the operating system you are using.

Ubuntu

This guide covers Ubuntu version 20.04 LTS and later.

sudo apt update
sudo apt upgrade

macOS

On macOS Mojave or later, select System Preferences > Software Update. Click Update Now if
necessary.

On other versions, see this Apple support topic.

Windows

Select Start > Settings > Update & Security > Windows Update. Click Check for updates and install
any that are available.

2.1.2 Install dependencies

Next, you’ll install some host dependencies using your package manager.

The current minimum required version for the main dependencies are:

5
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Tool Min. Version
CMake 3.20.5
Python 3.10
Devicetree compiler 1.4.6

Ubuntu

1. If using an Ubuntu version older than 22.04, it is necessary to add extra repositories to
meet the minimum required versions for the main dependencies listed above. In that case,
download, inspect and execute the Kitware archive script to add the Kitware APT reposi-
tory to your sources list. A detailed explanation of kitware-archive.sh can be found here
kitware third-party apt repository:

wget https://apt.kitware.com/kitware-archive.sh
sudo bash kitware-archive.sh

2. Use apt to install the required dependencies:

sudo apt install --no-install-recommends git cmake ninja-build gperf \
ccache dfu-util device-tree-compiler wget \
python3-dev python3-pip python3-setuptools python3-tk python3-wheel xz-utils file \
make gcc gcc-multilib g++-multilib libsdl2-dev libmagic1

3. Verify the versions of the main dependencies installed on your system by entering:

cmake --version
python3 --version
dtc --version

Check those against the versions in the table in the beginning of this section. Refer to the
Install Linux Host Dependencies page for additional information on updating the dependen-
cies manually.

macOS

1. Install Homebrew:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/
↪→install.sh)"

2. After the Homebrew installation script completes, follow the on-screen instructions to add
the Homebrew installation to the path.

• On macOS running on Apple Silicon, this is achieved with:

(echo; echo 'eval "$(/opt/homebrew/bin/brew shellenv)"') >> ~/.zprofile
source ~/.zprofile

• On macOS running on Intel, use the command for Apple Silicon, but replace /opt/
homebrew/ with /usr/local/.

3. Use brew to install the required dependencies:

brew install cmake ninja gperf python3 ccache qemu dtc libmagic wget openocd

4. Add the Homebrew Python folder to the path, in order to be able to execute python and pip
as well python3 and pip3.

(echo; echo 'export PATH="'$(brew --prefix)'/opt/python/libexec/bin:$PATH"')␣
↪→>> ~/.zprofile
source ~/.zprofile

6 Chapter 2. Developing with Zephyr
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Windows

Note

Due to issues finding executables, the Zephyr Project doesn’t currently support application
flashing using the Windows Subsystem for Linux (WSL) (WSL).

Therefore, we don’t recommend using WSL when getting started.

These instructions must be run in a cmd.exe command prompt terminal window. In modern ver-
sion of Windows (10 and later) it is recommended to install the Windows Terminal application
from the Microsoft Store. The required commands differ on PowerShell.

These instructions rely on Chocolatey. If Chocolatey isn’t an option, you can install dependencies
from their respective websites and ensure the command line tools are on your PATH environment
variable.

1. Install chocolatey.

2. Open a cmd.exe terminal window as Administrator. To do so, press the Windows key, type
cmd.exe, right-click the Command Prompt search result, and choose Run as Administrator.

3. Disable global confirmation to avoid having to confirm the installation of individual pro-
grams:

choco feature enable -n allowGlobalConfirmation

4. Use choco to install the required dependencies:

choco install cmake --installargs 'ADD_CMAKE_TO_PATH=System'
choco install ninja gperf python311 git dtc-msys2 wget 7zip

Warning

As of November 2023, Python 3.12 is not recommended for Zephyr development on Win-
dows, as some required Python dependencies may be difficult to install.

5. Close the terminal window.

2.1.3 Get Zephyr and install Python dependencies

Next, clone Zephyr and its modules into a new west workspace named zephyrproject. You’ll also
install Zephyr’s additional Python dependencies.

Note

It is easy to run into Python package incompatibilities when installing dependencies at a sys-
tem or user level. This situation can happen, for example, if working on multiple Zephyr
versions or other projects using Python on the same machine.

For this reason it is suggested to use Python virtual environments.

Ubuntu

Install within virtual environment

2.1. Getting Started Guide 7
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1. Use apt to install Python venv package:

sudo apt install python3-venv

2. Create a new virtual environment:

python3 -m venv ~/zephyrproject/.venv

3. Activate the virtual environment:

source ~/zephyrproject/.venv/bin/activate

Once activated your shell will be prefixed with (.venv). The virtual environment can be
deactivated at any time by running deactivate.

Note

Remember to activate the virtual environment every time you start working.

4. Install west:

pip install west

5. Get the Zephyr source code:

west init ~/zephyrproject
cd ~/zephyrproject
west update

6. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code
required for building Zephyr applications.

west zephyr-export

7. Zephyr’s scripts/requirements.txt file declares additional Python dependencies. Install
them with pip.

pip install -r ~/zephyrproject/zephyr/scripts/requirements.txt

Install globally

1. Install west, and make sure ~/.local/bin is on your PATH environment variable:

pip3 install --user -U west
echo 'export PATH=~/.local/bin:"$PATH"' >> ~/.bashrc
source ~/.bashrc

2. Get the Zephyr source code:

west init ~/zephyrproject
cd ~/zephyrproject
west update

3. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code
required for building Zephyr applications.

west zephyr-export

4. Zephyr’s scripts/requirements.txt file declares additional Python dependencies. Install
them with pip3.
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pip3 install --user -r ~/zephyrproject/zephyr/scripts/requirements.txt

macOS

Install within virtual environment

1. Create a new virtual environment:

python3 -m venv ~/zephyrproject/.venv

2. Activate the virtual environment:

source ~/zephyrproject/.venv/bin/activate

Once activated your shell will be prefixed with (.venv). The virtual environment can be
deactivated at any time by running deactivate.

Note

Remember to activate the virtual environment every time you start working.

3. Install west:

pip install west

4. Get the Zephyr source code:

west init ~/zephyrproject
cd ~/zephyrproject
west update

5. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code
required for building Zephyr applications.

west zephyr-export

6. Zephyr’s scripts/requirements.txt file declares additional Python dependencies. Install
them with pip.

pip install -r ~/zephyrproject/zephyr/scripts/requirements.txt

Install globally

1. Install west:

pip3 install -U west

2. Get the Zephyr source code:

west init ~/zephyrproject
cd ~/zephyrproject
west update

3. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code
required for building Zephyr applications.

west zephyr-export

4. Zephyr’s scripts/requirements.txt file declares additional Python dependencies. Install
them with pip3.

2.1. Getting Started Guide 9
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pip3 install -r ~/zephyrproject/zephyr/scripts/requirements.txt

Windows

Install within virtual environment

1. Open a cmd.exe terminal window as a regular user
2. Create a new virtual environment:

cd %HOMEPATH%
python -m venv zephyrproject\.venv

3. Activate the virtual environment:

zephyrproject\.venv\Scripts\activate.bat

Once activated your shell will be prefixed with (.venv). The virtual environment can be
deactivated at any time by running deactivate.

Note

Remember to activate the virtual environment every time you start working.

4. Install west:

pip install west

5. Get the Zephyr source code:

west init zephyrproject
cd zephyrproject
west update

6. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code
required for building Zephyr applications.

west zephyr-export

7. Zephyr’s scripts\requirements.txt file declares additional Python dependencies. Install
them with pip.

pip install -r %HOMEPATH%\zephyrproject\zephyr\scripts\requirements.txt

Install globally

1. Open a cmd.exe terminal window as a regular user
2. Install west:

pip3 install -U west

3. Get the Zephyr source code:

cd %HOMEPATH%
west init zephyrproject
cd zephyrproject
west update

4. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code
required for building Zephyr applications.
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west zephyr-export

5. Zephyr’s scripts\requirements.txt file declares additional Python dependencies. Install
them with pip3.

pip3 install -r %HOMEPATH%\zephyrproject\zephyr\scripts\requirements.txt

2.1.4 Install the Zephyr SDK

The Zephyr Software Development Kit (SDK) contains toolchains for each of Zephyr’s supported
architectures, which include a compiler, assembler, linker and other programs required to build
Zephyr applications.

It also contains additional host tools, such as custom QEMU and OpenOCD builds that are used
to emulate, flash and debug Zephyr applications.

Note

You can change 0.16.8 to another version in the instructions below if needed; the Zephyr
SDK Releases page contains all available SDK releases.

Note

If you want to uninstall the SDK, you may simply remove the directory where you installed
it.

Ubuntu

1. Download and verify the Zephyr SDK bundle:

cd ~
wget https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.16.8/
↪→zephyr-sdk-0.16.8_linux-x86_64.tar.xz
wget -O - https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.
↪→16.8/sha256.sum | shasum --check --ignore-missing

If your host architecture is 64-bit ARM (for example, Raspberry Pi), replace x86_64 with
aarch64 in order to download the 64-bit ARM Linux SDK.

2. Extract the Zephyr SDK bundle archive:

tar xvf zephyr-sdk-0.16.8_linux-x86_64.tar.xz

Note

It is recommended to extract the Zephyr SDK bundle at one of the following locations:

• $HOME
• $HOME/.local
• $HOME/.local/opt
• $HOME/bin
• /opt
• /usr/local
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The Zephyr SDK bundle archive contains the zephyr-sdk-<version> directory
and, when extracted under $HOME, the resulting installation path will be $HOME/
zephyr-sdk-<version>.

3. Run the Zephyr SDK bundle setup script:

cd zephyr-sdk-0.16.8
./setup.sh

Note

You only need to run the setup script once after extracting the Zephyr SDK bundle.

You must rerun the setup script if you relocate the Zephyr SDK bundle directory after
the initial setup.

4. Install udev rules, which allow you to flash most Zephyr boards as a regular user:

sudo cp ~/zephyr-sdk-0.16.8/sysroots/x86_64-pokysdk-linux/usr/share/openocd/
↪→contrib/60-openocd.rules /etc/udev/rules.d
sudo udevadm control --reload

macOS

1. Download and verify the Zephyr SDK bundle:

cd ~
curl -L -O https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.
↪→16.8/zephyr-sdk-0.16.8_macos-x86_64.tar.xz
curl -L https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.16.
↪→8/sha256.sum | shasum --check --ignore-missing

If your host architecture is 64-bit ARM (Apple Silicon), replace x86_64with aarch64 in order
to download the 64-bit ARM macOS SDK.

2. Extract the Zephyr SDK bundle archive:

tar xvf zephyr-sdk-0.16.8_macos-x86_64.tar.xz

Note

It is recommended to extract the Zephyr SDK bundle at one of the following locations:

• $HOME
• $HOME/.local
• $HOME/.local/opt
• $HOME/bin
• /opt
• /usr/local

The Zephyr SDK bundle archive contains the zephyr-sdk-<version> directory
and, when extracted under $HOME, the resulting installation path will be $HOME/
zephyr-sdk-<version>.

3. Run the Zephyr SDK bundle setup script:

cd zephyr-sdk-0.16.8
./setup.sh
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Note

You only need to run the setup script once after extracting the Zephyr SDK bundle.

You must rerun the setup script if you relocate the Zephyr SDK bundle directory after
the initial setup.

Windows

1. Open a cmd.exe terminal window as a regular user
2. Download the Zephyr SDK bundle:

cd %HOMEPATH%
wget https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.16.8/
↪→zephyr-sdk-0.16.8_windows-x86_64.7z

3. Extract the Zephyr SDK bundle archive:

7z x zephyr-sdk-0.16.8_windows-x86_64.7z

Note

It is recommended to extract the Zephyr SDK bundle at one of the following locations:

• %HOMEPATH%
• %PROGRAMFILES%

The Zephyr SDK bundle archive contains the zephyr-sdk-<version> directory and,
when extracted under %HOMEPATH%, the resulting installation path will be %HOMEPATH%\
zephyr-sdk-<version>.

4. Run the Zephyr SDK bundle setup script:

cd zephyr-sdk-0.16.8
setup.cmd

Note

You only need to run the setup script once after extracting the Zephyr SDK bundle.

You must rerun the setup script if you relocate the Zephyr SDK bundle directory after
the initial setup.

2.1.5 Build the Blinky Sample

Note

blinky is compatible with most, but not all, boards. If your board does not meet Blinky’s
blinky-sample-requirements, then hello_world is a good alternative.

If you are unsure what name west uses for your board, west boards can be used to obtain a
list of all boards Zephyr supports.

Build the blinky with west build, changing <your-board-name> appropriately for your board:

Ubuntu
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cd ~/zephyrproject/zephyr
west build -p always -b <your-board-name> samples/basic/blinky

macOS

cd ~/zephyrproject/zephyr
west build -p always -b <your-board-name> samples/basic/blinky

Windows

cd %HOMEPATH%\zephyrproject\zephyr
west build -p always -b <your-board-name> samples\basic\blinky

The -p always option forces a pristine build, and is recommended for new users. Users may
also use the -p auto option, which will use heuristics to determine if a pristine build is required,
such as when building another sample.

Note

A board may contain one or multiple SoCs, Also, each SoC may contain one or more CPU clus-
ters. When building for such boards it is necessary to specify the SoC or CPU cluster for which
the sample must be built. For example to build blinky for the cpuapp core on the nRF5340DK
the board must be provided as: nrf5340dk/nrf5340/cpuapp. See also Board terminology for
more details.

2.1.6 Flash the Sample

Connect your board, usually via USB, and turn it on if there’s a power switch. If in doubt about
what to do, check your board’s page in boards.

Then flash the sample using west flash:

west flash

You may need to install additional host tools required by your board. The west flash command
will print an error if any required dependencies are missing.

If you’re using blinky, the LED will start to blink as shown in this figure:

2.1.7 Next Steps

Here are some next steps for exploring Zephyr:

• Try other samples-and-demos

• Learn about Application Development and the west tool

• Find out about west’s flashing and debugging features, or more about Flashing and Hard-
ware Debugging in general

• Check out Beyond the Getting Started Guide for additional setup alternatives and ideas

• Discover Resources for getting help from the Zephyr community

2.1.8 Troubleshooting Installation

Here are some tips for fixing some issues related to the installation process.
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Fig. 1: Phytec reel_board running blinky

Double Check the Zephyr SDK Variables When Updating

When updating Zephyr SDK, check whether the ZEPHYR_TOOLCHAIN_VARIANT or
ZEPHYR_SDK_INSTALL_DIR environment variables are already set. See Updating the Zephyr
SDK toolchain for more information.

For more information about these environment variables in Zephyr, see Important Environment
Variables.

2.1.9 Asking for Help

You can ask for help on a mailing list or on Discord. Please send bug reports and feature requests
to GitHub.

• Mailing Lists: users@lists.zephyrproject.org is usually the right list to ask for help. Search
archives and sign up here.

• Discord: You can join with this Discord invite.

• GitHub: Use GitHub issues for bugs and feature requests.

How to Ask

Important

Please search this documentation and the mailing list archives first. Your question may have
an answer there.

Don’t just say “this isn’t working” or ask “is this working?”. Include as much detail as you can
about:

1. What you want to do

2. What you tried (commands you typed, etc.)

3. What happened (output of each command, etc.)

2.1. Getting Started Guide 15
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Use Copy/Paste

Please copy/paste text instead of taking a picture or a screenshot of it. Text includes source code,
terminal commands, and their output.

Doing this makes it easier for people to help you, and also helps other users search the archives.
Unnecessary screenshots exclude vision impaired developers; some are major Zephyr contribu-
tors. Accessibility has been recognized as a basic human right by the United Nations.

When copy/pasting more than 5 lines of computer text into Discord or Github, create a snippet
using three backticks to delimit the snippet.

2.2 Beyond the Getting Started Guide

TheGetting Started Guide gives a straight-forward path to set up your Linux, macOS, or Windows
environment for Zephyr development. In this document, we delve deeper into Zephyr develop-
ment setup issues and alternatives.

2.2.1 Python and pip

Python 3 and its package manager, pip1, are used extensively by Zephyr to install and run scripts
required to compile and run Zephyr applications, set up and maintain the Zephyr development
environment, and build project documentation.

Depending on your operating system, you may need to provide the --user flag to the pip3 com-
mand when installing new packages. This is documented throughout the instructions. See In-
stalling Packages in the Python Packaging User Guide for more information about pip1, including
information on -\-user.

• On Linux, make sure ~/.local/bin is at the front of your PATH environment variable, or pro-
grams installed with --userwon’t be found. Installing with --user avoids conflicts between
pip and the system package manager, and is the default on Debian-based distributions.

• On macOS, Homebrew disables -\-user.

• On Windows, see the Installing Packages information on --user if you require using this
option.

On all operating systems, pip’s -U flag installs or updates the package if the package is already
installed locally but a more recent version is available. It is good practice to use this flag if the
latest version of a package is required. (Check the scripts/requirements.txt file to see if a specific
Python package version is expected.)

2.2.2 Advanced Platform Setup

Here are some alternative instructions for more advanced platform setup configurations for
supported development platforms:

1 pip is Python’s package installer. Its install command first tries to reuse packages and package dependencies al-
ready installed on your computer. If that is not possible, pip install downloads them from the Python Package Index
(PyPI) on the Internet.

The package versions requested by Zephyr’s requirements.txt may conflict with other requirements on your system,
in which case you may want to set up a virtualenv for Zephyr development.
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Install Linux Host Dependencies

Documentation is available for these Linux distributions:

• Ubuntu

• Fedora

• Clear Linux

• Arch Linux

For distributions that are not based on rolling releases, some of the requirements and depen-
dencies may not be met by your package manager. In that case please follow the additional
instructions that are provided to find software from sources other than the package manager.

Note

If you’re working behind a corporate firewall, you’ll likely need to configure a proxy for ac-
cessing the internet, if you haven’t done so already. While some tools use the environment
variables http_proxy and https_proxy to get their proxy settings, some use their own config-
uration files, most notably apt and git.

Update Your Operating System Ensure your host system is up to date.

Ubuntu

sudo apt-get update
sudo apt-get upgrade

Fedora

sudo dnf upgrade

Clear Linux

sudo swupd update

Arch Linux

sudo pacman -Syu

Install Requirements and Dependencies Note that both Ninja and Make are installed with
these instructions; you only need one.

Ubuntu

sudo apt-get install --no-install-recommends git cmake ninja-build gperf \
ccache dfu-util device-tree-compiler wget \
python3-dev python3-pip python3-setuptools python3-tk python3-wheel xz-utils file \
make gcc gcc-multilib g++-multilib libsdl2-dev libmagic1

Fedora

sudo dnf group install "Development Tools" "C Development Tools and Libraries"
sudo dnf install cmake ninja-build gperf dfu-util dtc wget which \
python3-pip python3-tkinter xz file python3-devel SDL2-devel

Clear Linux
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sudo swupd bundle-add c-basic dev-utils dfu-util dtc \
os-core-dev python-basic python3-basic python3-tcl

The Clear Linux focus is on native performance and security and not cross-compilation. For that
reason it uniquely exports by default to the environment of all users a list of compiler and linker
flags. Zephyr’s CMake build system will either warn or fail because of these. To clear the C/C++
flags among these and fix the Zephyr build, run the following command as root then log out and
back in:

echo 'unset CFLAGS CXXFLAGS' >> /etc/profile.d/unset_cflags.sh

Note this command unsets the C/C++ flags for all users on the system. Each Linux distribution
has a unique, relatively complex and potentially evolving sequence of bash initialization files
sourcing each other and Clear Linux is no exception. If you need a more flexible solution, start
by looking at the logic in /usr/share/defaults/etc/profile.

Arch Linux

sudo pacman -S git cmake ninja gperf ccache dfu-util dtc wget \
python-pip python-setuptools python-wheel tk xz file make

CMake A recent CMake version is required. Check what version you have by using cmake
--version. If you have an older version, there are several ways of obtaining a more recent one:

• On Ubuntu, you can follow the instructions for adding the kitware third-party apt reposi-
tory to get an updated version of cmake using apt.

• Download and install a packaged cmake from the CMake project site. (Note this won’t unin-
stall the previous version of cmake.)

cd ~
wget https://github.com/Kitware/CMake/releases/download/v3.21.1/cmake-3.21.1-Linux-x86_
↪→64.sh
chmod +x cmake-3.21.1-Linux-x86_64.sh
sudo ./cmake-3.21.1-Linux-x86_64.sh --skip-license --prefix=/usr/local
hash -r

The hash -r command may be necessary if the installation script put cmake into a new
location on your PATH.

• Download and install from the pre-built binaries provided by the CMake project itself in
the CMake Downloads page. For example, to install version 3.21.1 in ~/bin/cmake:

mkdir $HOME/bin/cmake && cd $HOME/bin/cmake
wget https://github.com/Kitware/CMake/releases/download/v3.21.1/cmake-3.21.1-Linux-x86_
↪→64.sh
yes | sh cmake-3.21.1-Linux-x86_64.sh | cat
echo "export PATH=$PWD/cmake-3.21.1-Linux-x86_64/bin:\$PATH" >> $HOME/.zephyrrc

• Use pip3:

pip3 install --user cmake

Note this won’t uninstall the previous version of cmake and will install the new cmake into
your ~/.local/bin folder so you’ll need to add ~/.local/bin to your PATH. (See Python and pip
for details.)

• Check your distribution’s beta or unstable release package library for an update.

• On Ubuntu you can also use snap to get the latest version available:
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sudo snap install cmake

After updating cmake, verify that the newly installed cmake is found using cmake --version. You
might also want to uninstall the CMake provided by your package manager to avoid conflicts.
(Use whereis cmake to find other installed versions.)

DTC (Device Tree Compiler) A recent DTC version is required. Check what version you have
by using dtc --version. If you have an older version, either install a more recent one by building
from source, or use the one that is bundled in the Zephyr SDK by installing it.

Python A modern Python 3 version is required. Check what version you have by using python3
--version.

If you have an older version, you will need to install a more recent Python 3. You can build from
source, or use a backport from your distribution’s package manager channels if one is available.
Isolating this Python in a virtual environment is recommended to avoid interfering with your
system Python.

Install the Zephyr Software Development Kit (SDK) The Zephyr Software Development Kit
(SDK) contains toolchains for each of Zephyr’s supported architectures. It also includes addi-
tional host tools, such as custom QEMU and OpenOCD.

Use of the Zephyr SDK is highly recommended and may even be required under certain condi-
tions (for example, running tests in QEMU for some architectures).

The Zephyr SDK supports the following target architectures:

• ARC (32-bit and 64-bit; ARCv1, ARCv2, ARCv3)

• ARM (32-bit and 64-bit; ARMv6, ARMv7, ARMv8; A/R/M Profiles)

• MIPS (32-bit and 64-bit)

• Nios II

• RISC-V (32-bit and 64-bit; RV32I, RV32E, RV64I)

• x86 (32-bit and 64-bit)

• Xtensa

Follow these steps to install the Zephyr SDK:

1. Download and verify the Zephyr SDK bundle:

wget https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.16.8/
↪→zephyr-sdk-0.16.8_linux-x86_64.tar.xz
wget -O - https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.
↪→16.8/sha256.sum | shasum --check --ignore-missing

You can change 0.16.8 to another version if needed; the Zephyr SDK Releases page contains
all available SDK releases.

If your host architecture is 64-bit ARM (for example, Raspberry Pi), replace x86_64 with
aarch64 in order to download the 64-bit ARM Linux SDK.

2. Extract the Zephyr SDK bundle archive:

cd <sdk download directory>
tar xvf zephyr-sdk-0.16.8_linux-x86_64.tar.xz

3. Run the Zephyr SDK bundle setup script:
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cd zephyr-sdk-0.16.8
./setup.sh
If this fails, make sure Zephyr’s dependencies were installed as described in Install Require-
ments and Dependencies.

If you want to uninstall the SDK, remove the directory where you installed it. If you relocate the
SDK directory, you need to re-run the setup script.

Note

It is recommended to extract the Zephyr SDK bundle at one of the following locations:

• $HOME
• $HOME/.local
• $HOME/.local/opt
• $HOME/bin
• /opt
• /usr/local

The Zephyr SDK bundle archive contains the zephyr-sdk-<version> directory and, when ex-
tracted under $HOME, the resulting installation path will be $HOME/zephyr-sdk-<version>.

If you install the Zephyr SDK outside any of these locations, you must register the Zephyr SDK
in the CMake package registry by running the setup script, or set ZEPHYR_SDK_INSTALL_DIR to
point to the Zephyr SDK installation directory.

You can also use ZEPHYR_SDK_INSTALL_DIR for pointing to a directory containing
multiple Zephyr SDKs, allowing for automatic toolchain selection. For example,
ZEPHYR_SDK_INSTALL_DIR=/company/tools, where the company/tools folder contains
the following subfolders:

• /company/tools/zephyr-sdk-0.13.2
• /company/tools/zephyr-sdk-a.b.c
• /company/tools/zephyr-sdk-x.y.z

This allows the Zephyr build system to choose the correct version of the SDK, while allowing
multiple Zephyr SDKs to be grouped together at a specific path.

Building on Linux without the Zephyr SDK The Zephyr SDK is provided for convenience
and ease of use. It provides toolchains for all Zephyr target architectures, and does not require
any extra flags when building applications or running tests. In addition to cross-compilers, the
Zephyr SDK also provides prebuilt host tools. It is, however, possible to build without the SDK’s
toolchain by using another toolchain as described in the Toolchains section.

As already noted above, the SDK also includes prebuilt host tools. To use the SDK’s prebuilt
host tools with a toolchain from another source, you must set the ZEPHYR_SDK_INSTALL_DIR en-
vironment variable to the Zephyr SDK installation directory. To build without the Zephyr SDK’s
prebuilt host tools, the ZEPHYR_SDK_INSTALL_DIR environment variable must be unset.

To make sure this variable is unset, run:

unset ZEPHYR_SDK_INSTALL_DIR
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macOS alternative setup instructions

Important note about Gatekeeper Starting with macOS 10.15 Catalina, applications launched
from the macOS Terminal application (or any other terminal emulator) are subject to the same
system security policies that are applied to applications launched from the Dock. This means
that if you download executable binaries using a web browser, macOS will not let you execute
those from the Terminal by default. In order to get around this issue you can take two different
approaches:

• Run xattr -r -d com.apple.quarantine /path/to/folder where path/to/folder is the
path to the enclosing folder where the executables you want to run are located.

• Open System Preferences ‣ Security and Privacy ‣ Privacy and then scroll down to “Devel-
oper Tools”. Then unlock the lock to be able to make changes and check the checkbox cor-
responding to your terminal emulator of choice. This will apply to any executable being
launched from such terminal program.

Note that this section does not apply to executables installed with Homebrew, since those are
automatically un-quarantined by brew itself. This is however relevant for most Toolchains.

Additional notes for MacPorts users While MacPorts is not officially supported in this guide,
it is possible to use MacPorts instead of Homebrew to get all the required dependencies on ma-
cOS. Note also that you may need to install rust and cargo for the Python dependencies to install
correctly.

Windows alternative setup instructions

Windows 10 WSL (Windows Subsystem for Linux) If you are running a recent version of
Windows 10 you can make use of the built-in functionality to natively run Ubuntu binaries di-
rectly on a standard command-prompt. This allows you to use software such as the Zephyr SDK
without setting up a virtual machine.

Warning

Windows 10 version 1803 has an issue that will cause CMake to not work properly and is fixed
in version 1809 (and later). More information can be found in Zephyr Issue 10420.

1. Install the Windows Subsystem for Linux (WSL).

Note

For the Zephyr SDK to function properly you will need Windows 10 build 15002 or
greater. You can check which Windows 10 build you are running in the “About your
PC” section of the System Settings. If you are running an older Windows 10 build you
might need to install the Creator’s Update.

2. Follow the Ubuntu instructions in the Install Linux Host Dependencies document.

2.2.3 Install a Toolchain

Zephyr binaries are compiled and linked by a toolchain comprised of a cross-compiler and re-
lated tools which are different from the compiler and tools used for developing software that
runs natively on your host operating system.
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You can install the Zephyr SDK to get toolchains for all supported architectures, or install an
alternate toolchain recommended by the SoC vendor or a specific board (check your specific
board-level documentation).

You can configure the Zephyr build system to use a specific toolchain by setting environment vari-
ables such as ZEPHYR_TOOLCHAIN_VARIANT to a supported value, along with additional variable(s)
specific to the toolchain variant.

2.2.4 Updating the Zephyr SDK toolchain

When updating Zephyr SDK, check whether the ZEPHYR_TOOLCHAIN_VARIANT or
ZEPHYR_SDK_INSTALL_DIR environment variables are already set.

• If the variables are not set, the latest compatible version of Zephyr SDK will be selected by
default. Proceed to next step without making any changes.

• If ZEPHYR_TOOLCHAIN_VARIANT is set, the corresponding toolchain will be selected at build
time. Zephyr SDK is identified by the value zephyr. If the ZEPHYR_TOOLCHAIN_VARIANT envi-
ronment variable is not zephyr, then either unset it or change its value to zephyr to make
sure Zephyr SDK is selected.

• If the ZEPHYR_SDK_INSTALL_DIR environment variable is set, it will override the default
lookup location for Zephyr SDK. If you install Zephyr SDK to one of the recommended lo-
cations, you can unset this variable. Otherwise, set it to your chosen install location.

For more information about these environment variables in Zephyr, see Important Environment
Variables.

2.2.5 Cloning the Zephyr Repositories

The Zephyr project source is maintained in the GitHub zephyr repo. External modules used
by Zephyr are found in the parent GitHub Zephyr project. Because of these dependencies, it’s
convenient to use the Zephyr-created west tool to fetch and manage the Zephyr and external
module source code. See Basics for more details.

Once your development tools are installed, use West (Zephyr’s meta-tool) to create, initialize, and
download sources from the zephyr and external module repos. We’ll use the name zephyrpro-
ject, but you can choose any name that does not contain a space anywhere in the path.

west init zephyrproject
cd zephyrproject
west update

The west update command fetches and keeps Modules (External projects) in the zephyrproject
folder in sync with the code in the local zephyr repo.

Warning

You must run west update any time the zephyr/west.yml changes, caused, for example, when
you pull the zephyr repository, switch branches in it, or perform a git bisect inside of it.

Keeping Zephyr updated

To update the Zephyr project source code, you need to get the latest changes via git. Afterwards,
run west update as mentioned in the previous paragraph.
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# replace zephyrproject with the path you gave west init
cd zephyrproject/zephyr
git pull
west update

2.2.6 Export Zephyr CMake package

The Zephyr CMake Package can be exported to CMake’s user package registry if it has not already
been done as part of Getting Started Guide.

2.2.7 Board Aliases

Developers who work with multiple boards may find explicit board names cumbersome and
want to use aliases for common targets. This is supported by a CMake file with content like this:

# Variable foo_BOARD_ALIAS=bar replaces BOARD=foo with BOARD=bar and
# sets BOARD_ALIAS=foo in the CMake cache.
set(pca10028_BOARD_ALIAS nrf51dk/nrf51822)
set(pca10056_BOARD_ALIAS nrf52840dk/nrf52840)
set(k64f_BOARD_ALIAS frdm_k64f)
set(sltb004a_BOARD_ALIAS efr32mg_sltb004a)

and specifying its location in ZEPHYR_BOARD_ALIASES. This enables use of aliases pca10028 in con-
texts like cmake -DBOARD=pca10028 and west -b pca10028.

2.2.8 Build and Run an Application

You can build, flash, and run Zephyr applications on real hardware using a supported host sys-
tem. Depending on your operating system, you can also run it in emulation with QEMU, or as a
native application with native_sim. Additional information about building applications can be
found in the Building an Application section.

Build Blinky

Let’s build the blinky sample application.

Zephyr applications are built to run on specific hardware, called a “board”2. We’ll use the Phytec
reel_board here, but you can change the reel_board build target to another value if you have
a different board. See boards or run west boards from anywhere inside the zephyrproject
directory for a list of supported boards.

1. Go to the zephyr repository:

cd zephyrproject/zephyr

2. Build the blinky sample for the reel_board:

west build -b reel_board samples/basic/blinky

2 This has become something of a misnomer over time. While the target can be, and often is, a microprocessor running
on its own dedicated hardware board, Zephyr also supports using QEMU to run targets built for other architectures in
emulation, targets which produce native host system binaries that implement Zephyr’s driver interfaces with POSIX
APIs, and even running different Zephyr-based binaries on CPU cores of differing architectures on the same physical
chip. Each of these hardware configurations is called a “board,” even though that doesn’t always make perfect sense in
context.
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The main build products will be in build/zephyr; build/zephyr/zephyr.elf is the blinky appli-
cation binary in ELF format. Other binary formats, disassembly, and map files may be present
depending on your board.

The other sample applications in the samples folder are documented in samples-and-demos.

Note

If you want to reuse an existing build directory for another board or application, you need to
add the parameter -p=auto to west build to clean out settings and artifacts from the previous
build.

Run the Application by Flashing to a Board

Most hardware boards supported by Zephyr can be flashed by running west flash. This may
require board-specific tool installation and configuration to work properly.

See Run an Application and your specific board’s documentation in boards for additional details.

Setting udev rules

Flashing a board requires permission to directly access the board hardware, usually managed
by installation of the flashing tools. On Linux systems, if the west flash command fails, you
likely need to define udev rules to grant the needed access permission.

Udev is a device manager for the Linux kernel and the udev daemon handles all user space
events raised when a hardware device is added (or removed) from the system. We can add a
rules file to grant access permission by non-root users to certain USB-connected devices.

The OpenOCD (On-Chip Debugger) project conveniently provides a rules file that defined board-
specific rules for most Zephyr-supported arm-based boards, so we recommend installing this
rules file by downloading it from their sourceforge repo, or if you’ve installed the Zephyr SDK
there is a copy of this rules file in the SDK folder:

• Either download the OpenOCD rules file and copy it to the right location:

wget -O 60-openocd.rules https://sf.net/p/openocd/code/ci/master/tree/contrib/60-
↪→openocd.rules?format=raw
sudo cp 60-openocd.rules /etc/udev/rules.d

• or copy the rules file from the Zephyr SDK folder:

sudo cp ${ZEPHYR_SDK_INSTALL_DIR}/sysroots/x86_64-pokysdk-linux/usr/share/openocd/
↪→contrib/60-openocd.rules /etc/udev/rules.d

Then, in either case, ask the udev daemon to reload these rules:

sudo udevadm control --reload

Unplug and plug in the USB connection to your board, and you should have permission to access
the board hardware for flashing. Check your board-specific documentation (boards) for further
information if needed.

Run the Application in QEMU

On Linux and macOS, you can run Zephyr applications via emulation on your host system using
QEMU when targeting either the x86 or ARM Cortex-M3 architectures. (QEMU is included with
the Zephyr SDK installation.)

24 Chapter 2. Developing with Zephyr

https://github.com/zephyrproject-rtos/zephyr/blob/main/samples
https://www.qemu.org/


Zephyr Project Documentation, Release 3.7.99

On Windows, you need to install QEMU manually from Download QEMU. After installation, add
path to QEMU installation folder to PATH environment variable. To enable QEMU in Test Runner
(Twister) on Windows, set the environment variable QEMU_BIN_PATH to the path of QEMU instal-
lation folder.

For example, you can build and run the hello_world sample using the x86 emulation board con-
figuration (qemu_x86), with:

# From the root of the zephyr repository
west build -b qemu_x86 samples/hello_world
west build -t run

To exit QEMU, type Ctrl-a, then x.

Use qemu_cortex_m3 to target an emulated Arm Cortex-M3 sample.

Run a Sample Application natively (Linux)

You can compile some samples to run as host programs on Linux. See native_sim for more infor-
mation. On 64-bit host operating systems, you need to install a 32-bit C library, or build targeting
native_sim/native/64.

First, build Hello World for native_sim.

# From the root of the zephyr repository
west build -b native_sim samples/hello_world

Next, run the application.

west build -t run
# or just run zephyr.exe directly:
./build/zephyr/zephyr.exe

Press Ctrl-C to exit.

You can run ./build/zephyr/zephyr.exe --help to get a list of available options.

This executable can be instrumented using standard tools, such as gdb or valgrind.

2.3 Environment Variables

Various pages in this documentation refer to setting Zephyr-specific environment variables. This
page describes how.

2.3.1 Setting Variables

Option 1: Just Once

To set the environment variable MY_VARIABLE to foo for the lifetime of your current terminal
window:

Linux/macOS

export MY_VARIABLE=foo

Windows
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set MY_VARIABLE=foo

Warning

This is best for experimentation. If you close your terminal window, use another terminal
window or tab, restart your computer, etc., this setting will be lost forever.

Using options 2 or 3 is recommended if you want to keep using the setting.

Option 2: In all Terminals

Linux/macOS

Add the export MY_VARIABLE=foo line to your shell’s startup script in your home directory. For
Bash, this is usually ~/.bashrc on Linux or ~/.bash_profile on macOS. Changes in these startup
scripts don’t affect shell instances already started; try opening a new terminal window to get the
new settings.

Windows

You can use the setx program in cmd.exe or the third-party RapidEE program.

To use setx, type this command, then close the terminal window. Any new cmd.exe windows
will have MY_VARIABLE set to foo.

setx MY_VARIABLE foo

To install RapidEE, a freeware graphical environment variable editor, using Chocolatey in an
Administrator command prompt:

choco install rapidee

You can then run rapidee from your terminal to launch the program and set environment vari-
ables. Make sure to use the “User” environment variables area – otherwise, you have to run
RapidEE as administrator. Also make sure to save your changes by clicking the Save button at
top left before exiting. Settings you make in RapidEE will be available whenever you open a new
terminal window.

Option 3: Using zephyrrc files

Choose this option if you don’t want to make the variable’s setting available to all of your ter-
minals, but still want to save the value for loading into your environment when you are using
Zephyr.

Linux/macOS

Create a file named ~/.zephyrrc if it doesn’t exist, then add this line to it:

export MY_VARIABLE=foo

To get this value back into your current terminal environment, you must run source
zephyr-env.sh from the main zephyr repository. Among other things, this script sources ~/.
zephyrrc.

The value will be lost if you close the window, etc.; run source zephyr-env.sh again to get it
back.

Windows
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Add the line set MY_VARIABLE=foo to the file %userprofile%\zephyrrc.cmd using a text editor
such as Notepad to save the value.

To get this value back into your current terminal environment, youmust run zephyr-env.cmd in
a cmd.exe window after changing directory to the main zephyr repository. Among other things,
this script runs %userprofile%\zephyrrc.cmd.

The value will be lost if you close the window, etc.; run zephyr-env.cmd again to get it back.

These scripts:

• set ZEPHYR_BASE to the location of the zephyr repository

• adds some Zephyr-specific locations (such as zephyr’s scripts directory) to your PATH en-
vironment variable

• loads any settings from the zephyrrc files described above in Option 3: Using zephyrrc files.

You can thus use them any time you need any of these settings.

2.3.2 Zephyr Environment Scripts

You can use the zephyr repository scripts zephyr-env.sh (for macOS and Linux) and zephyr-env.
cmd (for Windows) to load Zephyr-specific settings into your current terminal’s environment. To
do so, run this command from the zephyr repository:

Linux/macOS

source zephyr-env.sh

Windows

zephyr-env.cmd

These scripts:

• set ZEPHYR_BASE to the location of the zephyr repository

• adds some Zephyr-specific locations (such as zephyr’s scripts directory) to your PATH en-
vironment variable

• loads any settings from the zephyrrc files described above in Option 3: Using zephyrrc files.

You can thus use them any time you need any of these settings.

2.3.3 Important Environment Variables

Some Important Build System Variables can also be set in the environment. Here is a description
of some of these important environment variables. This is not a comprehensive list.

BOARD
See Important Build System Variables.

CONF_FILE
See Important Build System Variables.

SHIELD
See Shields.

ZEPHYR_BASE
See Important Build System Variables.
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EXTRA_ZEPHYR_MODULES
See Important Build System Variables.

ZEPHYR_MODULES
See Important Build System Variables.

ZEPHYR_BOARD_ALIASES
See Board Aliases

The following additional environment variables are significant when configuring the toolchain
used to build Zephyr applications.

ZEPHYR_SDK_INSTALL_DIR
Path where Zephyr SDK is installed.

ZEPHYR_TOOLCHAIN_VARIANT
The name of the toolchain to use.

{TOOLCHAIN}_TOOLCHAIN_PATH
Path to the toolchain specified by ZEPHYR_TOOLCHAIN_VARIANT. For example, if
ZEPHYR_TOOLCHAIN_VARIANT=llvm, use LLVM_TOOLCHAIN_PATH. (Note the capitalization
when forming the environment variable name.)

You might need to update some of these variables when you update the Zephyr SDK toolchain.

Emulators and boards may also depend on additional programs. The build system will try to lo-
cate those programs automatically, but may rely on additional CMake or environment variables
to do so. Please consult your emulator’s or board’s documentation for more information. The
following environment variables may be useful in such situations:

PATH
PATH is an environment variable used on Unix-like or Microsoft Windows operating systems
to specify a set of directories where executable programs are located.

2.4 Application Development

Note

In this document, we’ll assume:

• your application directory, <app>, is something like <home>/zephyrproject/app
• its build directory is <app>/build

These terms are defined below. On Linux/macOS, <home> is equivalent to ~. On Windows,
it’s %userprofile%.

Keeping your application inside the workspace (<home>/zephyrproject) makes it easier to
use west build and other commands with it. (You can put your application anywhere as long
as ZEPHYR_BASE is set appropriately, though.)

2.4.1 Overview

Zephyr’s build system is based on CMake.

The build system is application-centric, and requires Zephyr-based applications to initiate build-
ing the Zephyr source code. The application build controls the configuration and build process
of both the application and Zephyr itself, compiling them into a single binary.
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The main zephyr repository contains Zephyr’s source code, configuration files, and build system.
You also likely have installed variousModules (External projects) alongside the zephyr repository,
which provide third party source code integration.

The files in the application directory link Zephyr and any modules with the application. This
directory contains all application-specific files, such as application-specific configuration files
and source code.

Here are the files in a simple Zephyr application:

<app>
├── CMakeLists.txt
├── app.overlay
├── prj.conf
├── VERSION
└── src

└── main.c

These contents are:

• CMakeLists.txt: This file tells the build system where to find the other application files,
and links the application directory with Zephyr’s CMake build system. This link provides
features supported by Zephyr’s build system, such as board-specific configuration files, the
ability to run and debug compiled binaries on real or emulated hardware, and more.

• app.overlay: This is a devicetree overlay file that specifies application-specific changes
which should be applied to the base devicetree for any board you build for. The purpose
of devicetree overlays is usually to configure something about the hardware used by the
application.

The build system looks for app.overlay by default, but you can add more devicetree over-
lays, and other default files are also searched for.

See Devicetree for more information about devicetree.

• prj.conf: This is a Kconfig fragment that specifies application-specific values for one or
more Kconfig options. These application settings are merged with other settings to pro-
duce the final configuration. The purpose of Kconfig fragments is usually to configure the
software features used by the application.

The build system looks for prj.conf by default, but you can add more Kconfig fragments,
and other default files are also searched for.

See Kconfig Configuration below for more information.

• VERSION: A text file that contains several version information fields. These fields let you
manage the lifecycle of the application and automate providing the application version
when signing application images.

See Application version management for more information about this file and how to use it.

• main.c: A source code file. Applications typically contain source files written in C, C++,
or assembly language. The Zephyr convention is to place them in a subdirectory of <app>
named src.

Once an application has been defined, you will use CMake to generate a build directory, which
contains the files you need to build the application and Zephyr, then link them together into a
final binary you can run on your board. The easiest way to do this is with west build, but you
can use CMake directly also. Application build artifacts are always generated in a separate build
directory: Zephyr does not support “in-tree” builds.

The following sections describe how to create, build, and run Zephyr applications, followed by
more detailed reference material.
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2.4.2 Application types

We distinguish three basic types of Zephyr application based on where <app> is located:

Application type <app> location
repository zephyr repository
workspace west workspace where Zephyr is installed
freestanding other locations

We’ll discuss these more below. To learn how the build system supports each type, see Zephyr
CMake Package.

Zephyr repository application

An application located within the zephyr source code repository in a Zephyr west workspace is
referred to as a Zephyr repository application. In the following example, the hello_world sample
is a Zephyr repository application:

zephyrproject/
├─── .west/
│ └─── config
└─── zephyr/

├── arch/
├── boards/
├── cmake/
├── samples/
│ ├── hello_world/
│ └── ...
├── tests/
└── ...

Zephyr workspace application

An application located within a workspace, but outside the zephyr repository itself, is referred
to as a Zephyr workspace application. In the following example, app is a Zephyr workspace
application:

zephyrproject/
├─── .west/
│ └─── config
├─── zephyr/
├─── bootloader/
├─── modules/
├─── tools/
├─── <vendor/private-repositories>/
└─── applications/

└── app/

Zephyr freestanding application

A Zephyr application located outside of a Zephyr workspace is referred to as a Zephyr freestand-
ing application. In the following example, app is a Zephyr freestanding application:
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<home>/
├─── zephyrproject/
│ ├─── .west/
│ │ └─── config
│ ├── zephyr/
│ ├── bootloader/
│ ├── modules/
│ └── ...
│
└─── app/

├── CMakeLists.txt
├── prj.conf
└── src/

└── main.c

2.4.3 Creating an Application

In Zephyr, you can either use a reference workspace application or create your application by
hand.

Using a Reference Workspace Application

The example-application Git repository contains a reference workspace application. It is recom-
mended to use it as a reference when creating your own application as described in the following
sections.

The example-application repository demonstrates how to use several commonly-used features,
such as:

• Custom board ports

• Custom devicetree bindings

• Custom device drivers

• Continuous Integration (CI) setup, including using twister

• A custom west extension command

Basic example-application Usage The easiest way to get started with the example-application
repository within an existing Zephyr workspace is to follow these steps:

cd <home>/zephyrproject
git clone https://github.com/zephyrproject-rtos/example-application my-app

The directory name my-app above is arbitrary: change it as needed. You can now go into this
directory and adapt its contents to suit your needs. Since you are using an existing Zephyr
workspace, you can use west build or any other west commands to build, flash, and debug.

Advanced example-application Usage You can also use the example-application repository
as a starting point for building your own customized Zephyr-based software distribution. This
lets you do things like:

• remove Zephyr modules you don’t need

• add additional custom repositories of your own

• override repositories provided by Zephyr with your own versions

2.4. Application Development 31

https://github.com/zephyrproject-rtos/example-application


Zephyr Project Documentation, Release 3.7.99

• share the results with others and collaborate further

The example-application repository contains a west.ymlfile and is therefore also a westmanifest
repository. Use this to create a new, customized workspace by following these steps:

cd <home>
mkdir my-workspace
cd my-workspace
git clone https://github.com/zephyrproject-rtos/example-application my-manifest-repo
west init -l my-manifest-repo

This will create a new workspace with the T2 topology, with my-manifest-repo as the mani-
fest repository. The my-workspace and my-manifest-repo names are arbitrary: change them as
needed.

Next, customize the manifest repository. The initial contents of this repository will match the
example-application’s contents when you clone it. You can then edit my-manifest-repo/west.
yml to your liking, changing the set of repositories in it as you wish. See Manifest Imports for
many examples of how to add or remove different repositories from your workspace as needed.
Make any other changes you need to other files.

When you are satisfied, you can run:

west update

and your workspace will be ready for use.

If you push the resulting my-manifest-repo repository somewhere else, you can share your
work with others. For example, let’s say you push the repository to https://git.example.com/
my-manifest-repo. Other people can then set up a matching workspace by running:

west init -m https://git.example.com/my-manifest-repo my-workspace
cd my-workspace
west update

From now on, you can collaborate on the shared software by pushing changes to the repositories
you are using and updating my-manifest-repo/west.yml as needed to add and remove reposito-
ries, or change their contents.

Creating an Application by Hand

You can follow these steps to create a basic application directory from scratch. However, using
the example-application repository or one of Zephyr’s samples-and-demos as a starting point is
likely to be easier.

1. Create an application directory.

For example, in a Unix shell or Windows cmd.exe prompt:

mkdir app

Warning

Building Zephyr or creating an application in a directory with spaces anywhere on the
path is not supported. So the Windows path C:\Users\YourName\app will work, but C:\
Users\Your Name\app will not.

2. Create your source code files.

It’s recommended to place all application source code in a subdirectory named src. This
makes it easier to distinguish between project files and sources.

32 Chapter 2. Developing with Zephyr

https://github.com/zephyrproject-rtos/example-application


Zephyr Project Documentation, Release 3.7.99

Continuing the previous example, enter:

cd app
mkdir src

3. Place your application source code in the src sub-directory. For this example, we’ll assume
you created a file named src/main.c.

4. Create a file named CMakeLists.txt in the app directory with the following contents:

cmake_minimum_required(VERSION 3.20.0)

find_package(Zephyr)
project(my_zephyr_app)

target_sources(app PRIVATE src/main.c)

Notes:

• The cmake_minimum_required() call is required by CMake. It is also invoked by the
Zephyr package on the next line. CMake will error out if its version is older than either
the version in your CMakeLists.txt or the version number in the Zephyr package.

• find_package(Zephyr) pulls in the Zephyr build system, which creates a CMake tar-
get named app (see Zephyr CMake Package). Adding sources to this target is how you
include them in the build. The Zephyr package will define Zephyr-Kernel as a CMake
project and enable support for the C, CXX, ASM languages.

• project(my_zephyr_app) defines your application’s CMake project. This must
be called after find_package(Zephyr) to avoid interference with Zephyr’s
project(Zephyr-Kernel).

• target_sources(app PRIVATE src/main.c) is to add your source file to the app target.
This must come after find_package(Zephyr) which defines the target. You can add as
many files as you want with target_sources().

5. Create at least one Kconfig fragment for your application (usually named prj.conf) and set
Kconfig option values needed by your application there. See Kconfig Configuration. If no
Kconfig options need to be set, create an empty file.

6. Configure any devicetree overlays needed by your application, usually in a file named app.
overlay. See Set devicetree overlays.

7. Set up any other files you may need, such as twister configuration files, continuous integra-
tion files, documentation, etc.

2.4.4 Important Build System Variables

You can control the Zephyr build system using many variables. This section describes the most
important ones that every Zephyr developer should know about.

Note

The variables BOARD, CONF_FILE, and DTC_OVERLAY_FILE can be supplied to the build system
in 3 ways (in order of precedence):

• As a parameter to the west build or cmake invocation via the -D command-line switch.
If you have multiple overlay files, you should use quotations, "file1.overlay;file2.
overlay"

• As Environment Variables.

• As a set(<VARIABLE> <VALUE>) statement in your CMakeLists.txt
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• ZEPHYR_BASE: Zephyr base variable used by the build system. find_package(Zephyr) will
automatically set this as a cached CMake variable. But ZEPHYR_BASE can also be set as an
environment variable in order to force CMake to use a specific Zephyr installation.

• BOARD: Selects the board that the application’s build will use for the default configuration.
See boards for built-in boards, and Board Porting Guide for information on adding board
support.

• CONF_FILE: Indicates the name of one or more Kconfig configuration fragment files. Multi-
ple filenames can be separated with either spaces or semicolons. Each file includes Kconfig
configuration values that override the default configuration values.

See The Initial Configuration for more information.

• EXTRA_CONF_FILE: Additional Kconfig configuration fragment files. Multiple filenames can
be separated with either spaces or semicolons. This can be useful in order to leave
CONF_FILE at its default value, but “mix in” some additional configuration options.

• DTC_OVERLAY_FILE: One or more devicetree overlay files to use. Multiple files can be sepa-
rated with semicolons. See Set devicetree overlays for examples and Introduction to device-
tree for information about devicetree and Zephyr.

• EXTRA_DTC_OVERLAY_FILE: Additional devicetree overlay files to use. Multiple files can be
separated with semicolons. This can be useful to leave DTC_OVERLAY_FILE at its default
value, but “mix in” some additional overlay files.

• SHIELD: see Shields

• ZEPHYR_MODULES: A CMake list containing absolute paths of additional directories with
source code, Kconfig, etc. that should be used in the application build. See Modules (Ex-
ternal projects) for details. If you set this variable, it must be a complete list of all modules
to use, as the build system will not automatically pick up any modules from west.

• EXTRA_ZEPHYR_MODULES: Like ZEPHYR_MODULES, except these will be added to the list of mod-
ules found via west, instead of replacing it.

• FILE_SUFFIX: Optional suffix for filenames that will be added to Kconfig fragments and
devicetree overlays (if these files exists, otherwise will fallback to the name without the
prefix). See File Suffixes for details.

Note

You can use a Zephyr Build Configuration CMake packages to share common settings for these
variables.

2.4.5 Application CMakeLists.txt

Every application must have a CMakeLists.txt file. This file is the entry point, or top level, of the
build system. The final zephyr.elf image contains both the application and the kernel libraries.

This section describes some of what you can do in your CMakeLists.txt. Make sure to follow
these steps in order.

1. If you only want to build for one board, add the name of the board configuration for your
application on a new line. For example:

set(BOARD qemu_x86)

Refer to boards for more information on available boards.
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The Zephyr build system determines a value for BOARD by checking the following, in order
(when a BOARD value is found, CMake stops looking further down the list):

• Any previously used value as determined by the CMake cache takes highest prece-
dence. This ensures you don’t try to run a build with a different BOARD value than
you set during the build configuration step.

• Any value given on the CMake command line (directly or indirectly via west build)
using -DBOARD=YOUR_BOARD will be checked for and used next.

• If an environment variable BOARD is set, its value will then be used.

• Finally, if you set BOARD in your application CMakeLists.txt as described in this step,
this value will be used.

2. If your application uses a configuration file or files other than the usual prj.conf, add lines
setting the CONF_FILE variable to these files appropriately. If multiple filenames are given,
separate them by a single space or semicolon. CMake lists can be used to build up config-
uration fragment files in a modular way when you want to avoid setting CONF_FILE in a
single place. For example:

set(CONF_FILE "fragment_file1.conf")
list(APPEND CONF_FILE "fragment_file2.conf")

See The Initial Configuration for more information.

3. If your application uses devicetree overlays, you may need to set DTC_OVERLAY_FILE. See
Set devicetree overlays.

4. If your application has its own kernel configuration options, create a Kconfig file in the
same directory as your application’s CMakeLists.txt.

See the Kconfig section of the manual for detailed Kconfig documentation.

An (unlikely) advanced use case would be if your application has its own unique configu-
ration options that are set differently depending on the build configuration.

If you just want to set application specific values for existing Zephyr configuration options,
refer to the CONF_FILE description above.

Structure your Kconfig file like this:

# SPDX-License-Identifier: Apache-2.0

mainmenu "Your Application Name"

# Your application configuration options go here

# Sources Kconfig.zephyr in the Zephyr root directory.
#
# Note: All 'source' statements work relative to the Zephyr root directory (due
# to the $srctree environment variable being set to $ZEPHYR_BASE). If you want
# to 'source' relative to the current Kconfig file instead, use 'rsource' (or a
# path relative to the Zephyr root).
source "Kconfig.zephyr"

Note

Environment variables in source statements are expanded directly, so you do not need
to define an option env="ZEPHYR_BASE" Kconfig “bounce” symbol. If you use such a
symbol, it must have the same name as the environment variable.

See Kconfig extensions for more information.

2.4. Application Development 35



Zephyr Project Documentation, Release 3.7.99

The Kconfig file is automatically detected when placed in the application directory, but it
is also possible for it to be found elsewhere if the CMake variable KCONFIG_ROOT is set with
an absolute path.

5. Specify that the application requires Zephyr on a new line, after any lines added from the
steps above:

find_package(Zephyr)
project(my_zephyr_app)

Note

find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE}) can be used if enforcing a
specific Zephyr installation by explicitly setting the ZEPHYR_BASE environment variable
should be supported. All samples in Zephyr supports the ZEPHYR_BASE environment vari-
able.

6. Now add any application source files to the ‘app’ target library, each on their own line, like
so:

target_sources(app PRIVATE src/main.c)

Below is a simple example CMakeList.txt:

set(BOARD qemu_x86)

find_package(Zephyr)
project(my_zephyr_app)

target_sources(app PRIVATE src/main.c)

The Cmake property HEX_FILES_TO_MERGE leverages the application configuration provided by
Kconfig and CMake to let you merge externally built hex files with the hex file generated when
building the Zephyr application. For example:

set_property(GLOBAL APPEND PROPERTY HEX_FILES_TO_MERGE
${app_bootloader_hex}
${PROJECT_BINARY_DIR}/${KERNEL_HEX_NAME}
${app_provision_hex})

2.4.6 CMakeCache.txt

CMake uses a CMakeCache.txt file as persistent key/value string storage used to cache values
between runs, including compile and build options and paths to library dependencies. This cache
file is created when CMake is run in an empty build folder.

For more details about the CMakeCache.txt file see the official CMake documentation runningc-
make .

2.4.7 Application Configuration

Application Configuration Directory

Zephyr will use configuration files from the application’s configuration directory except for files
with an absolute path provided by the arguments described earlier, for example CONF_FILE, EX-
TRA_CONF_FILE, DTC_OVERLAY_FILE, and EXTRA_DTC_OVERLAY_FILE.
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The application configuration directory is defined by the APPLICATION_CONFIG_DIR variable.

APPLICATION_CONFIG_DIR will be set by one of the sources below with the highest priority listed
first.

1. If APPLICATION_CONFIG_DIR is specified by the user with
-DAPPLICATION_CONFIG_DIR=<path> or in a CMake file before find_package(Zephyr)
then this folder is used a the application’s configuration directory.

2. The application’s source directory.

Kconfig Configuration

Application configuration options are usually set in prj.conf in the application directory. For
example, C++ support could be enabled with this assignment:

CONFIG_CPP=y

Looking at existing samples is a good way to get started.

See Setting Kconfig configuration values for detailed documentation on setting Kconfig configu-
ration values. The The Initial Configuration section on the same page explains how the initial
configuration is derived. See kconfig-search for a complete list of configuration options. See
Hardening Tool for security information related with Kconfig options.

The other pages in the Kconfig section of the manual are also worth going through, especially if
you planning to add new configuration options.

Experimental features Zephyr is a project under constant development and thus there are
features that are still in early stages of their development cycle. Such features will be marked
[EXPERIMENTAL] in their Kconfig title.

The CONFIG_WARN_EXPERIMENTAL setting can be used to enable warnings at CMake configure time
if any experimental feature is enabled.

CONFIG_WARN_EXPERIMENTAL=y

For example, if option CONFIG_FOO is experimental, then enabling it and CON-
FIG_WARN_EXPERIMENTAL will print the following warning at CMake configure time when
you build an application:

warning: Experimental symbol FOO is enabled.

Devicetree Overlays

See Set devicetree overlays.

File Suffixes

Zephyr applications might want to have a single code base with multiple configurations for dif-
ferent build/product variants which would necessitate different Kconfig options and devicetree
configuration. In order to better configure this, Zephyr provides a FILE_SUFFIX option when
configuring applications that can be automatically appended to filenames. This is applied to
Kconfig fragments and board overlays but with a fallback so that if such files do not exist, the
files without these suffixes will be used instead.

Given the following example project layout:
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<app>
├── CMakeLists.txt
├── prj.conf
├── prj_mouse.conf
├── boards
│ ├── native_sim.overlay
│ └── qemu_cortex_m3_mouse.overlay
└── src

└── main.c

• If this is built normally without FILE_SUFFIX being defined for native_sim then prj.conf
and boards/native_sim.overlay will be used.

• If this is build normally without FILE_SUFFIX being defined for qemu_cortex_m3 then prj.
conf will be used, no application devicetree overlay will be used.

• If this is built with FILE_SUFFIX set to mouse for native_sim then prj_mouse.conf and
boards/native_sim.overlay will be used (there is no native_sim_mouse.overlay file so it
falls back to native_sim.overlay).

• If this is build with FILE_SUFFIX set to mouse for qemu_cortex_m3 then prj_mouse.conf will
be used and boards/qemu_cortex_m3_mouse.overlay will be used.

Note

When CONF_FILE is set in the form of prj_X.conf then the X will be used as the build type. If
this is combined with FILE_SUFFIX then the file suffix option will take priority over the build
type.

2.4.8 Application-Specific Code

Application-specific source code files are normally added to the application’s src directory. If
the application adds a large number of files the developer can group them into sub-directories
under src, to whatever depth is needed.

Application-specific source code should not use symbol name prefixes that have been reserved
by the kernel for its own use. For more information, see Naming Conventions.

Third-party Library Code

It is possible to build library code outside the application’s src directory but it is important that
both application and library code targets the same Application Binary Interface (ABI). On most
architectures there are compiler flags that control the ABI targeted, making it important that
both libraries and applications have certain compiler flags in common. It may also be useful for
glue code to have access to Zephyr kernel header files.

To make it easier to integrate third-party components, the Zephyr build system has defined
CMake functions that give application build scripts access to the zephyr compiler options. The
functions are documented and defined in cmake/modules/extensions.cmake and follow the nam-
ing convention zephyr_get_<type>_<format>.

The following variables will often need to be exported to the third-party build system.

• CMAKE_C_COMPILER, CMAKE_AR.

• ARCH and BOARD, together with several variables that identify the Zephyr kernel version.

samples/application_development/external_lib is a sample project that demonstrates some of
these features.
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2.4.9 Building an Application

The Zephyr build system compiles and links all components of an application into a single appli-
cation image that can be run on simulated hardware or real hardware.

Like any other CMake-based system, the build process takes place in two stages. First, build files
(also known as a buildsystem) are generated using the cmake command-line tool while specifying
a generator. This generator determines the native build tool the buildsystem will use in the
second stage. The second stage runs the native build tool to actually build the source files and
generate an image. To learn more about these concepts refer to the CMake introduction in the
official CMake documentation.

Although the default build tool in Zephyr is west, Zephyr’s meta-tool, which invokes cmake and
the underlying build tool (ninja or make) behind the scenes, you can also choose to invoke cmake
directly if you prefer. On Linux and macOS you can choose between the make and ninja gener-
ators (i.e. build tools), whereas on Windows you need to use ninja, since make is not supported
on this platform. For simplicity we will use ninja throughout this guide, and if you choose to use
west build to build your application know that it will default to ninja under the hood.

As an example, let’s build the Hello World sample for the reel_board:

Using west:

west build -b reel_board samples/hello_world

Using CMake and ninja:

# Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=reel_board samples/hello_world

# Now run the build tool on the generated build system:
ninja -Cbuild

On Linux and macOS, you can also build with make instead of ninja:

Using west:

• to use make just once, add -- -G"Unix Makefiles" to the west build command line; see the
west build documentation for an example.

• to use make by default from now on, run west config build.generator "Unix Makefiles".

Using CMake directly:

# Use cmake to configure a Make-based buildsystem:
cmake -Bbuild -DBOARD=reel_board samples/hello_world

# Now run the build tool on the generated build system:
make -Cbuild

Basics

1. Navigate to the application directory <app>.

2. Enter the following commands to build the application’s zephyr.elf image for the board
specified in the command-line parameters:

Using west:

west build -b <board>

Using CMake and ninja:
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mkdir build && cd build

# Use cmake to configure a Ninja-based buildsystem:
cmake -GNinja -DBOARD=<board> ..

# Now run the build tool on the generated build system:
ninja

If desired, you can build the application using the configuration settings specified in an
alternate .conf file using the CONF_FILE parameter. These settings will override the settings
in the application’s .config file or its default .conf file. For example:

Using west:

west build -b <board> -- -DCONF_FILE=prj.alternate.conf

Using CMake and ninja:

mkdir build && cd build
cmake -GNinja -DBOARD=<board> -DCONF_FILE=prj.alternate.conf ..
ninja

As described in the previous section, you can instead choose to permanently set the board
and configuration settings by either exporting BOARD and CONF_FILE environment variables
or by setting their values in your CMakeLists.txt using set() statements. Additionally,
west allows you to set a default board.

Build Directory Contents

When using the Ninja generator a build directory looks like this:

<app>/build
├── build.ninja
├── CMakeCache.txt
├── CMakeFiles
├── cmake_install.cmake
├── rules.ninja
└── zephyr

The most notable files in the build directory are:

• build.ninja, which can be invoked to build the application.

• A zephyrdirectory, which is the working directory of the generated build system, and where
most generated files are created and stored.

After running ninja, the following build output files will be written to the zephyr sub-directory
of the build directory. (This is not the Zephyr base directory, which contains the Zephyr source
code etc. and is described above.)

• .config, which contains the configuration settings used to build the application.

Note

The previous version of .config is saved to .config.old whenever the configuration is
updated. This is for convenience, as comparing the old and new versions can be handy.

• Various object files (.o files and .a files) containing compiled kernel and application code.

• zephyr.elf, which contains the final combined application and kernel binary. Other binary
output formats, such as .hex and .bin, are also supported.
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Rebuilding an Application

Application development is usually fastest when changes are continually tested. Frequently re-
building your application makes debugging less painful as the application becomes more com-
plex. It’s usually a good idea to rebuild and test after any major changes to the application’s
source files, CMakeLists.txt files, or configuration settings.

Important

The Zephyr build system rebuilds only the parts of the application image potentially affected
by the changes. Consequently, rebuilding an application is often significantly faster than
building it the first time.

Sometimes the build system doesn’t rebuild the application correctly because it fails to recompile
one or more necessary files. You can force the build system to rebuild the entire application from
scratch with the following procedure:

1. Open a terminal console on your host computer, and navigate to the build directory <app>/
build.

2. Enter one of the following commands, depending on whether you want to use west or cmake
directly to delete the application’s generated files, except for the .config file that contains
the application’s current configuration information.

west build -t clean

or

ninja clean

Alternatively, enter one of the following commands to delete all generated files, including
the .config files that contain the application’s current configuration information for those
board types.

west build -t pristine

or

ninja pristine

If you use west, you can take advantage of its capability to automatically make the build
folder pristine whenever it is required.

3. Rebuild the application normally following the steps specified in Building an Application
above.

Building for a board revision

The Zephyr build system has support for specifying multiple hardware revisions of a single board
with small variations. Using revisions allows the board support files to make minor adjustments
to a board configuration without duplicating all the files described in Create your board directory
for each revision.

To build for a particular revision, use <board>@<revision> instead of plain <board>. For example:

Using west:

west build -b <board>@<revision>

Using CMake and ninja:
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mkdir build && cd build
cmake -GNinja -DBOARD=<board>@<revision> ..
ninja

Check your board’s documentation for details on whether it has multiple revisions, and what
revisions are supported.

When targeting a board revision, the active revision will be printed at CMake configure time,
like this:

-- Board: plank, Revision: 1.5.0

2.4.10 Run an Application

An application image can be run on a real board or emulated hardware.

Running on a Board

Most boards supported by Zephyr let you flash a compiled binary using the flash target to copy
the binary to the board and run it. Follow these instructions to flash and run an application on
real hardware:

1. Build your application, as described in Building an Application.

2. Make sure your board is attached to your host computer. Usually, you’ll do this via USB.

3. Run one of these console commands from the build directory, <app>/build, to flash the
compiled Zephyr image and run it on your board:

west flash

or

ninja flash

The Zephyr build system integrates with the board support files to use hardware-specific tools
to flash the Zephyr binary to your hardware, then run it.

Each time you run the flash command, your application is rebuilt and flashed again.

In cases where board support is incomplete, flashing via the Zephyr build system may not be
supported. If you receive an error message about flash support being unavailable, consult your
board’s documentation for additional information on how to flash your board.

Note

When developing on Linux, it’s common to need to install board-specific udev rules to enable
USB device access to your board as a non-root user. If flashing fails, consult your board’s
documentation to see if this is necessary.

Running in an Emulator

Zephyr has built-in emulator support for QEMU. It allows you to run and test an application
virtually, before (or in lieu of) loading and running it on actual target hardware.

Check out Beyond the Getting Started Guide for additional steps needed on Windows.

Follow these instructions to run an application via QEMU:
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1. Build your application for one of the QEMU boards, as described in Building an Application.

For example, you could set BOARD to:

• qemu_x86 to emulate running on an x86-based board

• qemu_cortex_m3 to emulate running on an ARM Cortex M3-based board

2. Run one of these console commands from the build directory, <app>/build, to run the
Zephyr binary in QEMU:

west build -t run

or

ninja run

3. Press Ctrl A, X to stop the application from running in QEMU.

The application stops running and the terminal console prompt redisplays.

Each time you execute the run command, your application is rebuilt and run again.

Note

If the (Linux only) Zephyr SDK is installed, the run target will use the SDK’s QEMU binary by
default. To use another version of QEMU, set the environment variable QEMU_BIN_PATH to the
path of the QEMU binary you want to use instead.

Note

You can choose a specific emulator by appending _<emulator> to your target name, for ex-
ample west build -t run_qemu or ninja run_qemu for QEMU.

2.4.11 Custom Board, Devicetree and SOC Definitions

In cases where the board or platform you are developing for is not yet supported by Zephyr, you
can add board, Devicetree and SOC definitions to your application without having to add them
to the Zephyr tree.

The structure needed to support out-of-tree board and SOC development is similar to how boards
and SOCs are maintained in the Zephyr tree. By using this structure, it will be much easier to
upstream your platform related work into the Zephyr tree after your initial development is done.

Add the custom board to your application or a dedicated repository using the following structure:

boards/
soc/
CMakeLists.txt
prj.conf
README.rst
src/

where the boards directory hosts the board you are building for:

.
├── boards
│ └── vendor
│ └── my_custom_board

(continues on next page)
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(continued from previous page)
│ ├── doc
│ │ └── img
│ └── support
└── src

and the soc directory hosts any SOC code. You can also have boards that are supported by a SOC
that is available in the Zephyr tree.

Boards

Use the vendor name as the folder name (which must match the vendor prefix in
dts/bindings/vendor-prefixes.txt if submitting upstream to Zephyr, or be others if it is not a ven-
dor board) under boards for my_custom_board.

Documentation (under doc/) and support files (under support/) are optional, but will be needed
when submitting to Zephyr.

The contents of my_custom_board should follow the same guidelines for any Zephyr board, and
provide the following files:

my_custom_board_defconfig
my_custom_board.dts
my_custom_board.yaml
board.cmake
board.h
CMakeLists.txt
doc/
Kconfig.my_custom_board
Kconfig.defconfig
support/

Once the board structure is in place, you can build your application targeting this board by spec-
ifying the location of your custom board information with the -DBOARD_ROOT parameter to the
CMake build system:

Using west:

west build -b <board name> -- -DBOARD_ROOT=<path to boards>

Using CMake and ninja:

cmake -Bbuild -GNinja -DBOARD=<board name> -DBOARD_ROOT=<path to boards> .
ninja -Cbuild

This will use your custom board configuration and will generate the Zephyr binary into your
application directory.

You can also define the BOARD_ROOT variable in the application CMakeLists.txt file. Make sure
to do so before pulling in the Zephyr boilerplate with find_package(Zephyr ...).

Note

When specifying BOARD_ROOT in a CMakeLists.txt, then an absolute path must be provided, for
example list(APPEND BOARD_ROOT ${CMAKE_CURRENT_SOURCE_DIR}/<extra-board-root>).
When using -DBOARD_ROOT=<board-root> both absolute and relative paths can be used. Rel-
ative paths are treated relatively to the application directory.
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SOC Definitions

Similar to board support, the structure is similar to how SOCs are maintained in the Zephyr tree,
for example:

soc
└── st

└── stm32
├── common
└── stm32l0x

The file soc/Kconfig will create the top-level SoC/CPU/Configuration Selectionmenu in Kconfig.

Out of tree SoC definitions can be added to this menu using the SOC_ROOT CMake variable. This
variable contains a semicolon-separated list of directories which contain SoC support files.

Following the structure above, the following files can be added to load more SoCs into the menu.

soc
└── st

└── stm32
└── stm32l0x

├── Kconfig
├── Kconfig.soc
└── Kconfig.defconfig

The Kconfig files above may describe the SoC or load additional SoC Kconfig files.

An example of loading stm31l0 specific Kconfig files in this structure:

soc
└── st

└── stm32
├── Kconfig.soc
└── stm32l0x

└── Kconfig.soc

can be done with the following content in st/stm32/Kconfig.soc:

rsource "*/Kconfig.soc"

Once the SOC structure is in place, you can build your application targeting this platform by
specifying the location of your custom platform information with the -DSOC_ROOT parameter to
the CMake build system:

Using west:

west build -b <board name> -- -DSOC_ROOT=<path to soc> -DBOARD_ROOT=<path to boards>

Using CMake and ninja:

cmake -Bbuild -GNinja -DBOARD=<board name> -DSOC_ROOT=<path to soc> -DBOARD_ROOT=<path to␣
↪→boards> .
ninja -Cbuild

This will use your custom platform configurations and will generate the Zephyr binary into your
application directory.

See Build settings for information on setting SOC_ROOT in a module’s zephyr/module.yml file.

Or you can define the SOC_ROOT variable in the application CMakeLists.txt file. Make sure to do
so before pulling in the Zephyr boilerplate with find_package(Zephyr ...).
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Note

When specifying SOC_ROOT in a CMakeLists.txt, then an absolute path must be provided, for
example list(APPEND SOC_ROOT ${CMAKE_CURRENT_SOURCE_DIR}/<extra-soc-root>. When
using -DSOC_ROOT=<soc-root> both absolute and relative paths can be used. Relative paths
are treated relatively to the application directory.

Devicetree Definitions

Devicetree directory trees are found in APPLICATION_SOURCE_DIR, BOARD_DIR, and ZEPHYR_BASE,
but additional trees, or DTS_ROOTs, can be added by creating this directory tree:

include/
dts/common/
dts/arm/
dts/
dts/bindings/

Where ‘arm’ is changed to the appropriate architecture. Each directory is optional. The binding
directory contains bindings and the other directories contain files that can be included from DT
sources.

Once the directory structure is in place, you can use it by specifying its location through the
DTS_ROOT CMake Cache variable:

Using west:

west build -b <board name> -- -DDTS_ROOT=<path to dts root>

Using CMake and ninja:

cmake -Bbuild -GNinja -DBOARD=<board name> -DDTS_ROOT=<path to dts root> .
ninja -Cbuild

You can also define the variable in the application CMakeLists.txtfile. Make sure to do sobefore
pulling in the Zephyr boilerplate with find_package(Zephyr ...).

Note

When specifying DTS_ROOT in a CMakeLists.txt, then an absolute path must be provided, for
example list(APPEND DTS_ROOT ${CMAKE_CURRENT_SOURCE_DIR}/<extra-dts-root>. When
using -DDTS_ROOT=<dts-root> both absolute and relative paths can be used. Relative paths
are treated relatively to the application directory.

Devicetree source are passed through the C preprocessor, so you can include files that can be
located in a DTS_ROOT directory. By convention devicetree include files have a .dtsi extension.

You can also use the preprocessor to control the content of a devicetree file, by specifying direc-
tives through the DTS_EXTRA_CPPFLAGS CMake Cache variable:

Using west:

west build -b <board name> -- -DDTS_EXTRA_CPPFLAGS=-DTEST_ENABLE_FEATURE

Using CMake and ninja:

cmake -Bbuild -GNinja -DBOARD=<board name> -DDTS_EXTRA_CPPFLAGS=-DTEST_ENABLE_FEATURE .
ninja -Cbuild
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2.5 Debugging

2.5.1 Application Debugging

This section is a quick hands-on reference to start debugging your application with QEMU. Most
content in this section is already covered in QEMU and GNU_Debugger reference manuals.

In this quick reference, you’ll find shortcuts, specific environmental variables, and parameters
that can help you to quickly set up your debugging environment.

The simplest way to debug an application running in QEMU is using the GNU Debugger and
setting a local GDB server in your development system through QEMU.

You will need an ELF (Executable and Linkable Format) binary image for debugging purposes.
The build system generates the image in the build directory. By default, the kernel binary name
is zephyr.elf. The name can be changed using CONFIG_KERNEL_BIN_NAME.

GDB server

We will use the standard 1234 TCP port to open a GDB (GNU Debugger) server instance. This
port number can be changed for a port that best suits the development environment. There are
multiple ways to do this. Each way starts a QEMU instance with the processor halted at startup
and with a GDB server instance listening for a connection.

Running QEMU directly You can run QEMU to listen for a “gdb connection” before it starts
executing any code to debug it.

qemu -s -S <image>

will setup Qemu to listen on port 1234 and wait for a GDB connection to it.

The options used above have the following meaning:

• -S Do not start CPU at startup; rather, you must type ‘c’ in the monitor.

• -s Shorthand for -gdb tcp::1234: open a GDB server on TCP port 1234.

Running QEMU via ninja Run the following inside the build directory of an application:

ninja debugserver

QEMU will write the console output to the path specified in ${QEMU_PIPE} via CMake, typically
qemu-fifo within the build directory. You may monitor this file during the run with tail -f
qemu-fifo.

Running QEMU via west Run the following from your project root:

west build -t debugserver_qemu

QEMU will write the console output to the terminal from which you invoked west.

Configuring the gdbserver listening device The Kconfig option CON-
FIG_QEMU_GDBSERVER_LISTEN_DEV controls the listening device, which can be a TCP port
number or a path to a character device. GDB releases 9.0 and newer also support Unix domain
sockets.
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If the option is unset, then the QEMU invocation will lack a -s or a -gdb parameter. You can
then use the QEMU_EXTRA_FLAGS shell environment variable to pass in your own listen device
configuration.

GDB client

Connect to the server by running gdb and giving these commands:

$ path/to/gdb path/to/zephyr.elf
(gdb) target remote localhost:1234
(gdb) dir ZEPHYR_BASE

Note

Substitute the correct ZEPHYR_BASE for your system.

You can use a local GDB configuration .gdbinit to initialize your GDB instance on every run.
Your home directory is a typical location for .gdbinit, but you can configure GDB to load from
other locations, including the directory from which you invoked gdb. This example file performs
the same configuration as above:

target remote localhost:1234
dir ZEPHYR_BASE

Alternate interfaces GDB provides a curses-based interface that runs in the terminal. Pass
the --tui option when invoking gdb or give the tui enable command within gdb.

Note

The GDB version on your development system might not support the --tui option. Please
make sure you use the GDB binary from the SDK which corresponds to the toolchain that has
been used to build the binary.

Finally, the command below connects to the GDB server using the DDD (Data Display Debugger), a
graphical frontend for GDB. The following command loads the symbol table from the ELF binary
file, in this instance, zephyr.elf.

ddd --gdb --debugger "gdb zephyr.elf"

Both commands execute gdb. The command name might change depending on the toolchain you
are using and your cross-development tools.

dddmay not be installed in your development system by default. Follow your system instructions
to install it. For example, use sudo apt-get install ddd on an Ubuntu system.

Debugging

As configured above, when you connect the GDB client, the application will be stopped at sys-
tem startup. You may set breakpoints, step through code, etc. as when running the application
directly within gdb.
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Note

gdb will not print the system console output as the application runs, unlike when you run a
native application in GDB directly. If you just continue after connecting the client, the ap-
plication will run, but nothing will appear to happen. Check the console output as described
above.

2.5.2 Debug with Eclipse

Overview

CMake supports generating a project description file that can be imported into the Eclipse Inte-
grated Development Environment (IDE) and used for graphical debugging.

The GNU MCU Eclipse plug-ins provide a mechanism to debug ARM projects in Eclipse with py-
OCD, Segger J-Link, and OpenOCD debugging tools.

The following tutorial demonstrates how to debug a Zephyr application in Eclipse with pyOCD in
Windows. It assumes you have already installed the GCC ARM Embedded toolchain and pyOCD.

Set Up the Eclipse Development Environment

1. Download and install Eclipse IDE for C/C++ Developers.

2. In Eclipse, install the GNU MCU Eclipse plug-ins by opening the menu Window->Eclipse
Marketplace..., searching for GNU MCU Eclipse, and clicking Install on the matching
result.

3. Configure the path to the pyOCD GDB server by opening the menu Window->Preferences,
navigating to MCU, and setting the Global pyOCD Path.

Generate and Import an Eclipse Project

1. Set up a GNU Arm Embedded toolchain as described in GNU Arm Embedded.

2. Navigate to a folder outside of the Zephyr tree to build your application.

# On Windows
cd %userprofile%

Note

If the build directory is a subdirectory of the source directory, as is usually done in
Zephyr, CMake will warn:

“The build directory is a subdirectory of the source directory.

This is not supported well by Eclipse. It is strongly recommended to use a build directory
which is a sibling of the source directory.”

3. Configure your application with CMake and build it with ninja. Note the different CMake
generator specified by the -G"Eclipse CDT4 - Ninja" argument. This will generate an
Eclipse project description file, .project, in addition to the usual ninja build files.

Using west:
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west build -b frdm_k64f %ZEPHYR_BASE%\samples\synchronization -- -G"Eclipse CDT4 -␣
↪→Ninja"

Using CMake and ninja:

cmake -Bbuild -GNinja -DBOARD=frdm_k64f -G"Eclipse CDT4 - Ninja" %ZEPHYR_BASE%\samples\
↪→synchronization
ninja -Cbuild

4. In Eclipse, import your generated project by opening the menu File->Import... and se-
lecting the option Existing Projects into Workspace. Browse to your application build
directory in the choice, Select root directory:. Check the box for your project in the list
of projects found and click the Finish button.

Create a Debugger Configuration

1. Open the menu Run->Debug Configurations....

2. Select GDB PyOCD Debugging, click the New button, and configure the following options:

• In the Main tab:

– Project: my_zephyr_app@build
– C/C++ Application: zephyr/zephyr.elf

• In the Debugger tab:

– pyOCD Setup

* Executable path: $pyocd_path\$pyocd_executable

* Uncheck “Allocate console for semihosting”

– Board Setup

* Bus speed: 8000000 Hz

* Uncheck “Enable semihosting”

– GDB Client Setup

* Executable path example (use your GNUARMEMB_TOOLCHAIN_PATH): C:\
gcc-arm-none-eabi-6_2017-q2-update\bin\arm-none-eabi-gdb.exe

• In the SVD Path tab:

– File path: <workspace top>\modules\hal\nxp\mcux\devices\MK64F12\MK64F12.
xml

Note

This is optional. It provides the SoC’s memory-mapped register addresses and bit-
fields to the debugger.

3. Click the Debug button to start debugging.

RTOS Awareness

Support for Zephyr RTOS awareness is implemented in pyOCD v0.11.0 and later. It is compatible
with GDB PyOCD Debugging in Eclipse, but you must enable CONFIG_DEBUG_THREAD_INFO=y
in your application.
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2.5.3 Debugging I2C communication

There is a possibility to log all or some of the I2C transactions done by the application. This fea-
ture is enabled by the Kconfig option CONFIG_I2C_DUMP_MESSAGES, but it uses the LOG_DBG function
to print the contents so the CONFIG_I2C_LOG_LEVEL_DBG option must also be enabled.

The sample output of the dump looks like this:

D: I2C msg: io_i2c_ctrl7_port0, addr=50
D: W len=01: 00
D: R Sr P len=08:
D: contents:
D: 43 42 41 00 00 00 00 00 |CBA.....

The first line indicates the I2C controller and the target address of the transaction. In above
example, the I2C controller is named io_i2c_ctrl7_port0 and the target device address is 0x50

Note

the address, length and contents values are in hexadecimal, but lack the 0x prefix

Next lines contain messages, both sent and received. The contents of write messages is al-
ways shown, while the content of read messages is controlled by a parameter to the function
i2c_dump_msgs_rw. This function is available for use by user, but is also called internally by
i2c_transfer API function with read content dump enabled. Before the length parameter, the
header of the message is printed using abbreviations:

• W - write message

• R - read message

• Sr - restart bit

• P - stop bit

The above example shows one write message with byte 0x00 representing the address of register
to read from the I2C target. After that the log shows the length of received message and following
that, the bytes read from the target 43 42 41 00 00 00 00 00. The content dump consist of both
the hex and ASCII representation.

Filtering the I2C communication dump

By default, all I2C communication is logged between all I2C controllers and I2C targets. It may
litter the log with unrelated devices and make it difficult to effectively debug the communication
with a device of interest.

Enable the Kconfig option CONFIG_I2C_DUMP_MESSAGES_ALLOWLIST to create an allowlist of I2C
targets to log. The allowlist of devices is configured using the devicetree, for example:

/ {
i2c {

display0: some-display@a {
...

};
sensor3: some-sensor@b {

...
};

};

i2c-dump-allowlist {
(continues on next page)
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(continued from previous page)
compatible = "zephyr,i2c-dump-allowlist";
devices = < &display0 >, < &sensor3 >;

};
};

The filters nodes are identified by the compatible string with zephyr,i2c-dump-allowlist value.
The devices are selected using the devices property with phandles to the devices on the I2C bus.

In the above example, the communication with device display0 and sensor3 will be displayed
in the log.

2.6 API Status and Guidelines

2.6.1 API Overview

The table lists Zephyr’s APIs and information about them, including their current stabil-
ity level. More details about API changes between major releases are available in the
zephyr_release_notes.

The version column uses semantic version, and has the following expectations:

• Major version zero (0.y.z) is for initial development. Anything MAY change at any time. The
public API SHOULD NOT be considered stable.

– If minor version is up to one (0.1.z), API is considered experimental.

– If minor version is larger than one (0.y.z | y > 1), API is considered unstable.

• Version 1.0.0 defines the public API. The way in which the version number is incremented
after this release is dependent on this public API and how it changes.

– APIs with major versions equal or larger than one (x.y.z | x >= 1 ) are considered stable.

– All existing stable APIs in Zephyr will be start with version 1.0.0.

• Patch version Z (x.y.Z | x > 0) MUST be incremented if only backwards compatible bug fixes
are introduced. A bug fix is defined as an internal change that fixes incorrect behavior.

• Minor version Y (x.Y.z | x > 0) MUST be incremented if new, backwards compatible function-
ality is introduced to the public API. It MUST be incremented if any public API functionality
is marked as deprecated. It MAY be incremented if substantial new functionality or im-
provements are introduced within the private code. It MAY include patch level changes.
Patch version MUST be reset to 0 when minor version is incremented.

• Major version X (x.Y.z | x > 0) MUST be incremented if a compatibility breaking change was
made to the API.

Note

Version for existing APIs are initially set based on the current state of the APIs:

• 0.1.0 denotes an experimental API

• 0.8.0 denote an unstable API,

• and finally 1.0.0 indicates a stable APIs.

Changes to APIs in the future will require adapting the version following the guidelines above.

52 Chapter 2. Developing with Zephyr

https://semver.org/


Zephyr Project Documentation, Release 3.7.99

API Version Available in Zephyr Since
Audio

Audio Codec Interface 0.1.0 v1.13.0
Digital Microphone Interface 0.1.0 v1.13.0

Connectivity
Bluetooth APIs

AUDIO
Attribute Protocol (ATT)
Audio Input Control Service (AICS) 0.8.0 v2.6.0
Basic Audio Profile (BAP) LC3 Presets 0.8.0 v3.0.0
Battery Service (BAS)
BlueNRG HCI driver extended API
Bluetooth Audio

Codec capability parsing APIs
Codec config parsing APIs

Bluetooth Basic Audio Profile 0.8.0 v3.0.0
BAP Broadcast APIs

BAP Broadcast Sink APIs
BAP Broadcast Source APIs

BAP Broadcast Sink APIs
BAP Broadcast Source APIs
BAP Unicast Client APIs
BAP Unicast Server APIs

Bluetooth Controller
Bluetooth Gaming Audio Profile 0.8.0 v3.5.0
Bluetooth HCI APIs 0.2.0 v3.7.0
Bluetooth Mesh

Access layer
Bluetooth Mesh BLOB Transfer Client model API
Bluetooth Mesh BLOB Transfer Server model API
Bluetooth Mesh BLOB flash stream
Bluetooth Mesh BLOB model API
Bluetooth Mesh Device Firmware Update

Bluetooth Mesh Device Firmware Update (DFU) metadata
Firmware Update Server model
Firmware Uppdate Client model

Bluetooth Mesh On-Demand Private GATT Proxy Client
Bluetooth Mesh On-Demand Private GATT Proxy Server
Bluetooth Mesh Private Beacon Client
Bluetooth Mesh Private Beacon Server
Bluetooth Mesh SAR Configuration Client Model
Bluetooth Mesh SAR Configuration Server Model
Bluetooth Mesh Solicitation PDU RPL Client
Bluetooth Mesh Solicitation PDU RPL Server
Configuration Client Model
Configuration Server Model
Firmware Distribution models

Firmware Distribution Server model
Health Client Model
Health Server Model
Health faults
Heartbeat
Large Composition Data Client model
Large Composition Data Server model
Message
Opcodes Aggregator Client model

continues on next page
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Table 1 – continued from previous page
API Version Available in Zephyr Since

Opcodes Aggregator Server model
Provisioning
Proxy
Remote Provisioning Client model
Remote Provisioning models
Remote provisioning server
Runtime Configuration

Application Configuration
Subnet Configuration

SAR Configuration common header
Statistic

Bluetooth testing callbacks
Byteorder
Common Audio Profile (CAP) 0.8.0 v3.2.0
Connection management
Coordinated Set Identification Profile (CSIP) 0.8.0 v3.0.0
Cryptography
Data buffers
Device Address
Encrypted Advertising Data (EAD)
Gaming Audio Profile (GMAP) LC3 Presets 0.8.0 v3.5.0
Generic Access Profile (GAP) 1.0.0 v1.0.0

Defines and Assigned Numbers
Generic Attribute Profile (GATT)

GATT Client APIs
GATT Server APIs

HCI RAW channel
HCI drivers
Hands Free Profile (HFP)
Hands Free Profile - Audio Gateway (HFP-AG)
Hearing Access Service (HAS) 0.8.0 v3.1.0
Heart Rate Service (HRS)
Immediate Alert Service (IAS)
Isochronous channels (ISO) 0.8.0 v2.3.0
L2CAP
Media Control Client (MCC) 0.8.0 v3.0.0
Media Control Service (MCS) 0.8.0 v3.0.0
Media Proxy 0.8.0 v3.0.0
Microphone Control Profile (MICP) 0.8.0 v2.7.0
Object Transfer Service (OTS)
Public Broadcast Profile (PBP) 0.8.0 v3.5.0
RFCOMM
Service Discovery Protocol (SDP)
Telephone Bearer Service (TBS) 0.8.0 v3.0.0
UUIDs
Volume Control Profile (VCP) 0.8.0 v2.7.0
Volume Offset Control Service (VOCS) 0.8.0 v2.6.0

CAN ISO-TP Protocol
IEEE 802.15.4 and Thread APIs 0.8.0 v1.0.0

IEEE 802.15.4 Drivers 0.8.0 v1.0.0
IEEE 802.15.4 L2 0.8.0 v1.0.0
IEEE 802.15.4 Net Management 0.8.0 v1.0.0
OpenThread L2 abstraction layer 0.8.0 v1.11.0

LoRaWAN APIs 0.1.0 v2.5.0
Modem APIs 0.1.0 v3.5.0
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Table 1 – continued from previous page
API Version Available in Zephyr Since

Modem CMUX
Modem PPP
Modem Pipe
Modem Ubx
Modem pipelink

Networking 1.0.0 v1.0.0
Application network context 0.8.0 v1.0.0
BSD Sockets compatible API 1.0.0 v1.9.0

Socket options for TLS 0.8.0 v1.13.0
BSD socket service API 0.1.0 v3.6.0
COAP Library 0.8.0 v1.10.0
CoAP Manager Events 0.1.0 v3.6.0
CoAP client API 0.1.0 v3.4.0
CoAP service API 0.1.0 v3.6.0
Connection Manager API 0.1.0 v2.0.0
Connection Manager Connectivity API 0.1.0 v3.4.0

Connection Manager Connectivity Bulk API 0.1.0 v3.4.0
Connection Manager Connectivity Implementation API 0.1.0 v3.4.0

DHCPv4 0.8.0 v1.7.0
DHCPv4 server 0.8.0 v3.6.0
DHCPv6 0.8.0 v3.5.0
DNS Resolve Library 0.8.0 v1.8.0
DNS Service Discovery 0.8.0 v2.5.0
Distributed Switch Architecture definitions and helpers 0.8.0 v2.5.0
Dummy L2/driver Support Functions 0.8.0 v1.14.0
Ethernet Bridging API 0.8.0 v2.7.0
Ethernet Library 0.8.0 v1.12.0
Ethernet PHY Interface 0.8.0 v2.7.0
Ethernet Support Functions 0.8.0 v1.0.0

Ethernet MII Support Functions 0.8.0 v1.7.0
IEEE 802.3 management interface 0.8.0 v3.5.0

HTTP HPACK 0.1.0 v3.7.0
HTTP client API 0.2.0 v2.1.0
HTTP request methods 0.8.0 v3.3.0
HTTP response status codes 0.8.0 v3.3.0
HTTP server API 0.1.0 v3.7.0
HTTP service API 0.1.0 v3.4.0
IGMP API 0.8.0 v2.6.0
IPv4/IPv6 primitives and helpers 1.0.0 v1.0.0
Link Layer Discovery Protocol definitions and helpers 0.8.0 v1.13.0
LwM2M high-level API 0.8.0 v1.9.0

LwM2M path helper macros 0.8.0 v2.5.0
MQTT Client library 0.8.0 v1.14.0
MQTT-SN Client library 0.1.0 v3.3.0
Network Buffer Library 1.0.0 v1.0.0
Network Configuration Library 0.8.0 v1.8.0
Network Core Library 1.0.0 v1.0.0
Network Hostname Library 0.8.0 v1.10.0
Network Interface abstraction layer 1.0.0 v1.5.0
Network L2 Abstraction Layer 1.0.0 v1.5.0
Network Link Address Library 1.0.0 v1.0.0
Network Management 1.0.0 v1.7.0
Network Offloading Interface 0.8.0 v1.7.0
Network Packet Filter API 0.8.0 v3.0.0

Basic Filter Conditions 0.8.0 v3.0.0
continues on next page
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Table 1 – continued from previous page
API Version Available in Zephyr Since

Ethernet Filter Conditions 0.8.0 v3.0.0
Network Packet Library 0.8.0 v1.5.0
Network Statistics Library 0.8.0 v1.5.0
Network long timeout primitives and helpers 0.8.0 v1.14.0
Network packet capture 0.8.0 v2.6.0
Network time representation. 0.1.0 v3.5.0
Offloaded Net Devices 0.8.0 v3.4.0
PPP L2/driver Support Functions 0.8.0 v2.0.0
PTP support 0.1.0 v3.7.0
PTP time 0.8.0 v1.13.0
Promiscuous mode 0.8.0 v1.13.0
SNTP 0.8.0 v1.10.0
Send and receive IPv4 or IPv6 ICMP Echo Request messages. 0.8.0 v3.5.0
Socket NET_MGMT library 0.1.0 v2.0.0
SocketCAN library 0.8.0 v1.14.0
TFTP Client library 0.1.0 v2.3.0
TLS credentials management 0.8.0 v1.13.0
Trickle Algorithm Library 0.8.0 v1.7.0
Virtual Interface Library 0.8.0 v2.6.0
Virtual LAN definitions and helpers 0.8.0 v1.12.0
Virtual Network Interface Support Functions 0.8.0 v2.6.0
Websocket API 0.1.0 v1.12.0
Wi-Fi Management 0.8.0 v1.12.0
Wi-Fi Network Manager API 0.8.0 v3.5.0
Zperf API 0.8.0 v3.3.0
gPTP support 0.1.0 v1.13.0

USB
Buffer macros and definitions used in USB device support
USB Audio Class 2 device API
USB BOS support
USB HID class API

HID class USB specific definitions
USB HID common definitions

Mouse and keyboard report descriptors
USB HID Item helpers

USB Host Core API
USB Mass Storage Class device API
USB device core API
USB device core API
USBD HID device API

DSP Interface 0.1.0 v3.3.0
Basic Math Functions

Vector Absolute Value
Vector Addition
Vector Clipping
Vector Dot Product
Vector Multiplication
Vector Negate
Vector Offset
Vector Scale
Vector Shift
Vector Subtraction
Vector bitwise AND
Vector bitwise NOT
Vector bitwise OR

continues on next page
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Vector bitwise XOR
Helper macros for printing Q values.

Device Driver APIs
1-Wire Interface 0.1.0 v3.2.0

1-Wire Sensor API
1-Wire data link layer
1-Wire network layer

ADC driver APIs 1.0.0 v1.0.0
Emulated ADC

Analog axis API
BBRAM Interface
BBRAM emulator backend API
BC1.2 backed emulator APIs
BC1.2 driver APIs
CAN Interface 1.1.0 v1.12.0
CAN Transceiver 0.1.0 v3.1.0
Cache Controller Interface
Cellular Interface
Charger Interface
Clock Control Interface 1.0.0 v1.0.0

LiteX Clock Control driver interface
Coredump pseudo-device driver APIs
Counter Interface 0.8.0 v1.14.0
DAC driver APIs 0.8.0 v2.3.0
DAI Interface 0.1.0 v3.1.0
DMA Interface 1.0.0 v1.5.0
Disk Driver Interface 1.0.0 v1.6.0
Display Interface 0.8.0 v1.14.0

LCD Interface
EC Host Command Interface 0.1.0 v2.4.0
EDAC API 0.8.0 v2.5.0
EEPROM Interface 1.0.0 v2.1.0
ESPI Driver APIs
Entropy Interface 1.0.0 v1.10.0
External Cache Controller Interface
FLASH Interface 1.0.0 v1.2.0
FLASH internal Interface
Fuel Gauge Interface 0.1.0 v3.3.0
Fuel gauge backend emulator APIs
GNSS Interface 0.1.0 v3.6.0
GPIO Driver APIs 1.0.0 v1.0.0

Emulated GPIO
MAX32-specific GPIO Flags
nPM1300-specific GPIO Flags
nPM6001-specific GPIO Flags
nRF-specific GPIO Flags

HW spinlock Interface
Hardware Info Interface 1.0.0 v1.14.0
I2C EEPROM Target Driver API 1.0.0 v1.13.0
I2C Interface 1.0.0 v1.0.0
I2S Interface 1.0.0 v1.9.0
I3C Interface 0.1.0 v3.2.0

I3C Address-related Helper Code
I3C Common Command Codes
I3C Devicetree related bits
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API Version Available in Zephyr Since

I3C In-Band Interrupts
I3C Target Device API
I3C Transfer API

IPM Interface 1.0.0 v1.0.0
Input Interface 0.1.0 v3.4.0

Input Event Definitions
Inter-VM Shared Memory (ivshmem) reference API
Keyboard Matrix API
Keyboard Scan Driver APIs 1.0.0 v2.1.0
LED Interface 1.0.0 v1.12.0
LED Strip Interface
LoRa APIs 0.1.0 v2.2.0
MBOX Interface 0.1.0 v1.0.0
MDIO Interface
MIPI Display interface
MIPI-DBI driver APIs 0.1.0 v3.6.0
MIPI-DSI driver APIs 0.1.0 v3.1.0
MODBUS
MSPI Devicetree related macros
MSPI Driver APIs

MSPI Configure API
MSPI Transfer API
MSPI callback API

Miscellaneous Drivers APIs
Devmux Driver APIs
FT8xx driver APIs

FT8xx co-processor
FT8xx common functions
FT8xx display list
FT8xx memory map
FT8xx reference API

Multi Function Device Drivers APIs
MFD AD559X interface
MFD AXP192 interface
MFD BD8LB600FS interface
MFD NPM1300 Interface

PCI Express Controller Interface
PCIe Host Interface

PCIe Capabilities
PCIe Host MSI Interface
PCIe Host PTM Interface
PCIe Virtual Channel Host Interface

PECI Interface 1.0.0 v2.1.0
PS/2 Driver APIs
PWM Interface 1.0.0 v1.0.0
Pin Controller Interface 0.1.0 v3.0.0

Dynamic Pin Control
RTC DS3231 Interface
RTC Interface 0.1.0 v3.4.0
Regulator Interface 0.1.0 v2.4.0

ADP5360 Devicetree helpers.
AXP192 Devicetree helpers.
Devicetree helpers
MAX20335 Devicetree helpers.
NPM1100 Devicetree helpers.
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API Version Available in Zephyr Since

NPM1300 Devicetree helpers.
NPM6001 Devicetree helpers.
Regulator Parent Interface

PCA9420 Utilities.
Reset Controller Interface 0.2.0 v3.1.0
Retained memory driver interface 0.8.0 v3.4.0
SDHC interface 0.1.0 v3.1.0
SMBus Interface 0.1.0 v3.4.0
SPI Interface 1.0.0 v1.0.0
SYSCON Interface
Sensor Interface 1.0.0 v1.2.0

Invensense (TDK) ICM42688 DT Options
Accelerometer data rate options
Accelerometer power modes
Accelerometer scale options
Gyroscope data rate options
Gyroscope power modes
Gyroscope scale options

Sensor emulator backend API
TEE Interface
Text Display Interface 0.1.0 v3.4.0
Time-aware GPIO Interface 0.1.0 v3.5.0
UART Interface 1.0.0 v1.0.0

Async UART API 0.8.0 v1.14.0
Interrupt-driven UART API
Polling UART API

USB Power Delivery
USB Type-C
USB Type-C Port Controller API 0.1.0 v3.1.0
USB device controller driver API
USB host controller driver API
USB-C VBUS API 0.1.0 v3.3.0
Video Controls
Video Interface 1.0.0 v2.1.0

Video pixel formats
Watchdog Interface 1.0.0 v1.0.0

Device Model 1.1.0 v1.0.0
Device memory-mapped IO management

Named MMIO region macros
Single MMIO region macros
Top-level MMIO region macros

Devicetree 1.1.0 v2.2.0
“For-each” macros
Bus helpers
Chosen nodes
Dependency tracking
Devicetree CAN API
Devicetree Clocks API
Devicetree DMA API
Devicetree Fixed Partition API
Devicetree GPIO API
Devicetree IO Channels API
Devicetree Interrupt Controller API
Devicetree MBOX API
Devicetree PWMs API
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API Version Available in Zephyr Since

Devicetree Reset Controller API
Devicetree SPI API
Existence checks
Instance-based devicetree APIs
Node identifiers and helpers
Pin control
Property accessors
Vendor and model name helpers
interrupts property
ranges property
reg property

Error numbers
Internal and System API

Architecture Interface
Architecture thread APIs
Architecture timing APIs
Architecture-specific IRQ APIs
Architecture-specific SMP APIs
Architecture-specific Thread Local Storage APIs
Architecture-specific core dump APIs
Architecture-specific gdbstub APIs
Architecture-specific memory-mapping APIs
Architecture-specific power management APIs
Architecture-specific userspace APIs
Miscellaneous architecture APIs

Kernel Memory Management Internal APIs
User Mode Internal APIs
User mode and Syscall APIs

Kernel APIs 1.0.0 v1.0.0
Async polling APIs
Asynchronous Notification APIs
Atomic Services APIs
Barrier Services APIs 0.1.0 v3.4.0
CPU Idling APIs
Condition Variables APIs
Event APIs
FIFO APIs
FUTEX APIs
Fatal error APIs

Fatal error base types
Floating Point APIs
Heap APIs
Interrupt Service Routine APIs
Kernel Memory Management

Demand Paging
Backing Store APIs
Demand Paging APIs
Eviction Algorithm APIs

LIFO APIs
Mailbox APIs
Memory Slab APIs
Memory domain APIs

Application memory domain APIs
Message Queue APIs
Mutex APIs
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Object Core APIs
Object Core Statistics APIs
On-Off Service APIs
Pipe APIs
Queue APIs
Semaphore APIs
Spinlock APIs
Stack APIs
System Clock APIs
Thread APIs
Thread Stack APIs
Timer APIs
User Mode APIs
User mode mutex APIs
User mode semaphore APIs
Version APIs
Work Queue APIs

Memory Management APIs
Memory heaps based on memory attributes
Memory-Attr Interface

Operating System Services
Bindesc Define
Cache Interface
Checksum

CRC
Console API
Coredump APIs
Crypto 1.0.0 v1.7.0

Cipher
Hash
Random Function APIs 1.0.0 v1.0.0

File System APIs 1.0.0 v1.5.0
File System Storage

Flash Circular Buffer (FCB) 1.0.0 v1.11.0
Flash Circular Buffer Data Structures
fcb API
fcb non-API prototypes

Non-volatile Storage (NVS) 1.0.0 v1.12.0
Non-volatile Storage APIs
Non-volatile Storage Data Structures

Settings 1.0.0 v1.12.0
Settings backend interface
Settings name processing
Settings subsystem runtime

Flash image API
Heap Management

Heap Listener APIs
Low Level Heap Allocator
Multi-Heap Wrapper
Shared multi-heap interface

IPC
IPC service APIs
IPC service RPMsg API
IPC service backend
IPC service static VRINGs API
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Table 1 – continued from previous page
API Version Available in Zephyr Since

Icmsg IPC library API
Icmsg multi-endpoint IPC library API
Packed Buffer API
RPMsg service APIs

Iterable Sections APIs
Linkable loadable extensions 0.1.0 v3.5.0

ELF constants and data types
ELF loader context
Exported symbol definitions

Logging 1.0.0 v1.13.0
Logger system v1.13.0

Log link API
Log message API
Log output API

Log output formatting flags.
Logger backend interface

Logger multidomain backend helpers
Logger backend standard interface
Logger control API v1.13.0
Logging API

MCUmgr
MCUmgr callback API

MCUmgr fs_mgmt callback API
MCUmgr img_mgmt callback API
MCUmgr os_mgmt callback API
MCUmgr settings_mgmt callback API

MCUmgr handler API
MCUmgr img_mgmt API
MCUmgr img_mgmt_client API
MCUmgr mgmt API 1.0.0 v1.11.0
MCUmgr os_mgmt_client API
MCUmgr transport SMP API
SMP client API

Memory Management
Memory Banks Driver APIs
Memory Blocks APIs
Memory Management Driver APIs

Power Management (PM) v1.2.0
CPU Power Management
Device
Device Runtime
States
System v1.2.0

Hooks
Policy

RTIO 0.1.0 v3.2.0
RTIO CQE Flags
RTIO Priorities
RTIO SQE Flags

Retention API 0.1.0 v3.4.0
Boot mode interface
Bootloader info interface 0.1.0 v3.5.0

STP Decoder API
Semihosting APIs
Shell API 1.0.0 v1.14.0
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Table 1 – continued from previous page
API Version Available in Zephyr Since

State Machine Framework API 0.1.0
Storage APIs

Disk Access Interface
Stream to flash interface 0.1.0 v2.3.0
flash area Interface 1.0.0 v1.11.0

Symbol Table API
System Initialization
System power off
Task Watchdog APIs 0.8.0 v2.5.0
Thread analyzer
Timing Measurement APIs

Arch specific Timing Measurement APIs
Board specific Timing Measurement APIs
SoC specific Timing Measurement APIs

Tracing
Object tracking
Tracing APIs

Conditional Variable Tracing APIs
Event Tracing APIs
FIFO Tracing APIs
Heap Tracing APIs
LIFO Tracing APIs
Mailbox Tracing APIs
Memory Slab Tracing APIs
Message Queue Tracing APIs
Mutex Tracing APIs
Network Socket Tracing APIs
PM Device Runtime Tracing APIs
Pipe Tracing APIs
Poll Tracing APIs
Queue Tracing APIs
Semaphore Tracing APIs
Stack Tracing APIs
Syscall Tracing APIs
System PM Tracing APIs
Thread Tracing APIs
Timer Tracing APIs
Work Delayable Tracing APIs
Work Poll Tracing APIs
Work Queue Tracing APIs
Work Tracing APIs

Tracing format APIs
Tracing utility macros

Zbus APIs
S2RAM APIs
Sensing

Data Types
Sensing Sensor API

Sensor Callbacks
Sensing Subsystem API
Sensor Types

Testing
Emulator interface

I2C Emulation Interface
MSPI Emulation Interface

continues on next page
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Table 1 – continued from previous page
API Version Available in Zephyr Since

SPI Emulation Interface
UART Emulation Interface
eSPI Emulation Interface

FFF extensions
Zephyr Testing Framework (ZTest)

Ztest assertion macros
Ztest assumption macros
Ztest expectation macros
Ztest mocking support
Ztest testing macros
Ztest ztress macros

Third-party
BBC micro:bit display APIs
Grove display APIs
MCUboot image control API
UpdateHub Firmware Over-the-Air
hawkBit Firmware Over-the-Air

USB Device Controller API
USB Device Core API
USB-C Device API 0.1.0 v3.3.0

Sink_callbacks
Source_callbacks

Utilities
Base64
Data Structure APIs

Balanced Red/Black Tree
Bit array
Doubly-linked list
Flagged Single-linked list
Hashmap

Hash Functions
Hashmap Implementations

MPSC (Multi producer, single consumer) packet buffer API
MPSC (Multi producer, single consumer) packet header
MPSC packet buffer flags

MPSC Lockfree Queue API
Ring Buffer APIs
SPSC (Single producer, single consumer) packet buffer API

SPSC packet buffer flags
SPSC API
Single-linked list

Formatted Output APIs
Package convert flags
Package flags
cbvprintf processing flags.

JSON
JSON Web Token (JWT)

Linear Range
Math extras
Monochrome Character Framebuffer
Navigation
Time Utility APIs

Time Representation APIs
Time Synchronization APIs
Time Units Helpers

continues on next page
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Table 1 – continued from previous page
API Version Available in Zephyr Since

Utility Functions 0.1.0 v2.4.0
Xtensa APIs

Xtensa Internal APIs
Xtensa Memory Management Unit (MMU) APIs
Xtensa Memory Protection Unit (MPU) APIs

2.6.2 API Lifecycle

Developers using Zephyr’s APIs need to know how long they can trust that a given API will not
change in future releases. At the same time, developers maintaining and extending Zephyr’s
APIs need to be able to introduce new APIs that aren’t yet fully proven, and to potentially retire
old APIs when they’re no longer optimal or supported by the underlying platforms.

Fig. 2: API Life Cycle

An up-to-date table of all APIs and their maturity level can be found in the API Overview page.

Experimental

Experimental APIs denote that a feature was introduced recently, and may change or be removed
in future versions. Try it out and provide feedback to the community via the Developer mailing
list.

The following requirements apply to all new APIs:

• Documentation of the API (usage) explaining its design and assumptions, how it is to be
used, current implementation limitations, and future potential, if appropriate.

• The API introduction should be accompanied by at least one implementation of said API (in
the case of peripheral APIs, this corresponds to one driver)

• At least one sample using the new API (may only build on one single board)
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When introducing a new and experimental API, mark the API version in the headers where the
API is defined. An experimental API shall have a version where the minor version is up to one
(0.1.z). (see API Overview)

Peripheral APIs (Hardware Related) When introducing an API (public header file with docu-
mentation) for a new peripheral or driver subsystem, review of the API is enforced and is driven
by the Architecture working group consisting of representatives from different vendors.

The API shall be promoted to unstable when it has at least two implementations on different
hardware platforms.

Unstable

The API is in the process of settling, but has not yet had sufficient real-world testing to be con-
sidered stable. The API is considered generic in nature and can be used on different hardware
platforms.

When the API changes status to unstable API, mark the API version in the headers where the API
is defined. Unstable APIs shall have a version where the minor version is larger than one (0.y.z
| y > 1 ). (see API Overview)

Note

Changes will not be announced.

Peripheral APIs (Hardware Related) The API shall be promoted from experimental to un-
stable when it has at least two implementations on different hardware platforms.

Hardware Agnostic APIs For hardware agnostic APIs, multiple applications using it are re-
quired to promote an API from experimental to unstable.

Stable

The API has proven satisfactory, but cleanup in the underlying code may cause minor changes.
Backwards-compatibility will be maintained if reasonable.

An API can be declared stable after fulfilling the following requirements:

• Test cases for the new API with 100% coverage

• Complete documentation in code. All public interfaces shall be documented and available
in online documentation.

• The API has been in-use and was available in at least 2 development releases

• Stable APIs can get backward compatible updates, bug fixes and security fixes at any time.

In order to declare an API stable, the following steps need to be followed:

1. A Pull Request must be opened that changes the corresponding entry in the API Overview
table

2. An email must be sent to the devel mailing list announcing the API upgrade request

3. The Pull Request must be submitted for discussion in the next Zephyr Architecture meeting
where, barring any objections, the Pull Request will be merged
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When the API changes status to stable API, mark the API version in the headers where the API is
defined. Stable APIs shall have a version where the major version is one or larger (x.y.z | x >= 1
). (see API Overview)

Introducing breaking API changes A stable API, as described above, strives to remain
backwards-compatible through its life-cycle. There are however cases where fulfilling this ob-
jective prevents technical progress, or is simply unfeasible without unreasonable burden on the
maintenance of the API and its implementation(s).

A breaking API change is defined as one that forces users to modify their existing code in order to
maintain the current behavior of their application. The need for recompilation of applications
(without changing the application itself) is not considered a breaking API change.

In order to restrict and control the introduction of a change that breaks the promise of back-
wards compatibility, the following steps must be followed whenever such a change is considered
necessary in order to accept it in the project:

1. An RFC issue must be opened on GitHub with the following content:

Title: RFC: Breaking API Change: <subsystem>
Contents: - Problem Description:

- Background information on why the change is required
- Proposed Change (detailed):

- Brief description of the API change
- Detailed RFC:

- Function call changes
- Device Tree changes (source and bindings)
- Kconfig option changes

- Dependencies:
- Impact to users of the API, including the steps required
to adapt out-of-tree users of the API to the change

Instead of a written description of the changes, the RFC issue may link to a Pull Request
containing those changes in code form.

2. The RFC issue must be labeled with the GitHub Breaking API Change label

3. The RFC issue must be submitted for discussion in the next Zephyr Architecture meeting

4. An email must be sent to the devel mailing list with a subject identical to the RFC issue title
and that links to the RFC issue

The RFC will then receive feedback through issue comments and will also be discussed in the
Zephyr Architecture meeting, where the stakeholders and the community at large will have a
chance to discuss it in detail.

Finally, and if not done as part of the first step, a Pull Request must be opened on GitHub. It
is left to the person proposing the change to decide whether to introduce both the RFC and the
Pull Request at the same time or to wait until the RFC has gathered consensus enough so that
the implementation can proceed with confidence that it will be accepted. The Pull Request must
include the following:

• A title that matches the RFC issue

• A link to the RFC issue

• The actual changes to the API

– Changes to the API header file

– Changes to the API implementation(s)

– Changes to the relevant API documentation

– Changes to Device Tree source and bindings
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• The changes required to adapt in-tree users of the API to the change. Depending on the
scope of this task this might require additional help from the corresponding maintainers

• An entry in the “API Changes” section of the release notes for the next upcoming release

• The labels API, Breaking API Change and Release Notes, as well as any others that are
applicable

• The label Architecture Review if the RFC was not yet discussed and agreed upon in Zephyr
Architecture meeting

Once the steps above have been completed, the outcome of the proposal will depend on the
approval of the actual Pull Request by the maintainer of the corresponding subsystem. As with
any other Pull Request, the author can request for it to be discussed and ultimately even voted
on in the Zephyr TSC meeting.

If the Pull Request is merged then an email must be sent to the devel and user mailing lists
informing them of the change.

The API version shall be changed to signal backward incompatible changes. This is achieved
by incrementing the major version (X.y.z | X > 1). It MAY also include minor and patch level
changes. Patch and minor versions MUST be reset to 0 when major version is incremented. (see
API Overview)

Note

Breaking API changes will be listed and described in the migration guide.

Deprecated

Note

Unstable APIs can be removed without deprecation at any time. Deprecation and removal of
APIs will be announced in the “API Changes” section of the release notes.

The following are the requirements for deprecating an existing API:

• Deprecation Time (stable APIs): 2 Releases The API needs to be marked as deprecated in
at least two full releases. For example, if an API was first deprecated in release 1.14, it
will be ready to be removed in 1.16 at the earliest. There may be special circumstances,
determined by the Architecture working group, where an API is deprecated sooner.

• What is required when deprecating:

– Mark as deprecated. This can be done by using the compiler itself (__deprecated for
function declarations and __DEPRECATED_MACRO for macro definitions), or by introduc-
ing a Kconfig option (typically one that contains the DEPRECATED word in it) that, when
enabled, reverts the APIs back to their previous form

– Document the deprecation

– Include the deprecation in the “API Changes” of the release notes for the next upcoming
release

– Code using the deprecated API needs to be modified to remove usage of said API

– The change needs to be atomic and bisectable

– Create a GitHub issue to track the removal of the deprecated API, and add it to the
roadmap targeting the appropriate release (in the example above, 1.16).
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During the deprecation waiting period, the API will be in the deprecated state. The Zephyr main-
tainers will track usage of deprecated APIs on docs.zephyrproject.org and support developers
migrating their code. Zephyr will continue to provide warnings:

• API documentation will inform users that the API is deprecated.

• Attempts to use a deprecated API at build time will log a warning to the console.

Retired

In this phase, the API is removed.

The target removal date is 2 releases after deprecation is announced. The Zephyr maintainers
will decide when to actually remove the API: this will depend on how many developers have suc-
cessfully migrated from the deprecated API, and on how urgently the API needs to be removed.

If it’s OK to remove the API, it will be removed. The maintainers will remove the corresponding
documentation, and communicate the removal in the usual ways: the release notes, mailing lists,
Github issues and pull-requests.

If it’s not OK to remove the API, the maintainers will continue to support migration and update
the roadmap with the aim to remove the API in the next release.

2.6.3 API Design Guidelines

Zephyr development and evolution is a group effort, and to simplify maintenance and enhance-
ments there are some general policies that should be followed when developing a new capability
or interface.

Using Callbacks

Many APIs involve passing a callback as a parameter or as a member of a configuration structure.
The following policies should be followed when specifying the signature of a callback:

• The first parameter should be a pointer to the object most closely associated with the call-
back. In the case of device drivers this would be const struct device *dev. For library
functions it may be a pointer to another object that was referenced when the callback was
provided.

• The next parameter(s) should be additional information specific to the callback invocation,
such as a channel identifier, new status value, and/or a message pointer followed by the
message length.

• The final parameter should be a void *user_data pointer carrying context that allows a
shared callback function to locate additional material necessary to process the callback.

An exception to providing user_data as the last parameter may be allowed when the callback
itself was provided through a structure that will be embedded in another structure. An example
of such a case is gpio_callback, normally defined within a data structure specific to the code that
also defines the callback function. In those cases further context can accessed by the callback
indirectly by CONTAINER_OF.

Examples
• The requirements of k_timer_expiry_t invoked when a system timer alarm fires are satis-

fied by:

void handle_timeout(struct k_timer *timer)
{ ... }
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The assumption here, as with gpio_callback, is that the timer is embedded in a structure
reachable from CONTAINER_OF that can provide additional context to the callback.

• The requirements of counter_alarm_callback_t invoked when a counter device alarm
fires are satisfied by:

void handle_alarm(const struct device *dev,
uint8_t chan_id,
uint32_t ticks,
void *user_data)

{ ... }

This provides more complete useful information, including which counter channel timed-
out and the counter value at which the timeout occurred, as well as user context which
may or may not be the counter_alarm_cfg used to register the callback, depending on user
needs.

Conditional Data and APIs

APIs and libraries may provide features that are expensive in RAM or code size but are optional
in the sense that some applications can be implemented without them. Examples of such fea-
ture include capturing a timestamp or providing an alternative interface. The developer
in coordination with the community must determine whether enabling the features is to be con-
trollable through a Kconfig option.

In the case where a feature is determined to be optional the following practices should be fol-
lowed.

• Any data that is accessed only when the feature is enabled should be conditionally included
via #ifdef CONFIG_MYFEATURE in the structure or union declaration. This reduces memory
use for applications that don’t need the capability.

• Function declarations that are available only when the option is enabled should be pro-
vided unconditionally. Add a note in the description that the function is available only
when the specified feature is enabled, referencing the required Kconfig symbol by name.
In the cases where the function is used but not enabled the definition of the function shall
be excluded from compilation, so references to the unsupported API will result in a link-
time error.

• Where code specific to the feature is isolated in a source file that has no other content that
file should be conditionally included in CMakeLists.txt:

zephyr_sources_ifdef(CONFIG_MYFEATURE foo_funcs.c)

• Where code specific to the feature is part of a source file that has other content the feature-
specific code should be conditionally processed using #ifdef CONFIG_MYFEATURE.

The Kconfig flag used to enable the feature should be added to the PREDEFINED variable in doc/
zephyr.doxyfile.in to ensure the conditional API and functions appear in generated documen-
tation.

Return Codes

Implementations of an API, for example an API for accessing a peripheral might implement only
a subset of the functions that is required for minimal operation. A distinction is needed between
APIs that are not supported and those that are not implemented or optional:

• APIs that are supported but not implemented shall return -ENOSYS.

• Optional APIs that are not supported by the hardware should be implemented and the re-
turn code in this case shall be -ENOTSUP.
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• When an API is implemented, but the particular combination of options requested in the
call cannot be satisfied by the implementation the call shall return -ENOTSUP. (For exam-
ple, a request for a level-triggered GPIO interrupt on hardware that supports only edge-
triggered interrupts)

2.6.4 API Terminology

The following terms may be used as shorthand API tags to indicate the allowed calling context
(thread, ISR, pre-kernel), the effect of a call on the current thread state, and other behavioral
characteristics.

reschedule
if executing the function reaches a reschedule point

sleep
if executing the function can cause the invoking thread to sleep

no-wait
if a parameter to the function can prevent the invoking thread from trying to sleep

isr-ok
if the function can be safely called and will have its specified effect whether invoked from
interrupt or thread context

pre-kernel-ok
if the function can be safely called before the kernel has been fully initialized and will have
its specified effect when invoked from that context.

async
if the function may return before the operation it initializes is complete (i.e. function return
and operation completion are asynchronous)

supervisor
if the calling thread must have supervisor privileges to execute the function

Details on the behavioral impact of each attribute are in the following sections.

reschedule

The reschedule attribute is used on a function that can reach a reschedule point within its exe-
cution.

Details The significance of this attribute is that when a rescheduling function is invoked by a
thread it is possible for that thread to be suspended as a consequence of a higher-priority thread
being made ready. Whether the suspension actually occurs depends on the operation associated
with the reschedule point and the relative priorities of the invoking thread and the head of the
ready queue.

Note that in the case of timeslicing, or reschedule points executed from interrupts, any thread
may be suspended in any function.

Functions that are not reschedule may be invoked from either thread or interrupt context.

Functions that are reschedule may be invoked from thread context.

Functions that are reschedule but not sleep may be invoked from interrupt context.

sleep

The sleep attribute is used on a function that can cause the invoking thread to sleep.
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Explanation This attribute is of relevance specifically when considering applications that use
only non-preemptible threads, because the kernel will not replace a running cooperative-only
thread at a reschedule point unless that thread has explicitly invoked an operation that caused
it to sleep.

This attribute does not imply the function will sleep unconditionally, but that the operation may
require an invoking thread that would have to suspend, wait, or invoke k_yield() before it can
complete its operation. This behavior may be mediated by no-wait.
Functions that are sleep are implicitly reschedule.

Functions that are sleep may be invoked from thread context.

Functions that are sleep may be invoked from interrupt and pre-kernel contexts if and only if
invoked in no-wait mode.

no-wait

The no-wait attribute is used on a function that is also sleep to indicate that a parameter to the
function can force an execution path that will not cause the invoking thread to sleep.

Explanation The paradigmatic case of a no-wait function is a function that takes a timeout,
to which K_NO_WAIT can be passed. The semantics of this special timeout value are to execute
the function’s operation as long as it can be completed immediately, and to return an error code
rather than sleep if it cannot.

It is use of the no-wait feature that allows functions like k_sem_take() to be invoked from ISRs,
since it is not permitted to sleep in interrupt context.

A function with a no-wait path does not imply that taking that path guarantees the function is
synchronous.

Functions with this attribute may be invoked from interrupt and pre-kernel contexts only when
the parameter selects the no-wait path.

isr-ok

The isr-ok attribute is used on a function to indicate that it works whether it is being invoked
from interrupt or thread context.

Explanation Any function that is not sleep is inherently isr-ok. Functions that are sleep are
isr-ok if the implementation ensures that the documented behavior is implemented even if
called from an interrupt context. This may be achieved by having the implementation detect
the calling context and transfer the operation that would sleep to a thread, or by documenting
that when invoked from a non-thread context the function will return a specific error (generally
-EWOULDBLOCK).

Note that a function that is no-wait is safe to call from interrupt context only when the no-wait
path is selected. isr-ok functions need not provide a no-wait path.

pre-kernel-ok

The pre-kernel-ok attribute is used on a function to indicate that it works as documented even
when invoked before the kernel main thread has been started.
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Explanation This attribute is similar to isr-ok in function, but is intended for use by any API
that is expected to be called in DEVICE_DEFINE() or SYS_INIT() calls that may be invoked with
PRE_KERNEL_1 or PRE_KERNEL_2 initialization levels.

Generally a function that is pre-kernel-ok checks k_is_pre_kernel() when determining
whether it can fulfill its required behavior. In many cases it would also check k_is_in_isr()
so it can be isr-ok as well.

async

A function is async (i.e. asynchronous) if it may return before the operation it initiates has
completed. An asynchronous function will generally provide a mechanism by which operation
completion is reported, e.g. a callback or event.

A function that is not asynchronous is synchronous, i.e. the operation will always be complete
when the function returns. As most functions are synchronous this behavior does not have a
distinct attribute to identify it.

Explanation Be aware that async is orthogonal to context-switching. Some APIs may provide
completion information through a callback, but may suspend while waiting for the resource
necessary to initiate the operation; an example is spi_transceive_signal().

If a function is both no-wait and async then selecting the no-wait path only guarantees that the
function will not sleep. It does not affect whether the operation will be completed before the
function returns.

supervisor

The supervisor attribute is relevant only in user-mode applications, and indicates that the func-
tion cannot be invoked from user mode.

2.7 Language Support

2.7.1 C Language Support

C is a general-purpose low-level programming language that is widely used for writing code for
embedded systems.

Zephyr is primarily written in C and natively supports applications written in the C language.
All Zephyr API functions and macros are implemented in C and available as part of the C header
files under the include directory, so writing Zephyr applications in C gives the developers access
to the most features.

The main() function must have the return type of int as Zephyr applications run in a “hosted”
environment as defined by the C standard. Applications must return zero (0) from main. All
non-zero return values are reserved.

Language Standards

Zephyr does not target a specific version of the C standards; however, the Zephyr codebase makes
extensive use of the features newly introduced in the 1999 release of the ISO C standard (ISO/IEC
9899:1999, hereinafter referred to as C99) such as those listed below, effectively requiring the
use of a compiler toolchain that supports the C99 standard and above:
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• inline functions

• standard boolean types (bool in <stdbool.h>)

• fixed-width integer types ([u]intN_t in <stdint.h>)

• designated initializers

• variadic macros

• restrict qualification

Some Zephyr components make use of the features newly introduced in the 2011 release of the
ISO C standard (ISO/IEC 9899:2011, hereinafter referred to as C11) such as the type-generic ex-
pressions using the _Generic keyword. For example, the cbprintf() component, used as the
default formatted output processor for Zephyr, makes use of the C11 type-generic expressions,
and this effectively requires most Zephyr applications to be compiled using a compiler toolchain
that supports the C11 standard and above.

In summary, it is recommended to use a compiler toolchain that supports at least the C11 stan-
dard for developing with Zephyr. It is, however, important to note that some optional Zephyr
components and external modules may make use of the C language features that have been in-
troduced in more recent versions of the standards, in which case it will be necessary to use a
more up-to-date compiler toolchain that supports such standards.

Standard Library

The C Standard Library is an integral part of any C program, and Zephyr provides the support for
a number of different C libraries for the applications to choose from, depending on the compiler
toolchain being used to build the application.

CommonC library code Zephyr provides some C library functions that are designed to be used
in conjunction with multiple C libraries. These either provide functions not available in multiple
C libraries or are designed to replace functionality in the C library with code better suited for use
in the Zephyr environment

Time function This provides an implementation of the standard C function, time(), rely-
ing on the Zephyr function, clock_gettime(). This function can be enabled by selecting COM-
MON_LIBC_TIME.

Dynamic Memory Management The common dynamic memory management implementa-
tion can be enabled by selecting the CONFIG_COMMON_LIBC_MALLOC in the application configura-
tion file.

The common C library internally uses the kernel memory heap API to manage the memory heap
used by the standard dynamic memory management interface functions such as malloc() and
free().

The internal memory heap is normally located in the .bss section. When userspace is enabled,
however, it is placed in a dedicated memory partition called z_malloc_partition, which can be
accessed from the user mode threads. The size of the internal memory heap is specified by the
CONFIG_COMMON_LIBC_MALLOC_ARENA_SIZE.

The default heap size for applications using the common C library is zero (no heap). For other
C library users, if there is an MMU present, then the default heap is 16kB. Otherwise, the heap
uses all available memory.

There are also separate controls to select calloc() (COMMON_LIBC_CALLOC) and reallocarray()
(COMMON_LIBC_REALLOCARRAY). Both of these are enabled by default as that doesn’t impact mem-
ory usage in applications not using them.
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The standard dynamic memory management interface functions implemented by the common
C library are thread safe and may be simultaneously called by multiple threads. These functions
are implemented in lib/libc/common/source/stdlib/malloc.c.

Minimal libc The most basic C library, named “minimal libc”, is part of the Zephyr codebase
and provides the minimal subset of the standard C library required to meet the needs of Zephyr
and its subsystems, primarily in the areas of string manipulation and display.

It is very low footprint and is suitable for projects that do not rely on less frequently used portions
of the ISO C standard library. It can also be used with a number of different toolchains.

The minimal libc implementation can be found in lib/libc/minimal in the main Zephyr tree.

Functions The minimal libc implements the minimal subset of the ISO/IEC 9899:2011 standard
C library functions required to meet the needs of the Zephyr kernel, as defined by the Coding
Guidelines Rule A.4.

Formatted Output The minimal libc does not implement its own formatted output processor;
instead, it maps the C standard formatted output functions such as printf and sprintf to the
cbprintf() function, which is Zephyr’s own C99-compatible formatted output implementation.

For more details, refer to the Formatted Output OS service documentation.

Dynamic Memory Management The minimal libc uses the malloc api family implementation
provided by the common C library, which itself is built upon the kernel memory heap API.

Error numbers Error numbers are used throughout Zephyr APIs to signal error conditions as
return values from functions. They are typically returned as the negative value of the integer
literals defined in this section, and are defined in the errno.h header file.

A subset of the error numbers defined in the POSIX errno.h specification and other de-facto
standard sources have been added to the minimal libc.

A conscious effort is made in Zephyr to keep the values of the minimal libc error numbers con-
sistent with the different implementations of the C standard libraries supported by Zephyr. The
minimal libc errno.h is checked against that of the Newlib to ensure that the error numbers are
kept aligned.

Below is a list of the error number definitions. For the actual numeric values please refer to
errno.h.

group system_errno
System error numbers Error codes returned by functions.

Includes a list of those defined by IEEE Std 1003.1-2017.

Defines

errno

EPERM
Not owner.
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ENOENT
No such file or directory.

ESRCH
No such context.

EINTR
Interrupted system call.

EIO
I/O error.

ENXIO
No such device or address.

E2BIG
Arg list too long.

ENOEXEC
Exec format error.

EBADF
Bad file number.

ECHILD
No children.

EAGAIN
No more contexts.

ENOMEM
Not enough core.

EACCES
Permission denied.

EFAULT
Bad address.

ENOTBLK
Block device required.

EBUSY
Mount device busy.

EEXIST
File exists.
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EXDEV
Cross-device link.

ENODEV
No such device.

ENOTDIR
Not a directory.

EISDIR
Is a directory.

EINVAL
Invalid argument.

ENFILE
File table overflow.

EMFILE
Too many open files.

ENOTTY
Not a typewriter.

ETXTBSY
Text file busy.

EFBIG
File too large.

ENOSPC
No space left on device.

ESPIPE
Illegal seek.

EROFS
Read-only file system.

EMLINK
Too many links.

EPIPE
Broken pipe.

EDOM
Argument too large.
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ERANGE
Result too large.

ENOMSG
Unexpected message type.

EDEADLK
Resource deadlock avoided.

ENOLCK
No locks available.

ENOSTR
STREAMS device required.

ENODATA
Missing expected message data.

ETIME
STREAMS timeout occurred.

ENOSR
Insufficient memory.

EPROTO
Generic STREAMS error.

EBADMSG
Invalid STREAMS message.

ENOSYS
Function not implemented.

ENOTEMPTY
Directory not empty.

ENAMETOOLONG
File name too long.

ELOOP
Too many levels of symbolic links.

EOPNOTSUPP
Operation not supported on socket.

EPFNOSUPPORT
Protocol family not supported.
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ECONNRESET
Connection reset by peer.

ENOBUFS
No buffer space available.

EAFNOSUPPORT
Addr family not supported.

EPROTOTYPE
Protocol wrong type for socket.

ENOTSOCK
Socket operation on non-socket.

ENOPROTOOPT
Protocol not available.

ESHUTDOWN
Can’t send after socket shutdown.

ECONNREFUSED
Connection refused.

EADDRINUSE
Address already in use.

ECONNABORTED
Software caused connection abort.

ENETUNREACH
Network is unreachable.

ENETDOWN
Network is down.

ETIMEDOUT
Connection timed out.

EHOSTDOWN
Host is down.

EHOSTUNREACH
No route to host.

EINPROGRESS
Operation now in progress.
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EALREADY
Operation already in progress.

EDESTADDRREQ
Destination address required.

EMSGSIZE
Message size.

EPROTONOSUPPORT
Protocol not supported.

ESOCKTNOSUPPORT
Socket type not supported.

EADDRNOTAVAIL
Can’t assign requested address.

ENETRESET
Network dropped connection on reset.

EISCONN
Socket is already connected.

ENOTCONN
Socket is not connected.

ETOOMANYREFS
Too many references: can’t splice.

ENOTSUP
Unsupported value.

EILSEQ
Illegal byte sequence.

EOVERFLOW
Value overflow.

ECANCELED
Operation canceled.

EWOULDBLOCK
Operation would block.

Newlib Newlib is a complete C library implementation written for the embedded systems. It is
a separate open source project and is not included in source code form with Zephyr. Instead, the
Zephyr SDK includes a precompiled library for each supported architecture (libc.a and libm.a).
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Note

Other 3rd-party toolchains, such as GNU Arm Embedded, also bundle the Newlib as a precom-
piled library.

Zephyr implements the “API hook” functions that are invoked by the C standard library functions
in the Newlib. These hook functions are implemented in lib/libc/newlib/libc-hooks.c and
translate the library internal system calls to the equivalent Zephyr API calls.

Types of Newlib The Newlib included in the Zephyr SDK comes in two versions: ‘full’ and
‘nano’ variants.

Full Newlib The Newlib full variant (libc.a and libm.a) is the most capable variant of the
Newlib available in the Zephyr SDK, and supports almost all standard C library features. It is
optimized for performance (prefers performance over code size) and its footprint is significantly
larger than the nano variant.

This variant can be enabled by selecting the CONFIG_NEWLIB_LIBC and de-selecting the CON-
FIG_NEWLIB_LIBC_NANO in the application configuration file.

Nano Newlib The Newlib nano variant (libc_nano.a and libm_nano.a) is the size-optimized
version of the Newlib, and supports all features that the full variant supports except the new
format specifiers introduced in C99, such as the char, long long type format specifiers (i.e. %hhX
and %llX).

This variant can be enabled by selecting the CONFIG_NEWLIB_LIBC and CONFIG_NEWLIB_LIBC_NANO
in the application configuration file.

Note that the Newlib nano variant is not available for all architectures. The availability of the
nano variant is specified by the CONFIG_HAS_NEWLIB_LIBC_NANO.

Formatted Output Newlib supports all standard C formatted input and output functions, in-
cluding printf, fprintf, sprintf and sscanf.

The Newlib formatted input and output function implementation supports all format specifiers
defined by the C standard with the following exceptions:

• Floating point format specifiers (e.g. %f) require CONFIG_NEWLIB_LIBC_FLOAT_PRINTF and
CONFIG_NEWLIB_LIBC_FLOAT_SCANF to be enabled.

• C99 format specifiers are not supported in the Newlib nano variant (i.e. %hhX for char, %llX
for long long, %jX for intmax_t, %zX for size_t, %tX for ptrdiff_t).

DynamicMemoryManagement Newlib implements an internal heap allocator to manage the
memory blocks used by the standard dynamic memory management interface functions (for
example, malloc() and free()).

The internal heap allocator implemented by the Newlib may vary across the different types of the
Newlib used. For example, the heap allocator implemented in the Full Newlib (libc.a and libm.
a) of the Zephyr SDK requests larger memory chunks to the operating system and has a signifi-
cantly higher minimum memory requirement compared to that of the Nano Newlib (libc_nano.
a and libm_nano.a).

The only interface between the Newlib dynamic memory management functions and the Zephyr-
side libc hooks is the sbrk() function, which is used by the Newlib to manage the size of the
memory pool reserved for its internal heap allocator.

2.7. Language Support 81



Zephyr Project Documentation, Release 3.7.99

The _sbrk()hook function, implemented in libc-hooks.c, handles the memory pool size change
requests from the Newlib and ensures that the Newlib internal heap allocator memory pool size
does not exceed the amount of available memory space by returning an error when the system
is out of memory.

When userspace is enabled, the Newlib internal heap allocator memory pool is placed in a dedi-
cated memory partition called z_malloc_partition, which can be accessed from the user mode
threads.

The amount of memory space available for the Newlib heap depends on the system configura-
tions:

• When MMU is enabled (CONFIG_MMU is selected), the amount of memory space re-
served for the Newlib heap is set by the size of the free memory space returned
by the k_mem_free_get() function or the CONFIG_NEWLIB_LIBC_MAX_MAPPED_REGION_SIZE,
whichever is the smallest.

• When MPU is enabled and the MPU requires power-of-two partition size and ad-
dress alignment (CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE is set to a non-zero value),
the amount of memory space reserved for the Newlib heap is set by the CON-
FIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE.

• Otherwise, the amount of memory space reserved for the Newlib heap is equal to the
amount of free (unallocated) memory in the SRAM region.

The standard dynamic memory management interface functions implemented by the Newlib
are thread safe and may be simultaneously called by multiple threads.

Picolibc Picolibc is a complete C library implementation written for the embedded systems,
targeting C17 (ISO/IEC 9899:2018) and POSIX 2018 (IEEE Std 1003.1-2017) standards. Picolibc is
an external open source project which is provided for Zephyr as a module, and included as part
of the Zephyr SDK in precompiled form for each supported architecture (libc.a).

Note

Picolibc is also available for other 3rd-party toolchains, such as GNU Arm Embedded.

Zephyr implements the “API hook” functions that are invoked by the C standard library functions
in the Picolibc. These hook functions are implemented in lib/libc/picolibc/libc-hooks.c and
translate the library internal system calls to the equivalent Zephyr API calls.

Picolibc Module When built as a Zephyr module, there are several configuration knobs avail-
able to adjust the feature set in the library, balancing what the library supports versus the code
size of the resulting functions. Because the standard C++ library must be compiled for the tar-
get C library, the Picolibc module cannot be used with applications which use the standard C++
library. Building the Picolibc module will increase the time it takes to compile the application.

The Picolibc module can be enabled by selecting CONFIG_PICOLIBC_USE_MODULE in the application
configuration file.

When updating the Picolibc module to a newer version, the toolchain-bundled Picolibc in the
Zephyr SDK must also be updated to the same version.

Toolchain Picolibc Starting with version 0.16, the Zephyr SDK includes precompiled versions
of Picolibc for every target architecture, along with precompiled versions of libstdc++.

The toolchain version of Picolibc can be enabled by de-selecting CONFIG_PICOLIBC_USE_MODULE
in the application configuration file.
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For every release of Zephyr, the toolchain-bundled Picolibc and the Picolibc module are guaran-
teed to be in sync when using the recommended version of Zephyr SDK.

Building Without Toolchain bundled Picolibc For toolchain where there is no bundled Pi-
colibc, it is still possible to use Picolibc by building it from source. Note that any restrictions
mentioned in Picolibc Module still apply.

To build without toolchain bundled Picolibc, the toolchain must enable CON-
FIG_PICOLIBC_SUPPORTED. For example, this needs to be added to the toolchain Kconfig
file:

config TOOLCHAIN_<name>_PICOLIBC_SUPPORTED
def_bool y
select PICOLIBC_SUPPORTED

By enabling CONFIG_PICOLIBC_SUPPORTED, the build system would automatically build Picolibc
from source with its module when there is no toolchain bundled Picolibc.

Formatted Output Picolibc supports all standard C formatted input and output functions, in-
cluding printf(), fprintf(), sprintf() and sscanf().

Picolibc formatted input and output function implementation supports all format specifiers de-
fined by the C17 and POSIX 2018 standards with the following exceptions:

• Floating point format specifiers (e.g. %f) require CONFIG_PICOLIBC_IO_FLOAT.

• Long long format specifiers (e.g. %lld) require CONFIG_PICOLIBC_IO_LONG_LONG. This option
is automatically enabled with CONFIG_PICOLIBC_IO_FLOAT.

Printk, cbprintf and friends When using Picolibc, Zephyr formatted output functions are im-
plemented in terms of stdio calls. This includes:

• printk, snprintk and vsnprintk

• cbprintf and cbvprintf

• fprintfcb, vfprintfcb, printfcb, vprintfcb, snprintfcb and vsnprintfcb

When using tagged args (CONFIG_CBPRINTF_PACKAGE_SUPPORT_TAGGED_ARGUMENTS and
CBPRINTF_PACKAGE_ARGS_ARE_TAGGED), calls to cbpprintf will not use Picolibc, so formatting
of output using those code will differ from Picolibc results as the cbprintf functions are not
completely C/POSIX compliant.

Math Functions Picolibc provides full C17/IEEE STD 754-2019 support for float, double and
long double math operations, except for long double versions of the Bessel functions.

Thread Local Storage Picolibc uses Thread Local Storage (TLS) (where supported) for data
which is supposed to remain local to each thread, like errno. This means that TLS support is
enabled when using Picolibc. As all TLS variables are allocated out of the thread stack area, this
can affect stack size requirements by a few bytes.

C Library Local Variables Picolibc uses a few internal variables for things like heap manage-
ment. These are collected in a dedicated memory partition called z_libc_partition. Applica-
tions using CONFIG_USERSPACE and memory domains must ensure that this partition is included
in any domain active during Picolibc calls.
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DynamicMemoryManagement Picolibc uses the malloc api family implementation provided
by the common C library, which itself is built upon the kernel memory heap API.

Formatted Output

C defines standard formatted output functions such as printf and sprintf and these functions
are implemented by the C standard libraries.

Each C standard library has its own set of requirements and configurations for selecting the
formatted output modes and capabilities. Refer to each C standard library documentation for
more details.

Dynamic Memory Management

C defines a standard dynamic memory management interface (for example, malloc() and
free()) and these functions are implemented by the C standard libraries.

While the details of the dynamic memory management implementation varies across different
C standard libraries, all supported libraries must conform to the following conventions. Every
supported C standard library shall:

• manage its own memory heap either internally or by invoking the hook functions (for ex-
ample, sbrk()) implemented in libc-hooks.c.

• maintain the architecture- and memory region-specific alignment requirements for the
memory blocks allocated by the standard dynamic memory allocation interface (for ex-
ample, malloc()).

• allocate memory blocks inside the z_malloc_partition memory partition when userspace
is enabled. See Pre-defined Memory Partitions.

For more details regarding the C standard library-specific memory management implementa-
tion, refer to each C standard library documentation.

Note

Native Zephyr applications should use the memorymanagement API supported by the Zephyr
kernel such as k_malloc() in order to take advantage of the advanced features that they offer.

C standard dynamic memory management interface functions such as malloc() should be
used only by the portable applications and libraries that target multiple operating systems.

2.7.2 C++ Language Support

C++ is a general-purpose object-oriented programming language that is based on the C language.

Enabling C++ Support

Zephyr supports applications written in both C and C++. However, to use C++ in an application
you must configure Zephyr to include C++ support by selecting the CONFIG_CPP in the application
configuration file.

To enable C++ support, the compiler toolchain must also include a C++ compiler and the included
compiler must be supported by the Zephyr build system. The Zephyr SDK, which includes the
GNU C++ Compiler (part of GCC), is supported by Zephyr, and the features and their availability
documented here assume the use of the Zephyr SDK.
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The default C++ standard level (i.e. the language enforced by the compiler flags passed) for
Zephyr apps is C++11. Other standards are available via kconfig choice, for example CON-
FIG_STD_CPP98. The oldest standard supported and tested in Zephyr is C++98.

When compiling a source file, the build system selects the C++ compiler based on the suffix (ex-
tension) of the files. Files identified with either a cpp or a cxx suffix are compiled using the C++
compiler. For example, myCplusplusApp.cpp is compiled using C++.

The C++ standard requires the main() function to have the return type of int. Your main() must
be defined as int main(void). Zephyr ignores the return value from main, so applications should
not return status information and should, instead, return zero.

Note

Do not use C++ for kernel, driver, or system initialization code.

Language Features

Zephyr currently provides only a subset of C++ functionality. The following features are not
supported:

• Static global object destruction

• OS-specific C++ standard library classes (e.g. std::thread, std::mutex)

While not an exhaustive list, support for the following functionality is included:

• Inheritance

• Virtual functions

• Virtual tables

• Static global object constructors

• Dynamic object management with the new and delete operators

• Exceptions

• RTTI (runtime type information)

• Standard Template Library (STL)

Static global object constructors are initialized after the drivers are initialized but before the
application main() function. Therefore, use of C++ is restricted to application code.

In order to make use of the C++ exceptions, the CONFIG_CPP_EXCEPTIONS must be selected in the
application configuration file.

Zephyr Minimal C++ Library

Zephyr minimal C++ library (lib/cpp/minimal) provides a minimal subset of the C++ standard
library and application binary interface (ABI) functions to enable basic C++ language support.
This includes:

• new and delete operators

• virtual function stub and vtables

• static global initializers for global constructors

The scope of the minimal C++ library is strictly limited to providing the basic C++ language sup-
port, and it does not implement any Standard Template Library (STL) classes and functions. For

2.7. Language Support 85

https://en.wikipedia.org/wiki/Standard_Template_Library


Zephyr Project Documentation, Release 3.7.99

this reason, it is only suitable for use in the applications that implement their own (non-standard)
class library and do not rely on the Standard Template Library (STL) components.

Any application that makes use of the Standard Template Library (STL) components, such as
std::string and std::vector, must enable the C++ standard library support.

C++ Standard Library

The C++ Standard Library is a collection of classes and functions that are part of the ISO C++
standard (std namespace).

Zephyr does not include any C++ standard library implementation in source code form. Instead,
it allows configuring the build system to link against the pre-built C++ standard library included
in the C++ compiler toolchain.

To enable C++ standard library, select an applicable toolchain-specific C++ standard library type
from the CONFIG_LIBCPP_IMPLEMENTATION in the application configuration file.

For instance, when building with the Zephyr SDK, the build system can be configured to link
against the GNU C++ Library (libstdc++.a), which is a fully featured C++ standard library that
provides all features required by the ISO C++ standard including the Standard Template Library
(STL), by selecting CONFIG_GLIBCXX_LIBCPP in the application configuration file.

The following C++ standard libraries are supported by Zephyr:

• GNU C++ Library (CONFIG_GLIBCXX_LIBCPP)

• ARC MetaWare C++ Library (CONFIG_ARCMWDT_LIBCPP)

A Zephyr subsystem that requires the features from the full C++ standard library can select,
from its config, CONFIG_REQUIRES_FULL_LIBCPP, which automatically selects a compatible C++
standard library unless the Kconfig symbol for a specific C++ standard library is selected.

Header files and incompatibilities between C and C++

To interact with each other, C and C++ must share code through header files: data structures,
macros, static functions,… While C and C++ have a large overlap, they’re different languages with
known incompatibilities. C is not just a C++ subset. Standard levels (e.g.: “C+11”) add another
level of complexity as new features are often inspired by and copied from the other language
but many years later and with subtle differences. Making things more complex, compilers often
offer early prototypes of features before they become standardized. Standards can have ambi-
guities interpreted differently by different compilers. Compilers can have bugs and these may
need workarounds. To help with this, many projects restrict themselves to a limited number of
toolchains. Zephyr does not.

These compatibility issues affect header files dis-proportionally. Not just because they have to
be compatible between C and C++, but also because they end up being compiled in a surprisingly
high number of other source files due to indirect inclusion and the lack of structure and headers
organization that is typical in real-world projects. So, header files are exposed to a much larger
variety of toolchains and project configurations. Adding more constraints, the Zephyr project has
demanding policies with respect to code style, compiler warnings, static analyzers and standard
compliance (e.g.: MISRA).

Put together, all these constraints can make writing header files very challenging. The purpose of
this section is to document some best “header practices” and lessons learned in a Zephyr-specific
context. While a lot of the information here is not Zephyr-specific, this section is not a substitute
for knowledge of C/C++ standards, textbooks and other references.
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Testing Fortunately, the Zephyr project has an extensive test and CI infrastructure that pro-
vides coverage baselines, catches issues early, enforces policies and maintains such combina-
torial explosions under some control. The tests/lib/cpp/cxx/ are very useful in this context
because their testcase.yaml configuration lets twister iterate quickly over a range of -std pa-
rameters: -std=c++98, -std=c++11, etc.

Keep in mind unused macros are not compiled.

Designated initializers Initialization macros are common in header files as they help reduce
boilerplate code. C99 added initialization of struct and union types by “designated” member
names instead of a list of bare expressions. Some GCC versions support designated initializers
even in their C90 mode.

When used at a simple level, designated initializers are less error-prone, more readable and
more flexible. On the other hand, C99 allowed a surprisingly large and lax set of possibilities:
designated initializers can be out of order, duplicated, “nested” (.a.x =), various other braces
can be omitted, designated initializers and not can be mixed, etc.

Twenty years later, C++20 added designated initializers to C++ but in much more restricted way;
partly because a C++ struct is actually a class. As described in the C++ proposal number P0329
(which compares with C) or in any complete C++ reference, a mix is not allowed and initializers
must be in order (gaps are allowed).

Interestingly, the new restrictions in C++20 can cause gcc -std=c++20 to fail to compile code that
successfully compiles with gcc -std=c++17. For example, gcc -std=c++17 and older allow the
C-style mix of initializers and bare expressions. This fails to compile with using gcc -std=c++20
with the same GCC version.

Recommendation: to maximize compatibility across different C and C++ toolchains and stan-
dards, designated initializers in Zephyr header files should follow all C++20 rules and restric-
tions. Non-designated, pre-C99 initialization offers more compatibility and is also allowed but
designated initialization is the more readable and preferred code style. In any case, both styles
must never be mixed in the same initializer.

Warning: successful compilation is not the end of the incompatibility story. For instance, the
evaluation order of initializer expressions is unspecified in C99! It is the (expected) left-to-right
order in C++20. Other standard revisions may vary. In doubt, do not rely on evaluation order
(here and elsewhere).

Anonymous unions Anonymous unions (a.k.a. “unnamed” unions) seem to have been part of
C++ from its very beginning. They were not officially added to C until C11. As usual, there are
differences between C and C++. For instance, C supports anonymous unions only as a member of
an enclosing struct or union, empty lists { } have always been allowed in C++ but they require
C23, etc.

When initializing anonymous members, the expression can be enclosed in braces or not. It can
be either designated or bare. For maximum portability, when initializing anonymous unions:

• Do not enclose designated initializers with braces. This is required by C++20 and above
which perceive such braces as mixing bare expressions with (other) designated initializers
and fails to compile.

• Do enclose bare expressions with braces. This is required by C. Maybe because C is laxer
and allows many initialization possibilities and variations, so it may need such braces to
disambiguate? Note C does allow omitting most braces in initializer expressions - but not
in this particular case of initializing anonymous unions with bare expressions.

Some pre-C11 GCC versions support some form of anonymous unions. They unfortunately re-
quire enclosing their designated initializers with braces which conflicts with this recommenda-
tion. This can be solved with an #ifdef __STDC_VERSION__ as demonstrated in Zephyr commit
c15f029a7108 and the corresponding code review.
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2.8 Optimizations

Guides on how to optimize Zephyr for performance, power and footprint.

2.8.1 Optimizing for Footprint

Stack Sizes

Stack sizes of various system threads are specified generously to allow for usage in different
scenarios on as many supported platforms as possible. You should start the optimization process
by reviewing all stack sizes and adjusting them for your application:

CONFIG_ISR_STACK_SIZE
Set to 2048 by default

CONFIG_MAIN_STACK_SIZE
Set to 1024 by default

CONFIG_IDLE_STACK_SIZE
Set to 320 by default

CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE
Set to 1024 by default

CONFIG_PRIVILEGED_STACK_SIZE
Set to 1024 by default, depends on userspace feature.

Unused Peripherals

Some peripherals are enabled by default. You can disable unused peripherals in your project
configuration, for example:

CONFIG_GPIO=n
CONFIG_SPI=n

Various Debug/Informational Options

The following options are enabled by default to provide more information about the running
application and to provide means for debugging and error handling:

CONFIG_BOOT_BANNER
This option can be disabled to save a few bytes.

CONFIG_DEBUG
This option can be disabled for production builds

MPU/MMU Support

Depending on your application and platform needs, you can disable MPU/MMU support to gain
some memory and improve performance. Consider the consequences of this configuration
choice though, because you’ll lose advanced stack checking and support.
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2.8.2 Optimization Tools

The available optimization tools let you analyse Footprint andMemoryUsage andData Structures
using different build system targets.

Footprint and Memory Usage

The build system offers 3 targets to view and analyse RAM, ROM and stack usage in generated
images. The tools run on the final image and give information about size of symbols and code
being used in both RAM and ROM. Additionally, with features available through the compiler,
we can also generate worst-case stack usage analysis.

Some of the tools mentioned in this section are organizing their output based on the physical
organization of the symbols. As some symbols might be external to the project’s tree structure,
or might lack metadata needed to display them by name, the following top-level containers are
used to group such symbols:

• Hidden - The RAM and ROM reports list all processing symbols with no matching mapped
files in the Hidden category.

This means that the file for the listed symbol was not added to the metadata file, was empty,
or was undefined. The tool was unable to get the name of the function for the given symbol
nor identify where it comes from.

• No paths - The RAM and ROM reports list all processing symbols with relative paths in the
No paths category.

This means that the listed symbols cannot be placed in the tree structure of the report at
an absolute path under one specific file. The tool was able to get the name of the function,
but it was unable to identify where it comes from.

Note

You can have multiple cases of the same function, and the No paths category will list the
sum of these in one entry.

Build Target: ram_report List all compiled objects and their RAM usage in a tabular form
with bytes per symbol and the percentage it uses. The data is grouped based on the file system
location of the object in the tree and the file containing the symbol.

Use the ram_report target with your board, as in the following example.

Using west:

west build -b reel_board samples/hello_world
west build -t ram_report

Using CMake and ninja:

# Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=reel_board samples/hello_world

# Now run the build tool on the generated build system:
ninja -Cbuild ram_report

These commands will generate something similar to the output below:
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Path Size % Address
========================================================================================
Root 4637 100.00% -
├── (hidden) 4 0.09% -
├── (no paths) 2748 59.26% -
│ ├── _cpus_active 4 0.09% 0x20000314
│ ├── _kernel 32 0.69% 0x20000318
│ ├── _sw_isr_table 384 8.28% 0x00006474
│ ├── cli.1 16 0.35% 0x20000254
│ ├── on.2 4 0.09% 0x20000264
│ ├── poll_out_lock.0 4 0.09% 0x200002d4
│ ├── z_idle_threads 128 2.76% 0x20000120
│ ├── z_interrupt_stacks 2048 44.17% 0x20000360
│ └── z_main_thread 128 2.76% 0x200001a0
├── WORKSPACE 184 3.97% -
│ └── modules 184 3.97% -
│ └── hal 184 3.97% -
│ └── nordic 184 3.97% -
│ └── nrfx 184 3.97% -
│ └── drivers 184 3.97% -
│ └── src 184 3.97% -
│ ├── nrfx_clock.c 8 0.17% -
│ │ └── m_clock_cb 8 0.17% 0x200002e4
│ ├── nrfx_gpiote.c 132 2.85% -
│ │ └── m_cb 132 2.85% 0x20000060
│ ├── nrfx_ppi.c 4 0.09% -
│ │ └── m_channels_allocated 4 0.09% 0x200000e4
│ └── nrfx_twim.c 40 0.86% -
│ └── m_cb 40 0.86% 0x200002ec
└── ZEPHYR_BASE 1701 36.68% -

├── arch 5 0.11% -
│ └── arm 5 0.11% -
│ └── core 5 0.11% -
│ ├── mpu 1 0.02% -
│ │ └── arm_mpu.c 1 0.02% -
│ │ └── static_regions_num 1 0.02% 0x20000348
│ └── tls.c 4 0.09% -
│ └── z_arm_tls_ptr 4 0.09% 0x20000240
├── drivers 258 5.56% -
│ ├── ... ... ...%

========================================================================================
4637

Build Target: rom_report List all compiled objects and their ROM usage in a tabular form
with bytes per symbol and the percentage it uses. The data is grouped based on the file system
location of the object in the tree and the file containing the symbol.

Use the rom_report target with your board, as in the following example.

Using west:

west build -b reel_board samples/hello_world
west build -t rom_report

Using CMake and ninja:

# Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=reel_board samples/hello_world

# Now run the build tool on the generated build system:
ninja -Cbuild rom_report
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These commands will generate something similar to the output below:

Path Size % Address
========================================================================================
Root 27828 100.00% -
├── ... ... ...%
└── ZEPHYR_BASE 13558 48.72% -

├── arch 1766 6.35% -
│ └── arm 1766 6.35% -
│ └── core 1766 6.35% -
│ ├── cortex_m 1020 3.67% -
│ │ ├── fault.c 620 2.23% -
│ │ │ ├── bus_fault.constprop.0 108 0.39% 0x00000749
│ │ │ ├── mem_manage_fault.constprop.0 120 0.43% 0x000007b5
│ │ │ ├── usage_fault.constprop.0 84 0.30% 0x000006f5
│ │ │ ├── z_arm_fault 292 1.05% 0x0000082d
│ │ │ └── z_arm_fault_init 16 0.06% 0x00000951
│ │ ├── ... ... ...%
├── boards 32 0.11% -
│ └── arm 32 0.11% -
│ └── reel_board 32 0.11% -
│ └── board.c 32 0.11% -
│ ├── __init_board_reel_board_init 8 0.03% 0x000063e4
│ └── board_reel_board_init 24 0.09% 0x00000ed5
├── build 194 0.70% -
│ └── zephyr 194 0.70% -
│ ├── isr_tables.c 192 0.69% -
│ │ └── _irq_vector_table 192 0.69% 0x00000040
│ └── misc 2 0.01% -
│ └── generated 2 0.01% -
│ └── configs.c 2 0.01% -
│ └── _ConfigAbsSyms 2 0.01% 0x00005945
├── drivers 6282 22.57% -
│ ├── ... ... ...%

========================================================================================
21652

Build Target: puncover This target uses a third-party tool called puncover which can be found
at https://github.com/HBehrens/puncover. When this target is built, it will launch a local web
server which will allow you to open a web client and browse the files and view their ROM, RAM,
and stack usage.

Before you can use this target, install the puncover Python module:

pip3 install git+https://github.com/HBehrens/puncover --user

Warning

This is a third-party tool that might or might not be working at any given time. Please check
the GitHub issues, and report new problems to the project maintainer.

After you installed the Python module, use puncover target with your board, as in the following
example.

Using west:

west build -b reel_board samples/hello_world
west build -t puncover

Using CMake and ninja:
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# Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=reel_board samples/hello_world

# Now run the build tool on the generated build system:
ninja -Cbuild puncover

To view worst-case stack usage analysis, build this with the CONFIG_STACK_USAGE enabled.

Using west:

west build -b reel_board samples/hello_world -- -DCONFIG_STACK_USAGE=y
west build -t puncover

Using CMake and ninja:

# Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=reel_board -DCONFIG_STACK_USAGE=y samples/hello_world

# Now run the build tool on the generated build system:
ninja -Cbuild puncover

Data Structures

Build Target: pahole Poke-a-hole (pahole) is an object-file analysis tool to find the size of the
data structures, and the holes caused due to aligning the data elements to the word-size of the
CPU by the compiler.

Poke-a-hole (pahole) must be installed prior to using this target. It can be obtained from https:
//git.kernel.org/pub/scm/devel/pahole/pahole.git and is available in the dwarves package in both
fedora and ubuntu:

sudo apt-get install dwarves

Alternatively, you can get it from fedora:

sudo dnf install dwarves

After you installed the package, use pahole target with your board, as in the following example.

Using west:

west build -b reel_board samples/hello_world
west build -t pahole

Using CMake and ninja:

# Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=reel_board samples/hello_world

# Now run the build tool on the generated build system:
ninja -Cbuild pahole

Pahole will generate something similar to the output below in the console:

/* Used at: [...]/build/zephyr/kobject_hash.c */
/* <375> [...]/zephyr/include/zephyr/sys/dlist.h:37 */
union {

struct _dnode * head; /* 0 4 */
struct _dnode * next; /* 0 4 */

};
/* Used at: [...]/build/zephyr/kobject_hash.c */

(continues on next page)
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(continued from previous page)
/* <397> [...]/zephyr/include/zephyr/sys/dlist.h:36 */
struct _dnode {

union {
struct _dnode * head; /* 0 4 */
struct _dnode * next; /* 0 4 */

}; /* 0 4 */
union {

struct _dnode * tail; /* 4 4 */
struct _dnode * prev; /* 4 4 */

}; /* 4 4 */

/* size: 8, cachelines: 1, members: 2 */
/* last cacheline: 8 bytes */

};
/* Used at: [...]/build/zephyr/kobject_hash.c */
/* <3b7> [...]/zephyr/include/zephyr/sys/dlist.h:41 */
union {

struct _dnode * tail; /* 0 4 */
struct _dnode * prev; /* 0 4 */

};
...
...

2.9 Flashing and Hardware Debugging

2.9.1 Flash & Debug Host Tools

This guide describes the software tools you can run on your host workstation to flash and debug
Zephyr applications.

Zephyr’s west tool has built-in support for all of these in its flash, debug, debugserver, and attach
commands, provided your board hardware supports them and your Zephyr board directory’s
board.cmake file declares that support properly. See Building, Flashing and Debugging for more
information on these commands.

SAM Boot Assistant (SAM-BA)

Atmel SAM Boot Assistant (Atmel SAM-BA) allows In-System Programming (ISP) from USB or
UART host without any external programming interface. Zephyr allows users to develop and
program boards with SAM-BA support using west. Zephyr supports devices with/without ROM
bootloader and both extensions from Arduino and Adafruit. Full support was introduced in
Zephyr SDK 0.12.0.

The typical command to flash the board is:

west flash [ -r bossac ] [ -p /dev/ttyX ]

Flash configuration for devices:

With ROM bootloader

These devices don’t need any special configuration. After building your application, just run
west flash to flash the board.

Without ROM bootloader

For these devices, the user should:
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1. Define flash partitions required to accommodate the bootloader and application image; see
Flash map for details.

2. Have board .defconfig file with the CONFIG_USE_DT_CODE_PARTITION Kconfig option set to
y to instruct the build system to use these partitions for code relocation. This option can
also be set in prj.conf or any other Kconfig fragment.

3. Build and flash the SAM-BA bootloader on the device.

With compatible SAM-BA bootloader

For these devices, the user should:

1. Define flash partitions required to accommodate the bootloader and application image; see
Flash map for details.

2. Have board .defconfig file with the CONFIG_BOOTLOADER_BOSSA Kconfig option set
to y. This will automatically select the CONFIG_USE_DT_CODE_PARTITION Kconfig op-
tion which instruct the build system to use these partitions for code relocation.
The board .defconfig file should have CONFIG_BOOTLOADER_BOSSA_ARDUINO , CON-
FIG_BOOTLOADER_BOSSA_ADAFRUIT_UF2 or the CONFIG_BOOTLOADER_BOSSA_LEGACY Kconfig
option set to y to select the right compatible SAM-BA bootloader mode. These options can
also be set in prj.conf or any other Kconfig fragment.

3. Build and flash the SAM-BA bootloader on the device.

Note

The CONFIG_BOOTLOADER_BOSSA_LEGACY Kconfig option should be used as last resource. Try
configure first with Devices without ROM bootloader.

Typical flash layout and configuration For bootloaders that reside on flash, the devicetree
partition layout is mandatory. For devices that have a ROM bootloader, they are mandatory
when the application uses a storage or other non-application partition. In this special case, the
boot partition should be omitted and code_partition should start from offset 0. It is necessary to
define the partitions with sizes that avoid overlaps, always.

A typical flash layout for devices without a ROM bootloader is:

/ {
chosen {

zephyr,code-partition = &code_partition;
};

};

&flash0 {
partitions {

compatible = "fixed-partitions";
#address-cells = <1>;
#size-cells = <1>;

boot_partition: partition@0 {
label = "sam-ba";
reg = <0x00000000 0x2000>;
read-only;

};

code_partition: partition@2000 {
label = "code";
reg = <0x2000 0x3a000>;
read-only;

(continues on next page)

94 Chapter 2. Developing with Zephyr



Zephyr Project Documentation, Release 3.7.99

(continued from previous page)
};

/*
* The final 16 KiB is reserved for the application.
* Storage partition will be used by FCB/LittleFS/NVS
* if enabled.
*/
storage_partition: partition@3c000 {

label = "storage";
reg = <0x0003c000 0x00004000>;

};
};

};

A typical flash layout for devices with a ROM bootloader and storage partition is:

/ {
chosen {

zephyr,code-partition = &code_partition;
};

};

&flash0 {
partitions {

compatible = "fixed-partitions";
#address-cells = <1>;
#size-cells = <1>;

code_partition: partition@0 {
label = "code";
reg = <0x0 0xF0000>;
read-only;

};

/*
* The final 64 KiB is reserved for the application.
* Storage partition will be used by FCB/LittleFS/NVS
* if enabled.
*/
storage_partition: partition@F0000 {

label = "storage";
reg = <0x000F0000 0x00100000>;

};
};

};

Enabling SAM-BA runner In order to instruct Zephyr west tool to use the SAM-BA bootloader
the board.cmake file must have include(${ZEPHYR_BASE}/boards/common/bossac.board.cmake)
entry. Note that Zephyr tool accept more entries to define multiple runners. By default, the first
one will be selected when using west flash command. The remaining options are available
passing the runner option, for instance west flash -r bossac.

More implementation details can be found in the boards documentation. As a quick reference,
see these three board documentation pages:

• sam4e_xpro (ROM bootloader)

• adafruit_feather_m0_basic_proto (Adafruit UF2 bootloader)

• arduino_nano_33_iot (Arduino bootloader)

• arduino_nano_33_ble (Arduino legacy bootloader)
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Enabling BOSSAC onWindows Native [Experimental] Zephyr SDK´s bossac is currently sup-
ported on Linux and macOS only. Windows support can be achieved by using the bossac ver-
sion from BOSSA official releases. After installing using default options, the bossac.exe must
be added to Windows PATH. A specific bossac executable can be used by passing the --bossac
option, as follows:

west flash -r bossac --bossac="C:\Program Files (x86)\BOSSA\bossac.exe" --bossac-port="COMx"

Note

WSL is not currently supported.

LinkServer Debug Host Tools

Linkserver is a utility for launching and managing GDB servers for NXP debug probes, which
also provides a command-line target flash programming capabilities. Linkserver can be used
with the NXP MCUXpresso for Visual Studio Code implementation, with custom debug config-
urations based on GNU tools or as part of a headless solution for continuous integration and
test. LinkServer can be used with MCU-Link, LPC-Link2, LPC11U35-based and OpenSDA based
standalone or on-board debug probes from NXP.

NXP recommends installing LinkServer by using NXP’s MCUXpresso Installer. This method will
also install the tools supporting the debug probes below, including NXP’s MCU-Link and LPC-
Scrypt tools.

LinkServer is compatible with the following debug probes:

• LPC-LINK2 CMSIS DAP Onboard Debug Probe

• MCU-Link CMSIS-DAP Onboard Debug Probe

• OpenSDA DAPLink Onboard Debug Probe

To use LinkServer with West commands, the install folder should be added to the PATH environ-
ment variable. The default installation path to add is:

Linux

/usr/local/LinkServer

Windows

c:\nxp\LinkServer_<version>

Supported west commands:

1. flash

2. debug

3. debugserver

4. attach

Notes:

1. Probes can be listed with LinkServer:

LinkServer probes

2. With multiple debug probes attached to the host, use the LinkServer west runner --probe
option to pass the probe index.
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west flash --runner=linkserver --probe=3

3. Device-specific settings can be overridden with the west runner for LinkServer with the
option ‘–override’. May be used multiple times. The format is dictated by LinkServer, e.g.:

west flash --runner=linkserver --override /device/memory/5/flash-driver=MIMXRT500_SFDP_MXIC_
↪→OSPI_S.cfx

4. LinkServer does not install an implicit breakpoint at the reset handler. If you would like to
single step from the start of their application, you will need to add a breakpoint at main or
the reset handler manually.

J-Link Debug Host Tools

Segger provides a suite of debug host tools for Linux, macOS, and Windows operating systems:

• J-Link GDB Server: GDB remote debugging

• J-Link Commander: Command-line control and flash programming

• RTT Viewer: RTT terminal input and output

• SystemView: Real-time event visualization and recording

These debug host tools are compatible with the following debug probes:

• LPC-Link2 J-Link Onboard Debug Probe

• OpenSDA J-Link Onboard Debug Probe

• MCU-Link JLink Onboard Debug Probe

• J-Link External Debug Probe

• ST-LINK/V2-1 Onboard Debug Probe

Check if your SoC is listed in J-Link Supported Devices.

Download and install the J-Link Software and Documentation Pack to get the J-Link GDB Server
and Commander, and to install the associated USB device drivers. RTT Viewer and SystemView
can be downloaded separately, but are not required.

Note that the J-Link GDB server does not yet support Zephyr RTOS-awareness.

OpenOCD Debug Host Tools

OpenOCD is a community open source project that provides GDB remote debugging and flash
programming support for a wide range of SoCs. A fork that adds Zephyr RTOS-awareness is
included in the Zephyr SDK; otherwise see Getting OpenOCD for options to download OpenOCD
from official repositories.

These debug host tools are compatible with the following debug probes:

• OpenSDA DAPLink Onboard Debug Probe

• J-Link External Debug Probe

• ST-LINK/V2-1 Onboard Debug Probe

Check if your SoC is listed in OpenOCD Supported Devices.
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Note

On Linux, openocd is available though the Zephyr SDK. Windows users should use the fol-
lowing steps to install openocd:

• Download openocd for Windows from here: OpenOCD Windows

• Copy bin and share dirs to C:\Program Files\OpenOCD\
• Add C:\Program Files\OpenOCD\bin to ‘PATH’ environment variable

pyOCD Debug Host Tools

pyOCD is an open source project from Arm that provides GDB remote debugging and flash pro-
gramming support for Arm Cortex-M SoCs. It is distributed on PyPi and installed when you com-
plete the Get Zephyr and install Python dependencies step in the Getting Started Guide. pyOCD
includes support for Zephyr RTOS-awareness.

These debug host tools are compatible with the following debug probes:

• LPC-LINK2 CMSIS DAP Onboard Debug Probe

• MCU-Link CMSIS-DAP Onboard Debug Probe

• OpenSDA DAPLink Onboard Debug Probe

• ST-LINK/V2-1 Onboard Debug Probe

Check if your SoC is listed in pyOCD Supported Devices.

Lauterbach TRACE32 Debug Host Tools

Lauterbach TRACE32 is a product line of microprocessor development tools, debuggers and real-
time tracer with support for JTAG, SWD, NEXUS or ETM over multiple core architectures, includ-
ing Arm Cortex-A/-R/-M, RISC-V, Xtensa, etc. Zephyr allows users to develop and program boards
with Lauterbach TRACE32 support using west.

The runner consists of a wrapper around TRACE32 software, and allows a Zephyr board to exe-
cute a custom start-up script (Practice Script) for the different commands supported, including
the ability to pass extra arguments from CMake. Is up to the board using this runner to define
the actions performed on each command.

Install Lauterbach TRACE32 Software Download Lauterbach TRACE32 software from the
Lauterbach TRACE32 download website (registration required) and follow the installation steps
described in Lauterbach TRACE32 Installation Guide.

Flashing and Debugging Set the environment variable T32_DIR to the TRACE32 system direc-
tory. Then execute west flash or west debug commands to flash or debug the Zephyr application
as detailed in Building, Flashing and Debugging. The debug command launches TRACE32 GUI to
allow debug the Zephyr application, while the flash command hides the GUI and perform all
operations in the background.

By default, the t32 runner will launch TRACE32 using the default configuration file named
config.t32 located in the TRACE32 system directory. To use a different configuration file, supply
the argument --config CONFIG to the runner, for example:

west flash --config myconfig.t32

For more options, run west flash --context -r t32 to print the usage.
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Zephyr RTOS Awareness To enable Zephyr RTOS awareness follow the steps described in
Lauterbach TRACE32 Zephyr OS Awareness Manual.

NXP S32 Debug Probe Host Tools

NXP S32 Debug Probe is designed to work in conjunction with NXP S32 Design Studio for S32
Platform.

Download (registration required) NXP S32 Design Studio for S32 Platform and follow the S32
Design Studio for S32 Platform Installation User Guide to get the necessary debug host tools and
associated USB device drivers.

Note that Zephyr RTOS-awareness support for the NXP S32 GDB server depends on the target
device. Consult the product release notes for more information.

Supported west commands:

1. debug

2. debugserver

3. attach

Basic usage Before starting, add NXP S32 Design Studio installation directory to the system
PATH environment variable. Alternatively, it can be passed to the runner on each invocation via
--s32ds-path as shown below:

Linux

west debug --s32ds-path=/opt/NXP/S32DS.3.5

Windows

west debug --s32ds-path=C:\NXP\S32DS.3.5

If multiple S32 debug probes are connected to the host via USB, the runner will ask the user
to select one via command line prompt before continuing. The connection string for the probe
can be also specified when invoking the runner via --dev-id=<connection-string>. Consult
NXP S32 debug probe user manual for details on how to construct the connection string. For
example, if using a probe with serial ID 00:04:9f:00:ca:fe:

west debug --dev-id='s32dbg:00:04:9f:00:ca:fe'

It is possible to pass extra options to the debug host tools via --tool-opt. When executing debug
or attach commands, the tool options will be passed to the GDB client only. When executing
debugserver, the tool options will be passed to the GDB server. For example, to load a Zephyr
application to SRAM and afterwards detach the debug session:

west debug --tool-opt='--batch'

probe-rs Debug Host Tools

probe-rs is an open-source embedded toolkit written in Rust. It provides out-of-the-box support
for a variety of debug probes, including CMSIS-DAP, ST-Link, SEGGER J-Link, FTDI and built-in
USB-JTAG interface on ESP32 devices.

Check probe-rs Installation for more setup details.

Check if your SoC is listed in probe-rs Supported Devices.
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2.9.2 Debug Probes

A debug probe is special hardware which allows you to control execution of a Zephyr application
running on a separate board. Debug probes usually allow reading and writing registers and
memory, and support breakpoint debugging of the Zephyr application on your host workstation
using tools like GDB. They may also support other debug software and more advanced features
such as tracing program execution. For details on the related host software supported by Zephyr,
see Flash & Debug Host Tools.

Debug probes are usually connected to your host workstation via USB; they are sometimes also
accessible via an IP network or other means. They usually connect to the device running Zephyr
using the JTAG or SWD protocols. Debug probes are either separate hardware devices or circuitry
integrated into the same board which runs Zephyr.

Many supported boards in Zephyr include a second microcontroller that serves as an onboard de-
bug probe, usb-to-serial adapter, and sometimes a drag-and-drop flash programmer. This elim-
inates the need to purchase an external debug probe and provides a variety of debug host tool
options.

Several hardware vendors have their own branded onboard debug probe implementations: NXP
boards may use OpenSDA, LPC-Link2, or MCU-Link, probes depending on the microcontroller
the debug probe firmware runs on. ST boards have the ST-LINK probe. Each onboard debug
probe microcontroller can support one or more types of firmware that communicate with their
respective debug host tools. For example, an OpenSDA microcontroller can be programmed with
DAPLink firmware to communicate with pyOCD or OpenOCD debug host tools, or with J-Link
firmware to communicate with J-Link debug host tools.

Debug Probes & Host
Tools
Compatibility Chart

Host Tools

J-Link De-
bug

OpenOCD pyOCD NXP
S32DS

NXP
LinkServer

Debug
Probes

J-Link Ex-
ternal

✓ ✓

LPC-Link2
CMSIS-
DAP

✓

LPC-Link2
J-Link

✓

MCU-Link
CMSIS-
DAP

✓

MCU-Link
J-Link

✓

NXP S32
Debug
Probe

✓

OpenSDA
DAPLink

✓ ✓ ✓

OpenSDA
J-Link

✓

ST-
LINK/V2-1

✓ ✓ some
STM32
boards

Some supported boards in Zephyr do not include an onboard debug probe and therefore require
an external debug probe. In addition, boards that do include an onboard debug probe often also
have an SWD or JTAG header to enable the use of an external debug probe instead. One reason
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this may be useful is that the onboard debug probe may have limitations, such as lack of support
for advanced debuggers or high-speed tracing. You may need to adjust jumpers to prevent the
onboard debug probe from interfering with the external debug probe.

NXP Onboard Debug Probes

NXP boards may have one of several onboard debug probes. These probes include the MCU-Link
Onboard Debug Probe, LPC-LINK2 Onboard Debug Probe and OpenSDA Onboard Debug Probe.
Each of these probes is implemented as a secondary microcontroller present on the evaluation
board. The specific debug probe type present on a given board can be determined based on the
debug microcontroller SOC:

• LPC55S69: MCU-Link Onboard Debug Probe

• LPC4322: LPC-LINK2 Onboard Debug Probe

• MK20: OpenSDA Onboard Debug Probe

For example, the frdm_k64f board has an MK20 debug microcontroller, so this board uses the
OpenSDA Onboard Debug Probe.

MCU-Link Onboard Debug Probe

The MCU-Link onboard debug probe uses an LPC55S69 SOC. This probe supports the following
firmwares:

• MCU-Link CMSIS-DAP Onboard Debug Probe (default firmware)

• MCU-Link JLink Onboard Debug Probe

This probe is programmed using the MCU-Link host tools, which are installed with the LinkServer
Debug Host Tools. NXP recommends using NXP’s MCUXpresso Installer to install the Linkserver
tools.

MCU-Link CMSIS-DAP Onboard Debug Probe This is the default firmware installed on MCU-
Link debug probes. The CMSIS-DAP debug probes allow debugging from any compatible
toolchain, including IAR EWARM, Keil MDK, NXP’s MCUXpresso IDE and MCUXpresso extension
for VS Code. In addition to debug probe functionality, the MCU-Link probes may also provide:

1. SWO trace end point: this virtual device is used by MCUXpresso to retrieve SWO trace data.
See the MCUXpresso IDE documentation for more information.

2. Virtual COM (VCOM) port / UART bridge connected to the target processor

3. USB to UART, SPI and/or I2C interfaces (depending on MCU-Link type/implementation)

4. Energy measurements of the target MCU

This debug probe is compatible with the following debug host tools:

• LinkServer Debug Host Tools

Once the MCU-Link host tools are installed, the following steps are required to program the
CMSIS-DAP firmware:

1. Make sure the MCU-Link utility is present on your host machine. This can be done by in-
stalling LinkServer Debug Host Tools.

2. Put the MCU-Link microcontroller into DFU boot mode by attaching the DFU jumper then
connecting to the USB debug port on the board. This jumper may also be referred to as the
ISP jumper, and will be connected to PIO0_5 on the LPC55S69.

3. Run the program_CMSIS script, found in the installed MCU-Link scripts folder.
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4. Remove the DFU jumper and power cycle the board.

MCU-Link JLink Onboard Debug Probe This debug probe firmware provides a JLink compat-
ible debug interface, as well as a USB-Serial adapter. It is compatible with the following debug
host tools:

• J-Link Debug Host Tools

These probes do not have JLink firmware installed by default, and must be updated. Once
the MCU-Link host tools are installed, the following steps are required to program the JLink
firmware:

1. Make sure the MCU-Link utility is present on your host machine. This can be done by in-
stalling LinkServer Debug Host Tools.

2. Put the MCU-Link microcontroller into DFU boot mode by attaching the DFU jumper then
connecting to the USB debug port on the board. This jumper may also be referred to as the
ISP jumper, and will be connected to PIO0_5 on the LPC55S69.

3. Run the program_JLINK script, found in the installed MCU-Link scripts folder.

4. Remove the DFU jumper and power cycle the board.

LPC-LINK2 Onboard Debug Probe

The LPC-LINK2 onboard debug probe uses an LPC4322 SOC. This probe supports the following
firmwares:

• LPC-LINK2 CMSIS DAP Onboard Debug Probe

• LPC-Link2 J-Link Onboard Debug Probe

• LPC-Link2 DAPLink Onboard Debug Probe (default firmware)

This probe is programmed using the LPCScrypt host tools, which are installed with theLinkServer
Debug Host Tools. NXP recommends using NXP’s MCUXpresso Installer to install the Linkserver
tools.

LPC-LINK2 CMSISDAPOnboardDebug Probe The CMSIS-DAP debug probes allow debugging
from any compatible toolchain, including IAR EWARM, Keil MDK, as well as NXP’s MCUXpresso
IDE and MCUXpresso extension for VS Code. As well as providing debug probe functionality, the
LPC-Link2 probes also provide:

1. SWO trace end point: this virtual device is used by MCUXpresso to retrieve SWO trace data.
See the MCUXpresso IDE documentation for more information.

2. Virtual COM (VCOM) port / UART bridge connected to the target processor

3. LPCSIO bridge that provides communication to I2C and SPI slave devices

This debug probe firmware is compatible with the following debug host tools:

• LinkServer Debug Host Tools

The probe may be updated to use CMSIS-DAP firmware with the following steps:

1. Make sure the LPCScrypt utility is present on your host machine. This can be done by in-
stalling LinkServer Debug Host Tools.

2. Put the LPC-Link2 microcontroller into DFU boot mode by attaching the DFU jumper, then
connecting to the USB debug port on the board. This jumper is connected to P2_6 on the
LPC4322 SOC.

3. Run the program_CMSIS script, found in the installed LPCScrypt scripts folder.
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4. Remove the DFU jumper and power cycle the board.

Note

On some boards, the J-Link probe firmware will no longer power the board via the USB debug
port. On these boards, an alternative method of powering the board must be used when this
firmware is programmed.

LPC-Link2 J-LinkOnboardDebug Probe This debug probe firmware provides a JLink compat-
ible debug interface, as well as a USB-Serial adapter. It is compatible with the following debug
host tools:

• J-Link Debug Host Tools

The probe may be updated to use the J-Link firmware with the following steps:

Note

Verify the firmware supports your board by visiting Firmware for LPCXpresso

1. Make sure the LPCScrypt utility is present on your host machine. This can be done by in-
stalling LinkServer Debug Host Tools.

2. Put the LPC-Link2 microcontroller into DFU boot mode by attaching the DFU jumper, then
connecting to the USB debug port on the board. This jumper is connected to P2_6 on the
LPC4322 SOC.

3. Run the program_JLINK script, found in the installed LPCScrypt scripts folder.

4. Remove the DFU jumper and power cycle the board.

LPC-Link2 DAPLink Onboard Debug Probe The LPC-Link2 DAPLink firmware is the de-
fault firmware shipped on LPC-Link2 based boards, but is not the recommended firmware.
Users should update to the LPC-LINK2 CMSIS DAP Onboard Debug Probe firmware following
the instructions provided above. For details on programming the DAPLink firmware, see NXP
AN13206.

OpenSDA Onboard Debug Probe

The OpenSDA onboard debug probe is based on the NXP MK20 SOC. It features drag and drop
programming supports, and supports the following debug firmwares:

• OpenSDA DAPLink Onboard Debug Probe (default firmware)

• OpenSDA J-Link Onboard Debug Probe

OpenSDADAPLink Onboard Debug Probe This debug probe firmware is compatible with the
following debug host tools:

• pyOCD Debug Host Tools

• OpenOCD Debug Host Tools

• LinkServer Debug Host Tools
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This probe is realized by programming the OpenSDA microcontroller with DAPLink OpenSDA
firmware. NXP provides OpenSDA DAPLink Board-Specific Firmwares.

Install the debug host tools before you program the firmware.

As with all OpenSDA debug probes, the steps for programming the firmware are:

1. Put the OpenSDA microcontroller into bootloader mode by holding the reset button while
you power on the board. Note that “bootloader mode” in this context applies to the
OpenSDA microcontroller itself, not the target microcontroller of your Zephyr application.

2. After you power on the board, release the reset button. A USB mass storage device called
BOOTLOADER or MAINTENANCE will enumerate. If the enumerated device is named
BOOTLOADER, please first update the bootloader to the latest revision by following the
instructions for a DAPLink Bootloader Update.

3. Copy the OpenSDA firmware binary to the USB mass storage device.

4. Power cycle the board, this time without holding the reset button. You should see three
USB devices enumerate: a CDC device (serial port), a HID device (debug port), and a mass
storage device (drag-and-drop flash programming).

OpenSDA J-Link Onboard Debug Probe This debug probe is compatible with the following
debug host tools:

• J-Link Debug Host Tools

This probe is realized by programming the OpenSDA microcontroller with J-Link OpenSDA
firmware. Segger provides OpenSDA J-Link Generic Firmwares and OpenSDA J-Link Board-
Specific Firmwares, where the latter is generally recommended when available. Board-specific
firmwares are required for i.MX RT boards to support their external flash memories, whereas
generic firmwares are compatible with all Kinetis boards.

Install the debug host tools before you program the firmware.

As with all OpenSDA debug probes, the steps for programming the firmware are:

1. Put the OpenSDA microcontroller into bootloader mode by holding the reset button while
you plug a USB into the board’s USB debug port. Note that “bootloader mode” in this context
applies to the OpenSDA microcontroller itself, not the target microcontroller of your Zephyr
application.

2. After you power on the board, release the reset button. A USB mass storage device called
BOOTLOADER or MAINTENANCE will enumerate. If the enumerated device is named
BOOTLOADER, please first update the bootloader to the latest revision by following the
instructions for a DAPLink Bootloader Update.

3. Copy the OpenSDA firmware binary to the USB mass storage device.

4. Power cycle the board, this time without holding the reset button. You should see two USB
devices enumerate: a CDC device (serial port) and a vendor-specific device (debug port).

J-Link External Debug Probe

Segger J-Link is a family of external debug probes, including J-Link EDU, J-Link PLUS, J-Link
ULTRA+, and J-Link PRO, that support a large number of devices from different hardware archi-
tectures and vendors.

This debug probe is compatible with the following debug host tools:

• J-Link Debug Host Tools

• OpenOCD Debug Host Tools

Install the debug host tools before you program the firmware.
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ST-LINK/V2-1 Onboard Debug Probe

ST-LINK/V2-1 is a serial and debug adapter built into all Nucleo and Discovery boards. It provides
a bridge between your computer (or other USB host) and the embedded target processor, which
can be used for debugging, flash programming, and serial communication, all over a simple USB
cable.

It is compatible with the following host debug tools:

• OpenOCD Debug Host Tools

• J-Link Debug Host Tools

For some STM32 based boards, it is also compatible with:

• pyOCD Debug Host Tools

While it works out of the box with OpenOCD, it requires some flashing to work with J-Link. To
do this, SEGGER offers a firmware upgrading the ST-LINK/V2-1 on board on the Nucleo and Dis-
covery boards. This firmware makes the ST-LINK/V2-1 compatible with J-LinkOB, allowing users
to take advantage of most J-Link features like the ultra fast flash download and debugging speed
or the free-to-use GDBServer.

More information about upgrading ST-LINK/V2-1 to JLink or restore ST-Link/V2-1 firmware
please visit: Segger over ST-Link

Flash and debug with ST-Link Using OpenOCD

OpenOCD is available by default on ST-Link and configured as the default flash and debug tool.
Flash and debug can be done as follows:

# From the root of the zephyr repository
west build -b None samples/hello_world
west flash

# From the root of the zephyr repository
west build -b None samples/hello_world
west debug

Using Segger J-Link

Once STLink is flashed with SEGGER FW and J-Link GDB server is installed on your host com-
puter, you can flash and debug as follows:

Use CMake with -DBOARD_FLASH_RUNNER=jlink to change the default OpenOCD runner to J-Link.
Alternatively, you might add the following line to your application CMakeList.txt file.

set(BOARD_FLASH_RUNNER jlink)

If you use West (Zephyr’s meta-tool) you can modify the default runner using the --runner (or
-r) option.

west flash --runner jlink

To attach a debugger to your board and open up a debug console with jlink.

west debug --runner jlink

For more information about West and available options, see West (Zephyr’s meta-tool).

If you configured your Zephyr application to use Segger RTT console instead, open telnet:
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$ telnet localhost 19021
Trying ::1...
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
SEGGER J-Link V6.30f - Real time terminal output
J-Link STLink V21 compiled Jun 26 2017 10:35:16 V1.0, SN=773895351
Process: JLinkGDBServerCLExe
Zephyr Shell, Zephyr version: 1.12.99
Type 'help' for a list of available commands
shell>

If you get no RTT output you might need to disable other consoles which conflict with the RTT
one if they are enabled by default in the particular sample or application you are running, such
as disable UART_CONSOLE in menuconfig

Updating or restoring ST-Link firmware ST-Link firmware can be updated using
STM32CubeProgrammer Tool. It is usually useful when facing flashing issues, for instance
when using twister’s device-testing option.

Once installed, you can update attached board ST-Link firmware with the following command

s java -jar ~/STMicroelectronics/STM32Cube/STM32CubeProgrammer/Drivers/
↪→FirmwareUpgrade/STLinkUpgrade.jar -sn <board_uid>

Where board_uid can be obtained using twister’s generate-hardware-map option. For more in-
formation about twister and available options, see Test Runner (Twister).

NXP S32 Debug Probe

NXP S32 Debug Probe enables NXP S32 target system debugging via a standard debug port while
connected to a developer’s workstation via USB or remotely via Ethernet.

NXP S32 Debug Probe is designed to work in conjunction with NXP S32 Design Studio (S32DS) and
NXP Automotive microcontrollers and processors. Install the debug host tools as in indicated in
NXP S32 Debug Probe Host Tools before you program the firmware.

2.10 Modules (External projects)

Zephyr relies on the source code of several externally maintained projects in order to avoid
reinventing the wheel and to reuse as much well-established, mature code as possible when it
makes sense. In the context of Zephyr’s build system those are called modules. These modules
must be integrated with the Zephyr build system, as described in more detail in other sections
on this page.

To be classified as a candidate for being included in the default list of modules, an external project
is required to have its own life-cycle outside the Zephyr Project, that is, reside in its own repos-
itory, and have its own contribution and maintenance workflow and release process. Zephyr
modules should not contain code that is written exclusively for Zephyr. Instead, such code should
be contributed to the main zephyr tree.

Modules to be included in the default manifest of the Zephyr project need to provide functional-
ity or features endorsed and approved by the project Technical Steering Committee and should
comply with the module licensing requirements and contribution guidelines. They should also
have a Zephyr developer that is committed to maintain the module codebase.

Zephyr depends on several categories of modules, including but not limited to:
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• Debugger integration

• Silicon vendor Hardware Abstraction Layers (HALs)

• Cryptography libraries

• File Systems

• Inter-Process Communication (IPC) libraries

Additionally, in some cases modules (particularly vendor HALs) can contain references to op-
tional binary blobs.

This page summarizes a list of policies and best practices which aim at better organizing the
workflow in Zephyr modules.

2.10.1 Modules vs west projects

Zephyr modules, described in this page, are not the same as west projects. In fact, modules do
not require west at all. However, when using modules with west, then the build system uses west
in order to find modules.

In summary:

Modules are repositories that contain a zephyr/module.yml file, so that the Zephyr build system
can pull in the source code from the repository. West projects are entries in the projects: section
in the west.yml manifest file. West projects are often also modules, but not always. There are
west projects that are not included in the final firmware image (eg. tools) and thus do not need
to be modules. Modules are found by the Zephyr build system either via west itself , or via the
ZEPHYR_MODULES CMake variable.

The contents of this page only apply to modules, and not to west projects in general (unless they
are a module themselves).

2.10.2 Module Repositories

• All modules included in the default manifest shall be hosted in repositories under the
zephyrproject-rtos GitHub organization.

• The module repository codebase shall include a module.yml file in a zephyr/ folder at the
root of the repository.

• Module repository names should follow the convention of using lowercase letters and
dashes instead of underscores. This rule will apply to all new module repositories, except
for repositories that are directly tracking external projects (hosted in Git repositories); such
modules may be named as their external project counterparts.

Note

Existing module repositories that do not conform to the above convention do not need
to be renamed to comply with the above convention.

• Module repositories names should be explicitly set in the zephyr/module.yml file.

• Modules should use “zephyr” as the default name for the repository main branch. Branches
for specific purposes, for example, a module branch for an LTS Zephyr version, shall have
names starting with the ‘zephyr_’ prefix.

• If the module has an external (upstream) project repository, the module repository should
preserve the upstream repository folder structure.
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Note

It is not required in module repositories to maintain a ‘master’ branch mirroring the
master branch of the external repository. It is not recommended as this may generate
confusion around the module’s main branch, which should be ‘zephyr’.

• Modules should expose all provided header files with an include pathname beginning
with the module-name. (E.g., mcuboot should expose its bootutil/bootutil.h as “mcu-
boot/bootutil/bootutil.h”.)

Synchronizing with upstream

It is preferred to synchronize a module repository with the latest stable release of the corre-
sponding external project. It is permitted, however, to update a Zephyr module repository with
the latest development branch tip, if this is required to get important updates in the module code-
base. When synchronizing a module with upstream it is mandatory to document the rationale
for performing the particular update.

Requirements for allowed practices Changes to the main branch of a module repository, in-
cluding synchronization with upstream code base, may only be applied via pull requests. These
pull requests shall be verifiable by Zephyr CI and mergeable (e.g. with the Rebase and merge,
or Create a merge commit option using Github UI). This ensures that the incoming changes are
always reviewable, and the downstream module repository history is incremental (that is, ex-
isting commits, tags, etc. are always preserved). This policy also allows to run Zephyr CI, git lint,
identity, and license checks directly on the set of changes that are to be brought into the module
repository.

Note

Force-pushing to a module’s main branch is not allowed.

Allowed practices The following practices conform to the above requirements and should be
followed in all modules repositories. It is up to the module code owner to select the preferred
synchronization practice, however, it is required that the selected practice is consistently fol-
lowed in the respective module repository.

Updatingmodules with a diff from upstream: Upstream changes brought as a single snapshot
commit (manual diff) in a pull request against the module’s main branch, which may be merged
using the Rebase & merge operation. This approach is simple and should be applicable to all
modules with the downside of suppressing the upstream history in the module repository.

Note

The above practice is the only allowed practice in modules where the external
project is not hosted in an upstream Git repository.

The commit message is expected to identify the upstream project URL, the version to which the
module is updated (upstream version, tag, commit SHA, if applicable, etc.), and the reason for
the doing the update.

Updating modules by merging the upstream branch: Upstream changes brought in by per-
forming a Git merge of the intended upstream branch (e.g. main branch, latest release branch,
etc.) submitting the result in pull request against the module main branch, and merging the pull
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request using the Create a merge commit operation. This approach is applicable to modules with
an upstream project Git repository. The main advantages of this approach is that the upstream
repository history (that is, the original commit SHAs) is preserved in the module repository. The
downside of this approach is that two additional merge commits are generated in the down-
stream main branch.

2.10.3 Contributing to Zephyr modules

Individual Roles & Responsibilities

To facilitate management of Zephyr module repositories, the following individual roles are de-
fined.

Administrator: Each Zephyr module shall have an administrator who is responsible for man-
aging access to the module repository, for example, for adding individuals as Collaborators in
the repository at the request of the module owner. Module administrators are members of the
Administrators team, that is a group of project members with admin rights to module GitHub
repositories.

Module owner: Each module shall have a module code owner. Module owners will have the
overall responsibility of the contents of a Zephyr module repository. In particular, a module
owner will:

• coordinate code reviewing in the module repository

• be the default assignee in pull-requests against the repository’s main branch

• request additional collaborators to be added to the repository, as they see fit

• regularly synchronize the module repository with its upstream counterpart following the
policies described in Synchronizing with upstream

• be aware of security vulnerability issues in the external project and update the module
repository to include security fixes, as soon as the fixes are available in the upstream code
base

• list any known security vulnerability issues, present in the module codebase, in Zephyr
release notes.

Note

Module owners are not required to be Zephyr Maintainers.

Merger: The Zephyr Release Engineering team has the right and the responsibility to merge
approved pull requests in the main branch of a module repository.

Maintaining the module codebase

Updates in the zephyr main tree, for example, in public Zephyr APIs, may require patching a
module’s codebase. The responsibility for keeping the module codebase up to date is shared
between the contributor of such updates in Zephyr and the module owner. In particular:

• the contributor of the original changes in Zephyr is required to submit the corresponding
changes that are required in module repositories, to ensure that Zephyr CI on the pull re-
quest with the original changes, as well as the module integration testing are successful.

• the module owner has the overall responsibility for synchronizing and testing the module
codebase with the zephyr main tree. This includes occasional advanced testing of the mod-
ule’s codebase in addition to the testing performed by Zephyr’s CI. The module owner is
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required to fix issues in the module’s codebase that have not been caught by Zephyr pull
request CI runs.

Contributing changes to modules

Submitting and merging changes directly to a module’s codebase, that is, before they have been
merged in the corresponding external project repository, should be limited to:

• changes required due to updates in the zephyr main tree

• urgent changes that should not wait to be merged in the external project first, such as fixes
to security vulnerabilities.

Non-trivial changes to a module’s codebase, including changes in the module design or function-
ality should be discouraged, if the module has an upstream project repository. In that case, such
changes shall be submitted to the upstream project, directly.

Submitting changes to modules describes in detail the process of contributing changes to module
repositories.

Contribution guidelines Contributing to Zephyr modules shall follow the generic project Con-
tribution guidelines.

Pull Requests: may be merged with minimum of 2 approvals, including an approval by the
PR assignee. In addition to this, pull requests in module repositories may only be merged if
the introduced changes are verified with Zephyr CI tools, as described in more detail in other
sections on this page.

The merging of pull requests in the main branch of a module repository must be coupled with
the corresponding manifest file update in the zephyr main tree.

Issue Reporting: GitHub issues are intentionally disabled in module repositories, in favor of a
centralized policy for issue reporting. Tickets concerning, for example, bugs or enhancements in
modules shall be opened in the main zephyr repository. Issues should be appropriately labeled
using GitHub labels corresponding to each module, where applicable.

Note

It is allowed to file bug reports for zephyr modules to track the corresponding up-
stream project bugs in Zephyr. These bug reports shall not affect the Release Qual-
ity Criteria.

2.10.4 Licensing requirements and policies

All source files in a module’s codebase shall include a license header, unless the module reposi-
tory has main license file that covers source files that do not include license headers.

Main license files shall be added in the module’s codebase by Zephyr developers, only if they
exist as part of the external project, and they contain a permissive OSI-compliant license. Main
license files should preferably contain the full license text instead of including an SPDX license
identifier. If multiple main license files are present it shall be made clear which license applies
to each source file in a module’s codebase.

Individual license headers in module source files supersede the main license.

Any new content to be added in a module repository will require to have license coverage.
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Note

Zephyr recommends conveying module licensing via individual license headers
and main license files. This not a hard requirement; should an external project
have its own practice of conveying how licensing applies in the module’s codebase
(for example, by having a single or multiple main license files), this practice may
be accepted by and be referred to in the Zephyr module, as long as licensing re-
quirements, for example OSI compliance, are satisfied.

License policies

When creating a module repository a developer shall:

• import the main license files, if they exist in the external project, and

• document (for example in the module README or .yml file) the default license that covers
the module’s codebase.

License checks License checks (via CI tools) shall be enabled on every pull request that adds
new content in module repositories.

2.10.5 Documentation requirements

All Zephyr module repositories shall include an .rst file documenting:

• the scope and the purpose of the module

• how the module integrates with Zephyr

• the owner of the module repository

• synchronization information with the external project (commit, SHA, version etc.)

• licensing information as described in Licensing requirements and policies.

The file shall be required for the inclusion of the module and the contained information should
be kept up to date.

2.10.6 Testing requirements

All Zephyr modules should provide some level of integration testing, ensuring that the integra-
tion with Zephyr works correctly. Integration tests:

• may be in the form of a minimal set of samples and tests that reside in the zephyr main tree

• should verify basic usage of the module (configuration, functional APIs, etc.) that is inte-
grated with Zephyr.

• shall be built and executed (for example in QEMU) as part of twister runs in pull requests
that introduce changes in module repositories.

Note

New modules, that are candidates for being included in the Zephyr default manifest,
shall provide some level of integration testing.
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Note

Vendor HALs are implicitly tested via Zephyr tests built or executed on target platforms,
so they do not need to provide integration tests.

The purpose of integration testing is not to provide functional verification of the module; this
should be part of the testing framework of the external project.

Certain external projects provide test suites that reside in the upstream testing infrastructure
but are written explicitly for Zephyr. These tests may (but are not required to) be part of the
Zephyr test framework.

2.10.7 Deprecating and removing modules

Modules may be deprecated for reasons including, but not limited to:

• Lack of maintainership in the module

• Licensing changes in the external project

• Codebase becoming obsolete

The module information shall indicate whether a module is deprecated and the build system
shall issue a warning when trying to build Zephyr using a deprecated module.

Deprecated modules may be removed from the Zephyr default manifest after 2 Zephyr releases.

Note

Repositories of removed modules shall remain accessible via their original URL, as
they are required by older Zephyr versions.

2.10.8 Integrate modules in Zephyr build system

The build system variable ZEPHYR_MODULES is a CMake list of absolute paths to the directories
containing Zephyr modules. These modules contain CMakeLists.txt and Kconfig files describ-
ing how to build and configure them, respectively. Module CMakeLists.txt files are added to
the build using CMake’s add_subdirectory() command, and the Kconfig files are included in the
build’s Kconfig menu tree.

If you have west installed, you don’t need to worry about how this variable is defined unless you
are adding a new module. The build system knows how to use west to set ZEPHYR_MODULES. You
can add additional modules to this list by setting the EXTRA_ZEPHYR_MODULES CMake variable or
by adding a EXTRA_ZEPHYR_MODULES line to .zephyrrc (See the section on Environment Variables
for more details). This can be useful if you want to keep the list of modules found with west and
also add your own.

Note

If the module FOO is provided by west but also given with -DEXTRA_ZEPHYR_MODULES=/<path>/
foo then the module given by the command line variable EXTRA_ZEPHYR_MODULES will take
precedence. This allows you to use a custom version of FOO when building and still use other
Zephyr modules provided by west. This can for example be useful for special test purposes.
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If you want to permanently add modules to the zephyr workspace and you are using zephyr as
your manifest repository, you can also add a west manifest file into the submanifests directory.
See submanifests/README.txt for more details.

See Basics for more on west workspaces.

Finally, you can also specify the list of modules yourself in various ways, or not use modules at
all if your application doesn’t need them.

2.10.9 Module yaml file description

A module can be described using a file named zephyr/module.yml. The format of zephyr/
module.yml is described in the following:

Module name

Each Zephyr module is given a name by which it can be referred to in the build system.

The name should be specified in the zephyr/module.yml file. This will ensure the module name
is not changeable through user-defined directory names or west manifest files:

name: <name>

In CMake the location of the Zephyr module can then be referred to using the CMake variable
ZEPHYR_<MODULE_NAME>_MODULE_DIR and the variable ZEPHYR_<MODULE_NAME>_CMAKE_DIR holds
the location of the directory containing the module’s CMakeLists.txt file.

Note

When used for CMake and Kconfig variables, all letters in module names are converted to
uppercase and all non-alphanumeric characters are converted to underscores (_). As exam-
ple, the module foo-bar must be referred to as ZEPHYR_FOO_BAR_MODULE_DIR in CMake and
Kconfig.

Here is an example for the Zephyr module foo:

name: foo

Note

If the name field is not specified then the Zephyr module name will be set to the name of the
module folder. As example, the Zephyr module located in <workspace>/modules/bar will use
bar as its module name if nothing is specified in zephyr/module.yml.

Module integration files (in-module)

Inclusion of build files, CMakeLists.txt and Kconfig, can be described as:

build:
cmake: <cmake-directory>
kconfig: <directory>/Kconfig

The cmake: <cmake-directory> part specifies that <cmake-directory> contains the CMakeLists.
txt to use. The kconfig: <directory>/Kconfig part specifies the Kconfig file to use. Neither is
required: cmake defaults to zephyr, and kconfig defaults to zephyr/Kconfig.
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Here is an example module.yml file referring to CMakeLists.txt and Kconfig files in the root
directory of the module:

build:
cmake: .
kconfig: Kconfig

Sysbuild integration

Sysbuild is the Zephyr build system that allows for building multiple images as part of a single
application, the sysbuild build process can be extended externally with modules as needed, for
example to add custom build steps or add additional targets to a build. Inclusion of sysbuild-
specific build files, CMakeLists.txt and Kconfig, can be described as:

build:
sysbuild-cmake: <cmake-directory>
sysbuild-kconfig: <directory>/Kconfig

The sysbuild-cmake: <cmake-directory> part specifies that <cmake-directory> contains the
CMakeLists.txt to use. The sysbuild-kconfig: <directory>/Kconfigpart specifies the Kconfig
file to use.

Here is an example module.yml file referring to CMakeLists.txt and Kconfig files in the sysbuild
directory of the module:

build:
sysbuild-cmake: sysbuild
sysbuild-kconfig: sysbuild/Kconfig

The module description file zephyr/module.yml can also be used to specify that the build files,
CMakeLists.txt and Kconfig, are located in a Module integration files (external).

Build files located in a MODULE_EXT_ROOT can be described as:

build:
sysbuild-cmake-ext: True
sysbuild-kconfig-ext: True

This allows control of the build inclusion to be described externally to the Zephyr module.

Vulnerability monitoring

The module description file zephyr/module.yml can be used to improve vulnerability monitor-
ing.

If your module needs to track vulnerabilities using an external reference (e.g your module
is forked from another repository), you can use the security section. It contains the field
external-references that contains a list of references that needs to be monitored for your mod-
ule. The supported formats are:

• CPE (Common Platform Enumeration)

• PURL (Package URL)

security:
external-references:
- <module-related-cpe>
- <an-other-module-related-cpe>
- <module-related-purl>

A real life example for mbedTLS module could look like this:
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security:
external-references:
- cpe:2.3:a:arm:mbed_tls:3.5.2:*:*:*:*:*:*:*
- pkg:github/Mbed-TLS/mbedtls@V3.5.2

Note

CPE field must follow the CPE 2.3 schema provided by NVD. PURL field must follow the PURL
specification provided by Github.

Build system integration

When a module has a module.yml file, it will automatically be included into the Zephyr build
system. The path to the module is then accessible through Kconfig and CMake variables.

Zephyr modules In both Kconfig and CMake, the variable ZEPHYR_<MODULE_NAME>_MODULE_DIR
contains the absolute path to the module.

In CMake, ZEPHYR_<MODULE_NAME>_CMAKE_DIR contains the absolute path to the directory con-
taining the CMakeLists.txt file that is included into CMake build system. This variable’s value
is empty if the module.yml file does not specify a CMakeLists.txt.

To read these variables for a Zephyr module named foo:

• In CMake: use ${ZEPHYR_FOO_MODULE_DIR} for the module’s top level directory, and
${ZEPHYR_FOO_CMAKE_DIR} for the directory containing its CMakeLists.txt

• In Kconfig: use $(ZEPHYR_FOO_MODULE_DIR) for the module’s top level directory

Notice how a lowercase module name foo is capitalized to FOO in both CMake and Kconfig.

These variables can also be used to test whether a given module exists. For example, to verify
that foo is the name of a Zephyr module:

if(ZEPHYR_FOO_MODULE_DIR)
# Do something if FOO exists.

endif()

In Kconfig, the variable may be used to find additional files to include. For example, to include
the file some/Kconfig in module foo:

source "$(ZEPHYR_FOO_MODULE_DIR)/some/Kconfig"

During CMake processing of each Zephyr module, the following variables are also available:

• the current module’s name: ${ZEPHYR_CURRENT_MODULE_NAME}
• the current module’s top level directory: ${ZEPHYR_CURRENT_MODULE_DIR}
• the current module’s CMakeLists.txt directory: ${ZEPHYR_CURRENT_CMAKE_DIR}

This removes the need for a Zephyr module to know its own name during CMake processing.
The module can source additional CMake files using these CURRENT variables. For example:

include(${ZEPHYR_CURRENT_MODULE_DIR}/cmake/code.cmake)

It is possible to append values to a Zephyr CMake list variable from the module’s first CMake-
Lists.txt file. To do so, append the value to the list and then set the list in the PARENT_SCOPE
of the CMakeLists.txt file. For example, to append bar to the FOO_LIST variable in the Zephyr
CMakeLists.txt scope:
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list(APPEND FOO_LIST bar)
set(FOO_LIST ${FOO_LIST} PARENT_SCOPE)

An example of a Zephyr list where this is useful is when adding additional directories to the
SYSCALL_INCLUDE_DIRS list.

Sysbuild modules In both Kconfig and CMake, the variable SYSBUILD_CURRENT_MODULE_DIR
contains the absolute path to the sysbuild module. In CMake, SYSBUILD_CURRENT_CMAKE_DIR con-
tains the absolute path to the directory containing the CMakeLists.txt file that is included into
CMake build system. This variable’s value is empty if the module.yml file does not specify a
CMakeLists.txt.

To read these variables for a sysbuild module:

• In CMake: use ${SYSBUILD_CURRENT_MODULE_DIR} for the module’s top level directory, and
${SYSBUILD_CURRENT_CMAKE_DIR} for the directory containing its CMakeLists.txt

• In Kconfig: use $(SYSBUILD_CURRENT_MODULE_DIR) for the module’s top level directory

In Kconfig, the variable may be used to find additional files to include. For example, to include
the file some/Kconfig:

source "$(SYSBUILD_CURRENT_MODULE_DIR)/some/Kconfig"

The module can source additional CMake files using these variables. For example:

include(${SYSBUILD_CURRENT_MODULE_DIR}/cmake/code.cmake)

It is possible to append values to a Zephyr CMake list variable from the module’s first CMake-
Lists.txt file. To do so, append the value to the list and then set the list in the PARENT_SCOPE
of the CMakeLists.txt file. For example, to append bar to the FOO_LIST variable in the Zephyr
CMakeLists.txt scope:

list(APPEND FOO_LIST bar)
set(FOO_LIST ${FOO_LIST} PARENT_SCOPE)

Sysbuild modules hooks Sysbuild provides an infrastructure which allows a sysbuild module
to define a function which will be invoked by sysbuild at a pre-defined point in the CMake flow.

Functions invoked by sysbuild:

• <module-name>_pre_cmake(IMAGES <images>): This function is called for each sysbuild
module before CMake configure is invoked for all images.

• <module-name>_post_cmake(IMAGES <images>): This function is called for each sysbuild
module after CMake configure has completed for all images.

• <module-name>_pre_domains(IMAGES <images>): This function is called for each sysbuild
module before domains yaml is created by sysbuild.

• <module-name>_post_domains(IMAGES <images>): This function is called for each sysbuild
module after domains yaml has been created by sysbuild.

arguments passed from sysbuild to the function defined by a module:

• <images> is the list of Zephyr images that will be created by the build system.

If a module foo want to provide a post CMake configure function, then the module’s sysbuild
CMakeLists.txt file must define function foo_post_cmake().

To facilitate naming of functions, the module name is provided by sysbuild CMake through
the SYSBUILD_CURRENT_MODULE_NAME CMake variable when loading the module’s sysbuild
CMakeLists.txt file.
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Example of how the foo sysbuild module can define foo_post_cmake():

function(${SYSBUILD_CURRENT_MODULE_NAME}_post_cmake)
cmake_parse_arguments(POST_CMAKE "" "" "IMAGES" ${ARGN})

message("Invoking ${CMAKE_CURRENT_FUNCTION}. Images: ${POST_CMAKE_IMAGES}")
endfunction()

Zephyr module dependencies

A Zephyr module may be dependent on other Zephyr modules to be present in order to function
correctly. Or it might be that a given Zephyr module must be processed after another Zephyr
module, due to dependencies of certain CMake targets.

Such a dependency can be described using the depends field.

build:
depends:
- <module>

Here is an example for the Zephyr module foo that is dependent on the Zephyr module bar to be
present in the build system:

name: foo
build:
depends:
- bar

This example will ensure that bar is present when foo is included into the build system, and it
will also ensure that bar is processed before foo.

Module integration files (external)

Module integration files can be located externally to the Zephyr module itself. The MOD-
ULE_EXT_ROOT variable holds a list of roots containing integration files located externally to
Zephyr modules.

Module integration files in Zephyr The Zephyr repository contain CMakeLists.txt and Kcon-
fig build files for certain known Zephyr modules.

Those files are located under

<ZEPHYR_BASE>
└── modules

└── <module_name>
├── CMakeLists.txt
└── Kconfig

Module integration files in a custom location You can create a similar MODULE_EXT_ROOT for
additional modules, and make those modules known to Zephyr build system.

Create a MODULE_EXT_ROOT with the following structure

<MODULE_EXT_ROOT>
└── modules

├── modules.cmake
└── <module_name>

(continues on next page)
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(continued from previous page)
├── CMakeLists.txt
└── Kconfig

and then build your application by specifying -DMODULE_EXT_ROOT parameter to the CMake build
system. The MODULE_EXT_ROOT accepts a CMake list of roots as argument.

A Zephyr module can automatically be added to the MODULE_EXT_ROOT list using the module de-
scription file zephyr/module.yml, see Build settings.

Note

ZEPHYR_BASE is always added as a MODULE_EXT_ROOTwith the lowest priority. This allows you to
overrule any integration files under <ZEPHYR_BASE>/modules/<module_name> with your own
implementation your own MODULE_EXT_ROOT.

The modules.cmake file must contain the logic that specifies the integration files for Zephyr mod-
ules via specifically named CMake variables.

To include a module’s CMake file, set the variable ZEPHYR_<MODULE_NAME>_CMAKE_DIR to the path
containing the CMake file.

To include a module’s Kconfig file, set the variable ZEPHYR_<MODULE_NAME>_KCONFIG to the path
to the Kconfig file.

The following is an example on how to add support the FOO module.

Create the following structure

<MODULE_EXT_ROOT>
└── modules

├── modules.cmake
└── foo

├── CMakeLists.txt
└── Kconfig

and inside the modules.cmake file, add the following content

set(ZEPHYR_FOO_CMAKE_DIR ${CMAKE_CURRENT_LIST_DIR}/foo)
set(ZEPHYR_FOO_KCONFIG ${CMAKE_CURRENT_LIST_DIR}/foo/Kconfig)

Module integration files (zephyr/module.yml) The module description file zephyr/module.
yml can be used to specify that the build files, CMakeLists.txt and Kconfig, are located in a
Module integration files (external).

Build files located in a MODULE_EXT_ROOT can be described as:

build:
cmake-ext: True
kconfig-ext: True

This allows control of the build inclusion to be described externally to the Zephyr module.

The Zephyr repository itself is always added as a Zephyr module ext root.

Build settings

It is possible to specify additional build settings that must be used when including the module
into the build system.
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All root settings are relative to the root of the module.

Build settings supported in the module.yml file are:

• board_root: Contains additional boards that are available to the build system. Additional
boards must be located in a <board_root>/boards folder.

• dts_root: Contains additional dts files related to the architecture/soc families. Additional
dts files must be located in a <dts_root>/dts folder.

• snippet_root: Contains additional snippets that are available for use. These snippets must
be defined in snippet.yml files underneath the <snippet_root>/snippets folder. For ex-
ample, if you have snippet_root: foo, then you should place your module’s snippet.yml
files in <your-module>/foo/snippets or any nested subdirectory.

• soc_root: Contains additional SoCs that are available to the build system. Additional SoCs
must be located in a <soc_root>/soc folder.

• arch_root: Contains additional architectures that are available to the build system. Addi-
tional architectures must be located in a <arch_root>/arch folder.

• module_ext_root: Contains CMakeLists.txt and Kconfig files for Zephyr modules, see also
Module integration files (external).

• sca_root: Contains additional SCA tool implementations available to the build system.
Each tool must be located in <sca_root>/sca/<tool> folder. The folder must contain a
sca.cmake.

Example of a module.yaml file containing additional roots, and the corresponding file system
layout.

build:
settings:
board_root: .
dts_root: .
soc_root: .
arch_root: .
module_ext_root: .

requires the following folder structure:

<zephyr-module-root>
├── arch
├── boards
├── dts
├── modules
└── soc

Twister (Test Runner)

To execute both tests and samples available in modules, the Zephyr test runner (twister) should
be pointed to the directories containing those samples and tests. This can be done by specifying
the path to both samples and tests in the zephyr/module.ymlfile. Additionally, if a module defines
out of tree boards, the module file can point twister to the path where those files are maintained
in the module. For example:

build:
cmake: .

samples:
- samples

tests:
- tests

(continues on next page)

2.10. Modules (External projects) 119



Zephyr Project Documentation, Release 3.7.99

(continued from previous page)
boards:
- boards

Binary Blobs

Zephyr supports fetching and using binary blobs, and their metadata is contained entirely in
zephyr/module.yml. This is because a binary blob must always be associated with a Zephyr mod-
ule, and thus the blob metadata belongs in the module’s description itself.

Binary blobs are fetched using west blobs. If west is not used, they must be downloaded and
verified manually.

The blobs section in zephyr/module.yml consists of a sequence of maps, each of which has the
following entries:

• path: The path to the binary blob, relative to the zephyr/blobs/ folder in the module repos-
itory

• sha256: SHA-256 checksum of the binary blob file

• type: The type of binary blob. Currently limited to img or lib
• version: A version string

• license-path: Path to the license file for this blob, relative to the root of the module repos-
itory

• url: URL that identifies the location the blob will be fetched from, as well as the fetching
scheme to use

• description: Human-readable description of the binary blob

• doc-url: A URL pointing to the location of the official documentation for this blob

Module Inclusion

Using West If west is installed and ZEPHYR_MODULES is not already set, the build system finds
all the modules in your west installation and uses those. It does this by running west list to get
the paths of all the projects in the installation, then filters the results to just those projects which
have the necessary module metadata files.

Each project in the west list output is tested like this:

• If the project contains a file named zephyr/module.yml, then the content of that file will be
used to determine which files should be added to the build, as described in the previous
section.

• Otherwise (i.e. if the project has no zephyr/module.yml), the build system looks for zephyr/
CMakeLists.txt and zephyr/Kconfig files in the project. If both are present, the project is
considered a module, and those files will be added to the build.

• If neither of those checks succeed, the project is not considered a module, and is not added
to ZEPHYR_MODULES.

Without West If you don’t have west installed or don’t want the build system to use it to find
Zephyr modules, you can set ZEPHYR_MODULES yourself using one of the following options. Each
of the directories in the list must contain either a zephyr/module.yml file or the files zephyr/
CMakeLists.txt and Kconfig, as described in the previous section.

1. At the CMake command line, like this:
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cmake -DZEPHYR_MODULES=<path-to-module1>[;<path-to-module2>[...]] ...

2. At the top of your application’s top level CMakeLists.txt, like this:

set(ZEPHYR_MODULES <path-to-module1> <path-to-module2> [...])
find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})

If you choose this option, make sure to set the variable before calling find_package(Zephyr
...), as shown above.

3. In a separate CMake script which is pre-loaded to populate the CMake cache, like this:

# Put this in a file with a name like "zephyr-modules.cmake"
set(ZEPHYR_MODULES <path-to-module1> <path-to-module2>
CACHE STRING "pre-cached modules")

You can tell the build system to use this file by adding -C zephyr-modules.cmake to your
CMake command line.

Not usingmodules If you don’t have west installed and don’t specify ZEPHYR_MODULES yourself,
then no additional modules are added to the build. You will still be able to build any applications
that don’t require code or Kconfig options defined in an external repository.

2.10.10 Submitting changes to modules

When submitting new or making changes to existing modules the main repository Zephyr needs
a reference to the changes to be able to verify the changes. In the main tree this is done using
revisions. For code that is already merged and part of the tree we use the commit hash, a tag, or
a branch name. For pull requests however, we require specifying the pull request number in the
revision field to allow building the zephyr main tree with the changes submitted to the module.

To avoid merging changes to master with pull request information, the pull request should be
marked as DNM (Do Not Merge) or preferably a draft pull request to make sure it is not merged
by mistake and to allow for the module to be merged first and be assigned a permanent commit
hash. Drafts reduce noise by not automatically notifying anyone until marked as “Ready for
review”. Once the module is merged, the revision will need to be changed either by the submitter
or by the maintainer to the commit hash of the module which reflects the changes.

Note that multiple and dependent changes to different modules can be submitted using exactly
the same process. In this case you will change multiple entries of all modules that have a pull
request against them.

Process for submitting a new module

Please follow the process in Submission and review process and obtain the TSC approval to inte-
grate the external source code as a module

If the request is approved, a new repository will created by the project team and initialized with
basic information that would allow submitting code to the module project following the project
contribution guidelines.

If a module is maintained as a fork of another project on Github, the Zephyr module related files
and changes in relation to upstream need to be maintained in a special branch named zephyr.

Maintainers from the Zephyr project will create the repository and initialize it. You will be added
as a collaborator in the new repository. Submit the module content (code) to the new repository
following the guidelines described here, and then add a new entry to the west.yml with the fol-
lowing information:

2.10. Modules (External projects) 121

https://github.com/zephyrproject-rtos/zephyr/blob/main/west.yml


Zephyr Project Documentation, Release 3.7.99

- name: <name of repository>
path: <path to where the repository should be cloned>
revision: <ref pointer to module pull request>

For example, to add my_module to the manifest:

- name: my_module
path: modules/lib/my_module
revision: pull/23/head

Where 23 in the example above indicated the pull request number submitted to the my_module
repository. Once the module changes are reviewed and merged, the revision needs to be changed
to the commit hash from the module repository.

Process for submitting changes to existing modules

1. Submit the changes using a pull request to an existing repository following the contribution
guidelines and expectations.

2. Submit a pull request changing the entry referencing the module into the west.yml of the
main Zephyr tree with the following information:

- name: <name of repository>
path: <path to where the repository should be cloned>
revision: <ref pointer to module pull request>

For example, to add my_module to the manifest:

- name: my_module
path: modules/lib/my_module
revision: pull/23/head

Where 23 in the example above indicated the pull request number submitted to the my_module
repository. Once the module changes are reviewed and merged, the revision needs to be changed
to the commit hash from the module repository.

2.11 West (Zephyr’s meta-tool)

The Zephyr project includes a swiss-army knife command line tool named west1. West is devel-
oped in its own repository.

West’s built-in commands provide a multiple repository management system with features in-
spired by Google’s Repo tool and Git submodules. West is also “pluggable”: you can write your
own west extension commands which add additional features to west. Zephyr uses this to pro-
vide conveniences for building applications, flashing and debugging them, and more.

Like git and docker, the top-level west command takes some common options, a sub-command
to run, and then options and arguments for that sub-command:

west [common-opts] <command> [opts] <args>

Since west v0.8, you can also run west like this:

python3 -m west [common-opts] <command> [opts] <args>

You can run west --help (or west -h for short) to get top-level help for available west commands,
and west <command> -h for detailed help on each command.

1 Zephyr is an English name for the Latin Zephyrus, the ancient Greek god of the west wind.
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2.11.1 Installing west

West is written in Python 3 and distributed through PyPI. Use pip3 to install or upgrade west:

On Linux:

pip3 install --user -U west

On Windows and macOS:

pip3 install -U west

Note

See Python and pip for additional clarification on using the --user switch.

Afterwards, you can run pip3 show -f west for information on where the west binary and
related files were installed.

Once west is installed, you can use it to clone the Zephyr repositories.

Structure

West’s code is distributed via PyPI in a Python package named west. This distribution includes
a launcher executable, which is also named west (or west.exe on Windows).

When west is installed, the launcher is placed by pip3 somewhere in the user’s filesystem (exactly
where depends on the operating system, but should be on the PATH environment variable). This
launcher is the command-line entry point to running both built-in commands like west init,
west update, along with any extensions discovered in the workspace.

In addition to its command-line interface, you can also use west’s Python APIs directly. See west-
apis for details.

Enabling shell completion

West currently supports shell completion in the following shells:

• bash

• zsh

• fish

In order to enable shell completion, you will need to obtain the corresponding completion script
and have it sourced. Using the completion scripts:

bash

One-time setup:

source <(west completion bash)

Permanent setup:

west completion bash > ~/west-completion.bash; echo "source ~/west-completion.bash" >> ~/.
↪→bashrc

zsh

One-time setup:
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source <(west completion zsh)

Permanent setup:

west completion zsh > "${fpath[1]}/_west"

fish

One-time setup:

west completion fish | source

Permanent setup:

west completion fish > $HOME/.config/fish/completions/west.fish

2.11.2 West Release Notes

v1.2.0

Major changes:

• New west grep command for running a “grep tool” in your west workspace’s repositories.
Currently, git grep, ripgrep, and standard grep are supported grep tools.

To run this command to get git grep foo results from all cloned, active repositories, run:

west grep foo

Here are some other examples for running different grep commands with west grep:

git grep --untracked west grep --untracked foo
ripgrep west grep --tool ripgrep foo
grep --recursive west grep --tool grep foo

To switch the default grep tool in your workspace, run the appropriate command in this
table:

ripgrep west config grep.tool ripgrep
grep west config grep.tool grep

For more details, run west help grep.

Other changes:

• The manifest file format now supports a description field in each projects: element. See
Projects for examples.

• west list --format now accepts {description} in the format string, which prints the
project’s description: value.

• west compare now always prints information about The manifest-rev branch.

Bug fixes:

• west init aborts if the destination directory already exists.

API changes:

• west.commands.WestCommand methods check_call() and check_output() now take any
kwargs that can be passed on to the underlying subprocess function.
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• west.commands.WestCommand.run_subprocess(): new wrapper around subprocess.run().
This could not be named run() because WestCommand already had a method by this name.

• west.commands.WestCommand methods dbg(), inf(), wrn(), and err() now all take an end
kwarg, which is passed on to the call to print().

• west.manifest.Project now has a description attribute, which contains the parsed value
of the description: field in the manifest data.

v1.1.0

Major changes:

• west compare: new command that compares the state of the workspace against the mani-
fest.

• Support for a new manifest.project-filter configuration option. See Built-in Configura-
tion Options for details. The west manifest --freeze and west manifest --resolve com-
mands currently cannot be used when this option is set. This restriction can be removed
in a later release.

• Project names which contain comma (,) or whitespace now generate warnings. These
warnings are errors if the new manifest.project-filter configuration option is set. The
warnings may be promoted to errors in a future major version of west.

Other changes:

• west forall now takese a --group argument that can be used to restrict the command to
only run in one or more groups. Run west help forall for details.

• All west commands will now output log messages from west API modules at warning level
or higher. In addition, the --verbose argument to west can be used once to include infor-
mational messages, or twice to include debug messages, from all commands.

Bug fixes:

• Various improvements to error messages, debug logging, and error handling.

API changes:

• west.manifest.Manifest.is_active()now respects the manifest.project-filter config-
uration option’s value.

v1.0.1

Major changes:

• Manifest schema version “1.0” is now available for use in this release. This is identical to
the “0.13” schema version in terms of features, but can be used by applications that do not
wish to use a “0.x” manifest “version:” field. See Version for details on this feature.

Bug fixes:

• West no longer exits with a successful error code when sent an interrupt signal. Instead,
it exits with a platform-specific error code and signals to the calling environment that the
process was interrupted.

v1.0.0

Major changes in this release:

• The west-apis are now declared stable. Any breaking changes will be communicated by a
major version bump from v1.x.y to v2.x.y.
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• West v1.0 no longer works with the Zephyr v1.14 LTS releases. This LTS has long been
obsoleted by Zephyr v2.7 LTS. If you need to use Zephyr v1.14, you must use west v0.14 or
earlier.

• Like the rest of Zephyr, west now requires Python v3.8 or later

• West commands no longer accept abbreviated command line arguments. For example, you
must now specify west update --keep-descendants instead of using an abbreviation like
west update --keep-d. This is part of a change applied to all of Zephyr’s Python scripts’
command-line interfaces. The abbreviations were causing problems in practice when com-
mands were updated to add new options with similar names but different behavior to ex-
isting ones.

Other changes:

• All built-in west functions have stopped using west.log
• west update: new --submodule-init-config option. See commit 9ba92b05 for details.

Bug fixes:

• West extension commands that failed to load properly sometimes dumped stack. This has
been fixed and west now prints a sensible error message in this case.

• west config now fails on malformed configuration option arguments which lack a . in the
option name

API changes:

• The west package now contains the metadata files necessary for some static analyzers (such
as mypy) to auto-detect its type annotations. See commit d9f00e24 for details.

• the deprecated west.build module used for Zephyr v1.14 LTS compatibility was removed

• the deprecated west.cmake module used for Zephyr v1.14 LTS compatibility was removed

• the west.log module is now deprecated. This module uses global state, which can make it
awkward to use it as an API which multiple different python modules may rely on.

• The west-apis-commands module got some new APIs which lay groundwork for a future
change to add a global verbosity control to a command’s output, and work to remove global
state from the west package’s API:

– New west.commands.WestCommand.__init__() keyword argument: verbosity
– New west.commands.WestCommand property: color_ui
– New west.commands.WestCommandmethods, which should be used to print output from

extension commands instead of writing directly to sys.stdout or sys.stderr: inf(),
wrn(), err(), die(), banner(), small_banner()

– New west.commands.VERBOSITY enum

v0.14.0

Bug fixes:

• West commands that were run with a bad local configuration file dumped stack in a con-
fusing way. This has been fixed and west now prints a sensible error message in this case.

• A bug in the way west looks for the zephyr repository was fixed. The bug itself usually
appeared when running an extension command like west build in a new workspace for the
first time; this used to fail (just for the first time, not on subsequent command invocations)
unless you ran the command in the workspace’s top level directory.

• West now prints sensible error messages when the user lacks permission to open the man-
ifest file instead of dumping stack traces.
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API changes:

• The west.manifest.MalformedConfig exception type has been moved to the west.
configuration module

• The west.manifest.MalformedConfig exception type has been moved to the
west.configuration module

• The west.configuration.Configuration class now raises MalformedConfig instead of Run-
timeError in some cases

v0.13.1

Bug fix:

• When calling west.manifest.Manifest.from_file() when outside of a workspace, west again
falls back on the ZEPHYR_BASE environment variable to locate the workspace.

v0.13.0

New features:

• You can now associate arbitrary user data with the manifest repository itself in the mani-
fest: self: userdata: value, like so:

manifest:
self:

userdata: <any YAML value can go here>

Bug fixes:

• The path to the manifest repository reported by west could be incorrect in certain cir-
cumstances detailed in [issue #572](https://github.com/zephyrproject-rtos/west/issues/572).
This has been fixed as part of a larger overhaul of path handling support in the west.
manifest API module.

• The west.Manifest.ManifestProject.__repr__ return value was fixed

API changes:

• west.configuration.Configuration: new object-oriented interface to the current config-
uration. This reflects the system, global, and workspace-local configuration values, and
allows you to read, write, and delete configuration options from any or all of these loca-
tions.

• west.commands.WestCommand:

– config: new attribute, returns a Configuration object or aborts the program if none is
set. This is always usable from within extension command do_run() implementations.

– has_config: new boolean attribute, which is True if and only if reading self.config
will abort the program.

• The path handling in the west.manifest package has been overhauled in a backwards-
incompatible way. For more details, see commit [56cfe8d1d1](https://github.com/
zephyrproject-rtos/west/commit/56cfe8d1d1f3c9b45de3e793c738acd62db52aca).

• west.manifest.Manifest.validate(): this now returns the validated data as a Python dict.
This can be useful if the value passed to this function was a str, and the dict is desired.

• west.manifest.Manifest: new:

– path attributes abspath, posixpath, relative_path, yaml_path, repo_path,
repo_posixpath
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– userdata attribute, which contains the parsed value from manifest: self: user-
data:, or is None

– from_topdir() factory method

• west.manifest.ManifestProject: new userdata attribute, which also contains the parsed
value from manifest: self: userdata:, or is None

• west.manifest.ManifestImportFailed: the constructor can now take any value; this can
be used to reflect failed imports from a map or other compound value.

• Deprecated configuration APIs:

The following APIs are now deprecated in favor of using a Configuration object. Usually
this will be done via self.config from a WestCommand instance, but this can be done directly
by instantiating a Configuration object for other usages.

– west.configuration.config
– west.configuration.read_config
– west.configuration.update_config
– west.configuration.delete_config

v0.12.0

New features:

• West now works on the MSYS2 platform.

• West manifest files can now contain arbitrary user data associated with each project. See
Repository user data for details.

Bug fixes:

• The west list command’s {sha} format key has been fixed for the manifest repository; it
now prints N/A (“not applicable”) as expected.

API changes:

• The west.manifest.Project.userdata attribute was added to support project user data.

v0.11.1

New features:

• west status now only prints output for projects which have a nonempty status.

Bug fixes:

• The manifest file parser was incorrectly allowing project names which contain the path
separator characters / and \. These invalid characters are now rejected.

Note: if you need to place a project within a subdirectory of the workspace topdir, use the
path: key. If you need to customize a project’s fetch URL relative to its remote url-base:,
use repo-path:. See Projects for examples.

• The changes made in west v0.10.1 to the west init --manifest-rev option which selected
the default branch name were leaving the manifest repository in a detached HEAD state.
This has been fixed by using git clone internally instead of git init and git fetch. See
issue #522 for details.

• The WEST_CONFIG_LOCAL environment variable now correctly overrides the default location,
<workspace topdir>/.west/config.
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• west update --fetch=smart (smart is the default) now correctly skips fetches for project
revisions which are lightweight tags (it already worked correctly for annotated tags; only
lightweight tags were unnecessarily fetched).

Other changes:

• The fix for issue #522 mentioned above introduces a new restriction. The west init
--manifest-rev option value, if given, must now be either a branch or a tag. In partic-
ular, “pseudo-branches” like GitHub’s pull/1234/head references which could previously
be used to fetch a pull request can no longer be passed to --manifest-rev. Users must now
fetch and check out such revisions manually after running west init.

API changes:

• west.manifest.Manifest.get_projects() avoids incorrect results in some edge cases de-
scribed in issue #523.

• west.manifest.Project.sha() now works correctly for tag revisions. (This applies to both
lightweight and annotated tags.)

v0.11.0

New features:

• west update now supports --narrow, --name-cache, and --path-cache options. These can
be influenced by the update.narrow, update.name-cache, and update.path-cache Configu-
ration options. These can be used to optimize the speed of the update.

• west update now supports a --fetch-opt option that will be passed to the git fetch com-
mand used to fetch remote revisions when updating each project.

Bug fixes:

• west update now synchronizes Git submodules in projects by default. This avoids issues if
the URL changes in the manifest file from when the submodule was first initialized. This
behavior can be disabled by setting the update.sync-submodules configuration option to
false.

Other changes:

• the west-apis-manifest module has fixed docstrings for the Project class

v0.10.1

New features:

• The west init command’s --manifest-rev (--mr) option no longer defaults to master. In-
stead, the command will query the repository for its default branch name and use that
instead. This allows users to move from master to main without breaking scripts that do
not provide this option.

v0.10.0

New features:

• The name key in a project’s submodules list is now optional.

Bug fixes:

• West now checks that the manifest schema version is one of the explicitly allowed values
documented in Version. The old behavior was just to check that the schema version was
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newer than the west version where the manifest: version: key was introduced. This
incorrectly allowed invalid schema versions, like 0.8.2.

Other changes:

• A manifest file’s group-filter is now propagated through an import. This is a change from
how west v0.9.x handled this. In west v0.9.x, only the top level manifest file’s group-filter
had any effect; the group filter lists from any imported manifests were ignored.

Starting with west v0.10.0, the group filter lists from imported manifests are also imported.
For details, see Group Filters and Imports.

The new behavior will take effect if manifest: version: is not given or is at least 0.10. The
old behavior is still available in the top level manifest file only with an explicit manifest:
version: 0.9. See Version for more information on schema versions.

See west pull request #482 for the motivation for this change and additional context.

v0.9.1

Bug fixes:

• Commands like west manifest --resolve now correctly include group and group filter
information.

Other changes:

• West now warns if you combine importwith group-filter. Semantics for this combination
have changed starting with v0.10.x. See the v0.10.0 release notes above for more informa-
tion.

v0.9.0

Warning

The west config fix described below comes at a cost: any comments or other manual edits in
configuration files will be removed when setting a configuration option via that command or
the west.configuration API.

Warning

Combining the group-filter feature introduced in this release with manifest imports is dis-
couraged. The resulting behavior has changed in west v0.10.

New features:

• West manifests now support Git Submodules in Projects. This allows you to clone Git sub-
modules into a west project repository in addition to the project repository itself.

• West manifests now support Project Groups. Project groups can be enabled and disabled
to determine what projects are “active”, and therefore will be acted upon by the following
commands: west update, west list, west diff, west status, west forall.

• west update no longer updates inactive projects by default. It now supports a
--group-filter option which allows for one-time modifications to the set of enabled and
disabled project groups.
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• Running west list, west diff, west status, or west forall with no arguments does
not print information for inactive projects by default. If the user specifies a list of projects
explicitly at the command line, output for them is included regardless of whether they are
active.

These commands also now support --all arguments to include all projects, even inactive
ones.

• west list now supports a {groups} format string key in its --format argument.

Bug fixes:

• The west config command and west.configuration API did not correctly store some con-
figuration values, such as strings which contain commas. This has been fixed; see commit
36f3f91e for details.

• A manifest file with an empty manifest: self: path: value is invalid, but west used to
let it pass silently. West now rejects such manifests.

• A bug affecting the behavior of the west init -l . command was fixed; see issue #435.

API changes:

• added west.manifest.Manifest.is_active()
• added west.manifest.Manifest.group_filter
• added submodules attribute to west.manifest.Project, which has newly added type west.
manifest.Submodule

Other changes:

• The Manifest Imports feature now supports the terms allowlist and blocklist instead of
whitelist and blacklist, respectively.

The old terms are still supported for compatibility, but the documentation has been updated
to use the new ones exclusively.

v0.8.0

This is a feature release which changes the manifest schema by adding support for a
path-prefix: key in an import: mapping, along with some other features and fixes.

• Manifest import mappings now support a path-prefix: key, which places the project and
its imported repositories in a subdirectory of the workspace. See Example 3.4: Import into
a subdirectory for an example.

• The west command line application can now also be run using python3 -m west. This
makes it easier to run west under a particular Python interpreter without modifying the
PATH environment variable.

• west manifest –path prints the absolute path to west.yml

• west init now supports an --mf foo.yml option, which initializes the workspace using
foo.yml instead of west.yml.

• west list now prints the manifest repository’s path using the manifest.path configuration
option, which may differ from the self: path: value in the manifest data. The old behavior
is still available, but requires passing a new --manifest-path-from-yaml option.

• Various Python API changes; see west-apis for details.

v0.7.3

This is a bugfix release.
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• Fix an error where a failed import could leave the workspace in an unusable state (see [PR
#415](https://github.com/zephyrproject-rtos/west/pull/415) for details)

v0.7.2

This is a bugfix and minor feature release.

• Filter out duplicate extension commands brought in by manifest imports

• Fix west.Manifest.get_projects() when finding the manifest repository by path

v0.7.1

This is a bugfix and minor feature release.

• west update --stats now prints timing for operations which invoke a subprocess, time
spent in west’s Python process for each project, and total time updating each project.

• west topdir always prints a POSIX style path

• minor console output changes

v0.7.0

The main user-visible feature in west 0.7 is the Manifest Imports feature. This allows users to
load west manifest data from multiple different files, resolving the results into a single logical
manifest.

Additional user-visible changes:

• The idea of a “west installation” has been renamed to “west workspace” in this documenta-
tion and in the west API documentation. The new term seems to be easier for most people
to work with than the old one.

• West manifests now support a schema version.

• The “west config” command can now be run outside of a workspace, e.g. to run west config
--global section.key value to set a configuration option’s value globally.

• There is a new west topdir command, which prints the root directory of the current west
workspace.

• The west -vv init command now prints the git operations being performed, and their
results.

• The restriction that no project can be named “manifest” is now enforced; the name “man-
ifest” is reserved for the manifest repository, and is usable as such in commands like west
list manifest, instead of west list path-to-manifest-repository being the only way to
say that

• It’s no longer an error if there is no project named “zephyr”. This is part of an effort to
make west generally usable for non-Zephyr use cases.

• Various bug fixes.

The developer-visible changes to the west-apis are:

• west.build and west.cmake: deprecated; this is Zephyr-specific functionality and should
never have been part of west. Since Zephyr v1.14 LTS relies on it, it will continue to be
included in the distribution, but will be removed when that version of Zephyr is obsoleted.

• west.commands:

– WestCommand.requires_installation: deprecated; use requires_workspace instead
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– WestCommand.requires_workspace: new

– WestCommand.has_manifest: new

– WestCommand.manifest: this is now settable

• west.configuration: callers can now identify the workspace directory when reading and
writing configuration files

• west.log:

– msg(): new

• west.manifest:

– The module now uses the standard logging module instead of west.log

– QUAL_REFS_WEST: new

– SCHEMA_VERSION: new

– Defaults: removed

– Manifest.as_dict(): new

– Manifest.as_frozen_yaml(): new

– Manifest.as_yaml(): new

– Manifest.from_file() and from_data(): these factory methods are more flexible to use
and less reliant on global state

– Manifest.validate(): new

– ManifestImportFailed: new

– ManifestProject: semi-deprecated and will likely be removed later.

– Project: the constructor now takes a topdir argument

– Project.format() and its callers are removed. Use f-strings instead.

– Project.name_and_path: new

– Project.remote_name: new

– Project.sha() now captures stderr

– Remote: removed

West now requires Python 3.6 or later. Additionally, some features may rely on Python dictio-
naries being insertion-ordered; this is only an implementation detail in CPython 3.6, but it is part
of the language specification as of Python 3.7.

v0.6.3

This point release fixes an error in the behavior of the deprecated west.cmake module.

v0.6.2

This point release fixes an error in the behavior of west update --fetch=smart, introduced in
v0.6.1.

All v0.6.1 users must upgrade.
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v0.6.1

Warning

Do not use this point release. Make sure to use v0.6.2 instead.

The user-visible features in this point release are:

• The west update command has a new --fetch command line flag and update.fetch config-
uration option. The default value, “smart”, skips fetching SHAs and tags which are available
locally.

• Better and more consistent error-handling in the west diff, west status, west forall,
and west update commands. Each of these commands can operate on multiple projects;
if a subprocess related to one project fails, these commands now continue to operate on
the rest of the projects. All of them also now report a nonzero error code from the west
process if any of these subprocesses fails (this was previously not true of west forall in
particular).

• The west manifest command also handles errors better.

• The west list command now works even when the projects are not cloned, as long as its
format string only requires information which can be read from the manifest file. It still
fails if the format string requires data stored in the project repository, e.g. if it includes the
{sha} format string key.

• Commands and options which operate on git revisions now accept abbreviated SHAs. For
example, west init --mr SHA_PREFIX now works. Previously, the --mr argument needed
to be the entire 40 character SHA if it wasn’t a branch or a tag.

The developer-visible changes to the west-apis are:

• west.log.banner(): new

• west.log.small_banner(): new

• west.manifest.Manifest.get_projects(): new

• west.manifest.Project.is_cloned(): new

• west.commands.WestCommand instances can now access the parsed Manifest object via a
new self.manifest property during the do_run() call. If read, it returns the Manifest object
or aborts the command if it could not be parsed.

• west.manifest.Project.git() now has a capture_stderr kwarg

v0.6.0

• No separate bootstrapper

In west v0.5.x, the program was split into two components, a bootstrapper and a per-
installation clone. See Multiple Repository Management in the v1.14 documentation for
more details.

This is similar to how Google’s Repo tool works, and lets west iterate quickly at first. It
caused confusion, however, and west is now stable enough to be distributed entirely as one
piece via PyPI.

From v0.6.x onwards, all of the core west commands and helper classes are part of the west
package distributed via PyPI. This eliminates complexity and makes it possible to import
west modules from anywhere in the system, not just extension commands.
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• The selfupdate command still exists for backwards compatibility, but now simply exits
after printing an error message.

• Manifest syntax changes

– A west manifest file’s projects elements can now specify their fetch URLs directly, like
so:

manifest:
projects:
- name: example-project-name
url: https://github.com/example/example-project

Project elements with url attributes set in this way may not also have remote attributes.

– Project names must be unique: this restriction is needed to support future work, but
was not possible in west v0.5.x because distinct projects may have URLs with the same
final pathname component, like so:

manifest:
remotes:
- name: remote-1
url-base: https://github.com/remote-1

- name: remote-2
url-base: https://github.com/remote-2

projects:
- name: project
remote: remote-1
path: remote-1-project

- name: project
remote: remote-2
path: remote-2-project

These manifests can now be written with projects that use url instead of remote, like
so:

manifest:
projects:
- name: remote-1-project
url: https://github.com/remote-1/project

- name: remote-2-project
url: https://github.com/remote-2/project

• The west list command now supports a {sha} format string key

• The default format string for west list was changed to "{name:12} {path:28} {revi-
sion:40} {url}".

• The command west manifest --validate can now be run to load and validate the current
manifest file, among other error-handling fixes related to manifest parsing.

• Incompatible API changes were made to west’s APIs. Further changes are expected until
API stability is declared in west v1.0.

– The west.manifest.Project constructor’s remote and defaults positional arguments
are now kwargs. A new url kwarg was also added; if given, the Project URL is set to
that value, and the remote kwarg is ignored.

– west.manifest.MANIFEST_SECTIONS was removed. There is only one section now,
namely manifest. The sections kwargs in the west.manifest.Manifest factory meth-
ods and constructor were also removed.

– The west.manifest.SpecialProject class was removed. Use west.manifest.
ManifestProject instead.
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v0.5.x

West v0.5.x is the first version used widely by the Zephyr Project as part of its v1.14 Long-Term
Support (LTS) release. The west v0.5.x documentation is available as part of the Zephyr’s v1.14
documentation.

West’s main features in v0.5.x are:

• Multiple repository management using Git repositories, including self-update of west itself

• Hierarchical configuration files

• Extension commands

Versions Before v0.5.x

Tags in the west repository before v0.5.x are prototypes which are of historical interest only.

2.11.3 Troubleshooting West

This page covers common issues with west and how to solve them.

west update fetching failures

One good way to troubleshoot fetching issues is to run west update in verbose mode, like this:

west -v update

The output includes Git commands run by west and their outputs. Look for something like this:

=== updating your_project (path/to/your/project):
west.manifest: your_project: checking if cloned
[...other west.manifest logs...]
--- your_project: fetching, need revision SOME_SHA
west.manifest: running 'git fetch ... https://github.com/your-username/your_project ...' in␣
↪→/some/directory

The git fetch command example in the last line above is what needs to succeed.

One strategy is to go to /path/to/your/project, copy/paste and run the entire git fetch com-
mand, then debug from there using the documentation for your credential storage helper.

If you’re behind a corporate firewall and may have proxy or other issues, curl -v FETCH_URL
(for HTTPS URLs) or ssh -v FETCH_URL (for SSH URLs) may be helpful.

If you can get the git fetch command to run successfully without prompting for a password
when you run it directly, you will be able to run west update without entering your password
in that same shell.

“‘west’ is not recognized as an internal or external command, operable program or batch
file.’

On Windows, this means that either west is not installed, or your PATH environment variable
does not contain the directory where pip installed west.exe.

First, make sure you’ve installed west; see Installing west. Then try running west from a new
cmd.exe window. If that still doesn’t work, keep reading.
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You need to find the directory containing west.exe, then add it to your PATH. (This PATH change
should have been done for you when you installed Python and pip, so ordinarily you should not
need to follow these steps.)

Run this command in cmd.exe:

pip3 show west

Then:

1. Look for a line in the output that looks like Location: C:\foo\python\python38\lib\
site-packages. The exact location will be different on your computer.

2. Look for a file named west.exe in the scripts directory C:\foo\python\python38\scripts.

Important

Notice how lib\site-packages in the pip3 show output was changed to scripts!

3. If you see west.exe in the scripts directory, add the full path to scripts to your PATH using
a command like this:

setx PATH "%PATH%;C:\foo\python\python38\scripts"

Do not just copy/paste this command. The scripts directory location will be different on
your system.

4. Close your cmd.exe window and open a new one. You should be able to run west.

“Error: unexpected keyword argument ‘requires_workspace’”

This error occurs on some Linux distributions after upgrading to west 0.7.0 or later from 0.6.x.
For example:

$ west update
[... stack trace ...]
TypeError: __init__() got an unexpected keyword argument 'requires_workspace'

This appears to be a problem with the distribution’s pip; see this comment in west issue 373 for
details. Some versions of Ubuntu and Linux Mint are known to have this problem. Some users
report issues on Fedora as well.

Neither macOS nor Windows users have reported this issue. There have been no reports of this
issue on other Linux distributions, like Arch Linux, either.

Workaround 1: remove the old version, then upgrade:

$ pip3 show west | grep Location: | cut -f 2 -d ' '
/home/foo/.local/lib/python3.6/site-packages
$ rm -r /home/foo/.local/lib/python3.6/site-packages/west
$ pip3 install --user west==0.7.0

Workaround 2: install west in a Python virtual environment

One option is to use the venv module that’s part of the Python 3 standard library. Some distri-
butions remove this module from their base Python 3 packages, so you may need to do some
additional work to get it installed on your system.
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“invalid choice: ‘build’” (or ‘flash’, etc.)

If you see an unexpected error like this when trying to run a Zephyr extension command (like
west flash, west build, etc.):

$ west build [...]
west: error: argument <command>: invalid choice: 'build' (choose from 'init', [...])

$ west flash [...]
west: error: argument <command>: invalid choice: 'flash' (choose from 'init', [...])

The most likely cause is that you’re running the command outside of a west workspace. West
needs to know where your workspace is to find Extensions.

To fix this, you have two choices:

1. Run the command from inside a workspace (e.g. the zephyrproject directory you created
when you got started).

For example, create your build directory inside the workspace, or run west flash
--build-dir YOUR_BUILD_DIR from inside the workspace.

2. Set the ZEPHYR_BASE environment variable and re-run the west extension command. If set,
west will use ZEPHYR_BASE to find your workspace.

If you’re unsure whether a command is built-in or an extension, run west help from inside your
workspace. The output prints extension commands separately, and looks like this for mainline
Zephyr:

$ west help

built-in commands for managing git repositories:
init: create a west workspace
[...]

other built-in commands:
help: get help for west or a command
[...]

extension commands from project manifest (path: zephyr):
build: compile a Zephyr application
flash: flash and run a binary on a board
[...]

“invalid choice: ‘post-init’”

If you see this error when running west init:

west: error: argument <command>: invalid choice: 'post-init'
(choose from 'init', 'update', 'list', 'manifest', 'diff',
'status', 'forall', 'config', 'selfupdate', 'help')

Then you have an old version of west installed, and are trying to use it in a workspace that
requires a more recent version.

The easiest way to resolve this issue is to upgrade west and retry as follows:

1. Install the latest west with the -U option for pip3 install as shown in Installing west.

2. Back up any contents of zephyrproject/.west/config that you want to save. (If you don’t
have any configuration options set, it’s safe to skip this step.)

3. Completely remove the zephyrproject/.west directory (if you don’t, you will get the “al-
ready in a workspace” error message discussed next).
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4. Run west init again.

“already in an installation”

You may see this error when running west init with west 0.6:

FATAL ERROR: already in an installation (<some directory>), aborting

If this is unexpected and you’re really trying to create a new west workspace, then it’s likely that
west is using the ZEPHYR_BASE environment variable to locate a workspace elsewhere on your
system.

This is intentional; it allows you to put your Zephyr applications in any directory and still use
west to build, flash, and debug them, for example.

To resolve this issue, unset ZEPHYR_BASE and try again.

2.11.4 Basics

This page introduces west’s basic concepts and provides references to further reading.

West’s built-in commands allow you to work with projects (Git repositories) under a common
workspace directory.

West works in the following manner: the west init command creates the west workspace, and
clones the manifest repo, while the west update command initially clones, and later updates, the
projects listed in the manifest in the workspace.

Example workspace

If you’ve followed the Getting Started Guide, your local west workspace, which in this case is the
folder named zephyrproject as well as all its subfolders, looks like this:

zephyrproject/ # west topdir
├── .west/ # marks the location of the topdir
│ └── config # per-workspace local configuration file
│
│ # The manifest repository, never modified by west after creation:
├── zephyr/ # .git/ repo
│ ├── west.yml # manifest file
│ └── [... other files ...]
│
│ # Projects managed by west:
├── modules/
│ └── lib/
│ └── zcbor/ # .git/ project
├── net-tools/ # .git/ project
└── [ ... other projects ...]

Workspace concepts

Here are the basic concepts you should understand about this structure. Additional details are
in Workspaces.

topdir
Above, zephyrproject is the name of the workspace’s top level directory, or topdir. (The

2.11. West (Zephyr’s meta-tool) 139



Zephyr Project Documentation, Release 3.7.99

name zephyrproject is just an example – it could be anything, like z, my-zephyr-workspace,
etc.)

You’ll typically create the topdir and a few other files and directories using west init.

.west directory
The topdir contains the .west directory. When west needs to find the topdir, it searches for
.west, and uses its parent directory. The search starts from the current working directory
(and starts again from the location in the ZEPHYR_BASE environment variable as a fallback
if that fails).

configuration file
The file .west/config is the workspace’s local configuration file.

manifest repository
Every west workspace contains exactly one manifest repository, which is a Git repository
containing a manifest file. The location of the manifest repository is given by the mani-
fest.path configuration option in the local configuration file.

For upstream Zephyr, zephyr is the manifest repository, but you can configure west to use
any Git repository in the workspace as the manifest repository. The only requirement is
that it contains a valid manifest file. See Topologies supported for information on other
options, and West Manifests for details on the manifest file format.

manifest file
The manifest file is a YAML file that defines projects, which are the additional Git reposito-
ries in the workspace managed by west. The manifest file is named west.yml by default;
this can be overridden using the manifest.file local configuration option.

You use thewest update command to update the workspace’s projects based on the contents
of the manifest file.

projects
Projects are Git repositories managed by west. Projects are defined in the manifest file and
can be located anywhere inside the workspace. In the above example workspace, zcbor
and net-tools are projects.

By default, the Zephyr build system uses west to get the locations of all the projects in the
workspace, so any code they contain can be used as Modules (External projects). Note how-
ever that modules and projects are conceptually different.

extensions
Any repository known to west (either the manifest repository or any project repository)
can define Extensions. Extensions are extra west commands you can run when using that
workspace.

The zephyr repository uses this feature to provide Zephyr-specific commands like west
build. Defining these as extensions keeps west’s core agnostic to the specifics of any
workspace’s Zephyr version, etc.

ignored files
A workspace can contain additional Git repositories or other files and directories not man-
aged by west. West basically ignores anything in the workspace except .west, the manifest
repository, and the projects specified in the manifest file.

west init and west update

The two most important workspace-related commands are west init and west update.

west init basics This command creates a west workspace.
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Important

West doesn’t change your manifest repository contents after west init is run. Use ordinary
Git commands to pull new versions, etc.

You will typically run it once, like this:

west init -m https://github.com/zephyrproject-rtos/zephyr --mr v2.5.0 zephyrproject

This will:

1. Create the topdir, zephyrproject, along with .west and .west/config inside it

2. Clone the manifest repository from https://github.com/zephyrproject-rtos/zephyr, placing
it into zephyrproject/zephyr

3. Check out the v2.5.0 git tag in your local zephyr clone

4. Set manifest.path to zephyr in .west/config
5. Set manifest.file to west.yml

Your workspace is now almost ready to use; you just need to run west update to clone the rest
of the projects into the workspace to finish.

For more details, see west init.

west update basics This command makes sure your workspace contains Git repositories
matching the projects in the manifest file.

Important

Whenever you check out a different revision in your manifest repository, you should run
west update to make sure your workspace contains the project repositories the new revision
expects.

The west update command reads the manifest file’s contents by:

1. Finding the topdir. In the west init example above, that means finding zephyrproject.

2. Loading .west/config in the topdir to read the manifest.path (e.g. zephyr) and manifest.
file (e.g. west.yml) options.

3. Loading the manifest file given by these options (e.g. zephyrproject/zephyr/west.yml).

It then uses the manifest file to decide where missing projects should be placed within the
workspace, what URLs to clone them from, and what Git revisions should be checked out lo-
cally. Project repositories which already exist are updated in place by fetching and checking out
their respective Git revisions in the manifest file.

For more details, see west update.

Other built-in commands

See Built-in commands.
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Zephyr Extensions

See the following pages for information on Zephyr’s extension commands:

• Building, Flashing and Debugging

• Signing Binaries

• Additional Zephyr extension commands

• Enabling shell completion

Troubleshooting

See Troubleshooting West.

2.11.5 Built-in commands

This page describes west’s built-in commands, some of which were introduced in Basics, in more
detail.

Some commands are related to Git commands with the same name, but operate on the entire
workspace. For example, west diff shows local changes in multiple Git repositories in the
workspace.

Some commands take projects as arguments. These arguments can be project names as specified
in the manifest file, or (as a fallback) paths to them on the local file system. Omitting project
arguments to commands which accept them (such as west list, west forall, etc.) usually
defaults to using all projects in the manifest file plus the manifest repository itself.

For additional help, run west <command> -h (e.g. west init -h).

west init

This command creates a west workspace. It can be used in two ways:

1. Cloning a new manifest repository from a remote URL

2. Creating a workspace around an existing local manifest repository

Option 1: to clone a new manifest repository from a remote URL, use:

west init [-m URL] [--mr REVISION] [--mf FILE] [directory]

The new workspace is created in the given directory, creating a new .west inside this directory.
You can give the manifest URL using the -m switch, the initial revision to check out using --mr,
and the location of the manifest file within the repository using --mf.

For example, running:

west init -m https://github.com/zephyrproject-rtos/zephyr --mr v1.14.0 zp

would clone the upstream official zephyr repository into zp/zephyr, and check out the v1.14.
0 release. This command creates zp/.west, and set the manifest.path configuration option to
zephyr to record the location of the manifest repository in the workspace. The default manifest
file location is used.

The -m option defaults to https://github.com/zephyrproject-rtos/zephyr. The --mf option de-
faults to west.yml. Since west v0.10.1, west will use the default branch in the manifest repository
unless the --mr option is used to override it. (In prior versions, --mr defaulted to master.)

If no directory is given, the current working directory is used.
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Option 2: to create a workspace around an existing local manifest repository, use:

west init -l [--mf FILE] directory

This creates .west next to directory in the file system, and sets manifest.path to directory.

As above, --mf defaults to west.yml.

Reconfiguring the workspace:

If you change your mind later, you are free to change manifest.path and manifest.file using
west config after running west init. Just be sure to run west update afterwards to update your
workspace to match the new manifest file.

west update

west update [-f {always,smart}] [-k] [-r]
[--group-filter FILTER] [--stats] [PROJECT ...]

Which projects are updated:
By default, this command parses the manifest file, usually west.yml, and updates each project
specified there. If your manifest uses project groups, then only the active projects are updated.

To operate on a subset of projects only, give PROJECT argument(s). Each PROJECT is either a project
name as given in the manifest file, or a path that points to the project within the workspace. If
you specify projects explicitly, they are updated regardless of whether they are active.

Project update procedure:
For each project that is updated, this command:

1. Initializes a local Git repository for the project in the workspace, if it does not already exist

2. Inspects the project’s revision field in the manifest, and fetches it from the remote if it is
not already available locally

3. Sets the project’smanifest-rev branch to the commit specified by the revision in the previous
step

4. Checks out manifest-rev in the local working copy as a detached HEAD

5. If the manifest file specifies a submodules key for the project, recursively updates the
project’s submodules as described below.

To avoid unnecessary fetches, west update will not fetch project revision values which are Git
SHAs or tags that are already available locally. This is the behavior when the -f (--fetch) option
has its default value, smart. To force this command to fetch from project remotes even if the re-
visions appear to be available locally, either use -f always or set the update.fetch configuration
option to always. SHAs may be given as unique prefixes as long as they are acceptable to Git1.

If the project revision is a Git ref that is neither a tag nor a SHA (i.e. if the project is tracking a
branch), west update always fetches, regardless of -f and update.fetch.

Some branch names might look like short SHAs, like deadbeef. West treats these like SHAs. You
can disambiguate by prefixing the revision value with refs/heads/, e.g. revision: refs/
heads/deadbeef.

For safety, west update uses git checkout --detach to check out a detached HEAD at the manifest
revision for each updated project, leaving behind any branches which were already checked out.
This is typically a safe operation that will not modify any of your local branches.

However, if you had added some local commits onto a previously detached HEAD checked out by
west, then git will warn you that you’ve left behind some commits which are no longer referred

1 West may fetch all refs from the Git server when given a SHA as a revision. This is because some Git servers have
historically not allowed fetching SHAs directly.
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to by any branch. These may be garbage-collected and lost at some point in the future. To avoid
this if you have local commits in the project, make sure you have a local branch checked out
before running west update.

If you would rather rebase any locally checked out branches instead, use the -r (--rebase) op-
tion.

If you would like west update to keep local branches checked out as long as they point to commits
that are descendants of the new manifest-rev, use the -k (--keep-descendants) option.

Note

west update --rebase will fail in projects that have git conflicts between your branch and
new commits brought in by the manifest. You should immediately resolve these conflicts as
you usually do with git, or you can use git -C <project_path> rebase --abort to ignore
incoming changes for the moment.

With a clean working tree, a plain west update never fails because it does not try to hold on
to your commits and simply leaves them aside.

west update --keep-descendants offers an intermediate option that never fails either but
does not treat all projects the same:

• in projects where your branch diverged from the incoming commits, it does not even
try to rebase and leaves your branches behind just like a plain west update does;

• in all other projects where no rebase or merge is needed it keeps your branches in place.

One-time project group manipulation:
The --group-filter option can be used to change which project groups are enabled or disabled
for the duration of a single west update command. See Project Groups for details on the project
group feature.

The west update command behaves as if the --group-filter option’s value were appended to
the manifest.group-filter configuration option.

For example, running west update --group-filter=+foo,-bar would behave the same way as
if you had temporarily appended the string "+foo,-bar" to the value of manifest.group-filter,
run west update, then restored manifest.group-filter to its original value.

Note that using the syntax --group-filter=VALUE instead of --group-filter VALUE avoids
issues parsing command line options if you just want to disable a single group, e.g.
--group-filter=-bar.

Submodule update procedure:
If a project in the manifest has a submodules key, the submodules are updated as follows, de-
pending on the value of the submodules key.

If the project has submodules: true, west first synchronizes the project’s submodules with:

git submodule sync --recursive

West then runs one of the following in the project repository, depending on whether you run
west update with the --rebase option or without it:

# without --rebase, e.g. "west update":
git submodule update --init --checkout --recursive

# with --rebase, e.g. "west update --rebase":
git submodule update --init --rebase --recursive

Otherwise, the project has submodules: <list-of-submodules>. In this case, west synchronizes
the project’s submodules with:
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git submodule sync --recursive -- <submodule-path>

Then it updates each submodule in the list as follows, depending on whether you run west up-
date with the --rebase option or without it:

# without --rebase, e.g. "west update":
git submodule update --init --checkout --recursive <submodule-path>

# with --rebase, e.g. "west update --rebase":
git submodule update --init --rebase --recursive <submodule-path>

The git submodule sync commands are skipped if the update.sync-submodules Configuration
option is false.

Other project commands

West has a few more commands for managing the projects in the workspace, which are summa-
rized here. Run west <command> -h for detailed help.

• west compare: compare the state of the workspace against the manifest

• west diff: run git diff in local project repositories

• west forall: run an arbitrary command in local project repositories

• west grep: search for patterns in local project repositories

• west list: print a line of information about each project in the manifest, according to a
format string

• west manifest: manage the manifest file. See Manifest Command.

• west status: run git status in local project repositories

Other built-in commands

Finally, here is a summary of other built-in commands.

• west config: get or set configuration options

• west topdir: print the top level directory of the west workspace

• west help: get help about a command, or print information about all commands in the
workspace, including Extensions

2.11.6 Workspaces

This page describes the west workspace concept introduced in Basics in more detail.

The manifest-rev branch

West creates and controls a Git branch named manifest-rev in each project. This branch points
to the revision that the manifest file specified for the project at the time west update was last
run. Other workspace management commands may use manifest-rev as a reference point for
the upstream revision as of this latest update. Among other purposes, the manifest-rev branch
allows the manifest file to use SHAs as project revisions.

Although manifest-rev is a normal Git branch, west will recreate and/or reset it on the next
update. For this reason, it is dangerous to check it out or otherwise modify it yourself. For
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instance, any commits you manually add to this branch may be lost the next time you run west
update. Instead, check out a local branch with another name, and either rebase it on top of a
new manifest-rev, or merge manifest-rev into it.

Note

West does not create a manifest-rev branch in the manifest repository, since west does not
manage the manifest repository’s branches or revisions.

The refs/west/* Git refs

West also reserves all Git refs that begin with refs/west/ (such as refs/west/foo) for itself in lo-
cal project repositories. Unlike manifest-rev, these refs are not regular branches. West’s behav-
ior here is an implementation detail; users should not rely on these refs’ existence or behavior.

Private repositories

You can use west to fetch from private repositories. There is nothing west-specific about this.

The west update command essentially runs git fetch YOUR_PROJECT_URL when a project’s
manifest-rev branch must be updated to a newly fetched commit. It’s up to your environment
to make sure the fetch succeeds.

You can either enter the password manually or use any of the credential helpers built in to Git.
Since Git has credential storage built in, there is no need for a west-specific feature.

The following sections cover common cases for running west update without having to enter
your password, as well as how to troubleshoot issues.

Fetching via HTTPS On Windows when fetching from GitHub, recent versions of Git prompt
you for your GitHub password in a graphical window once, then store it for future use (in a
default installation). Passwordless fetching from GitHub should therefore work “out of the box”
on Windows after you have done it once.

In general, you can store your credentials on disk using the “store” git credential helper. See the
git-credential-store manual page for details.

To use this helper for all the repositories in your workspace, run:

west forall -c "git config credential.helper store"

To use this helper on just the projects foo and bar, run:

west forall -c "git config credential.helper store" foo bar

To use this helper by default on your computer, run:

git config --global credential.helper store

On GitHub, you can set up a personal access token to use in place of your account password. (This
may be required if your account has two-factor authentication enabled, and may be preferable
to storing your account password in plain text even if two-factor authentication is disabled.)

You can use the Git credential store to authenticate with a GitHub PAT (Personal Access Token)
like so:

echo "https://x-access-token:$GH_TOKEN@github.com" >> ~/.git-credentials
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If you don’t want to store any credentials on the file system, you can store them in memory
temporarily using git-credential-cache instead.

If you setup fetching via SSH, you can use Git URL rewrite feature. The following command
instructs Git to use SSH URLs for GitHub instead of HTTPS ones:

git config --global url."git@github.com:".insteadOf "https://github.com/"

Fetching via SSH If your SSH key has no password, fetching should just work. If it does have
a password, you can avoid entering it manually every time using ssh-agent.

On GitHub, see Connecting to GitHub with SSH for details on configuration and key creation.

Project locations

Projects can be located anywhere inside the workspace, but they may not “escape” it.

In other words, project repositories need not be located in subdirectories of the manifest reposi-
tory or as immediate subdirectories of the topdir. However, projects must have paths inside the
workspace.

You may replace a project’s repository directory within the workspace with a symbolic link to
elsewhere on your computer, but west will not do this for you.

Topologies supported

The following are example source code topologies supported by west.

• T1: star topology, zephyr is the manifest repository

• T2: star topology, a Zephyr application is the manifest repository

• T3: forest topology, freestanding manifest repository

T1: Star topology, zephyr is the manifest repository
• The zephyr repository acts as the central repository and specifies its Modules (External
projects) in its west.yml

• Analogy with existing mechanisms: Git submodules with zephyr as the super-project

This is the default. See Workspace concepts for how mainline Zephyr is an example of this topol-
ogy.

T2: Star topology, application is the manifest repository
• Useful for those focused on a single application

• A repository containing a Zephyr application acts as the central repository and names other
projects required to build it in its west.yml. This includes the zephyr repository and any
modules.

• Analogy with existing mechanisms: Git submodules with the application as the super-
project, zephyr and other projects as submodules

A workspace using this topology looks like this:
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west-workspace/
│
├── application/ # .git/ │
│ ├── CMakeLists.txt │
│ ├── prj.conf │ never modified by west
│ ├── src/ │
│ │ └── main.c │
│ └── west.yml # main manifest with optional import(s) and override(s)
│ │
├── modules/
│ └── lib/
│ └── zcbor/ # .git/ project from either the main manifest or some import.
│
└── zephyr/ # .git/ project

└── west.yml # This can be partially imported with lower precedence or ignored.
# Only the 'manifest-rev' version can be imported.

Here is an example application/west.ymlwhich usesManifest Imports, available since west 0.7,
to import Zephyr v2.5.0 and its modules into the application manifest file:

# Example T2 west.yml, using manifest imports.
manifest:
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
projects:
- name: zephyr

remote: zephyrproject-rtos
revision: v2.5.0
import: true

self:
path: application

You can still selectively “override” individual Zephyr modules if you use import: in this way; see
Example 1.3: Downstream of a Zephyr release, with module fork for an example.

Another way to do the same thing is to copy/paste zephyr/west.yml to application/west.yml,
adding an entry for the zephyr project itself, like this:

# Equivalent to the above, but with manually maintained Zephyr modules.
manifest:
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
defaults:
remote: zephyrproject-rtos

projects:
- name: zephyr

revision: v2.5.0
west-commands: scripts/west-commands.yml

- name: net-tools
revision: some-sha-goes-here
path: tools/net-tools

# ... other Zephyr modules go here ...
self:
path: application

(The west-commands is there for Building, Flashing and Debugging and other Zephyr-specific Ex-
tensions. It’s not necessary when using import.)

The main advantage to using import is not having to track the revisions of imported projects
separately. In the above example, using import means Zephyr’s module versions are automati-
cally determined from the zephyr/west.yml revision, instead of having to be copy/pasted (and
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maintained) on their own.

T3: Forest topology
• Useful for those supporting multiple independent applications or downstream distribu-

tions with no “central” repository

• A dedicated manifest repository which contains no Zephyr source code, and specifies a list
of projects all at the same “level”

• Analogy with existing mechanisms: Google repo-based source distribution

A workspace using this topology looks like this:

west-workspace/
├── app1/ # .git/ project
│ ├── CMakeLists.txt
│ ├── prj.conf
│ └── src/
│ └── main.c
├── app2/ # .git/ project
│ ├── CMakeLists.txt
│ ├── prj.conf
│ └── src/
│ └── main.c
├── manifest-repo/ # .git/ never modified by west
│ └── west.yml # main manifest with optional import(s) and override(s)
├── modules/
│ └── lib/
│ └── zcbor/ # .git/ project from either the main manifest or
│ # from some import
│
└── zephyr/ # .git/ project

└── west.yml # This can be partially imported with lower precedence or ignored.
# Only the 'manifest-rev' version can be imported.

Here is an example T3 manifest-repo/west.yml which uses Manifest Imports, available since
west 0.7, to import Zephyr v2.5.0 and its modules, then add the app1 and app2 projects:

manifest:
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
- name: your-git-server

url-base: https://git.example.com/your-company
defaults:
remote: your-git-server

projects:
- name: zephyr

remote: zephyrproject-rtos
revision: v2.5.0
import: true

- name: app1
revision: SOME_SHA_OR_BRANCH_OR_TAG

- name: app2
revision: ANOTHER_SHA_OR_BRANCH_OR_TAG

self:
path: manifest-repo

You can also do this “by hand” by copy/pasting zephyr/west.yml as shown above for the T2 topol-
ogy, with the same caveats.

2.11. West (Zephyr’s meta-tool) 149



Zephyr Project Documentation, Release 3.7.99

2.11.7 West Manifests

This page contains detailed information about west’s multiple repository model, manifest files,
and the west manifest command. For API documentation on the west.manifest module, see
west-apis-manifest. For a more general introduction and command overview, see Basics.

Multiple Repository Model

West’s view of the repositories in a west workspace, and their history, looks like the following
figure (though some parts of this example are specific to upstream Zephyr’s use of west):

Fig. 3: West multi-repo history

The history of the manifest repository is the line of Git commits which is “floating” on top of the
gray plane. Parent commits point to child commits using solid arrows. The plane below contains
the Git commit history of the repositories in the workspace, with each project repository boxed
in by a rectangle. Parent/child commit relationships in each repository are also shown with solid
arrows.

The commits in the manifest repository (again, for upstream Zephyr this is the zephyr repository
itself) each have a manifest file. The manifest file in each commit specifies the corresponding
commits which it expects in each of the project repositories. This relationship is shown using
dotted line arrows in the diagram. Each dotted line arrow points from a commit in the manifest
repository to a corresponding commit in a project repository.

Notice the following important details:

• Projects can be added (like P1 between manifest repository commits D and E) and removed
(P2 between the same manifest repository commits)

• Project and manifest repository histories don’t have to move forwards or backwards to-
gether:

– P2 stays the same from A → B, as do P1 and P3 from F → G.

– P3 moves forward from A → B.

– P3 moves backward from C → D.
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One use for moving backward in project history is to “revert” a regression by going back to
a revision before it was introduced.

• Project repository commits can be “skipped”: P3 moves forward multiple commits in its
history from B → C.

• In the above diagram, no project repository has two revisions “at the same time”: every
manifest file refers to exactly one commit in the projects it cares about. This can be relaxed
by using a branch name as a manifest revision, at the cost of being able to bisect manifest
repository history.

Manifest Files

West manifests are YAML files. Manifests have a top-level manifest section with some subsec-
tions, like this:

manifest:
remotes:
# short names for project URLs

projects:
# a list of projects managed by west

defaults:
# default project attributes

self:
# configuration related to the manifest repository itself,
# i.e. the repository containing west.yml

version: "<schema-version>"
group-filter:
# a list of project groups to enable or disable

In YAML terms, the manifest file contains a mapping, with a manifest key. Any other keys and
their contents are ignored (west v0.5 also required a west key, but this is ignored starting with
v0.6).

The manifest contains subsections, like defaults, remotes, projects, and self. In YAML terms,
the value of the manifest key is also a mapping, with these “subsections” as keys. As of west
v0.10, all of these “subsection” keys are optional.

The projects value is a list of repositories managed by west and associated metadata. We’ll
discuss it soon, but first we will describe the remotes section, which can be used to save typing
in the projects list.

Remotes The remotes subsection contains a sequence which specifies the base URLs where
projects can be fetched from.

Each remotes element has a name and a “URL base”. These are used to form the complete Git
fetch URL for each project. A project’s fetch URL can be set by appending a project-specific path
onto a remote URL base. (As we’ll see below, projects can also specify their complete fetch URLs.)

For example:

manifest:
# ...
remotes:
- name: remote1

url-base: https://git.example.com/base1
- name: remote2

url-base: https://git.example.com/base2

The remotes keys and their usage are in the following table.
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Table 2: remotes keys

Key Description
name Mandatory; a unique name for the remote.
url-base A prefix that is prepended to the fetch URL for each project with this remote.

Above, two remotes are given, with names remote1 and remote2. Their URL bases are respec-
tively https://git.example.com/base1 and https://git.example.com/base2. You can use SSH
URL bases as well; for example, you might use git@example.com:base1 if remote1 supported Git
over SSH as well. Anything acceptable to Git will work.

Projects The projects subsection contains a sequence describing the project repositories in
the west workspace. Every project has a unique name. You can specify what Git remote URLs
to use when cloning and fetching the projects, what revisions to track, and where the project
should be stored on the local file system. Note that west projects are different from modules.

Here is an example. We’ll assume the remotes given above.

manifest:
# [... same remotes as above...]
projects:
- name: proj1

description: the first example project
remote: remote1
path: extra/project-1

- name: proj2
description: |
A multi-line description of the second example
project.

repo-path: my-path
remote: remote2
revision: v1.3

- name: proj3
url: https://github.com/user/project-three
revision: abcde413a111

In this manifest:

• proj1 has remote remote1, so its Git fetch URL is https://git.example.com/base1/proj1.
The remote url-base is appended with a / and the project name to form the URL.

Locally, this project will be cloned at path extra/project-1 relative to the west workspace’s
root directory, since it has an explicit path attribute with this value.

Since the project has no revision specified, master is used by default. The current tip of
this branch will be fetched and checked out as a detached HEAD when west next updates
this project.

• proj2 has a remote and a repo-path, so its fetch URL is https://git.example.com/base2/
my-path. The repo-path attribute, if present, overrides the default name when forming the
fetch URL.

Since the project has no path attribute, its name is used by default. It will be cloned into a
directory named proj2. The commit pointed to by the v1.3 tag will be checked out when
west updates the project.

• proj3 has an explicit url, so it will be fetched from https://github.com/user/
project-three.

Its local path defaults to its name, proj3. Commit abcde413a111 will be checked out when
it is next updated.
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The available project keys and their usage are in the following table. Sometimes we’ll refer to
the defaults subsection; it will be described next.

Table 3: projects elements keys

Key(s) Description
name Mandatory; a unique name for the project. The name cannot be one of the re-

served values “west” or “manifest”. The name must be unique in the manifest
file.

description Optional, an informational description of the project. Added in west v1.2.0.
remote, url Mandatory (one of the two, but not both).

If the project has a remote, that remote’s url-base will be combined with the
project’s name (or repo-path, if it has one) to form the fetch URL instead.
If the project has a url, that’s the complete fetch URL for the remote Git repos-
itory.
If the project has neither, the defaults section must specify a remote, which
will be used as the project’s remote. Otherwise, the manifest is invalid.

repo-path Optional. If given, this is concatenated on to the remote’s url-base instead of
the project’s name to form its fetch URL. Projects may not have both url and
repo-path attributes.

revision Optional. The Git revision that west update should check out. This will be
checked out as a detached HEAD by default, to avoid conflicting with local
branch names. If not given, the revision value from the defaults subsection
will be used if present.
A project revision can be a branch, tag, or SHA.
The default revision is master if not otherwise specified.
Using HEAD~01 as the revision will cause west to keep the current state of the
project.

path Optional. Relative path specifying where to clone the repository locally, rela-
tive to the top directory in the west workspace. If missing, the project’s name
is used as a directory name.

clone-depth Optional. If given, a positive integer which creates a shallow history in the
cloned repository limited to the given number of commits. This can only be
used if the revision is a branch or tag.

west-commands Optional. If given, a relative path to a YAML file within the project which de-
scribes additional west commands provided by that project. This file is named
west-commands.yml by convention. See Extensions for details.

import Optional. If true, imports projects from manifest files in the given repository
into the current manifest. See Manifest Imports for details.

groups Optional, a list of groups the project belongs to. See Project Groups for details.
submodules Optional. You can use this to make west update also update Git submodules

defined by the project. See Git Submodules in Projects for details.
userdata Optional. The value is an arbitrary YAML value. See Repository user data.

Defaults The defaults subsection can provide default values for project attributes. In particu-
lar, the default remote name and revision can be specified here. Another way to write the same
manifest we have been describing so far using defaults is:

manifest:
defaults:
remote: remote1
revision: v1.3

(continues on next page)

1 In git, HEAD is a reference, whereas HEAD~<n> is a valid revision but not a reference. West fetches references, such
as refs/heads/main or HEAD, and commits not available locally, but will not fetch commits if they are already available.
HEAD~0 is resolved to a specific commit that is locally available, and therefore west will simply checkout the locally
available commit, identified by HEAD~0.
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(continued from previous page)

remotes:
- name: remote1

url-base: https://git.example.com/base1
- name: remote2

url-base: https://git.example.com/base2

projects:
- name: proj1

description: the first example project
path: extra/project-1
revision: master

- name: proj2
description: |
A multi-line description of the second example
project.

repo-path: my-path
remote: remote2

- name: proj3
url: https://github.com/user/project-three
revision: abcde413a111

The available defaults keys and their usage are in the following table.

Table 4: defaults keys

Key Description
remote Optional. This will be used for a project’s remote if it does not have a url or

remote key set.
revision Optional. This will be used for a project’s revision if it does not have one set.

If not given, the default is master.

Self The self subsection can be used to control the manifest repository itself.

As an example, let’s consider this snippet from the zephyr repository’s west.yml:

manifest:
# ...
self:
path: zephyr
west-commands: scripts/west-commands.yml

This ensures that the zephyr repository is cloned into path zephyr, though as explained above
that would have happened anyway if cloning from the default manifest URL, https://github.
com/zephyrproject-rtos/zephyr. Since the zephyr repository does contain extension com-
mands, its self entry declares the location of the corresponding west-commands.yml relative to
the repository root.

The available self keys and their usage are in the following table.
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Table 5: self keys

Key Description
path Optional. The path west init should clone the manifest repository into, rela-

tive to the west workspace topdir.
If not given, the basename of the path component in the manifest repository
URL will be used by default. For example, if the URL is https://git.example.
com/project-repo, the manifest repository would be cloned to the directory
project-repo.

west-commands Optional. This is analogous to the same key in a project sequence element.
import Optional. This is also analogous to the projects key, but allows importing

projects from other files in the manifest repository. See Manifest Imports.

Version The version subsection declares that the manifest file uses features which were intro-
duced in some version of west. Attempts to load the manifest with older versions of west will fail
with an error message that explains the minimum required version of west which is needed.

Here is an example:

manifest:
# Marks that this file uses version 0.10 of the west manifest
# file format.
#
# An attempt to load this manifest file with west v0.8.0 will
# fail with an error message saying that west v0.10.0 or
# later is required.
version: "0.10"

The pykwalify schema manifest-schema.yml in the west source code repository is used to vali-
date the manifest section.

Here is a table with the valid version values, along with information about the manifest file
features that were introduced in that version.
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version New features
"0.7" Initial support for the version feature. All manifest file features that are

not otherwise mentioned in this table were introduced in west v0.7.0 or
earlier.

"0.8" Support for import: path-prefix: (Option 3: Mapping)
"0.9" Use of west v0.9.x is discouraged.

This schema version is provided to allow users to explicitly request com-
patibility with west v0.9.0. However, west v0.10.0 and later have incompat-
ible behavior for features that were introduced in west v0.9.0. You should
ignore version “0.9” if possible.

"0.10" Support for:
• submodules: in projects: (Git Submodules in Projects)
• manifest: group-filter:, and groups: in projects: (Project
Groups)

• The import: feature now supports allowlist: and blocklist:; these
are respectively recommended as replacements for older names as
part of a general Zephyr-wide inclusive language change. The older
key names are still supported for backwards compatibility. (Manifest
Imports, Option 3: Mapping)

"0.12" Support for userdata: in projects: (Repository user data)
"0.13" Support for self: userdata: (Repository user data)
"1.0" Identical to "0.13", but available for use by users that do not wish to use a

"0.x" version field.
"1.2" Support for description: in projects: (Projects)

Note

Versions of west without any new features in the manifest file format do not change the list
of valid version values. For example, version: "0.11" is not valid, because west v0.11.x did
not introduce new manifest file format features.

Quoting the version value as shown above forces the YAML parser to treat it as a string. Without
quotes, 0.10 in YAML is just the floating point value 0.1. You can omit the quotes if the value is
the same when cast to string, but it’s best to include them. Always use quotes if you’re not sure.

If you do not include a version in your manifest, each new release of west assumes that it should
try to load it using the features that were available in that release. This may result in error
messages that are harder to understand if that version of west is too old to load the manifest.

Group-filter See Project Groups.

Active and Inactive Projects

Projects defined in the west manifest can be inactive or active. The difference is that an inac-
tive project is generally ignored by west. For example, west update will not update inactive
projects, and west list will not print information about them by default. As another example,
any Manifest Imports in an inactive project will be ignored by west.

There are two ways to make a project inactive:

1. Using the manifest.project-filter configuration option. If a project is made active or
inactive using this option, then the rules related to making a project inactive using its
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groups: are ignored. That is, if a regular expression in manifest.project-filter applies
to a project, the project’s groups have no effect on whether it is active or inactive.

See the entry for this option in Built-in Configuration Options for details.

2. Otherwise, if a project has groups, and they are all disabled, then the project is inactive.

See the following section for details.

Project Groups

You can use the groups and group-filter keys briefly described above to place projects into
groups, and to enable or disable groups.

For example, this lets you run a west forall command only on the projects in the group by using
west forall --group. This can also let you make projects inactive; see the previous section for
more information on inactive projects.

The next section introduces project groups. The following section describes Enabled andDisabled
Project Groups. There are some basic examples in Project Group Examples. Finally, Group Filters
and Imports provides a simplified overview of how group-filter interacts with the Manifest
Imports feature.

Groups Basics The groups: and group-filter: keys appear in the manifest like this:

manifest:
projects:
- name: some-project

groups: ...
group-filter: ...

The groups key’s value is a list of group names. Group names are strings.

You can enable or disable project groups using group-filter. Projects whose groups are all
disabled, and which are not otherwise made active by a manifest.project-filter configuration
option, are inactive.

For example, in this manifest fragment:

manifest:
projects:
- name: project-1

groups:
- groupA

- name: project-2
groups:
- groupB
- groupC

- name: project-3

The projects are in these groups:

• project-1: one group, named groupA
• project-2: two groups, named groupB and groupC
• project-3: no groups

Project group names must not contain commas (,), colons (:), or whitespace.

Group names must not begin with a dash (-) or the plus sign (+), but they may contain these
characters elsewhere in their names. For example, foo-bar and foo+bar are valid groups, but
-foobar and +foobar are not.
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Group names are otherwise arbitrary strings. Group names are case sensitive.

As a restriction, no project may use both import: and groups:. (This is necessary to avoid some
pathological edge cases.)

Enabled and Disabled Project Groups All project groups are enabled by default. You can
enable or disable groups in both your manifest file and Configuration.

Within a manifest file, manifest: group-filter: is a YAML list of groups to enable and disable.

To enable a group, prefix its name with a plus sign (+). For example, groupA is enabled in this
manifest fragment:

manifest:
group-filter: [+groupA]

Although this is redundant for groups that are already enabled by default, it can be used to over-
ride settings in an imported manifest file. See Group Filters and Imports for more information.

To disable a group, prefix its name with a dash (-). For example, groupA and groupB are disabled
in this manifest fragment:

manifest:
group-filter: [-groupA,-groupB]

Note

Since group-filter is a YAML list, you could have written this fragment as follows:
manifest:
group-filter:

- -groupA
- -groupB

However, this syntax is harder to read and therefore discouraged.

In addition to the manifest file, you can control which groups are enabled and disabled using the
manifest.group-filter configuration option. This option is a comma-separated list of groups to
enable and/or disable.

To enable a group, add its name to the list prefixed with +. To disable a group, add its name pre-
fixed with -. For example, setting manifest.group-filter to +groupA,-groupB enables groupA,
and disables groupB.

The value of the configuration option overrides any data in the manifest file. You can think
of this as if the manifest.group-filter configuration option is appended to the manifest:
group-filter: list from YAML, with “last entry wins” semantics.

Project Group Examples This section contains example situations involving project groups
and active projects. The examples use both manifest: group-filter: YAML lists and manifest.
group-filter configuration lists, to show how they work together.

Note that the defaults and remotes data in the following manifests isn’t relevant except to make
the examples complete and self-contained.

Note

In all of the examples that follow, the manifest.project-filteroption is assumed to be unset.
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Example 1: no disabled groups The entire manifest file is:

manifest:
projects:
- name: foo

groups:
- groupA

- name: bar
groups:
- groupA
- groupB

- name: baz

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is not set (you can ensure this by running west
config -D manifest.group-filter).

No groups are disabled, because all groups are enabled by default. Therefore, all three projects
(foo, bar, and baz) are active. Note that there is no way to make project baz inactive, since it has
no groups.

Example 2: Disabling one group via manifest The entire manifest file is:

manifest:
projects:
- name: foo

groups:
- groupA

- name: bar
groups:
- groupA
- groupB

group-filter: [-groupA]

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is not set (you can ensure this by running west
config -D manifest.group-filter).

Since groupA is disabled, project foo is inactive. Project bar is active, because groupB is enabled.

Example 3: Disabling multiple groups via manifest The entire manifest file is:

manifest:
projects:
- name: foo

groups:
- groupA

- name: bar
groups:
- groupA

(continues on next page)
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- groupB

group-filter: [-groupA,-groupB]

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is not set (you can ensure this by running west
config -D manifest.group-filter).

Both foo and bar are inactive, because all of their groups are disabled.

Example 4: Disabling a group via configuration The entire manifest file is:

manifest:
projects:
- name: foo

groups:
- groupA

- name: bar
groups:
- groupA
- groupB

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is set to -groupA (you can ensure this by run-
ning west config manifest.group-filter -- -groupA; the extra -- is required so the argument
parser does not treat -groupA as a command line option -g with value roupA).

Project foo is inactive because groupA has been disabled by the manifest.group-filter config-
uration option. Project bar is active because groupB is enabled.

Example 5: Overriding a disabled group via configuration The entire manifest file is:

manifest:
projects:
- name: foo
- name: bar

groups:
- groupA

- name: baz
groups:
- groupA
- groupB

group-filter: [-groupA]

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com
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The manifest.group-filter configuration option is set to +groupA (you can ensure this by run-
ning west config manifest.group-filter +groupA).

In this case, groupA is enabled: the manifest.group-filter configuration option has higher
precedence than the manifest: group-filter: [-groupA] content in the manifest file.

Therefore, projects foo and bar are both active.

Example 6: Overriding multiple disabled groups via configuration The entire manifest file
is:

manifest:
projects:
- name: foo
- name: bar

groups:
- groupA

- name: baz
groups:
- groupA
- groupB

group-filter: [-groupA,-groupB]

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is set to +groupA,+groupB (you can ensure this
by running west config manifest.group-filter "+groupA,+groupB").

In this case, both groupA and groupB are enabled, because the configuration value overrides the
manifest file for both groups.

Therefore, projects foo and bar are both active.

Example 7: Disabling multiple groups via configuration The entire manifest file is:

manifest:
projects:
- name: foo
- name: bar

groups:
- groupA

- name: baz
groups:
- groupA
- groupB

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is set to -groupA,-groupB (you can ensure this
by running west config manifest.group-filter -- "-groupA,-groupB").

In this case, both groupA and groupB are disabled.

Therefore, projects foo and bar are both inactive.
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Group Filters and Imports This section provides a simplified description of how the mani-
fest: group-filter: value behaves when combined with Manifest Imports. For complete de-
tails, see Manifest Import Details.

Warning

The below semantics apply to west v0.10.0 and later. West v0.9.x semantics are different, and
combining group-filter with import in west v0.9.x is discouraged.

In short:

• if you only import one manifest, any groups it disables in its group-filter are also disabled
in your manifest

• you can override this in your manifest file’s manifest: group-filter: value, your
workspace’s manifest.group-filter configuration option, or both

Here are some examples.

Example 1: no overrides You are using this parent/west.yml manifest:

# parent/west.yml:
manifest:
projects:
- name: child

url: https://git.example.com/child
import: true

- name: project-1
url: https://git.example.com/project-1
groups:
- unstable

And child/west.yml contains:

# child/west.yml:
manifest:
group-filter: [-unstable]
projects:
- name: project-2

url: https://git.example.com/project-2
- name: project-3

url: https://git.example.com/project-3
groups:
- unstable

Only child and project-2 are active in the resolved manifest.

The unstable group is disabled in child/west.yml, and that is not overridden in parent/west.
yml. Therefore, the final group-filter for the resolved manifest is [-unstable].

Since project-1 and project-3 are in the unstable group and are not in any other group, they
are inactive.

Example 2: overriding an imported group-filter via manifest You are using this parent/
west.yml manifest:

# parent/west.yml:
manifest:
group-filter: [+unstable,-optional]
projects:

(continues on next page)
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- name: child

url: https://git.example.com/child
import: true

- name: project-1
url: https://git.example.com/project-1
groups:
- unstable

And child/west.yml contains:

# child/west.yml:
manifest:
group-filter: [-unstable]
projects:
- name: project-2

url: https://git.example.com/project-2
groups:
- optional

- name: project-3
url: https://git.example.com/project-3
groups:
- unstable

Only the child, project-1, and project-3 projects are active.

The [-unstable] group filter in child/west.yml is overridden in parent/west.yml, so the un-
stable group is enabled. Since project-1 and project-3 are in the unstable group, they are
active.

The same parent/west.yml file disables the optional group, so project-2 is inactive.

The final group filter specified by parent/west.yml is [+unstable,-optional].

Example 3: overriding an imported group-filter via configuration You are using this
parent/west.yml manifest:

# parent/west.yml:
manifest:
projects:
- name: child

url: https://git.example.com/child
import: true

- name: project-1
url: https://git.example.com/project-1
groups:
- unstable

And child/west.yml contains:

# child/west.yml:
manifest:
group-filter: [-unstable]
projects:
- name: project-2

url: https://git.example.com/project-2
groups:
- optional

- name: project-3
url: https://git.example.com/project-3
groups:
- unstable
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If you run:

west config manifest.group-filter +unstable,-optional

Then only the child, project-1, and project-3 projects are active.

The -unstable group filter in child/west.yml is overridden in the manifest.group-filter con-
figuration option, so the unstable group is enabled. Since project-1 and project-3 are in the
unstable group, they are active.

The same configuration option disables the optional group, so project-2 is inactive.

The final group filter specified by parent/west.yml and the manifest.group-filter configura-
tion option is [+unstable,-optional].

Git Submodules in Projects

You can use the submodules keys briefly described above to force west update to also handle
any Git submodules configured in project’s git repository. The submodules key can appear inside
projects, like this:

manifest:
projects:
- name: some-project

submodules: ...

The submodules key can be a boolean or a list of mappings. We’ll describe these in order.

Option 1: Boolean This is the easiest way to use submodules.

If submodules is true as a projects attribute, west update will recursively update the project’s
Git submodules whenever it updates the project itself. If it’s false or missing, it has no effect.

For example, let’s say you have a source code repository foo, which has some submodules, and
you want west update to keep all of them in sync, along with another project named bar in the
same workspace.

You can do that with this manifest file:

manifest:
projects:
- name: foo

submodules: true
- name: bar

Here, west update will initialize and update all submodules in foo. If bar has any submodules,
they are ignored, because bar does not have a submodules value.

Option 2: List of mappings The submodules key may be a list of mappings, one list element
for each desired submodule. Each submodule listed is updated recursively. You can still track
and update unlisted submodules with git commands manually; present or not they will be com-
pletely ignored by west.

The path key must match exactly the path of one submodule relative to its parent west project,
as shown in the output of git submodule status. The name key is optional and not used by west
for now; it’s not passed to git submodule commands either. The name key was briefly mandatory
in west version 0.9.0, but was made optional in 0.9.1.

For example, let’s say you have a source code repository foo, which has many submodules, and
you want west update to keep some but not all of them in sync, along with another project named
bar in the same workspace.
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You can do that with this manifest file:

manifest:
projects:
- name: foo

submodules:
- path: path/to/foo-first-sub
- name: foo-second-sub
path: path/to/foo-second-sub

- name: bar

Here, west update will recursively initialize and update just the submodules in foo with paths
path/to/foo-first-sub and path/to/foo-second-sub. Any submodules in bar are still ignored.

Repository user data

West versions v0.12 and later support an optional userdata key in projects.

West versions v0.13 and later supports this key in the manifest: self: section.

It is meant for consumption by programs that require user-specific project metadata. Beyond
parsing it as YAML, west itself ignores the value completely.

The key’s value is arbitrary YAML. West parses the value and makes it accessible to programs
using west-apis as the userdata attribute of the corresponding west.manifest.Project object.

Example manifest fragment:

manifest:
projects:
- name: foo
- name: bar

userdata: a-string
- name: baz

userdata:
key: value

self:
userdata: blub

Example Python usage:

manifest = west.manifest.Manifest.from_file()

foo, bar, baz = manifest.get_projects(['foo', 'bar', 'baz'])

foo.userdata # None
bar.userdata # 'a-string'
baz.userdata # {'key': 'value'}
manifest.userdata # 'blub'

Manifest Imports

You can use the import key briefly described above to include projects from other manifest files
in your west.yml. This key can be either a project or self section attribute:

manifest:
projects:
- name: some-project

import: ...
self:
import: ...
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You can use a “self: import:” to load additional files from the repository containing your west.
yml. You can use a “project: … import:” to load additional files defined in that project’s Git history.

West resolves the final manifest from individual manifest files in this order:

1. imported files in self
2. your west.yml file

3. imported files in projects
During resolution, west ignores projects which have already been defined in other files. For
example, a project named foo in your west.yml makes west ignore other projects named foo
imported from your projects list.

The import key can be a boolean, path, mapping, or sequence. We’ll describe these in order,
using examples:

• Boolean
– Example 1.1: Downstream of a Zephyr release

– Example 1.2: “Rolling release” Zephyr downstream

– Example 1.3: Downstream of a Zephyr release, with module fork

• Relative path
– Example 2.1: Downstream of a Zephyr release with explicit path

– Example 2.2: Downstream with directory of manifest files

– Example 2.3: Continuous Integration overrides

• Mapping with additional configuration
– Example 3.1: Downstream with name allowlist

– Example 3.2: Downstream with path allowlist

– Example 3.3: Downstream with path blocklist

– Example 3.4: Import into a subdirectory

• Sequence of paths and mappings
– Example 4.1: Downstream with sequence of manifest files

– Example 4.2: Import order illustration

A more formal description of how this works is last, after the examples.

Troubleshooting Note If you’re using this feature and find west’s behavior confusing, try re-
solving your manifest to see the final results after imports are done.

Option 1: Boolean This is the easiest way to use import.

If import is true as a projects attribute, west imports projects from the west.yml file in that
project’s root directory. If it’s false or missing, it has no effect. For example, this manifest would
import west.yml from the p1 git repository at revision v1.0:

manifest:
# ...
projects:
- name: p1

revision: v1.0
import: true # Import west.yml from p1's v1.0 git tag

- name: p2
(continues on next page)
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import: false # Nothing is imported from p2.

- name: p3 # Nothing is imported from p3 either.

It’s an error to set import to either true or false inside self, like this:

manifest:
# ...
self:
import: true # Error

Example 1.1: Downstream of a Zephyr release You have a source code repository you want
to use with Zephyr v1.14.1 LTS. You want to maintain the whole thing using west. You don’t want
to modify any of the mainline repositories.

In other words, the west workspace you want looks like this:

my-downstream/
├── .west/ # west directory
├── zephyr/ # mainline zephyr repository
│ └── west.yml # the v1.14.1 version of this file is imported
├── modules/ # modules from mainline zephyr
│ ├── hal/
│ └── [...other directories..]
├── [ ... other projects ...] # other mainline repositories
└── my-repo/ # your downstream repository

├── west.yml # main manifest importing zephyr/west.yml v1.14.1
└── [...other files..]

You can do this with the following my-repo/west.yml:

# my-repo/west.yml:
manifest:
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
projects:
- name: zephyr

remote: zephyrproject-rtos
revision: v1.14.1
import: true

You can then create the workspace on your computer like this, assuming my-repo is hosted at
https://git.example.com/my-repo:

west init -m https://git.example.com/my-repo my-downstream
cd my-downstream
west update

After west init, my-downstream/my-repo will be cloned.

After west update, all of the projects defined in the zephyr repository’s west.yml at revision
v1.14.1 will be cloned into my-downstream as well.

You can add and commit any code to my-repo you please at this point, including your own Zephyr
applications, drivers, etc. See Application Development.

Example 1.2: “Rolling release” Zephyr downstream This is similar to Example 1.1: Down-
stream of a Zephyr release, except we’ll use revision: main for the zephyr repository:
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# my-repo/west.yml:
manifest:
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
projects:
- name: zephyr

remote: zephyrproject-rtos
revision: main
import: true

You can create the workspace in the same way:

west init -m https://git.example.com/my-repo my-downstream
cd my-downstream
west update

This time, whenever you run west update, the special manifest-rev branch in the zephyr reposi-
tory will be updated to point at a newly fetched main branch tip from the URL https://github.com/
zephyrproject-rtos/zephyr.

The contents of zephyr/west.yml at the new manifest-rev will then be used to import projects
from Zephyr. This lets you stay up to date with the latest changes in the Zephyr project. The cost
is that running west update will not produce reproducible results, since the remote main branch
can change every time you run it.

It’s also important to understand that west ignores your working tree’s zephyr/west.yml en-
tirely when resolving imports. West always uses the contents of imported manifests as they were
committed to the latest manifest-rev when importing from a project.

You can only import manifest from the file system if they are in your manifest repository’s work-
ing tree. See Example 2.2: Downstream with directory of manifest files for an example.

Example 1.3: Downstream of a Zephyr release, with module fork This manifest is similar
to the one in Example 1.1: Downstream of a Zephyr release, except it:

• is a downstream of Zephyr 2.0

• includes a downstream fork of the modules/hal/nordicmodule which was included in that
release

# my-repo/west.yml:
manifest:
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
- name: my-remote

url-base: https://git.example.com
projects:
- name: hal_nordic # higher precedence

remote: my-remote
revision: my-sha
path: modules/hal/nordic

- name: zephyr
remote: zephyrproject-rtos
revision: v2.0.0
import: true # imported projects have lower precedence

# subset of zephyr/west.yml contents at v2.0.0:
manifest:
defaults:
remote: zephyrproject-rtos

(continues on next page)
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(continued from previous page)
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
projects:
# ...
- name: hal_nordic # lower precedence, values ignored
path: modules/hal/nordic
revision: another-sha

With this manifest file, the project named hal_nordic:

• is cloned from https://git.example.com/hal_nordic instead of https://github.com/
zephyrproject-rtos/hal_nordic.

• is updated to commit my-sha by west update, instead of the mainline commit another-sha
In other words, when your top-level manifest defines a project, like hal_nordic, west will ignore
any other definition it finds later on while resolving imports.

This does mean you have to copy the path: modules/hal/nordic value into my-repo/west.
yml when defining hal_nordic there. The value from zephyr/west.yml is ignored entirely. See
Resolving Manifests for troubleshooting advice if this gets confusing in practice.

When you run west update, west will:

• update zephyr’s manifest-rev to point at the v2.0.0 tag

• import zephyr/west.yml at that manifest-rev
• locally check out the v2.0.0 revisions for all zephyr projects except hal_nordic
• update hal_nordic to my-sha instead of another-sha

Option 2: Relative path The import value can also be a relative path to a manifest file or a
directory containing manifest files. The path is relative to the root directory of the projects or
self repository the import key appears in.

Here is an example:

manifest:
projects:
- name: project-1

revision: v1.0
import: west.yml

- name: project-2
revision: main
import: p2-manifests

self:
import: submanifests

This will import the following:

• the contents of project-1/west.yml at manifest-rev, which points at tag v1.0 after run-
ning west update

• any YAML files in the directory tree project-2/p2-manifests at the latest commit in the
main branch, as fetched by west update, sorted by file name

• YAML files in submanifests in your manifest repository, as they appear on your file system,
sorted by file name

Notice how projects imports get data from Git using manifest-rev, while self imports get data
from your file system. This is because as usual, west leaves version control for your manifest
repository up to you.

2.11. West (Zephyr’s meta-tool) 169



Zephyr Project Documentation, Release 3.7.99

Example 2.1: Downstream of a Zephyr release with explicit path This is an explicit way to
write an equivalent manifest to the one in Example 1.1: Downstream of a Zephyr release.

manifest:
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
projects:
- name: zephyr

remote: zephyrproject-rtos
revision: v1.14.1
import: west.yml

The setting import: west.yml means to use the file west.yml inside the zephyr project. This
example is contrived, but shows the idea.

This can be useful in practice when the name of the manifest file you want to import is not west.
yml.

Example 2.2: Downstream with directory of manifest files Your Zephyr downstream has
a lot of additional repositories. So many, in fact, that you want to split them up into multiple
manifest files, but keep track of them all in a single manifest repository, like this:

my-repo/
├── submanifests
│ ├── 01-libraries.yml
│ ├── 02-vendor-hals.yml
│ └── 03-applications.yml
└── west.yml

You want to add all the files in my-repo/submanifests to the main manifest file, my-repo/west.
yml, in addition to projects in zephyr/west.yml. You want to track the latest development code
in the Zephyr repository’s main branch instead of using a fixed revision.

Here’s how:

# my-repo/west.yml:
manifest:
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
projects:
- name: zephyr

remote: zephyrproject-rtos
revision: main
import: true

self:
import: submanifests

Manifest files are imported in this order during resolution:

1. my-repo/submanifests/01-libraries.yml
2. my-repo/submanifests/02-vendor-hals.yml
3. my-repo/submanifests/03-applications.yml
4. my-repo/west.yml
5. zephyr/west.yml
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Note

The .yml file names are prefixed with numbers in this example to make sure they are im-
ported in the specified order.

You can pick arbitrary names. West sorts files in a directory by name before importing.

Notice how the manifests in submanifests are imported before my-repo/west.yml and zephyr/
west.yml. In general, an import in the self section is processed before the manifest files in
projects and the main manifest file.

This means projects defined in my-repo/submanifests take highest precedence. For example,
if 01-libraries.yml defines hal_nordic, the project by the same name in zephyr/west.yml is
simply ignored. As usual, see Resolving Manifests for troubleshooting advice.

This may seem strange, but it allows you to redefine projects “after the fact”, as we’ll see in the
next example.

Example 2.3: Continuous Integration overrides Your continuous integration system needs
to fetch and test multiple repositories in your west workspace from a developer’s forks instead
of your mainline development trees, to see if the changes all work well together.

Starting with Example 2.2: Downstream with directory of manifest files, the CI scripts add a file
00-ci.yml in my-repo/submanifests, with these contents:

# my-repo/submanifests/00-ci.yml:
manifest:
projects:
- name: a-vendor-hal

url: https://github.com/a-developer/hal
revision: a-pull-request-branch

- name: an-application
url: https://github.com/a-developer/application
revision: another-pull-request-branch

The CI scripts run west update after generating this file in my-repo/submanifests. The projects
defined in 00-ci.yml have higher precedence than other definitions in my-repo/submanifests,
because the name 00-ci.yml comes before the other file names.

Thus, west update always checks out the developer’s branches in the projects named
a-vendor-hal and an-application, even if those same projects are also defined elsewhere.

Option 3: Mapping The import key can also contain a mapping with the following keys:

• file: Optional. The name of the manifest file or directory to import. This defaults to west.
yml if not present.

• name-allowlist: Optional. If present, a name or sequence of project names to include.

• path-allowlist: Optional. If present, a path or sequence of project paths to match against.
This is a shell-style globbing pattern, currently implemented with pathlib. Note that this
means case sensitivity is platform specific.

• name-blocklist: Optional. Like name-allowlist, but contains project names to exclude
rather than include.

• path-blocklist: Optional. Like path-allowlist, but contains project paths to exclude
rather than include.
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• path-prefix: Optional (new in v0.8.0). If given, this will be prepended to the project’s path
in the workspace, as well as the paths of any imported projects. This can be used to place
these projects in a subdirectory of the workspace.

Allowlists override blocklists if both are given. For example, if a project is blocked by path, then
allowed by name, it will still be imported.

Example 3.1: Downstream with name allowlist Here is a pair of manifest files, representing
a mainline and a downstream. The downstream doesn’t want to use all the mainline projects,
however. We’ll assume the mainline west.yml is hosted at https://git.example.com/mainline/
manifest.

# mainline west.yml:
manifest:
projects:
- name: mainline-app # included

path: examples/app
url: https://git.example.com/mainline/app

- name: lib
path: libraries/lib
url: https://git.example.com/mainline/lib

- name: lib2 # included
path: libraries/lib2
url: https://git.example.com/mainline/lib2

# downstream west.yml:
manifest:
projects:
- name: mainline

url: https://git.example.com/mainline/manifest
import:
name-allowlist:
- mainline-app
- lib2

- name: downstream-app
url: https://git.example.com/downstream/app

- name: lib3
path: libraries/lib3
url: https://git.example.com/downstream/lib3

An equivalent manifest in a single file would be:

manifest:
projects:
- name: mainline

url: https://git.example.com/mainline/manifest
- name: downstream-app

url: https://git.example.com/downstream/app
- name: lib3

path: libraries/lib3
url: https://git.example.com/downstream/lib3

- name: mainline-app # imported
path: examples/app
url: https://git.example.com/mainline/app

- name: lib2 # imported
path: libraries/lib2
url: https://git.example.com/mainline/lib2

If an allowlist had not been used, the lib project from the mainline manifest would have been
imported.
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Example 3.2: Downstream with path allowlist Here is an example showing how to allowlist
mainline’s libraries only, using path-allowlist.

# mainline west.yml:
manifest:
projects:
- name: app

path: examples/app
url: https://git.example.com/mainline/app

- name: lib
path: libraries/lib # included
url: https://git.example.com/mainline/lib

- name: lib2
path: libraries/lib2 # included
url: https://git.example.com/mainline/lib2

# downstream west.yml:
manifest:
projects:
- name: mainline

url: https://git.example.com/mainline/manifest
import:
path-allowlist: libraries/*

- name: app
url: https://git.example.com/downstream/app

- name: lib3
path: libraries/lib3
url: https://git.example.com/downstream/lib3

An equivalent manifest in a single file would be:

manifest:
projects:
- name: lib # imported

path: libraries/lib
url: https://git.example.com/mainline/lib

- name: lib2 # imported
path: libraries/lib2
url: https://git.example.com/mainline/lib2

- name: mainline
url: https://git.example.com/mainline/manifest

- name: app
url: https://git.example.com/downstream/app

- name: lib3
path: libraries/lib3
url: https://git.example.com/downstream/lib3

Example 3.3: Downstream with path blocklist Here’s an example showing how to block all
vendor HALs from mainline by common path prefix in the workspace, add your own version for
the chip you’re targeting, and keep everything else.

# mainline west.yml:
manifest:
defaults:
remote: mainline

remotes:
- name: mainline

url-base: https://git.example.com/mainline
projects:
- name: app
- name: lib

(continues on next page)
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(continued from previous page)
path: libraries/lib

- name: lib2
path: libraries/lib2

- name: hal_foo
path: modules/hals/foo # excluded

- name: hal_bar
path: modules/hals/bar # excluded

- name: hal_baz
path: modules/hals/baz # excluded

# downstream west.yml:
manifest:
projects:
- name: mainline

url: https://git.example.com/mainline/manifest
import:
path-blocklist: modules/hals/*

- name: hal_foo
path: modules/hals/foo
url: https://git.example.com/downstream/hal_foo

An equivalent manifest in a single file would be:

manifest:
defaults:
remote: mainline

remotes:
- name: mainline

url-base: https://git.example.com/mainline
projects:
- name: app # imported
- name: lib # imported

path: libraries/lib
- name: lib2 # imported

path: libraries/lib2
- name: mainline

repo-path: https://git.example.com/mainline/manifest
- name: hal_foo

path: modules/hals/foo
url: https://git.example.com/downstream/hal_foo

Example 3.4: Import into a subdirectory You want to import a manifest and its projects,
placing everything into a subdirectory of your west workspace.

For example, suppose you want to import this manifest from project foo, adding this project and
its projects bar and baz to your workspace:

# foo/west.yml:
manifest:
defaults:
remote: example

remotes:
- name: example

url-base: https://git.example.com
projects:
- name: bar
- name: baz

Instead of importing these into the top level workspace, you want to place all three project repos-
itories in an external-code subdirectory, like this:
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workspace/
└── external-code/

├── foo/
├── bar/
└── baz/

You can do this using this manifest:

manifest:
projects:
- name: foo

url: https://git.example.com/foo
import:
path-prefix: external-code

An equivalent manifest in a single file would be:

# foo/west.yml:
manifest:
defaults:
remote: example

remotes:
- name: example

url-base: https://git.example.com
projects:
- name: foo

path: external-code/foo
- name: bar

path: external-code/bar
- name: baz

path: external-code/baz

Option 4: Sequence The import key can also contain a sequence of files, directories, and map-
pings.

Example 4.1: Downstreamwith sequence ofmanifest files This example manifest is equiva-
lent to the manifest in Example 2.2: Downstream with directory of manifest files, with a sequence
of explicitly named files.

# my-repo/west.yml:
manifest:
projects:
- name: zephyr

url: https://github.com/zephyrproject-rtos/zephyr
import: west.yml

self:
import:

- submanifests/01-libraries.yml
- submanifests/02-vendor-hals.yml
- submanifests/03-applications.yml

Example 4.2: Import order illustration This more complicated example shows the order that
west imports manifest files:

# my-repo/west.yml
manifest:
# ...

(continues on next page)
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projects:
- name: my-library
- name: my-app
- name: zephyr

import: true
- name: another-manifest-repo

import: submanifests
self:
import:

- submanifests/libraries.yml
- submanifests/vendor-hals.yml
- submanifests/applications.yml

defaults:
remote: my-remote

For this example, west resolves imports in this order:

1. the listed files in my-repo/submanifests are first, in the order they occur (e.g. libraries.
yml comes before applications.yml, since this is a sequence of files), since the self: im-
port: is always imported first

2. my-repo/west.yml is next (with projects my-library etc. as long as they weren’t already
defined somewhere in submanifests)

3. zephyr/west.yml is after that, since that’s the first import key in the projects list in
my-repo/west.yml

4. files in another-manifest-repo/submanifests are last (sorted by file name), since that’s the
final project import

Manifest Import Details This section describes how west resolves a manifest file that uses
import a bit more formally.

Overview The import key can appear in a west manifest’s projects and self sections. The
general case looks like this:

# Top-level manifest file.
manifest:
projects:
- name: foo

import:
... # import-1

- name: bar
import:
... # import-2

# ...
- name: baz

import:
... # import-N

self:
import:

... # self-import

Import keys are optional. If any of import-1, ..., import-N are missing, west will not import
additional manifest data from that project. If self-import is missing, no additional files in the
manifest repository (beyond the top-level file) are imported.

The ultimate outcomes of resolving manifest imports are:

• a projects list, which is produced by combining the projects defined in the top-level file
with those defined in imported files
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• a set of extension commands, which are drawn from the west-commands keys in the top-
level file and any imported files

• a group-filter list, which is produced by combining the top-level and any imported filters

Importing is done in this order:

1. Manifests from self-import are imported first.

2. The top-level manifest file’s definitions are handled next.

3. Manifests from import-1, …, import-N, are imported in that order.

When an individual import key refers to multiple manifest files, they are processed in this order:

• If the value is a relative path naming a directory (or a map whose file is a directory), the
manifest files it contains are processed in lexicographic order – i.e., sorted by file name.

• If the value is a sequence, its elements are recursively imported in the order they appear.

This process recurses if necessary. E.g., if import-1 produces a manifest file that contains an
import key, it is resolved recursively using the same rules before its contents are processed fur-
ther.

The following sections describe these outcomes.

Projects This section describes how the final projects list is created.

Projects are identified by name. If the same name occurs in multiple manifests, the first defini-
tion is used, and subsequent definitions are ignored. For example, if import-1 contains a project
named bar, that is ignored, because the top-level west.yml has already defined a project by that
name.

The contents of files named by import-1 through import-N are imported from Git at the latest
manifest-rev revisions in their projects. These revisions can be updated to the values rev-1
through rev-N by running west update. If any manifest-rev reference is missing or out of date,
west update also fetches project data from the remote fetch URL and updates the reference.

Also note that all imported manifests, from the root manifest to the repository which defines
a project P, must be up to date in order for west to update P itself. For example, this means
west update P would update manifest-rev in the baz project if baz/west.yml defines P, as well
as updating the manifest-rev branch in the local git clone of P. Confusingly, updating baz may
result in the removal of P from baz/west.yml, which “should” cause west update P to fail with
an unrecognized project!

For this reason, it’s not possible to run west update P if P is defined in an imported manifest;
you must update this project along with all the others with a plain west update.

By default, west won’t fetch any project data over the network if a project’s revision is a SHA
or tag which is already available locally, so updating the extra projects shouldn’t take too much
time unless it’s really needed. See the documentation for the update.fetch configuration option
for more information.

Extensions All extension commands defined using west-commands keys discovered while han-
dling imports are available in the resolved manifest.

If an imported manifest file has a west-commands: definition in its self: section, the extension
commands defined there are added to the set of available extensions at the time the manifest is
imported. They will thus take precedence over any extension commands with the same names
added later on.
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Group filters The resolved manifest has a group-filter value which is the result of concate-
nating the group-filter values in the top-level manifest and any imported manifests.

Manifest files which appear earlier in the import order have higher precedence and are therefore
concatenated later into the final group-filter.

In other words, let:

• the submanifest resolved from self-import have group filter self-filter
• the top-level manifest file have group filter top-filter
• the submanifests resolved from import-1 through import-N have group filters filter-1

through filter-N respectively

The final resolved group-filter value is then filterN + ... + filter-2 + filter-1 +
top-filter + self-filter, where + here refers to list concatenation.

Important

The order that filters appear in the above list matters.

The last filter element in the final concatenated list “wins” and determines if the group is
enabled or disabled.

For example, in [-foo] + [+foo], group foo is enabled. However, in [+foo] + [-foo], group foo
is disabled.

For simplicity, west and this documentation may elide concatenated group filter elements which
are redundant using these rules. For example, [+foo] + [-foo] could be written more simply
as [-foo], for the reasons given above. As another example, [-foo] + [+foo] could be written
as the empty list [], since all groups are enabled by default.

Manifest Command

The west manifest command can be used to manipulate manifest files. It takes an action, and
action-specific arguments.

The following sections describe each action and provides a basic signature for simple uses. Run
west manifest --help for full details on all options.

Resolving Manifests The --resolve action outputs a single manifest file equivalent to your
current manifest and all its imported manifests:

west manifest --resolve [-o outfile]

The main use for this action is to see the “final” manifest contents after performing any imports.

To print detailed information about each imported manifest file and how projects are handled
during manifest resolution, set the maximum verbosity level using -v:

west -v manifest --resolve

Freezing Manifests The --freeze action outputs a frozen manifest:

west manifest --freeze [-o outfile]

A “frozen” manifest is a manifest file where every project’s revision is a SHA. You can use
--freeze to produce a frozen manifest that’s equivalent to your current manifest file. The -o
option specifies an output file; if not given, standard output is used.

178 Chapter 2. Developing with Zephyr



Zephyr Project Documentation, Release 3.7.99

Validating Manifests The --validate action either succeeds if the current manifest file is
valid, or fails with an error:

west manifest --validate

The error message can help diagnose errors.

Here, “invalid” means that the syntax of the manifest file doesn’t follow the rules documented
on this page.

If your manifest is valid but it’s not working the way you want it to, turning up the verbosity
with -v is a good way to get detailed information about what decisions west made about your
manifest, and why:

west -v manifest --validate

Get the manifest path The --path action prints the path to the top level manifest file:

west manifest --path

The output is something like /path/to/workspace/west.yml. The path format depends on your
operating system.

2.11.8 Configuration

This page documents west’s configuration file system, the west config command, and configu-
ration options used by built-in commands. For API documentation on the west.configuration
module, see west-apis-configuration.

West Configuration Files

West’s configuration file syntax is INI-like; here is an example file:

[manifest]
path = zephyr

[zephyr]
base = zephyr

Above, the manifest section has option path set to zephyr. Another way to say the same thing is
that manifest.path is zephyr in this file.

There are three types of configuration file:

1. System: Settings in this file affect west’s behavior for every user logged in to the computer.
Its location depends on the platform:

• Linux: /etc/westconfig
• macOS: /usr/local/etc/westconfig
• Windows: %PROGRAMDATA%\west\config

2. Global (per user): Settings in this file affect how west behaves when run by a particular
user on the computer.

• All platforms: the default is .westconfig in the user’s home directory.

• Linux note: if the environment variable XDG_CONFIG_HOME is set, then
$XDG_CONFIG_HOME/west/config is used.
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• Windows note: the following environment variables are tested to find the home direc-
tory: %HOME%, then %USERPROFILE%, then a combination of %HOMEDRIVE% and %HOMEPATH%.

3. Local: Settings in this file affect west’s behavior for the current west workspace. The file is
.west/config, relative to the workspace’s root directory.

A setting in a file which appears lower down on this list overrides an earlier setting. For example,
if color.ui is true in the system’s configuration file, but false in the workspace’s, then the final
value is false. Similarly, settings in the user configuration file override system settings, and so
on.

west config

The built-in config command can be used to get and set configuration values. You can pass west
config the options --system, --global, or --local to specify which configuration file to use.
Only one of these can be used at a time. If none is given, then writes default to --local, and
reads show the final value after applying overrides.

Some examples for common uses follow; run west config -h for detailed help, and see Built-in
Configuration Options for more details on built-in options.

To set manifest.path to some-other-manifest:

west config manifest.path some-other-manifest

Doing the above means that commands like west update will look for the west manifest inside
the some-other-manifest directory (relative to the workspace root directory) instead of the di-
rectory given to west init, so be careful!

To read zephyr.base, the value which will be used as ZEPHYR_BASE if it is unset in the calling
environment (also relative to the workspace root):

west config zephyr.base

You can switch to another zephyr repository without changing manifest.path – and thus the
behavior of commands like west update – using:

west config zephyr.base some-other-zephyr

This can be useful if you use commands like git worktree to create your own zephyr directories,
and want commands like west build to use them instead of the zephyr repository specified in
the manifest. (You can go back to using the directory in the upstream manifest by running west
config zephyr.base zephyr.)

To set color.ui to false in the global (user-wide) configuration file, so that west will no longer
print colored output for that user when run in any workspace:

west config --global color.ui false

To undo the above change:

west config --global color.ui true

Built-in Configuration Options

The following table documents configuration options supported by west’s built-in commands.
Configuration options supported by Zephyr’s extension commands are documented in the pages
for those commands.
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Option Description
color.ui Boolean. If true (the default), then west output is colorized when std-

out is a terminal.
commands.
allow_extensions

Boolean, default true, disables Extensions if false

grep.color String, default empty. Set this to never to disable west grep color out-
put. If set, west grep passes the value to the grep tool’s --color option.

grep.tool String, one of "git-grep" (default), "ripgrep", or "grep". The grep
tool that west grep should use.

grep.<TOOL>-args String, default empty. The <TOOL> part is a pattern that can be any
grep.tool value, so grep.ripgrep-args is an example configuration
option. If set, arguments that west grep should pass to the corre-
sponding grep tool. Run west help grep for details.

grep.<TOOL>-path String, default empty. The <TOOL> part is a pattern that can be any
grep.tool value, so grep.ripgrep-path is an example configuration
option. The path to the corresponding tool that west grep should use
instead of searching for the command. Run west help grep for details.

manifest.file String, default west.yml. Relative path from the manifest repository
root directory to the manifest file used by west init and other com-
mands which parse the manifest.

manifest.
group-filter

String, default empty. A comma-separated list of project groups to en-
able and disable within the workspace. Prefix enabled groups with +
and disabled groups with -. For example, the value "+foo,-bar" en-
ables group foo and disables bar. See Project Groups.

manifest.path String, relative path from the west workspace root directory to the
manifest repository used by west update and other commands which
parse the manifest. Set locally by west init.

manifest.
project-filter

Comma-separated list of strings.
The option’s value is a comma-separated list of regular expressions,
each prefixed with + or -, like this:
+re1,-re2,-re3
Project names are matched against each regular expression (re1, re2,
re3, …) in the list, in order. If the entire project name matches the reg-
ular expression, that element of the list either deactivates or activates
the project. The project is deactivated if the element begins with -.
The project is activated if the element begins with +. (Project names
cannot contain , if this option is used, so the regular expressions do
not need to contain a literal , character.)
If a project’s name matches multiple regular expressions in the list,
the result from the last regular expression is used. For example, if
manifest.project-filter is:
-hal_.*,+hal_foo
Then a project named hal_bar is inactive, but a project named
hal_foo is active.
If a project is made inactive or active by a list element, the project is
active or not regardless of whether any or all of its groups are dis-
abled. (This is currently the only way to make a project that has no
groups inactive.)
Otherwise, i.e. if a project does not match any regular expressions in
the list, it is active or inactive according to the usual rules related to
its groups (see Project Group Examples for examples in that case).
Within an element of a manifest.project-filter list, leading and
trailing whitespace are ignored. That means these example values
are equivalent:
+foo,-bar
+foo , -bar
Any empty elements are ignored. That means these example values
are equivalent:
+foo,,-bar
+foo,-bar

update.fetch String, one of "smart" (the default behavior starting in v0.6.1) or "al-
ways" (the previous behavior). If set to "smart", the west update com-
mand will skip fetching from project remotes when those projects’ re-
visions in the manifest file are SHAs or tags which are already avail-
able locally. The "always" behavior is to unconditionally fetch from
the remote.

update.name-cache String. If non-empty, west update will use its value as the
--name-cache option’s value if not given on the command line.

update.narrow Boolean. If true, west update behaves as if --narrow was given on
the command line. The default is false.

update.path-cache String. If non-empty, west update will use its value as the
--path-cache option’s value if not given on the command line.

update.
sync-submodules

Boolean. If true (the default), west update will synchronize Git sub-
modules before updating them.

zephyr.base String, default value to set for the ZEPHYR_BASE environment variable
while the west command is running. By default, this is set to the path
to the manifest project with path zephyr (if there is one) during west
init. If the variable is already set, then this setting is ignored unless
zephyr.base-prefer is "configfile".

zephyr.base-prefer String, one the values "env" and "configfile". If set to "env" (the
default), setting ZEPHYR_BASE in the calling environment overrides the
value of the zephyr.base configuration option. If set to "configfile",
the configuration option wins instead.
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2.11.9 Extensions

West is “pluggable”: you can add your own commands to west without editing its source code.
These are called west extension commands, or just “extensions” for short. Extensions show
up in the west --help output in a special section for the project which defines them. This page
provides general information on west extension commands, and has a tutorial for writing your
own.

Some commands you can run when using west with Zephyr, like the ones used to build, flash, and
debug and the ones described here , are extensions. That’s why help for them shows up like this
in west --help:

commands from project at "zephyr":
completion: display shell completion scripts
boards: display information about supported boards
build: compile a Zephyr application
sign: sign a Zephyr binary for bootloader chain-loading
flash: flash and run a binary on a board
debug: flash and interactively debug a Zephyr application
debugserver: connect to board and launch a debug server
attach: interactively debug a board

See zephyr/scripts/west-commands.yml and the zephyr/scripts/west_commands directory for
the implementation details.

Disabling Extension Commands

To disable support for extension commands, set the commands.allow_extensions configuration
option to false. To set this globally for whenever you run west, use:

west config --global commands.allow_extensions false

If you want to, you can then re-enable them in a particular west workspace with:

west config --local commands.allow_extensions true

Note that the files containing extension commands are not imported by west unless the com-
mands are explicitly run. See below for details.

Adding a West Extension

There are three steps to adding your own extension:

1. Write the code implementing the command.

2. Add information about it to a west-commands.yml file.

3. Make sure the west-commands.yml file is referenced in the west manifest.

Note that west ignores extension commands whose names are the same as a built-in command.

Step 1: Implement Your Command Create a Python file to contain your command implemen-
tation (see the “Meta > Requires” information on the west PyPI page for details on the currently
supported versions of Python). You can put it in anywhere in any project tracked by your west
manifest, or the manifest repository itself. This file must contain a subclass of the west.commands.
WestCommand class; this class will be instantiated and used when your extension is run.

Here is a basic skeleton you can use to get started. It contains a subclass of WestCommand, with
implementations for all the abstract methods. For more details on the west APIs you can use, see
west-apis.
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'''my_west_extension.py

Basic example of a west extension.'''

from textwrap import dedent # just for nicer code indentation

from west.commands import WestCommand # your extension must subclass this
from west import log # use this for user output

class MyCommand(WestCommand):

def __init__(self):
super().__init__(

'my-command-name', # gets stored as self.name
'one-line help for what my-command-name does', # self.help
# self.description:
dedent('''
A multi-line description of my-command.

You can split this up into multiple paragraphs and they'll get
reflowed for you. You can also pass
formatter_class=argparse.RawDescriptionHelpFormatter when calling
parser_adder.add_parser() below if you want to keep your line
endings.'''))

def do_add_parser(self, parser_adder):
# This is a bit of boilerplate, which allows you full control over the
# type of argparse handling you want. The "parser_adder" argument is
# the return value of an argparse.ArgumentParser.add_subparsers() call.
parser = parser_adder.add_parser(self.name,

help=self.help,
description=self.description)

# Add some example options using the standard argparse module API.
parser.add_argument('-o', '--optional', help='an optional argument')
parser.add_argument('required', help='a required argument')

return parser # gets stored as self.parser

def do_run(self, args, unknown_args):
# This gets called when the user runs the command, e.g.:
#
# $ west my-command-name -o FOO BAR
# --optional is FOO
# required is BAR
log.inf('--optional is', args.optional)
log.inf('required is', args.required)

You can ignore the second argument to do_run() (unknown_args above), as WestCommand will re-
ject unknown arguments by default. If you want to be passed a list of unknown arguments
instead, add accepts_unknown_args=True to the super().__init__() arguments.

Step 2: Add or Update Your west-commands.yml You now need to add a west-commands.yml
file to your project which describes your extension to west.

Here is an example for the above class definition, assuming it’s in my_west_extension.py at the
project root directory:

west-commands:
- file: my_west_extension.py
commands:

(continues on next page)
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(continued from previous page)
- name: my-command-name

class: MyCommand
help: one-line help for what my-command-name does

The top level of this YAML file is a map with a west-commands key. The key’s value is a sequence of
“command descriptors”. Each command descriptor gives the location of a file implementing west
extensions, along with the names of those extensions, and optionally the names of the classes
which define them (if not given, the class value defaults to the same thing as name).

Some information in this file is redundant with definitions in the Python code. This is because
west won’t import my_west_extension.py until the user runs west my-command-name, since:

• It allows users to run west update with a manifest from an untrusted source, then use
other west commands without your code being imported along the way. Since importing a
Python module is shell-equivalent, this provides some peace of mind.

• It’s a small optimization, since your code will only be imported if it is needed.

So, unless your command is explicitly run, west will just load the west-commands.yml file to get
the basic information it needs to display information about your extension to the user in west
--help output, etc.

If you have multiple extensions, or want to split your extensions across multiple files, your
west-commands.yml will look something like this:

west-commands:
- file: my_west_extension.py
commands:

- name: my-command-name
class: MyCommand
help: one-line help for what my-command-name does

- file: another_file.py
commands:

- name: command2
help: another cool west extension

- name: a-third-command
class: ThirdCommand
help: a third command in the same file as command2

Above:

• my_west_extension.py defines extension my-command-name with class MyCommand
• another_file.py defines two extensions:

1. command2 with class command2
2. a-third-command with class ThirdCommand

See the file west-commands-schema.yml in the west repository for a schema describing the con-
tents of a west-commands.yml.

Step 3: Update Your Manifest Finally, you need to specify the location of the west-commands.
yml you just edited in your west manifest. If your extension is in a project, add it like this:

manifest:
# [... other contents ...]

projects:
- name: your-project
west-commands: path/to/west-commands.yml

# [... other projects ...]
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Where path/to/west-commands.yml is relative to the root of the project. Note that the name
west-commands.yml, while encouraged, is just a convention; you can name the file something
else if you need to.

Alternatively, if your extension is in the manifest repository, just do the same thing in the man-
ifest’s self section, like this:

manifest:
# [... other contents ...]

self:
west-commands: path/to/west-commands.yml

That’s it; you can now run west my-command-name. Your command’s name, help, and the project
which contains its code will now also show up in the west --help output. If you share the
updated repositories with others, they’ll be able to use it, too.

2.11.10 Building, Flashing and Debugging

Zephyr provides several west extension commands for building, flashing, and interacting with
Zephyr programs running on a board: build, flash, debug, debugserver and attach.

For information on adding board support for the flashing and debugging commands, see Flash
and debug support in the board porting guide.

Building: west build

Tip

Run west build -h for a quick overview.

The build command helps you build Zephyr applications from source. You can use west config
to configure its behavior.

Its default behavior tries to “do what you mean”:

• If there is a Zephyr build directory named build in your current working directory, it is
incrementally re-compiled. The same is true if you run west build from a Zephyr build
directory.

• Otherwise, if you run west build from a Zephyr application’s source directory and no build
directory is found, a new one is created and the application is compiled in it.

Basics The easiest way to use west build is to go to an application’s root directory (i.e. the
folder containing the application’s CMakeLists.txt) and then run:

west build -b <BOARD>

Where <BOARD> is the name of the board you want to build for. This is exactly the same name
you would supply to CMake if you were to invoke it with: cmake -DBOARD=<BOARD>.

Tip

You can use the west boards command to list all supported boards.

2.11. West (Zephyr’s meta-tool) 185



Zephyr Project Documentation, Release 3.7.99

A build directory named build will be created, and the application will be compiled there after
west build runs CMake to create a build system in that directory. If west build finds an existing
build directory, the application is incrementally re-compiled there without re-running CMake.
You can force CMake to run again with --cmake.

You don’t need to use the --board option if you’ve already got an existing build directory; west
build can figure out the board from the CMake cache. For new builds, the --board option, BOARD
environment variable, or build.board configuration option are checked (in that order).

Sysbuild (multi-domain builds) Sysbuild (System build) can be used to create a multi-domain
build system combining multiple images for a single or multiple boards.

Use --sysbuild to select the Sysbuild (System build) build infrastructure with west build to build
multiple domains.

More detailed information regarding the use of sysbuild can be found in the Sysbuild (System
build) guide.

Tip

The build.sysbuild configuration option can be enabled to tell west build to default build
using sysbuild. --no-sysbuild can be used to disable sysbuild for a specific build.

west build will build all domains through the top-level build folder of the domains specified by
sysbuild.

A single domain from a multi-domain project can be built by using --domain argument.

Examples Here are some west build usage examples, grouped by area.

Forcing CMake to Run Again To force a CMake re-run, use the --cmake (or -c) option:

west build -c

Setting a Default Board To configure west build to build for the reel_board by default:

west config build.board reel_board

(You can use any other board supported by Zephyr here; it doesn’t have to be reel_board.)

Setting Source and Build Directories To set the application source directory explicitly, give
its path as a positional argument:

west build -b <BOARD> path/to/source/directory

To set the build directory explicitly, use --build-dir (or -d):

west build -b <BOARD> --build-dir path/to/build/directory

To change the default build directory from build, use the build.dir-fmt configuration option.
This lets you name build directories using format strings, like this:

west config build.dir-fmt "build/{board}/{app}"

With the above, running west build -b reel_board samples/hello_world will use build direc-
tory build/reel_board/hello_world. See Configuration Options for more details on this option.
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Setting the Build System Target To specify the build system target to run, use --target (or
-t).

For example, on host platforms with QEMU, you can use the run target to build and run the
hello_world sample for the emulated qemu_x86 board in one command:

west build -b qemu_x86 -t run samples/hello_world

As another example, to use -t to list all build system targets:

west build -t help

As a final example, to use -t to run the pristine target, which deletes all the files in the build
directory:

west build -t pristine

Pristine Builds A pristine build directory is essentially a new build directory. All byproducts
from previous builds have been removed.

To force west build make the build directory pristine before re-running CMake to generate a
build system, use the --pristine=always (or -p=always) option.

Giving --pristine or -p without a value has the same effect as giving it the value always. For
example, these commands are equivalent:

west build -p -b reel_board samples/hello_world
west build -p=always -b reel_board samples/hello_world

By default, west buildmakes no attempt to detect if the build directory needs to be made pristine.
This can lead to errors if you do something like try to reuse a build directory for a different
--board.

Using --pristine=auto makes west build detect some of these situations and make the build
directory pristine before trying the build.

Tip

You can run west config build.pristine always to always do a pristine build, or west
config build.pristine never to disable the heuristic. See the west build Configuration
Options for details.

Verbose Builds To print the CMake and compiler commands run by west build, use the global
west verbosity option, -v:

west -v build -b reel_board samples/hello_world

One-Time CMake Arguments To pass additional arguments to the CMake invocation per-
formed by west build, pass them after a -- at the end of the command line.

Important

Passing additional CMake arguments like this forces west build to re-run the CMake build
configuration step, even if a build system has already been generated. This will make incre-
mental builds slower (but still much faster than building from scratch).
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After using -- once to generate the build directory, use west build -d <build-dir> on sub-
sequent runs to do incremental builds.

Alternatively, make your CMake arguments permanent as described in the next section; it
will not slow down incremental builds.

For example, to use the Unix Makefiles CMake generator instead of Ninja (which west build uses
by default), run:

west build -b reel_board -- -G'Unix Makefiles'

To use Unix Makefiles and set CMAKE_VERBOSE_MAKEFILE to ON:

west build -b reel_board -- -G'Unix Makefiles' -DCMAKE_VERBOSE_MAKEFILE=ON

Notice how the -- only appears once, even though multiple CMake arguments are given. All
command-line arguments to west build after a -- are passed to CMake.

To set DTC_OVERLAY_FILE to enable-modem.overlay, using that file as a devicetree overlay:

west build -b reel_board -- -DDTC_OVERLAY_FILE=enable-modem.overlay

To merge the file.conf Kconfig fragment into your build’s .config:

west build -- -DEXTRA_CONF_FILE=file.conf

Permanent CMake Arguments The previous section describes how to add CMake arguments
for a single west build command. If you want to save CMake arguments for west build to
use every time it generates a new build system instead, you should use the build.cmake-args
configuration option. Whenever west build runs CMake to generate a build system, it splits this
option’s value according to shell rules and includes the results in the cmake command line.

Remember that, by default, west build tries to avoid generating a new build system if one is
present in your build directory. Therefore, you need to either delete any existing build directo-
ries or do a pristine build after setting build.cmake-args to make sure it will take effect.

For example, to always enable CMAKE_EXPORT_COMPILE_COMMANDS, you can run:

west config build.cmake-args -- -DCMAKE_EXPORT_COMPILE_COMMANDS=ON

(The extra -- is used to force the rest of the command to be treated as a positional argument.
Without it, west config would treat the -DVAR=VAL syntax as a use of its -D option.)

To enable CMAKE_VERBOSE_MAKEFILE, so CMake always produces a verbose build system:

west config build.cmake-args -- -DCMAKE_VERBOSE_MAKEFILE=ON

To save more than one argument in build.cmake-args, use a single string whose value can be
split into distinct arguments (west build uses the Python function shlex.split() internally to split
the value).

For example, to enable both CMAKE_EXPORT_COMPILE_COMMANDS and CMAKE_VERBOSE_MAKEFILE:

west config build.cmake-args -- "-DCMAKE_EXPORT_COMPILE_COMMANDS=ON -DCMAKE_VERBOSE_
↪→MAKEFILE=ON"

If you want to save your CMake arguments in a separate file instead, you can combine CMake’s
-C <initial-cache> option with build.cmake-args. For instance, another way to set the options
used in the previous example is to create a file named ~/my-cache.cmake with the following
contents:
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set(CMAKE_EXPORT_COMPILE_COMMANDS ON CACHE BOOL "")
set(CMAKE_VERBOSE_MAKEFILE ON CACHE BOOL "")

Then run:

west config build.cmake-args "-C ~/my-cache.cmake"

See the cmake(1) manual page and the set() command documentation for more details.

Build tool arguments Use -o to pass options to the underlying build tool.

This works with both ninja (the default) and make based build systems.

For example, to pass -dexplain to ninja:

west build -o=-dexplain

As another example, to pass --keep-going to make:

west build -o=--keep-going

Note that using -o=--foo instead of -o --foo is required to prevent --foo from being treated as
a west build option.

Build parallelism By default, ninja uses all of your cores to build, while make uses only one.
You can control this explicitly with the -j option supported by both tools.

For example, to build with 4 cores:

west build -o=-j4

The -o option is described further in the previous section.

Build a single domain In a multi-domain build with hello_world and MCUboot, you can use
--domain hello_world to only build this domain:

west build --sysbuild --domain hello_world

The --domain argument can be combined with the --target argument to build the specific target
for the target, for example:

west build --sysbuild --domain hello_world --target help

Use a snippet See Using Snippets.

Configuration Options You can configure west build using these options.
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Option Description
build.board String. If given, this the board used by west build when --board is not

given and BOARD is unset in the environment.
build.board_warn Boolean, default true. If false, disables warnings when west build

can’t figure out the target board.
build.cmake-args String. If present, the value will be split according to shell rules and

passed to CMake whenever a new build system is generated. See Per-
manent CMake Arguments.

build.dir-fmt String, default build. The build folder format string, used by west
whenever it needs to create or locate a build folder. The currently
available arguments are:

• board: The board name
• source_dir: The relative path from the current working direc-

tory to the source directory. If the current working directory is
inside the source directory this will be set to an empty string.

• app: The name of the source directory.

build.generator String, default Ninja. The CMake Generator to use to create a build
system. (To set a generator for a single build, see the above example)

build.guess-dir String, instructs west whether to try to guess what build folder to use
when build.dir-fmt is in use and not enough information is available
to resolve the build folder name. Can take these values:

• never (default): Never try to guess, bail out instead and require
the user to provide a build folder with -d.

• runners: Try to guess the folder when using any of the ‘runner’
commands. These are typically all commands that invoke an ex-
ternal tool, such as flash and debug.

build.pristine String. Controls the way in which west build may clean the build
folder before building. Can take the following values:

• never (default): Never automatically make the build folder pris-
tine.

• auto: west build will automatically make the build folder pris-
tine before building, if a build system is present and the build
would fail otherwise (e.g. the user has specified a different board
or application from the one previously used to make the build di-
rectory).

• always: Always make the build folder pristine before building,
if a build system is present.

build.sysbuild Boolean, default false. If true, build application using the sysbuild
infrastructure.

Flashing: west flash

Tip

Run west flash -h for additional help.

Basics From a Zephyr build directory, re-build the binary and flash it to your board:

west flash

Without options, the behavior is the same as ninja flash (or make flash, etc.).
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To specify the build directory, use --build-dir (or -d):

west flash --build-dir path/to/build/directory

If you don’t specify the build directory, west flash searches for one in build, then the current
working directory. If you set the build.dir-fmt configuration option (see Setting Source and
Build Directories), west flash searches there instead of build.

Choosing a Runner If your board’s Zephyr integration supports flashing with multiple pro-
grams, you can specify which one to use using the --runner (or -r) option. For example, if West
flashes your board with nrfjprog by default, but it also supports JLink, you can override the
default with:

west flash --runner jlink

You can override the default flash runner at build time by using the BOARD_FLASH_RUNNER CMake
variable, and the debug runner with BOARD_DEBUG_RUNNER.

For example:

# Set the default runner to "jlink", overriding the board's
# usual default.
west build [...] -- -DBOARD_FLASH_RUNNER=jlink

See One-Time CMake Arguments and Permanent CMake Arguments for more information on set-
ting CMake arguments.

See Flash and debug runners below for more information on the runner library used by West.
The list of runners which support flashing can be obtained with west flash -H; if run from a
build directory or with --build-dir, this will print additional information on available runners
for your board.

Configuration Overrides The CMake cache contains default values West uses while flashing,
such as where the board directory is on the file system, the path to the zephyr binaries to flash in
several formats, and more. You can override any of this configuration at runtime with additional
options.

For example, to override the HEX file containing the Zephyr image to flash (assuming your run-
ner expects a HEX file), but keep other flash configuration at default values:

west flash --hex-file path/to/some/other.hex

The west flash -h output includes a complete list of overrides supported by all runners.

Runner-Specific Overrides Each runner may support additional options related to flashing.
For example, some runners support an --erase flag, which mass-erases the flash storage on your
board before flashing the Zephyr image.

To view all of the available options for the runners your board supports, as well as their usage
information, use --context (or -H):

west flash --context

Important

Note the capital H in the short option name. This re-runs the build in order to ensure the
information displayed is up to date!
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When running West outside of a build directory, west flash -H just prints a list of runners. You
can use west flash -H -r <runner-name> to print usage information for options supported by
that runner.

For example, to print usage information about the jlink runner:

west flash -H -r jlink

Multi-domain flashing When a Sysbuild (multi-domain builds) folder is detected, then west
flash will flash all domains in the order defined by sysbuild.

It is possible to flash the image from a single domain in a multi-domain project by using --domain.

For example, in a multi-domain build with hello_world and MCUboot, you can use the --domain
hello_world domain to only flash only the image from this domain:

west flash --domain hello_world

Debugging: west debug, west debugserver

Tip

Run west debug -h or west debugserver -h for additional help.

Basics From a Zephyr build directory, to attach a debugger to your board and open up a debug
console (e.g. a GDB session):

west debug

To attach a debugger to your board and open up a local network port you can connect a debugger
to (e.g. an IDE debugger):

west debugserver

Without options, the behavior is the same as ninja debug and ninja debugserver (or make debug,
etc.).

To specify the build directory, use --build-dir (or -d):

west debug --build-dir path/to/build/directory
west debugserver --build-dir path/to/build/directory

If you don’t specify the build directory, these commands search for one in build, then the current
working directory. If you set the build.dir-fmt configuration option (see Setting Source and
Build Directories), west debug searches there instead of build.

Choosing a Runner If your board’s Zephyr integration supports debugging with multiple pro-
grams, you can specify which one to use using the --runner (or -r) option. For example, if West
debugs your board with pyocd-gdbserver by default, but it also supports JLink, you can override
the default with:

west debug --runner jlink
west debugserver --runner jlink

See Flash and debug runners below for more information on the runner library used by West.
The list of runners which support debugging can be obtained with west debug -H; if run from a
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build directory or with --build-dir, this will print additional information on available runners
for your board.

Configuration Overrides The CMake cache contains default values West uses for debugging,
such as where the board directory is on the file system, the path to the zephyr binaries containing
symbol tables, and more. You can override any of this configuration at runtime with additional
options.

For example, to override the ELF file containing the Zephyr binary and symbol tables (assuming
your runner expects an ELF file), but keep other debug configuration at default values:

west debug --elf-file path/to/some/other.elf
west debugserver --elf-file path/to/some/other.elf

The west debug -h output includes a complete list of overrides supported by all runners.

Runner-SpecificOverrides Each runner may support additional options related to debugging.
For example, some runners support flags which allow you to set the network ports used by debug
servers.

To view all of the available options for the runners your board supports, as well as their usage
information, use --context (or -H):

west debug --context

(The command west debugserver --context will print the same output.)

Important

Note the capital H in the short option name. This re-runs the build in order to ensure the
information displayed is up to date!

When running West outside of a build directory, west debug -H just prints a list of runners. You
can use west debug -H -r <runner-name> to print usage information for options supported by
that runner.

For example, to print usage information about the jlink runner:

west debug -H -r jlink

Multi-domain debugging west debug can only debug a single domain at a time. When a Sys-
build (multi-domain builds) folder is detected, west debug will debug the default domain speci-
fied by sysbuild.

The default domain will be the application given as the source directory. See the following ex-
ample:

west build --sysbuild path/to/source/directory

For example, when building hello_world with MCUboot using sysbuild, hello_world becomes
the default domain:

west build --sysbuild samples/hello_world

So to debug hello_world you can do:

west debug
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or:

west debug --domain hello_world

If you wish to debug MCUboot, you must explicitly specify MCUboot as the domain to debug:

west debug --domain mcuboot

Flash and debug runners

The flash and debug commands use Python wrappers around various Flash & Debug Host Tools.
These wrappers are all defined in a Python library at scripts/west_commands/runners. Each
wrapper is called a runner. Runners can flash and/or debug Zephyr programs.

The central abstraction within this library is ZephyrBinaryRunner, an abstract class which rep-
resents runners. The set of available runners is determined by the imported subclasses of
ZephyrBinaryRunner. ZephyrBinaryRunner is available in the runners.core module; individual
runner implementations are in other submodules, such as runners.nrfjprog, runners.openocd,
etc.

Running Robot Framework tests: west robot

Tip

Run west robot -h for additional help.

Basics Currently the command supports only one runner which is using renode-test, (essen-
tially a wrapper for running Robot tests in Renode), but can be easily extended by adding other
runners.

From a Zephyr build directory, to run a Robot test suite:

west robot --runner=renode-robot --testsuite path/to/testsuite.robot

This will run all tests from testsuite.robot and print output provided by Robot Framework.

To pass additional parameters to Renode use --renode-robot-args switch. For example to show
Renode logs in addition to Robot Framework’s output:

west robot –runner=renode-robot –testsuite path/to/testsuite.robot –renode-robot-
arg=”–show-log”

Runner-Specific Overrides To view all of the available options for the Robot runners your
board supports, as well as their usage information, use --context (or -H):

west robot --runner=renode-robot --context

To view all available options “renode-test” runner supports, use:

west robot --runner=renode-robot --renode-robot-help

Simulating a board with: west simulate

Basics Currently the command supports only one runner which is using Renode, but can be
easily extended by adding other runners.
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From a Zephyr build directory, to run the built binary:

west simulate --runner=renode

This will start Renode and configure simulation based on a default .resc script for the current
platform with the zephyr.elf file loaded by default. The simulation then can be started by typing
“start” or “s” in Renode’s Monitor. This can also be done by passing a command to Renode, using
an argument provided by the runner:

west simulate –runner=renode –renode-command start

To pass an argument to Renode itself, for example to start Renode in console mode instead of a
separate window:

west simulate –runner=renode –renode-arg=”–console”

From that point on Renode can be used normally in both console and window modes. For details
on using Renode see Renode - documentation.

Runner-Specific Overrides To view all of the available options supported by the runners, as
well as their usage information, use --context (or“-H“):

west simulate --runner=renode --context

To view all available options Renode supports, use:

west simulate --runner=renode --renode-help

Hacking

This section documents the runners.core module used by the flash and debug commands. This
is the core abstraction used to implement support for these features.

Warning

These APIs are provided for reference, but they are more “shared code” used to implement
multiple extension commands than a stable API.

Developers can add support for new ways to flash and debug Zephyr programs by implementing
additional runners. To get this support into upstream Zephyr, the runner should be added into
a new or existing runners module, and imported from runners/__init__.py.

Note

The test cases in scripts/west_commands/tests add unit test coverage for the runners package
and individual runner classes.

Please try to add tests when adding new runners. Note that if your changes break existing
test cases, CI testing on upstream pull requests will fail.

Zephyr binary runner core interfaces

This provides the core ZephyrBinaryRunner class meant for public use, as well as some other
helpers for concrete runner classes.
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class runners.core.BuildConfiguration(build_dir: str)
This helper class provides access to build-time configuration.

Configuration options can be read as if the object were a dict, either object[‘CONFIG_FOO’]
or object.get(‘CONFIG_FOO’).

Kconfig configuration values are available (parsed from .config).

getboolean(option)
If a boolean option is explicitly set to y or n, returns its value. Otherwise, falls back to
False.

class runners.core.DeprecatedAction(option_strings, dest, nargs=None, const=None,
default=None, type=None, choices=None,
required=False, help=None, metavar=None)

class runners.core.FileType(value, names=<not given>, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

exception runners.core.MissingProgram(program)
FileNotFoundError subclass for missing program dependencies.

No significant changes from the parent FileNotFoundError; this is useful for explicitly sig-
naling that the file in question is a program that some class requires to proceed.

The filename attribute contains the missing program.

class runners.core.NetworkPortHelper
Helper class for dealing with local IP network ports.

get_unused_ports(starting_from)
Find unused network ports, starting at given values.

starting_from is an iterable of ports the caller would like to use.

The return value is an iterable of ports, in the same order, using the given values if
they were unused, or the next sequentially available unused port otherwise.

Ports may be bound between this call’s check and actual usage, so callers still need to
handle errors involving returned ports.

class runners.core.RunnerCaps(commands: ~typing.Set[str] = <factory>, dev_id: bool = False,
flash_addr: bool = False, erase: bool = False, reset: bool =
False, extload: bool = False, tool_opt: bool = False, file: bool =
False, hide_load_files: bool = False)

This class represents a runner class’s capabilities.

Each capability is represented as an attribute with the same name. Flag attributes are True
or False.

Available capabilities:

• commands: set of supported commands; default is {‘flash’, ‘debug’, ‘debugserver’, ‘at-
tach’, ‘simulate’, ‘robot’}.

• dev_id: whether the runner supports device identifiers, in the form of an -i, –dev-id
option. This is useful when the user has multiple debuggers connected to a single com-
puter, in order to select which one will be used with the command provided.

• flash_addr: whether the runner supports flashing to an arbitrary address. Default is
False. If true, the runner must honor the –dt-flash option.

• erase: whether the runner supports an –erase option, which does a mass-erase of the
entire addressable flash on the target before flashing. On multi-core SoCs, this may
only erase portions of flash specific the actual target core. (This option can be useful
for things like clearing out old settings values or other subsystem state that may affect
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the behavior of the zephyr image. It is also sometimes needed by SoCs which have
flash-like areas that can’t be sector erased by the underlying tool before flashing; UICR
on nRF SoCs is one example.)

• reset: whether the runner supports a –reset option, which resets the device after a
flash operation is complete.

• extload: whether the runner supports a –extload option, which must be given one time
and is passed on to the underlying tool that the runner wraps.

• tool_opt: whether the runner supports a –tool-opt (-O) option, which can be given mul-
tiple times and is passed on to the underlying tool that the runner wraps.

• file: whether the runner supports a –file option, which specifies exactly the file that
should be used to flash, overriding any default discovered in the build directory.

• hide_load_files: whether the elf/hex/bin file arguments should be hidden.

class runners.core.RunnerConfig(build_dir: str, board_dir: str, elf_file: str | None, exe_file: str
| None, hex_file: str | None, bin_file: str | None, uf2_file: str
| None, file: str | None, file_type: FileType | None =
FileType.OTHER, gdb: str | None = None, openocd: str |
None = None, openocd_search: List[str] = [])

Runner execution-time configuration.

This is a common object shared by all runners. Individual runners can register specific
configuration options using their do_add_parser() hooks.

bin_file: str | None
Alias for field number 5

board_dir: str
Alias for field number 1

build_dir: str
Alias for field number 0

elf_file: str | None
Alias for field number 2

exe_file: str | None
Alias for field number 3

file: str | None
Alias for field number 7

file_type: FileType | None
Alias for field number 8

gdb: str | None
Alias for field number 9

hex_file: str | None
Alias for field number 4

openocd: str | None
Alias for field number 10

openocd_search: List[str]
Alias for field number 11

uf2_file: str | None
Alias for field number 6
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class runners.core.SysbuildConfiguration(build_dir: str)
This helper class provides access to sysbuild-time configuration.

Configuration options can be read as if the object were a dict, either ob-
ject[‘SB_CONFIG_FOO’] or object.get(‘SB_CONFIG_FOO’).

Kconfig configuration values are available (parsed from .config).

class runners.core.ZephyrBinaryRunner(cfg: RunnerConfig)
Abstract superclass for binary runners (flashers, debuggers).

Note: this class’s API has changed relatively rarely since it as added, but it is not considered
a stable Zephyr API, and may change without notice.

With some exceptions, boards supported by Zephyr must provide generic means to be
flashed (have a Zephyr firmware binary permanently installed on the device for running)
and debugged (have a breakpoint debugger and program loader on a host workstation at-
tached to a running target).

This is supported by four top-level commands managed by the Zephyr build system:

• ‘flash’: flash a previously configured binary to the board, start execution on the target,
then return.

• ‘debug’: connect to the board via a debugging protocol, program the flash, then drop
the user into a debugger interface with symbol tables loaded from the current binary,
and block until it exits.

• ‘debugserver’: connect via a board-specific debugging protocol, then reset and halt the
target. Ensure the user is now able to connect to a debug server with symbol tables
loaded from the binary.

• ‘attach’: connect to the board via a debugging protocol, then drop the user into a de-
bugger interface with symbol tables loaded from the current binary, and block until it
exits. Unlike ‘debug’, this command does not program the flash.

This class provides an API for these commands. Every subclass is called a ‘runner’ for short.
Each runner has a name (like ‘pyocd’), and declares commands it can handle (like ‘flash’).
Boards (like ‘nrf52dk/nrf52832’) declare which runner(s) are compatible with them to the
Zephyr build system, along with information on how to configure the runner to work with
the board.

The build system will then place enough information in the build directory to create and
use runners with this class’s create() method, which provides a command line argument
parsing API. You can also create runners by instantiating subclasses directly.

In order to define your own runner, you need to:

1. Define a ZephyrBinaryRunner subclass, and implement its abstract methods. You may
need to override capabilities().

2. Make sure the Python module defining your runner class is imported, e.g. by editing
this package’s __init__.py (otherwise, get_runners() won’t work).

3. Give your runner’s name to the Zephyr build system in your board’s board.cmake.

Additional advice:

• If you need to import any non-standard-library modules, make sure to catch ImportEr-
ror and defer complaints about it to a RuntimeError if one is missing. This avoids
affecting users that don’t require your runner, while still making it clear what went
wrong to users that do require it that don’t have the necessary modules installed.

• If you need to ask the user something (e.g. using input()), do it in your create() class-
method, not do_run(). That ensures your __init__() really has everything it needs to call
do_run(), and also avoids calling input() when not instantiating within a command line
application.
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• Use self.logger to log messages using the standard library’s logging API; your logger is
named “runner.<your-runner-name()>”

For command-line invocation from the Zephyr build system, runners define their
own argparse-based interface through the common add_parser() (and runner-specific
do_add_parser() it delegates to), and provide a way to create instances of themselves from
a RunnerConfig and parsed runner-specific arguments via create().

Runners use a variety of host tools and configuration values, the user interface to which is
abstracted by this class. Each runner subclass should take any values it needs to execute
one of these commands in its constructor. The actual command execution is handled in the
run() method.

classmethod add_parser(parser)
Adds a sub-command parser for this runner.

The given object, parser, is a sub-command parser from the argparse module. For more
details, refer to the documentation for argparse.ArgumentParser.add_subparsers().

The lone common optional argument is:

• –dt-flash (if the runner capabilities includes flash_addr)

Runner-specific options are added through the do_add_parser() hook.

property build_conf: BuildConfiguration
Get a BuildConfiguration for the build directory.

call(cmd: List[str], **kwargs)→ int
Subclass subprocess.call() wrapper.

Subclasses should use this method to run command in a subprocess and get its return
code, rather than using subprocess directly, to keep accurate debug logs.

classmethod capabilities()→ RunnerCaps
Returns a RunnerCaps representing this runner’s capabilities.

This implementation returns the default capabilities.

Subclasses should override appropriately if needed.

cfg
RunnerConfig for this instance.

check_call(cmd: List[str], **kwargs)
Subclass subprocess.check_call() wrapper.

Subclasses should use this method to run command in a subprocess and check that it
executed correctly, rather than using subprocess directly, to keep accurate debug logs.

check_output(cmd: List[str], **kwargs)→ bytes
Subclass subprocess.check_output() wrapper.

Subclasses should use this method to run command in a subprocess and check that it
executed correctly, rather than using subprocess directly, to keep accurate debug logs.

classmethod create(cfg: RunnerConfig, args: Namespace)→ ZephyrBinaryRunner
Create an instance from command-line arguments.

• cfg: runner configuration (pass to superclass __init__)

• args: arguments parsed from execution environment, as specified by
add_parser().

classmethod dev_id_help()→ str
Get the ArgParse help text for the –dev-id option.
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abstract classmethod do_add_parser(parser)
Hook for adding runner-specific options.

abstract classmethod do_create(cfg: RunnerConfig, args: Namespace)→
ZephyrBinaryRunner

Hook for instance creation from command line arguments.

abstract do_run(command: str, **kwargs)
Concrete runner; run() delegates to this. Implement in subclasses.

In case of an unsupported command, raise a ValueError.

ensure_output(output_type: str)→ None
Ensure self.cfg has a particular output artifact.

For example, ensure_output(‘bin’) ensures that self.cfg.bin_file refers to an existing file.
Errors out if it’s missing or undefined.

Parameters
output_type – string naming the output type

classmethod extload_help()→ str
Get the ArgParse help text for the –extload option.

static flash_address_from_build_conf(build_conf: BuildConfiguration)
If CONFIG_HAS_FLASH_LOAD_OFFSET is n in build_conf, return
the CONFIG_FLASH_BASE_ADDRESS value. Otherwise, return CON-
FIG_FLASH_BASE_ADDRESS + CONFIG_FLASH_LOAD_OFFSET.

static get_flash_address(args: Namespace, build_conf: BuildConfiguration, default: int
= 0)→ int

Helper method for extracting a flash address.

If args.dt_flash is true, returns the address obtained from ZephyrBinaryRun-
ner.flash_address_from_build_conf(build_conf).

Otherwise (when args.dt_flash is False), the default value is returned.

static get_runners()→ List[Type[ZephyrBinaryRunner]]
Get a list of all currently defined runner classes.

logger
logging.Logger for this instance.

abstract classmethod name()→ str
Return this runner’s user-visible name.

When choosing a name, pick something short and lowercase, based on the name of the
tool (like openocd, jlink, etc.) or the target architecture/board (like xtensa etc.).

popen_ignore_int(cmd: List[str], **kwargs)→ Popen
Spawn a child command, ensuring it ignores SIGINT.

The returned subprocess.Popen object must be manually terminated.

static require(program: str, path: str | None = None)→ str
Require that a program is installed before proceeding.

Parameters
• program – name of the program that is required, or path to a program

binary.

• path – PATH where to search for the program binary. By default check
on the system PATH.
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If program is an absolute path to an existing program binary, this call succeeds. Oth-
erwise, try to find the program by name on the system PATH or in the given PATH, if
provided.

If the program can be found, its path is returned. Otherwise, raises MissingProgram.

run(command: str, **kwargs)
Runs command (‘flash’, ‘debug’, ‘debugserver’, ‘attach’).

This is the main entry point to this runner.

run_client(client, **kwargs)
Run a client that handles SIGINT.

run_server_and_client(server, client, **kwargs)
Run a server that ignores SIGINT, and a client that handles it.

This routine portably:

• creates a Popen object for the server command which ignores SIGINT

• runs client in a subprocess while temporarily ignoring SIGINT

• cleans up the server after the client exits.

• the keyword arguments, if any, will be passed down to both server and client sub-
process calls

It’s useful to e.g. open a GDB server and client.

property sysbuild_conf: SysbuildConfiguration
Get a SysbuildConfiguration for the sysbuild directory.

property thread_info_enabled: bool
Returns True if self.build_conf has CONFIG_DEBUG_THREAD_INFO enabled.

classmethod tool_opt_help()→ str
Get the ArgParse help text for the –tool-opt option.

Doing it By Hand

If you prefer not to use West to flash or debug your board, simply inspect the build directory for
the binaries output by the build system. These will be named something like zephyr/zephyr.elf,
zephyr/zephyr.hex, etc., depending on your board’s build system integration. These binaries
may be flashed to a board using alternative tools of your choice, or used for debugging as needed,
e.g. as a source of symbol tables.

By default, these West commands rebuild binaries before flashing and debugging. This can of
course also be accomplished using the usual targets provided by Zephyr’s build system (in fact,
that’s how these commands do it).

2.11.11 Signing Binaries

The west sign extension command can be used to sign a Zephyr application binary for con-
sumption by a bootloader using an external tool. In some configurations, west sign is also used
to invoke an external, post-processing tool that “stitches” the final components of the image to-
gether. Run west sign -h for command line help.
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MCUboot / imgtool

The Zephyr build system has special support for signing binaries for use with the MCUboot boot-
loader using the imgtool program provided by its developers. You can both build and sign this
type of application binary in one step by setting some Kconfig options. If you do, west flash will
use the signed binaries.

If you use this feature, you don’t need to run west sign yourself; the build system will do it for
you.

Here is an example workflow, which builds and flashes MCUboot, as well as the hello_world
application for chain-loading by MCUboot. Run these commands from the zephyrproject
workspace you created in the Getting Started Guide.

west build -b YOUR_BOARD bootloader/mcuboot/boot/zephyr -d build-mcuboot
west build -b YOUR_BOARD zephyr/samples/hello_world -d build-hello-signed -- \

-DCONFIG_BOOTLOADER_MCUBOOT=y \
-DCONFIG_MCUBOOT_SIGNATURE_KEY_FILE=\"bootloader/mcuboot/root-rsa-2048.pem\"

west flash -d build-mcuboot
west flash -d build-hello-signed

Notes on the above commands:

• YOUR_BOARD should be changed to match your board

• The CONFIG_MCUBOOT_SIGNATURE_KEY_FILE value is the insecure default provided and used
by MCUboot for development and testing

• You can change the hello_world application directory to any other application that can be
loaded by MCUboot, such as the smp-svr sample.

For more information on these and other related configuration options, see:

• CONFIG_BOOTLOADER_MCUBOOT: build the application for loading by MCUboot

• CONFIG_MCUBOOT_SIGNATURE_KEY_FILE: the key file to use with west sign. If you have your
own key, change this appropriately

• CONFIG_MCUBOOT_EXTRA_IMGTOOL_ARGS: optional additional command line arguments for
imgtool

• CONFIG_MCUBOOT_GENERATE_CONFIRMED_IMAGE: also generate a confirmed image, which may
be more useful for flashing in production environments than the OTA-able default image

• On Windows, if you get “Access denied” issues, the recommended fix is to run pip3 install
imgtool, then retry with a pristine build directory.

If your west flash runner uses an image format supported by imgtool, you should see something
like this on your device’s serial console when you run west flash -d build-mcuboot:

*** Booting Zephyr OS build zephyr-v2.3.0-2310-gcebac69c8ae1 ***
[00:00:00.004,669] <inf> mcuboot: Starting bootloader
[00:00:00.011,169] <inf> mcuboot: Primary image: magic=unset, swap_type=0x1, copy_done=0x3,␣
↪→image_ok=0x3
[00:00:00.021,636] <inf> mcuboot: Boot source: none
[00:00:00.027,313] <wrn> mcuboot: Failed reading image headers; Image=0
[00:00:00.035,064] <err> mcuboot: Unable to find bootable image

Then, you should see something like this when you run west flash -d build-hello-signed:

*** Booting Zephyr OS build zephyr-v2.3.0-2310-gcebac69c8ae1 ***
[00:00:00.004,669] <inf> mcuboot: Starting bootloader
[00:00:00.011,169] <inf> mcuboot: Primary image: magic=unset, swap_type=0x1, copy_done=0x3,␣
↪→image_ok=0x3

(continues on next page)
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(continued from previous page)
[00:00:00.021,636] <inf> mcuboot: Boot source: none
[00:00:00.027,374] <inf> mcuboot: Swap type: none
[00:00:00.115,142] <inf> mcuboot: Bootloader chainload address offset: 0xc000
[00:00:00.123,168] <inf> mcuboot: Jumping to the first image slot
*** Booting Zephyr OS build zephyr-v2.3.0-2310-gcebac69c8ae1 ***
Hello World! nrf52840dk_nrf52840

Whether west flash supports this feature depends on your runner. The nrfjprog and pyocd
runners work with the above flow. If your runner does not support this flow and you would like
it to, please send a patch or file an issue for adding support.

Extending signing externally

The signing script used when running west flash can be extended or replaced to change features
or introduce different signing mechanisms. By default with MCUboot enabled, signing is setup
by the cmake/mcuboot.cmakefile in Zephyr which adds extra post build commands for generating
the signed images. The file used for signing can be replaced from a sysbuild scope (if being used)
or from a zephyr/zephyr module scope, the priority of which is:

• Sysbuild

• Zephyr property

• Default MCUboot script (if enabled)

From sysbuild, -D<target>_SIGNING_SCRIPT can be used to set a signing script for a specific im-
age or -DSIGNING_SCRIPT can be used to set a signing script for all images, for example:

west build -b <board> <application> -DSIGNING_SCRIPT=<file>

The zephyr property method is achieved by adjusting the SIGNING_SCRIPT property on the
zephyr_property_target, ideally from by a module by using:

if(CONFIG_BOOTLOADER_MCUBOOT)
set_target_properties(zephyr_property_target PROPERTIES SIGNING_SCRIPT ${CMAKE_CURRENT_

↪→LIST_DIR}/custom_signing.cmake)
endif()

This will include the custom signing CMake file instead of the default Zephyr one when projects
are built with MCUboot signing support enabled. The base Zephyr MCUboot signing file can be
used as a reference for creating a new signing system or extending the default behaviour.

rimage

rimage configuration uses a different approach that does not rely on Kconfig or CMake but on
west config instead, similar to Permanent CMake Arguments.

Signing involves a number of “wrapper” scripts stacked on top of each other: west flash invokes
west build which invokes cmake and ninja which invokes west sign which invokes imgtool or
rimage. As long as the signing parameters desired are the default ones and fairly static, these
indirections are not a problem. On the other hand, passing imgtool or rimage options through all
these layers can causes issues typical when the layers don’t abstract anything. First, this usually
requires boilerplate code in each layer. Quoting whitespace or other special characters through
all the wrappers can be difficult. Reproducing a lower west sign command to debug some build-
time issue can be very time-consuming: it requires at least enabling and searching verbose build
logs to find which exact options were used. Copying these options from the build logs can be
unreliable: it may produce different results because of subtle environment differences. Last
and worst: new signing feature and options are impossible to use until more boilerplate code
has been added in each layer.
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To avoid these issues, rimage parameters can bet set in west config instead. Here’s a workspace/
.west/config example:

[sign]
# Not needed when invoked from CMake
tool = rimage

[rimage]
# Quoting is optional and works like in Unix shells
# Not needed when rimage can be found in the default PATH
path = "/home/me/zworkspace/build-rimage/rimage"

# Not needed when using the default development key
extra-args = -i 4 -k 'keys/key argument with space.pem'

In order to support quoting, values are parsed by Python’s shlex.split() like inOne-Time CMake
Arguments.

The extra-args are passed directly to the rimage command. The example above has the same
effect as appending them on command line after -- like this: west sign --tool rimage -- -i 4
-k 'keys/key argument with space.pem'. In case both are used, the command-line arguments
go last.

2.11.12 Additional Zephyr extension commands

This page documents miscellaneous Zephyr Extensions.

Listing boards: west boards

The boards command can be used to list the boards that are supported by Zephyr without having
to resort to additional sources of information.

It can be run by typing:

west boards

This command lists all supported boards in a default format. If you prefer to specify the display
format yourself you can use the --format (or -f) flag:

west boards -f "{arch}:{name}"

Additional help about the formatting options can be found by running:

west boards -h

Shell completion scripts: west completion

The completion extension command outputs shell completion scripts that can then be used di-
rectly to enable shell completion for the supported shells.

It currently supports the following shells:

• bash

• zsh

• fish

Additional instructions are available in the command’s help:
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west help completion

Installing CMake packages: west zephyr-export

This command registers the current Zephyr installation as a CMake config package in the CMake
user package registry.

In Windows, the CMake user package registry is found in HKEY_CURRENT_USER\Software\
Kitware\CMake\Packages.

In Linux and MacOS, the CMake user package registry is found in. ~/.cmake/packages.

You may run this command when setting up a Zephyr workspace. If you do, application CMake-
Lists.txt files that are outside of your workspace will be able to find the Zephyr repository with
the following:

find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})

See share/zephyr-package/cmake for details.

Software bill of materials: west spdx

This command generates SPDX 2.3 tag-value documents, creating relationships from source files
to the corresponding generated build files. SPDX-License-Identifier comments in source files
are scanned and filled into the SPDX documents.

To use this command:

1. Pre-populate a build directory BUILD_DIR like this:

west spdx --init -d BUILD_DIR

This step ensures the build directory contains CMake metadata required for SPDX docu-
ment generation.

2. Enable CONFIG_BUILD_OUTPUT_META in your project.

3. Build your application using this pre-created build directory, like so:

west build -d BUILD_DIR [...]

4. Generate SPDX documents using this build directory:

west spdx -d BUILD_DIR

This generates the following SPDX bill-of-materials (BOM) documents in BUILD_DIR/spdx/:

• app.spdx: BOM for the application source files used for the build

• zephyr.spdx: BOM for the specific Zephyr source code files used for the build

• build.spdx: BOM for the built output files

• modules-deps.spdx: BOM for modules dependencies. Check modules for more details.

Each file in the bill-of-materials is scanned, so that its hashes (SHA256 and SHA1) can be recorded,
along with any detected licenses if an SPDX-License-Identifier comment appears in the file.

SPDX Relationships are created to indicate dependencies between CMake build targets, build
targets that are linked together, and source files that are compiled to generate the built library
files.

west spdx accepts these additional options:
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• -n PREFIX: a prefix for the Document Namespaces that will be included in the generated
SPDX documents. See SPDX specification clause 6 for details. If -n is omitted, a default
namespace will be generated according to the default format described in section 2.5 using
a random UUID.

• -s SPDX_DIR: specifies an alternate directory where the SPDX documents should be written
instead of BUILD_DIR/spdx/.

• --analyze-includes: in addition to recording the compiled source code files (e.g. .c, .S) in
the bills-of-materials, also attempt to determine the specific header files that are included
for each .c file.

This takes longer, as it performs a dry run using the C compiler for each .c file using the
same arguments that were passed to it for the actual build.

• --include-sdk: with --analyze-includes, also create a fourth SPDX document, sdk.spdx,
which lists header files included from the SDK.

Working with binary blobs: west blobs

The blobs command allows users to interact with binary blobs declared in one or more modules
via their module.yml file.

The blobs command has three sub-commands, used to list, fetch or clean (i.e. delete) the binary
blobs themselves.

You can list binary blobs while specifying the format of the output:

west blobs list -f '{module}: {type} {path}'

For the full set of variables available in -f/--format run west blobs -h.

Fetching blobs works in a similar manner:

west blobs fetch

Note that, as described in the modules section, fetched blobs are stored in a zephyr/blobs/ folder
relative to the root of the corresponding module repository.

As does deleting them:

west blobs clean

Additionally the tool allows you to specify the modules you want to list, fetch or clean blobs for
by typing the module names as a command-line parameter.

Twister wrapper: west twister

This command is a wrapper for twister.

Twister can then be invoked via west as follows:

west twister -help
west twister -T tests/ztest/base

Working with binary descriptors: west bindesc

The bindesc command allows users to read binary descriptors of executable files. It currently
supports .bin, .hex, .elf and .uf2 files as input.

You can search for a specific descriptor in an image, for example:
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west bindesc search KERNEL_VERSION_STRING build/zephyr/zephyr.bin

You can search for a custom descriptor by type and ID, for example:

west bindesc custom_search STR 0x200 build/zephyr/zephyr.bin

You can dump all of the descriptors in an image using:

west bindesc dump build/zephyr/zephyr.bin

You can list all known standard descriptor names using:

west bindesc list

2.11.13 History and Motivation

West was added to the Zephyr project to fulfill two fundamental requirements:

• The ability to work with multiple Git repositories

• The ability to provide an extensible and user-friendly command-line interface for basic
Zephyr workflows

During the development of west, a set of Design Constraints were identified to avoid the common
pitfalls of tools of this kind.

Requirements

Although the motivation behind splitting the Zephyr codebase into multiple repositories is out-
side of the scope of this page, the fundamental requirements, along with a clear justification of
the choice not to use existing tools and instead develop a new one, do belong here.

The basic requirements are:

• R1: Keep externally maintained code in separately maintained repositories outside of the
main zephyr repository, without requiring users to manually clone each of the external
repositories

• R2: Provide a tool that both Zephyr users and distributors can make use of to benefit from
and extend

• R3: Allow users and downstream distributions to override or remove repositories without
having to make changes to the zephyr repository

• R4: Support both continuous tracking and commit-based (bisectable) project updating

Rationale for a custom tool

Some of west’s features are similar to those provided by Git Submodules and Google’s repo.

Existing tools were considered during west’s initial design and development. None were found
suitable for Zephyr’s requirements. In particular, these were examined in detail:

• Google repo

– Does not cleanly support using zephyr as the manifest repository (R4)

– Python 2 only

– Does not play well with Windows

– Assumes Gerrit is used for code review
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• Git submodules

– Does not fully supportR1, since the externally maintained repositories would still need
to be inside the main zephyr Git tree

– Does not support R3, since downstream copies would need to either delete or replace
submodule definitions

– Does not support continuous tracking of the latest HEAD in external repositories (R4)

– Requires hardcoding of the paths/locations of the external repositories

Multiple Git Repositories

Zephyr intends to provide all required building blocks needed to deploy complex IoT applica-
tions. This in turn means that the Zephyr project is much more than an RTOS kernel, and is
instead a collection of components that work together. In this context, there are a few reasons
to work with multiple Git repositories in a standardized manner within the project:

• Clean separation of Zephyr original code and imported projects and libraries

• Avoidance of license incompatibilities between original and imported code

• Reduction in size and scope of the core Zephyr codebase, with additional repositories con-
taining optional components instead of being imported directly into the tree

• Safety and security certifications

• Enforcement of modularization of the components

• Out-of-tree development based on subsets of the supported boards and SoCs

See Basics for information on how west workspaces manage multiple git repositories.

Design Constraints

West is:

• Optional: it is always possible to drop back to “raw” command-line tools, i.e. use Zephyr
without using west (although west itself might need to be installed and accessible to the
build system). It may not always be convenient to do so, however. (If all of west’s features
were already conveniently available, there would be no reason to develop it.)

• Compatible with CMake: building, flashing and debugging, and emulator support will
always remain compatible with direct use of CMake.

• Cross-platform: West is written in Python 3, and works on all platforms supported by
Zephyr.

• Usable as a Library: whenever possible, west features are implemented as libraries that
can be used standalone in other programs, along with separate command line interfaces
that wrap them. West itself is a Python package named west; its libraries are implemented
as subpackages.

• Conservative about features: no features will be accepted without strong and compelling
motivation.

• Clearly specified: West’s behavior in cases where it wraps other commands is clearly spec-
ified and documented. This enables interoperability with third party tools, and means
Zephyr developers can always find out what is happening “under the hood” when using
west.

See Zephyr issue #6205 and for more details and discussion.
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2.11.14 Moving to West

To convert a “pre-west” Zephyr setup on your computer to west, follow these steps. If you are
starting from scratch, use the Getting Started Guide instead. See TroubleshootingWest for advice
on common issues.

1. Install west.

On Linux:

pip3 install --user -U west

On Windows and macOS:

pip3 install -U west

For details, see Installing west.

2. Move your zephyr repository to a new zephyrproject parent directory, and change direc-
tory there.

On Linux and macOS:

mkdir zephyrproject
mv zephyr zephyrproject
cd zephyrproject

On Windows cmd.exe:

mkdir zephyrproject
move zephyr zephyrproject
chdir zephyrproject

The name zephyrproject is recommended, but you can choose any name with no spaces
anywhere in the path.

3. Create a west workspace using the zephyr repository as a local manifest repository:

west init -l zephyr

This creates zephyrproject/.west, marking the root of your workspace, and does some
other setup. It will not change the contents of the zephyr repository in any way.

4. Clone the rest of the repositories used by zephyr:

west update

Make sure to run this commandwhenever you pull zephyr. Otherwise, your local repos-
itories will get out of sync. (Run west list for current information on these repositories.)

You are done: zephyrproject is now set up to use west.

2.11.15 Using Zephyr without west

This page provides information on using Zephyr without west. This is not recommended for
beginners due to the extra effort involved. In particular, you will have to do work “by hand” to
replace these features:

• cloning the additional source code repositories used by Zephyr in addition to the main
zephyr repository, and keeping them up to date

• specifying the locations of these repositories to the Zephyr build system

• flashing and debugging without understanding detailed usage of the relevant host tools
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Note

If you have previously installed west and want to stop using it, uninstall it first:
pip3 uninstall west

Otherwise, Zephyr’s build system will find it and may try to use it.

Getting the Source

In addition to downloading the zephyr source code repository itself, you will need to manually
clone the additional projects listed in the west manifest file inside that repository.

mkdir zephyrproject
cd zephyrproject
git clone https://github.com/zephyrproject-rtos/zephyr
# clone additional repositories listed in zephyr/west.yml,
# and check out the specified revisions as well.

As you pull changes in the zephyr repository, you will also need to maintain those additional
repositories, adding new ones as necessary and keeping existing ones up to date at the latest
revisions.

Building applications

You can build a Zephyr application using CMake and Ninja (or make) directly without west in-
stalled if you specify any modules manually.

cmake -Bbuild -GNinja -DZEPHYR_MODULES=module1;module2;... samples/hello_world
ninja -Cbuild

When building with west installed, the Zephyr build system will use it to set ZEPHYR_MODULES.

If you don’t have west installed and your application does not need any of these repositories, the
build will still work.

If you don’t have west installed and your application does need one of these repositories, you
must set ZEPHYR_MODULES yourself as shown above.

See Modules (External projects) for more details.

Similarly, if your application requires binary blobs and you are not using west, you will need to
download and place those blobs in the right places instead of using west blobs. See Binary Blobs
for more details.

Flashing and Debugging

Running build system targets like ninja flash, ninja debug, etc. is just a call to the correspond-
ing west command. For example, ninja flash calls west flash1. If you don’t have west installed
on your system, running those targets will fail. You can of course still flash and debug using any
Flash & Debug Host Tools which work for your board (and which those west commands wrap).

1 Note that west build invokes ninja, among other tools. There’s no recursive invocation of either west or ninja
involved by default, however, as west build does not invoke ninja flash, debug, etc. The one exception is if you
specifically run one of these build system targets with a command line like west build -t flash. In that case, west
is run twice: once for west build, and in a subprocess, again for west flash. Even in this case, ninja is only run once,
as ninja flash. This is because these build system targets depend on an up to date build of the Zephyr application, so
it’s compiled before west flash is run.
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If you want to use these build system targets but do not want to install west on your system using
pip, it is possible to do so by manually creating a west workspace:

# cd into zephyrproject if not already there
git clone https://github.com/zephyrproject-rtos/west.git .west/west

Then create a file .west/config with the following contents:

[manifest]
path = zephyr

[zephyr]
base = zephyr

After that, and in order for ninja to be able to invoke west to flash and debug, you must specify
the west directory. This can be done by setting the environment variable WEST_DIR to point to
zephyrproject/.west/west before running CMake to set up a build directory.

For details on west’s Python APIs, see west-apis.

2.12 Testing

2.12.1 Test Framework

The Zephyr Test Framework (Ztest) provides a simple testing framework intended to be used
during development. It provides basic assertion macros and a generic test structure.

The framework can be used in two ways, either as a generic framework for integration testing,
or for unit testing specific modules.

Creating a test suite

Using Ztest to create a test suite is as easy as calling the ZTEST_SUITE. The macro accepts the
following arguments:

• suite_name - The name of the suite. This name must be unique within a single binary.

• ztest_suite_predicate_t - An optional predicate function to allow choosing when the
test will run. The predicate will get a pointer to the global state passed in through
ztest_run_all() and should return a boolean to decide if the suite should run.

• ztest_suite_setup_t - An optional setup function which returns a test fixture. This will be
called and run once per test suite run.

• ztest_suite_before_t - An optional before function which will run before every single test
in this suite.

• ztest_suite_after_t - An optional after function which will run after every single test in
this suite.

• ztest_suite_teardown_t - An optional teardown function which will run at the end of all
the tests in the suite.

Below is an example of a test suite using a predicate:

#include <zephyr/ztest.h>
#include "test_state.h"

static bool predicate(const void *global_state)
{

(continues on next page)
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(continued from previous page)
return ((const struct test_state*)global_state)->x == 5;

}

ZTEST_SUITE(alternating_suite, predicate, NULL, NULL, NULL, NULL);

Adding tests to a suite

There are 4 macros used to add a test to a suite, they are:

• ZTEST (suite_name, test_name) - Which can be used to add a test by test_name to a given
suite by suite_name.

• ZTEST_USER (suite_name, test_name) - Which behaves the same as ZTEST, only that when
CONFIG_USERSPACE is enabled, then the test will be run in a userspace thread.

• ZTEST_F (suite_name, test_name) - Which behaves the same as ZTEST, only that
the test function will already include a variable named fixture with the type
<suite_name>_fixture.

• ZTEST_USER_F (suite_name, test_name) - Which combines the fixture feature of ZTEST_F
with the userspace threading for the test.

Test fixtures Test fixtures can be used to help simplify repeated test setup operations. In many
cases, tests in the same suite will require some initial setup followed by some form of reset be-
tween each test. This is achieved via fixtures in the following way:

#include <zephyr/ztest.h>

struct my_suite_fixture {
size_t max_size;
size_t size;
uint8_t buff[1];

};

static void *my_suite_setup(void)
{

/* Allocate the fixture with 256 byte buffer */
struct my_suite_fixture *fixture = malloc(sizeof(struct my_suite_fixture) + 255);

zassume_not_null(fixture, NULL);
fixture->max_size = 256;

return fixture;
}

static void my_suite_before(void *f)
{

struct my_suite_fixture *fixture = (struct my_suite_fixture *)f;
memset(fixture->buff, 0, fixture->max_size);
fixture->size = 0;

}

static void my_suite_teardown(void *f)
{

free(f);
}

ZTEST_SUITE(my_suite, NULL, my_suite_setup, my_suite_before, NULL, my_suite_teardown);

(continues on next page)

212 Chapter 2. Developing with Zephyr



Zephyr Project Documentation, Release 3.7.99

(continued from previous page)
ZTEST_F(my_suite, test_feature_x)
{

zassert_equal(0, fixture->size);
zassert_equal(256, fixture->max_size);

}

Using memory allocated by a test fixture in a userspace thread, such as during execution of
ZTEST_USER or ZTEST_USER_F, requires that memory to be declared userspace accessible. This is
because the fixture memory is owned and initialized by kernel space. The Ztest framework pro-
vides the ZTEST_DMEM and ZTEST_BMEM macros for use of such user/kernel space shared memory.

Advanced features

Test result expectations Some tests were made to be broken. In cases where the test is ex-
pected to fail or skip due to the nature of the code, it’s possible to annotate the test as such. For
example:

#include <zephyr/ztest.h>

ZTEST_SUITE(my_suite, NULL, NULL, NULL, NULL, NULL);

ZTEST_EXPECT_FAIL(my_suite, test_fail);
ZTEST(my_suite, test_fail)
{
/** This will fail the test */
zassert_true(false, NULL);

}

ZTEST_EXPECT_SKIP(my_suite, test_skip);
ZTEST(my_suite, test_skip)
{
/** This will skip the test */
zassume_true(false, NULL);

}

In this example, the above tests should be marked as failed and skipped respectively. Instead,
Ztest will mark both as passed due to the expectation.

Test rules Test rules are a way to run the same logic for every test and every suite. There are a
lot of cases where you might want to reset some state for every test in the binary (regardless of
which suite is currently running). As an example, this could be to reset mocks, reset emulators,
flush the UART, etc.:

#include <zephyr/fff.h>
#include <zephyr/ztest.h>

#include "test_mocks.h"

DEFINE_FFF_GLOBALS;

DEFINE_FAKE_VOID_FUN(my_weak_func);

static void fff_reset_rule_before(const struct ztest_unit_test *test, void *fixture)
{

ARG_UNUSED(test);
ARG_UNUSED(fixture);

RESET_FAKE(my_weak_func);
(continues on next page)
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(continued from previous page)
}

ZTEST_RULE(fff_reset_rule, fff_reset_rule_before, NULL);

A custom test_main While the Ztest framework provides a default test_main() function, it’s
possible that some applications will want to provide custom behavior. This is particularly true
if there’s some global state that the tests depend on and that state either cannot be replicated
or is difficult to replicate without starting the process over. For example, one such state could
be a power sequence. Assuming there’s a board with several steps in the power-on sequence
a test suite can be written using the predicate to control when it would run. In that case, the
test_main() function can be written as follows:

#include <zephyr/ztest.h>

#include "my_test.h"

void test_main(void)
{

struct power_sequence_state state;

/* Only suites that use a predicate checking for phase == PWR_PHASE_0 will run. */
state.phase = PWR_PHASE_0;
ztest_run_all(&state, false, 1, 1);

/* Only suites that use a predicate checking for phase == PWR_PHASE_1 will run. */
state.phase = PWR_PHASE_1;
ztest_run_all(&state, false, 1, 1);

/* Only suites that use a predicate checking for phase == PWR_PHASE_2 will run. */
state.phase = PWR_PHASE_2;
ztest_run_all(&state, false, 1, 1);

/* Check that all the suites in this binary ran at least once. */
ztest_verify_all_test_suites_ran();

}

Quick start - Integration testing

A simple working base is located at samples/subsys/testsuite/integration. To make a test applica-
tion for the bar component of foo, you should copy the sample folder to tests/foo/bar and edit
files there adjusting for your test application’s purposes.

To build and execute all applicable test scenarios defined in your test application use the Twister
tool, for example:

./scripts/twister -T tests/foo/bar/

To select just one of the test scenarios, run Twister with --scenario command:

./scripts/twister --scenario tests/foo/bar/your.test.scenario.name

In the command line above tests/foo/bar is the path to your test application and your.test.
scenario.name references a test scenario defined in testcase.yaml file, which is like sample.
testing.ztest in the boilerplate test suite sample.

See Twister test project diagram for more details on how Twister deals with Ztest application.

The sample contains the following files:
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CMakeLists.txt

1 # SPDX-License-Identifier: Apache-2.0
2

3 cmake_minimum_required(VERSION 3.20.0)
4 find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})
5 project(integration)
6

7 FILE(GLOB app_sources src/*.c)
8 target_sources(app PRIVATE ${app_sources})

testcase.yaml

1 tests:
2 # section.subsection
3 sample.testing.ztest:
4 build_only: true
5 platform_allow:
6 - native_posix
7 - native_sim
8 integration_platforms:
9 - native_sim

10 tags: test_framework

prj.conf

1 CONFIG_ZTEST=y

src/main.c (see best practices)

1 /*
2 * Copyright (c) 2016 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6

7 #include <zephyr/ztest.h>
8

9

10 ZTEST_SUITE(framework_tests, NULL, NULL, NULL, NULL, NULL);
11

12 /**
13 * @brief Test Asserts
14 *
15 * This test verifies various assert macros provided by ztest.
16 *
17 */
18 ZTEST(framework_tests, test_assert)
19 {
20 zassert_true(1, "1 was false");
21 zassert_false(0, "0 was true");
22 zassert_is_null(NULL, "NULL was not NULL");
23 zassert_not_null("foo", "\"foo\" was NULL");
24 zassert_equal(1, 1, "1 was not equal to 1");
25 zassert_equal_ptr(NULL, NULL, "NULL was not equal to NULL");
26 }

• Listing Tests

• Skipping Tests
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A test application may consist of multiple test suites that either can be testing functionality or
APIs. Functions implementing a test case should follow the guidelines below:

• Test cases function names should be prefixed with test_
• Test cases should be documented using doxygen

• Test case function names should be unique within the section or component being tested

For example:

/**
* @brief Test Asserts
*
* This test case verifies the zassert_true macro.
*/

ZTEST(my_suite, test_assert)
{

zassert_true(1, "1 was false");
}

Listing Tests Tests (test applications) in the Zephyr tree consist of many test scenarios that run
as part of a project and test similar functionality, for example an API or a feature. The twister
script can parse the test scenarios, suites and cases in all test applications or a subset of them,
and can generate reports on a granular level, i.e. if test cases have passed or failed or if they
were blocked or skipped.

Twister parses the source files looking for test case names, so you can list all kernel test cases,
for example, by running:

./scripts/twister --list-tests -T tests/kernel

Skipping Tests Special- or architecture-specific tests cannot run on all platforms and architec-
tures, however we still want to count those and report them as being skipped. Because the test
inventory and the list of tests is extracted from the code, adding conditionals inside the test suite
is sub-optimal. Tests that need to be skipped for a certain platform or feature need to explicitly
report a skip using ztest_test_skip() or Z_TEST_SKIP_IFDEF. If the test runs, it needs to report
either a pass or fail. For example:

#ifdef CONFIG_TEST1
ZTEST(common, test_test1)
{

zassert_true(1, "true");
}
#else
ZTEST(common, test_test1)
{

ztest_test_skip();
}
#endif

ZTEST(common, test_test2)
{

Z_TEST_SKIP_IFDEF(CONFIG_BUGxxxxx);
zassert_equal(1, 0, NULL);

}

ZTEST_SUITE(common, NULL, NULL, NULL, NULL, NULL);
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Quick start - Unit testing

Ztest can be used for unit testing. This means that rather than including the entire Zephyr OS for
testing a single function, you can focus the testing efforts into the specific module in question.
This will speed up testing since only the module will have to be compiled in, and the tested
functions will be called directly.

Examples of unit tests can be found in the tests/unit/ folder. In order to declare the unit tests
present in a source folder, you need to add the relevant source files to the testbinary target
from the CMake unittest component. See a minimal example below:

cmake_minimum_required(VERSION 3.20.0)

project(app)
find_package(Zephyr COMPONENTS unittest REQUIRED HINTS $ENV{ZEPHYR_BASE})
target_sources(testbinary PRIVATE main.c)

Since you won’t be including basic kernel data structures that most code depends on, you have to
provide function stubs in the test. Ztest provides some helpers for mocking functions, as demon-
strated below.

In a unit test, mock objects can simulate the behavior of complex real objects and are used to de-
cide whether a test failed or passed by verifying whether an interaction with an object occurred,
and if required, to assert the order of that interaction.

Best practices for declaring the test suite

twister and other validation tools need to obtain the list of test cases that a Zephyr ztest test image
will expose.

Rationale

This all is for the purpose of traceability. It’s not enough to have only a semaphore test appli-
cation. We also need to show that we have testpoints for all APIs and functionality, and we
trace back to documentation of the API, and functional requirements.

The idea is that test reports show results for every test case as passed, failed, blocked, or
skipped. Reporting on only the high-level test application, particularly when tests do too
many things, is too vague.

Other questions:

• Why not pre-scan with CPP and then parse? or post scan the ELF file?

If C pre-processing or building fails because of any issue, then we won’t be able to tell the
subcases.

• Why not declare them in the YAML test configuration?

A separate test case description file would be harder to maintain than just keeping the in-
formation in the test source files themselves – only one file to update when changes are
made eliminates duplication.

Stress test framework

Zephyr stress test framework (Ztress) provides an environment for executing user functions in
multiple priority contexts. It can be used to validate that code is resilient to preemptions. The
framework tracks the number of executions and preemptions for each context. Execution can
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have various completion conditions like timeout, number of executions or number of preemp-
tions.

The framework is setting up the environment by creating the requested number of threads (each
on different priority), optionally starting a timer. For each context, a user function (different for
each context) is called and then the context sleeps for a randomized amount of system ticks.
The framework is tracking CPU load and adjusts sleeping periods to achieve higher CPU load. In
order to increase the probability of preemptions, the system clock frequency should be relatively
high. The default 100 Hz on QEMU x86 is much too low and it is recommended to increase it to
100 kHz.

The stress test environment is setup and executed using ZTRESS_EXECUTE which accepts a vari-
able number of arguments. Each argument is a context that is specified by ZTRESS_TIMER or
ZTRESS_THREAD macros. Contexts are specified in priority descending order. Each context spec-
ifies completion conditions by providing the minimum number of executions and preemptions.
When all conditions are met and the execution has completed, an execution report is printed
and the macro returns. Note that while the test is executing, a progress report is periodically
printed.

Execution can be prematurely completed by specifying a test timeout (ztress_set_timeout())
or an explicit abort (ztress_abort()).

User function parameters contains an execution counter and a flag indicating if it is the last
execution.

The example below presents how to setup and run 3 contexts (one of which is k_timer interrupt
handler context). Completion criteria is set to at least 10000 executions of each context and 1000
preemptions of the lowest priority context. Additionally, the timeout is configured to complete
after 10 seconds if those conditions are not met. The last argument of each context is the initial
sleep time which will be adjusted throughout the test to achieve the highest CPU load.

ztress_set_timeout(K_MSEC(10000));
ZTRESS_EXECUTE(ZTRESS_TIMER(foo_0, user_data_0, 10000, Z_TIMEOUT_TICKS(20)),

ZTRESS_THREAD(foo_1, user_data_1, 10000, 0, Z_TIMEOUT_TICKS(20)),
ZTRESS_THREAD(foo_2, user_data_2, 10000, 1000, Z_TIMEOUT_

↪→TICKS(20)));

Configuration Static configuration of Ztress contains:

• CONFIG_ZTRESS_MAX_THREADS - number of supported threads.

• CONFIG_ZTRESS_STACK_SIZE - Stack size of created threads.

• CONFIG_ZTRESS_REPORT_PROGRESS_MS - Test progress report interval.

API reference

Running tests

group ztest_test
This module eases the testing process by providing helpful macros and other testing struc-
tures.

Defines

ZTEST_EXPECT_FAIL(_suite_name, _test_name)
Expect a test to fail (mark it passing if it failed)

Adding this macro to your logic will allow the failing test to be considered passing,
example:
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ZTEST_EXPECT_FAIL(my_suite, test_x);
ZTEST(my_suite, text_x) {
zassert_true(false, NULL);

}

Parameters
• _suite_name – The name of the suite

• _test_name – The name of the test

ZTEST_EXPECT_SKIP(_suite_name, _test_name)
Expect a test to skip (mark it passing if it failed)

Adding this macro to your logic will allow the failing test to be considered passing,
example:

ZTEST_EXPECT_SKIP(my_suite, test_x);
ZTEST(my_suite, text_x) {
zassume_true(false, NULL);

}

Parameters
• _suite_name – The name of the suite

• _test_name – The name of the test

ZTEST_TEST_COUNT
Number of registered unit tests.

ZTEST_SUITE_COUNT
Number of registered test suites.

ZTEST_SUITE(SUITE_NAME, PREDICATE, setup_fn, before_fn, after_fn, teardown_fn)
Create and register a ztest suite.

Using this macro creates a new test suite. It then creates a struct ztest_suite_node in a
specific linker section.

Tests can then be run by calling ztest_run_test_suites(const void *state) by passing in
the current state. See the documentation for ztest_run_test_suites for more info.

Parameters
• SUITE_NAME – The name of the suite

• PREDICATE – A function to test against the state and determine if the test
should run.

• setup_fn – The setup function to call before running this test suite

• before_fn – The function to call before each unit test in this suite

• after_fn – The function to call after each unit test in this suite

• teardown_fn – The function to call after running all the tests in this suite

ZTEST_DMEM
Make data section used by Ztest userspace accessible.
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ZTEST_BMEM
Make bss section used by Ztest userspace accessible.

ZTEST_SECTION
Ztest data section for accessing data from userspace.

ZTEST(suite, fn)
Create and register a new unit test.

Calling this macro will create a new unit test and attach it to the declared suite. The
suite does not need to be defined in the same compilation unit.

Parameters
• suite – The name of the test suite to attach this test

• fn – The test function to call.

ZTEST_USER(suite, fn)
Define a test function that should run as a user thread.

This macro behaves exactly the same as ZTEST, but calls the test function in user space
if CONFIG_USERSPACE was enabled.

Parameters
• suite – The name of the test suite to attach this test

• fn – The test function to call.

ZTEST_F(suite, fn)
Define a test function.

This macro behaves exactly the same as ZTEST(), but the function takes an argument
for the fixture of type struct suite##_fixture* named fixture.

Parameters
• suite – The name of the test suite to attach this test

• fn – The test function to call.

ZTEST_USER_F(suite, fn)
Define a test function that should run as a user thread.

If CONFIG_USERSPACE is not enabled, this is functionally identical to ZTEST_F(). The
test function takes a single fixture argument of type struct suite##_fixture* named
fixture.

Parameters
• suite – The name of the test suite to attach this test

• fn – The test function to call.

ZTEST_RULE(name, before_each_fn, after_each_fn)
Define a test rule that will run before/after each unit test.

Functions defined here will run before/after each unit test for every test suite. Along
with the callback, the test functions are provided a pointer to the test being run, and
the data. This provides a mechanism for tests to perform custom operations depending
on the specific test or the data (for example logging may use the test’s name).

Ordering:

• Test rule’s before function will run before the suite’s before function. This is done
to allow the test suite’s customization to take precedence over the rule which is
applied to all suites.
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• Test rule’s after function is not guaranteed to run in any particular order.

Parameters
• name – The name for the test rule (must be unique within the compilation

unit)

• before_each_fn – The callback function (ztest_rule_cb) to call before
each test (may be NULL)

• after_each_fn – The callback function (ztest_rule_cb) to call after each
test (may be NULL)

ztest_run_test_suite(suite, shuffle, suite_iter, case_iter)
Run the specified test suite.

Parameters
• suite – Test suite to run.

• shuffle – Shuffle tests

• suite_iter – Test suite repetitions.

• case_iter – Test case repetitions.

Typedefs

typedef void *(*ztest_suite_setup_t)(void)
Setup function to run before running this suite.

Return
Pointer to the data structure that will be used throughout this test suite

typedef void (*ztest_suite_before_t)(void *fixture)
Function to run before each test in this suite.

Param fixture
The test suite’s fixture returned from setup()

typedef void (*ztest_suite_after_t)(void *fixture)
Function to run after each test in this suite.

Param fixture
The test suite’s fixture returned from setup()

typedef void (*ztest_suite_teardown_t)(void *fixture)
Teardown function to run after running this suite.

Param fixture
The test suite’s data returned from setup()

typedef bool (*ztest_suite_predicate_t)(const void *global_state)
An optional predicate function to determine if the test should run.

If NULL, then the test will only run once on the first attempt.

Param global_state
The current state of the test application.
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Return
True if the suite should be run; false to skip.

typedef void (*ztest_rule_cb)(const struct ztest_unit_test *test, void *data)
Test rule callback function signature.

The function signature that can be used to register a test rule’s before/after callback.
This provides access to the test and the fixture data (if provided).

Param test
Pointer to the unit test in context

Param data
Pointer to the test’s fixture data (may be NULL)

Enums

enum ztest_expected_result
The expected result of a test.

See also

ZTEST_EXPECT_FAIL

See also

ZTEST_EXPECT_SKIP

Values:

enumerator ZTEST_EXPECTED_RESULT_FAIL = 0
Expect a test to fail.

enumerator ZTEST_EXPECTED_RESULT_SKIP
Expect a test to pass.

enum ztest_result
The result of the current running test.

It’s possible that the setup function sets the result to ZTEST_RESULT_SUITE_* which
will apply the failure/skip to every test in the suite.

Values:

enumerator ZTEST_RESULT_PENDING

enumerator ZTEST_RESULT_PASS

enumerator ZTEST_RESULT_FAIL
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enumerator ZTEST_RESULT_SKIP

enumerator ZTEST_RESULT_SUITE_SKIP

enumerator ZTEST_RESULT_SUITE_FAIL

enum ztest_phase
Each enum member represents a distinct phase of execution for the test binary.

TEST_PHASE_FRAMEWORK is active when internal ztest code is executing; the rest
refer to corresponding phases of user test code.

Values:

enumerator TEST_PHASE_SETUP

enumerator TEST_PHASE_BEFORE

enumerator TEST_PHASE_TEST

enumerator TEST_PHASE_AFTER

enumerator TEST_PHASE_TEARDOWN

enumerator TEST_PHASE_FRAMEWORK

Functions

void ztest_run_all(const void *state, bool shuffle, int suite_iter, int case_iter)
Default entry point for running or listing registered unit tests.

Parameters
• state – The current state of the machine as it relates to the test exe-

cutable.

• shuffle – Shuffle tests

• suite_iter – Test suite repetitions.

• case_iter – Test case repetitions.

int ztest_run_test_suites(const void *state, bool shuffle, int suite_iter, int case_iter)
Run the registered unit tests which return true from their predicate function.

Parameters
• state – The current state of the machine as it relates to the test exe-

cutable.

• shuffle – Shuffle tests

• suite_iter – Test suite repetitions.

• case_iter – Test case repetitions.

Returns
The number of tests that ran.
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void ztest_verify_all_test_suites_ran(void)
Fails the test if any of the registered tests did not run.

When registering test suites, a pragma function can be provided to determine WHEN
the test should run. It is possible that a test suite could be registered but the pragma
always prevents it from running. In cases where a test should make sure that ALL
suites ran at least once, this function may be called at the end of test_main(). It will
cause the test to fail if any suite was registered but never ran.

void ztest_test_fail(void)
Fail the currently running test.

This is the function called from failed assertions and the like. You probably don’t need
to call it yourself.

void ztest_test_pass(void)
Pass the currently running test.

Normally a test passes just by returning without an assertion failure. However, if
the success case for your test involves a fatal fault, you can call this function from
k_sys_fatal_error_handler to indicate that the test passed before aborting the thread.

void ztest_test_skip(void)
Skip the current test.

void ztest_skip_failed_assumption(void)

void ztest_simple_1cpu_before(void *data)
A ‘before’ function to use in test suites that just need to start 1cpu.

Ignores data, and calls z_test_1cpu_start()

Parameters
• data – The test suite’s data

void ztest_simple_1cpu_after(void *data)
A ‘after’ function to use in test suites that just need to stop 1cpu.

Ignores data, and calls z_test_1cpu_stop()

Parameters
• data – The test suite’s data

Variables

struct k_mem_partition ztest_mem_partition

struct ztest_expected_result_entry
#include <ztest_test.h> A single expectation entry allowing tests to fail/skip and be con-
sidered passing.

See also

ZTEST_EXPECT_FAIL
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See also

ZTEST_EXPECT_SKIP

Public Members

const char *test_suite_name
The test suite’s name for the expectation.

const char *test_name
The test’s name for the expectation.

enum ztest_expected_result expected_result
The expectation.

struct ztest_unit_test
#include <ztest_test.h>

Public Members

struct ztest_unit_test_stats *const stats
Stats.

struct ztest_suite_stats
#include <ztest_test.h> Stats about a ztest suite.

Public Members

uint32_t run_count
The number of times that the suite ran.

uint32_t skip_count
The number of times that the suite was skipped.

uint32_t fail_count
The number of times that the suite failed.

struct ztest_unit_test_stats
#include <ztest_test.h>

Public Members

uint32_t run_count
The number of times that the test ran.
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uint32_t skip_count
The number of times that the test was skipped.

uint32_t fail_count
The number of times that the test failed.

uint32_t pass_count
The number of times that the test passed.

uint32_t duration_worst_ms
The longest duration of the test across multiple times.

struct ztest_suite_node
#include <ztest_test.h> A single node of test suite.

Each node should be added to a single linker section which will allow
ztest_run_test_suites() to iterate over the various nodes.

Public Members

const char *const name
The name of the test suite.

const ztest_suite_setup_t setup
Setup function.

const ztest_suite_before_t before
Before function.

const ztest_suite_after_t after
After function.

const ztest_suite_teardown_t teardown
Teardown function.

const ztest_suite_predicate_t predicate
Optional predicate filter.

struct ztest_suite_stats *const stats
Stats.

struct ztest_test_rule

struct ztest_arch_api
#include <ztest_test.h> Structure for architecture specific APIs.
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Assertions These macros will instantly fail the test if the related assertion fails. When an as-
sertion fails, it will print the current file, line and function, alongside a reason for the failure
and an optional message. If the config CONFIG_ZTEST_ASSERT_VERBOSE is 0, the assertions will
only print the file and line numbers, reducing the binary size of the test.

Example output for a failed macro from zassert_equal(buf->ref, 2, "Invalid refcount"):

Assertion failed at main.c:62: test_get_single_buffer: Invalid refcount (buf->ref not equal␣
↪→to 2)
Aborted at unit test function

group ztest_assert
This module provides assertions when using Ztest.

Defines

zassert(cond, default_msg, ...)

zassume(cond, default_msg, ...)

zexpect(cond, default_msg, ...)

zassert_unreachable(...)
Assert that this function call won’t be reached.

Parameters
• ... – Optional message and variables to print if the assertion fails

zassert_true(cond, ...)
Assert that cond is true.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the assertion fails

zassert_false(cond, ...)
Assert that cond is false.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the assertion fails

zassert_ok(cond, ...)
Assert that cond is 0 (success)

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the assertion fails

zassert_not_ok(cond, ...)
Assert that cond is not 0 (failure)

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the assertion fails
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zassert_is_null(ptr, ...)
Assert that ptr is NULL.

Parameters
• ptr – Pointer to compare

• ... – Optional message and variables to print if the assertion fails

zassert_not_null(ptr, ...)
Assert that ptr is not NULL.

Parameters
• ptr – Pointer to compare

• ... – Optional message and variables to print if the assertion fails

zassert_equal(a, b, ...)
Assert that a equals b.

a and b won’t be converted and will be compared directly.

Parameters
• a – Value to compare

• b – Value to compare

• ... – Optional message and variables to print if the assertion fails

zassert_not_equal(a, b, ...)
Assert that a does not equal b.

a and b won’t be converted and will be compared directly.

Parameters
• a – Value to compare

• b – Value to compare

• ... – Optional message and variables to print if the assertion fails

zassert_equal_ptr(a, b, ...)
Assert that a equals b.

a and b will be converted to void * before comparing.

Parameters
• a – Value to compare

• b – Value to compare

• ... – Optional message and variables to print if the assertion fails

zassert_within(a, b, d, ...)
Assert that a is within b with delta d.

Parameters
• a – Value to compare

• b – Value to compare

• d – Delta

• ... – Optional message and variables to print if the assertion fails
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zassert_between_inclusive(a, l, u, ...)
Assert that a is greater than or equal to l and less than or equal to u.

Parameters
• a – Value to compare

• l – Lower limit

• u – Upper limit

• ... – Optional message and variables to print if the assertion fails

zassert_mem_equal(...)
Assert that 2 memory buffers have the same contents.

This macro calls the final memory comparison assertion macro. Using double expan-
sion allows providing some arguments by macros that would expand to more than
one values (ANSI-C99 defines that all the macro arguments have to be expanded be-
fore macro call).

Parameters
• ... – Arguments, see zassert_mem_equal__ for real arguments accepted.

zassert_mem_equal__(buf, exp, size, ...)
Internal assert that 2 memory buffers have the same contents.

Note

This is internal macro, to be used as a second expansion. See zassert_mem_equal.

Parameters
• buf – Buffer to compare

• exp – Buffer with expected contents

• size – Size of buffers

• ... – Optional message and variables to print if the assertion fails

zassert_str_equal(s1, s2, ...)
Assert that 2 strings have the same contents.

Parameters
• s1 – The first string

• s2 – The second string

• ... – Optional message and variables to print if the expectation fails

Expectations These macros will continue test execution if the related expectation fails and
subsequently fail the test at the end of its execution. When an expectation fails, it will print the
current file, line, and function, alongside a reason for the failure and an optional message but
continue executing the test. If the config CONFIG_ZTEST_ASSERT_VERBOSE is 0, the expectations
will only print the file and line numbers, reducing the binary size of the test.

For example, if the following expectations fail:

zexpect_equal(buf->ref, 2, "Invalid refcount");
zexpect_equal(buf->ref, 1337, "Invalid refcount");

The output will look something like:
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START - test_get_single_buffer
Expectation failed at main.c:62: test_get_single_buffer: Invalid refcount (buf->ref not␣

↪→equal to 2)
Expectation failed at main.c:63: test_get_single_buffer: Invalid refcount (buf->ref not␣

↪→equal to 1337)
FAIL - test_get_single_buffer in 0.0 seconds

group ztest_expect
This module provides expectations when using Ztest.

Defines

zexpect_true(cond, ...)
Expect that cond is true, otherwise mark test as failed but continue its execution.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the expectation fails

zexpect_false(cond, ...)
Expect that cond is false, otherwise mark test as failed but continue its execution.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the expectation fails

zexpect_ok(cond, ...)
Expect that cond is 0 (success), otherwise mark test as failed but continue its execution.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the expectation fails

zexpect_not_ok(cond, ...)
Expect that cond is not 0 (failure), otherwise mark test as failed but continue its execu-
tion.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the expectation fails

zexpect_is_null(ptr, ...)
Expect that ptr is NULL, otherwise mark test as failed but continue its execution.

Parameters
• ptr – Pointer to compare

• ... – Optional message and variables to print if the expectation fails

zexpect_not_null(ptr, ...)
Expect that ptr is not NULL, otherwise mark test as failed but continue its execution.

Parameters
• ptr – Pointer to compare

• ... – Optional message and variables to print if the expectation fails
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zexpect_equal(a, b, ...)
Expect that a equals b, otherwise mark test as failed but continue its execution.

Parameters
• a – Value to compare

• b – Value to compare

• ... – Optional message and variables to print if the expectation fails

zexpect_not_equal(a, b, ...)
Expect that a does not equal b, otherwise mark test as failed but continue its execution.

a and b won’t be converted and will be compared directly.

Parameters
• a – Value to compare

• b – Value to compare

• ... – Optional message and variables to print if the expectation fails

zexpect_equal_ptr(a, b, ...)
Expect that a equals b, otherwise mark test as failed but continue its execution.

a and b will be converted to void * before comparing.

Parameters
• a – Value to compare

• b – Value to compare

• ... – Optional message and variables to print if the expectation fails

zexpect_within(a, b, delta, ...)
Expect that a is within b with delta d, otherwise mark test as failed but continue its
execution.

Parameters
• a – Value to compare

• b – Value to compare

• delta – Difference between a and b

• ... – Optional message and variables to print if the expectation fails

zexpect_between_inclusive(a, lower, upper, ...)
Expect that a is greater than or equal to l and less than or equal to u, otherwise mark
test as failed but continue its execution.

Parameters
• a – Value to compare

• lower – Lower limit

• upper – Upper limit

• ... – Optional message and variables to print if the expectation fails

zexpect_mem_equal(buf, exp, size, ...)
Expect that 2 memory buffers have the same contents, otherwise mark test as failed
but continue its execution.

Parameters
• buf – Buffer to compare
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• exp – Buffer with expected contents

• size – Size of buffers

• ... – Optional message and variables to print if the expectation fails

zexpect_str_equal(s1, s2, ...)
Expect that 2 strings have the same contents, otherwise mark test as failed but continue
its execution.

Parameters
• s1 – The first string

• s2 – The second string

• ... – Optional message and variables to print if the expectation fails

Assumptions These macros will instantly skip the test or suite if the related assumption fails.
When an assumption fails, it will print the current file, line, and function, alongside a reason
for the failure and an optional message. If the config CONFIG_ZTEST_ASSERT_VERBOSE is 0, the
assumptions will only print the file and line numbers, reducing the binary size of the test.

Example output for a failed macro from zassume_equal(buf->ref, 2, "Invalid refcount"):

group ztest_assume
This module provides assumptions when using Ztest.

Defines

zassume_true(cond, ...)
Assume that cond is true.

If the assumption fails, the test will be marked as “skipped”.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the assumption fails

zassume_false(cond, ...)
Assume that cond is false.

If the assumption fails, the test will be marked as “skipped”.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the assumption fails

zassume_ok(cond, ...)
Assume that cond is 0 (success)

If the assumption fails, the test will be marked as “skipped”.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the assumption fails
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zassume_not_ok(cond, ...)
Assume that cond is not 0 (failure)

If the assumption fails, the test will be marked as “skipped”.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the assumption fails

zassume_is_null(ptr, ...)
Assume that ptr is NULL.

If the assumption fails, the test will be marked as “skipped”.

Parameters
• ptr – Pointer to compare

• ... – Optional message and variables to print if the assumption fails

zassume_not_null(ptr, ...)
Assume that ptr is not NULL.

If the assumption fails, the test will be marked as “skipped”.

Parameters
• ptr – Pointer to compare

• ... – Optional message and variables to print if the assumption fails

zassume_equal(a, b, ...)
Assume that a equals b.

a and b won’t be converted and will be compared directly. If the assumption fails, the
test will be marked as “skipped”.

Parameters
• a – Value to compare

• b – Value to compare

• ... – Optional message and variables to print if the assumption fails

zassume_not_equal(a, b, ...)
Assume that a does not equal b.

a and b won’t be converted and will be compared directly. If the assumption fails, the
test will be marked as “skipped”.

Parameters
• a – Value to compare

• b – Value to compare

• ... – Optional message and variables to print if the assumption fails

zassume_equal_ptr(a, b, ...)
Assume that a equals b.

a and b will be converted to void * before comparing. If the assumption fails, the test
will be marked as “skipped”.

Parameters
• a – Value to compare

• b – Value to compare
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• ... – Optional message and variables to print if the assumption fails

zassume_within(a, b, d, ...)
Assume that a is within b with delta d.

If the assumption fails, the test will be marked as “skipped”.

Parameters
• a – Value to compare

• b – Value to compare

• d – Delta

• ... – Optional message and variables to print if the assumption fails

zassume_between_inclusive(a, l, u, ...)
Assume that a is greater than or equal to l and less than or equal to u.

If the assumption fails, the test will be marked as “skipped”.

Parameters
• a – Value to compare

• l – Lower limit

• u – Upper limit

• ... – Optional message and variables to print if the assumption fails

zassume_mem_equal(...)
Assume that 2 memory buffers have the same contents.

This macro calls the final memory comparison assumption macro. Using double ex-
pansion allows providing some arguments by macros that would expand to more than
one values (ANSI-C99 defines that all the macro arguments have to be expanded before
macro call).

Parameters
• ... – Arguments, see zassume_mem_equal__ for real arguments accepted.

zassume_mem_equal__(buf, exp, size, ...)
Internal assume that 2 memory buffers have the same contents.

If the assumption fails, the test will be marked as “skipped”.

Note

This is internal macro, to be used as a second expansion. See zassume_mem_equal.

Parameters
• buf – Buffer to compare

• exp – Buffer with expected contents

• size – Size of buffers

• ... – Optional message and variables to print if the assumption fails

zassume_str_equal(s1, s2, ...)
Assumes that 2 strings have the same contents.

Parameters
• s1 – The first string
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• s2 – The second string

• ... – Optional message and variables to print if the expectation fails

Ztress

group ztest_ztress
This module provides test stress when using Ztest.

Defines

ZTRESS_TIMER(handler, user_data, exec_cnt, init_timeout)
Descriptor of a k_timer handler execution context.

The handler is executed in the k_timer handler context which typically means inter-
rupt context. This context will preempt any other used in the set.

Note

There can only be up to one k_timer context in the set and it must be the first argu-
ment of ZTRESS_EXECUTE.

Parameters
• handler – User handler of type ztress_handler.

• user_data – User data passed to the handler.

• exec_cnt – Number of handler executions to complete the test. If 0 then
this is not included in completion criteria.

• init_timeout – Initial backoff time base (given in k_timeout_t). It is ad-
justed during the test to optimize CPU load. The actual timeout used for
the timer is randomized.

ZTRESS_THREAD(handler, user_data, exec_cnt, preempt_cnt, init_timeout)
Descriptor of a thread execution context.

The handler is executed in the thread context. The priority of the thread is determined
based on the order in which contexts are listed in ZTRESS_EXECUTE.

Note

thread sleeps for random amount of time. Additionally, the thread busy-waits for a
random length of time to further increase randomization in the test.

Parameters
• handler – User handler of type ztress_handler.

• user_data – User data passed to the handler.

• exec_cnt – Number of handler executions to complete the test. If 0 then
this is not included in completion criteria.

• preempt_cnt – Number of preemptions of that context to complete the
test. If 0 then this is not included in completion criteria.
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• init_timeout – Initial backoff time base (given in k_timeout_t). It is ad-
justed during the test to optimize CPU load. The actual timeout used for
sleeping is randomized.

ZTRESS_CONTEXT_INITIALIZER(_handler, _user_data, _exec_cnt, _preempt_cnt, _t)
Initialize context structure.

For argument types see ztress_context_data. For more details see ZTRESS_THREAD.

Parameters
• _handler – Handler.

• _user_data – User data passed to the handler.

• _exec_cnt – Execution count limit.

• _preempt_cnt – Preemption count limit.

• _t – Initial timeout.

ZTRESS_EXECUTE(...)
Setup and run stress test.

It initialises all contexts and calls ztress_execute.

Parameters
• ... – List of contexts. Contexts are configured using ZTRESS_TIMER and
ZTRESS_THREAD macros. ZTRESS_TIMER must be the first argument if
used. Each thread context has an assigned priority. The priority is as-
signed in a descending order (first listed thread context has the highest
priority). The maximum number of supported thread contexts, including
the timer context, is configurable in Kconfig (ZTRESS_MAX_THREADS).

Typedefs

typedef bool (*ztress_handler)(void *user_data, uint32_t cnt, bool last, int prio)
User handler called in one of the configured contexts.

Param user_data
User data provided in the context descriptor.

Param cnt
Current execution counter. Counted from 0.

Param last
Flag set to true indicates that it is the last execution because completion
criteria are met, test timed out or was aborted.

Param prio
Context priority counting from 0 which indicates the highest priority.

Retval true
continue test.

Retval false
stop executing the current context.

Functions
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int ztress_execute(struct ztress_context_data *timer_data, struct ztress_context_data
*thread_data, size_t cnt)

Execute contexts.

The test runs until all completion requirements are met or until the test times out (use
ztress_set_timeout to configure timeout) or until the test is aborted (ztress_abort).

on test completion a report is printed (ztress_report is called internally).

Parameters
• timer_data – Timer context. NULL if timer context is not used.

• thread_data – List of thread contexts descriptors in priority descending
order.

• cnt – Number of thread contexts.

Return values
• -EINVAL – If configuration is invalid.

• 0 – if test is successfully performed.

void ztress_abort(void)
Abort ongoing stress test.

void ztress_set_timeout(k_timeout_t t)
Set test timeout.

Test is terminated after timeout disregarding completion criteria. Setting is persistent
between executions.

Parameters
• t – Timeout.

void ztress_report(void)
Print last test report.

Report contains number of executions and preemptions for each context, initial and
adjusted timeouts and CPU load during the test.

int ztress_exec_count(uint32_t id)
Get number of executions of a given context in the last test.

Parameters
• id – Context id. 0 means the highest priority.

Returns
Number of executions.

int ztress_preempt_count(uint32_t id)
Get number of preemptions of a given context in the last test.

Parameters
• id – Context id. 0 means the highest priority.

Returns
Number of preemptions.

uint32_t ztress_optimized_ticks(uint32_t id)
Get optimized timeout base of a given context in the last test.

Optimized value can be used to update initial value. It will improve the test since
optimal CPU load will be reach immediately.

Parameters
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• id – Context id. 0 means the highest priority.

Returns
Optimized timeout base.

struct ztress_context_data
#include <ztress.h>

Mocking via FFF Zephyr has integrated with FFF for mocking. See FFF for documentation. To
use it, include the relevant header:

#include <zephyr/fff.h>

Zephyr provides several FFF-based fake drivers which can be used as either stubs or mocks.
Fake driver instances are configured via Devicetree and Configuration System (Kconfig). See the
following devicetree bindings for more information:

• zephyr,fake-can
• zephyr,fake-eeprom

Zephyr also has defined extensions to FFF for simplified declarations of fake functions. See FFF
Extensions.

Customizing Test Output

Customization is enabled by setting CONFIG_ZTEST_TC_UTIL_USER_OVERRIDE to “y” and adding a
file tc_util_user_override.h with your overrides.

Add the line zephyr_include_directories(my_folder) to your project’s CMakeLists.txt to let
Zephyr find your header file during builds.

See the file subsys/testsuite/include/zephyr/tc_util.h to see which macros and/or defines can be
overridden. These will be surrounded by blocks such as:

#ifndef SOMETHING
#define SOMETHING <default implementation>
#endif /* SOMETHING */

Shuffling Test Sequence

By default the tests are sorted and ran in alphanumerical order. Test cases may be dependent on
this sequence. Enable CONFIG_ZTEST_SHUFFLE to randomize the order. The output from the test
will display the seed for failed tests. For native simulator builds you can provide the seed as an
argument to twister with –seed

Static configuration of ZTEST_SHUFFLE contains:

• CONFIG_ZTEST_SHUFFLE_SUITE_REPEAT_COUNT - Number of iterations the test suite will run.

• CONFIG_ZTEST_SHUFFLE_TEST_REPEAT_COUNT - Number of iterations the test will run.

Test Selection

For tests built for native simulator, use command line arguments to list or select tests to run. The
test argument expects a comma separated list of suite::test . You can substitute the test name
with an * to run all tests within a suite.

For example
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$ zephyr.exe -list
$ zephyr.exe -test="fixture_tests::test_fixture_pointer,framework_tests::test_assert_mem_
↪→equal"
$ zephyr.exe -test="framework_tests::*"

FFF Extensions

group fff_extensions
This module provides extensions to FFF for simplifying the configuration and usage of
fakes.

Defines

RETURN_HANDLED_CONTEXT(FUNCNAME, CONTEXTTYPE, RESULTFIELD,
CONTEXTPTRNAME, HANDLERBODY)

Wrap custom fake body to extract defined context struct.

Add extension macro for simplified creation of fake functions needing call-specific con-
text data.

This macro enables a fake to be implemented as follows and requires no familiarity
with the inner workings of FFF.

struct FUNCNAME##_custom_fake_context
{

struct instance * const instance;
int result;

};

int FUNCNAME##_custom_fake(
const struct instance **instance_out)

{
RETURN_HANDLED_CONTEXT(

FUNCNAME,
struct FUNCNAME##_custom_fake_context,
result,
context,
{

if (context != NULL)
{

if (context->result == 0)
{

if (instance_out != NULL)
{

*instance_out = context->instance;
}

}
return context->result;

}
return FUNCNAME##_fake.return_val;

}
);

}

Parameters
• FUNCNAME – Name of function being faked
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• CONTEXTTYPE – type of custom defined fake context struct

• RESULTFIELD – name of field holding the return type & value

• CONTEXTPTRNAME – expected name of pointer to custom defined fake con-
text struct

• HANDLERBODY – in-line custom fake handling logic

2.12.2 Test Runner (Twister)

Twister scans for the set of test applications in the git repository and attempts to execute them. By
default, it tries to build each test application on boards marked as default in the board definition
file.

The default options will build the majority of the test applications on a defined set of boards and
will run in an emulated environment if available for the architecture or configuration being
tested.

Because of the limited test execution coverage, twister cannot guarantee local changes will suc-
ceed in the full build environment, but it does sufficient testing by building samples and tests for
different boards and different configurations to help keep the complete code tree buildable.

When using (at least) one -v option, twister’s console output shows for every test application
how the test is run (qemu, native_sim, etc.) or whether the binary was just built. There are a few
reasons why twister only builds a test and doesn’t run it:

• The test is marked as build_only: true in its .yaml configuration file.

• The test configuration has defined a harness but you don’t have it or haven’t set it up.

• The target device is not connected and not available for flashing

• You or some higher level automation invoked twister with --build-only.

To run the script in the local tree, follow the steps below:

Linux

$ source zephyr-env.sh
$ ./scripts/twister

Windows

zephyr-env.cmd
python .\scripts\twister

If you have a system with a large number of cores and plenty of free storage space, you can build
and run all possible tests using the following options:

Linux

$ ./scripts/twister --all --enable-slow

Windows

python .\scripts\twister --all --enable-slow

This will build for all available boards and run all applicable tests in a simulated (for example
QEMU) environment.

If you want to run tests on one or more specific platforms, you can use the --platform option,
it is a platform filter for testing, with this option, test suites will only be built/run on the plat-
forms specified. This option also supports different revisions of one same board, you can use
--platform board@revision to test on a specific revision.
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The list of command line options supported by twister can be viewed using:

Linux

$ ./scripts/twister --help

Windows

python .\scripts\twister --help

Board Configuration

To build tests for a specific board and to execute some of the tests on real hardware or in an
emulation environment such as QEMU a board configuration file is required which is generic
enough to be used for other tasks that require a board inventory with details about the board
and its configuration that is only available during build time otherwise.

The board metadata file is located in the board directory and is structured using the YAML
markup language. The example below shows a board with a data required for best test coverage
for this specific board:

identifier: frdm_k64f
name: NXP FRDM-K64F
type: mcu
arch: arm
toolchain:
- zephyr
- gnuarmemb
- xtools

supported:
- arduino_gpio
- arduino_i2c
- netif:eth
- adc
- i2c
- nvs
- spi
- gpio
- usb_device
- watchdog
- can
- pwm

testing:
default: true

identifier:
A string that matches how the board is defined in the build system. This same string is used
when building, for example when calling west build or cmake:

# with west
west build -b reel_board
# with cmake
cmake -DBOARD=reel_board ..

name:
The actual name of the board as it appears in marketing material.

type:
Type of the board or configuration, currently we support 2 types: mcu, qemu

simulation:
Simulator used to simulate the platform, e.g. qemu.
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arch:
Architecture of the board

toolchain:
The list of supported toolchains that can build this board. This should match one of the
values used for ZEPHYR_TOOLCHAIN_VARIANT when building on the command line

ram:
Available RAM on the board (specified in KB). This is used to match test scenario require-
ments. If not specified we default to 128KB.

flash:
Available FLASH on the board (specified in KB). This is used to match test scenario require-
ments. If not specified we default to 512KB.

supported:
A list of features this board supports. This can be specified as a single word feature or as a
variant of a feature class. For example:

supported:
- pci

This indicates the board does support PCI. You can make a test scenario build or run only
on such boards, or:

supported:
- netif:eth
- sensor:bmi16

A test scenario can depend on ‘eth’ to only test ethernet or on ‘netif’ to run on any board
with a networking interface.

testing:
testing relating keywords to provide best coverage for the features of this board.

default: [True|False]:
This is a default board, it will tested with the highest priority and is covered when
invoking the simplified twister without any additional arguments.

ignore_tags:
Do not attempt to build (and therefore run) tests marked with this list of tags.

only_tags:
Only execute tests with this list of tags on a specific platform.

timeout_multiplier: <float> (default 1)
Multiply each test scenario timeout by specified ratio. This option allows to tune time-
outs only for required platform. It can be useful in case naturally slow platform I.e.:
HW board with power-efficient but slow CPU or simulation platform which can per-
form instruction accurate simulation but does it slowly.

env:
A list of environment variables. Twister will check if all these environment variables are
set, and otherwise skip this platform. This allows the user to define a platform which should
be used, for example, only if some required software or hardware is present, and to signal
that presence to twister using these environment variables.

Tests

Tests are detected by the presence of a testcase.yaml or a sample.yaml files in the application’s
project directory. This test application configuration file may contain one or more entries in the
tests section each identifying a test scenario.
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Test Framework (ZTEST)

Test Suite (ZTEST_SUITE)

+ suite_name = "foo_bar_feature_aspect"

Test (ZTEST*)

+ test_name = "test_buzz_and_blink"

Test Scenario...

+ tags:...
Test Scenario...

+ tags:...

tests:

Test Scenario...

+ tags:...

CMakeList.txt

+ project(foo-bar-feature) ./src (Test Project Implementation)

prj.conf

+ Kconfig:

Test Application binary

Twister

Test Instance

+ outdir

+ testsuite:

+ platform:

+ testcases: []

+ status:

+ reason:

+ execution_time:

+ retries:

Test Suite (test specification)

+ yamlfile

+ id

+ testcases: []

+ ztest_suite_names: []

+ name

Test Case

+ testsuite:

+ status:

+ reason:

+ output:

+ duration:

+ name:

Legend:

Test Instance (Test Application)

Execution time-specific Test properties

Elementary Test

tests/foo/bar/feature/name_section.name_subsection

name_section.name_subsection.buzz_and_blink

Zephyr Test Application Project (tests/foo/bar/feature)

Test Configuration (testcase.yaml)

build & runTwister parameters... select

ELF symbols and application log parsing

Text is not SVG - cannot display

Fig. 4: Twister and a Test applications’ project.
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Test application configurations are written using the YAML syntax and share the same structure
as samples.

A test scenario is a set of conditions or variables, defined in test scenario entry, under which a
set of test suites will be executed. Can be used interchangeably with test scenario entry.

A test suite is a collection of test cases that are intended to be used to test a software program to
ensure it meets certain requirements. The test cases in a test suite are often related or meant to
be executed together.

The name of each test scenario needs to be unique in the context of the overall test application
and has to follow basic rules:

1. The format of the test scenario identifier shall be a string without any spaces or special
characters (allowed characters: alphanumeric and [_=]) consisting of multiple sections de-
limited with a dot (.).

2. Each test scenario identifier shall start with a section followed by a subsection separated
by a dot. For example, a test scenario that covers semaphores in the kernel shall start with
kernel.semaphore.

3. All test scenario identifiers within a testcase.yaml file need to be unique. For example a
testcase.yaml file covering semaphores in the kernel can have:

• kernel.semaphore: For general semaphore tests

• kernel.semaphore.stress: Stress testing semaphores in the kernel.

4. Depending on the nature of the test, an identifier can consist of at least two sections:

• Ztest tests: The individual test cases in the ztest testsuite will be concatenated by dot (.)
to the identifier in the testcase.yaml file generating unique identifiers for every test
case in the suite.

• Standalone tests and samples: This type of test should at least have 3 sections concat-
nated by dot (.) in the test scenario identifier in the testcase.yaml (or sample.yaml)
file. The last section of the name shall signify the test case itself.

The following is an example test configuration with a few options that are explained in this doc-
ument.

tests:
bluetooth.gatt:

build_only: true
platform_allow: qemu_cortex_m3 qemu_x86
tags: bluetooth

bluetooth.gatt.br:
build_only: true
extra_args: CONF_FILE="prj_br.conf"
filter: not CONFIG_DEBUG
platform_exclude: up_squared
platform_allow: qemu_cortex_m3 qemu_x86
tags: bluetooth

A sample with tests will have the same structure with additional information related to the sam-
ple and what is being demonstrated:

sample:
name: hello world
description: Hello World sample, the simplest Zephyr application

tests:
sample.basic.hello_world:

build_only: true
tags: tests
min_ram: 16

(continues on next page)
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(continued from previous page)
sample.basic.hello_world.singlethread:
build_only: true
extra_args: CONF_FILE=prj_single.conf
filter: not CONFIG_BT
tags: tests
min_ram: 16

The full canonical name for each test scenario is:<path to test application>/<test scenario
identifier>
A test scenario entry is a a block or entry starting with test scenario identifier in the YAML files.

Each test scenario entry in the test application configuration can define the following key/value
pairs:

tags: <list of tags> (required)
A set of string tags for the test scenario. Usually pertains to functional domains but can be
anything. Command line invocations of this script can filter the set of tests to run based on
tag.

skip: <True|False> (default False)
skip test scenario unconditionally. This can be used for broken tests for example.

slow: <True|False> (default False)
Don’t run this test scenario unless --enable-slow or --enable-slow-only was passed in on
the command line. Intended for time-consuming test scenarios that are only run under
certain circumstances, like daily builds. These test scenarios are still compiled.

extra_args: <list of extra arguments>
Extra arguments to pass to build tool when building or running the test scenario.

extra_configs: <list of extra configurations>
Extra configuration options to be merged with a main prj.conf when building or running
the test scenario. For example:

common:
tags: drivers adc

tests:
test:

depends_on: adc
test_async:

extra_configs:
- CONFIG_ADC_ASYNC=y

Using namespacing, it is possible to apply a configuration only to some hardware. Currently
both architectures and platforms are supported:

common:
tags: drivers adc

tests:
test:

depends_on: adc
test_async:

extra_configs:
- arch:x86:CONFIG_ADC_ASYNC=y
- platform:qemu_x86:CONFIG_DEBUG=y

build_only: <True|False> (default False)
If true, twister will not try to run the test even if the test is runnable on the platform.

This keyword is reserved for tests that are used to test if some code actually builds. A
build_only test is not designed to be run in any environment and should not be testing
any functionality, it only verifies that the code builds.
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This option is often used to test drivers and the fact that they are correctly enabled in Zephyr
and that the code builds, for example sensor drivers. Such test shall not be used to verify
the functionality of the driver.

build_on_all: <True|False> (default False)
If true, attempt to build test scenario on all available platforms. This is mostly used in CI
for increased coverage. Do not use this flag in new tests.

depends_on: <list of features>
A board or platform can announce what features it supports, this option will enable the test
only those platforms that provide this feature.

levels: <list of levels>
Test levels this test should be part of. If a level is present, this test will be selectable using
the command line option --level <level name>

min_ram: <integer>
minimum amount of RAM in KB needed for this test to build and run. This is compared
with information provided by the board metadata.

min_flash: <integer>
minimum amount of ROM in KB needed for this test to build and run. This is compared
with information provided by the board metadata.

timeout: <number of seconds>
Length of time to run test before automatically killing it. Default to 60 seconds.

arch_allow: <list of arches, such as x86, arm, arc>
Set of architectures that this test scenario should only be run for.

arch_exclude: <list of arches, such as x86, arm, arc>
Set of architectures that this test scenario should not run on.

platform_allow: <list of platforms>
Set of platforms that this test scenario should only be run for. Do not use this option to limit
testing or building in CI due to time or resource constraints, this option should only be used
if the test or sample can only be run on the allowed platform and nothing else.

integration_platforms: <YML list of platforms/boards>
This option limits the scope to the listed platforms when twister is invoked with the
--integration option. Use this instead of platform_allow if the goal is to limit scope due to
timing or resource constraints.

platform_exclude: <list of platforms>
Set of platforms that this test scenario should not run on.

extra_sections: <list of extra binary sections>
When computing sizes, twister will report errors if it finds extra, unexpected sections in the
Zephyr binary unless they are named here. They will not be included in the size calculation.

sysbuild: <True|False> (default False)
Build the project using sysbuild infrastructure. Only the main project’s generated device-
tree and Kconfig will be used for filtering tests. on device testing must use the hardware
map, or west flash to load the images onto the target. The --erase option of west flash is
not supported with this option. Usage of unsupported options will result in tests requiring
sysbuild support being skipped.

harness: <string>
A harness keyword in the testcase.yaml file identifies a Twister harness needed to run
a test successfully. A harness is a feature of Twister and implemented by Twister, some
harnesses are defined as placeholders and have no implementation yet.

A harness can be seen as the handler that needs to be implemented in Twister to be able
to evaluate if a test passes criteria. For example, a keyboard harness is set on tests that re-
quire keyboard interaction to reach verdict on whether a test has passed or failed, however,
Twister lack this harness implementation at the moment.
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Supported harnesses:

• ztest

• test

• console

• pytest

• gtest

• robot

Harnesses ztest, gtest and console are based on parsing of the output and matching cer-
tain phrases. ztest and gtest harnesses look for pass/fail/etc. frames defined in those
frameworks. Use gtest harness if you’ve already got tests written in the gTest framework
and do not wish to update them to zTest. The console harness tells Twister to parse a test’s
text output for a regex defined in the test’s YAML file. The robot harness is used to execute
Robot Framework test suites in the Renode simulation framework.

Some widely used harnesses that are not supported yet:

• keyboard

• net

• bluetooth

Harness bsim is implemented in limited way - it helps only to copy the final exe-
cutable (zephyr.exe) from build directory to BabbleSim’s bindirectory (${BSIM_OUT_PATH}/
bin). This action is useful to allow BabbleSim’s tests to directly run after. By de-
fault, the executable file name is (with dots and slashes replaced by underscores):
bs_<platform_name>_<test_path>_<test_scenario_name>. This name can be overridden
with the bsim_exe_name option in harness_config section.

platform_key: <list of platform attributes>
Often a test needs to only be built and run once to qualify as passing. Imagine a library of
code that depends on the platform architecture where passing the test on a single platform
for each arch is enough to qualify the tests and code as passing. The platform_key attribute
enables doing just that.

For example to key on (arch, simulation) to ensure a test is run once per arch and simulation
(as would be most common):

platform_key:
- arch
- simulation

Adding platform (board) attributes to include things such as soc name, soc family, and per-
haps sets of IP blocks implementing each peripheral interface would enable other inter-
esting uses. For example, this could enable building and running SPI tests once for each
unique IP block.

harness_config: <harness configuration options>
Extra harness configuration options to be used to select a board and/or for handling generic
Console with regex matching. Config can announce what features it supports. This option
will enable the test to run on only those platforms that fulfill this external dependency.

The following options are currently supported:

type: <one_line|multi_line> (required)
Depends on the regex string to be matched

regex: <list of regular expressions> (required)
Strings with regular expressions to match with the test’s output to confirm the test runs
as expected.
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ordered: <True|False> (default False)
Check the regular expression strings in orderly or randomly fashion

record: <recording options> (optional)
regex: <regular expression> (required)

The regular expression with named subgroups to match data fields at the test’s
output lines where the test provides some custom data for further analysis. These
records will be written into the build directory recording.csv file as well as
recording property of the test suite object in twister.json.

For example, to extract three data fields metric, cycles, nanoseconds:

record:
regex: "(?P<metric>.*):(?P<cycles>.*) cycles, (?P<nanoseconds>.*) ns"

as_json: <list of regex subgroup names> (optional)
Data fields, extracted by the regular expression into named subgroups, which will
be additionally parsed as JSON encoded strings and written into twister.json as
nested recording object properties. The corresponding recording.csv columns
will contain strings as-is.

Using this option, a test log can convey layered data structures passed from the test
image for further analysis with summary results, traces, statistics, etc.

For example, this configuration:

record:
regex: "RECORD:(?P<type>.*):DATA:(?P<metrics>.*)"
as_json: [metrics]

when matched to a test log string:

RECORD:jitter_drift:DATA:{"rollovers":0, "mean_us":1000.0}

will be reported in twister.json as:

"recording":[
{

"type":"jitter_drift",
"metrics":{

"rollovers":0,
"mean_us":1000.0

}
}

]

fixture: <expression>
Specify a test scenario dependency on an external device(e.g., sensor), and identify
setups that fulfill this dependency. It depends on specific test setup and board selection
logic to pick the particular board(s) out of multiple boards that fulfill the dependency
in an automation setup based on fixture keyword. Some sample fixture names are
i2c_hts221, i2c_bme280, i2c_FRAM, ble_fw and gpio_loop.

Only one fixture can be defined per test scenario and the fixture name has to be unique
across all tests in the test suite.

pytest_root: <list of pytest testpaths> (default pytest)
Specify a list of pytest directories, files or subtests that need to be executed when a
test scenario begins to run. The default pytest directory is pytest. After the pytest
run is finished, Twister will check if the test scenario passed or failed according
to the pytest report. As an example, a list of valid pytest roots is presented below:
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harness_config:
pytest_root:
- "pytest/test_shell_help.py"
- "../shell/pytest/test_shell.py"
- "/tmp/test_shell.py"
- "~/tmp/test_shell.py"
- "$ZEPHYR_BASE/samples/subsys/testsuite/pytest/shell/pytest/test_shell.

↪→py"
- "pytest/test_shell_help.py::test_shell2_sample" # select pytest␣

↪→subtest
- "pytest/test_shell_help.py::test_shell2_sample[param_a]" # select␣

↪→pytest parametrized subtest

pytest_args: <list of arguments> (default empty)
Specify a list of additional arguments to pass to pytest e.g.: pytest_args:
[‘-k=test_method’, ‘--log-level=DEBUG’]. Note that --pytest-args can be
passed multiple times to pass several arguments to the pytest.

pytest_dut_scope: <function|class|module|package|session> (default function)
The scope for which dut and shell pytest fixtures are shared. If the scope is set
to function, DUT is launched for every test case in python script. For session
scope, DUT is launched only once.

robot_testsuite: <robot file path> (default empty)
Specify one or more paths to a file containing a Robot Framework test suite to be
run.

robot_option: <robot option> (default empty)
One or more options to be send to robotframework.

bsim_exe_name: <string>
If provided, the executable filename when copying to BabbleSim’s bin directory,
will be bs_<platform_name>_<bsim_exe_name> instead of the default based on the
test path and scenario name.

The following is an example yaml file with a few harness_config options.

sample:
name: HTS221 Temperature and Humidity Monitor

common:
tags: sensor
harness: console
harness_config:

type: multi_line
ordered: false
regex:
- "Temperature:(.*)C"
- "Relative Humidity:(.*)%"

fixture: i2c_hts221
tests:
test:

tags: sensors
depends_on: i2c

The following is an example yaml file with pytest harness_config options, default
pytest_root name “pytest” will be used if pytest_root not specified. please refer the
examples in samples/subsys/testsuite/pytest/.

common:
harness: pytest

tests:
pytest.example.directories:

(continues on next page)
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harness_config:
pytest_root:
- pytest_dir1
- $ENV_VAR/samples/test/pytest_dir2

pytest.example.files_and_subtests:
harness_config:
pytest_root:
- pytest/test_file_1.py
- test_file_2.py::test_A
- test_file_2.py::test_B[param_a]

The following is an example yaml file with robot harness_config options.

tests:
robot.example:

harness: robot
harness_config:
robot_testsuite: [robot file path]

It can be more than one test suite using a list.

tests:
robot.example:

harness: robot
harness_config:
robot_testsuite:
- [robot file path 1]
- [robot file path 2]
- [robot file path n]

One or more options can be passed to robotframework.

tests:
robot.example:

harness: robot
harness_config:
robot_testsuite: [robot file path]
robot_option:
- --exclude tag
- --stop-on-error

filter: <expression>
Filter whether the test scenario should be run by evaluating an expression against an en-
vironment containing the following values:

{ ARCH : <architecture>,
PLATFORM : <platform>,
<all CONFIG_* key/value pairs in the test's generated defconfig>,
*<env>: any environment variable available

}

Twister will first evaluate the expression to find if a “limited” cmake call, i.e. using pack-
age_helper cmake script, can be done. Existence of “dt_*” entries indicates devicetree is
needed. Existence of “CONFIG*” entries indicates kconfig is needed. If there are no other
types of entries in the expression a filtration can be done without creating a complete build
system. If there are entries of other types a full cmake is required.

The grammar for the expression language is as follows:

expression : expression 'and' expression
| expression 'or' expression

(continues on next page)
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| 'not' expression
| '(' expression ')'
| symbol '==' constant
| symbol '!=' constant
| symbol '<' NUMBER
| symbol '>' NUMBER
| symbol '>=' NUMBER
| symbol '<=' NUMBER
| symbol 'in' list
| symbol ':' STRING
| symbol
;

list : '[' list_contents ']';

list_contents : constant (',' constant)*;

constant : NUMBER | STRING;

For the case where expression ::= symbol, it evaluates to true if the symbol is defined to
a non-empty string.

Operator precedence, starting from lowest to highest:

• or (left associative)

• and (left associative)

• not (right associative)

• all comparison operators (non-associative)

arch_allow, arch_exclude, platform_allow, platform_exclude are all syntactic sugar for
these expressions. For instance:

arch_exclude = x86 arc

Is the same as:

filter = not ARCH in ["x86", "arc"]

The : operator compiles the string argument as a regular expression, and then returns a
true value only if the symbol’s value in the environment matches. For example, if CON-
FIG_SOC="stm32f107xc" then

filter = CONFIG_SOC : "stm.*"

Would match it.

required_snippets: <list of needed snippets>
Snippets are supported in twister for test scenarios that require them. As with normal ap-
plications, twister supports using the base zephyr snippet directory and test application
directory for finding snippets. Listed snippets will filter supported tests for boards (snip-
pets must be compatible with a board for the test to run on them, they are not optional).

The following is an example yaml file with 2 required snippets.

tests:
snippet.example:

required_snippets:
- cdc-acm-console
- user-snippet-example
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The set of test scenarios that actually run depends on directives in the test scenario filed and
options passed in on the command line. If there is any confusion, running with -v or examin-
ing the discard report (twister_discard.csv) can help show why particular test scenarios were
skipped.

Metrics (such as pass/fail state and binary size) for the last code release are stored in scripts/
release/twister_last_release.csv. To update this, pass the --all --release options.

To load arguments from a file, add + before the file name, e.g., +file_name. File content must be
one or more valid arguments separated by line break instead of white spaces.

Most everyday users will run with no arguments.

Managing tests timeouts

There are several parameters which control tests timeouts on various levels:

• timeout option in each test scenario. See here for more details.

• timeout_multiplier option in board configuration. See here for more details.

• --timeout-multiplier twister option which can be used to adjust timeouts in exact twister
run. It can be useful in case of simulation platform as simulation time may depend on the
host speed & load or we may select different simulation method (i.e. cycle accurate but
slower one), etc…

Overall test scenario timeout is a multiplication of these three parameters.

Running in Integration Mode

This mode is used in continuous integration (CI) and other automated environments used to give
developers fast feedback on changes. The mode can be activated using the --integration option
of twister and narrows down the scope of builds and tests if applicable to platforms defined
under the integration keyword in the test configuration file (testcase.yaml and sample.yaml).

Running tests on custom emulator

Apart from the already supported QEMU and other simulated environments, Twister supports
running any out-of-tree custom emulator defined in the board’s board.cmake. To use this type of
simulation, add the following properties to custom_board/custom_board.yaml:

simulation: custom
simulation_exec: <name_of_emu_binary>

This tells Twister that the board is using a custom emulator called <name_of_emu_binary>, make
sure this binary exists in the PATH.

Then, in custom_board/board.cmake, set the supported emulation platforms to custom:

set(SUPPORTED_EMU_PLATFORMS custom)

Finally, implement the run_custom target in custom_board/board.cmake. It should look some-
thing like this:

add_custom_target(run_custom
COMMAND
<name_of_emu_binary to invoke during 'run'>
<any args to be passed to the command, i.e. ${BOARD}, ${APPLICATION_BINARY_DIR}/zephyr/

↪→zephyr.elf>
(continues on next page)
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WORKING_DIRECTORY ${APPLICATION_BINARY_DIR}
DEPENDS ${logical_target_for_zephyr_elf}
USES_TERMINAL
)

Running Tests on Hardware

Beside being able to run tests in QEMU and other simulated environments, twister supports run-
ning most of the tests on real devices and produces reports for each run with detailed FAIL/PASS
results.

Executing tests on a single device To use this feature on a single connected device, run twister
with the following new options:

Linux

scripts/twister --device-testing --device-serial /dev/ttyACM0 \
--device-serial-baud 115200 -p frdm_k64f -T tests/kernel

Windows

python .\scripts\twister --device-testing --device-serial COM1 \
--device-serial-baud 115200 -p frdm_k64f -T tests/kernel

The --device-serial option denotes the serial device the board is connected to. This needs to
be accessible by the user running twister. You can run this on only one board at a time, specified
using the --platform option.

The --device-serial-baud option is only needed if your device does not run at 115200 baud.

To support devices without a physical serial port, use the --device-serial-pty option. In this
cases, log messages are captured for example using a script. In this case you can run twister with
the following options:

Linux

scripts/twister --device-testing --device-serial-pty "script.py" \
-p intel_adsp/cavs25 -T tests/kernel

Windows

Note

Not supported on Windows OS

The script is user-defined and handles delivering the messages which can be used by twister to
determine the test execution status.

The --device-flash-timeout option allows to set explicit timeout on the device flash operation,
for example when device flashing takes significantly large time.

The --device-flash-with-test option indicates that on the platform the flash operation also
executes a test scenario, so the flash timeout is increased by a test scenario timeout.

Executing tests onmultiple devices To build and execute tests on multiple devices connected
to the host PC, a hardware map needs to be created with all connected devices and their details
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such as the serial device, baud and their IDs if available. Run the following command to produce
the hardware map:

Linux

./scripts/twister --generate-hardware-map map.yml

Windows

python .\scripts\twister --generate-hardware-map map.yml

The generated hardware map file (map.yml) will have the list of connected devices, for example:

Linux

- connected: true
id: OSHW000032254e4500128002ab98002784d1000097969900
platform: unknown
product: DAPLink CMSIS-DAP
runner: pyocd
serial: /dev/cu.usbmodem146114202

- connected: true
id: 000683759358
platform: unknown
product: J-Link
runner: unknown
serial: /dev/cu.usbmodem0006837593581

Windows

- connected: true
id: OSHW000032254e4500128002ab98002784d1000097969900
platform: unknown
product: unknown
runner: unknown
serial: COM1

- connected: true
id: 000683759358
platform: unknown
product: unknown
runner: unknown
serial: COM2

Any options marked as unknown need to be changed and set with the correct values, in the above
example the platform names, the products and the runners need to be replaced with the correct
values corresponding to the connected hardware. In this example we are using a reel_board and
an nrf52840dk/nrf52840:

Linux

- connected: true
id: OSHW000032254e4500128002ab98002784d1000097969900
platform: reel_board
product: DAPLink CMSIS-DAP
runner: pyocd
serial: /dev/cu.usbmodem146114202
baud: 9600

- connected: true
id: 000683759358
platform: nrf52840dk/nrf52840
product: J-Link
runner: nrfjprog
serial: /dev/cu.usbmodem0006837593581
baud: 9600
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Windows

- connected: true
id: OSHW000032254e4500128002ab98002784d1000097969900
platform: reel_board
product: DAPLink CMSIS-DAP
runner: pyocd
serial: COM1
baud: 9600

- connected: true
id: 000683759358
platform: nrf52840dk/nrf52840
product: J-Link
runner: nrfjprog
serial: COM2
baud: 9600

The baud entry is only needed if not running at 115200.

If the map file already exists, then new entries are added and existing entries will be updated.
This way you can use one single master hardware map and update it for every run to get the
correct serial devices and status of the devices.

With the hardware map ready, you can run any tests by pointing to the map

Linux

./scripts/twister --device-testing --hardware-map map.yml -T samples/hello_world/

Windows

python .\scripts\twister --device-testing --hardware-map map.yml -T samples\hello_world

The above command will result in twister building tests for the platforms defined in the hard-
ware map and subsequently flashing and running the tests on those platforms.

Note

Currently only boards with support for pyocd, nrfjprog, jlink, openocd, or dediprog are sup-
ported with the hardware map features. Boards that require other runners to flash the
Zephyr binary are still work in progress.

Hardware map allows to set --device-flash-timeout and --device-flash-with-test com-
mand line options as flash-timeout and flash-with-test fields respectively. These hardware
map values override command line options for the particular platform.

Serial PTY support using --device-serial-pty can also be used in the hardware map:

- connected: true
id: None
platform: intel_adsp/cavs25
product: None
runner: intel_adsp
serial_pty: path/to/script.py
runner_params:
- --remote-host=remote_host_ip_addr
- --key=/path/to/key.pem

The runner_params field indicates the parameters you want to pass to the west runner. For some
boards the west runner needs some extra parameters to work. It is equivalent to following west
and twister commands.

Linux
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west flash --remote-host remote_host_ip_addr --key /path/to/key.pem

twister -p intel_adsp/cavs25 --device-testing --device-serial-pty script.py
--west-flash="--remote-host=remote_host_ip_addr,--key=/path/to/key.pem"

Windows

Note

Not supported on Windows OS

Note

For serial PTY, the “–generate-hardware-map” option cannot scan it out and generate a correct
hardware map automatically. You have to edit it manually according to above example. This
is because the serial port of the PTY is not fixed and being allocated in the system at runtime.

Fixtures Some tests require additional setup or special wiring specific to the test. Running the
tests without this setup or test fixture may fail. A test scenario can specify the fixture it needs
which can then be matched with hardware capability of a board and the fixtures it supports via
the command line or using the hardware map file.

Fixtures are defined in the hardware map file as a list:

- connected: true
fixtures:
- gpio_loopback

id: 0240000026334e450015400f5e0e000b4eb1000097969900
platform: frdm_k64f
product: DAPLink CMSIS-DAP
runner: pyocd
serial: /dev/ttyACM9

When running twister with --device-testing, the configured fixture in the hardware map file
will be matched to test scenarios requesting the same fixtures and these tests will be executed
on the boards that provide this fixture.

Fixtures can also be provided via twister command option --fixture, this option can be used
multiple times and all given fixtures will be appended as a list. And the given fixtures will be
assigned to all boards, this means that all boards set by current twister command can run those
test scenarios which request the same fixtures.

Some fixtures allow for configuration strings to be appended, separated from the fixture name
by a :. Only the fixture name is matched against the fixtures requested by test scenarios.

Notes It may be useful to annotate board descriptions in the hardware map file with additional
information. Use the notes keyword to do this. For example:

- connected: false
fixtures:
- gpio_loopback

id: 000683290670
notes: An nrf5340dk/nrf5340 is detected as an nrf52840dk/nrf52840 with no serial
port, and three serial ports with an unknown platform. The board id of the serial
ports is not the same as the board id of the development kit. If you regenerate
this file you will need to update serial to reference the third port, and platform

(continues on next page)
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to nrf5340dk/nrf5340/cpuapp or another supported board target.

platform: nrf52840dk/nrf52840
product: J-Link
runner: jlink
serial: null

Overriding Board Identifier When (re-)generated the hardware map file will contain an id
keyword that serves as the argument to --board-id when flashing. In some cases the detected
ID is not the correct one to use, for example when using an external J-Link probe. The probe_id
keyword overrides the id keyword for this purpose. For example:

- connected: false
id: 0229000005d9ebc600000000000000000000000097969905
platform: mimxrt1060_evk
probe_id: 000609301751
product: DAPLink CMSIS-DAP
runner: jlink
serial: null

Quarantine Twister allows user to provide configuration files defining a list of tests or plat-
forms to be put under quarantine. Such tests will be skipped and marked accordingly in the
output reports. This feature is especially useful when running larger test suits, where a failure
of one test can affect the execution of other tests (e.g. putting the physical board in a corrupted
state).

To use the quarantine feature one has to add the argument --quarantine-list
<PATH_TO_QUARANTINE_YAML> to a twister call. Multiple quarantine files can be used. The current
status of tests on the quarantine list can also be verified by adding --quarantine-verify to the
above argument. This will make twister skip all tests which are not on the given list.

A quarantine yaml has to be a sequence of dictionaries. Each dictionary has to have scenarios
and platforms entries listing combinations of scenarios and platforms to put under quarantine.
In addition, an optional entry comment can be used, where some more details can be given (e.g.
link to a reported issue). These comments will also be added to the output reports.

When quarantining a class of tests or many scenarios in a single testsuite or when dealing with
multiple issues within a subsystem, it is possible to use regular expressions, for example, ker-
nel.* would quarantine all kernel tests.

An example of entries in a quarantine yaml:

- scenarios:
- sample.basic.helloworld

comment: "Link to the issue: https://github.com/zephyrproject-rtos/zephyr/pull/33287"

- scenarios:
- kernel.common
- kernel.common.(misra|tls)
- kernel.common.nano64

platforms:
- .*_cortex_.*
- native_sim

To exclude a platform, use the following syntax:

- platforms:
- qemu_x86
comment: "broken qemu"
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Additionally you can quarantine entire architectures or a specific simulator for executing tests.

Test Configuration

A test configuration can be used to customize various aspects of twister and the default enabled
options and features. This allows tweaking the filtering capabilities depending on the environ-
ment and makes it possible to adapt and improve coverage when targeting different sets of plat-
forms.

The test configuration also adds support for test levels and the ability to assign a specific test to
one or more levels. Using command line options of twister it is then possible to select a level and
just execute the tests included in this level.

Additionally, the test configuration allows defining level dependencies and additional inclusion
of tests into a specific level if the test itself does not have this information already.

In the configuration file you can include complete components using regular expressions and
you can specify which test level to import from the same file, making management of levels
easier.

To help with testing outside of upstream CI infrastructure, additional options are available in
the configuration file, which can be hosted locally. As of now, those options are available:

• Ability to ignore default platforms as defined in board definitions (Those are mostly emu-
lation platforms used to run tests in upstream CI)

• Option to specify your own list of default platforms overriding what upstream defines.

• Ability to override build_on_all options used in some test scenarios. This will treat tests or
sample as any other just build for default platforms you specify in the configuration file or
on the command line.

• Ignore some logic in twister to expand platform coverage in cases where default platforms
are not in scope.

Platform Configuration The following options control platform filtering in twister:

• override_default_platforms: override default key a platform sets in board configuration and
instead use the list of platforms provided in the configuration file as the list of default plat-
forms. This option is set to False by default.

• increased_platform_scope: This option is set to True by default, when disabled, twister will
not increase platform coverage automatically and will only build and run tests on the spec-
ified platforms.

• default_platforms: A list of additional default platforms to add. This list can either be used
to replace the existing default platforms or can extend it depending on the value of over-
ride_default_platforms.

And example platforms configuration:

platforms:
override_default_platforms: true
increased_platform_scope: false
default_platforms:
- qemu_x86

Test Level Configuration The test configuration allows defining test levels, level dependen-
cies and additional inclusion of tests into a specific test level if the test itself does not have this
information already.
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In the configuration file you can include complete components using regular expressions and
you can specify which test level to import from the same file, making management of levels
simple.

And example test level configuration:

levels:
- name: my-test-level
description: >

my custom test level
adds:

- kernel.threads.*
- kernel.timer.behavior
- arch.interrupt
- boards.*

Combined configuration To mix the Platform and level configuration, you can take an exam-
ple as below:

An example platforms plus level configuration:

platforms:
override_default_platforms: true
default_platforms:
- frdm_k64f

levels:
- name: smoke
description: >

A plan to be used verifying basic zephyr features.
- name: unit
description: >

A plan to be used verifying unit test.
- name: integration
description: >

A plan to be used verifying integration.
- name: acceptance
description: >

A plan to be used verifying acceptance.
- name: system
description: >

A plan to be used verifying system.
- name: regression
description: >

A plan to be used verifying regression.

To run with above test_config.yaml file, only default_platforms with given test level test scenarios
will run.

Linux

scripts/twister --test-config=<path to>/test_config.yaml
-T tests --level="smoke"

Running in Tests in Random Order

Enable ZTEST framework’s CONFIG_ZTEST_SHUFFLE config option to run your tests in random or-
der. This can be beneficial for identifying dependencies between test cases. For native_sim plat-
forms, you can provide the seed to the random number generator by providing -seed=value as
an argument to twister. See Shuffling Test Sequence for more details.
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Robot Framework Tests

Zephyr supports Robot Framework as one of solutions for automated testing.

Robot files allow you to express interactive test scenarios in human-readable text format and
execute them in simulation or against hardware. At this moment Zephyr integration supports
running Robot tests in the Renode simulation framework.

To execute a Robot test suite with twister, run the following command:

Linux

$ ./scripts/twister --platform hifive1 --test samples/subsys/shell/shell_module/sample.
↪→shell.shell_module.robot

Windows

python .\scripts\twister --platform hifive1 --test samples/subsys/shell/shell_module/sample.
↪→shell.shell_module.robot

Writing Robot tests For the list of keywords provided by the Robot Framework itself, refer to
the official Robot documentation.

Information on writing and running Robot Framework tests in Renode can be found in the test-
ing section of Renode documentation. It provides a list of the most commonly used keywords
together with links to the source code where those are defined.

It’s possible to extend the framework by adding new keywords expressed directly in Robot test
suite files, as an external Python library or, like Renode does it, dynamically via XML-RPC. For
details see the extending Robot Framework section in the official Robot documentation.

Running a single testsuite To run a single testsuite instead of a whole group of test you can
run:

$ twister -p qemu_riscv32 -s tests/kernel/interrupt/arch.shared_interrupt

2.12.3 Twister blackbox tests

This guide aims to explain the structure of a test file so the reader will be able to understand
existing files and create their own. All developers should fix any tests they break and create new
ones when introducing new features, so this knowledge is important for any Twister developer.

Basics

Twister blackbox tests are written in python, using the pytest library. Read up on it here . Auxil-
iary test data follows whichever format it was in originally. Tests and data are wholly contained
in the scripts/tests/twister_blackbox directory and prepended with test_.

Blackbox tests should not be aware of the internal twister code. Instead, they should call twister
as user would and check the results.

Sample test file
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1 #!/usr/bin/env python3
2 # Copyright (c) 2024 Intel Corporation
3 #
4 # SPDX-License-Identifier: Apache-2.0
5

6 import importlib
7 import mock
8 import os
9 import pytest

10 import sys
11 import json
12

13 from conftest import ZEPHYR_BASE, TEST_DATA, testsuite_filename_mock
14 from twisterlib.testplan import TestPlan
15

16

17 class TestDummy:
18 TESTDATA_X = [
19 ("smoke", 5),
20 ("acceptance", 6),
21 ]
22

23 @classmethod
24 def setup_class(cls):
25 apath = os.path.join(ZEPHYR_BASE, "scripts", "twister")
26 cls.loader = importlib.machinery.SourceFileLoader("__main__", apath)
27 cls.spec = importlib.util.spec_from_loader(cls.loader.name, cls.loader)
28 cls.twister_module = importlib.util.module_from_spec(cls.spec)
29

30 @classmethod
31 def teardown_class(cls):
32 pass
33

34 @pytest.mark.parametrize(
35 "level, expected_tests", TESTDATA_X, ids=["smoke", "acceptance"]
36 )
37 @mock.patch.object(TestPlan, "TESTSUITE_FILENAME", testsuite_filename_mock)
38 def test_level(self, capfd, out_path, level, expected_tests):
39 # Select platforms used for the tests
40 test_platforms = ["qemu_x86", "frdm_k64f"]
41 # Select test root
42 path = os.path.join(TEST_DATA, "tests")
43 config_path = os.path.join(TEST_DATA, "test_config.yaml")
44

45 # Set flags for our Twister command as a list of strs
46 args = (
47 # Flags related to the generic test setup:
48 # * Control the level of detail in stdout/err
49 # * Establish the output directory
50 # * Select Zephyr tests to use
51 # * Control whether to only build or build and run aforementioned tests
52 ["-i", "--outdir", out_path, "-T", path, "-y"]
53 # Flags under test
54 + ["--level", level]
55 # Flags required for the test
56 + ["--test-config", config_path]
57 # Flags related to platform selection
58 + [
59 val
60 for pair in zip(["-p"] * len(test_platforms), test_platforms)
61 for val in pair
62 ]

(continues on next page)
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(continued from previous page)
63 )
64

65 # First, provide the args variable as our Twister command line arguments.
66 # Then, catch the exit code in the sys_exit variable.
67 with mock.patch.object(sys, "argv", [sys.argv[0]] + args), pytest.raises(
68 SystemExit
69 ) as sys_exit:
70 # Execute the Twister call itself.
71 self.loader.exec_module(self.twister_module)
72

73 # Check whether the Twister call succeeded
74 assert str(sys_exit.value) == "0"
75

76 # Access to the test file output
77 with open(os.path.join(out_path, "testplan.json")) as f:
78 j = json.load(f)
79 filtered_j = [
80 (ts["platform"], ts["name"], tc["identifier"])
81 for ts in j["testsuites"]
82 for tc in ts["testcases"]
83 if "reason" not in tc
84 ]
85

86 # Read stdout and stderr to out and err variables respectively
87 out, err = capfd.readouterr()
88 # Rewrite the captured buffers to stdout and stderr so the user can still read them
89 sys.stdout.write(out)
90 sys.stderr.write(err)
91

92 # Test-relevant checks
93 assert expected_tests == len(filtered_j)

Comparison with CLI

Test above runs the command

twister -i --outdir $OUTDIR -T $TEST_DATA/tests -y --level $LEVEL
--test-config $TEST_DATA/test_config.yaml -p qemu_x86 -p frdm_k64f

It presumes a CLI with the zephyr-env.sh or zephyr-env.cmd already run.

Such a test provides us with all the outputs we typically expect of a Twister run thanks to im-
portlib ‘s exec_module()1 . We can easily set up all flags that we expect from a Twister call via
args variable2 . We can check the standard output or stderr in out and err variables.

Beside the standard outputs, we can also investigate the file outputs, normally placed in
twister-out directories. Most of the time, we will use the out_path fixture in conjunction with
--outdir flag (L52) to keep test-generated files in temporary directories. Typical files read in
blackbox tests are testplan.json , twister.xml and twister.log .

Other functionalities

Decorators
• @pytest.mark.usefixtures('clear_log')

1 Take note of the setup_class() class function, which allows us to run twister python file as if it were called directly
(bypassing the __name__ == '__main__' check).

2 We advise you to keep the first section of args definition intact in almost all of your tests, as it is used for the common
test setup.
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– allows us to use clear_log fixture from conftest.py . The fixture is to become
autouse in the future. After that, this decorator can be removed.

• @pytest.mark.parametrize('level, expected_tests', TESTDATA_X, ids=['smoke',
'acceptance'])

– this is an example of pytest ‘s test parametrization. Read up on it here. TESTDATAs
are most often declared as class fields.

• @mock.patch.object(TestPlan, 'TESTSUITE_FILENAME', testsuite_filename_mock)
– this decorator allows us to use only tests defined in the test_data and ignore

the Zephyr testcases in the tests directory. Note that all “test_data“ tests use
test_data.yaml as a filename, not testcase.yaml ! Read up on the mock library
here.

Fixtures Blackbox tests use pytest ‘s fixtures, further reading on which is available here.

If you would like to add your own fixtures, consider whether they will be used in just one test
file, or in many.

• If in many, create such a fixture in the scripts/tests/twister_blackbox/conftest.py file.

– scripts/tests/twister_blackbox/conftest.py already contains some fixtures - take a look
there for an example.

• If in just one, declare it in that file.

– Consider using class fields instead - look at TESTDATAs for an example.

How do I…

Call Twister multiple times in one test? Sometimes we want to test something that requires
prior Twister use. --test-only flag would be a typical example, as it is to be coupled with pre-
vious --build-only Twister call. How should we approach that?

If we just call the importlib ‘s exec_module two times, we will experience log duplication.
twister.log will duplicate every line (triplicate if we call it three times, etc.) instead of over-
writing the log or appending to the end of it.

It is caused by the use of logger module variables in the Twister files. Thus us executing the
module again causes the loggers to have multiple handles.

To overcome this, between the calls you ought to use

capfd.readouterr() # To remove output from the buffer
# Note that if you want output from all runs after each other,
# skip this line.

clear_log_in_test() # To remove log duplication

2.12.4 Integration with pytest test framework

Please mind that integration of twister with pytest is still work in progress. Not every platform
type is supported in pytest (yet). If you find any issue with the integration or have an idea for an
improvement, please, let us know about it and open a GitHub issue/enhancement.
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Introduction

Pytest is a python framework that “makes it easy to write small, readable tests, and can scale
to support complex functional testing for applications and libraries” (https://docs.pytest.org/en/
7.3.x/). Python is known for its free libraries and ease of using it for scripting. In addition,
pytest utilizes the concept of plugins and fixtures, increasing its expendability and reusability.
A pytest plugin pytest-twister-harness was introduced to provide an integration between pytest
and twister, allowing Zephyr’s community to utilize pytest functionality with keeping twister as
the main framework.

Integration with twister

By default, there is nothing to be done to enable pytest support in twister. The plugin is devel-
oped as a part of Zephyr’s tree. To enable install-less operation, twister first extends PYTHON-
PATH with path to this plugin, and then during pytest call, it appends the command with -p
twister_harness.plugin argument. If one prefers to use the installed version of the plugin,
they must add --allow-installed-plugin flag to twister’s call.

Pytest-based test suites are discovered the same way as other twister tests, i.e., by a presence of
test/sample.yaml. Inside, a keyword harness tells twister how to handle a given test. In the case
of harness: pytest, most of twister workflow (test suites discovery, parallelization, building and
reporting) remains the same as for other harnesses. The change happens during the execution
step. The below picture presents a simplified overview of the integration.

If harness: pytest is used, twister delegates the test execution to pytest, by calling it as a subpro-
cess. Required parameters (such as build directory, device to be used, etc.) are passed through
a CLI command. When pytest is done, twister looks for a pytest report (results.xml) and sets the
test result accordingly.

How to create a pytest test

An example folder containing a pytest test, application source code and Twister configuration
.yaml file can look like the following:

test_foo/
├─── pytest/
│ └─── test_foo.py
├─── src/
│ └─── main.c
├─── CMakeList.txt
├─── prj.conf
└─── testcase.yaml

An example of a pytest test is given at samples/subsys/testsuite/pytest/shell/pytest/test_shell.py.
Using the configuration provided in the testcase.yaml file, Twister builds the application from
src and then, if the .yaml file contains a harness: pytest entry, it calls pytest in a separate
subprocess. A sample configuration file may look like this:

tests:
some.foo.test:

harness: pytest
tags: foo

By default, pytest tries to look for tests in a pytest directory located next to a directory with
binary sources. A keyword pytest_root placed under harness_config section in .yaml file can
be used to point to other files, directories or subtests (more info here).

Pytest scans the given locations looking for tests, following its default discovery rules.
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Test execution
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Passing extra arguments There are two ways for passing extra arguments to the called pytest
subprocess:

1. From .yaml file, using pytest_args placed under harness_config section - more info here.

2. Through Twister command line interface as --pytest-args argument. This can be particu-
larly useful when one wants to select a specific testcase from a test suite. For instance, one
can use a command:

$ ./scripts/twister --platform native_sim -T samples/subsys/testsuite/pytest/shell \
-s samples/subsys/testsuite/pytest/shell/sample.pytest.shell \
--pytest-args='-k test_shell_print_version'

Fixtures

dut Give access to a DeviceAdapter type object, that represents Device Under Test. This fixture
is the core of pytest harness plugin. It is required to launch DUT (initialize logging, flash device,
connect serial etc). This fixture yields a device prepared according to the requested type (native,
qemu, hardware, etc.). All types of devices share the same API. This allows for writing tests which
are device-type-agnostic. Scope of this fixture is determined by the pytest_dut_scope keyword
placed under harness_config section (more info here).

from twister_harness import DeviceAdapter

def test_sample(dut: DeviceAdapter):
dut.readlines_until('Hello world')

shell Provide a Shell class object with methods used to interact with shell application. It calls
wait_for_promt method, to not start scenario until DUT is ready. The shell fixture calls dut fix-
ture, hence has access to all its methods. The shell fixture adds methods optimized for interac-
tions with a shell. It can be used instead of dut for tests. Scope of this fixture is determined by
the pytest_dut_scope keyword placed under harness_config section (more info here).

from twister_harness import Shell

def test_shell(shell: Shell):
shell.exec_command('help')

mcumgr Sample fixture to wrap mcumgr command-line tool used to manage remote devices.
More information about MCUmgr can be found here MCUmgr.

Note

This fixture requires the mcumgr available in the system PATH

Only selected functionality of MCUmgr is wrapped by this fixture. For example, here is a test
with a fixture mcumgr

from twister_harness import DeviceAdapter, Shell, McuMgr

def test_upgrade(dut: DeviceAdapter, shell: Shell, mcumgr: McuMgr):
# free the serial port for mcumgr
dut.disconnect()
# upload the signed image
mcumgr.image_upload('path/to/zephyr.signed.bin')

(continues on next page)
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(continued from previous page)
# obtain the hash of uploaded image from the device
second_hash = mcumgr.get_hash_to_test()
# test a new upgrade image
mcumgr.image_test(second_hash)
# reset the device remotely
mcumgr.reset_device()
# continue test scenario, check version etc.

Classes

DeviceAdapter
class twister_harness.DeviceAdapter(device_config: DeviceConfig)

This class defines a common interface for all device types (hardware, simulator, QEMU)
used in tests to gathering device output and send data to it.

launch()→ None
Start by closing previously running application (no effect if not needed). Then, flash
and run test application. Finally, start an internal reader thread capturing an output
from a device.

connect(retry_s: int = 0)→ None
Connect to device - allow for output gathering.

readline(timeout: float | None = None, print_output: bool = True)→ str
Read line from device output. If timeout is not provided, then use base_timeout.

readlines(print_output: bool = True)→ list[str]
Read all available output lines produced by device from internal buffer.

readlines_until(regex: str | None = None, num_of_lines: int | None = None, timeout: float
| None = None, print_output: bool = True)→ list[str]

Read available output lines produced by device from internal buffer until following
conditions:

1. If regex is provided - read until regex regex is found in read line (or until timeout).

2. If num_of_lines is provided - read until number of read lines is equal to
num_of_lines (or until timeout).

3. If none of above is provided - return immediately lines collected so far in internal
buffer.

If timeout is not provided, then use base_timeout.

write(data: bytes)→ None
Write data bytes to device.

disconnect()→ None
Disconnect device - block output gathering.

close()→ None
Disconnect, close device and close reader thread.

Shell
class twister_harness.Shell(device: DeviceAdapter, prompt: str = ’uart:~$’, timeout: float |

None = None)
Helper class that provides methods used to interact with shell application.
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exec_command(command: str, timeout: float | None = None, print_output: bool = True)→
list[str]

Send shell command to a device and return response. Passed command is extended by
double enter sings - first one to execute this command on a device, second one to re-
ceive next prompt what is a signal that execution was finished. Method returns print-
out of the executed command.

wait_for_prompt(timeout: float | None = None)→ bool
Send every 0.5 second “enter” command to the device until shell prompt statement
will occur (return True) or timeout will be exceeded (return False).

Examples of pytest tests in the Zephyr project

• pytest_shell

• MCUmgr tests - tests/boot/with_mcumgr

• LwM2M tests - tests/net/lib/lwm2m/interop

• GDB stub tests - tests/subsys/debug/gdbstub

FAQ

How to flash/run application only once per pytest session?
dut is a fixture responsible for flashing/running application. By default, its scope is set
as function. This can be changed by adding to .yaml file pytest_dut_scope keyword
placed under harness_config section:

harness: pytest
harness_config:

pytest_dut_scope: session

More info can be found here.

How to run only one particular test from a python file?
This can be achieved in several ways. In .yaml file it can be added using a pytest_root
entry placed under harness_config with list of tests which should be run:

harness: pytest
harness_config:

pytest_root:
- "pytest/test_shell.py::test_shell_print_help"

Particular tests can be also chosen by pytest -k option (more info about pytest keyword
filter can be found here ). It can be applied by adding -k filter in pytest_args in .yaml
file:

harness: pytest
harness_config:

pytest_args:
- "-k test_shell_print_help"

or by adding it to Twister command overriding parameters from the .yaml file:

$ ./scripts/twister ... --pytest-args='-k test_shell_print_help'
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How to get information about used device type in test?
This can be taken from dut fixture (which represents DeviceAdapter object):

device_type: str = dut.device_config.type
if device_type == 'hardware':

...
elif device_type == 'native':

...

How to rerun locally pytest tests without rebuilding application by Twister?
This can be achieved by running Twister once again with --test-only argument
added to Twister command. Another way is running Twister with highest verbosity
level (-vv) and then copy-pasting from logs command dedicated for spawning pytest
(log started by Running pytest command: ...).

Is this possible to run pytest tests in parallel?
Basically pytest-harness-pluginwasn’t written with intention of running pytest tests
in parallel. Especially those one dedicated for hardware. There was assumption that
parallelization of tests is made by Twister, and it is responsible for managing available
sources (jobs and hardwares). If anyone is interested in doing this for some reasons
(for example via pytest-xdist plugin) they do so at their own risk.

Limitations

• Not every platform type is supported in the plugin (yet).

2.12.5 Generating coverage reports

With Zephyr, you can generate code coverage reports to analyze which parts of the code are
covered by a given test or application.

You can do this in two ways:

• In a real embedded target or QEMU, using Zephyr’s gcov integration

• Directly in your host computer, by compiling your application targeting the POSIX archi-
tecture

Test coverage reports in embedded devices or QEMU

Overview GCC GCOV is a test coverage program used together with the GCC compiler to analyze
and create test coverage reports for your programs, helping you create more efficient, faster
running code and discovering untested code paths

In Zephyr, gcov collects coverage profiling data in RAM (and not to a file system) while your
application is running. Support for gcov collection and reporting is limited by available RAM
size and so is currently enabled only for QEMU emulation of embedded targets.
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Details There are 2 parts to enable this feature. The first is to enable the coverage for the device
and the second to enable in the test application. As explained earlier the code coverage with gcov
is a function of RAM available. Therefore ensure that the device has enough RAM when enabling
the coverage for it. For example a small device like frdm_k64f can run a simple test application
but the more complex test cases which consume more RAM will crash when coverage is enabled.

To enable the device for coverage, select CONFIG_HAS_COVERAGE_SUPPORT in the Kconfig.board file.

To report the coverage for the particular test application set CONFIG_COVERAGE.

Steps to generate code coverage reports These steps will produce an HTML coverage report
for a single application.

1. Build the code with CONFIG_COVERAGE=y.

west build -b mps2/an385 -- -DCONFIG_COVERAGE=y -DCONFIG_COVERAGE_DUMP=y

2. Capture the emulator output into a log file. You may need to terminate the emulator with
Ctrl-A X for this to complete after the coverage dump has been printed:

ninja -Cbuild run | tee log.log

or

ninja -Cbuild run | tee log.log

3. Generate the gcov .gcda and .gcno files from the log file that was saved:

$ python3 scripts/gen_gcov_files.py -i log.log

4. Find the gcov binary placed in the SDK. You will need to pass the path to the gcov binary
for the appropriate architecture when you later invoke gcovr:

$ find $ZEPHYR_SDK_INSTALL_DIR -iregex ".*gcov"

5. Create an output directory for the reports:

$ mkdir -p gcov_report

6. Run gcovr to get the reports:

$ gcovr -r $ZEPHYR_BASE . --html -o gcov_report/coverage.html --html-details --gcov-
↪→executable <gcov_path_in_SDK>

Coverage reports using the POSIX architecture

When compiling for the POSIX architecture, you utilize your host native tooling to build a native
executable which contains your application, the Zephyr OS, and some basic HW emulation.

That means you can use the same tools you would while developing any other desktop applica-
tion.

To build your application with gcc’s gcov, simply set CONFIG_COVERAGE before compiling it. When
you run your application, gcov coverage data will be dumped into the respective gcda and gcno
files. You may postprocess these with your preferred tools. For example:

west build -b native_sim samples/hello_world -- -DCONFIG_COVERAGE=y
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$ ./build/zephyr/zephyr.exe
# Press Ctrl+C to exit
lcov --capture --directory ./ --output-file lcov.info -q --rc lcov_branch_coverage=1
genhtml lcov.info --output-directory lcov_html -q --ignore-errors source --branch-coverage -
↪→-highlight --legend

Note

You need a recent version of lcov (at least 1.14) with support for intermediate text format.
Such packages exist in recent Linux distributions.

Alternatively, you can use gcovr (at least version 4.2).

Coverage reports using Twister

Zephyr’s twister script can automatically generate a coverage report from the tests which were
executed. You just need to invoke it with the --coverage command line option.

For example, you may invoke:

$ twister --coverage -p qemu_x86 -T tests/kernel

or:

$ twister --coverage -p native_sim -T tests/bluetooth

which will produce twister-out/coverage/index.html report as well as the coverage data col-
lected by gcovr tool in twister-out/coverage.json.

Other reports might be chosen with --coverage-tool and --coverage-formats command line
options.

The process differs for unit tests, which are built with the host toolchain and require a different
board:

$ twister --coverage -p unit_testing -T tests/unit

which produces a report in the same location as non-unit testing.

Using different toolchains Twister looks at the environment variable
ZEPHYR_TOOLCHAIN_VARIANT to check which gcov tool to use by default. The following are
used as the default for the Twister --gcov-tool argument default:

Toolchain --gcov-tool value
host gcov
llvm llvm-cov gcov
zephyr gcov

2.12.6 BabbleSim

BabbleSim and Zephyr

In the Zephyr project we use the Babblesim simulator to test some of the Zephyr radio protocols,
including the BLE stack, 802.15.4, and some of the networking stack.
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BabbleSim is a physical layer simulator, which in combination with the Zephyr bsim boards can
be used to simulate a network of BLE and 15.4 devices. When we build Zephyr targeting a bsim
board we produce a Linux executable, which includes the application, Zephyr OS, and models of
the HW.

When there is radio activity, this Linux executable will connect to the BabbleSim Phy simulation
to simulate the radio channel.

In the BabbleSim documentation you can find more information on how to get and build the
simulator. In the nrf52_bsim, nrf5340bsim, and nrf54l15bsim boards documentation you can
find more information about how to build Zephyr targeting these particular boards, and a few
examples.

Types of tests

Tests without radio activity: bsim tests with twister The bsim boards can be used without
radio activity, and in that case, it is not necessary to connect them to a physical layer simula-
tion. Thanks to this, these target boards can be used just like native_sim with twister, to run all
standard Zephyr twister tests, but with models of a real SOC HW, and their drivers.

Tests with radio activity When there is radio activity, BabbleSim tests require at the very least
a physical layer simulation running, and most, more than 1 simulated device. Due to this, these
tests are not build and run with twister, but with a dedicated set of tests scripts.

These tests are kept in the tests/bsim/ folder. The compile.sh and run_parallel.sh scripts
contained in that folder are used by the CI system to build the needed images and execute these
tests in batch.

See sections below for more information about how to build and run them, as well as the con-
ventions they follow.

There are two main sets of tests:

• Self checking embedded application/tests: In which some of the simulated devices appli-
cations are built with some checks which decide if the test is passing or failing. These em-
bedded applications tests use the bs_tests system to report the pass or failure, and in many
cases to build several tests into the same binary.

• Test using the EDTT tool, in which a EDTT (python) test controls the embedded applications
over an RPC mechanism, and decides if the test passes or not. Today these tests include a
very significant subset of the BT qualification test suite.

More information about how different tests types relate to BabbleSim and the bsim boards can
be found in the bsim boards tests section.

Test coverage and BabbleSim

As the nrf52_bsim and nrf5340bsim, and nrf54l15bsim boards are based on the POSIX architec-
ture, you can easily collect test coverage information.

You can use the script tests/bsim/generate_coverage_report.sh to generate an html coverage re-
port from tests.

Check the page on coverage generation for more info.

Building and running the tests

See the nrf52_bsim page for setting up the simulator.
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The scripts also expect a few environment variables to be set. For example, from Zephyr’s root
folder, you can run:

# Build all the tests
${ZEPHYR_BASE}/tests/bsim/compile.sh

# Run them (in parallel)
RESULTS_FILE=${ZEPHYR_BASE}/myresults.xml \

SEARCH_PATH=${ZEPHYR_BASE}/tests/bsim \
${ZEPHYR_BASE}/tests/bsim/run_parallel.sh

Or to build and run only a specific subset, e.g. host advertising tests:

# Build the Bluetooth host advertising tests
${ZEPHYR_BASE}/tests/bsim/bluetooth/host/adv/compile.sh

# Run them (in parallel)
RESULTS_FILE=${ZEPHYR_BASE}/myresults.xml \

SEARCH_PATH=${ZEPHYR_BASE}/tests/bsim/bluetooth/host/adv \
${ZEPHYR_BASE}/tests/bsim/run_parallel.sh

Check the run_parallel.sh help for more options and examples on how to use this script to run
the tests in batch.

After building the tests’ required binaries you can run a test directly using its individual test
script.

For example you can build the required binaries for the networking tests with

WORK_DIR=${ZEPHYR_BASE}/bsim_out ${ZEPHYR_BASE}/tests/bsim/net/compile.sh

and then directly run one of the tests:

${ZEPHYR_BASE}/tests/bsim/net/sockets/echo_test/tests_scripts/echo_test_802154.sh

Conventions

Test code See the Bluetooth sample test for conventions that apply to test code.

Build scripts The build scripts compile.sh simply build all the required test and sample appli-
cations for the tests’ scripts placed in the subfolders below.

This build scripts use the common compile.source which provide a function (compile) which
calls cmake and ninja with the provided application, configuration and overlay files.

To speed up compilation for users interested only in a subset of tests, several compile scripts
exist in several subfolders, where the upper ones call into the lower ones.

Note that cmake and ninja are used directly instead of the west build wrapper as west is not
required, and some Zephyr users do not use or have west, but still use the build and tests scripts.

Test scripts Please follow the existing conventions and do not design one-off bespoke runners
(e.g. a python script, or another shell abstraction).

The rationale is that it is easier and faster for the maintainers to perform tree-wide updates for
build system or compatibility changes if the tests are run in the same manner, with the same
variables, etc..
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If you have a good idea for improving your test script, please make a PR changing all the test
scripts in order to benefit everyone and conserve homogeneity. You can of course discuss it first
in an RFC issue or on the babblesim discord channel.

Scripts starting with an underscore (_) are not automatically discovered and run. They can serve
as either helper functions for the main script, or can be used for local development utilities, e.g.
building and running tests locally, debugging, etc..

Here are the conventions:

• Each test is defined by a shell script with the extension .sh, in a subfolder called
test_scripts/.

• It is recommended to run a single test per script file. It allows for better parallelization of
the runs in CI.

• Scripts expect that the binaries they require are already built. They should not compile
binaries.

• Scripts will spawn the processes for every simulated device and the physical layer simula-
tion.

• Scripts must return 0 to the invoking shell if the test passes, and not 0 if the test fails.

• Each test must have a unique simulation id, to enable running different tests in parallel.

• Neither the scripts nor the images should modify the workstation filesystem content beyond
the ${BSIM_OUT_PATH}/results/<simulation_id>/ or /tmp/ folders. That is, they should
not leave stray files behind.

• Tests that require several consecutive simulations (e.g, if simulating a device pairing, pow-
ering off, and powering up after as a new simulation) should use separate simulation ids for
each simulation segment, ensuring that the radio activity of each segment can be inspected
a posteriori.

• Avoid overly long tests. If the test takes over 20 seconds of runtime, consider if it is possible
to split it in several separate tests.

• If the test takes over 5 seconds, set EXECUTE_TIMEOUT to a value that is at least 5 times bigger
than the measured run-time.

• Do not set EXECUTE_TIMEOUT to a value lower than the default.

• Tests should not be overly verbose: less than a hundred lines are expected on the outputs.
Do make use of LOG_DBG() extensively, but don’t enable the DBG log level by default.

2.12.7 ZTest Deprecated APIs

Ztest is currently being migrated to a new API, this documentation provides information about
the deprecated APIs which will eventually be removed. See Test Framework for the new API.
Similarly, ZTest’s mocking framework is also deprecated (see Mocking via FFF).

Quick start - Unit testing

Ztest can be used for unit testing. This means that rather than including the entire Zephyr OS for
testing a single function, you can focus the testing efforts into the specific module in question.
This will speed up testing since only the module will have to be compiled in, and the tested
functions will be called directly.

Since you won’t be including basic kernel data structures that most code depends on, you have to
provide function stubs in the test. Ztest provides some helpers for mocking functions, as demon-
strated below.
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In a unit test, mock objects can simulate the behavior of complex real objects and are used to de-
cide whether a test failed or passed by verifying whether an interaction with an object occurred,
and if required, to assert the order of that interaction.

Best practices for declaring the test suite twister and other validation tools need to obtain
the list of subcases that a Zephyr ztest test image will expose.

Rationale

This all is for the purpose of traceability. It’s not enough to have only a semaphore test project.
We also need to show that we have testpoints for all APIs and functionality, and we trace back
to documentation of the API, and functional requirements.

The idea is that test reports show results for every sub-testcase as passed, failed, blocked, or
skipped. Reporting on only the high-level test project level, particularly when tests do too
many things, is too vague.

There exist two alternatives to writing tests. The first, and more verbose, approach is to directly
declare and run the test suites. Here is a generic template for a test showing the expected use of
ztest_test_suite():

#include <zephyr/ztest.h>

extern void test_sometest1(void);
extern void test_sometest2(void);
#ifndef CONFIG_WHATEVER /* Conditionally skip test_sometest3 */
void test_sometest3(void)
{

ztest_test_skip();
}
#else
extern void test_sometest3(void);
#endif
extern void test_sometest4(void);
...

void test_main(void)
{

ztest_test_suite(common,
ztest_unit_test(test_sometest1),
ztest_unit_test(test_sometest2),
ztest_unit_test(test_sometest3),
ztest_unit_test(test_sometest4)

);
ztest_run_test_suite(common);

}

Alternatively, it is possible to split tests across multiple files using ztest_register_test_suite()
which bypasses the need for extern:

#include <zephyr/ztest.h>

void test_sometest1(void) {
zassert_true(1, "true");

}

ztest_register_test_suite(common, NULL,
ztest_unit_test(test_sometest1)
);
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The above sample simple registers the test suite and uses a NULL pragma function (more on that
later). It is important to note that the test suite isn’t directly run in this file. Instead two alterna-
tives exist for running the suite. First, if to do nothing. A default test_main function is provided
by ztest. This is the preferred approach if the test doesn’t involve a state and doesn’t require use
of the pragma.

In cases of an integration test it is possible that some general state needs to be set between test
suites. This can be thought of as a state diagram in which test_main simply goes through various
actions that modify the board’s state and different test suites need to run. This is achieved in the
following:

#include <zephyr/ztest.h>

struct state {
bool is_hibernating;
bool is_usb_connected;

}

static bool pragma_always(const void *state)
{

return true;
}

static bool pragma_not_hibernating_not_connected(const void *s)
{

struct state *state = s;
return !state->is_hibernating && !state->is_usb_connected;

}

static bool pragma_usb_connected(const void *s)
{

return ((struct state *)s)->is_usb_connected;
}

ztest_register_test_suite(baseline, pragma_always,
ztest_unit_test(test_case0));

ztest_register_test_suite(before_usb, pragma_not_hibernating_not_connected,
ztest_unit_test(test_case1),
ztest_unit_test(test_case2));

ztest_register_test_suite(with_usb, pragma_usb_connected,,
ztest_unit_test(test_case3),
ztest_unit_test(test_case4));

void test_main(void)
{

struct state state;

/* Should run `baseline` test suite only. */
ztest_run_registered_test_suites(&state);

/* Simulate power on and update state. */
emulate_power_on();
/* Should run `baseline` and `before_usb` test suites. */
ztest_run_registered_test_suites(&state);

/* Simulate plugging in a USB device. */
emulate_plugging_in_usb();
/* Should run `baseline` and `with_usb` test suites. */
ztest_run_registered_test_suites(&state);

/* Verify that all the registered test suites actually ran. */
ztest_verify_all_registered_test_suites_ran();

}
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For twister to parse source files and create a list of subcases, the declarations of
ztest_test_suite() and ztest_register_test_suite() must follow a few rules:

• one declaration per line

• conditional execution by using ztest_test_skip()
What to avoid:

• packing multiple testcases in one source file

void test_main(void)
{
#ifdef TEST_feature1

ztest_test_suite(feature1,
ztest_unit_test(test_1a),
ztest_unit_test(test_1b),
ztest_unit_test(test_1c)
);

ztest_run_test_suite(feature1);
#endif

#ifdef TEST_feature2
ztest_test_suite(feature2,

ztest_unit_test(test_2a),
ztest_unit_test(test_2b)
);

ztest_run_test_suite(feature2);
#endif
}

• Do not use #if

ztest_test_suite(common,
ztest_unit_test(test_sometest1),
ztest_unit_test(test_sometest2),

#ifdef CONFIG_WHATEVER
ztest_unit_test(test_sometest3),

#endif
ztest_unit_test(test_sometest4),

...

• Do not add comments on lines with a call to ztest_unit_test():

ztest_test_suite(common,
ztest_unit_test(test_sometest1),
ztest_unit_test(test_sometest2) /* will fail */,

/* will fail! */ ztest_unit_test(test_sometest3),
ztest_unit_test(test_sometest4),

...

• Do not define multiple definitions of unit / user unit test case per line

ztest_test_suite(common,
ztest_unit_test(test_sometest1), ztest_unit_test(test_sometest2),
ztest_unit_test(test_sometest3),
ztest_unit_test(test_sometest4),

...

Other questions:

• Why not pre-scan with CPP and then parse? or post scan the ELF file?

If C pre-processing or building fails because of any issue, then we won’t be able to tell the
subcases.
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• Why not declare them in the YAML testcase description?

A separate testcase description file would be harder to maintain than just keeping the in-
formation in the test source files themselves – only one file to update when changes are
made eliminates duplication.

Mocking

These functions allow abstracting callbacks and related functions and controlling them from spe-
cific tests. You can enable the mocking framework by setting CONFIG_ZTEST_MOCKING to “y” in the
configuration file of the test. The amount of concurrent return values and expected parameters
is limited by CONFIG_ZTEST_PARAMETER_COUNT.

Here is an example for configuring the function expect_two_parameters to expect the values a=2
and b=3, and telling returns_int to return 5:

1 #include <zephyr/ztest.h>
2

3 static void expect_two_parameters(int a, int b)
4 {
5 ztest_check_expected_value(a);
6 ztest_check_expected_value(b);
7 }
8

9 static void parameter_tests(void)
10 {
11 ztest_expect_value(expect_two_parameters, a, 2);
12 ztest_expect_value(expect_two_parameters, b, 3);
13 expect_two_parameters(2, 3);
14 }
15

16 static int returns_int(void)
17 {
18 return ztest_get_return_value();
19 }
20

21 static void return_value_tests(void)
22 {
23 ztest_returns_value(returns_int, 5);
24 zassert_equal(returns_int(), 5, NULL);
25 }
26

27 void test_main(void)
28 {
29 ztest_test_suite(mock_framework_tests,
30 ztest_unit_test(parameter_test),
31 ztest_unit_test(return_value_test)
32 );
33

34 ztest_run_test_suite(mock_framework_tests);
35 }

group ztest_mock
This module provides simple mocking functions for unit testing.

These need CONFIG_ZTEST_MOCKING=y.

Defines
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ztest_expect_value(func, param, value)
Tell function func to expect the value value for param.

When using ztest_check_expected_value(), tell that the value of param should be value.
The value will internally be stored as an uintptr_t.

Parameters
• func – Function in question

• param – Parameter for which the value should be set

• value – Value for param

ztest_check_expected_value(param)
If param doesn’t match the value set by ztest_expect_value(), fail the test.

This will first check that does param have a value to be expected, and then checks
whether the value of the parameter is equal to the expected value. If either of these
checks fail, the current test will fail. This must be called from the called function.

Parameters
• param – Parameter to check

ztest_expect_data(func, param, data)
Tell function func to expect the data data for param.

When using ztest_check_expected_data(), the data pointed to by param should be same
data in this function. Only data pointer is stored by this function, so it must still be
valid when ztest_check_expected_data is called.

Parameters
• func – Function in question

• param – Parameter for which the data should be set

• data – pointer for the data for parameter param

ztest_check_expected_data(param, length)
If data pointed by param don’t match the data set by ztest_expect_data(), fail the test.

This will first check that param is expected to be null or non-null and then check
whether the data pointed by parameter is equal to expected data. If either of these
checks fail, the current test will fail. This must be called from the called function.

Parameters
• param – Parameter to check

• length – Length of the data to compare

ztest_return_data(func, param, data)
Tell function func to return the data data for param.

When using ztest_return_data(), the data pointed to by param should be same data in
this function. Only data pointer is stored by this function, so it must still be valid when
ztest_copy_return_data is called.

Parameters
• func – Function in question

• param – Parameter for which the data should be set

• data – pointer for the data for parameter param
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ztest_copy_return_data(param, length)
Copy the data set by ztest_return_data to the memory pointed by param.

This will first check that param is not null and then copy the data. This must be called
from the called function.

Parameters
• param – Parameter to return data for

• length – Length of the data to return

ztest_returns_value(func, value)
Tell func that it should return value.

Parameters
• func – Function that should return value

• value – Value to return from func

ztest_get_return_value()
Get the return value for current function.

The return value must have been set previously with ztest_returns_value(). If no return
value exists, the current test will fail.

Returns
The value the current function should return

ztest_get_return_value_ptr()
Get the return value as a pointer for current function.

The return value must have been set previously with ztest_returns_value(). If no return
value exists, the current test will fail.

Returns
The value the current function should return as a void *

2.13 Static Code Analysis (SCA)

Support for static code analysis tools in Zephyr is possible through CMake.

The build setting ZEPHYR_SCA_VARIANT can be used to specify the SCA tool to use.
ZEPHYR_SCA_VARIANT is also supported as environment variable.

Use -DZEPHYR_SCA_VARIANT=<tool>, for example -DZEPHYR_SCA_VARIANT=sparse to enable the
static analysis tool sparse.

2.13.1 SCA Tool infrastructure

Support for an SCA tool is implemented in a file:sca.cmake file. The file:sca.cmake must be
placed under file:<SCA_ROOT>/cmake/sca/<tool>/sca.cmake. Zephyr itself is always added as an
SCA_ROOT but the build system offers the possibility to add additional folders to the SCA_ROOT
setting.

You can provide support for out of tree SCA tools by creating the following structure:

<sca_root>/ # Custom SCA root
└── cmake/

└── sca/
└── <tool>/ # Name of SCA tool, this is the value given to ZEPHYR_SCA_

(continues on next page)
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(continued from previous page)
↪→VARIANT

└── sca.cmake # CMake code that configures the tool to be used with Zephyr

To add foo under /path/to/my_tools/cmake/sca create the following structure:

/path/to/my_tools
└── cmake/

└── sca/
└── foo/

└── sca.cmake

To use foo as SCA tool you must then specify -DZEPHYR_SCA_VARIANT=foo.

Remember to add /path/to/my_tools to SCA_ROOT.

SCA_TOOL can be set as a regular CMake setting using -DSCA_ROOT=<sca_root>, or added by a
Zephyr module in its module.yml file, see Zephyr Modules - Build settings

2.13.2 Native SCA Tool support

The following is a list of SCA tools natively supported by Zephyr build system.

CodeChecker support

CodeChecker is a static analysis infrastructure. It executes analysis tools available on the build
system, such as Clang-Tidy, Clang Static Analyzer and Cppcheck. Refer to the analyzer’s websites
for installation instructions.

Installing CodeChecker CodeChecker itself is a python package available on pypi.

pip install codechecker

Running with CodeChecker To run CodeChecker, west build should be called with a
-DZEPHYR_SCA_VARIANT=codechecker parameter, e.g.

west build -b mimxrt1064_evk samples/basic/blinky -- -DZEPHYR_SCA_VARIANT=codechecker

Configuring CodeChecker To configure CodeChecker or analyzers used, arguments can be
passed using the CODECHECKER_ANALYZE_OPTS parameter, e.g.

west build -b mimxrt1064_evk samples/basic/blinky -- -DZEPHYR_SCA_VARIANT=codechecker \
-DCODECHECKER_ANALYZE_OPTS="--config;$CODECHECKER_CONFIG_FILE;--timeout;60"

Storing CodeChecker results If a CodeChecker server is active the results can be uploaded
and stored for tracking purposes. Storing is done using the optional CODECHECKER_STORE=y or
CODECHECKER_STORE_OPTS="arg;list" parameters, e.g.

west build -b mimxrt1064_evk samples/basic/blinky -- -DZEPHYR_SCA_VARIANT=codechecker \
-DCODECHECKER_STORE_OPTS="--name;build;--url;localhost:8001/Default"
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Note

If --name isn’t passed to either CODECHECKER_ANALYZE_OPTS or CODECHECKER_STORE_OPTS, the
default zephyr is used.

Exporting CodeChecker reports Optional reports can be generated using the CodeChecker re-
sults, when passing a -DCODECHECKER_EXPORT=<type> parameter. Allowed types are: html,json,
codeclimate,gerrit,baseline. Multiple types can be passed as comma-separated arguments.

Optional parser configuration arguments can be passed using the CODECHECKER_PARSE_OPTS pa-
rameter, e.g.

west build -b mimxrt1064_evk samples/basic/blinky -- -DZEPHYR_SCA_VARIANT=codechecker \
-DCODECHECKER_EXPORT=html,json -DCODECHECKER_PARSE_OPTS="--trim-path-prefix;$PWD"

Failing the build on CodeChecker issues By default, CodeChecker identified issues will not
fail the build, only generate a report. To fail the build if any issues are found (for example, for
use in CI), pass the CODECHECKER_PARSE_EXIT_STATUS=y parameter, e.g.

west build -b mimxrt1064_evk samples/basic/blinky -- -DZEPHYR_SCA_VARIANT=codechecker \
-DCODECHECKER_PARSE_EXIT_STATUS=y

Sparse support

Sparse is a static code analysis tool. Apart from performing common code analysis tasks it also
supports an address_space attribute, which allows introduction of distinct address spaces in C
code with subsequent verification that pointers to different address spaces do not get confused.
Additionally it supports a force attribute which should be used to cast pointers between different
address spaces. At the moment Zephyr introduces a single custom address space __cache used to
identify pointers from the cached address range on the Xtensa architecture. This helps identify
cases where cached and uncached addresses are confused.

Running with sparse To run a sparse verification build west build should be called with a
-DZEPHYR_SCA_VARIANT=sparse parameter, e.g.

west build -d hello -b intel_adsp/cavs25 zephyr/samples/hello_world -- -DZEPHYR_SCA_
↪→VARIANT=sparse

GCC static analysis support

Static analysis was introduced in GCC 10 and it is enabled with the option -fanalyzer. This option
performs a much more expensive and thorough analysis of the code than traditional warnings.

Run GCC static analysis To run GCC static analysis, west build should be called with a
-DZEPHYR_SCA_VARIANT=gcc parameter, e.g.

west build -b qemu_x86 samples/userspace/hello_world_user -- -DZEPHYR_SCA_VARIANT=gcc
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Parasoft C/C++test support

Parasoft C/C++test is a software testing and static analysis tool for C and C++. It is a commercial
software and you must acquire a commercial license to use it.

Documentation of C/C++test can be found at https://docs.parasoft.com/. Please refer to the docu-
mentation for how to use it.

Generating Build Data Files To use C/C++test, cpptestscan must be found in your PATH envi-
ronment variable. And west build should be called with a -DZEPHYR_SCA_VARIANT=cpptest pa-
rameter, e.g.

west build -b qemu_cortex_m3 zephyr/samples/hello_world -- -DZEPHYR_SCA_VARIANT=cpptest

A .bdf file will be generated as build/sca/cpptest/cpptestscan.bdf.

Generating a report file Please refer to Parasoft C/C++test documentation for more details.

To import and generate a report file, something like the following should work.

cpptestcli -data out -localsettings local.conf -bdf build/sca/cpptest/cpptestscan.bdf -
↪→config "builtin://Recommended Rules" -report out/report

You might need to set bdf.import.c.compiler.exec, bdf.import.cpp.compiler.exec, and bdf.
import.linker.exec to the toolchain west build used.

2.14 Toolchains

Guides on how to set up toolchains for Zephyr development.

2.14.1 Zephyr SDK

The Zephyr Software Development Kit (SDK) contains toolchains for each of Zephyr’s supported
architectures. It also includes additional host tools, such as custom QEMU and OpenOCD.

Use of the Zephyr SDK is highly recommended and may even be required under certain condi-
tions (for example, running tests in QEMU for some architectures).

Supported architectures

The Zephyr SDK supports the following target architectures:

• ARC (32-bit and 64-bit; ARCv1, ARCv2, ARCv3)

• ARM (32-bit and 64-bit; ARMv6, ARMv7, ARMv8; A/R/M Profiles)

• MIPS (32-bit and 64-bit)

• Nios II

• RISC-V (32-bit and 64-bit; RV32I, RV32E, RV64I)

• x86 (32-bit and 64-bit)

• Xtensa
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Installation bundle and variables

The Zephyr SDK bundle supports all major operating systems (Linux, macOS and Windows) and
is delivered as a compressed file. The installation consists of extracting the file and running the
included setup script. Additional OS-specific instructions are described in the sections below.

If no toolchain is selected, the build system looks for Zephyr SDK and uses the toolchain from
there. You can enforce this by setting the environment variable ZEPHYR_TOOLCHAIN_VARIANT to
zephyr.

If you install the Zephyr SDK outside any of the default locations (listed in the operating system
specific instructions below) and you want automatic discovery of the Zephyr SDK, then you must
register the Zephyr SDK in the CMake package registry by running the setup script. If you decide
not to register the Zephyr SDK in the CMake registry, then the ZEPHYR_SDK_INSTALL_DIR can be
used to point to the Zephyr SDK installation directory.

You can also set ZEPHYR_SDK_INSTALL_DIR to point to a directory containing multiple
Zephyr SDKs, allowing for automatic toolchain selection. For example, you can set
ZEPHYR_SDK_INSTALL_DIR to /company/tools, where the company/tools folder contains the fol-
lowing subfolders:

• /company/tools/zephyr-sdk-0.13.2
• /company/tools/zephyr-sdk-a.b.c
• /company/tools/zephyr-sdk-x.y.z

This allows the Zephyr build system to choose the correct version of the SDK, while allowing
multiple Zephyr SDKs to be grouped together at a specific path.

Zephyr SDK version compatibility

In general, the Zephyr SDK version referenced in this page should be considered the recom-
mended version for the corresponding Zephyr version.

For the full list of compatible Zephyr and Zephyr SDK versions, refer to the Zephyr SDK Version
Compatibility Matrix.

Zephyr SDK installation

Note

You can change 0.16.8 to another version in the instructions below if needed; the Zephyr
SDK Releases page contains all available SDK releases.

Note

If you want to uninstall the SDK, you may simply remove the directory where you installed
it.

Ubuntu

1. Download and verify the Zephyr SDK bundle:

cd ~
wget https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.16.8/
↪→zephyr-sdk-0.16.8_linux-x86_64.tar.xz
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wget -O - https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.
↪→16.8/sha256.sum | shasum --check --ignore-missing

If your host architecture is 64-bit ARM (for example, Raspberry Pi), replace x86_64 with
aarch64 in order to download the 64-bit ARM Linux SDK.

2. Extract the Zephyr SDK bundle archive:

tar xvf zephyr-sdk-0.16.8_linux-x86_64.tar.xz

Note

It is recommended to extract the Zephyr SDK bundle at one of the following locations:

• $HOME
• $HOME/.local
• $HOME/.local/opt
• $HOME/bin
• /opt
• /usr/local

The Zephyr SDK bundle archive contains the zephyr-sdk-<version> directory
and, when extracted under $HOME, the resulting installation path will be $HOME/
zephyr-sdk-<version>.

3. Run the Zephyr SDK bundle setup script:

cd zephyr-sdk-0.16.8
./setup.sh

Note

You only need to run the setup script once after extracting the Zephyr SDK bundle.

You must rerun the setup script if you relocate the Zephyr SDK bundle directory after
the initial setup.

4. Install udev rules, which allow you to flash most Zephyr boards as a regular user:

sudo cp ~/zephyr-sdk-0.16.8/sysroots/x86_64-pokysdk-linux/usr/share/openocd/
↪→contrib/60-openocd.rules /etc/udev/rules.d
sudo udevadm control --reload

macOS

1. Download and verify the Zephyr SDK bundle:

cd ~
curl -L -O https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.
↪→16.8/zephyr-sdk-0.16.8_macos-x86_64.tar.xz
curl -L https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.16.
↪→8/sha256.sum | shasum --check --ignore-missing

If your host architecture is 64-bit ARM (Apple Silicon), replace x86_64with aarch64 in order
to download the 64-bit ARM macOS SDK.

2. Extract the Zephyr SDK bundle archive:

tar xvf zephyr-sdk-0.16.8_macos-x86_64.tar.xz
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Note

It is recommended to extract the Zephyr SDK bundle at one of the following locations:

• $HOME
• $HOME/.local
• $HOME/.local/opt
• $HOME/bin
• /opt
• /usr/local

The Zephyr SDK bundle archive contains the zephyr-sdk-<version> directory
and, when extracted under $HOME, the resulting installation path will be $HOME/
zephyr-sdk-<version>.

3. Run the Zephyr SDK bundle setup script:

cd zephyr-sdk-0.16.8
./setup.sh

Note

You only need to run the setup script once after extracting the Zephyr SDK bundle.

You must rerun the setup script if you relocate the Zephyr SDK bundle directory after
the initial setup.

Windows

1. Open a cmd.exe terminal window as a regular user
2. Download the Zephyr SDK bundle:

cd %HOMEPATH%
wget https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.16.8/
↪→zephyr-sdk-0.16.8_windows-x86_64.7z

3. Extract the Zephyr SDK bundle archive:

7z x zephyr-sdk-0.16.8_windows-x86_64.7z

Note

It is recommended to extract the Zephyr SDK bundle at one of the following locations:

• %HOMEPATH%
• %PROGRAMFILES%

The Zephyr SDK bundle archive contains the zephyr-sdk-<version> directory and,
when extracted under %HOMEPATH%, the resulting installation path will be %HOMEPATH%\
zephyr-sdk-<version>.

4. Run the Zephyr SDK bundle setup script:

cd zephyr-sdk-0.16.8
setup.cmd
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Note

You only need to run the setup script once after extracting the Zephyr SDK bundle.

You must rerun the setup script if you relocate the Zephyr SDK bundle directory after
the initial setup.

2.14.2 Arm Compiler 6

1. Download and install a development suite containing the Arm Compiler 6 for your operat-
ing system.

2. Set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to armclang.

• Set ARMCLANG_TOOLCHAIN_PATH to the toolchain installation directory.

3. The Arm Compiler 6 needs the ARMLMD_LICENSE_FILE environment variable to point to your
license file or server.

For example:

# Linux, macOS, license file:
export ARMLMD_LICENSE_FILE=/<path>/license_armds.dat
# Linux, macOS, license server:
export ARMLMD_LICENSE_FILE=8224@myserver

# Windows, license file:
set ARMLMD_LICENSE_FILE=c:\<path>\license_armds.dat
# Windows, license server:
set ARMLMD_LICENSE_FILE=8224@myserver

1. If the Arm Compiler 6 was installed as part of an Arm Development Studio, then you must
set the ARM_PRODUCT_DEF to point to the product definition file: See also: Product and
toolkit configuration. For example if the Arm Development Studio is installed in: /opt/
armds-2020-1with a Gold license, then set ARM_PRODUCT_DEF to point to /opt/armds-2020-1/
gold.elmap.

Note

The Arm Compiler 6 uses armlink for linking. This is incompatible with Zephyr’s linker
script template, which works with GNU ld. Zephyr’s Arm Compiler 6 support Zephyr’s
CMake linker script generator, which supports generating scatter files. Basic scatter file
support is in place, but there are still areas covered in ld templates which are not fully
supported by the CMake linker script generator.

Some Zephyr subsystems or modules may also contain C or assembly code that relies on
GNU intrinsics and have not yet been updated to work fully with armclang.

2.14.3 Cadence Tensilica Xtensa C/C++ Compiler (XCC)

1. Obtain Tensilica Software Development Toolkit targeting the specific SoC on hand. This
usually contains two parts:

• The Xtensa Xplorer which contains the necessary executables and libraries.

• A SoC-specific add-on to be installed on top of Xtensa Xplorer.
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– This add-on allows the compiler to generate code for the SoC on hand.

2. Install Xtensa Xplorer and then the SoC add-on.

• Follow the instruction from Cadence on how to install the SDK.

• Depending on the SDK, there are two set of compilers:

– GCC-based compiler: xt-xcc and its friends.

– Clang-based compiler: xt-clang and its friends.

3. Make sure you have obtained a license to use the SDK, or has access to a remote licensing
server.

4. Set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to xcc or xt-clang.

• Set XTENSA_TOOLCHAIN_PATH to the toolchain installation directory.

• Set XTENSA_CORE to the SoC ID where application is being targeting.

• Set TOOLCHAIN_VER to the Xtensa SDK version.

5. For example, assuming the SDK is installed in /opt/xtensa, and using the SDK for applica-
tion development on intel_adsp_cavs15, setup the environment using:

# Linux
export ZEPHYR_TOOLCHAIN_VARIANT=xcc
export XTENSA_TOOLCHAIN_PATH=/opt/xtensa/XtDevTools/install/tools/
export XTENSA_CORE=X6H3SUE_RI_2018_0
export TOOLCHAIN_VER=RI-2018.0-linux

6. To use Clang-based compiler:

• Set ZEPHYR_TOOLCHAIN_VARIANT to xt-clang.

• Note that the Clang-based compiler may contain an old LLVM bug which results in the
following error:

/tmp/file.s: Assembler messages:
/tmp/file.s:20: Error: file number 1 already allocated
clang-3.9: error: Xtensa-as command failed with exit code 1

If this happens, set XCC_NO_G_FLAG to 1.

– For example:

# Linux
export XCC_NO_G_FLAG=1

2.14.4 DesignWare ARC MetaWare Development Toolkit (MWDT)

1. You need to have ARC MWDT installed on your host.

2. You need to have Zephyr SDK installed on your host.

Note

A Zephyr SDK is used as a source of tools like device tree compiler (DTC), QEMU, etc…
Even though ARC MWDT toolchain is used for Zephyr RTOS build, still the GNU prepro-
cessor & GNU objcopy might be used for some steps like device tree preprocessing and
.bin file generation. We used Zephyr SDK as a source of these ARC GNU tools as well.
To setup ARC GNU toolchain please use SDK Bundle (Full or Minimal) instead of manual
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installation of separate tarballs. It installs and registers toolchain and host tools in the
system, that allows you to avoid toolchain related issues while building Zephyr.

3. Set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to arcmwdt.

• Set ARCMWDT_TOOLCHAIN_PATH to the toolchain installation directory. MWDT installation
provides METAWARE_ROOT so simply set ARCMWDT_TOOLCHAIN_PATH to $METAWARE_ROOT/..
/ (Linux) or %METAWARE_ROOT%\..\ (Windows).

Tip

If you have only one ARC MWDT toolchain version installed on your machine you may
skip setting ARCMWDT_TOOLCHAIN_PATH - it would be detected automatically.

4. To check that you have set these variables correctly in your current environment, follow
these example shell sessions (the ARCMWDT_TOOLCHAIN_PATH values may be different on your
system):

# Linux:
$ echo $ZEPHYR_TOOLCHAIN_VARIANT
arcmwdt
$ echo $ARCMWDT_TOOLCHAIN_PATH
/home/you/ARC/MWDT_2023.03/

# Windows:
> echo %ZEPHYR_TOOLCHAIN_VARIANT%
arcmwdt
> echo %ARCMWDT_TOOLCHAIN_PATH%
C:\ARC\MWDT_2023.03\

2.14.5 GNU Arm Embedded

1. Download and install a GNU Arm Embedded build for your operating system and extract it
on your file system.

Note

On Windows, we’ll assume for this guide that you install into the directory C:\
gnu_arm_embedded. You can also choose the default installation path used by the ARM
GCC installer, in which case you will need to adjust the path accordingly in the guide
below.

Warning

On macOS Catalina or later you might need to change a security policy for the toolchain
to be able to run from the terminal.

2. Set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to gnuarmemb.

• Set GNUARMEMB_TOOLCHAIN_PATH to the toolchain installation directory.
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3. To check that you have set these variables correctly in your current environment, follow
these example shell sessions (the GNUARMEMB_TOOLCHAIN_PATH values may be different on
your system):

# Linux, macOS:
$ echo $ZEPHYR_TOOLCHAIN_VARIANT
gnuarmemb
$ echo $GNUARMEMB_TOOLCHAIN_PATH
/home/you/Downloads/gnu_arm_embedded

# Windows:
> echo %ZEPHYR_TOOLCHAIN_VARIANT%
gnuarmemb
> echo %GNUARMEMB_TOOLCHAIN_PATH%
C:\gnu_arm_embedded

Warning

On macOS, if you are having trouble with the suggested procedure, there is an unoffi-
cial package on brew that might help you. Run brew install gcc-arm-embedded and
configure the variables

• Set ZEPHYR_TOOLCHAIN_VARIANT to gnuarmemb.

• Set GNUARMEMB_TOOLCHAIN_PATH to the brew installation directory (something like
/usr/local)

2.14.6 Intel oneAPI Toolkit

1. Download Intel oneAPI Base Toolkit

2. Assuming the toolkit is installed in /opt/intel/oneApi, set environment using:

# Linux, macOS:
export ONEAPI_TOOLCHAIN_PATH=/opt/intel/oneapi
source $ONEAPI_TOOLCHAIN_PATH/compiler/latest/env/vars.sh

# Windows:
> set ONEAPI_TOOLCHAIN_PATH=C:\Users\Intel\oneapi

To setup the complete oneApi environment, use:

source /opt/intel/oneapi/setvars.sh

The above will also change the python environment to the one used by the toolchain and
might conflict with what Zephyr uses.

3. Set ZEPHYR_TOOLCHAIN_VARIANT to oneApi.

2.14.7 Crosstool-NG (Deprecated)

Warning

xtools toolchain variant is deprecated. The cross-compile toolchain variant should be used
when using a custom toolchain built with Crosstool-NG.

You can build toolchains from source code using crosstool-NG.

2.14. Toolchains 291

https://software.intel.com/content/www/us/en/develop/tools/oneapi/all-toolkits.html


Zephyr Project Documentation, Release 3.7.99

1. Follow the steps on the crosstool-NG website to prepare your host.

2. Follow the Zephyr SDK with Crosstool NG instructions to build your toolchain. Repeat as
necessary to build toolchains for multiple target architectures.

You will need to clone the sdk-ng repo and run the following command:

./go.sh <arch>

Note

Currently, only i586 and Arm toolchain builds are verified.

3. Set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to xtools.

• Set XTOOLS_TOOLCHAIN_PATH to the toolchain build directory.

4. To check that you have set these variables correctly in your current environment, follow
these example shell sessions (the XTOOLS_TOOLCHAIN_PATH values may be different on your
system):

# Linux, macOS:
$ echo $ZEPHYR_TOOLCHAIN_VARIANT
xtools
$ echo $XTOOLS_TOOLCHAIN_PATH
/Volumes/CrossToolNGNew/build/output/

2.14.8 Host Toolchains

In some specific configurations, like when building for non-MCU x86 targets on a Linux host, you
may be able to reuse the native development tools provided by your operating system.

To use your host gcc, set the ZEPHYR_TOOLCHAIN_VARIANT environment variable to host. To use
clang, set ZEPHYR_TOOLCHAIN_VARIANT to llvm.

2.14.9 Other Cross Compilers

This toolchain variant is borrowed from the Linux kernel build system’s mechanism of using a
CROSS_COMPILE environment variable to set up a GNU-based cross toolchain.

Examples of such “other cross compilers” are cross toolchains that your Linux distribution pack-
aged, that you compiled on your own, or that you downloaded from the net. Unlike toolchains
specifically listed in Toolchains, the Zephyr build system may not have been tested with them,
and doesn’t officially support them. (Nonetheless, the toolchain set-up mechanism itself is sup-
ported.)

Follow these steps to use one of these toolchains.

1. Install a cross compiler suitable for your host and target systems.

For example, you might install the gcc-arm-none-eabi package on Debian-based Linux sys-
tems, or arm-none-eabi-newlib on Fedora or Red Hat:

# On Debian or Ubuntu
sudo apt-get install gcc-arm-none-eabi
# On Fedora or Red Hat
sudo dnf install arm-none-eabi-newlib
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2. Set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to cross-compile.

• Set CROSS_COMPILE to the common path prefix which your toolchain’s binaries have,
e.g. the path to the directory containing the compiler binaries plus the target triplet
and trailing dash.

3. To check that you have set these variables correctly in your current environment, follow
these example shell sessions (the CROSS_COMPILE value may be different on your system):

# Linux, macOS:
$ echo $ZEPHYR_TOOLCHAIN_VARIANT
cross-compile
$ echo $CROSS_COMPILE
/usr/bin/arm-none-eabi-

You can also set CROSS_COMPILE as a CMake variable.

When using this option, all of your toolchain binaries must reside in the same directory and have
a common file name prefix. The CROSS_COMPILE variable is set to the directory concatenated
with the file name prefix. In the Debian example above, the gcc-arm-none-eabi package in-
stalls binaries such as arm-none-eabi-gcc and arm-none-eabi-ld in directory /usr/bin/, so the
common prefix is /usr/bin/arm-none-eabi- (including the trailing dash, -). If your toolchain is
installed in /opt/mytoolchain/bin with binary names based on target triplet myarch-none-elf,
CROSS_COMPILE would be set to /opt/mytoolchain/bin/myarch-none-elf-.

2.14.10 Custom CMake Toolchains

To use a custom toolchain defined in an external CMake file, set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to your toolchain’s name

• Set TOOLCHAIN_ROOT to the path to the directory containing your toolchain’s CMake config-
uration files.

Zephyr will then include the toolchain cmake files located in the TOOLCHAIN_ROOT directory:

• cmake/toolchain/<toolchain name>/generic.cmake: configures the toolchain for
“generic” use, which mostly means running the C preprocessor on the generated Device-
tree file.

• cmake/toolchain/<toolchain name>/target.cmake: configures the toolchain for “target”
use, i.e. building Zephyr and your application’s source code.

Here <toolchain name> is the same as the name provided in ZEPHYR_TOOLCHAIN_VARIANT See the
zephyr files cmake/modules/FindHostTools.cmake and cmake/modules/FindTargetTools.cmake
for more details on what your generic.cmake and target.cmake files should contain.

You can also set ZEPHYR_TOOLCHAIN_VARIANT and TOOLCHAIN_ROOT as CMake variables when gen-
erating a build system for a Zephyr application, like so:

west build ... -- -DZEPHYR_TOOLCHAIN_VARIANT=... -DTOOLCHAIN_ROOT=...

cmake -DZEPHYR_TOOLCHAIN_VARIANT=... -DTOOLCHAIN_ROOT=...

If you do this, -C <initial-cache> cmake option may useful. If you save your
ZEPHYR_TOOLCHAIN_VARIANT, TOOLCHAIN_ROOT, and other settings in a file named my-toolchain.
cmake, you can then invoke cmake as cmake -C my-toolchain.cmake ... to save typing.

Zephyr includes include/toolchain.h which again includes a toolchain specific header based
on the compiler identifier, such as __llvm__ or __GNUC__. Some custom compilers iden-
tify themselves as the compiler on which they are based, for example llvm which then gets
the toolchain/llvm.h included. This included file may though not be right for the custom
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toolchain. In order to solve this, and thus to get the include/other.h included instead, add the
set(TOOLCHAIN_USE_CUSTOM 1) cmake line to the generic.cmake and/or target.cmake files lo-
cated under <TOOLCHAIN_ROOT>/cmake/toolchain/<toolchain name>/.

When TOOLCHAIN_USE_CUSTOM is set, the other.hmust be available out-of-tree and it must include
the correct header for the custom toolchain. A good location for the other.h header file, would
be a directory under the directory specified in TOOLCHAIN_ROOT as include/toolchain. To get the
toolchain header included in zephyr’s build, the USERINCLUDE can be set to point to the include
directory, as shown here:

west build -- -DZEPHYR_TOOLCHAIN_VARIANT=... -DTOOLCHAIN_ROOT=... -DUSERINCLUDE=...

2.15 Tools and IDEs

2.15.1 CLion

CLion is a cross-platform C/C++ IDE that supports multi-threaded RTOS debugging.

This guide describes the process of setting up, building, and debugging Zephyr’s multi-thread-
blinky sample in CLion.

The instructions have been tested on Windows. In terms of the CLion workflow, the steps would
be the same for macOS and Linux, but make sure to select the correct environment file and to
adjust the paths.

Get CLion

Download CLion and install it.

Initialize a new workspace

This guide gives details on how to build and debug the multi-thread-blinky sample application,
but the instructions would be similar for any Zephyr project and workspace layout.

Before you start, make sure you have a working Zephyr development environment, as per the
instructions in the Getting Started Guide.

Open the project in CLion

1. In CLion, click Open on the Welcome screen or select File ‣ Open from the main menu.

2. Navigate to your Zephyr workspace (i.e.the zephyrproject folder in your HOME directory
if you have followed the Getting Started instructions), then select zephyr/samples/basic/
threads or another sample project folder.

Click OK.

3. If prompted, click Trust Project.

See the Project security section in CLion web help for more information on project security.
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Configure the toolchain and CMake profile

CLion will open the Open ProjectWizard with the CMake profile settings. If that does not happen,
go to Settings ‣ Build, Execution, Deployment ‣ CMake.

1. Click Manage Toolchains next to the Toolchain field. This will open the Toolchain settings
dialog.

2. We recommend that you use the Bundled MinGW toolchain with default settings on Win-
dows, or the System (default) toolchain on Unix machines.

3. Click Add environment ‣ From file and select ..\.venv\Scripts\activate.bat.

Click Apply to save the changes.

4. Back in the CMake profile settings dialog, specify your board in the CMake options field. For
example:

-DBOARD=nrf52840dk/nrf52840

5. Click Apply to save the changes.

CMake load should finish successfully.

Configure Zephyr parameters for debug

1. In the configuration switcher on the top right, select guiconfig and click the hammer icon.

2. Use the GUI application to set the following flags:

DEBUG_THREAD_INFO
THREAD_RUNTIME_STATS
DEBUG_OPTIMIZATIONS
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Build the project

In the configuration switcher, select zephyr_final and click the hammer icon.

Note that other CMake targets like puncover or hardenconfig can also be called at this point.

Enable RTOS integration

1. Go to Settings ‣ Build, Execution, Deployment ‣ Embedded Development ‣ RTOS Integration.

2. Set the Enable RTOS Integration checkbox.

This option enables Zephyr tasks view during debugging. See Multi-threaded RTOS debug
in CLion web help for more information.

You can leave the option set to Auto. CLion will detect Zephyr automatically.

Create an Embedded GDB Server configuration

In order to debug a Zephyr application in CLion, you need to create a run/debug configuration
out of the Embedded GDB Server template.

Instructions below show the case of a Nordic Semiconductor board and a Segger J-Link debug
probe. If your setup is different, make sure to adjust the configuration settings accordingly.

1. Select Run ‣ New Embedded Configuration from the main menu.

2. Configure the settings:

Option Value
Name (optional) Zephyr-threads
GDB Server Type Segger JLink
Location The path to JLinkGDBServerCL.exe on

Windows or the JLinkGDBServer bi-
nary on macOS/Linux.

Debugger Bundled GDB

Note

For non-ARM and non-x86 archi-
tectures, use a GDB executable
from Zephyr SDK. Make sure to
pick a version with Python support
(for example, riscv64-zephyr-elf-
gdb-py) and check that Python is
present in the system PATH.

Target zephyr-final
Executable binary zephyr-final
Download binary Always
TCP/IP port Auto

3. Click Next to set the Segger J-Link parameters.

4. Click Create when ready.
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Start debugging

1. Place breakpoints by clicking in the left gutter next to the code lines.

2. Make sure that Zephyr-threads is selected in the configuration switcher and click the bug
icon or press Ctrl+D.

3. When a breakpoint is hit, CLion opens the Debug tool window.

Zephyr tasks are listed in the Threads & Variables pane. You can switch between them and
inspect the variables for each task.

Refer to CLion web help for detailed description of the IDE debug capabilities.

2.15.2 Coccinelle

Coccinelle is a tool for pattern matching and text transformation that has many uses in kernel de-
velopment, including the application of complex, tree-wide patches and detection of problematic
programming patterns.

Note

Linux and macOS development environments are supported, but not Windows.

Getting Coccinelle

The semantic patches included in the kernel use features and options which are provided by
Coccinelle version 1.0.0-rc11 and above. Using earlier versions will fail as the option names
used by the Coccinelle files and coccicheck have been updated.

Coccinelle is available through the package manager of many distributions, e.g. :
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• Debian

• Fedora

• Ubuntu

• OpenSUSE

• Arch Linux

• NetBSD

• FreeBSD

Some distribution packages are obsolete and it is recommended to use the latest version released
from the Coccinelle homepage at http://coccinelle.lip6.fr/

Or from Github at:

https://github.com/coccinelle/coccinelle

Once you have it, run the following commands:

./autogen

./configure
make

as a regular user, and install it with:

sudo make install

More detailed installation instructions to build from source can be found at:

https://github.com/coccinelle/coccinelle/blob/master/install.txt

Supplemental documentation

For Semantic Patch Language(SmPL) grammar documentation refer to:

https://coccinelle.gitlabpages.inria.fr/website/documentation.html

Using Coccinelle on Zephyr

coccicheck checker is the front-end to the Coccinelle infrastructure and has various modes:

Four basic modes are defined: patch, report, context, and org. The mode to use is specified by
setting --mode=<mode> or -m=<mode>.

• patch proposes a fix, when possible.

• report generates a list in the following format: file:line:column-column: message

• context highlights lines of interest and their context in a diff-like style.Lines of interest are
indicated with -.

• org generates a report in the Org mode format of Emacs.

Note that not all semantic patches implement all modes. For easy use of Coccinelle, the default
mode is report.

Two other modes provide some common combinations of these modes.

• chain tries the previous modes in the order above until one succeeds.

• rep+ctxt runs successively the report mode and the context mode. It should be used with
the C option (described later) which checks the code on a file basis.
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Examples

To make a report for every semantic patch, run the following command:

./scripts/coccicheck --mode=report

To produce patches, run:

./scripts/coccicheck --mode=patch

The coccicheck target applies every semantic patch available in the sub-directories of scripts/
coccinelle to the entire source code tree.

For each semantic patch, a commit message is proposed. It gives a description of the problem
being checked by the semantic patch, and includes a reference to Coccinelle.

As any static code analyzer, Coccinelle produces false positives. Thus, reports must be carefully
checked, and patches reviewed.

To enable verbose messages set --verbose=1 option, for example:

./scripts/coccicheck --mode=report --verbose=1

Coccinelle parallelization

By default, coccicheck tries to run as parallel as possible. To change the parallelism, set the
--jobs=<number> option. For example, to run across 4 CPUs:

./scripts/coccicheck --mode=report --jobs=4

As of Coccinelle 1.0.2 Coccinelle uses Ocaml parmap for parallelization, if support for this is de-
tected you will benefit from parmap parallelization.

When parmap is enabled coccicheck will enable dynamic load balancing by using --chunksize
1 argument, this ensures we keep feeding threads with work one by one, so that we avoid the
situation where most work gets done by only a few threads. With dynamic load balancing, if a
thread finishes early we keep feeding it more work.

When parmap is enabled, if an error occurs in Coccinelle, this error value is propagated back,
the return value of the coccicheck command captures this return value.

Using Coccinelle with a single semantic patch

The option --cocci can be used to check a single semantic patch. In that case, the variable must
be initialized with the name of the semantic patch to apply.

For instance:

./scripts/coccicheck --mode=report --cocci=<example.cocci>

or:

./scripts/coccicheck --mode=report --cocci=./path/to/<example.cocci>

Controlling which files are processed by Coccinelle

By default the entire source tree is checked.

To apply Coccinelle to a specific directory, pass the path of specific directory as an argument.
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For example, to check drivers/usb/ one may write:

./scripts/coccicheck --mode=patch drivers/usb/

The report mode is the default. You can select another one with the --mode=<mode> option ex-
plained above.

Debugging Coccinelle SmPL patches

Using coccicheck is best as it provides in the spatch command line include options matching
the options used when we compile the kernel. You can learn what these options are by using
verbose option, you could then manually run Coccinelle with debug options added.

Alternatively you can debug running Coccinelle against SmPL patches by asking for stderr to be
redirected to stderr, by default stderr is redirected to /dev/null, if you’d like to capture stderr you
can specify the --debug=file.err option to coccicheck. For instance:

rm -f cocci.err
./scripts/coccicheck --mode=patch --debug=cocci.err
cat cocci.err

Debugging support is only supported when using Coccinelle >= 1.0.2.

Additional Flags

Additional flags can be passed to spatch through the SPFLAGS variable. This works as Coccinelle
respects the last flags given to it when options are in conflict.

./scripts/coccicheck --sp-flag="--use-glimpse"

Coccinelle supports idutils as well but requires coccinelle >= 1.0.6. When no ID file is specified
coccinelle assumes your ID database file is in the file .id-utils.index on the top level of the kernel,
coccinelle carries a script scripts/idutils_index.sh which creates the database with:

mkid -i C --output .id-utils.index

If you have another database filename you can also just symlink with this name.

./scripts/coccicheck --sp-flag="--use-idutils"

Alternatively you can specify the database filename explicitly, for instance:

./scripts/coccicheck --sp-flag="--use-idutils /full-path/to/ID"

Sometimes coccinelle doesn’t recognize or parse complex macro variables due to insufficient
definition. Therefore, to make it parsable we explicitly provide the prototype of the complex
macro using the ---macro-file-builtins <headerfile.h> flag.

The <headerfile.h> should contain the complete prototype of the complex macro from which
spatch engine can extract the type information required during transformation.

For example:

Z_SYSCALL_HANDLER is not recognized by coccinelle. Therefore, we put its prototype in a header
file, say for example mymacros.h.

$ cat mymacros.h
#define Z_SYSCALL_HANDLER int xxx

Now we pass the header file mymacros.h during transformation:
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./scripts/coccicheck --sp-flag="---macro-file-builtins mymacros.h"

See spatch --help to learn more about spatch options.

Note that the --use-glimpse and --use-idutils options require external tools for indexing the
code. None of them is thus active by default. However, by indexing the code with one of these
tools, and according to the cocci file used, spatch could proceed the entire code base more quickly.

SmPL patch specific options

SmPL patches can have their own requirements for options passed to Coccinelle. SmPL patch
specific options can be provided by providing them at the top of the SmPL patch, for instance:

// Options: --no-includes --include-headers

Proposing new semantic patches

New semantic patches can be proposed and submitted by kernel developers. For sake of clarity,
they should be organized in the sub-directories of scripts/coccinelle/.

The cocci script should have the following properties:

• The script must have report mode.

• The first few lines should state the purpose of the script using /// comments . Usually, this
message would be used as the commit log when proposing a patch based on the script.

Example
/// Use ARRAY_SIZE instead of dividing sizeof array with sizeof an element

• A more detailed information about the script with exceptional cases or false positives (if
any) can be listed using //# comments.

Example
//# This makes an effort to find cases where ARRAY_SIZE can be used such as
//# where there is a division of sizeof the array by the sizeof its first
//# element or by any indexed element or the element type. It replaces the
//# division of the two sizeofs by ARRAY_SIZE.

• Confidence: It is a property defined to specify the accuracy level of the script. It can be
either High, Moderate or Low depending upon the number of false positives observed.

Example
// Confidence: High

• Virtual rules: These are required to support the various modes framed in the script. The
virtual rule specified in the script should have the corresponding mode handling rule.

Example
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virtual context

@depends on context@
type T;
T[] E;
@@
(
* (sizeof(E)/sizeof(*E))
|
* (sizeof(E)/sizeof(E[...]))
|
* (sizeof(E)/sizeof(T))
)

Detailed description of the reportmode

report generates a list in the following format:

file:line:column-column: message

Example Running:

./scripts/coccicheck --mode=report --cocci=scripts/coccinelle/array_size.cocci

will execute the following part of the SmPL script:

<smpl>

@r depends on (org || report)@
type T;
T[] E;
position p;
@@
(
(sizeof(E)@p /sizeof(*E))
|
(sizeof(E)@p /sizeof(E[...]))
|
(sizeof(E)@p /sizeof(T))
)

@script:python depends on report@
p << r.p;
@@

msg="WARNING: Use ARRAY_SIZE"
coccilib.report.print_report(p[0], msg)

</smpl>

This SmPL excerpt generates entries on the standard output, as illustrated below:

ext/hal/nxp/mcux/drivers/lpc/fsl_wwdt.c:66:49-50: WARNING: Use ARRAY_SIZE
ext/hal/nxp/mcux/drivers/lpc/fsl_ctimer.c:74:53-54: WARNING: Use ARRAY_SIZE
ext/hal/nxp/mcux/drivers/imx/fsl_dcp.c:944:45-46: WARNING: Use ARRAY_SIZE
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Detailed description of the patchmode

When the patch mode is available, it proposes a fix for each problem identified.

Example Running:

./scripts/coccicheck --mode=patch --cocci=scripts/coccinelle/misc/array_size.cocci

will execute the following part of the SmPL script:

<smpl>

@depends on patch@
type T;
T[] E;
@@
(
- (sizeof(E)/sizeof(*E))
+ ARRAY_SIZE(E)
|
- (sizeof(E)/sizeof(E[...]))
+ ARRAY_SIZE(E)
|
- (sizeof(E)/sizeof(T))
+ ARRAY_SIZE(E)
)

</smpl>

This SmPL excerpt generates patch hunks on the standard output, as illustrated below:

diff -u -p a/ext/lib/encoding/tinycbor/src/cborvalidation.c b/ext/lib/encoding/tinycbor/src/
↪→cborvalidation.c
--- a/ext/lib/encoding/tinycbor/src/cborvalidation.c
+++ b/ext/lib/encoding/tinycbor/src/cborvalidation.c
@@ -325,7 +325,7 @@ static inline CborError validate_number(
static inline CborError validate_tag(CborValue *it, CborTag tag, int flags, int␣
↪→recursionLeft)
{
CborType type = cbor_value_get_type(it);

- const size_t knownTagCount = sizeof(knownTagData) / sizeof(knownTagData[0]);
+ const size_t knownTagCount = ARRAY_SIZE(knownTagData);

const struct KnownTagData *tagData = knownTagData;
const struct KnownTagData * const knownTagDataEnd = knownTagData + knownTagCount;

Detailed description of the contextmode

context highlights lines of interest and their context in a diff-like style.

Note

The diff-like output generated is NOT an applicable patch. The intent of the contextmode is to
highlight the important lines (annotated with minus, -) and gives some surrounding context
lines around. This output can be used with the diff mode of Emacs to review the code.

Example Running:
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./scripts/coccicheck --mode=context --cocci=scripts/coccinelle/array_size.cocci

will execute the following part of the SmPL script:

<smpl>

@depends on context@
type T;
T[] E;
@@
(
* (sizeof(E)/sizeof(*E))
|
* (sizeof(E)/sizeof(E[...]))
|
* (sizeof(E)/sizeof(T))
)

</smpl>

This SmPL excerpt generates diff hunks on the standard output, as illustrated below:

diff -u -p ext/lib/encoding/tinycbor/src/cborvalidation.c /tmp/nothing/ext/lib/encoding/
↪→tinycbor/src/cborvalidation.c
--- ext/lib/encoding/tinycbor/src/cborvalidation.c
+++ /tmp/nothing/ext/lib/encoding/tinycbor/src/cborvalidation.c
@@ -325,7 +325,6 @@ static inline CborError validate_number(
static inline CborError validate_tag(CborValue *it, CborTag tag, int flags, int␣
↪→recursionLeft)
{
CborType type = cbor_value_get_type(it);

- const size_t knownTagCount = sizeof(knownTagData) / sizeof(knownTagData[0]);
const struct KnownTagData *tagData = knownTagData;
const struct KnownTagData * const knownTagDataEnd = knownTagData + knownTagCount;

Detailed description of the orgmode

org generates a report in the Org mode format of Emacs.

Example Running:

./scripts/coccicheck --mode=org --cocci=scripts/coccinelle/misc/array_size.cocci

will execute the following part of the SmPL script:

<smpl>

@r depends on (org || report)@
type T;
T[] E;
position p;
@@
(
(sizeof(E)@p /sizeof(*E))
|
(sizeof(E)@p /sizeof(E[...]))
|
(sizeof(E)@p /sizeof(T))
)

(continues on next page)
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(continued from previous page)

@script:python depends on org@
p << r.p;
@@
coccilib.org.print_todo(p[0], "WARNING should use ARRAY_SIZE")

</smpl>

This SmPL excerpt generates Org entries on the standard output, as illustrated below:

* TODO [[view:ext/lib/encoding/tinycbor/src/cborvalidation.c::face=ovl-
↪→face1::linb=328::colb=52::cole=53][WARNING should use ARRAY_SIZE]]

Coccinelle Mailing List

Subscribe to the coccinelle mailing list:

• https://systeme.lip6.fr/mailman/listinfo/cocci

Archives:

• https://lore.kernel.org/cocci/

• https://systeme.lip6.fr/pipermail/cocci/

2.15.3 Visual Studio Code

Visual Studio Code (VS Code for short) is a popular cross-platform IDE that supports C projects
and has a rich set of extensions.

This guide describes the process of setting up VS Code for Zephyr’s blinky sample in VS Code.

The instructions have been tested on Linux, but the steps should be the same for macOS and
Windows, just make sure to adjust the paths if needed.

Get VS Code

Download VS Code and install it.

Install the required extensions through the Extensions marketplace in the left panel. Search for
the C/C++ Extension Pack and install it.

Initialize a new workspace

This guide gives details on how to configure the blinky sample application, but the instructions
would be similar for any Zephyr project and workspace layout.

Before you start, make sure you have a working Zephyr development environment, as per the
instructions in the Getting Started Guide.

Open the project in VS Code

1. In VS Code, select File ‣ Open Folder from the main menu.

2. Navigate to your Zephyr workspace and select it (i.e. the zephyrproject folder in your
HOME directory if you have followed the Getting Started instructions).
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3. If prompted, enable workspace trust.

Generate compile commands

In order to support code navigation and linting capabilities, you must compile your project once
to generate the compile_commands.json file that will provide the C/C++ extension with the re-
quired information (ex. include paths):

west build -b native_sim/native/64 samples/basic/blinky

Configure the C/C++ extension

You’ll now need to point to the generated compile_commands.json file to enable linting and code
navigation in VS Code.

1. Go to the File ‣ Preferences ‣ Settings in the VS Code top menu.

2. Search for the parameter C_Cpp > Default: Compile Commands and set its value to: zephyr/
build/compile_commands.json.

Linting errors in the code should now be resolved, and you should be able to navigate
through the code.

Additional resources

There are many other extensions that can be useful when working with Zephyr and VS Code.
While this guide does not cover them yet, you may refer to their documentation to set them up:

Contribution tooling
• Checkpatch Extension

• EditorConfig Extension

Documentation languages extensions
• reStructuredText Extension Pack

IDE extensions
• CMake Extension documentation

• nRF Kconfig Extension

• nRF DeviceTree Extension

• GNU Linker Map files Extension

Additional guides
• How to Develop Zephyr Apps with a Modern, Visual IDE

Note

Please be aware that these extensions might not all have the same level of quality and main-
tenance.
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Chapter 3

Kernel

3.1 Kernel Services

The Zephyr kernel lies at the heart of every Zephyr application. It provides a low footprint,
high performance, multi-threaded execution environment with a rich set of available features.
The rest of the Zephyr ecosystem, including device drivers, networking stack, and application-
specific code, uses the kernel’s features to create a complete application.

The configurable nature of the kernel allows you to incorporate only those features needed by
your application, making it ideal for systems with limited amounts of memory (as little as 2 KB!)
or with simple multi-threading requirements (such as a set of interrupt handlers and a single
background task). Examples of such systems include: embedded sensor hubs, environmental
sensors, simple LED wearable, and store inventory tags.

Applications requiring more memory (50 to 900 KB), multiple communication devices (like Wi-
Fi and Bluetooth Low Energy), and complex multi-threading, can also be developed using the
Zephyr kernel. Examples of such systems include: fitness wearables, smart watches, and IoT
wireless gateways.

3.1.1 Scheduling, Interrupts, and Synchronization

These pages cover basic kernel services related to thread scheduling and synchronization.

Threads

Note

There is also limited support for using Operation without Threads.

• Lifecycle

– Thread Creation

– Thread Termination

– Thread Aborting

– Thread Suspension
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• Thread States

• Thread Stack objects

– Kernel-only Stacks

– Thread stacks

• Thread Priorities

– Meta-IRQ Priorities

• Thread Options

• Thread Custom Data

• Implementation

– Spawning a Thread

– Dropping Permissions

– Terminating a Thread

• Runtime Statistics

• Suggested Uses

• Configuration Options

• API Reference

This section describes kernel services for creating, scheduling, and deleting independently exe-
cutable threads of instructions.

A thread is a kernel object that is used for application processing that is too lengthy or too complex
to be performed by an ISR.

Any number of threads can be defined by an application (limited only by available RAM). Each
thread is referenced by a thread id that is assigned when the thread is spawned.

A thread has the following key properties:

• A stack area, which is a region of memory used for the thread’s stack. The size of the
stack area can be tailored to conform to the actual needs of the thread’s processing. Special
macros exist to create and work with stack memory regions.

• A thread control block for private kernel bookkeeping of the thread’s metadata. This is
an instance of type k_thread.

• An entry point function, which is invoked when the thread is started. Up to 3 argument
values can be passed to this function.

• A scheduling priority, which instructs the kernel’s scheduler how to allocate CPU time to
the thread. (See Scheduling.)

• A set of thread options, which allow the thread to receive special treatment by the kernel
under specific circumstances. (See Thread Options.)

• A start delay, which specifies how long the kernel should wait before starting the thread.

• An executionmode, which can either be supervisor or user mode. By default, threads run
in supervisor mode and allow access to privileged CPU instructions, the entire memory
address space, and peripherals. User mode threads have a reduced set of privileges. This
depends on the CONFIG_USERSPACE option. See User Mode.

Lifecycle

310 Chapter 3. Kernel



Zephyr Project Documentation, Release 3.7.99

Thread Creation A thread must be created before it can be used. The kernel initializes the
thread control block as well as one end of the stack portion. The remainder of the thread’s stack
is typically left uninitialized.

Specifying a start delay of K_NO_WAIT instructs the kernel to start thread execution immediately.
Alternatively, the kernel can be instructed to delay execution of the thread by specifying a time-
out value – for example, to allow device hardware used by the thread to become available.

The kernel allows a delayed start to be canceled before the thread begins executing. A cancel-
lation request has no effect if the thread has already started. A thread whose delayed start was
successfully canceled must be re-spawned before it can be used.

Thread Termination Once a thread is started it typically executes forever. However, a thread
may synchronously end its execution by returning from its entry point function. This is known
as termination.

A thread that terminates is responsible for releasing any shared resources it may own (such
as mutexes and dynamically allocated memory) prior to returning, since the kernel does not
reclaim them automatically.

In some cases a thread may want to sleep until another thread terminates. This can be accom-
plished with the k_thread_join() API. This will block the calling thread until either the timeout
expires, the target thread self-exits, or the target thread aborts (either due to a k_thread_abort()
call or triggering a fatal error).

Once a thread has terminated, the kernel guarantees that no use will be made of the thread
struct. The memory of such a struct can then be re-used for any purpose, including spawning a
new thread. Note that the thread must be fully terminated, which presents race conditions where
a thread’s own logic signals completion which is seen by another thread before the kernel pro-
cessing is complete. Under normal circumstances, application code should use k_thread_join()
or k_thread_abort() to synchronize on thread termination state and not rely on signaling from
within application logic.

Thread Aborting A thread may asynchronously end its execution by aborting. The kernel
automatically aborts a thread if the thread triggers a fatal error condition, such as dereferencing
a null pointer.

A thread can also be aborted by another thread (or by itself) by calling k_thread_abort(). How-
ever, it is typically preferable to signal a thread to terminate itself gracefully, rather than abort-
ing it.

As with thread termination, the kernel does not reclaim shared resources owned by an aborted
thread.

Note

The kernel does not currently make any claims regarding an application’s ability to respawn
a thread that aborts.

Thread Suspension A thread can be prevented from executing for an indefinite period of time
if it becomes suspended. The function k_thread_suspend() can be used to suspend any thread,
including the calling thread. Suspending a thread that is already suspended has no additional
effect.

Once suspended, a thread cannot be scheduled until another thread calls k_thread_resume() to
remove the suspension.
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Note

A thread can prevent itself from executing for a specified period of time using k_sleep().
However, this is different from suspending a thread since a sleeping thread becomes exe-
cutable automatically when the time limit is reached.

Thread States A thread that has no factors that prevent its execution is deemed to be ready,
and is eligible to be selected as the current thread.

A thread that has one or more factors that prevent its execution is deemed to be unready, and
cannot be selected as the current thread.

The following factors make a thread unready:

• The thread has not been started.

• The thread is waiting for a kernel object to complete an operation. (For example, the thread
is taking a semaphore that is unavailable.)

• The thread is waiting for a timeout to occur.

• The thread has been suspended.

• The thread has terminated or aborted.

start

New

dispatch

I/O or event completion

Ready

interrupt

I/O or event wait

abort

Running

Terminated

Waiting

Suspended

suspendresume

Note

Although the diagram above may appear to suggest that bothReady andRunning are distinct
thread states, that is not the correct interpretation. Ready is a thread state, and Running is a
schedule state that only applies to Ready threads.

Thread Stack objects Every thread requires its own stack buffer for the CPU to push context.
Depending on configuration, there are several constraints that must be met:

• There may need to be additional memory reserved for memory management structures
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• If guard-based stack overflow detection is enabled, a small write- protected memory man-
agement region must immediately precede the stack buffer to catch overflows.

• If userspace is enabled, a separate fixed-size privilege elevation stack must be reserved to
serve as a private kernel stack for handling system calls.

• If userspace is enabled, the thread’s stack buffer must be appropriately sized and aligned
such that a memory protection region may be programmed to exactly fit.

The alignment constraints can be quite restrictive, for example some MPUs require their regions
to be of some power of two in size, and aligned to its own size.

Because of this, portable code can’t simply pass an arbitrary character buffer to
k_thread_create(). Special macros exist to instantiate stacks, prefixed with K_KERNEL_STACK
and K_THREAD_STACK.

Kernel-only Stacks If it is known that a thread will never run in user mode, or the stack
is being used for special contexts like handling interrupts, it is best to define stacks using the
K_KERNEL_STACK macros.

These stacks save memory because an MPU region will never need to be programmed to cover
the stack buffer itself, and the kernel will not need to reserve additional room for the privilege el-
evation stack, or memory management data structures which only pertain to user mode threads.

Attempts from user mode to use stacks declared in this way will result in a fatal error for the
caller.

If CONFIG_USERSPACE is not enabled, the set of K_THREAD_STACK macros have an identical effect
to the K_KERNEL_STACK macros.

Thread stacks If it is known that a stack will need to host user threads, or if this cannot be
determined, define the stack with K_THREAD_STACK macros. This may use more memory but the
stack object is suitable for hosting user threads.

If CONFIG_USERSPACE is not enabled, the set of K_THREAD_STACK macros have an identical effect
to the K_KERNEL_STACK macros.

Thread Priorities A thread’s priority is an integer value, and can be either negative or non-
negative. Numerically lower priorities takes precedence over numerically higher values. For
example, the scheduler gives thread A of priority 4 higher priority over thread B of priority 7;
likewise thread C of priority -2 has higher priority than both thread A and thread B.

The scheduler distinguishes between two classes of threads, based on each thread’s priority.

• A cooperative thread has a negative priority value. Once it becomes the current thread, a
cooperative thread remains the current thread until it performs an action that makes it
unready.

• A preemptible thread has a non-negative priority value. Once it becomes the current thread,
a preemptible thread may be supplanted at any time if a cooperative thread, or a pre-
emptible thread of higher or equal priority, becomes ready.

A thread’s initial priority value can be altered up or down after the thread has been started.
Thus it is possible for a preemptible thread to become a cooperative thread, and vice versa, by
changing its priority.

Note

The scheduler does not make heuristic decisions to re-prioritize threads. Thread priorities
are set and changed only at the application’s request.
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The kernel supports a virtually unlimited number of thread priority levels. The configuration
options CONFIG_NUM_COOP_PRIORITIES and CONFIG_NUM_PREEMPT_PRIORITIES specify the number
of priority levels for each class of thread, resulting in the following usable priority ranges:

• cooperative threads: (-CONFIG_NUM_COOP_PRIORITIES) to -1

• preemptive threads: 0 to (CONFIG_NUM_PREEMPT_PRIORITIES - 1)

0

- CONFIG_NUM_COOP_PRIORITIES

cooperative threads preemptible threads

CONFIG_NUM_PREEMPT_PRIORITIES - 1

-1

Higher priority Lower priority

1 2- 2

Idle thread (cooperative) Idle thread (preemptible)

Text is not SVG - cannot display

For example, configuring 5 cooperative priorities and 10 preemptive priorities results in the
ranges -5 to -1 and 0 to 9, respectively.

Meta-IRQ Priorities When enabled (see CONFIG_NUM_METAIRQ_PRIORITIES), there is a special
subclass of cooperative priorities at the highest (numerically lowest) end of the priority space:
meta-IRQ threads. These are scheduled according to their normal priority, but also have the
special ability to preempt all other threads (and other meta-IRQ threads) at lower priorities, even
if those threads are cooperative and/or have taken a scheduler lock. Meta-IRQ threads are still
threads, however, and can still be interrupted by any hardware interrupt.

This behavior makes the act of unblocking a meta-IRQ thread (by any means, e.g. creating it,
calling k_sem_give(), etc.) into the equivalent of a synchronous system call when done by a lower
priority thread, or an ARM-like “pended IRQ” when done from true interrupt context. The intent
is that this feature will be used to implement interrupt “bottom half” processing and/or “tasklet”
features in driver subsystems. The thread, once woken, will be guaranteed to run before the
current CPU returns into application code.

Unlike similar features in other OSes, meta-IRQ threads are true threads and run on their own
stack (which must be allocated normally), not the per-CPU interrupt stack. Design work to enable
the use of the IRQ stack on supported architectures is pending.

Note that because this breaks the promise made to cooperative threads by the Zephyr API
(namely that the OS won’t schedule other thread until the current thread deliberately blocks),
it should be used only with great care from application code. These are not simply very high
priority threads and should not be used as such.

ThreadOptions The kernel supports a small set of thread options that allow a thread to receive
special treatment under specific circumstances. The set of options associated with a thread are
specified when the thread is spawned.

A thread that does not require any thread option has an option value of zero. A thread that
requires a thread option specifies it by name, using the | character as a separator if multiple
options are needed (i.e. combine options using the bitwise OR operator).

The following thread options are supported.

K_ESSENTIAL
This option tags the thread as an essential thread. This instructs the kernel to treat the
termination or aborting of the thread as a fatal system error.
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By default, the thread is not considered to be an essential thread.

K_SSE_REGS
This x86-specific option indicate that the thread uses the CPU’s SSE registers. Also see
K_FP_REGS.

By default, the kernel does not attempt to save and restore the contents of these registers
when scheduling the thread.

K_FP_REGS
This option indicate that the thread uses the CPU’s floating point registers. This instructs
the kernel to take additional steps to save and restore the contents of these registers when
scheduling the thread. (For more information see Floating Point Services.)

By default, the kernel does not attempt to save and restore the contents of this register when
scheduling the thread.

K_USER
If CONFIG_USERSPACE is enabled, this thread will be created in user mode and will have
reduced privileges. See User Mode. Otherwise this flag does nothing.

K_INHERIT_PERMS
If CONFIG_USERSPACE is enabled, this thread will inherit all kernel object permissions that
the parent thread had, except the parent thread object. See User Mode.

Thread CustomData Every thread has a 32-bit custom data area, accessible only by the thread
itself, and may be used by the application for any purpose it chooses. The default custom data
value for a thread is zero.

Note

Custom data support is not available to ISRs because they operate within a single shared
kernel interrupt handling context.

By default, thread custom data support is disabled. The configuration option CON-
FIG_THREAD_CUSTOM_DATA can be used to enable support.

The k_thread_custom_data_set() and k_thread_custom_data_get() functions are used to write
and read a thread’s custom data, respectively. A thread can only access its own custom data, and
not that of another thread.

The following code uses the custom data feature to record the number of times each thread calls
a specific routine.

Note

Obviously, only a single routine can use this technique, since it monopolizes the use of the
custom data feature.

int call_tracking_routine(void)
{

uint32_t call_count;

if (k_is_in_isr()) {
/* ignore any call made by an ISR */

} else {
call_count = (uint32_t)k_thread_custom_data_get();
call_count++;
k_thread_custom_data_set((void *)call_count);

(continues on next page)
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(continued from previous page)
}

/* do rest of routine's processing */
...

}

Use thread custom data to allow a routine to access thread-specific information, by using the
custom data as a pointer to a data structure owned by the thread.

Implementation

Spawning a Thread A thread is spawned by defining its stack area and its thread control block,
and then calling k_thread_create().

The stack area must be defined using K_THREAD_STACK_DEFINE or K_KERNEL_STACK_DEFINE to en-
sure it is properly set up in memory.

The size parameter for the stack must be one of three values:

• The original requested stack size passed to K_THREAD_STACK or K_KERNEL_STACK family of
stack instantiation macros.

• For a stack object defined with the K_THREAD_STACK family of macros, the return value of
K_THREAD_STACK_SIZEOF() for that’ object.

• For a stack object defined with the K_KERNEL_STACK family of macros, the return value of
K_KERNEL_STACK_SIZEOF() for that object.

The thread spawning function returns its thread id, which can be used to reference the thread.

The following code spawns a thread that starts immediately.

#define MY_STACK_SIZE 500
#define MY_PRIORITY 5

extern void my_entry_point(void *, void *, void *);

K_THREAD_STACK_DEFINE(my_stack_area, MY_STACK_SIZE);
struct k_thread my_thread_data;

k_tid_t my_tid = k_thread_create(&my_thread_data, my_stack_area,
K_THREAD_STACK_SIZEOF(my_stack_area),
my_entry_point,
NULL, NULL, NULL,
MY_PRIORITY, 0, K_NO_WAIT);

Alternatively, a thread can be declared at compile time by calling K_THREAD_DEFINE. Observe that
the macro defines the stack area, control block, and thread id variables automatically.

The following code has the same effect as the code segment above.

#define MY_STACK_SIZE 500
#define MY_PRIORITY 5

extern void my_entry_point(void *, void *, void *);

K_THREAD_DEFINE(my_tid, MY_STACK_SIZE,
my_entry_point, NULL, NULL, NULL,
MY_PRIORITY, 0, 0);
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Note

The delay parameter to k_thread_create() is a k_timeout_t value, so K_NO_WAIT means to
start the thread immediately. The corresponding parameter to K_THREAD_DEFINE is a duration
in integral milliseconds, so the equivalent argument is 0.

User Mode Constraints This section only applies if CONFIG_USERSPACE is enabled, and a user
thread tries to create a new thread. The k_thread_create() API is still used, but there are addi-
tional constraints which must be met or the calling thread will be terminated:

• The calling thread must have permissions granted on both the child thread and stack pa-
rameters; both are tracked by the kernel as kernel objects.

• The child thread and stack objects must be in an uninitialized state, i.e. it is not currently
running and the stack memory is unused.

• The stack size parameter passed in must be equal to or less than the bounds of the stack
object when it was declared.

• The K_USER option must be used, as user threads can only create other user threads.

• The K_ESSENTIAL option must not be used, user threads may not be considered essential
threads.

• The priority of the child thread must be a valid priority value, and equal to or lower than
the parent thread.

Dropping Permissions If CONFIG_USERSPACE is enabled, a thread running in supervisor mode
may perform a one-way transition to user mode using the k_thread_user_mode_enter() API.
This is a one-way operation which will reset and zero the thread’s stack memory. The thread
will be marked as non-essential.

Terminating a Thread A thread terminates itself by returning from its entry point function.

The following code illustrates the ways a thread can terminate.

void my_entry_point(int unused1, int unused2, int unused3)
{

while (1) {
...
if (<some condition>) {

return; /* thread terminates from mid-entry point function */
}
...

}

/* thread terminates at end of entry point function */
}

If CONFIG_USERSPACE is enabled, aborting a thread will additionally mark the thread and stack
objects as uninitialized so that they may be re-used.

Runtime Statistics Thread runtime statistics can be gathered and retrieved if CON-
FIG_THREAD_RUNTIME_STATS is enabled, for example, total number of execution cycles of a thread.

By default, the runtime statistics are gathered using the default kernel timer. For some archi-
tectures, SoCs or boards, there are timers with higher resolution available via timing functions.
Using of these timers can be enabled via CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS.
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Here is an example:

k_thread_runtime_stats_t rt_stats_thread;

k_thread_runtime_stats_get(k_current_get(), &rt_stats_thread);

printk("Cycles: %llu\n", rt_stats_thread.execution_cycles);

Suggested Uses Use threads to handle processing that cannot be handled in an ISR.

Use separate threads to handle logically distinct processing operations that can execute in par-
allel.

Configuration Options Related configuration options:

• CONFIG_MAIN_THREAD_PRIORITY
• CONFIG_MAIN_STACK_SIZE
• CONFIG_IDLE_STACK_SIZE
• CONFIG_THREAD_CUSTOM_DATA
• CONFIG_NUM_COOP_PRIORITIES
• CONFIG_NUM_PREEMPT_PRIORITIES
• CONFIG_TIMESLICING
• CONFIG_TIMESLICE_SIZE
• CONFIG_TIMESLICE_PRIORITY
• CONFIG_USERSPACE

Related code samples

Basic Synchronization
Manipulate basic kernel synchronization primitives.

Basic thread manipulation
Spawn multiple threads that blink LEDs and print information to the console.

Dumb HTTP server (multi-threaded)
Implement a simple HTTP server supporting simultaneous connections using BSD sock-
ets.

API Reference

group thread_apis

Defines

K_ESSENTIAL
system thread that must not abort
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K_FP_IDX
FPU registers are managed by context switch.

This option indicates that the thread uses the CPU’s floating point registers. This in-
structs the kernel to take additional steps to save and restore the contents of these
registers when scheduling the thread. No effect if CONFIG_FPU_SHARING is not enabled.

K_FP_REGS

K_USER
user mode thread

This thread has dropped from supervisor mode to user mode and consequently has
additional restrictions

K_INHERIT_PERMS
Inherit Permissions.

Indicates that the thread being created should inherit all kernel object permissions
from the thread that created it. No effect if CONFIG_USERSPACE is not enabled.

K_CALLBACK_STATE
Callback item state.

This is a single bit of state reserved for “callback manager” utilities (p4wq initially)
who need to track operations invoked from within a user-provided callback they have
been invoked. Effectively it serves as a tiny bit of zero-overhead TLS data.

K_DSP_IDX
DSP registers are managed by context switch.

This option indicates that the thread uses the CPU’s DSP registers. This instructs the
kernel to take additional steps to save and restore the contents of these registers when
scheduling the thread. No effect if CONFIG_DSP_SHARING is not enabled.

K_DSP_REGS

K_AGU_IDX
AGU registers are managed by context switch.

This option indicates that the thread uses the ARC processor’s XY memory and DSP fea-
ture. Often used with CONFIG_ARC_AGU_SHARING . No effect if CONFIG_ARC_AGU_SHARING
is not enabled.

K_AGU_REGS

K_SSE_REGS
FP and SSE registers are managed by context switch on x86.

This option indicates that the thread uses the x86 CPU’s floating point and SSE registers.
This instructs the kernel to take additional steps to save and restore the contents of
these registers when scheduling the thread. No effect if CONFIG_X86_SSE is not enabled.
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k_thread_access_grant(thread, ...)
Grant a thread access to a set of kernel objects.

This is a convenience function. For the provided thread, grant access to the remaining
arguments, which must be pointers to kernel objects.

The thread object must be initialized (i.e. running). The objects don’t need to be. Note
that NULL shouldn’t be passed as an argument.

Parameters
• thread – Thread to grant access to objects

• ... – list of kernel object pointers

K_THREAD_DEFINE(name, stack_size, entry, p1, p2, p3, prio, options, delay)
Statically define and initialize a thread.

The thread may be scheduled for immediate execution or a delayed start.

Thread options are architecture-specific, and can include K_ESSENTIAL, K_FP_REGS,
and K_SSE_REGS. Multiple options may be specified by separating them using “|” (the
logical OR operator).

The ID of the thread can be accessed using:

extern const k_tid_t <name>;

Note

Static threads with zero delay should not normally have MetaIRQ priority levels.
This can preempt the system initialization handling (depending on the priority of
the main thread) and cause surprising ordering side effects. It will not affect any-
thing in the OS per se, but consider it bad practice. Use a SYS_INIT() callback if you
need to run code before entrance to the application main().

Parameters
• name – Name of the thread.

• stack_size – Stack size in bytes.

• entry – Thread entry function.

• p1 – 1st entry point parameter.

• p2 – 2nd entry point parameter.

• p3 – 3rd entry point parameter.

• prio – Thread priority.

• options – Thread options.

• delay – Scheduling delay (in milliseconds), zero for no delay.

K_KERNEL_THREAD_DEFINE(name, stack_size, entry, p1, p2, p3, prio, options, delay)
Statically define and initialize a thread intended to run only in kernel mode.

The thread may be scheduled for immediate execution or a delayed start.

Thread options are architecture-specific, and can include K_ESSENTIAL, K_FP_REGS,
and K_SSE_REGS. Multiple options may be specified by separating them using “|” (the
logical OR operator).

The ID of the thread can be accessed using:
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extern const k_tid_t <name>;

Note

Threads defined by this can only run in kernel mode, and cannot be transformed
into user thread via k_thread_user_mode_enter().

Warning

Depending on the architecture, the stack size (stack_size) may need to be multiples
of CONFIG_MMU_PAGE_SIZE (if MMU) or in power-of-two size (if MPU).

Parameters
• name – Name of the thread.

• stack_size – Stack size in bytes.

• entry – Thread entry function.

• p1 – 1st entry point parameter.

• p2 – 2nd entry point parameter.

• p3 – 3rd entry point parameter.

• prio – Thread priority.

• options – Thread options.

• delay – Scheduling delay (in milliseconds), zero for no delay.

Typedefs

typedef void (*k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)

Functions

void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.

This routine iterates over all the threads in the system and calls the user_cb function
for each thread.

Note

CONFIG_THREAD_MONITOR must be set for this function to be effective.

Note

This API uses k_spin_lock to protect the _kernel.threads list which means creation of
new threads and terminations of existing threads are blocked until this API returns.
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Parameters
• user_cb – Pointer to the user callback function.

• user_data – Pointer to user data.

void k_thread_foreach_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb,
void *user_data)

Iterate over all the threads in running on specified cpu.

This function is does otherwise the same thing as k_thread_foreach(), but it only loops
through the threads running on specified cpu only. If CONFIG_SMP is not defined the
implementation this is the same as k_thread_foreach(), with an assert cpu == 0.

Note

CONFIG_THREAD_MONITOR must be set for this function to be effective.

Note

This API uses k_spin_lock to protect the _kernel.threads list which means creation of
new threads and terminations of existing threads are blocked until this API returns.

Parameters
• cpu – The filtered cpu number

• user_cb – Pointer to the user callback function.

• user_data – Pointer to user data.

void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.

This routine works exactly the same like k_thread_foreach but unlocks interrupts when
user_cb is executed.

Note

CONFIG_THREAD_MONITOR must be set for this function to be effective.

Note

This API uses k_spin_lock only when accessing the _kernel.threads queue elements.
It unlocks it during user callback function processing. If a new task is created when
this foreach function is in progress, the added new task would not be included in
the enumeration. If a task is aborted during this enumeration, there would be a
race here and there is a possibility that this aborted task would be included in the
enumeration.

Note

If the task is aborted and the memory occupied by its k_thread structure is reused
when this k_thread_foreach_unlocked is in progress it might even lead to the sys-
tem behave unstable. This function may never return, as it would follow some next
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task pointers treating given pointer as a pointer to the k_thread structure while it
is something different right now. Do not reuse the memory that was occupied by
k_thread structure of aborted task if it was aborted after this function was called in
any context.

Parameters
• user_cb – Pointer to the user callback function.

• user_data – Pointer to user data.

void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t
user_cb, void *user_data)

Iterate over the threads in running on current cpu without locking.

This function does otherwise the same thing as k_thread_foreach_unlocked(), but it only
loops through the threads running on specified cpu. If CONFIG_SMP is not defined the
implementation this is the same as k_thread_foreach_unlocked(), with an assert requir-
ing cpu == 0.

Note

CONFIG_THREAD_MONITOR must be set for this function to be effective.

Note

This API uses k_spin_lock only when accessing the _kernel.threads queue elements.
It unlocks it during user callback function processing. If a new task is created when
this foreach function is in progress, the added new task would not be included in
the enumeration. If a task is aborted during this enumeration, there would be a
race here and there is a possibility that this aborted task would be included in the
enumeration.

Note

If the task is aborted and the memory occupied by its k_thread structure is reused
when this k_thread_foreach_unlocked is in progress it might even lead to the sys-
tem behave unstable. This function may never return, as it would follow some next
task pointers treating given pointer as a pointer to the k_thread structure while it
is something different right now. Do not reuse the memory that was occupied by
k_thread structure of aborted task if it was aborted after this function was called in
any context.

Parameters
• cpu – The filtered cpu number

• user_cb – Pointer to the user callback function.

• user_data – Pointer to user data.

k_thread_stack_t *k_thread_stack_alloc(size_t size, int flags)
Dynamically allocate a thread stack.

Relevant stack creation flags include:
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• K_USER allocate a userspace thread (requires CONFIG_USERSPACE=y)

See also

CONFIG_DYNAMIC_THREAD

Parameters
• size – Stack size in bytes.

• flags – Stack creation flags, or 0.

Return values
• the – allocated thread stack on success.

• NULL – on failure.

int k_thread_stack_free(k_thread_stack_t *stack)
Free a dynamically allocated thread stack.

See also

CONFIG_DYNAMIC_THREAD

Parameters
• stack – Pointer to the thread stack.

Return values
• 0 – on success.

• -EBUSY – if the thread stack is in use.

• -EINVAL – if stack is invalid.

• -ENOSYS – if dynamic thread stack allocation is disabled

k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t
stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3,
int prio, uint32_t options, k_timeout_t delay)

Create a thread.

This routine initializes a thread, then schedules it for execution.

The new thread may be scheduled for immediate execution or a delayed start. If the
newly spawned thread does not have a delayed start the kernel scheduler may preempt
the current thread to allow the new thread to execute.

Thread options are architecture-specific, and can include K_ESSENTIAL, K_FP_REGS,
and K_SSE_REGS. Multiple options may be specified by separating them using “|” (the
logical OR operator).

Stack objects passed to this function must be originally defined with either of these
macros in order to be portable:

• K_THREAD_STACK_DEFINE() - For stacks that may support either user or supervi-
sor threads.
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• K_KERNEL_STACK_DEFINE() - For stacks that may support supervisor threads only.
These stacks use less memory if CONFIG_USERSPACE is enabled.

The stack_size parameter has constraints. It must either be:

• The original size value passed to K_THREAD_STACK_DEFINE() or
K_KERNEL_STACK_DEFINE()

• The return value of K_THREAD_STACK_SIZEOF(stack) if the stack was defined with
K_THREAD_STACK_DEFINE()

• The return value of K_KERNEL_STACK_SIZEOF(stack) if the stack was defined with
K_KERNEL_STACK_DEFINE().

Using other values, or sizeof(stack) may produce undefined behavior.

Parameters
• new_thread – Pointer to uninitialized struct k_thread

• stack – Pointer to the stack space.

• stack_size – Stack size in bytes.

• entry – Thread entry function.

• p1 – 1st entry point parameter.

• p2 – 2nd entry point parameter.

• p3 – 3rd entry point parameter.

• prio – Thread priority.

• options – Thread options.

• delay – Scheduling delay, or K_NO_WAIT (for no delay).

Returns
ID of new thread.

FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void
*p2, void *p3)

Drop a thread’s privileges permanently to user mode.

This allows a supervisor thread to be re-used as a user thread. This function does not
return, but control will transfer to the provided entry point as if this was a new user
thread.

The implementation ensures that the stack buffer contents are erased. Any thread-
local storage will be reverted to a pristine state.

Memory domain membership, resource pool assignment, kernel object permissions,
priority, and thread options are preserved.

A common use of this function is to re-use the main thread as a user thread once all
supervisor mode-only tasks have been completed.

Parameters
• entry – Function to start executing from

• p1 – 1st entry point parameter

• p2 – 2nd entry point parameter

• p3 – 3rd entry point parameter
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static inline void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.

By default, threads have no resource pool assigned unless their parent thread has a
resource pool, in which case it is inherited. Multiple threads may be assigned to the
same memory pool.

Changing a thread’s resource pool will not migrate allocations from the previous pool.

Parameters
• thread – Target thread to assign a memory pool for resource requests.

• heap – Heap object to use for resources, or NULL if the thread should no
longer have a memory pool.

int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.

The caller will be put to sleep until the target thread exits, either due to being aborted,
self-exiting, or taking a fatal error. This API returns immediately if the thread isn’t
running.

This API may only be called from ISRs with a K_NO_WAIT timeout, where it can be
useful as a predicate to detect when a thread has aborted.

Parameters
• thread – Thread to wait to exit

• timeout – upper bound time to wait for the thread to exit.

Return values
• 0 – success, target thread has exited or wasn’t running

• -EBUSY – returned without waiting

• -EAGAIN – waiting period timed out

• -EDEADLK – target thread is joining on the caller, or target thread is the
caller

int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.

This routine puts the current thread to sleep for duration, specified as a k_timeout_t
object.

Note

if timeout is set to K_FOREVER then the thread is suspended.

Parameters
• timeout – Desired duration of sleep.

Returns
Zero if the requested time has elapsed or if the thread was woken up by the
k_wakeup call, the time left to sleep rounded up to the nearest millisecond.

static inline int32_t k_msleep(int32_t ms)
Put the current thread to sleep.

This routine puts the current thread to sleep for duration milliseconds.

Parameters
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• ms – Number of milliseconds to sleep.

Returns
Zero if the requested time has elapsed or if the thread was woken up by the
k_wakeup call, the time left to sleep rounded up to the nearest millisecond.

int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.

This function is unlikely to work as expected without kernel tuning. In particular,
because the lower bound on the duration of a sleep is the duration of a tick, CON-
FIG_SYS_CLOCK_TICKS_PER_SECmust be adjusted to achieve the resolution desired. The
implications of doing this must be understood before attempting to use k_usleep(). Use
with caution.

Parameters
• us – Number of microseconds to sleep.

Returns
Zero if the requested time has elapsed or if the thread was woken up by the
k_wakeup call, the time left to sleep rounded up to the nearest microsecond.

void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.

This routine causes the current thread to execute a “do nothing” loop for usec_to_wait
microseconds.

Note

The clock used for the microsecond-resolution delay here may be skewed relative
to the clock used for system timeouts like k_sleep(). For example k_busy_wait(1000)
may take slightly more or less time than k_sleep(K_MSEC(1)), with the offset depen-
dent on clock tolerances.

Note

In case when CONFIG_SYSTEM_CLOCK_SLOPPY_IDLE and CONFIG_PM options are en-
abled, this function may not work. The timer/clock used for delay processing may
be disabled/inactive.

bool k_can_yield(void)
Check whether it is possible to yield in the current context.

This routine checks whether the kernel is in a state where it is possible to yield or call
blocking API’s. It should be used by code that needs to yield to perform correctly, but
can feasibly be called from contexts where that is not possible. For example in the
PRE_KERNEL initialization step, or when being run from the idle thread.

Returns
True if it is possible to yield in the current context, false otherwise.

void k_yield(void)
Yield the current thread.

This routine causes the current thread to yield execution to another thread of the same
or higher priority. If there are no other ready threads of the same or higher priority,
the routine returns immediately.

3.1. Kernel Services 327



Zephyr Project Documentation, Release 3.7.99

void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.

This routine prematurely wakes up thread from sleeping.

If thread is not currently sleeping, the routine has no effect.

Parameters
• thread – ID of thread to wake.

__attribute_const__ k_tid_t k_sched_current_thread_query(void)
Query thread ID of the current thread.

This unconditionally queries the kernel via a system call.

Note

Use k_current_get() unless absolutely sure this is necessary. This should only be
used directly where the thread local variable cannot be used or may contain invalid
values if thread local storage (TLS) is enabled. If TLS is not enabled, this is the same
as k_current_get().

Returns
ID of current thread.

__attribute_const__ static inline k_tid_t k_current_get(void)
Get thread ID of the current thread.

Returns
ID of current thread.

void k_thread_abort(k_tid_t thread)
Abort a thread.

This routine permanently stops execution of thread. The thread is taken off all kernel
queues it is part of (i.e. the ready queue, the timeout queue, or a kernel object wait
queue). However, any kernel resources the thread might currently own (such as mu-
texes or memory blocks) are not released. It is the responsibility of the caller of this
routine to ensure all necessary cleanup is performed.

After k_thread_abort() returns, the thread is guaranteed not to be running or to be-
come runnable anywhere on the system. Normally this is done via blocking the caller
(in the same manner as k_thread_join()), but in interrupt context on SMP systems the
implementation is required to spin for threads that are running on other CPUs.

Parameters
• thread – ID of thread to abort.

void k_thread_start(k_tid_t thread)
Start an inactive thread.

If a thread was created with K_FOREVER in the delay parameter, it will not be added
to the scheduling queue until this function is called on it.

Parameters
• thread – thread to start

k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread)
Get time when a thread wakes up, in system ticks.

This routine computes the system uptime when a waiting thread next executes, in units
of system ticks. If the thread is not waiting, it returns current system time.
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k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *thread)
Get time remaining before a thread wakes up, in system ticks.

This routine computes the time remaining before a waiting thread next executes, in
units of system ticks. If the thread is not waiting, it returns zero.

int k_thread_priority_get(k_tid_t thread)
Get a thread’s priority.

This routine gets the priority of thread.

Parameters
• thread – ID of thread whose priority is needed.

Returns
Priority of thread.

void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread’s priority.

This routine immediately changes the priority of thread.

Rescheduling can occur immediately depending on the priority thread is set to:

• If its priority is raised above the priority of the caller of this function, and the caller
is preemptible, thread will be scheduled in.

• If the caller operates on itself, it lowers its priority below that of other threads
in the system, and the caller is preemptible, the thread of highest priority will be
scheduled in.

Priority can be assigned in the range of -CONFIG_NUM_COOP_PRIORITIES to
CONFIG_NUM_PREEMPT_PRIORITIES-1, where -CONFIG_NUM_COOP_PRIORITIES is
the highest priority.

Warning

Changing the priority of a thread currently involved in mutex priority inheritance
may result in undefined behavior.

Parameters
• thread – ID of thread whose priority is to be set.

• prio – New priority.

void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.

This sets the “deadline” expiration as a time delta from the current time, in the same
units used by k_cycle_get_32(). The scheduler (when deadline scheduling is enabled)
will choose the next expiring thread when selecting between threads at the same static
priority. Threads at different priorities will be scheduled according to their static pri-
ority.

Note

Deadlines are stored internally using 32 bit unsigned integers. The number of cy-
cles between the “first” deadline in the scheduler queue and the “last” deadline
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must be less than 2^31 (i.e a signed non-negative quantity). Failure to adhere to
this rule may result in scheduled threads running in an incorrect deadline order.

Note

Despite the API naming, the scheduler makes no guarantees the thread WILL be
scheduled within that deadline, nor does it take extra metadata (like e.g. the “run-
time” and “period” parameters in Linux sched_setattr()) that allows the kernel to
validate the scheduling for achievability. Such features could be implemented
above this call, which is simply input to the priority selection logic.

Note

You should enable CONFIG_SCHED_DEADLINE in your project configuration.

Parameters
• thread – A thread on which to set the deadline

• deadline – A time delta, in cycle units

int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.

After this returns, the thread will no longer be schedulable on any CPUs. The thread
must not be currently runnable.

Note

You should enable CONFIG_SCHED_CPU_MASK in your project configuration.

Parameters
• thread – Thread to operate upon

Returns
Zero on success, otherwise error code

int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.

After this returns, the thread will be schedulable on any CPU. The thread must not be
currently runnable.

Note

You should enable CONFIG_SCHED_CPU_MASK in your project configuration.

Parameters
• thread – Thread to operate upon

Returns
Zero on success, otherwise error code
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int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.

The thread must not be currently runnable.

Note

You should enable CONFIG_SCHED_CPU_MASK in your project configuration.

Parameters
• thread – Thread to operate upon

• cpu – CPU index

Returns
Zero on success, otherwise error code

int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.

The thread must not be currently runnable.

Note

You should enable CONFIG_SCHED_CPU_MASK in your project configuration.

Parameters
• thread – Thread to operate upon

• cpu – CPU index

Returns
Zero on success, otherwise error code

int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.

Pin a thread to a CPU by first clearing the cpu mask and then enabling the thread on
the selected CPU.

Parameters
• thread – Thread to operate upon

• cpu – CPU index

Returns
Zero on success, otherwise error code

void k_thread_suspend(k_tid_t thread)
Suspend a thread.

This routine prevents the kernel scheduler from making thread the current thread. All
other internal operations on thread are still performed; for example, kernel objects it
is waiting on are still handed to it. Note that any existing timeouts (e.g. k_sleep(), or a
timeout argument to k_sem_take() et. al.) will be canceled. On resume, the thread will
begin running immediately and return from the blocked call.

When the target thread is active on another CPU, the caller will block until the target
thread is halted (suspended or aborted). But if the caller is in an interrupt context, it
will spin waiting for that target thread active on another CPU to halt.
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If thread is already suspended, the routine has no effect.

Parameters
• thread – ID of thread to suspend.

void k_thread_resume(k_tid_t thread)
Resume a suspended thread.

This routine allows the kernel scheduler to make thread the current thread, when it is
next eligible for that role.

If thread is not currently suspended, the routine has no effect.

Parameters
• thread – ID of thread to resume.

void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.

This routine specifies how the scheduler will perform time slicing of preemptible
threads.

To enable time slicing, slice must be non-zero. The scheduler ensures that no thread
runs for more than the specified time limit before other threads of that priority are
given a chance to execute. Any thread whose priority is higher than prio is exempted,
and may execute as long as desired without being preempted due to time slicing.

Time slicing only limits the maximum amount of time a thread may continuously ex-
ecute. Once the scheduler selects a thread for execution, there is no minimum guar-
anteed time the thread will execute before threads of greater or equal priority are
scheduled.

When the current thread is the only one of that priority eligible for execution, this rou-
tine has no effect; the thread is immediately rescheduled after the slice period expires.

To disable timeslicing, set both slice and prio to zero.

Parameters
• slice – Maximum time slice length (in milliseconds).

• prio – Highest thread priority level eligible for time slicing.

void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
k_thread_timeslice_fn_t expired, void *data)

Set thread time slice.

As for k_sched_time_slice_set, but (when CONFIG_TIMESLICE_PER_THREAD=y) sets
the timeslice for a specific thread. When non-zero, this timeslice will take precedence
over the global value.

When such a thread’s timeslice expires, the configured callback will be called before
the thread is removed/re-added to the run queue. This callback will occur in inter-
rupt context, and the specified thread is guaranteed to have been preempted by the
currently-executing ISR. Such a callback is free to, for example, modify the thread pri-
ority or slice time for future execution, suspend the thread, etc…

Note

Unlike the older API, the time slice parameter here is specified in ticks, not millisec-
onds. Ticks have always been the internal unit, and not all platforms have integer
conversions between the two.
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Note

Threads with a non-zero slice time set will be timesliced always, even
if they are higher priority than the maximum timeslice priority set via
k_sched_time_slice_set().

Note

The callback notification for slice expiration happens, as it must, while the thread
is still “current”, and thus it happens before any registered timeouts at this tick.
This has the somewhat confusing side effect that the tick time (c.f. k_uptime_get())
does not yet reflect the expired ticks. Applications wishing to make fine-grained
timing decisions within this callback should use the cycle API, or derived facilities
like k_thread_runtime_stats_get().

Parameters
• th – A valid, initialized thread

• slice_ticks – Maximum timeslice, in ticks

• expired – Callback function called on slice expiration

• data – Parameter for the expiration handler

void k_sched_lock(void)
Lock the scheduler.

This routine prevents the current thread from being preempted by another thread by
instructing the scheduler to treat it as a cooperative thread. If the thread subsequently
performs an operation that makes it unready, it will be context switched out in the nor-
mal manner. When the thread again becomes the current thread, its non-preemptible
status is maintained.

This routine can be called recursively.

Owing to clever implementation details, scheduler locks are extremely fast for non-
userspace threads (just one byte inc/decrement in the thread struct).

Note

This works by elevating the thread priority temporarily to a cooperative prior-
ity, allowing cheap synchronization vs. other preemptible or cooperative threads
running on the current CPU. It does not prevent preemption or asynchrony of
other types. It does not prevent threads from running on other CPUs when CON-
FIG_SMP=y. It does not prevent interrupts from happening, nor does it prevent
threads with MetaIRQ priorities from preempting the current thread. In general
this is a historical API not well-suited to modern applications, use with care.

void k_sched_unlock(void)
Unlock the scheduler.

This routine reverses the effect of a previous call to k_sched_lock(). A thread must
call the routine once for each time it called k_sched_lock() before the thread becomes
preemptible.
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void k_thread_custom_data_set(void *value)
Set current thread’s custom data.

This routine sets the custom data for the current thread to @ value.

Custom data is not used by the kernel itself, and is freely available for a thread to use
as it sees fit. It can be used as a framework upon which to build thread-local storage.

Parameters
• value – New custom data value.

void *k_thread_custom_data_get(void)
Get current thread’s custom data.

This routine returns the custom data for the current thread.

Returns
Current custom data value.

int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.

Set the name of the thread to be used when CONFIG_THREAD_MONITOR is enabled for
tracing and debugging.

Parameters
• thread – Thread to set name, or NULL to set the current thread

• str – Name string

Return values
• 0 – on success

• -EFAULT – Memory access error with supplied string

• -ENOSYS – Thread name configuration option not enabled

• -EINVAL – Thread name too long

const char *k_thread_name_get(k_tid_t thread)
Get thread name.

Get the name of a thread

Parameters
• thread – Thread ID

Return values
Thread – name, or NULL if configuration not enabled

int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.

Parameters
• thread – Thread to obtain name information

• buf – Destination buffer

• size – Destination buffer size

Return values
• -ENOSPC – Destination buffer too small

• -EFAULT – Memory access error

• -ENOSYS – Thread name feature not enabled
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• 0 – Success

const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.

This routine generates a human friendly string containing the thread’s state, and
copies as much of it as possible into buf.

Parameters
• thread_id – Thread ID

• buf – Buffer into which to copy state strings

• buf_size – Size of the buffer

Return values
Pointer – to buf if data was copied, else a pointer to “”.

struct k_thread
#include <thread.h> Thread Structure.

Public Members

struct _callee_saved callee_saved
defined by the architecture, but all archs need these

void *init_data
static thread init data

_wait_q_t join_queue
threads waiting in k_thread_join()

struct __thread_entry entry
thread entry and parameters description

struct k_thread *next_thread
next item in list of all threads

void *custom_data
crude thread-local storage

struct _thread_stack_info stack_info
Stack Info.

struct _mem_domain_info mem_domain_info
memory domain info of the thread

k_thread_stack_t *stack_obj
Base address of thread stack.

If memory mapped stack (CONFIG_THREAD_STACK_MEM_MAPPED) is enabled,
this is the physical address of the stack.
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void *syscall_frame
current syscall frame pointer

int swap_retval
z_swap() return value

void *switch_handle
Context handle returned via arch_switch()

struct k_heap *resource_pool
resource pool

_wait_q_t halt_queue
threads waiting in k_thread_suspend()

struct _thread_arch arch
arch-specifics: must always be at the end

group thread_stack_api
Thread Stack APIs.

Defines

K_KERNEL_STACK_DECLARE(sym, size)
Declare a reference to a thread stack.

This macro declares the symbol of a thread stack defined elsewhere in the current
scope.

Parameters
• sym – Thread stack symbol name

• size – Size of the stack memory region

K_KERNEL_STACK_ARRAY_DECLARE(sym, nmemb, size)
Declare a reference to a thread stack array.

This macro declares the symbol of a thread stack array defined elsewhere in the cur-
rent scope.

Parameters
• sym – Thread stack symbol name

• nmemb – Number of stacks defined

• size – Size of the stack memory region

K_KERNEL_PINNED_STACK_ARRAY_DECLARE(sym, nmemb, size)
Declare a reference to a pinned thread stack array.

This macro declares the symbol of a pinned thread stack array defined elsewhere in
the current scope.

Parameters
• sym – Thread stack symbol name

• nmemb – Number of stacks defined
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• size – Size of the stack memory region

K_KERNEL_STACK_DEFINE(sym, size)
Define a toplevel kernel stack memory region.

This defines a region of memory for use as a thread stack, for threads that exclusively
run in supervisor mode. This is also suitable for declaring special stacks for interrupt
or exception handling.

Stacks defined with this macro may not host user mode threads.

It is legal to precede this definition with the ‘static’ keyword.

It is NOT legal to take the sizeof(sym) and pass that to the stackSize parame-
ter of k_thread_create(), it may not be the same as the ‘size’ parameter. Use
K_KERNEL_STACK_SIZEOF() instead.

The total amount of memory allocated may be increased to accommodate fixed-size
stack overflow guards.

Parameters
• sym – Thread stack symbol name

• size – Size of the stack memory region

K_KERNEL_PINNED_STACK_DEFINE(sym, size)
Define a toplevel kernel stack memory region in pinned section.

See K_KERNEL_STACK_DEFINE() for more information and constraints.

This puts the stack into the pinned noinit linker section if CON-
FIG_LINKER_USE_PINNED_SECTION is enabled, or else it would put the stack
into the same section as K_KERNEL_STACK_DEFINE().

Parameters
• sym – Thread stack symbol name

• size – Size of the stack memory region

K_KERNEL_STACK_ARRAY_DEFINE(sym, nmemb, size)
Define a toplevel array of kernel stack memory regions.

Stacks defined with this macro may not host user mode threads.

Parameters
• sym – Kernel stack array symbol name

• nmemb – Number of stacks to define

• size – Size of the stack memory region

K_KERNEL_PINNED_STACK_ARRAY_DEFINE(sym, nmemb, size)
Define a toplevel array of kernel stack memory regions in pinned section.

See K_KERNEL_STACK_ARRAY_DEFINE() for more information and constraints.

This puts the stack into the pinned noinit linker section if CON-
FIG_LINKER_USE_PINNED_SECTION is enabled, or else it would put the stack
into the same section as K_KERNEL_STACK_ARRAY_DEFINE().

Parameters
• sym – Kernel stack array symbol name

• nmemb – Number of stacks to define

• size – Size of the stack memory region
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K_KERNEL_STACK_MEMBER(sym, size)
Define an embedded stack memory region.

Used for kernel stacks embedded within other data structures.

Stacks defined with this macro may not host user mode threads.

Parameters
• sym – Thread stack symbol name

• size – Size of the stack memory region

K_KERNEL_STACK_SIZEOF(sym)

K_THREAD_STACK_DECLARE(sym, size)
Declare a reference to a thread stack.

This macro declares the symbol of a thread stack defined elsewhere in the current
scope.

Parameters
• sym – Thread stack symbol name

• size – Size of the stack memory region

K_THREAD_STACK_ARRAY_DECLARE(sym, nmemb, size)
Declare a reference to a thread stack array.

This macro declares the symbol of a thread stack array defined elsewhere in the cur-
rent scope.

Parameters
• sym – Thread stack symbol name

• nmemb – Number of stacks defined

• size – Size of the stack memory region

K_THREAD_STACK_SIZEOF(sym)
Return the size in bytes of a stack memory region.

Convenience macro for passing the desired stack size to k_thread_create() since the
underlying implementation may actually create something larger (for instance a guard
area).

The value returned here is not guaranteed to match the ‘size’ parameter passed
to K_THREAD_STACK_DEFINE and may be larger, but is always safe to pass to
k_thread_create() for the associated stack object.

Parameters
• sym – Stack memory symbol

Returns
Size of the stack buffer

K_THREAD_STACK_DEFINE(sym, size)
Define a toplevel thread stack memory region.

This defines a region of memory suitable for use as a thread’s stack.

This is the generic, historical definition. Align to Z_THREAD_STACK_OBJ_ALIGN and
put in ‘noinit’ section so that it isn’t zeroed at boot

The defined symbol will always be a k_thread_stack_t which can be passed to
k_thread_create(), but should otherwise not be manipulated. If the buffer inside needs
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to be examined, examine thread->stack_info for the associated thread object to obtain
the boundaries.

It is legal to precede this definition with the ‘static’ keyword.

It is NOT legal to take the sizeof(sym) and pass that to the stackSize parame-
ter of k_thread_create(), it may not be the same as the ‘size’ parameter. Use
K_THREAD_STACK_SIZEOF() instead.

Some arches may round the size of the usable stack region up to satisfy alignment
constraints. K_THREAD_STACK_SIZEOF() will return the aligned size.

Parameters
• sym – Thread stack symbol name

• size – Size of the stack memory region

K_THREAD_PINNED_STACK_DEFINE(sym, size)
Define a toplevel thread stack memory region in pinned section.

This defines a region of memory suitable for use as a thread’s stack.

This is the generic, historical definition. Align to Z_THREAD_STACK_OBJ_ALIGN and
put in ‘noinit’ section so that it isn’t zeroed at boot

The defined symbol will always be a k_thread_stack_t which can be passed to
k_thread_create(), but should otherwise not be manipulated. If the buffer inside needs
to be examined, examine thread->stack_info for the associated thread object to obtain
the boundaries.

It is legal to precede this definition with the ‘static’ keyword.

It is NOT legal to take the sizeof(sym) and pass that to the stackSize parame-
ter of k_thread_create(), it may not be the same as the ‘size’ parameter. Use
K_THREAD_STACK_SIZEOF() instead.

Some arches may round the size of the usable stack region up to satisfy alignment
constraints. K_THREAD_STACK_SIZEOF() will return the aligned size.

This puts the stack into the pinned noinit linker section if CON-
FIG_LINKER_USE_PINNED_SECTION is enabled, or else it would put the stack
into the same section as K_THREAD_STACK_DEFINE().

Parameters
• sym – Thread stack symbol name

• size – Size of the stack memory region

K_THREAD_STACK_LEN(size)
Calculate size of stacks to be allocated in a stack array.

This macro calculates the size to be allocated for the stacks inside a stack array. It ac-
cepts the indicated “size” as a parameter and if required, pads some extra bytes (e.g. for
MPU scenarios). Refer K_THREAD_STACK_ARRAY_DEFINE definition to see how this is
used. The returned size ensures each array member will be aligned to the required
stack base alignment.

Parameters
• size – Size of the stack memory region

Returns
Appropriate size for an array member
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K_THREAD_STACK_ARRAY_DEFINE(sym, nmemb, size)
Define a toplevel array of thread stack memory regions.

Create an array of equally sized stacks. See K_THREAD_STACK_DEFINE definition for
additional details and constraints.

This is the generic, historical definition. Align to Z_THREAD_STACK_OBJ_ALIGN and
put in ‘noinit’ section so that it isn’t zeroed at boot

Parameters
• sym – Thread stack symbol name

• nmemb – Number of stacks to define

• size – Size of the stack memory region

K_THREAD_PINNED_STACK_ARRAY_DEFINE(sym, nmemb, size)
Define a toplevel array of thread stack memory regions in pinned section.

Create an array of equally sized stacks. See K_THREAD_STACK_DEFINE definition for
additional details and constraints.

This is the generic, historical definition. Align to Z_THREAD_STACK_OBJ_ALIGN and
put in ‘noinit’ section so that it isn’t zeroed at boot

This puts the stack into the pinned noinit linker section if CON-
FIG_LINKER_USE_PINNED_SECTION is enabled, or else it would put the stack
into the same section as K_THREAD_STACK_DEFINE().

Parameters
• sym – Thread stack symbol name

• nmemb – Number of stacks to define

• size – Size of the stack memory region

K_THREAD_STACK_MEMBER(sym, size)
Define an embedded stack memory region.

Used for stacks embedded within other data structures. Use is highly discouraged but
in some cases necessary. For memory protection scenarios, it is very important that
any RAM preceding this member not be writable by threads else a stack overflow will
lead to silent corruption. In other words, the containing data structure should live in
RAM owned by the kernel.

A user thread can only be started with a stack defined in this way if the thread starting
it is in supervisor mode.

Deprecated:
This is now deprecated, as stacks defined in this way are not usable from user
mode. Use K_KERNEL_STACK_MEMBER.

Parameters
• sym – Thread stack symbol name

• size – Size of the stack memory region

Scheduling

The kernel’s priority-based scheduler allows an application’s threads to share the CPU.

340 Chapter 3. Kernel



Zephyr Project Documentation, Release 3.7.99

Concepts The scheduler determines which thread is allowed to execute at any point in time;
this thread is known as the current thread.

There are various points in time when the scheduler is given an opportunity to change the iden-
tity of the current thread. These points are called reschedule points. Some potential reschedule
points are:

• transition of a thread from running state to a suspended or waiting state, for example by
k_sem_take() or k_sleep().

• transition of a thread to the ready state, for example by k_sem_give() or k_thread_start()
• return to thread context after processing an interrupt

• when a running thread invokes k_yield()
A thread sleeps when it voluntarily initiates an operation that transitions itself to a suspended
or waiting state.

Whenever the scheduler changes the identity of the current thread, or when execution of the
current thread is replaced by an ISR, the kernel first saves the current thread’s CPU register
values. These register values get restored when the thread later resumes execution.

Scheduling Algorithm The kernel’s scheduler selects the highest priority ready thread to be
the current thread. When multiple ready threads of the same priority exist, the scheduler
chooses the one that has been waiting longest.

A thread’s relative priority is primarily determined by its static priority. However, when both
earliest-deadline-first scheduling is enabled (CONFIG_SCHED_DEADLINE) and a choice of threads
have equal static priority, then the thread with the earlier deadline is considered to have the
higher priority. Thus, when earliest-deadline-first scheduling is enabled, two threads are only
considered to have the same priority when both their static priorities and deadlines are equal.
The routine k_thread_deadline_set() is used to set a thread’s deadline.

Note

Execution of ISRs takes precedence over thread execution, so the execution of the current
thread may be replaced by an ISR at any time unless interrupts have been masked. This
applies to both cooperative threads and preemptive threads.

The kernel can be built with one of several choices for the ready queue implementation, offering
different choices between code size, constant factor runtime overhead and performance scaling
when many threads are added.

• Simple linked-list ready queue (CONFIG_SCHED_DUMB)

The scheduler ready queue will be implemented as a simple unordered list, with very fast
constant time performance for single threads and very low code size. This implementation
should be selected on systems with constrained code size that will never see more than
a small number (3, maybe) of runnable threads in the queue at any given time. On most
platforms (that are not otherwise using the red/black tree) this results in a savings of ~2k
of code size.

• Red/black tree ready queue (CONFIG_SCHED_SCALABLE)

The scheduler ready queue will be implemented as a red/black tree. This has rather slower
constant-time insertion and removal overhead, and on most platforms (that are not oth-
erwise using the red/black tree somewhere) requires an extra ~2kb of code. The resulting
behavior will scale cleanly and quickly into the many thousands of threads.

Use this for applications needing many concurrent runnable threads (> 20 or so). Most
applications won’t need this ready queue implementation.
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• Traditional multi-queue ready queue (CONFIG_SCHED_MULTIQ)

When selected, the scheduler ready queue will be implemented as the classic/textbook ar-
ray of lists, one per priority.

This corresponds to the scheduler algorithm used in Zephyr versions prior to 1.12.

It incurs only a tiny code size overhead vs. the “dumb” scheduler and runs in O(1) time in
almost all circumstances with very low constant factor. But it requires a fairly large RAM
budget to store those list heads, and the limited features make it incompatible with features
like deadline scheduling that need to sort threads more finely, and SMP affinity which need
to traverse the list of threads.

Typical applications with small numbers of runnable threads probably want the DUMB
scheduler.

The wait_q abstraction used in IPC primitives to pend threads for later wakeup shares the same
backend data structure choices as the scheduler, and can use the same options.

• Scalable wait_q implementation (CONFIG_WAITQ_SCALABLE)

When selected, the wait_q will be implemented with a balanced tree. Choose this if you
expect to have many threads waiting on individual primitives. There is a ~2kb code size
increase over CONFIG_WAITQ_DUMB (which may be shared with CONFIG_SCHED_SCALABLE) if
the red/black tree is not used elsewhere in the application, and pend/unpend operations on
“small” queues will be somewhat slower (though this is not generally a performance path).

• Simple linked-list wait_q (CONFIG_WAITQ_DUMB)

When selected, the wait_q will be implemented with a doubly-linked list. Choose this if you
expect to have only a few threads blocked on any single IPC primitive.

Cooperative Time Slicing Once a cooperative thread becomes the current thread, it remains
the current thread until it performs an action that makes it unready. Consequently, if a coopera-
tive thread performs lengthy computations, it may cause an unacceptable delay in the scheduling
of other threads, including those of higher priority and equal priority.
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To overcome such problems, a cooperative thread can voluntarily relinquish the CPU from time
to time to permit other threads to execute. A thread can relinquish the CPU in two ways:

• Calling k_yield() puts the thread at the back of the scheduler’s prioritized list of ready
threads, and then invokes the scheduler. All ready threads whose priority is higher or
equal to that of the yielding thread are then allowed to execute before the yielding thread
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is rescheduled. If no such ready threads exist, the scheduler immediately reschedules the
yielding thread without context switching.

• Calling k_sleep() makes the thread unready for a specified time period. Ready threads
of all priorities are then allowed to execute; however, there is no guarantee that threads
whose priority is lower than that of the sleeping thread will actually be scheduled before
the sleeping thread becomes ready once again.

Preemptive Time Slicing Once a preemptive thread becomes the current thread, it remains
the current thread until a higher priority thread becomes ready, or until the thread performs an
action that makes it unready. Consequently, if a preemptive thread performs lengthy computa-
tions, it may cause an unacceptable delay in the scheduling of other threads, including those of
equal priority.
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To overcome such problems, a preemptive thread can perform cooperative time slicing (as de-
scribed above), or the scheduler’s time slicing capability can be used to allow other threads of
the same priority to execute.
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The scheduler divides time into a series of time slices, where slices are measured in system
clock ticks. The time slice size is configurable, but this size can be changed while the application
is running.

At the end of every time slice, the scheduler checks to see if the current thread is preemptible
and, if so, implicitly invokes k_yield() on behalf of the thread. This gives other ready threads
of the same priority the opportunity to execute before the current thread is scheduled again. If
no threads of equal priority are ready, the current thread remains the current thread.

Threads with a priority higher than specified limit are exempt from preemptive time slicing, and
are never preempted by a thread of equal priority. This allows an application to use preemptive
time slicing only when dealing with lower priority threads that are less time-sensitive.

Note

The kernel’s time slicing algorithm does not ensure that a set of equal-priority threads receive
an equitable amount of CPU time, since it does not measure the amount of time a thread
actually gets to execute. However, the algorithm does ensure that a thread never executes for
longer than a single time slice without being required to yield.

SchedulerLocking A preemptible thread that does not wish to be preempted while performing
a critical operation can instruct the scheduler to temporarily treat it as a cooperative thread by
calling k_sched_lock(). This prevents other threads from interfering while the critical operation
is being performed.

Once the critical operation is complete the preemptible thread must call k_sched_unlock() to
restore its normal, preemptible status.

If a thread calls k_sched_lock() and subsequently performs an action that makes it unready,
the scheduler will switch the locking thread out and allow other threads to execute. When the
locking thread again becomes the current thread, its non-preemptible status is maintained.

Note
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Locking out the scheduler is a more efficient way for a preemptible thread to prevent pre-
emption than changing its priority level to a negative value.

Thread Sleeping A thread can call k_sleep() to delay its processing for a specified time period.
During the time the thread is sleeping the CPU is relinquished to allow other ready threads to
execute. Once the specified delay has elapsed the thread becomes ready and is eligible to be
scheduled once again.

A sleeping thread can be woken up prematurely by another thread using k_wakeup(). This tech-
nique can sometimes be used to permit the secondary thread to signal the sleeping thread that
something has occurred without requiring the threads to define a kernel synchronization object,
such as a semaphore. Waking up a thread that is not sleeping is allowed, but has no effect.

BusyWaiting A thread can call k_busy_wait() to perform a busy wait that delays its processing
for a specified time period without relinquishing the CPU to another ready thread.

A busy wait is typically used instead of thread sleeping when the required delay is too short to
warrant having the scheduler context switch from the current thread to another thread and then
back again.

Suggested Uses Use cooperative threads for device drivers and other performance-critical
work.

Use cooperative threads to implement mutually exclusion without the need for a kernel object,
such as a mutex.

Use preemptive threads to give priority to time-sensitive processing over less time-sensitive pro-
cessing.

CPU Idling

Although normally reserved for the idle thread, in certain special applications, a thread might
want to make the CPU idle.

• Concepts

• Implementation

– Making the CPU idle

– Making the CPU idle in an atomic fashion

• Suggested Uses

• API Reference

Concepts Making the CPU idle causes the kernel to pause all operations until an event, nor-
mally an interrupt, wakes up the CPU. In a regular system, the idle thread is responsible for this.
However, in some constrained systems, it is possible that another thread takes this duty.

Implementation
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Making the CPU idle Making the CPU idle is simple: call the k_cpu_idle() API. The CPU will
stop executing instructions until an event occurs. Most likely, the function will be called within
a loop. Note that in certain architectures, upon return, k_cpu_idle() unconditionally unmasks
interrupts.

static k_sem my_sem;

void my_isr(void *unused)
{

k_sem_give(&my_sem);
}

int main(void)
{

k_sem_init(&my_sem, 0, 1);

/* wait for semaphore from ISR, then do related work */

for (;;) {

/* wait for ISR to trigger work to perform */
if (k_sem_take(&my_sem, K_NO_WAIT) == 0) {

/* ... do processing */

}

/* put CPU to sleep to save power */
k_cpu_idle();

}
}

Making the CPU idle in an atomic fashion It is possible that there is a need to do some work
atomically before making the CPU idle. In such a case, k_cpu_atomic_idle() should be used in-
stead.

In fact, there is a race condition in the previous example: the interrupt could occur between the
time the semaphore is taken, finding out it is not available and making the CPU idle again. In
some systems, this can cause the CPU to idle until another interrupt occurs, which might be never,
thus hanging the system completely. To prevent this, k_cpu_atomic_idle() should have been used,
like in this example.

static k_sem my_sem;

void my_isr(void *unused)
{

k_sem_give(&my_sem);
}

int main(void)
{

k_sem_init(&my_sem, 0, 1);

for (;;) {

unsigned int key = irq_lock();

/*
* Wait for semaphore from ISR; if acquired, do related work, then
* go to next loop iteration (the semaphore might have been given
* again); else, make the CPU idle.

(continues on next page)
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*/

if (k_sem_take(&my_sem, K_NO_WAIT) == 0) {

irq_unlock(key);

/* ... do processing */

} else {
/* put CPU to sleep to save power */
k_cpu_atomic_idle(key);

}
}

}

Suggested Uses Use k_cpu_atomic_idle() when a thread has to do some real work in addition
to idling the CPU to wait for an event. See example above.

Use k_cpu_idle() only when a thread is only responsible for idling the CPU, i.e. not doing any real
work, like in this example below.

int main(void)
{

/* ... do some system/application initialization */

/* thread is only used for CPU idling from this point on */
for (;;) {

k_cpu_idle();
}

}

Note

Do not use these APIs unless absolutely necessary. In a normal system, the idle thread
takes care of power management, including CPU idling.

API Reference

group cpu_idle_apis

Functions

static inline void k_cpu_idle(void)
Make the CPU idle.

This function makes the CPU idle until an event wakes it up.

In a regular system, the idle thread should be the only thread responsible for mak-
ing the CPU idle and triggering any type of power management. However, in some
more constrained systems, such as a single-threaded system, the only thread would be
responsible for this if needed.
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Note

In some architectures, before returning, the function unmasks interrupts uncondi-
tionally.

static inline void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.

Similar to k_cpu_idle(), but must be called with interrupts locked.

Enabling interrupts and entering a low-power mode will be atomic, i.e. there will be no
period of time where interrupts are enabled before the processor enters a low-power
mode.

After waking up from the low-power mode, the interrupt lockout state will be restored
as if by irq_unlock(key).

Parameters
• key – Interrupt locking key obtained from irq_lock().

System Threads

• Implementation

– Writing a main() function

• Suggested Uses

A system thread is a thread that the kernel spawns automatically during system initialization.

The kernel spawns the following system threads:

Main thread
This thread performs kernel initialization, then calls the application’s main() function (if
one is defined).

By default, the main thread uses the highest configured preemptible thread priority (i.e.
0). If the kernel is not configured to support preemptible threads, the main thread uses the
lowest configured cooperative thread priority (i.e. -1).

The main thread is an essential thread while it is performing kernel initialization or execut-
ing the application’s main() function; this means a fatal system error is raised if the thread
aborts. If main() is not defined, or if it executes and then does a normal return, the main
thread terminates normally and no error is raised.

Idle thread
This thread executes when there is no other work for the system to do. If possible, the idle
thread activates the board’s power management support to save power; otherwise, the idle
thread simply performs a “do nothing” loop. The idle thread remains in existence as long
as the system is running and never terminates.

The idle thread always uses the lowest configured thread priority. If this makes it a coop-
erative thread, the idle thread repeatedly yields the CPU to allow the application’s other
threads to run when they need to.

The idle thread is an essential thread, which means a fatal system error is raised if the
thread aborts.

348 Chapter 3. Kernel



Zephyr Project Documentation, Release 3.7.99

Additional system threads may also be spawned, depending on the kernel and board configura-
tion options specified by the application. For example, enabling the system workqueue spawns
a system thread that services the work items submitted to it. (See Workqueue Threads.)

Implementation

Writing amain() function An application-supplied main() function begins executing once ker-
nel initialization is complete. The kernel does not pass any arguments to the function.

The following code outlines a trivial main() function. The function used by a real application
can be as complex as needed.

int main(void)
{

/* initialize a semaphore */
...

/* register an ISR that gives the semaphore */
...

/* monitor the semaphore forever */
while (1) {

/* wait for the semaphore to be given by the ISR */
...
/* do whatever processing is now needed */
...

}
}

SuggestedUses Use the main thread to perform thread-based processing in an application that
only requires a single thread, rather than defining an additional application-specific thread.

Workqueue Threads

• Work Item Lifecycle

• Delayable Work

• Triggered Work

• System Workqueue

• How to Use Workqueues

• Workqueue Best Practices

• Suggested Uses

• Configuration Options

• API Reference

Aworkqueue is a kernel object that uses a dedicated thread to process work items in a first in, first
out manner. Each work item is processed by calling the function specified by the work item. A
workqueue is typically used by an ISR or a high-priority thread to offload non-urgent processing
to a lower-priority thread so it does not impact time-sensitive processing.
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Any number of workqueues can be defined (limited only by available RAM). Each workqueue is
referenced by its memory address.

A workqueue has the following key properties:

• A queue of work items that have been added, but not yet processed.

• A thread that processes the work items in the queue. The priority of the thread is config-
urable, allowing it to be either cooperative or preemptive as required.

Regardless of workqueue thread priority the workqueue thread will yield between each submit-
ted work item, to prevent a cooperative workqueue from starving other threads.

A workqueue must be initialized before it can be used. This sets its queue to empty and spawns
the workqueue’s thread. The thread runs forever, but sleeps when no work items are available.

Note

The behavior described here is changed from the Zephyr workqueue implementation used
prior to release 2.6. Among the changes are:

• Precise tracking of the status of cancelled work items, so that the caller need not be
concerned that an item may be processing when the cancellation returns. Checking of
return values on cancellation is still required.

• Direct submission of delayable work items to the queue with K_NO_WAIT rather than
always going through the timeout API, which could introduce delays.

• The ability to wait until a work item has completed or a queue has been drained.

• Finer control of behavior when scheduling a delayable work item, specifically allowing
a previous deadline to remain unchanged when a work item is scheduled again.

• Safe handling of work item resubmission when the item is being processed on another
workqueue.

Using the return values of k_work_busy_get() or k_work_is_pending(), or measurements of
remaining time until delayable work is scheduled, should be avoided to prevent race con-
ditions of the type observed with the previous implementation. See also Workqueue Best
Practices.

Work ItemLifecycle Any number of work items can be defined. Each work item is referenced
by its memory address.

A work item is assigned a handler function, which is the function executed by the workqueue’s
thread when the work item is processed. This function accepts a single argument, which is the
address of the work item itself. The work item also maintains information about its status.

A work item must be initialized before it can be used. This records the work item’s handler
function and marks it as not pending.

A work item may be queued (K_WORK_QUEUED) by submitting it to a workqueue by an ISR or a
thread. Submitting a work item appends the work item to the workqueue’s queue. Once the
workqueue’s thread has processed all of the preceding work items in its queue the thread will
remove the next work item from the queue and invoke the work item’s handler function. De-
pending on the scheduling priority of the workqueue’s thread, and the work required by other
items in the queue, a queued work item may be processed quickly or it may remain in the queue
for an extended period of time.

A delayable work item may be scheduled (K_WORK_DELAYED) to a workqueue; seeDelayableWork.

A work item will be running (K_WORK_RUNNING) when it is running on a work queue, and may
also be canceling (K_WORK_CANCELING) if it started running before a thread has requested that it
be cancelled.
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A work item can be in multiple states; for example it can be:

• running on a queue;

• marked canceling (because a thread used k_work_cancel_sync() to wait until the work
item completed);

• queued to run again on the same queue;

• scheduled to be submitted to a (possibly different) queue

all simultaneously. A work item that is in any of these states is pending (k_work_is_pending())
or busy (k_work_busy_get()).

A handler function can use any kernel API available to threads. However, operations that are
potentially blocking (e.g. taking a semaphore) must be used with care, since the workqueue
cannot process subsequent work items in its queue until the handler function finishes executing.

The single argument that is passed to a handler function can be ignored if it is not required. If the
handler function requires additional information about the work it is to perform, the work item
can be embedded in a larger data structure. The handler function can then use the argument
value to compute the address of the enclosing data structure with CONTAINER_OF, and thereby
obtain access to the additional information it needs.

A work item is typically initialized once and then submitted to a specific workqueue whenever
work needs to be performed. If an ISR or a thread attempts to submit a work item that is al-
ready queued the work item is not affected; the work item remains in its current place in the
workqueue’s queue, and the work is only performed once.

A handler function is permitted to re-submit its work item argument to the workqueue, since the
work item is no longer queued at that time. This allows the handler to execute work in stages,
without unduly delaying the processing of other work items in the workqueue’s queue.

Important

A pending work item must not be altered until the item has been processed by the workqueue
thread. This means a work item must not be re-initialized while it is busy. Furthermore, any
additional information the work item’s handler function needs to perform its work must not
be altered until the handler function has finished executing.

Delayable Work An ISR or a thread may need to schedule a work item that is to be processed
only after a specified period of time, rather than immediately. This can be done by scheduling
a delayable work item to be submitted to a workqueue at a future time.

A delayable work item contains a standard work item but adds fields that record when and where
the item should be submitted.

A delayable work item is initialized and scheduled to a workqueue in a similar manner to a
standard work item, although different kernel APIs are used. When the schedule request is made
the kernel initiates a timeout mechanism that is triggered after the specified delay has elapsed.
Once the timeout occurs the kernel submits the work item to the specified workqueue, where it
remains queued until it is processed in the standard manner.

Note that work handler used for delayable still receives a pointer to the underlying non-
delayable work structure, which is not publicly accessible from k_work_delayable. To get access
to an object that contains the delayable work object use this idiom:

static void work_handler(struct k_work *work)
{

struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct work_context *ctx = CONTAINER_OF(dwork, struct work_context,

(continues on next page)
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timed_work);

...

Triggered Work The k_work_poll_submit() interface schedules a triggered work item in re-
sponse to a poll event (see Polling API), that will call a user-defined function when a monitored
resource becomes available or poll signal is raised, or a timeout occurs. In contrast to k_poll(),
the triggered work does not require a dedicated thread waiting or actively polling for a poll
event.

A triggered work item is a standard work item that has the following added properties:

• A pointer to an array of poll events that will trigger work item submissions to the
workqueue

• A size of the array containing poll events.

A triggered work item is initialized and submitted to a workqueue in a similar manner to a
standard work item, although dedicated kernel APIs are used. When a submit request is made,
the kernel begins observing kernel objects specified by the poll events. Once at least one of the
observed kernel object’s changes state, the work item is submitted to the specified workqueue,
where it remains queued until it is processed in the standard manner.

Important

The triggered work item as well as the referenced array of poll events have to be valid and
cannot be modified for a complete triggered work item lifecycle, from submission to work
item execution or cancellation.

An ISR or a thread may cancel a triggered work item it has submitted as long as it is still waiting
for a poll event. In such case, the kernel stops waiting for attached poll events and the specified
work is not executed. Otherwise the cancellation cannot be performed.

System Workqueue The kernel defines a workqueue known as the system workqueue, which
is available to any application or kernel code that requires workqueue support. The system
workqueue is optional, and only exists if the application makes use of it.

Important

Additional workqueues should only be defined when it is not possible to submit new work
items to the system workqueue, since each new workqueue incurs a significant cost in mem-
ory footprint. A new workqueue can be justified if it is not possible for its work items to
co-exist with existing system workqueue work items without an unacceptable impact; for
example, if the new work items perform blocking operations that would delay other system
workqueue processing to an unacceptable degree.

How to Use Workqueues

Defining and Controlling a Workqueue A workqueue is defined using a variable of type
k_work_q. The workqueue is initialized by defining the stack area used by its thread, initial-
izing the k_work_q, either zeroing its memory or calling k_work_queue_init(), and then calling
k_work_queue_start(). The stack area must be defined using K_THREAD_STACK_DEFINE to ensure
it is properly set up in memory.
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The following code defines and initializes a workqueue:

#define MY_STACK_SIZE 512
#define MY_PRIORITY 5

K_THREAD_STACK_DEFINE(my_stack_area, MY_STACK_SIZE);

struct k_work_q my_work_q;

k_work_queue_init(&my_work_q);

k_work_queue_start(&my_work_q, my_stack_area,
K_THREAD_STACK_SIZEOF(my_stack_area), MY_PRIORITY,
NULL);

In addition the queue identity and certain behavior related to thread rescheduling can be con-
trolled by the optional final parameter; see k_work_queue_start() for details.

The following API can be used to interact with a workqueue:

• k_work_queue_drain() can be used to block the caller until the work queue has no items
left. Work items resubmitted from the workqueue thread are accepted while a queue is
draining, but work items from any other thread or ISR are rejected. The restriction on
submitting more work can be extended past the completion of the drain operation in order
to allow the blocking thread to perform additional work while the queue is “plugged”. Note
that draining a queue has no effect on scheduling or processing delayable items, but if the
queue is plugged and the deadline expires the item will silently fail to be submitted.

• k_work_queue_unplug() removes any previous block on submission to the queue due to a
previous drain operation.

Submitting a Work Item A work item is defined using a variable of type k_work. It must be
initialized by calling k_work_init(), unless it is defined using K_WORK_DEFINE in which case ini-
tialization is performed at compile-time.

An initialized work item can be submitted to the system workqueue by calling k_work_submit(),
or to a specified workqueue by calling k_work_submit_to_queue().

The following code demonstrates how an ISR can offload the printing of error messages to the
system workqueue. Note that if the ISR attempts to resubmit the work item while it is still queued,
the work item is left unchanged and the associated error message will not be printed.

struct device_info {
struct k_work work;
char name[16]

} my_device;

void my_isr(void *arg)
{

...
if (error detected) {

k_work_submit(&my_device.work);
}
...

}

void print_error(struct k_work *item)
{

struct device_info *the_device =
CONTAINER_OF(item, struct device_info, work);

printk("Got error on device %s\n", the_device->name);
}

(continues on next page)
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/* initialize name info for a device */
strcpy(my_device.name, "FOO_dev");

/* initialize work item for printing device's error messages */
k_work_init(&my_device.work, print_error);

/* install my_isr() as interrupt handler for the device (not shown) */
...

The following API can be used to check the status of or synchronize with the work item:

• k_work_busy_get() returns a snapshot of flags indicating work item state. A zero value
indicates the work is not scheduled, submitted, being executed, or otherwise still being
referenced by the workqueue infrastructure.

• k_work_is_pending() is a helper that indicates true if and only if the work is scheduled,
queued, or running.

• k_work_flush() may be invoked from threads to block until the work item has completed.
It returns immediately if the work is not pending.

• k_work_cancel() attempts to prevent the work item from being executed. This may or may
not be successful. This is safe to invoke from ISRs.

• k_work_cancel_sync() may be invoked from threads to block until the work completes; it
will return immediately if the cancellation was successful or not necessary (the work wasn’t
submitted or running). This can be used after k_work_cancel() is invoked (from an ISR)‘
to confirm completion of an ISR-initiated cancellation.

Scheduling a Delayable Work Item A delayable work item is defined using a variable of type
k_work_delayable. It must be initialized by calling k_work_init_delayable().

For delayed work there are two common use cases, depending on whether a deadline should be
extended if a new event occurs. An example is collecting data that comes in asynchronously, e.g.
characters from a UART associated with a keyboard. There are two APIs that submit work after
a delay:

• k_work_schedule() (or k_work_schedule_for_queue()) schedules work to be executed at
a specific time or after a delay. Further attempts to schedule the same item with this API
before the delay completes will not change the time at which the item will be submitted to
its queue. Use this if the policy is to keep collecting data until a specified delay since the
first unprocessed data was received;

• k_work_reschedule() (or k_work_reschedule_for_queue()) unconditionally sets the dead-
line for the work, replacing any previous incomplete delay and changing the destination
queue if necessary. Use this if the policy is to keep collecting data until a specified delay
since the last unprocessed data was received.

If the work item is not scheduled both APIs behave the same. If K_NO_WAIT is specified as the delay
the behavior is as if the item was immediately submitted directly to the target queue, without
waiting for a minimal timeout (unless k_work_schedule() is used and a previous delay has not
completed).

Both also have variants that allow control of the queue used for submission.

The helper function k_work_delayable_from_work() can be used to get a pointer to the contain-
ing k_work_delayable from a pointer to k_work that is passed to a work handler function.

The following additional API can be used to check the status of or synchronize with the work
item:

• k_work_delayable_busy_get() is the analog to k_work_busy_get() for delayable work.
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• k_work_delayable_is_pending() is the analog to k_work_is_pending() for delayable work.

• k_work_flush_delayable() is the analog to k_work_flush() for delayable work.

• k_work_cancel_delayable() is the analog to k_work_cancel() for delayable work; simi-
larly with k_work_cancel_delayable_sync().

SynchronizingwithWork Items While the state of both regular and delayable work items can
be determined from any context using k_work_busy_get() and k_work_delayable_busy_get()
some use cases require synchronizing with work items after they’ve been submitted.
k_work_flush(), k_work_cancel_sync(), and k_work_cancel_delayable_sync() can be invoked
from thread context to wait until the requested state has been reached.

These APIs must be provided with a k_work_sync object that has no application-inspectable com-
ponents but is needed to provide the synchronization objects. These objects should not be allo-
cated on a stack if the code is expected to work on architectures with CONFIG_KERNEL_COHERENCE.

Workqueue Best Practices

Avoid Race Conditions Sometimes the data a work item must process is naturally thread-safe,
for example when it’s put into a k_queue by some thread and processed in the work thread. More
often external synchronization is required to avoid data races: cases where the work thread
might inspect or manipulate shared state that’s being accessed by another thread or interrupt.
Such state might be a flag indicating that work needs to be done, or a shared object that is filled
by an ISR or thread and read by the work handler.

For simple flags Atomic Services may be sufficient. In other cases spin locks (k_spinlock) or
thread-aware locks (k_sem, k_mutex , …) may be used to ensure data races don’t occur.

If the selected lock mechanism can sleep then allowing the work thread to sleep will starve other
work queue items, which may need to make progress in order to get the lock released. Work
handlers should try to take the lock with its no-wait path. For example:

static void work_handler(struct work *work)
{

struct work_context *parent = CONTAINER_OF(work, struct work_context,
work_item);

if (k_mutex_lock(&parent->lock, K_NO_WAIT) != 0) {
/* NB: Submit will fail if the work item is being cancelled. */
(void)k_work_submit(work);
return;

}

/* do stuff under lock */
k_mutex_unlock(&parent->lock);
/* do stuff without lock */

}

Be aware that if the lock is held by a thread with a lower priority than the work queue the
resubmission may starve the thread that would release the lock, causing the application to fail.
Where the idiom above is required a delayable work item is preferred, and the work should be
(re-)scheduled with a non-zero delay to allow the thread holding the lock to make progress.

Note that submitting from the work handler can fail if the work item had been cancelled. Gen-
erally this is acceptable, since the cancellation will complete once the handler finishes. If it is
not, the code above must take other steps to notify the application that the work could not be
performed.
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Work items in isolation are self-locking, so you don’t need to hold an external lock just to submit
or schedule them. Even if you use external state protected by such a lock to prevent further
resubmission, it’s safe to do the resubmit as long as you’re sure that eventually the item will take
its lock and check that state to determine whether it should do anything. Where a delayable
work item is being rescheduled in its handler due to inability to take the lock some other self-
locking state, such as an atomic flag set by the application/driver when the cancel is initiated,
would be required to detect the cancellation and avoid the cancelled work item being submitted
again after the deadline.

Check Return Values All work API functions return status of the underlying operation, and in
many cases it is important to verify that the intended result was obtained.

• Submitting a work item (k_work_submit_to_queue()) can fail if the work is being cancelled
or the queue is not accepting new items. If this happens the work will not be executed,
which could cause a subsystem that is animated by work handler activity to become non-
responsive.

• Asynchronous cancellation (k_work_cancel() or k_work_cancel_delayable()) can com-
plete while the work item is still being run by a handler. Proceeding to manipulate state
shared with the work handler will result in data races that can cause failures.

Many race conditions have been present in Zephyr code because the results of an operation were
not checked.

There may be good reason to believe that a return value indicating that the operation did not
complete as expected is not a problem. In those cases the code should clearly document this, by
(1) casting the return value to void to indicate that the result is intentionally ignored, and (2)
documenting what happens in the unexpected case. For example:

/* If this fails, the work handler will check pub->active and
* exit without transmitting.
*/

(void)k_work_cancel_delayable(&pub->timer);

However in such a case the following code must still avoid data races, as it cannot guarantee that
the work thread is not accessing work-related state.

Don’t Optimize Prematurely The workqueue API is designed to be safe when invoked from
multiple threads and interrupts. Attempts to externally inspect a work item’s state and make
decisions based on the result are likely to create new problems.

So when new work comes in, just submit it. Don’t attempt to “optimize” by checking whether
the work item is already submitted by inspecting snapshot state with k_work_is_pending() or
k_work_busy_get(), or checking for a non-zero delay from k_work_delayable_remaining_get().
Those checks are fragile: a “busy” indication can be obsolete by the time the test is returned, and
a “not-busy” indication can also be wrong if work is submitted from multiple contexts, or (for
delayable work) if the deadline has completed but the work is still in queued or running state.

A general best practice is to always maintain in shared state some condition that can be checked
by the handler to confirm whether there is work to be done. This way you can use the work han-
dler as the standard cleanup path: rather than having to deal with cancellation and cleanup at
points where items are submitted, you may be able to have everything done in the work handler
itself.

A rare case where you could safely use k_work_is_pending() is as a check to avoid invoking
k_work_flush() or k_work_cancel_sync(), if you are certain that nothing else might submit the
work while you’re checking (generally because you’re holding a lock that prevents access to state
used for submission).
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SuggestedUses Use the system workqueue to defer complex interrupt-related processing from
an ISR to a shared thread. This allows the interrupt-related processing to be done promptly
without compromising the system’s ability to respond to subsequent interrupts, and does not
require the application to define and manage an additional thread to do the processing.

Configuration Options Related configuration options:

• CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE
• CONFIG_SYSTEM_WORKQUEUE_PRIORITY
• CONFIG_SYSTEM_WORKQUEUE_NO_YIELD

API Reference

group workqueue_apis

Defines

K_WORK_DELAYABLE_DEFINE(work, work_handler)
Initialize a statically-defined delayable work item.

This macro can be used to initialize a statically-defined delayable work item, prior to
its first use. For example,

static K_WORK_DELAYABLE_DEFINE(<dwork>, <work_handler>);

Note that if the runtime dependencies support initialization with
k_work_init_delayable() using that will eliminate the initialized object in ROM
that is produced by this macro and copied in at system startup.

Parameters
• work – Symbol name for delayable work item object

• work_handler – Function to invoke each time work item is processed.

K_WORK_USER_DEFINE(work, work_handler)
Initialize a statically-defined user work item.

This macro can be used to initialize a statically-defined user work item, prior to its first
use. For example,

static K_WORK_USER_DEFINE(<work>, <work_handler>);

Parameters
• work – Symbol name for work item object

• work_handler – Function to invoke each time work item is processed.

K_WORK_DEFINE(work, work_handler)
Initialize a statically-defined work item.

This macro can be used to initialize a statically-defined workqueue work item, prior
to its first use. For example,

static K_WORK_DEFINE(<work>, <work_handler>);

Parameters
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• work – Symbol name for work item object

• work_handler – Function to invoke each time work item is processed.

Typedefs

typedef void (*k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.

The function will be invoked by the thread animating a work queue.

Param work
the work item that provided the handler.

typedef void (*k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.

A work item’s handler function is executed by a user workqueue’s thread when the
work item is processed by the workqueue.

Param work
Address of the work item.

Enums

Values:

enumerator K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT)
Flag indicating a work item that is running under a work queue thread.

Accessed via k_work_busy_get(). May co-occur with other flags.

enumerator K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT)
Flag indicating a work item that is being canceled.

Accessed via k_work_busy_get(). May co-occur with other flags.

enumerator K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT)
Flag indicating a work item that has been submitted to a queue but has not started
running.

Accessed via k_work_busy_get(). May co-occur with other flags.

enumerator K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT)
Flag indicating a delayed work item that is scheduled for submission to a queue.

Accessed via k_work_busy_get(). May co-occur with other flags.

enumerator K_WORK_FLUSHING = BIT(K_WORK_FLUSHING_BIT)
Flag indicating a synced work item that is being flushed.

Accessed via k_work_busy_get(). May co-occur with other flags.
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Functions

void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.

This must be invoked before submitting a work structure for the first time. It need
not be invoked again on the same work structure. It can be re-invoked to change the
associated handler, but this must be done when the work item is idle.

Function properties (list may not be complete)
isr-ok

Parameters
• work – the work structure to be initialized.

• handler – the handler to be invoked by the work item.

int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.

A zero return value indicates the work item appears to be idle.

Function properties (list may not be complete)
isr-ok

Note

This is a live snapshot of state, which may change before the result is checked. Use
locks where appropriate.

Parameters
• work – pointer to the work item.

Returns
a mask of flags K_WORK_DELAYED, K_WORK_QUEUED,
K_WORK_RUNNING, K_WORK_CANCELING, and K_WORK_FLUSHING.

static inline bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.

Wrapper to determine whether a work item is in a non-idle dstate.

Function properties (list may not be complete)
isr-ok

Note

This is a live snapshot of state, which may change before the result is checked. Use
locks where appropriate.

Parameters
• work – pointer to the work item.
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Returns
true if and only if k_work_busy_get() returns a non-zero value.

int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.

Function properties (list may not be complete)
isr-ok

Parameters
• queue – pointer to the work queue on which the item should run. If NULL

the queue from the most recent submission will be used.

• work – pointer to the work item.

Return values
• 0 – if work was already submitted to a queue

• 1 – if work was not submitted and has been queued to queue
• 2 – if work was running and has been queued to the queue that was run-

ning it

• -EBUSY –

– if work submission was rejected because the work item is cancelling;
or

– queue is draining; or

– queue is plugged.

• -EINVAL – if queue is null and the work item has never been run.

• -ENODEV – if queue has not been started.

int k_work_submit(struct k_work *work)
Submit a work item to the system queue.

Function properties (list may not be complete)
isr-ok

Parameters
• work – pointer to the work item.

Returns
as with k_work_submit_to_queue().

bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.

Resubmissions may occur while waiting, including chained submissions (from within
the handler).

Note

Be careful of caller and work queue thread relative priority. If this function sleeps
it will not return until the work queue thread completes the tasks that allow this
thread to resume.
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Note

Behavior is undefined if this function is invoked on work from a work queue run-
ning work.

Parameters
• work – pointer to the work item.

• sync – pointer to an opaque item containing state related to the pending
cancellation. The object must persist until the call returns, and be acces-
sible from both the caller thread and the work queue thread. The object
must not be used for any other flush or cancel operation until this one
completes. On architectures with CONFIG_KERNEL_COHERENCE the ob-
ject must be allocated in coherent memory.

Return values
• true – if call had to wait for completion

• false – if work was already idle

int k_work_cancel(struct k_work *work)
Cancel a work item.

This attempts to prevent a pending (non-delayable) work item from being processed
by removing it from the work queue. If the item is being processed, the work item will
continue to be processed, but resubmissions are rejected until cancellation completes.

If this returns zero cancellation is complete, otherwise something (probably a work
queue thread) is still referencing the item.

See also k_work_cancel_sync().

Function properties (list may not be complete)
isr-ok

Parameters
• work – pointer to the work item.

Returns
the k_work_busy_get() status indicating the state of the item after all can-
cellation steps performed by this call are completed.

bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.

Same as k_work_cancel() but does not return until cancellation is complete. This can be
invoked by a thread after k_work_cancel() to synchronize with a previous cancellation.

On return the work structure will be idle unless something submits it after the cancel-
lation was complete.

Note

Be careful of caller and work queue thread relative priority. If this function sleeps
it will not return until the work queue thread completes the tasks that allow this
thread to resume.
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Note

Behavior is undefined if this function is invoked on work from a work queue run-
ning work.

Parameters
• work – pointer to the work item.

• sync – pointer to an opaque item containing state related to the pending
cancellation. The object must persist until the call returns, and be acces-
sible from both the caller thread and the work queue thread. The object
must not be used for any other flush or cancel operation until this one
completes. On architectures with CONFIG_KERNEL_COHERENCE the ob-
ject must be allocated in coherent memory.

Return values
• true – if work was pending (call had to wait for cancellation of a run-

ning handler to complete, or scheduled or submitted operations were
cancelled);

• false – otherwise

void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.

This must be invoked before starting a work queue structure for the first time. It need
not be invoked again on the same work queue structure.

Function properties (list may not be complete)
isr-ok

Parameters
• queue – the queue structure to be initialized.

void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t
stack_size, int prio, const struct k_work_queue_config *cfg)

Initialize a work queue.

This configures the work queue thread and starts it running. The function should not
be re-invoked on a queue.

Parameters
• queue – pointer to the queue structure. It must be initialized in zeroed/bss

memory or with k_work_queue_init before use.

• stack – pointer to the work thread stack area.

• stack_size – size of the work thread stack area, in bytes.

• prio – initial thread priority

• cfg – optional additional configuration parameters. Pass NULL if not re-
quired, to use the defaults documented in k_work_queue_config.

static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.

This is necessary to grant a work queue thread access to things the work items it will
process are expected to use.
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Parameters
• queue – pointer to the queue structure.

Returns
the thread associated with the work queue.

int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.

This blocks submission to the work queue except when coming from queue thread,
and blocks the caller until no more work items are available in the queue.

If plug is true then submission will continue to be blocked after the drain operation
completes until k_work_queue_unplug() is invoked.

Note that work items that are delayed are not yet associated with their work queue.
They must be cancelled externally if a goal is to ensure the work queue remains empty.
The plug feature can be used to prevent delayed items from being submitted after the
drain completes.

Parameters
• queue – pointer to the queue structure.

• plug – if true the work queue will continue to block new submissions
after all items have drained.

Return values
• 1 – if call had to wait for the drain to complete

• 0 – if call did not have to wait

• negative – if wait was interrupted or failed

int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.

This releases the block on new submissions placed when k_work_queue_drain() is in-
voked with the plug option enabled. If this is invoked before the drain completes new
items may be submitted as soon as the drain completes.

Function properties (list may not be complete)
isr-ok

Parameters
• queue – pointer to the queue structure.

Return values
• 0 – if successfully unplugged

• -EALREADY – if the work queue was not plugged.

void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t
handler)

Initialize a delayable work structure.

This must be invoked before scheduling a delayable work structure for the first time. It
need not be invoked again on the same work structure. It can be re-invoked to change
the associated handler, but this must be done when the work item is idle.
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Function properties (list may not be complete)
isr-ok

Parameters
• dwork – the delayable work structure to be initialized.

• handler – the handler to be invoked by the work item.

static inline struct k_work_delayable *k_work_delayable_from_work(struct k_work
*work)

Get the parent delayable work structure from a work pointer.

This function is necessary when a k_work_handler_t function is passed to
k_work_schedule_for_queue() and the handler needs to access data from the container
of the containing k_work_delayable.

Parameters
• work – Address passed to the work handler

Returns
Address of the containing k_work_delayable structure.

int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.

Function properties (list may not be complete)
isr-ok

Note

This is a live snapshot of state, which may change before the result can be inspected.
Use locks where appropriate.

Parameters
• dwork – pointer to the delayable work item.

Returns
a mask of flags K_WORK_DELAYED, K_WORK_QUEUED,
K_WORK_RUNNING, K_WORK_CANCELING, and K_WORK_FLUSHING.
A zero return value indicates the work item appears to be idle.

static inline bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.

Wrapper to determine whether a delayed work item is in a non-idle state.

Function properties (list may not be complete)
isr-ok

Note

This is a live snapshot of state, which may change before the result can be inspected.
Use locks where appropriate.

Parameters
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• dwork – pointer to the delayable work item.

Returns
true if and only if k_work_delayable_busy_get() returns a non-zero value.

static inline k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable
*dwork)

Get the absolute tick count at which a scheduled delayable work will be submitted.

Function properties (list may not be complete)
isr-ok

Note

This is a live snapshot of state, which may change before the result can be inspected.
Use locks where appropriate.

Parameters
• dwork – pointer to the delayable work item.

Returns
the tick count when the timer that will schedule the work item will expire,
or the current tick count if the work is not scheduled.

static inline k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable
*dwork)

Get the number of ticks until a scheduled delayable work will be submitted.

Function properties (list may not be complete)
isr-ok

Note

This is a live snapshot of state, which may change before the result can be inspected.
Use locks where appropriate.

Parameters
• dwork – pointer to the delayable work item.

Returns
the number of ticks until the timer that will schedule the work item will
expire, or zero if the item is not scheduled.

int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable
*dwork, k_timeout_t delay)

Submit an idle work item to a queue after a delay.

Unlike k_work_reschedule_for_queue() this is a no-op if the work item is already sched-
uled or submitted, even if delay is K_NO_WAIT.

Function properties (list may not be complete)
isr-ok
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Parameters
• queue – the queue on which the work item should be submitted after the

delay.

• dwork – pointer to the delayable work item.

• delay – the time to wait before submitting the work item. If
K_NO_WAIT and the work is not pending this is equivalent to
k_work_submit_to_queue().

Return values
• 0 – if work was already scheduled or submitted.

• 1 – if work has been scheduled.

• 2 – if delay is K_NO_WAIT and work was running and has been queued to
the queue that was running it.

• -EBUSY – if delay is K_NO_WAIT and k_work_submit_to_queue() fails with
this code.

• -EINVAL – if delay is K_NO_WAIT and k_work_submit_to_queue() fails with
this code.

• -ENODEV – if delay is K_NO_WAIT and k_work_submit_to_queue() fails with
this code.

int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.

This is a thin wrapper around k_work_schedule_for_queue(), with all the API character-
istics of that function.

Parameters
• dwork – pointer to the delayable work item.

• delay – the time to wait before submitting the work item. If K_NO_WAIT
this is equivalent to k_work_submit_to_queue().

Returns
as with k_work_schedule_for_queue().

int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable
*dwork, k_timeout_t delay)

Reschedule a work item to a queue after a delay.

Unlike k_work_schedule_for_queue() this function can change the deadline of a sched-
uled work item, and will schedule a work item that is in any state (e.g. is idle, submit-
ted, or running). This function does not affect (“unsubmit”) a work item that has been
submitted to a queue.

Function properties (list may not be complete)
isr-ok

Note

If delay is K_NO_WAIT (“no delay”) the return values are as with
k_work_submit_to_queue().

Parameters

366 Chapter 3. Kernel



Zephyr Project Documentation, Release 3.7.99

• queue – the queue on which the work item should be submitted after the
delay.

• dwork – pointer to the delayable work item.

• delay – the time to wait before submitting the work item. If K_NO_WAIT
this is equivalent to k_work_submit_to_queue() after canceling any previ-
ous scheduled submission.

Return values
• 0 – if delay is K_NO_WAIT and work was already on a queue

• 1 – if

– delay is K_NO_WAIT and work was not submitted but has now been
queued to queue; or

– delay not K_NO_WAIT and work has been scheduled

• 2 – if delay is K_NO_WAIT and work was running and has been queued to
the queue that was running it

• -EBUSY – if delay is K_NO_WAIT and k_work_submit_to_queue() fails with
this code.

• -EINVAL – if delay is K_NO_WAIT and k_work_submit_to_queue() fails with
this code.

• -ENODEV – if delay is K_NO_WAIT and k_work_submit_to_queue() fails with
this code.

int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.

This is a thin wrapper around k_work_reschedule_for_queue(), with all the API charac-
teristics of that function.

Parameters
• dwork – pointer to the delayable work item.

• delay – the time to wait before submitting the work item.

Returns
as with k_work_reschedule_for_queue().

bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync
*sync)

Flush delayable work.

If the work is scheduled, it is immediately submitted. Then the caller blocks until the
work completes, as with k_work_flush().

Note

Be careful of caller and work queue thread relative priority. If this function sleeps
it will not return until the work queue thread completes the tasks that allow this
thread to resume.

Note

Behavior is undefined if this function is invoked on dwork from a work queue run-
ning dwork.
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Parameters
• dwork – pointer to the delayable work item.

• sync – pointer to an opaque item containing state related to the pending
cancellation. The object must persist until the call returns, and be acces-
sible from both the caller thread and the work queue thread. The object
must not be used for any other flush or cancel operation until this one
completes. On architectures with CONFIG_KERNEL_COHERENCE the ob-
ject must be allocated in coherent memory.

Return values
• true – if call had to wait for completion

• false – if work was already idle

int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.

Similar to k_work_cancel() but for delayable work. If the work is scheduled or submit-
ted it is canceled. This function does not wait for the cancellation to complete.

Function properties (list may not be complete)
isr-ok

Note

The work may still be running when this returns. Use k_work_flush_delayable() or
k_work_cancel_delayable_sync() to ensure it is not running.

Note

Canceling delayable work does not prevent rescheduling it. It does prevent submit-
ting it until the cancellation completes.

Parameters
• dwork – pointer to the delayable work item.

Returns
the k_work_delayable_busy_get() status indicating the state of the item after
all cancellation steps performed by this call are completed.

bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync
*sync)

Cancel delayable work and wait.

Like k_work_cancel_delayable() but waits until the work becomes idle.

Note

Canceling delayable work does not prevent rescheduling it. It does prevent submit-
ting it until the cancellation completes.
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Note

Be careful of caller and work queue thread relative priority. If this function sleeps
it will not return until the work queue thread completes the tasks that allow this
thread to resume.

Note

Behavior is undefined if this function is invoked on dwork from a work queue run-
ning dwork.

Parameters
• dwork – pointer to the delayable work item.

• sync – pointer to an opaque item containing state related to the pending
cancellation. The object must persist until the call returns, and be acces-
sible from both the caller thread and the work queue thread. The object
must not be used for any other flush or cancel operation until this one
completes. On architectures with CONFIG_KERNEL_COHERENCE the ob-
ject must be allocated in coherent memory.

Return values
• true – if work was not idle (call had to wait for cancellation of a run-

ning handler to complete, or scheduled or submitted operations were
cancelled);

• false – otherwise

static inline void k_work_user_init(struct k_work_user *work, k_work_user_handler_t
handler)

Initialize a userspace work item.

This routine initializes a user workqueue work item, prior to its first use.

Parameters
• work – Address of work item.

• handler – Function to invoke each time work item is processed.

static inline bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.

This routine indicates if user work item work is pending in a workqueue’s queue.

Function properties (list may not be complete)
isr-ok

Note

Checking if the work is pending gives no guarantee that the work will still be pend-
ing when this information is used. It is up to the caller to make sure that this infor-
mation is used in a safe manner.

Parameters
• work – Address of work item.
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Returns
true if work item is pending, or false if it is not pending.

static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct
k_work_user *work)

Submit a work item to a user mode workqueue.

Submits a work item to a workqueue that runs in user mode. A temporary memory al-
location is made from the caller’s resource pool which is freed once the worker thread
consumes the k_work item. The workqueue thread must have memory access to the
k_work item being submitted. The caller must have permission granted on the work_q
parameter’s queue object.

Function properties (list may not be complete)
isr-ok

Parameters
• work_q – Address of workqueue.

• work – Address of work item.

Return values
• -EBUSY – if the work item was already in some workqueue

• -ENOMEM – if no memory for thread resource pool allocation

• 0 – Success

void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack,
size_t stack_size, int prio, const char *name)

Start a workqueue in user mode.

This works identically to k_work_queue_start() except it is callable from user mode,
and the worker thread created will run in user mode. The caller must have permis-
sions granted on both the work_q parameter’s thread and queue objects, and the same
restrictions on priority apply as k_thread_create().

Parameters
• work_q – Address of workqueue.

• stack – Pointer to work queue thread’s stack space, as defined by
K_THREAD_STACK_DEFINE()

• stack_size – Size of the work queue thread’s stack
(in bytes), which should either be the same constant
passed to K_THREAD_STACK_DEFINE() or the value of
K_THREAD_STACK_SIZEOF().

• prio – Priority of the work queue’s thread.

• name – optional thread name. If not null a copy is made into the thread’s
name buffer.

static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.

This is necessary to grant a user mode work queue thread access to things the work
items it will process are expected to use.

Parameters
• work_q – pointer to the user mode queue structure.
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Returns
the user mode thread associated with the work queue.

void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.

This routine initializes a workqueue triggered work item, prior to its first use.

Parameters
• work – Address of triggered work item.

• handler – Function to invoke each time work item is processed.

int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work,
struct k_poll_event *events, int num_events,
k_timeout_t timeout)

Submit a triggered work item.

This routine schedules work item work to be processed by workqueue work_q when
one of the given events is signaled. The routine initiates internal poller for the work
item and then returns to the caller. Only when one of the watched events happen the
work item is actually submitted to the workqueue and becomes pending.

Submitting a previously submitted triggered work item that is still waiting for the event
cancels the existing submission and reschedules it the using the new event list. Note
that this behavior is inherently subject to race conditions with the pre-existing trig-
gered work item and work queue, so care must be taken to synchronize such resub-
missions externally.

Function properties (list may not be complete)
isr-ok

Warning

Provided array of events as well as a triggered work item must be placed in persis-
tent memory (valid until work handler execution or work cancellation) and cannot
be modified after submission.

Parameters
• work_q – Address of workqueue.

• work – Address of delayed work item.

• events – An array of events which trigger the work.

• num_events – The number of events in the array.

• timeout – Timeout after which the work will be scheduled for execution
even if not triggered.

Return values
• 0 – Work item started watching for events.

• -EINVAL – Work item is being processed or has completed its work.

• -EADDRINUSE – Work item is pending on a different workqueue.

int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int
num_events, k_timeout_t timeout)
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Submit a triggered work item to the system workqueue.

This routine schedules work item work to be processed by system workqueue when
one of the given events is signaled. The routine initiates internal poller for the work
item and then returns to the caller. Only when one of the watched events happen the
work item is actually submitted to the workqueue and becomes pending.

Submitting a previously submitted triggered work item that is still waiting for the event
cancels the existing submission and reschedules it the using the new event list. Note
that this behavior is inherently subject to race conditions with the pre-existing trig-
gered work item and work queue, so care must be taken to synchronize such resub-
missions externally.

Function properties (list may not be complete)
isr-ok

Warning

Provided array of events as well as a triggered work item must not be modified until
the item has been processed by the workqueue.

Parameters
• work – Address of delayed work item.

• events – An array of events which trigger the work.

• num_events – The number of events in the array.

• timeout – Timeout after which the work will be scheduled for execution
even if not triggered.

Return values
• 0 – Work item started watching for events.

• -EINVAL – Work item is being processed or has completed its work.

• -EADDRINUSE – Work item is pending on a different workqueue.

int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.

This routine cancels the submission of triggered work item work. A triggered work
item can only be canceled if no event triggered work submission.

Function properties (list may not be complete)
isr-ok

Parameters
• work – Address of delayed work item.

Return values
• 0 – Work item canceled.

• -EINVAL – Work item is being processed or has completed its work.
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struct k_work
#include <kernel.h> A structure used to submit work.

struct k_work_delayable
#include <kernel.h> A structure used to submit work after a delay.

struct k_work_sync
#include <kernel.h> A structure holding internal state for a pending synchronous op-
eration on a work item or queue.

Instances of this type are provided by the caller for invocation of k_work_flush(),
k_work_cancel_sync() and sibling flush and cancel APIs. A referenced object must per-
sist until the call returns, and be accessible from both the caller thread and the work
queue thread.

Note

If CONFIG_KERNEL_COHERENCE is enabled the object must be allocated in coher-
ent memory; see arch_mem_coherent(). The stack on these architectures is gener-
ally not coherent. be stack-allocated. Violations are detected by runtime assertion.

struct k_work_queue_config
#include <kernel.h> A structure holding optional configuration items for a work queue.

This structure, and values it references, are not retained by k_work_queue_start().

Public Members

const char *name
The name to be given to the work queue thread.

If left null the thread will not have a name.

bool no_yield
Control whether the work queue thread should yield between items.

Yielding between items helps guarantee the work queue thread does not starve
other threads, including cooperative ones released by a work item. This is the
default behavior.

Set this to true to prevent the work queue thread from yielding between items.
This may be appropriate when a sequence of items should complete without yield-
ing control.

bool essential
Control whether the work queue thread should be marked as essential thread.

struct k_work_q
#include <kernel.h> A structure used to hold work until it can be processed.
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Operation without Threads

Thread support is not necessary in some applications:

• Bootloaders

• Simple event-driven applications

• Examples intended to demonstrate core functionality

Thread support can be disabled by setting CONFIG_MULTITHREADING to n. Since this configuration
has a significant impact on Zephyr’s functionality and testing of it has been limited, there are
conditions on what can be expected to work in this configuration.

What Can be Expected to Work These core capabilities shall function correctly when CON-
FIG_MULTITHREADING is disabled:

• The build system

• The ability to boot the application to main()
• Interrupt management

• The system clock including k_uptime_get()
• Timers, i.e. k_timer()
• Non-sleeping delays e.g. k_busy_wait().

• Sleeping k_cpu_idle().

• Pre main() drivers and subsystems initialization e.g. SYS_INIT.

• Memory Management

• Specifically identified drivers in certain subsystems, listed below.

The expectations above affect selection of other features; for example CONFIG_SYS_CLOCK_EXISTS
cannot be set to n.

What Cannot be Expected to Work Functionality that will not work with CON-
FIG_MULTITHREADING includes majority of the kernel API:

• Threads

• Scheduling

• Workqueue Threads

• Polling API

• Semaphores

• Mutexes

• Condition Variables

• Data Passing

Subsystem Behavior Without Thread Support The sections below list driver and functional
subsystems that are expected to work to some degree when CONFIG_MULTITHREADING is disabled.
Subsystems that are not listed here should not be expected to work.

Some existing drivers within the listed subsystems do not work when threading is disabled, but
are within scope based on their subsystem, or may be sufficiently isolated that supporting them
on a particular platform is low-impact. Enhancements to add support to existing capabilities
that were not originally implemented to work with threads disabled will be considered.
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Flash The Flash is expected to work for all SoC flash peripheral drivers. Bus-accessed devices
like serial memories may not be supported.

List/table of supported drivers to go here

GPIO The General-Purpose Input/Output (GPIO) is expected to work for all SoC GPIO peripheral
drivers. Bus-accessed devices like GPIO extenders may not be supported.

List/table of supported drivers to go here

UART A subset of the Universal Asynchronous Receiver-Transmitter (UART) is expected to work
for all SoC UART peripheral drivers.

• Applications that select CONFIG_UART_INTERRUPT_DRIVEN may work, depending on driver
implementation.

• Applications that select CONFIG_UART_ASYNC_APImay work, depending on driver implemen-
tation.

• Applications that do not select either CONFIG_UART_ASYNC_API or CON-
FIG_UART_INTERRUPT_DRIVEN are expected to work.

List/table of supported drivers to go here, including which API options are supported

Interrupts

An interrupt service routine (ISR) is a function that executes asynchronously in response to a
hardware or software interrupt. An ISR normally preempts the execution of the current thread,
allowing the response to occur with very low overhead. Thread execution resumes only once all
ISR work has been completed.

• Concepts

– Multi-level Interrupt Handling

– Preventing Interruptions

– Offloading ISR Work

– Sharing interrupt lines

• Implementation

– Defining a regular ISR

– Defining a ‘direct’ ISR

– Sharing an interrupt line

– Dynamically disconnecting an ISR

– Implementation Details

• Suggested Uses

• Configuration Options

• API Reference
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Concepts Any number of ISRs can be defined (limited only by available RAM), subject to the
constraints imposed by underlying hardware.

An ISR has the following key properties:

• An interrupt request (IRQ) signal that triggers the ISR.

• A priority level associated with the IRQ.

• An interrupt service routine that is invoked to handle the interrupt.

• An argument value that is passed to that function.

An IDT (Interrupt Descriptor Table) or a vector table is used to associate a given interrupt source
with a given ISR. Only a single ISR can be associated with a specific IRQ at any given time.

Multiple ISRs can utilize the same function to process interrupts, allowing a single function to
service a device that generates multiple types of interrupts or to service multiple devices (usu-
ally of the same type). The argument value passed to an ISR’s function allows the function to
determine which interrupt has been signaled.

The kernel provides a default ISR for all unused IDT entries. This ISR generates a fatal system
error if an unexpected interrupt is signaled.

The kernel supports interrupt nesting. This allows an ISR to be preempted in mid-execution if
a higher priority interrupt is signaled. The lower priority ISR resumes execution once the higher
priority ISR has completed its processing.

An ISR executes in the kernel’s interrupt context. This context has its own dedicated stack area
(or, on some architectures, stack areas). The size of the interrupt context stack must be capable
of handling the execution of multiple concurrent ISRs if interrupt nesting support is enabled.

Important

Many kernel APIs can be used only by threads, and not by ISRs. In cases where a routine may
be invoked by both threads and ISRs the kernel provides the k_is_in_isr() API to allow the
routine to alter its behavior depending on whether it is executing as part of a thread or as
part of an ISR.

Multi-level Interrupt Handling A hardware platform can support more interrupt lines than
natively-provided through the use of one or more nested interrupt controllers. Sources of hard-
ware interrupts are combined into one line that is then routed to the parent controller.

If nested interrupt controllers are supported, CONFIG_MULTI_LEVEL_INTERRUPTS should be en-
abled, and CONFIG_2ND_LEVEL_INTERRUPTS and CONFIG_3RD_LEVEL_INTERRUPTS configured as
well, based on the hardware architecture.

A unique 32-bit interrupt number is assigned with information embedded in it to select and
invoke the correct Interrupt Service Routine (ISR). Each interrupt level is given a byte within this
32-bit number, providing support for up to four interrupt levels using this arch, as illustrated and
explained below:

9 2 0
_ _ _ _ _ _ _ _ _ _ _ _ _ (LEVEL 1)

5 | A |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ (LEVEL 2)

| C B
_ _ _ _ _ _ _ (LEVEL 3)

D

There are three interrupt levels shown here.

• ‘-’ means interrupt line and is numbered from 0 (right most).
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• LEVEL 1 has 12 interrupt lines, with two lines (2 and 9) connected to nested controllers and
one device ‘A’ on line 4.

• One of the LEVEL 2 controllers has interrupt line 5 connected to a LEVEL 3 nested controller
and one device ‘C’ on line 3.

• The other LEVEL 2 controller has no nested controllers but has one device ‘B’ on line 2.

• The LEVEL 3 controller has one device ‘D’ on line 2.

Here’s how unique interrupt numbers are generated for each hardware interrupt. Let’s consider
four interrupts shown above as A, B, C, and D:

A -> 0x00000004
B -> 0x00000302
C -> 0x00000409
D -> 0x00030609

Note

The bit positions for LEVEL 2 and onward are offset by 1, as 0 means that interrupt number
is not present for that level. For our example, the LEVEL 3 controller has device D on line 2,
connected to the LEVEL 2 controller’s line 5, that is connected to the LEVEL 1 controller’s line
9 (2 -> 5 -> 9). Because of the encoding offset for LEVEL 2 and onward, device D is given the
number 0x00030609.

Preventing Interruptions In certain situations it may be necessary for the current thread to
prevent ISRs from executing while it is performing time-sensitive or critical section operations.

A thread may temporarily prevent all IRQ handling in the system using an IRQ lock. This lock
can be applied even when it is already in effect, so routines can use it without having to know
if it is already in effect. The thread must unlock its IRQ lock the same number of times it was
locked before interrupts can be once again processed by the kernel while the thread is running.

Important

The IRQ lock is thread-specific. If thread A locks out interrupts then performs an operation
that puts itself to sleep (e.g. sleeping for N milliseconds), the thread’s IRQ lock no longer
applies once thread A is swapped out and the next ready thread B starts to run.

This means that interrupts can be processed while thread B is running unless thread B has
also locked out interrupts using its own IRQ lock. (Whether interrupts can be processed
while the kernel is switching between two threads that are using the IRQ lock is architecture-
specific.)

When thread A eventually becomes the current thread once again, the kernel re-establishes
thread A’s IRQ lock. This ensures thread A won’t be interrupted until it has explicitly unlocked
its IRQ lock.

If thread A does not sleep but does make a higher-priority thread B ready, the IRQ lock will
inhibit any preemption that would otherwise occur. Thread B will not run until the next
reschedule point reached after releasing the IRQ lock.

Alternatively, a thread may temporarily disable a specified IRQ so its associated ISR does not
execute when the IRQ is signaled. The IRQ must be subsequently enabled to permit the ISR to
execute.
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Important

Disabling an IRQ prevents all threads in the system from being preempted by the associated
ISR, not just the thread that disabled the IRQ.

Zero Latency Interrupts Preventing interruptions by applying an IRQ lock may increase the
observed interrupt latency. A high interrupt latency, however, may not be acceptable for certain
low-latency use-cases.

The kernel addresses such use-cases by allowing interrupts with critical latency constraints
to execute at a priority level that cannot be blocked by interrupt locking. These interrupts
are defined as zero-latency interrupts. The support for zero-latency interrupts requires CON-
FIG_ZERO_LATENCY_IRQS to be enabled. In addition to that, the flag IRQ_ZERO_LATENCY must be
passed to IRQ_CONNECT or IRQ_DIRECT_CONNECT macros to configure the particular interrupt with
zero latency.

Zero-latency interrupts are expected to be used to manage hardware events directly, and not to
interoperate with the kernel code at all. They should treat all kernel APIs as undefined behavior
(i.e. an application that uses the APIs inside a zero-latency interrupt context is responsible for
directly verifying correct behavior). Zero-latency interrupts may not modify any data inspected
by kernel APIs invoked from normal Zephyr contexts and shall not generate exceptions that need
to be handled synchronously (e.g. kernel panic).

Important

Zero-latency interrupts are supported on an architecture-specific basis. The feature is cur-
rently implemented in the ARM Cortex-M architecture variant.

Offloading ISRWork An ISR should execute quickly to ensure predictable system operation. If
time consuming processing is required the ISR should offload some or all processing to a thread,
thereby restoring the kernel’s ability to respond to other interrupts.

The kernel supports several mechanisms for offloading interrupt-related processing to a thread.

• An ISR can signal a helper thread to do interrupt-related processing using a kernel object,
such as a FIFO, LIFO, or semaphore.

• An ISR can instruct the system workqueue thread to execute a work item. (See Workqueue
Threads.)

When an ISR offloads work to a thread, there is typically a single context switch to that thread
when the ISR completes, allowing interrupt-related processing to continue almost immediately.
However, depending on the priority of the thread handling the offload, it is possible that the
currently executing cooperative thread or other higher-priority threads may execute before the
thread handling the offload is scheduled.

Sharing interrupt lines In the case of some hardware platforms, the same interrupt lines may
be used by different IPs. For example, interrupt 17 may be used by a DMA controller to signal
that a data transfer has been completed or by a DAI controller to signal that the transfer FIFO has
reached its watermark. To make this work, one would have to either employ some special logic
or find a workaround (for example, using the shared_irq interrupt controller), which doesn’t
scale very well.

To solve this problem, one may use shared interrupts, which can be enabled using CON-
FIG_SHARED_INTERRUPTS. Whenever an attempt to register a second ISR/argument pair on the
same interrupt line is made (using IRQ_CONNECT or irq_connect_dynamic()), the interrupt line
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will become shared, meaning the two ISR/argument pairs (previous one and the one that has just
been registered) will be invoked each time the interrupt is triggered. The entities that make use
of an interrupt line in the shared interrupt context are known as clients. The maximum number
of allowed clients for an interrupt is controlled by CONFIG_SHARED_IRQ_MAX_NUM_CLIENTS.

Interrupt sharing is transparent to the user. As such, the user may register interrupts using
IRQ_CONNECT and irq_connect_dynamic() as they normally would. The interrupt sharing is
taken care of behind the scenes.

Enabling the shared interrupt support and dynamic interrupt support will allow users to dynam-
ically disconnect ISRs using irq_disconnect_dynamic(). After an ISR is disconnected, whenever
the interrupt line for which it was register gets triggered, the ISR will no longer get invoked.

Please note that enabling CONFIG_SHARED_INTERRUPTS will result in a non-negligible increase in
the binary size. Use with caution.

Implementation

Defining a regular ISR An ISR is defined at runtime by calling IRQ_CONNECT. It must then be
enabled by calling irq_enable().

Important

IRQ_CONNECT() is not a C function and does some inline assembly magic behind the scenes.
All its arguments must be known at build time. Drivers that have multiple instances may
need to define per-instance config functions to configure each instance of the interrupt.

The following code defines and enables an ISR.

#define MY_DEV_IRQ 24 /* device uses IRQ 24 */
#define MY_DEV_PRIO 2 /* device uses interrupt priority 2 */
/* argument passed to my_isr(), in this case a pointer to the device */
#define MY_ISR_ARG DEVICE_GET(my_device)
#define MY_IRQ_FLAGS 0 /* IRQ flags */

void my_isr(void *arg)
{

... /* ISR code */
}

void my_isr_installer(void)
{

...
IRQ_CONNECT(MY_DEV_IRQ, MY_DEV_PRIO, my_isr, MY_ISR_ARG, MY_IRQ_FLAGS);
irq_enable(MY_DEV_IRQ);
...

}

Since the IRQ_CONNECT macro requires that all its parameters be known at build time, in some
cases this may not be acceptable. It is also possible to install interrupts at runtime with
irq_connect_dynamic(). It is used in exactly the same way as IRQ_CONNECT:

void my_isr_installer(void)
{

...
irq_connect_dynamic(MY_DEV_IRQ, MY_DEV_PRIO, my_isr, MY_ISR_ARG,

MY_IRQ_FLAGS);
irq_enable(MY_DEV_IRQ);

(continues on next page)
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(continued from previous page)
...

}

Dynamic interrupts require the CONFIG_DYNAMIC_INTERRUPTS option to be enabled. Removing or
re-configuring a dynamic interrupt is currently unsupported.

Defining a ‘direct’ ISR Regular Zephyr interrupts introduce some overhead which may be un-
acceptable for some low-latency use-cases. Specifically:

• The argument to the ISR is retrieved and passed to the ISR

• If power management is enabled and the system was idle, all the hardware will be resumed
from low-power state before the ISR is executed, which can be very time-consuming

• Although some architectures will do this in hardware, other architectures need to switch
to the interrupt stack in code

• After the interrupt is serviced, the OS then performs some logic to potentially make a
scheduling decision.

Zephyr supports so-called ‘direct’ interrupts, which are installed via IRQ_DIRECT_CONNECT. These
direct interrupts have some special implementation requirements and a reduced feature set; see
the definition of IRQ_DIRECT_CONNECT for details.

The following code demonstrates a direct ISR:

#define MY_DEV_IRQ 24 /* device uses IRQ 24 */
#define MY_DEV_PRIO 2 /* device uses interrupt priority 2 */
/* argument passed to my_isr(), in this case a pointer to the device */
#define MY_IRQ_FLAGS 0 /* IRQ flags */

ISR_DIRECT_DECLARE(my_isr)
{

do_stuff();
ISR_DIRECT_PM(); /* PM done after servicing interrupt for best latency */
return 1; /* We should check if scheduling decision should be made */

}

void my_isr_installer(void)
{

...
IRQ_DIRECT_CONNECT(MY_DEV_IRQ, MY_DEV_PRIO, my_isr, MY_IRQ_FLAGS);
irq_enable(MY_DEV_IRQ);
...

}

Installation of dynamic direct interrupts is supported on an architecture-specific basis. (The fea-
ture is currently implemented in ARM Cortex-M architecture variant. Dynamic direct interrupts
feature is exposed to the user via an ARM-only API.)

Sharing an interrupt line The following code defines two ISRs using the same interrupt num-
ber.

#define MY_DEV_IRQ 24 /* device uses INTID 24 */
#define MY_DEV_IRQ_PRIO 2 /* device uses interrupt priority 2 */
/* this argument may be anything */
#define MY_FST_ISR_ARG INT_TO_POINTER(1)
/* this argument may be anything */
#define MY_SND_ISR_ARG INT_TO_POINTER(2)
#define MY_IRQ_FLAGS 0 /* IRQ flags */

(continues on next page)
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(continued from previous page)

void my_first_isr(void *arg)
{

... /* some magic happens here */
}

void my_second_isr(void *arg)
{

... /* even more magic happens here */
}

void my_isr_installer(void)
{

...
IRQ_CONNECT(MY_DEV_IRQ, MY_DEV_IRQ_PRIO, my_first_isr, MY_FST_ISR_ARG, MY_IRQ_FLAGS);
IRQ_CONNECT(MY_DEV_IRQ, MY_DEV_IRQ_PRIO, my_second_isr, MY_SND_ISR_ARG, MY_IRQ_FLAGS);
...

}

The same restrictions regarding IRQ_CONNECT described in Defining a regular ISR are applica-
ble here. If CONFIG_SHARED_INTERRUPTS is disabled, the above code will generate a build error.
Otherwise, the above code will result in the two ISRs being invoked each time interrupt 24 is
triggered.

If CONFIG_SHARED_IRQ_MAX_NUM_CLIENTS is set to a value lower than 2 (current number of clients),
a build error will be generated.

If dynamic interrupts are enabled, irq_connect_dynamic() will allow sharing interrupts during
runtime. Exceeding the configured maximum number of allowed clients will result in a failed
assertion.

Dynamically disconnecting an ISR The following code defines two ISRs using the same inter-
rupt number. The second ISR is disconnected during runtime.

#define MY_DEV_IRQ 24 /* device uses INTID 24 */
#define MY_DEV_IRQ_PRIO 2 /* device uses interrupt priority 2 */
/* this argument may be anything */
#define MY_FST_ISR_ARG INT_TO_POINTER(1)
/* this argument may be anything */
#define MY_SND_ISR_ARG INT_TO_POINTER(2)
#define MY_IRQ_FLAGS 0 /* IRQ flags */

void my_first_isr(void *arg)
{

... /* some magic happens here */
}

void my_second_isr(void *arg)
{

... /* even more magic happens here */
}

void my_isr_installer(void)
{

...
IRQ_CONNECT(MY_DEV_IRQ, MY_DEV_IRQ_PRIO, my_first_isr, MY_FST_ISR_ARG, MY_IRQ_FLAGS);
IRQ_CONNECT(MY_DEV_IRQ, MY_DEV_IRQ_PRIO, my_second_isr, MY_SND_ISR_ARG, MY_IRQ_FLAGS);
...

}

(continues on next page)
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(continued from previous page)
void my_isr_uninstaller(void)
{

...
irq_disconnect_dynamic(MY_DEV_IRQ, MY_DEV_IRQ_PRIO, my_first_isr, MY_FST_ISR_ARG, MY_IRQ_

↪→FLAGS);
...

}

The irq_disconnect_dynamic() call will result in interrupt 24 becoming unshared, meaning the
system will act as if the first IRQ_CONNECT call never happened. This behaviour is only allowed
if CONFIG_DYNAMIC_INTERRUPTS is enabled, otherwise a linker error will be generated.

Implementation Details Interrupt tables are set up at build time using some special build
tools. The details laid out here apply to all architectures except x86, which are covered in the
x86 Details section below.

The invocation of IRQ_CONNECT will declare an instance of struct _isr_list which is placed in a
special .intList section. This section is placed in compiled code on precompilation stages only.
It is meant to be used by Zephyr script to generate interrupt tables and is removed from the
final build. The script implements different parsers to process the data from .intList section and
produce the required output.

The default parser generates C arrays filled with arguments and interrupt handlers in a form
of addresses directly taken from .intList section entries. It works with all the architectures and
compilers (with the exception mentioned above). The limitation of this parser is the fact that
after the arrays are generated it is expected for the code not to relocate. Any relocation on this
stage may lead to the situation where the entry in the interrupt array is no longer pointing to the
function that was expected. It means that this parser, being more compatible is limiting us from
using Link Time Optimization.

The local isr declaration parser uses different approach to construct the same arrays at binnary
level. All the entries to the arrays are declared and defined locally, directly in the file where
IRQ_CONNECT is used. They are placed in a section with the unique, synthesized name. The name
of the section is then placed in .intList section and it is used to create linker script to properly
place the created entry in the right place in the memory. This parser is now limited to the sup-
ported architectures and toolchains but in reward it keeps the information about object relations
for linker thus allowing the Link Time Optimization.

Implementation using C arrays This is the default configuration available for all Zephyr sup-
ported architectures.

Any invocation of IRQ_CONNECT will declare an instance of struct _isr_list which is placed in a
special .intList section:

struct _isr_list {
/** IRQ line number */
int32_t irq;
/** Flags for this IRQ, see ISR_FLAG_* definitions */
int32_t flags;
/** ISR to call */
void *func;
/** Parameter for non-direct IRQs */
void *param;

};

Zephyr is built in two phases; the first phase of the build produces
${ZEPHYR_PREBUILT_EXECUTABLE}.elf which contains all the entries in the .intList section
preceded by a header:
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struct {
void *spurious_irq_handler;
void *sw_irq_handler;
uint32_t num_isrs;
uint32_t num_vectors;
struct _isr_list isrs[]; <- of size num_isrs

};

This data consisting of the header and instances of struct _isr_list inside
${ZEPHYR_PREBUILT_EXECUTABLE}.elf is then used by the gen_isr_tables.py script to gener-
ate a C file defining a vector table and software ISR table that are then compiled and linked into
the final application.

The priority level of any interrupt is not encoded in these tables, instead IRQ_CONNECT also has a
runtime component which programs the desired priority level of the interrupt to the interrupt
controller. Some architectures do not support the notion of interrupt priority, in which case the
priority argument is ignored.

Vector Table A vector table is generated when CONFIG_GEN_IRQ_VECTOR_TABLE is enabled. This
data structure is used natively by the CPU and is simply an array of function pointers, where
each element n corresponds to the IRQ handler for IRQ line n, and the function pointers are:

1. For ‘direct’ interrupts declared with IRQ_DIRECT_CONNECT, the handler function will be
placed here.

2. For regular interrupts declared with IRQ_CONNECT, the address of the common software IRQ
handler is placed here. This code does common kernel interrupt bookkeeping and looks up
the ISR and parameter from the software ISR table.

3. For interrupt lines that are not configured at all, the address of the spurious IRQ handler
will be placed here. The spurious IRQ handler causes a system fatal error if encountered.

Some architectures (such as the Nios II internal interrupt controller) have a common en-
try point for all interrupts and do not support a vector table, in which case the CON-
FIG_GEN_IRQ_VECTOR_TABLE option should be disabled.

Some architectures may reserve some initial vectors for system exceptions and declare this in
a table elsewhere, in which case CONFIG_GEN_IRQ_START_VECTOR needs to be set to properly
offset the indices in the table.

SW ISR Table This is an array of struct _isr_table_entry:

struct _isr_table_entry {
void *arg;
void (*isr)(void *);

};

This is used by the common software IRQ handler to look up the ISR and its argument and execute
it. The active IRQ line is looked up in an interrupt controller register and used to index this table.

Shared SW ISR Table This is an array of struct z_shared_isr_table_entry:

struct z_shared_isr_table_entry {
struct _isr_table_entry clients[CONFIG_SHARED_IRQ_MAX_NUM_CLIENTS];
size_t client_num;

};

This table keeps track of the registered clients for each of the interrupt lines. Whenever an
interrupt line becomes shared, z_shared_isr() will replace the currently registered ISR in
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_sw_isr_table. This special ISR will iterate through the list of registered clients and invoke the
ISRs.

Implementation using linker script This way of prepare and parse .isrList section to imple-
ment interrupt vectors arrays is called local isr declaration. The name comes from the fact that
all the entries to the arrays that would create interrupt vectors are created locally in place of
invocation of IRQ_CONNECT macro. Then automatically generated linker scripts are used to place
it in the right place in the memory.

This option requires enabling by the choose of ISR_TABLES_LOCAL_DECLARATION.
If this configuration is supported by the used architecture and toolchaing the
ISR_TABLES_LOCAL_DECLARATION_SUPPORTED is set. See details of this option for the information
about currently supported configurations.

Any invocation of IRQ_CONNECT or IRQ_DIRECT_CONNECT will declare an instance of struct
_isr_list_sname which is placde in a special .intList section:

struct _isr_list_sname {
/** IRQ line number */
int32_t irq;
/** Flags for this IRQ, see ISR_FLAG_* definitions */
int32_t flags;
/** The section name */
const char sname[];

};

Note that the section name is placed in flexible array member. It means that the size of the
initialized structure will warry depending on the structure name length. The whole entry is
used by the script during the build of the application and has all the information needed for
proper interrupt placement.

Beside of the _isr_list_sname the IRQ_CONNECT macro generates an entry that would be the part
of the interrupt array:

struct _isr_table_entry {
const void *arg;
void (*isr)(const void *);

};

This array is placed in a section with the name saved in _isr_list_sname structure.

The values created by IRQ_DIRECT_CONNECT macro depends on the architecture. It can be
changed to variable that points to a interrupt handler:

static uintptr_t <unique name> = ((uintptr_t)func);

Or to actually naked function that implements a jump to the interrupt handler:

static void <unique name>(void)
{

__asm(ARCH_IRQ_VECTOR_JUMP_CODE(func));
}

Similar like for IRQ_CONNECT, the created variable or function is placed in a section, saved in
_isr_list_sname section.

Files generated by the script The interrupt tables generator script creates 3 files: isr_tables.c,
isr_tables_swi.ld, and isr_tables_vt.ld.

The isr_tables.c will contain all the structures for interrupts, direct interrupts and shared inter-
rupts (if enabled). This file implements only all the structures that are not implemented by the
application, leaving a comment where the interrupt not implemented here can be found.
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Then two linker files are used. The isr_tables_vt.ld file is included in place where the interrupt
vectors are required to be placed in the selected architecture. The isr_tables_swi.ld file describes
the placement of the software interrupt table elements. The separated file is required as it might
be placed in writable on nonwritable section, depending on the current configuration.

x86 Details The x86 architecture has a special type of vector table called the Interrupt Descrip-
tor Table (IDT) which must be laid out in a certain way per the x86 processor documentation. It is
still fundamentally a vector table, and the arch/x86/gen_idt.py tool uses the .intList section to cre-
ate it. However, on APIC-based systems the indexes in the vector table do not correspond to the
IRQ line. The first 32 vectors are reserved for CPU exceptions, and all remaining vectors (up to
index 255) correspond to the priority level, in groups of 16. In this scheme, interrupts of priority
level 0 will be placed in vectors 32-47, level 1 48-63, and so forth. When the arch/x86/gen_idt.py
tool is constructing the IDT, when it configures an interrupt it will look for a free vector in the
appropriate range for the requested priority level and set the handler there.

On x86 when an interrupt or exception vector is executed by the CPU, there is no foolproof way
to determine which vector was fired, so a software ISR table indexed by IRQ line is not used. In-
stead, the IRQ_CONNECT call creates a small assembly language function which calls the common
interrupt code in _interrupt_enter() with the ISR and parameter as arguments. It is the ad-
dress of this assembly interrupt stub which gets placed in the IDT. For interrupts declared with
IRQ_DIRECT_CONNECT the parameterless ISR is placed directly in the IDT.

On systems where the position in the vector table corresponds to the interrupt’s priority level,
the interrupt controller needs to know at runtime what vector is associated with an IRQ line.
arch/x86/gen_idt.py additionally creates an _irq_to_interrupt_vector array which maps an IRQ
line to its configured vector in the IDT. This is used at runtime by IRQ_CONNECT to program the
IRQ-to-vector association in the interrupt controller.

For dynamic interrupts, the build must generate some 4-byte dynamic interrupt stubs,
one stub per dynamic interrupt in use. The number of stubs is controlled by the CON-
FIG_X86_DYNAMIC_IRQ_STUBS option. Each stub pushes an unique identifier which is then used
to fetch the appropriate handler function and parameter out of a table populated when the dy-
namic interrupt was connected.

Going Beyond the Default Supported Number of Interrupts When generating interrupts in
the multi-level configuration, 8-bits per level is the default mask used when determining which
level a given interrupt code belongs to. This can become a problem when dealing with CPUs
that support more than 255 interrupts per single aggregator. In this case it may be desirable to
override these defaults and use a custom number of bits per level. Regardless of how many bits
used for each level, the sum of the total bits used between all levels must sum to be less than or
equal to 32-bits, fitting into a single 32-bit integer. To modify the bit total per level, override the
default 8 in Kconfig.multilevel by setting CONFIG_1ST_LEVEL_INTERRUPT_BITS for the first level,
CONFIG_2ND_LEVEL_INTERRUPT_BITS for the second level and CONFIG_3RD_LEVEL_INTERRUPT_BITS
for the third level. These masks control the length of the bit masks and shift to apply when
generating interrupt values, when checking the interrupts level and converting interrupts to a
different level. The logic controlling this can be found in irq_multilevel.h

SuggestedUses Use a regular or direct ISR to perform interrupt processing that requires a very
rapid response, and can be done quickly without blocking.

Note

Interrupt processing that is time consuming, or involves blocking, should be handed off to a
thread. See Offloading ISR Work for a description of various techniques that can be used in
an application.
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Configuration Options Related configuration options:

• CONFIG_ISR_STACK_SIZE
Additional architecture-specific and device-specific configuration options also exist.

API Reference

group isr_apis

Defines

IRQ_CONNECT(irq_p, priority_p, isr_p, isr_param_p, flags_p)
Initialize an interrupt handler.

This routine initializes an interrupt handler for an IRQ. The IRQ must be subsequently
enabled before the interrupt handler begins servicing interrupts.

Warning

Although this routine is invoked at run-time, all of its arguments must be com-
putable by the compiler at build time.

Parameters
• irq_p – IRQ line number.

• priority_p – Interrupt priority.

• isr_p – Address of interrupt service routine.

• isr_param_p – Parameter passed to interrupt service routine.

• flags_p – Architecture-specific IRQ configuration flags..

IRQ_DIRECT_CONNECT(irq_p, priority_p, isr_p, flags_p)
Initialize a ‘direct’ interrupt handler.

This routine initializes an interrupt handler for an IRQ. The IRQ must be subsequently
enabled via irq_enable() before the interrupt handler begins servicing interrupts.

These ISRs are designed for performance-critical interrupt handling and do not go
through common interrupt handling code. They must be implemented in such a way
that it is safe to put them directly in the vector table. For ISRs written in C, The
ISR_DIRECT_DECLARE()macro will do this automatically. For ISRs written in assembly
it is entirely up to the developer to ensure that the right steps are taken.

This type of interrupt currently has a few limitations compared to normal Zephyr in-
terrupts:

• No parameters are passed to the ISR.

• No stack switch is done, the ISR will run on the interrupted context’s stack, unless
the architecture automatically does the stack switch in HW.

• Interrupt locking state is unchanged from how the HW sets it when the ISR runs.
On arches that enter ISRs with interrupts locked, they will remain locked.

• Scheduling decisions are now optional, controlled by the return value of ISRs im-
plemented with the ISR_DIRECT_DECLARE() macro
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• The call into the OS to exit power management idle state is now optional. Normal
interrupts always do this before the ISR is run, but when it runs is now controlled
by the placement of a ISR_DIRECT_PM() macro, or omitted entirely.

Warning

Although this routine is invoked at run-time, all of its arguments must be com-
putable by the compiler at build time.

Parameters
• irq_p – IRQ line number.

• priority_p – Interrupt priority.

• isr_p – Address of interrupt service routine.

• flags_p – Architecture-specific IRQ configuration flags.

ISR_DIRECT_HEADER()
Common tasks before executing the body of an ISR.

This macro must be at the beginning of all direct interrupts and performs minimal
architecture-specific tasks before the ISR itself can run. It takes no arguments and has
no return value.

ISR_DIRECT_FOOTER(check_reschedule)
Common tasks before exiting the body of an ISR.

This macro must be at the end of all direct interrupts and performs minimal
architecture-specific tasks like EOI. It has no return value.

In a normal interrupt, a check is done at end of interrupt to invoke z_swap() logic if
the current thread is preemptible and there is another thread ready to run in the ker-
nel’s ready queue cache. This is now optional and controlled by the check_reschedule
argument. If unsure, set to nonzero. On systems that do stack switching and nested
interrupt tracking in software, z_swap() should only be called if this was a non-nested
interrupt.

Parameters
• check_reschedule – If nonzero, additionally invoke scheduling logic

ISR_DIRECT_PM()
Perform power management idle exit logic.

This macro may optionally be invoked somewhere in between IRQ_DIRECT_HEADER()
and IRQ_DIRECT_FOOTER() invocations. It performs tasks necessary to exit power
management idle state. It takes no parameters and returns no arguments. It may be
omitted, but be careful!

ISR_DIRECT_DECLARE(name)
Helper macro to declare a direct interrupt service routine.

This will declare the function in a proper way and automatically include the
ISR_DIRECT_FOOTER() and ISR_DIRECT_HEADER() macros. The function should re-
turn nonzero status if a scheduling decision should potentially be made. See
ISR_DIRECT_FOOTER() for more details on the scheduling decision.

For architectures that support ‘regular’ and ‘fast’ interrupt types, where these inter-
rupt types require different assembly language handling of registers by the ISR, this
will always generate code for the ‘fast’ interrupt type.

Example usage:
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ISR_DIRECT_DECLARE(my_isr)
{

bool done = do_stuff();
ISR_DIRECT_PM(); // done after do_stuff() due to latency concerns
if (!done) {

return 0; // don't bother checking if we have to z_swap()
}

k_sem_give(some_sem);
return 1;

}

Parameters
• name – symbol name of the ISR

irq_lock()
Lock interrupts.

This routine disables all interrupts on the CPU. It returns an unsigned integer “lock-out
key”, which is an architecture-dependent indicator of whether interrupts were locked
prior to the call. The lock-out key must be passed to irq_unlock() to re-enable interrupts.

This routine can be called recursively, as long as the caller keeps track of each lock-
out key that is generated. Interrupts are re-enabled by passing each of the keys to
irq_unlock() in the reverse order they were acquired. (That is, each call to irq_lock()
must be balanced by a corresponding call to irq_unlock().)

This routine can only be invoked from supervisor mode. Some architectures (for ex-
ample, ARM) will fail silently if invoked from user mode instead of generating an ex-
ception.

Note

This routine must also serve as a memory barrier to ensure the uniprocessor im-
plementation of spinlocks is correct.

Note

This routine can be called by ISRs or by threads. If it is called by a thread, the inter-
rupt lock is thread-specific; this means that interrupts remain disabled only while
the thread is running. If the thread performs an operation that allows another
thread to run (for example, giving a semaphore or sleeping for N milliseconds), the
interrupt lock no longer applies and interrupts may be re-enabled while other pro-
cessing occurs. When the thread once again becomes the current thread, the kernel
re-establishes its interrupt lock; this ensures the thread won’t be interrupted until
it has explicitly released the interrupt lock it established.

Warning

The lock-out key should never be used to manually re-enable interrupts or to inspect
or manipulate the contents of the CPU’s interrupt bits.
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Returns
An architecture-dependent lock-out key representing the “interrupt dis-
able state” prior to the call.

irq_unlock(key)
Unlock interrupts.

This routine reverses the effect of a previous call to irq_lock() using the associated lock-
out key. The caller must call the routine once for each time it called irq_lock(), supply-
ing the keys in the reverse order they were acquired, before interrupts are enabled.

This routine can only be invoked from supervisor mode. Some architectures (for ex-
ample, ARM) will fail silently if invoked from user mode instead of generating an ex-
ception.

Note

This routine must also serve as a memory barrier to ensure the uniprocessor im-
plementation of spinlocks is correct.

Note

Can be called by ISRs.

Parameters
• key – Lock-out key generated by irq_lock().

irq_enable(irq)
Enable an IRQ.

This routine enables interrupts from source irq.

Parameters
• irq – IRQ line.

irq_disable(irq)
Disable an IRQ.

This routine disables interrupts from source irq.

Parameters
• irq – IRQ line.

irq_is_enabled(irq)
Get IRQ enable state.

This routine indicates if interrupts from source irq are enabled.

Parameters
• irq – IRQ line.

Returns
interrupt enable state, true or false
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Functions

static inline int irq_connect_dynamic(unsigned int irq, unsigned int priority, void
(*routine)(const void *parameter), const void
*parameter, uint32_t flags)

Configure a dynamic interrupt.

Use this instead of IRQ_CONNECT() if arguments cannot be known at build time.

Parameters
• irq – IRQ line number

• priority – Interrupt priority

• routine – Interrupt service routine

• parameter – ISR parameter

• flags – Arch-specific IRQ configuration flags

Returns
The vector assigned to this interrupt

static inline int irq_disconnect_dynamic(unsigned int irq, unsigned int priority, void
(*routine)(const void *parameter), const void
*parameter, uint32_t flags)

Disconnect a dynamic interrupt.

Use this in conjunction with shared interrupts to remove a routine/parameter pair
from the list of clients using the same interrupt line. If the interrupt is not being shared
then the associated _sw_isr_table entry will be replaced by (NULL, z_irq_spurious) (de-
fault entry).

Parameters
• irq – IRQ line number

• priority – Interrupt priority

• routine – Interrupt service routine

• parameter – ISR parameter

• flags – Arch-specific IRQ configuration flags

Returns
0 in case of success, negative value otherwise

bool k_is_in_isr(void)
Determine if code is running at interrupt level.

This routine allows the caller to customize its actions, depending on whether it is a
thread or an ISR.

Function properties (list may not be complete)
isr-ok

Returns
false if invoked by a thread.

Returns
true if invoked by an ISR.
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int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.

This routine allows the caller to customize its actions, depending on whether it can be
preempted by another thread. The routine returns a ‘true’ value if all of the following
conditions are met:

• The code is running in a thread, not at ISR.

• The thread’s priority is in the preemptible range.

• The thread has not locked the scheduler.

Function properties (list may not be complete)
isr-ok

Returns
0 if invoked by an ISR or by a cooperative thread.

Returns
Non-zero if invoked by a preemptible thread.

static inline bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.

This routine allows the caller to customize its actions, depending on whether it being
invoked before the kernel is fully active.

Function properties (list may not be complete)
isr-ok

Returns
true if invoked before post-kernel initialization

Returns
false if invoked during/after post-kernel initialization

Polling API

The polling API is used to wait concurrently for any one of multiple conditions to be fulfilled.

• Concepts

• Implementation

– Using k_poll()

– Using k_poll_signal_raise()

• Suggested Uses

• Configuration Options

• API Reference
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Concepts The polling API’s main function is k_poll(), which is very similar in concept to the
POSIX poll() function, except that it operates on kernel objects rather than on file descriptors.

The polling API allows a single thread to wait concurrently for one or more conditions to be
fulfilled without actively looking at each one individually.

There is a limited set of such conditions:

• a semaphore becomes available

• a kernel FIFO contains data ready to be retrieved

• a kernel message queue contains data ready to be retrieved

• a kernel pipe contains data ready to be retrieved

• a poll signal is raised

A thread that wants to wait on multiple conditions must define an array of poll events, one for
each condition.

All events in the array must be initialized before the array can be polled on.

Each event must specify which type of condition must be satisfied so that its state is changed to
signal the requested condition has been met.

Each event must specify what kernel object it wants the condition to be satisfied.

Each event must specify which mode of operation is used when the condition is satisfied.

Each event can optionally specify a tag to group multiple events together, to the user’s discretion.

Apart from the kernel objects, there is also a poll signal pseudo-object type that be directly sig-
naled.

The k_poll() function returns as soon as one of the conditions it is waiting for is fulfilled. It is
possible for more than one to be fulfilled when k_poll() returns, if they were fulfilled before
k_poll() was called, or due to the preemptive multi-threading nature of the kernel. The caller
must look at the state of all the poll events in the array to figure out which ones were fulfilled
and what actions to take.

Currently, there is only one mode of operation available: the object is not acquired. As an ex-
ample, this means that when k_poll() returns and the poll event states that the semaphore
is available, the caller of k_poll() must then invoke k_sem_take() to take ownership of the
semaphore. If the semaphore is contested, there is no guarantee that it will be still available
when k_sem_take() is called.

Implementation

Using k_poll() The main API is k_poll(), which operates on an array of poll events of type
k_poll_event. Each entry in the array represents one event a call to k_poll() will wait for its
condition to be fulfilled.

Poll events can be initialized using either the runtime initializers K_POLL_EVENT_INITIALIZER()
or k_poll_event_init(), or the static initializer K_POLL_EVENT_STATIC_INITIALIZER(). An ob-
ject that matches the type specified must be passed to the initializers. The mode must be set
to K_POLL_MODE_NOTIFY_ONLY. The state must be set to K_POLL_STATE_NOT_READY (the initializers
take care of this). The user tag is optional and completely opaque to the API: it is there to help
a user to group similar events together. Being optional, it is passed to the static initializer, but
not the runtime ones for performance reasons. If using runtime initializers, the user must set
it separately in the k_poll_event data structure. If an event in the array is to be ignored, most
likely temporarily, its type can be set to K_POLL_TYPE_IGNORE.
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struct k_poll_event events[4] = {
K_POLL_EVENT_STATIC_INITIALIZER(K_POLL_TYPE_SEM_AVAILABLE,

K_POLL_MODE_NOTIFY_ONLY,
&my_sem, 0),

K_POLL_EVENT_STATIC_INITIALIZER(K_POLL_TYPE_FIFO_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
&my_fifo, 0),

K_POLL_EVENT_STATIC_INITIALIZER(K_POLL_TYPE_MSGQ_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
&my_msgq, 0),

K_POLL_EVENT_STATIC_INITIALIZER(K_POLL_TYPE_PIPE_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
&my_pipe, 0),

};

or at runtime

struct k_poll_event events[4];
void some_init(void)
{

k_poll_event_init(&events[0],
K_POLL_TYPE_SEM_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
&my_sem);

k_poll_event_init(&events[1],
K_POLL_TYPE_FIFO_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
&my_fifo);

k_poll_event_init(&events[2],
K_POLL_TYPE_MSGQ_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
&my_msgq);

k_poll_event_init(&events[3],
K_POLL_TYPE_PIPE_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
&my_pipe);

// tags are left uninitialized if unused
}

After the events are initialized, the array can be passed to k_poll(). A timeout can be specified
to wait only for a specified amount of time, or the special values K_NO_WAIT and K_FOREVER to
either not wait or wait until an event condition is satisfied and not sooner.

A list of pollers is offered on each semaphore or FIFO and as many events can wait in it as the
app wants. Notice that the waiters will be served in first-come-first-serve order, not in priority
order.

In case of success, k_poll() returns 0. If it times out, it returns -EAGAIN.

// assume there is no contention on this semaphore and FIFO
// -EADDRINUSE will not occur; the semaphore and/or data will be available

void do_stuff(void)
{

rc = k_poll(events, ARRAY_SIZE(events), K_MSEC(1000));
if (rc == 0) {

if (events[0].state == K_POLL_STATE_SEM_AVAILABLE) {
k_sem_take(events[0].sem, 0);

(continues on next page)
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} else if (events[1].state == K_POLL_STATE_FIFO_DATA_AVAILABLE) {

data = k_fifo_get(events[1].fifo, 0);
// handle data

} else if (events[2].state == K_POLL_STATE_MSGQ_DATA_AVAILABLE) {
ret = k_msgq_get(events[2].msgq, buf, K_NO_WAIT);
// handle data

} else if (events[3].state == K_POLL_STATE_PIPE_DATA_AVAILABLE) {
ret = k_pipe_get(events[3].pipe, buf, bytes_to_read, &bytes_read, min_xfer, K_

↪→NO_WAIT);
// handle data

}
} else {

// handle timeout
}

}

When k_poll() is called in a loop, the events state must be reset to K_POLL_STATE_NOT_READY by
the user.

void do_stuff(void)
{

for(;;) {
rc = k_poll(events, ARRAY_SIZE(events), K_FOREVER);
if (events[0].state == K_POLL_STATE_SEM_AVAILABLE) {

k_sem_take(events[0].sem, 0);
} else if (events[1].state == K_POLL_STATE_FIFO_DATA_AVAILABLE) {

data = k_fifo_get(events[1].fifo, 0);
// handle data

} else if (events[2].state == K_POLL_STATE_MSGQ_DATA_AVAILABLE) {
ret = k_msgq_get(events[2].msgq, buf, K_NO_WAIT);
// handle data

} else if (events[3].state == K_POLL_STATE_PIPE_DATA_AVAILABLE) {
ret = k_pipe_get(events[3].pipe, buf, bytes_to_read, &bytes_read, min_xfer, K_

↪→NO_WAIT);
// handle data

}
events[0].state = K_POLL_STATE_NOT_READY;
events[1].state = K_POLL_STATE_NOT_READY;
events[2].state = K_POLL_STATE_NOT_READY;
events[3].state = K_POLL_STATE_NOT_READY;

}
}

Using k_poll_signal_raise() One of the types of events is K_POLL_TYPE_SIGNAL: this is a “direct”
signal to a poll event. This can be seen as a lightweight binary semaphore only one thread can
wait for.

A poll signal is a separate object of type k_poll_signal that must be attached to a
k_poll_event, similar to a semaphore or FIFO. It must first be initialized either via
K_POLL_SIGNAL_INITIALIZER() or k_poll_signal_init().

struct k_poll_signal signal;
void do_stuff(void)
{

k_poll_signal_init(&signal);
}

It is signaled via the k_poll_signal_raise() function. This function takes a user result param-
eter that is opaque to the API and can be used to pass extra information to the thread waiting on
the event.
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struct k_poll_signal signal;

// thread A
void do_stuff(void)
{

k_poll_signal_init(&signal);

struct k_poll_event events[1] = {
K_POLL_EVENT_INITIALIZER(K_POLL_TYPE_SIGNAL,

K_POLL_MODE_NOTIFY_ONLY,
&signal),

};

k_poll(events, 1, K_FOREVER);

int signaled, result;

k_poll_signal_check(&signal, &signaled, &result);

if (signaled && (result == 0x1337)) {
// A-OK!

} else {
// weird error

}
}

// thread B
void signal_do_stuff(void)
{

k_poll_signal_raise(&signal, 0x1337);
}

If the signal is to be polled in a loop, both its event state must be reset to K_POLL_STATE_NOT_READY
and its result must be reset using k_poll_signal_reset() on each iteration if it has been sig-
naled.

struct k_poll_signal signal;
void do_stuff(void)
{

k_poll_signal_init(&signal);

struct k_poll_event events[1] = {
K_POLL_EVENT_INITIALIZER(K_POLL_TYPE_SIGNAL,

K_POLL_MODE_NOTIFY_ONLY,
&signal),

};

for (;;) {
k_poll(events, 1, K_FOREVER);

int signaled, result;

k_poll_signal_check(&signal, &signaled, &result);

if (signaled && (result == 0x1337)) {
// A-OK!

} else {
// weird error

}

k_poll_signal_reset(signal);
events[0].state = K_POLL_STATE_NOT_READY;

(continues on next page)
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}

}

Note that poll signals are not internally synchronized. A k_poll() call that is passed a signal will
return after any code in the system calls k_poll_signal_raise(). But if the signal is being exter-
nally managed and reset via k_poll_signal_init(), it is possible that by the time the application
checks, the event state may no longer be equal to K_POLL_STATE_SIGNALED, and a (naive) appli-
cation will miss events. Best practice is always to reset the signal only from within the thread
invoking the k_poll() loop, or else to use some other event type which tracks event counts:
semaphores and FIFOs are more error-proof in this sense because they can’t “miss” events, ar-
chitecturally.

Suggested Uses Use k_poll() to consolidate multiple threads that would be pending on one
object each, saving possibly large amounts of stack space.

Use a poll signal as a lightweight binary semaphore if only one thread pends on it.

Note

Because objects are only signaled if no other thread is waiting for them to become available
and only one thread can poll on a specific object, polling is best used when objects are not
subject of contention between multiple threads, basically when a single thread operates as a
main “server” or “dispatcher” for multiple objects and is the only one trying to acquire these
objects.

Configuration Options Related configuration options:

• CONFIG_POLL

API Reference

group poll_apis

Defines

K_POLL_TYPE_IGNORE

K_POLL_TYPE_SIGNAL

K_POLL_TYPE_SEM_AVAILABLE

K_POLL_TYPE_DATA_AVAILABLE

K_POLL_TYPE_FIFO_DATA_AVAILABLE

K_POLL_TYPE_MSGQ_DATA_AVAILABLE

K_POLL_TYPE_PIPE_DATA_AVAILABLE
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K_POLL_STATE_NOT_READY

K_POLL_STATE_SIGNALED

K_POLL_STATE_SEM_AVAILABLE

K_POLL_STATE_DATA_AVAILABLE

K_POLL_STATE_FIFO_DATA_AVAILABLE

K_POLL_STATE_MSGQ_DATA_AVAILABLE

K_POLL_STATE_PIPE_DATA_AVAILABLE

K_POLL_STATE_CANCELLED

K_POLL_SIGNAL_INITIALIZER(obj)

K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj)

K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, event_tag)

Enums

enum k_poll_modes
Values:

enumerator K_POLL_MODE_NOTIFY_ONLY = 0

enumerator K_POLL_NUM_MODES

Functions

void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.

After this routine is called on a poll event, the event it ready to be placed in an event
array to be passed to k_poll().

Parameters
• event – The event to initialize.

• type – A bitfield of the types of event, from the K_POLL_TYPE_xxx val-
ues. Only values that apply to the same object being polled can be used
together. Choosing K_POLL_TYPE_IGNORE disables the event.

• mode – Future. Use K_POLL_MODE_NOTIFY_ONLY.

• obj – Kernel object or poll signal.
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int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.

This routine allows a thread to wait concurrently for one or many of multiple poll
events to have occurred. Such events can be a kernel object being available, like a
semaphore, or a poll signal event.

When an event notifies that a kernel object is available, the kernel object is not “given”
to the thread calling k_poll(): it merely signals the fact that the object was available
when the k_poll() call was in effect. Also, all threads trying to acquire an object the
regular way, i.e. by pending on the object, have precedence over the thread polling on
the object. This means that the polling thread will never get the poll event on an object
until the object becomes available and its pend queue is empty. For this reason, the
k_poll() call is more effective when the objects being polled only have one thread, the
polling thread, trying to acquire them.

When k_poll() returns 0, the caller should loop on all the events that were passed to
k_poll() and check the state field for the values that were expected and take the asso-
ciated actions.

Before being reused for another call to k_poll(), the user has to reset the state field to
K_POLL_STATE_NOT_READY.

When called from user mode, a temporary memory allocation is required from the
caller’s resource pool.

Parameters
• events – An array of events to be polled for.

• num_events – The number of events in the array.

• timeout – Waiting period for an event to be ready, or one of the special
values K_NO_WAIT and K_FOREVER.

Return values
• 0 – One or more events are ready.

• -EAGAIN – Waiting period timed out.

• -EINTR – Polling has been interrupted, e.g. with k_queue_cancel_wait().
All output events are still set and valid, cancelled event(s) will be set to
K_POLL_STATE_CANCELLED. In other words, -EINTR status means that
at least one of output events is K_POLL_STATE_CANCELLED.

• -ENOMEM – Thread resource pool insufficient memory (user mode only)

• -EINVAL – Bad parameters (user mode only)

void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.

Ready a poll signal object to be signaled via k_poll_signal_raise().

Parameters
• sig – A poll signal.

void k_poll_signal_reset(struct k_poll_signal *sig)
Reset a poll signal object’s state to unsignaled.

Parameters
• sig – A poll signal object
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void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.

Parameters
• sig – A poll signal object

• signaled – An integer buffer which will be written nonzero if the object
was signaled

• result – An integer destination buffer which will be written with the
result value if the object was signaled, or an undefined value if it was
not.

int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.

This routine makes ready a poll signal, which is basically a poll event of type
K_POLL_TYPE_SIGNAL. If a thread was polling on that event, it will be made ready
to run. A result value can be specified.

The poll signal contains a ‘signaled’ field that, when set by k_poll_signal_raise(), stays
set until the user sets it back to 0 with k_poll_signal_reset(). It thus has to be reset by
the user before being passed again to k_poll() or k_poll() will consider it being signaled,
and will return immediately.

Note

The result is stored and the ‘signaled’ field is set even if this function returns an
error indicating that an expiring poll was not notified. The next k_poll() will detect
the missed raise.

Parameters
• sig – A poll signal.

• result – The value to store in the result field of the signal.

Return values
• 0 – The signal was delivered successfully.

• -EAGAIN – The polling thread’s timeout is in the process of expiring.

struct k_poll_signal
#include <kernel.h>

Public Members

sys_dlist_t poll_events
PRIVATE - DO NOT TOUCH.

unsigned int signaled
1 if the event has been signaled, 0 otherwise.

Stays set to 1 until user resets it to 0.
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int result
custom result value passed to k_poll_signal_raise() if needed

struct k_poll_event
#include <kernel.h> Poll Event.

Public Members

struct z_poller *poller
PRIVATE - DO NOT TOUCH.

uint32_t tag
optional user-specified tag, opaque, untouched by the API

uint32_t type
bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values)

uint32_t state
bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values)

uint32_t mode
mode of operation, from enum k_poll_modes

uint32_t unused
unused bits in 32-bit word

union k_poll_event
per-type data

Semaphores

A semaphore is a kernel object that implements a traditional counting semaphore.

• Concepts

• Implementation

– Defining a Semaphore

– Giving a Semaphore

– Taking a Semaphore

• Suggested Uses

• Configuration Options

• API Reference

• User Mode Semaphore API Reference
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Concepts Any number of semaphores can be defined (limited only by available RAM). Each
semaphore is referenced by its memory address.

A semaphore has the following key properties:

• A count that indicates the number of times the semaphore can be taken. A count of zero
indicates that the semaphore is unavailable.

• A limit that indicates the maximum value the semaphore’s count can reach.

A semaphore must be initialized before it can be used. Its count must be set to a non-negative
value that is less than or equal to its limit.

A semaphore may be given by a thread or an ISR. Giving the semaphore increments its count,
unless the count is already equal to the limit.

A semaphore may be taken by a thread. Taking the semaphore decrements its count, unless
the semaphore is unavailable (i.e. at zero). When a semaphore is unavailable a thread may
choose to wait for it to be given. Any number of threads may wait on an unavailable semaphore
simultaneously. When the semaphore is given, it is taken by the highest priority thread that has
waited longest.

Note

You may initialize a “full” semaphore (count equal to limit) to limit the number of threads able
to execute the critical section at the same time. You may also initialize an empty semaphore
(count equal to 0, with a limit greater than 0) to create a gate through which no waiting
thread may pass until the semaphore is incremented. All standard use cases of the common
semaphore are supported.

Note

The kernel does allow an ISR to take a semaphore, however the ISR must not attempt to wait
if the semaphore is unavailable.

Implementation

Defining a Semaphore A semaphore is defined using a variable of type k_sem. It must then be
initialized by calling k_sem_init().

The following code defines a semaphore, then configures it as a binary semaphore by setting its
count to 0 and its limit to 1.

struct k_sem my_sem;

k_sem_init(&my_sem, 0, 1);

Alternatively, a semaphore can be defined and initialized at compile time by calling
K_SEM_DEFINE.

The following code has the same effect as the code segment above.

K_SEM_DEFINE(my_sem, 0, 1);

Giving a Semaphore A semaphore is given by calling k_sem_give().

The following code builds on the example above, and gives the semaphore to indicate that a unit
of data is available for processing by a consumer thread.
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void input_data_interrupt_handler(void *arg)
{

/* notify thread that data is available */
k_sem_give(&my_sem);

...
}

Taking a Semaphore A semaphore is taken by calling k_sem_take().

The following code builds on the example above, and waits up to 50 milliseconds for the
semaphore to be given. A warning is issued if the semaphore is not obtained in time.

void consumer_thread(void)
{

...

if (k_sem_take(&my_sem, K_MSEC(50)) != 0) {
printk("Input data not available!");

} else {
/* fetch available data */
...

}
...

}

Suggested Uses Use a semaphore to control access to a set of resources by multiple threads.

Use a semaphore to synchronize processing between a producing and consuming threads or
ISRs.

Configuration Options Related configuration options:

• None.

Related code samples

Basic Synchronization
Manipulate basic kernel synchronization primitives.

API Reference

group semaphore_apis

Defines

K_SEM_MAX_LIMIT
Maximum limit value allowed for a semaphore.

This is intended for use when a semaphore does not have an explicit maximum limit,
and instead is just used for counting purposes.
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K_SEM_DEFINE(name, initial_count, count_limit)
Statically define and initialize a semaphore.

The semaphore can be accessed outside the module where it is defined using:

extern struct k_sem <name>;

Parameters
• name – Name of the semaphore.

• initial_count – Initial semaphore count.

• count_limit – Maximum permitted semaphore count.

Functions

int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.

This routine initializes a semaphore object, prior to its first use.

See also

K_SEM_MAX_LIMIT

Parameters
• sem – Address of the semaphore.

• initial_count – Initial semaphore count.

• limit – Maximum permitted semaphore count.

Return values
• 0 – Semaphore created successfully

• -EINVAL – Invalid values

int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.

This routine takes sem.

Function properties (list may not be complete)
isr-ok

Note

timeout must be set to K_NO_WAIT if called from ISR.

Parameters
• sem – Address of the semaphore.

• timeout – Waiting period to take the semaphore, or one of the special
values K_NO_WAIT and K_FOREVER.
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Return values
• 0 – Semaphore taken.

• -EBUSY – Returned without waiting.

• -EAGAIN – Waiting period timed out, or the semaphore was reset during
the waiting period.

void k_sem_give(struct k_sem *sem)
Give a semaphore.

This routine gives sem, unless the semaphore is already at its maximum permitted
count.

Function properties (list may not be complete)
isr-ok

Parameters
• sem – Address of the semaphore.

void k_sem_reset(struct k_sem *sem)
Resets a semaphore’s count to zero.

This routine sets the count of sem to zero. Any outstanding semaphore takes will be
aborted with -EAGAIN.

Parameters
• sem – Address of the semaphore.

unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore’s count.

This routine returns the current count of sem.

Parameters
• sem – Address of the semaphore.

Returns
Current semaphore count.

UserMode SemaphoreAPI Reference The sys_sem exists in user memory working as counter
semaphore for user mode thread when user mode enabled. When user mode isn’t enabled,
sys_sem behaves like k_sem.

group user_semaphore_apis

Defines

SYS_SEM_DEFINE(_name, _initial_count, _count_limit)
Statically define and initialize a sys_sem.

The semaphore can be accessed outside the module where it is defined using:

extern struct sys_sem <name>;

Route this to memory domains using K_APP_DMEM().
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Parameters
• _name – Name of the semaphore.

• _initial_count – Initial semaphore count.

• _count_limit – Maximum permitted semaphore count.

Functions

int sys_sem_init(struct sys_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.

This routine initializes a semaphore instance, prior to its first use.

Parameters
• sem – Address of the semaphore.

• initial_count – Initial semaphore count.

• limit – Maximum permitted semaphore count.

Return values
• 0 – Initial success.

• -EINVAL – Bad parameters, the value of limit should be located in (0,
INT_MAX] and initial_count shouldn’t be greater than limit.

int sys_sem_give(struct sys_sem *sem)
Give a semaphore.

This routine gives sem, unless the semaphore is already at its maximum permitted
count.

Parameters
• sem – Address of the semaphore.

Return values
• 0 – Semaphore given.

• -EINVAL – Parameter address not recognized.

• -EACCES – Caller does not have enough access.

• -EAGAIN – Count reached Maximum permitted count and try again.

int sys_sem_take(struct sys_sem *sem, k_timeout_t timeout)
Take a sys_sem.

This routine takes sem.

Parameters
• sem – Address of the sys_sem.

• timeout – Waiting period to take the sys_sem, or one of the special values
K_NO_WAIT and K_FOREVER.

Return values
• 0 – sys_sem taken.

• -EINVAL – Parameter address not recognized.

• -ETIMEDOUT – Waiting period timed out.

• -EACCES – Caller does not have enough access.
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unsigned int sys_sem_count_get(struct sys_sem *sem)
Get sys_sem’s value.

This routine returns the current value of sem.

Parameters
• sem – Address of the sys_sem.

Returns
Current value of sys_sem.

Mutexes

A mutex is a kernel object that implements a traditional reentrant mutex. A mutex allows mul-
tiple threads to safely share an associated hardware or software resource by ensuring mutually
exclusive access to the resource.

• Concepts

– Reentrant Locking

– Priority Inheritance

• Implementation

– Defining a Mutex

– Locking a Mutex

– Unlocking a Mutex

• Suggested Uses

• Configuration Options

• API Reference

• Futex API Reference

• User Mode Mutex API Reference

Concepts Any number of mutexes can be defined (limited only by available RAM). Each mutex
is referenced by its memory address.

A mutex has the following key properties:

• A lock count that indicates the number of times the mutex has been locked by the thread
that has locked it. A count of zero indicates that the mutex is unlocked.

• An owning thread that identifies the thread that has locked the mutex, when it is locked.

A mutex must be initialized before it can be used. This sets its lock count to zero.

A thread that needs to use a shared resource must first gain exclusive rights to access it by locking
the associated mutex. If the mutex is already locked by another thread, the requesting thread
may choose to wait for the mutex to be unlocked.

After locking a mutex, the thread may safely use the associated resource for as long as needed;
however, it is considered good practice to hold the lock for as short a time as possible to avoid
negatively impacting other threads that want to use the resource. When the thread no longer
needs the resource it must unlock the mutex to allow other threads to use the resource.
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Any number of threads may wait on a locked mutex simultaneously. When the mutex becomes
unlocked it is then locked by the highest-priority thread that has waited the longest.

Note

Mutex objects are not designed for use by ISRs.

Reentrant Locking A thread is permitted to lock a mutex it has already locked. This allows the
thread to access the associated resource at a point in its execution when the mutex may or may
not already be locked.

A mutex that is repeatedly locked by a thread must be unlocked an equal number of times before
the mutex becomes fully unlocked so it can be claimed by another thread.

Priority Inheritance The thread that has locked a mutex is eligible for priority inheritance.
This means the kernel will temporarily elevate the thread’s priority if a higher priority thread
begins waiting on the mutex. This allows the owning thread to complete its work and release
the mutex more rapidly by executing at the same priority as the waiting thread. Once the mutex
has been unlocked, the unlocking thread resets its priority to the level it had before locking that
mutex.

Note

The CONFIG_PRIORITY_CEILING configuration option limits how high the kernel can raise a
thread’s priority due to priority inheritance. The default value of 0 permits unlimited eleva-
tion.

The owning thread’s base priority is saved in the mutex when it obtains the lock. Each time a
higher priority thread waits on a mutex, the kernel adjusts the owning thread’s priority. When
the owning thread releases the lock (or if the high priority waiting thread times out), the kernel
restores the thread’s base priority from the value saved in the mutex.

This works well for priority inheritance as long as only one locked mutex is involved. However,
if multiple mutexes are involved, sub-optimal behavior will be observed if the mutexes are not
unlocked in the reverse order to which the owning thread’s priority was previously raised. Con-
sequently it is recommended that a thread lock only a single mutex at a time when multiple
mutexes are shared between threads of different priorities.

Implementation

Defining a Mutex A mutex is defined using a variable of type k_mutex. It must then be initial-
ized by calling k_mutex_init().

The following code defines and initializes a mutex.

struct k_mutex my_mutex;

k_mutex_init(&my_mutex);

Alternatively, a mutex can be defined and initialized at compile time by calling K_MUTEX_DEFINE.

The following code has the same effect as the code segment above.

K_MUTEX_DEFINE(my_mutex);
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Locking a Mutex A mutex is locked by calling k_mutex_lock().

The following code builds on the example above, and waits indefinitely for the mutex to become
available if it is already locked by another thread.

k_mutex_lock(&my_mutex, K_FOREVER);

The following code waits up to 100 milliseconds for the mutex to become available, and gives a
warning if the mutex does not become available.

if (k_mutex_lock(&my_mutex, K_MSEC(100)) == 0) {
/* mutex successfully locked */

} else {
printf("Cannot lock XYZ display\n");

}

Unlocking a Mutex A mutex is unlocked by calling k_mutex_unlock().

The following code builds on the example above, and unlocks the mutex that was previously
locked by the thread.

k_mutex_unlock(&my_mutex);

SuggestedUses Use a mutex to provide exclusive access to a resource, such as a physical device.

Configuration Options Related configuration options:

• CONFIG_PRIORITY_CEILING

API Reference

group mutex_apis

Defines

K_MUTEX_DEFINE(name)
Statically define and initialize a mutex.

The mutex can be accessed outside the module where it is defined using:

extern struct k_mutex <name>;

Parameters
• name – Name of the mutex.

Functions

int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.

This routine initializes a mutex object, prior to its first use.

Upon completion, the mutex is available and does not have an owner.

Parameters
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• mutex – Address of the mutex.

Return values
0 – Mutex object created

int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.

This routine locks mutex. If the mutex is locked by another thread, the calling thread
waits until the mutex becomes available or until a timeout occurs.

A thread is permitted to lock a mutex it has already locked. The operation completes
immediately and the lock count is increased by 1.

Mutexes may not be locked in ISRs.

Parameters
• mutex – Address of the mutex.

• timeout – Waiting period to lock the mutex, or one of the special values
K_NO_WAIT and K_FOREVER.

Return values
• 0 – Mutex locked.

• -EBUSY – Returned without waiting.

• -EAGAIN – Waiting period timed out.

int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.

This routine unlocks mutex. The mutex must already be locked by the calling thread.

The mutex cannot be claimed by another thread until it has been unlocked by the call-
ing thread as many times as it was previously locked by that thread.

Mutexes may not be unlocked in ISRs, as mutexes must only be manipulated in thread
context due to ownership and priority inheritance semantics.

Parameters
• mutex – Address of the mutex.

Return values
• 0 – Mutex unlocked.

• -EPERM – The current thread does not own the mutex

• -EINVAL – The mutex is not locked

struct k_mutex
#include <kernel.h> Mutex Structure.

Public Members

_wait_q_t wait_q
Mutex wait queue.

struct k_thread *owner
Mutex owner.
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uint32_t lock_count
Current lock count.

int owner_orig_prio
Original thread priority.

FutexAPI Reference k_futex is a lightweight mutual exclusion primitive designed to minimize
kernel involvement. Uncontended operation relies only on atomic access to shared memory.
k_futex are tracked as kernel objects and can live in user memory so that any access bypasses
the kernel object permission management mechanism.

group futex_apis

Functions

int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.

Tests that the supplied futex contains the expected value, and if so, goes to sleep until
some other thread calls k_futex_wake() on it.

Parameters
• futex – Address of the futex.

• expected – Expected value of the futex, if it is different the caller will not
wait on it.

• timeout – Waiting period on the futex, or one of the special values
K_NO_WAIT or K_FOREVER.

Return values
• -EACCES – Caller does not have read access to futex address.

• -EAGAIN – If the futex value did not match the expected parameter.

• -EINVAL – Futex parameter address not recognized by the kernel.

• -ETIMEDOUT – Thread woke up due to timeout and not a futex wakeup.

• 0 – if the caller went to sleep and was woken up. The caller should check
the futex’s value on wakeup to determine if it needs to block again.

int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.

Wake up the highest priority thread pending on the supplied futex, or wakeup all the
threads pending on the supplied futex, and the behavior depends on wake_all.

Parameters
• futex – Futex to wake up pending threads.

• wake_all – If true, wake up all pending threads; If false, wakeup the high-
est priority thread.

Return values
• -EACCES – Caller does not have access to the futex address.

• -EINVAL – Futex parameter address not recognized by the kernel.

• Number – of threads that were woken up.
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User Mode Mutex API Reference sys_mutex behaves almost exactly like k_mutex, with the
added advantage that a sys_mutex instance can reside in user memory. When user mode isn’t
enabled, sys_mutex behaves like k_mutex.

group user_mutex_apis

Defines

SYS_MUTEX_DEFINE(name)
Statically define and initialize a sys_mutex.

The mutex can be accessed outside the module where it is defined using:

extern struct sys_mutex <name>;

Route this to memory domains using K_APP_DMEM().

Parameters
• name – Name of the mutex.

Functions

static inline void sys_mutex_init(struct sys_mutex *mutex)
Initialize a mutex.

This routine initializes a mutex object, prior to its first use.

Upon completion, the mutex is available and does not have an owner.

This routine is only necessary to call when userspace is disabled and the mutex was
not created with SYS_MUTEX_DEFINE().

Parameters
• mutex – Address of the mutex.

static inline int sys_mutex_lock(struct sys_mutex *mutex, k_timeout_t timeout)
Lock a mutex.

This routine locks mutex. If the mutex is locked by another thread, the calling thread
waits until the mutex becomes available or until a timeout occurs.

A thread is permitted to lock a mutex it has already locked. The operation completes
immediately and the lock count is increased by 1.

Parameters
• mutex – Address of the mutex, which may reside in user memory

• timeout – Waiting period to lock the mutex, or one of the special values
K_NO_WAIT and K_FOREVER.

Return values
• 0 – Mutex locked.

• -EBUSY – Returned without waiting.

• -EAGAIN – Waiting period timed out.

• -EACCES – Caller has no access to provided mutex address

• -EINVAL – Provided mutex not recognized by the kernel
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static inline int sys_mutex_unlock(struct sys_mutex *mutex)
Unlock a mutex.

This routine unlocks mutex. The mutex must already be locked by the calling thread.

The mutex cannot be claimed by another thread until it has been unlocked by the call-
ing thread as many times as it was previously locked by that thread.

Parameters
• mutex – Address of the mutex, which may reside in user memory

Return values
• 0 – Mutex unlocked

• -EACCES – Caller has no access to provided mutex address

• -EINVAL – Provided mutex not recognized by the kernel or mutex wasn’t
locked

• -EPERM – Caller does not own the mutex

Condition Variables

A condition variable is a synchronization primitive that enables threads to wait until a particular
condition occurs.

• Concepts

• Implementation

– Defining a Condition Variable

– Waiting on a Condition Variable

– Signaling a Condition Variable

• Suggested Uses

• Configuration Options

• API Reference

Concepts Any number of condition variables can be defined (limited only by available RAM).
Each condition variable is referenced by its memory address.

To wait for a condition to become true, a thread can make use of a condition variable.

A condition variable is basically a queue of threads that threads can put themselves on when
some state of execution (i.e., some condition) is not as desired (by waiting on the condition). The
function k_condvar_wait() performs atomically the following steps;

1. Releases the last acquired mutex.

2. Puts the current thread in the condition variable queue.

Some other thread, when it changes said state, can then wake one (or more) of those waiting
threads and thus allow them to continue by signaling on the condition using k_condvar_signal()
or k_condvar_broadcast() then it:

1. Re-acquires the mutex previously released.

2. Returns from k_condvar_wait().
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A condition variable must be initialized before it can be used.

Implementation

Defining a Condition Variable A condition variable is defined using a variable of type
k_condvar. It must then be initialized by calling k_condvar_init().

The following code defines a condition variable:

struct k_condvar my_condvar;

k_condvar_init(&my_condvar);

Alternatively, a condition variable can be defined and initialized at compile time by calling
K_CONDVAR_DEFINE.

The following code has the same effect as the code segment above.

K_CONDVAR_DEFINE(my_condvar);

Waiting on a Condition Variable A thread can wait on a condition by calling
k_condvar_wait().

The following code waits on the condition variable.

K_MUTEX_DEFINE(mutex);
K_CONDVAR_DEFINE(condvar)

int main(void)
{

k_mutex_lock(&mutex, K_FOREVER);

/* block this thread until another thread signals cond. While
* blocked, the mutex is released, then re-acquired before this
* thread is woken up and the call returns.
*/

k_condvar_wait(&condvar, &mutex, K_FOREVER);
...
k_mutex_unlock(&mutex);

}

Signaling a Condition Variable A condition variable is signaled on by calling
k_condvar_signal() for one thread or by calling k_condvar_broadcast() for multiple threads.

The following code builds on the example above.

void worker_thread(void)
{

k_mutex_lock(&mutex, K_FOREVER);

/*
* Do some work and fulfill the condition
*/

...

...
k_condvar_signal(&condvar);
k_mutex_unlock(&mutex);

}
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Suggested Uses Use condition variables with a mutex to signal changing states (conditions)
from one thread to another thread. Condition variables are not the condition itself and they are
not events. The condition is contained in the surrounding programming logic.

Mutexes alone are not designed for use as a notification/synchronization mechanism. They are
meant to provide mutually exclusive access to a shared resource only.

Configuration Options Related configuration options:

• None.

Related code samples

Condition Variables
Manipulate condition variables in a multithreaded application.

API Reference

group condvar_apis

Defines

K_CONDVAR_DEFINE(name)
Statically define and initialize a condition variable.

The condition variable can be accessed outside the module where it is defined using:

extern struct k_condvar <name>;

Parameters
• name – Name of the condition variable.

Functions

int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.

Parameters
• condvar – pointer to a k_condvar structure

Return values
0 – Condition variable created successfully

int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.

Parameters
• condvar – pointer to a k_condvar structure

Return values
0 – On success
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int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.

Parameters
• condvar – pointer to a k_condvar structure

Returns
An integer with number of woken threads on success

int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t
timeout)

Waits on the condition variable releasing the mutex lock.

Atomically releases the currently owned mutex, blocks the current thread waiting on
the condition variable specified by condvar, and finally acquires the mutex again.

The waiting thread unblocks only after another thread calls k_condvar_signal, or
k_condvar_broadcast with the same condition variable.

Parameters
• condvar – pointer to a k_condvar structure

• mutex – Address of the mutex.

• timeout – Waiting period for the condition variable or one of the special
values K_NO_WAIT and K_FOREVER.

Return values
• 0 – On success

• -EAGAIN – Waiting period timed out.

Events

An event object is a kernel object that implements traditional events.

• Concepts

• Implementation

– Defining an Event Object

– Setting Events

– Posting Events

– Waiting for Events

• Suggested Uses

• Configuration Options

• API Reference

Concepts Any number of event objects can be defined (limited only by available RAM). Each
event object is referenced by its memory address. One or more threads may wait on an event
object until the desired set of events has been delivered to the event object. When new events
are delivered to the event object, all threads whose wait conditions have been satisfied become
ready simultaneously.

An event object has the following key properties:
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• A 32-bit value that tracks which events have been delivered to it.

An event object must be initialized before it can be used.

Events may be delivered by a thread or an ISR. When delivering events, the events may either
overwrite the existing set of events or add to them in a bitwise fashion. When overwriting the
existing set of events, this is referred to as setting. When adding to them in a bitwise fashion,
this is referred to as posting. Both posting and setting events have the potential to fulfill match
conditions of multiple threads waiting on the event object. All threads whose match conditions
have been met are made active at the same time.

Threads may wait on one or more events. They may either wait for all of the requested events,
or for any of them. Furthermore, threads making a wait request have the option of resetting the
current set of events tracked by the event object prior to waiting. Care must be taken with this
option when multiple threads wait on the same event object.

Note

The kernel does allow an ISR to query an event object, however the ISR must not attempt to
wait for the events.

Implementation

Defining an Event Object An event object is defined using a variable of type k_event. It must
then be initialized by calling k_event_init().

The following code defines an event object.

struct k_event my_event;

k_event_init(&my_event);

Alternatively, an event object can be defined and initialized at compile time by calling
K_EVENT_DEFINE.

The following code has the same effect as the code segment above.

K_EVENT_DEFINE(my_event);

Setting Events Events in an event object are set by calling k_event_set().

The following code builds on the example above, and sets the events tracked by the event object
to 0x001.

void input_available_interrupt_handler(void *arg)
{

/* notify threads that data is available */

k_event_set(&my_event, 0x001);

...
}

Posting Events Events are posted to an event object by calling k_event_post().

The following code builds on the example above, and posts a set of events to the event object.
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void input_available_interrupt_handler(void *arg)
{

...

/* notify threads that more data is available */

k_event_post(&my_event, 0x120);

...
}

Waiting for Events Threads wait for events by calling k_event_wait().

The following code builds on the example above, and waits up to 50 milliseconds for any of the
specified events to be posted. A warning is issued if none of the events are posted in time.

void consumer_thread(void)
{

uint32_t events;

events = k_event_wait(&my_event, 0xFFF, false, K_MSEC(50));
if (events == 0) {

printk("No input devices are available!");
} else {

/* Access the desired input device(s) */
...

}
...

}

Alternatively, the consumer thread may desire to wait for all the events before continuing.

void consumer_thread(void)
{

uint32_t events;

events = k_event_wait_all(&my_event, 0x121, false, K_MSEC(50));
if (events == 0) {

printk("At least one input device is not available!");
} else {

/* Access the desired input devices */
...

}
...

}

Suggested Uses Use events to indicate that a set of conditions have occurred.

Use events to pass small amounts of data to multiple threads at once.

Configuration Options Related configuration options:

• CONFIG_EVENTS

API Reference

group event_apis

3.1. Kernel Services 417



Zephyr Project Documentation, Release 3.7.99

Defines

K_EVENT_DEFINE(name)
Statically define and initialize an event object.

The event can be accessed outside the module where it is defined using:

extern struct k_event <name>;

Parameters
• name – Name of the event object.

Functions

void k_event_init(struct k_event *event)
Initialize an event object.

This routine initializes an event object, prior to its first use.

Parameters
• event – Address of the event object.

uint32_t k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.

This routine posts one or more events to an event object. All tasks waiting on the
event object event whose waiting conditions become met by this posting immediately
unpend.

Posting differs from setting in that posted events are merged together with the current
set of events tracked by the event object.

Parameters
• event – Address of the event object

• events – Set of events to post to event

Return values
Previous – value of the events in event

uint32_t k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.

This routine sets the events stored in event object to the specified value. All tasks wait-
ing on the event object event whose waiting conditions become met by this immedi-
ately unpend.

Setting differs from posting in that set events replace the current set of events tracked
by the event object.

Parameters
• event – Address of the event object

• events – Set of events to set in event

Return values
Previous – value of the events in event
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uint32_t k_event_set_masked(struct k_event *event, uint32_t events, uint32_t
events_mask)

Set or clear the events in an event object.

This routine sets the events stored in event object to the specified value. All tasks wait-
ing on the event object event whose waiting conditions become met by this immedi-
ately unpend. Unlike k_event_set, this routine allows specific event bits to be set and
cleared as determined by the mask.

Parameters
• event – Address of the event object

• events – Set of events to set/clear in event

• events_mask – Mask to be applied to events

Return values
Previous – value of the events in events_mask

uint32_t k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.

This routine clears (resets) the specified events stored in an event object.

Parameters
• event – Address of the event object

• events – Set of events to clear in event

Return values
Previous – value of the events in event

uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t
timeout)

Wait for any of the specified events.

This routine waits on event object event until any of the specified events have been
delivered to the event object, or the maximum wait time timeout has expired. A thread
may wait on up to 32 distinctly numbered events that are expressed as bits in a single
32-bit word.

Note

The caller must be careful when resetting if there are multiple threads waiting for
the event object event.

Parameters
• event – Address of the event object

• events – Set of desired events on which to wait

• reset – If true, clear the set of events tracked by the event object before
waiting. If false, do not clear the events.

• timeout – Waiting period for the desired set of events or one of the special
values K_NO_WAIT and K_FOREVER.

Return values
• set – of matching events upon success

• 0 – if matching events were not received within the specified time
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uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t
timeout)

Wait for all of the specified events.

This routine waits on event object event until all of the specified events have been
delivered to the event object, or the maximum wait time timeout has expired. A thread
may wait on up to 32 distinctly numbered events that are expressed as bits in a single
32-bit word.

Note

The caller must be careful when resetting if there are multiple threads waiting for
the event object event.

Parameters
• event – Address of the event object

• events – Set of desired events on which to wait

• reset – If true, clear the set of events tracked by the event object before
waiting. If false, do not clear the events.

• timeout – Waiting period for the desired set of events or one of the special
values K_NO_WAIT and K_FOREVER.

Return values
• set – of matching events upon success

• 0 – if matching events were not received within the specified time

static inline uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
Test the events currently tracked in the event object.

Parameters
• event – Address of the event object

• events_mask – Set of desired events to test

Return values
Current – value of events in events_mask

struct k_event
#include <kernel.h> Event Structure.

Symmetric Multiprocessing

On multiprocessor architectures, Zephyr supports the use of multiple physical CPUs running
Zephyr application code. This support is “symmetric” in the sense that no specific CPU is treated
specially by default. Any processor is capable of running any Zephyr thread, with access to all
standard Zephyr APIs supported.

No special application code needs to be written to take advantage of this feature. If there are two
Zephyr application threads runnable on a supported dual processor device, they will both run
simultaneously.

SMP configuration is controlled under the CONFIG_SMP kconfig variable. This must be set to “y”
to enable SMP features, otherwise a uniprocessor kernel will be built. In general the platform
default will have enabled this anywhere it’s supported. When enabled, the number of physical
CPUs available is visible at build time as CONFIG_MP_MAX_NUM_CPUS. Likewise, the default for this
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will be the number of available CPUs on the platform and it is not expected that typical apps will
change it. But it is legal and supported to set this to a smaller (but obviously not larger) number
for special purposes (e.g. for testing, or to reserve a physical CPU for running non-Zephyr code).

Synchronization At the application level, core Zephyr IPC and synchronization primitives all
behave identically under an SMP kernel. For example semaphores used to implement blocking
mutual exclusion continue to be a proper application choice.

At the lowest level, however, Zephyr code has often used the irq_lock()/irq_unlock() primi-
tives to implement fine grained critical sections using interrupt masking. These APIs continue to
work via an emulation layer (see below), but the masking technique does not: the fact that your
CPU will not be interrupted while you are in your critical section says nothing about whether a
different CPU will be running simultaneously and be inspecting or modifying the same data!

Spinlocks SMP systems provide a more constrained k_spin_lock() primitive that not only
masks interrupts locally, as done by irq_lock(), but also atomically validates that a shared lock
variable has been modified before returning to the caller, “spinning” on the check if needed
to wait for the other CPU to exit the lock. The default Zephyr implementation of k_spin_lock()
and k_spin_unlock() is built on top of the pre-existing atomic_ layer (itself usually implemented
using compiler intrinsics), though facilities exist for architectures to define their own for perfor-
mance reasons.

One important difference between IRQ locks and spinlocks is that the earlier API was naturally
recursive: the lock was global, so it was legal to acquire a nested lock inside of a critical section.
Spinlocks are separable: you can have many locks for separate subsystems or data structures,
preventing CPUs from contending on a single global resource. But that means that spinlocks
must not be used recursively. Code that holds a specific lock must not try to re-acquire it or
it will deadlock (it is perfectly legal to nest distinct spinlocks, however). A validation layer is
available to detect and report bugs like this.

When used on a uniprocessor system, the data component of the spinlock (the atomic lock vari-
able) is unnecessary and elided. Except for the recursive semantics above, spinlocks in single-
CPU contexts produce identical code to legacy IRQ locks. In fact the entirety of the Zephyr core
kernel has now been ported to use spinlocks exclusively.

Legacy irq_lock() emulation For the benefit of applications written to the uniprocessor lock-
ing API, irq_lock() and irq_unlock() continue to work compatibly on SMP systems with iden-
tical semantics to their legacy versions. They are implemented as a single global spinlock, with a
nesting count and the ability to be atomically reacquired on context switch into locked threads.
The kernel will ensure that only one thread across all CPUs can hold the lock at any time, that it
is released on context switch, and that it is re-acquired when necessary to restore the lock state
when a thread is switched in. Other CPUs will spin waiting for the release to happen.

The overhead involved in this process has measurable performance impact, however. Unlike
uniprocessor apps, SMP apps using irq_lock() are not simply invoking a very short (often ~1
instruction) interrupt masking operation. That, and the fact that the IRQ lock is global, means
that code expecting to be run in an SMP context should be using the spinlock API wherever
possible.

CPU Mask It is often desirable for real time applications to deliberately partition work across
physical CPUs instead of relying solely on the kernel scheduler to decide on which threads to
execute. Zephyr provides an API, controlled by the CONFIG_SCHED_CPU_MASK kconfig variable,
which can associate a specific set of CPUs with each thread, indicating on which CPUs it can run.

By default, new threads can run on any CPU. Calling k_thread_cpu_mask_disable() with
a particular CPU ID will prevent that thread from running on that CPU in the fu-
ture. Likewise k_thread_cpu_mask_enable() will re-enable execution. There are also
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k_thread_cpu_mask_clear() and k_thread_cpu_mask_enable_all() APIs available for conve-
nience. For obvious reasons, these APIs are illegal if called on a runnable thread. The thread
must be blocked or suspended, otherwise an -EINVAL will be returned.

Note that when this feature is enabled, the scheduler algorithm involved in doing the per-CPU
mask test requires that the list be traversed in full. The kernel does not keep a per-CPU run
queue. That means that the performance benefits from the CONFIG_SCHED_SCALABLE and CON-
FIG_SCHED_MULTIQ scheduler backends cannot be realized. CPU mask processing is available
only when CONFIG_SCHED_DUMB is the selected backend. This requirement is enforced in the con-
figuration layer.

SMP Boot Process A Zephyr SMP kernel begins boot identically to a uniprocessor kernel. Aux-
iliary CPUs begin in a disabled state in the architecture layer. All standard kernel initialization,
including device initialization, happens on a single CPU before other CPUs are brought online.

Just before entering the application main() function, the kernel calls z_smp_init() to launch the
SMP initialization process. This enumerates over the configured CPUs, calling into the architec-
ture layer using arch_cpu_start() for each one. This function is passed a memory region to use
as a stack on the foreign CPU (in practice it uses the area that will become that CPU’s interrupt
stack), the address of a local smp_init_top() callback function to run on that CPU, and a pointer
to a “start flag” address which will be used as an atomic signal.

The local SMP initialization (smp_init_top()) on each CPU is then invoked by the architecture
layer. Note that interrupts are still masked at this point. This routine is responsible for call-
ing smp_timer_init() to set up any needed stat in the timer driver. On many architectures the
timer is a per-CPU device and needs to be configured specially on auxiliary CPUs. Then it waits
(spinning) for the atomic “start flag” to be released in the main thread, to guarantee that all SMP
initialization is complete before any Zephyr application code runs, and finally calls z_swap() to
transfer control to the appropriate runnable thread via the standard scheduler API.

Interprocessor Interrupts When running in multiprocessor environments, it is occasionally
the case that state modified on the local CPU needs to be synchronously handled on a different
processor.

One example is the Zephyr k_thread_abort() API, which cannot return until the thread that
had been aborted is no longer runnable. If it is currently running on another CPU, that becomes
difficult to implement.

Another is low power idle. It is a firm requirement on many devices that system idle be imple-
mented using a low-power mode with as many interrupts (including periodic timer interrupts)
disabled or deferred as is possible. If a CPU is in such a state, and on another CPU a thread
becomes runnable, the idle CPU has no way to “wake up” to handle the newly-runnable load.

So where possible, Zephyr SMP architectures should implement an interprocessor in-
terrupt. The current framework is very simple: the architecture provides at least a
arch_sched_broadcast_ipi() call, which when invoked will flag an interrupt on all CPUs
(except the current one, though that is allowed behavior). If the architecture supports
directed IPIs (see CONFIG_ARCH_HAS_DIRECTED_IPIS), then the architecture also provides a
arch_sched_directed_ipi() call, which when invoked will flag an interrupt on the specified
CPUs. When an interrupt is flagged on the CPUs, the z_sched_ipi() function implemented in
the scheduler will get invoked on those CPUs. The expectation is that these APIs will evolve over
time to encompass more functionality (e.g. cross-CPU calls), and that the scheduler-specific calls
here will be implemented in terms of a more general framework.

Note that not all SMP architectures will have a usable IPI mechanism (either missing, or just un-
documented/unimplemented). In those cases Zephyr provides fallback behavior that is correct,
but perhaps suboptimal.

Using this, k_thread_abort() becomes only slightly more complicated in SMP: for the case where
a thread is actually running on another CPU (we can detect this atomically inside the scheduler),
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Fig. 1: Example SMP initialization process, showing a configuration with two CPUs and two app
threads which begin operating simultaneously.
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we broadcast an IPI and spin, waiting for the thread to either become “DEAD” or for it to re-enter
the queue (in which case we terminate it the same way we would have in uniprocessor mode).
Note that the “aborted” check happens on any interrupt exit, so there is no special handling
needed in the IPI per se. This allows us to implement a reasonable fallback when IPI is not
available: we can simply spin, waiting until the foreign CPU receives any interrupt, though this
may be a much longer time!

Likewise idle wakeups are trivially implementable with an empty IPI handler. If a thread is
added to an empty run queue (i.e. there may have been idle CPUs), we broadcast an IPI. A foreign
CPU will then be able to see the new thread when exiting from the interrupt and will switch to
it if available.

Without an IPI, however, a low power idle that requires an interrupt will not work to syn-
chronously run new threads. The workaround in that case is more invasive: Zephyr will not
enter the system idle handler and will instead spin in its idle loop, testing the scheduler state
at high frequency (not spinning on it though, as that would involve severe lock contention) for
new threads. The expectation is that power constrained SMP applications are always going to
provide an IPI, and this code will only be used for testing purposes or on systems without power
consumption requirements.

IPI Cascades The kernel can not control the order in which IPIs are processed by the CPUs
in the system. In general, this is not an issue and a single set of IPIs is sufficient to trigger a
reschedule on the N CPUs that results with them scheduling the highest N priority ready threads
to execute. When CPU masking is used, there may be more than one valid set of threads (not to
be confused with an optimal set of threads) that can be scheduled on the N CPUs and a single set
of IPIs may be insufficient to result in any of these valid sets.

Note

When CPU masking is not in play, the optimal set of threads is the same as the valid set of
threads. However when CPU masking is in play, there may be more than one valid set–one of
which may be optimal.

To better illustrate the distinction, consider a 2-CPU system with ready threads T1 and T2 at
priorities 1 and 2 respectively. Let T2 be pinned to CPU0 and T1 not be pinned. If CPU0 is
executing T2 and CPU1 executing T1, then this set is is both valid and optimal. However, if
CPU0 is executing T1 and CPU1 is idling, then this too would be valid though not optimal.

In those cases where a single set of IPIs is not sufficient to generate a valid set, the resulting set
of executing threads are expected to be close to a valid set, and subsequent IPIs can generally be
expected to correct the situation soon. However, for cases where neither the approximation nor
the delay are acceptable, enabling CONFIG_SCHED_IPI_CASCADE will allow the kernel to generate
cascading IPIs until the kernel has selected a valid set of ready threads for the CPUs.

There are three types of costs/penalties associated with the IPI cascades–and for these reasons
they are disabled by default. The first is a cost incurred by the CPU producing the IPI when a
new thread preempts the old thread as checks must be done to compare the old thread against
the threads executing on the other CPUs. The second is a cost incurred by the CPUs receiving the
IPIs as they must be processed. The third is the apparent sputtering of a thread as it “winks in”
and then “winks out” due to cascades stemming from the aforementioned first cost.

SMP Kernel Internals In general, Zephyr kernel code is SMP-agnostic and, like application
code, will work correctly regardless of the number of CPUs available. But in a few areas there
are notable changes in structure or behavior.
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Per-CPU data Many elements of the core kernel data need to be implemented for each CPU
in SMP mode. For example, the _current thread pointer obviously needs to reflect what is run-
ning locally, there are many threads running concurrently. Likewise a kernel-provided interrupt
stack needs to be created and assigned for each physical CPU, as does the interrupt nesting count
used to detect ISR state.

These fields are now moved into a separate struct _cpu instance within the _kernel struct, which
has a cpus[] array indexed by ID. Compatibility fields are provided for legacy uniprocessor code
trying to access the fields of cpus[0] using the older syntax and assembly offsets.

Note that an important requirement on the architecture layer is that the pointer to this CPU
struct be available rapidly when in kernel context. The expectation is that arch_curr_cpu()
will be implemented using a CPU-provided register or addressing mode that can store this value
across arbitrary context switches or interrupts and make it available to any kernel-mode code.

Similarly, where on a uniprocessor system Zephyr could simply create a global “idle thread” at
the lowest priority, in SMP we may need one for each CPU. This makes the internal predicate test
for “_is_idle()” in the scheduler, which is a hot path performance environment, more complicated
than simply testing the thread pointer for equality with a known static variable. In SMP mode,
idle threads are distinguished by a separate field in the thread struct.

Switch-based context switching The traditional Zephyr context switch primitive has been
z_swap(). Unfortunately, this function takes no argument specifying a thread to switch to. The
expectation has always been that the scheduler has already made its preemption decision when
its state was last modified and cached the resulting “next thread” pointer in a location where
architecture context switch primitives can find it via a simple struct offset. That technique will
not work in SMP, because the other CPU may have modified scheduler state since the current
CPU last exited the scheduler (for example: it might already be running that cached thread!).

Instead, the SMP “switch to” decision needs to be made synchronously with the swap call, and
as we don’t want per-architecture assembly code to be handling scheduler internal state, Zephyr
requires a somewhat lower-level context switch primitives for SMP systems: arch_switch() is
always called with interrupts masked, and takes exactly two arguments. The first is an opaque
(architecture defined) handle to the context to which it should switch, and the second is a pointer
to such a handle into which it should store the handle resulting from the thread that is being
switched out. The kernel then implements a portable z_swap() implementation on top of this
primitive which includes the relevant scheduler logic in a location where the architecture doesn’t
need to understand it.

Similarly, on interrupt exit, switch-based architectures are expected to call
z_get_next_switch_handle() to retrieve the next thread to run from the scheduler. The
argument to z_get_next_switch_handle() is either the interrupted thread’s “handle” reflecting
the same opaque type used by arch_switch(), or NULL if that thread cannot be released to
the scheduler just yet. The choice between a handle value or NULL depends on the way CPU
interrupt mode is implemented.

Architectures with a large CPU register file would typically preserve only the caller-saved
registers on the current thread’s stack when interrupted in order to minimize interrupt la-
tency, and preserve the callee-saved registers only when arch_switch() is called to min-
imize context switching latency. Such architectures must use NULL as the argument to
z_get_next_switch_handle() to determine if there is a new thread to schedule, and follow
through with their own arch_switch() or derivative if so, or directly leave interrupt mode other-
wise. In the former case it is up to that switch code to store the handle resulting from the thread
that is being switched out in that thread’s “switch_handle” field after its context has fully been
saved.

Architectures whose entry in interrupt mode already preserves the entire thread state may pass
that thread’s handle directly to z_get_next_switch_handle() and be done in one step.

Note that while SMP requires CONFIG_USE_SWITCH, the reverse is not true. A uniprocessor ar-
chitecture built with CONFIG_SMP set to No might still decide to implement its context switching
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using arch_switch().

API Reference

group spinlock_apis
Spinlock APIs.

Defines

K_SPINLOCK_BREAK
Leaves a code block guarded with K_SPINLOCK after releasing the lock.

See K_SPINLOCK for details.

K_SPINLOCK(lck)
Guards a code block with the given spinlock, automatically acquiring the lock before
executing the code block.

The lock will be released either when reaching the end of the code block or when
leaving the block with K_SPINLOCK_BREAK.

Example usage:

K_SPINLOCK(&mylock) {

...execute statements with the lock held...

if (some_condition) {
...release the lock and leave the guarded section prematurely:
K_SPINLOCK_BREAK;

}

...execute statements with the lock held...

}

Behind the scenes this pattern expands to a for-loop whose body is executed exactly
once:

for (k_spinlock_key_t key = k_spin_lock(&mylock); ...; k_spin_unlock(&mylock,␣
↪→key)) {

...
}

Note

In user mode the spinlock must be placed in memory accessible to the application,
see K_APP_DMEM and K_APP_BMEM macros for details.

Warning

The code block must execute to its end or be left by calling K_SPINLOCK_BREAK.
Otherwise, e.g. if exiting the block with a break, goto or return statement, the spin-
lock will not be released on exit.

Parameters
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• lck – Spinlock used to guard the enclosed code block.

Typedefs

typedef struct z_spinlock_key k_spinlock_key_t
Spinlock key type.

This type defines a “key” value used by a spinlock implementation to store the system
interrupt state at the time of a call to k_spin_lock(). It is expected to be passed to a
matching k_spin_unlock().

This type is opaque and should not be inspected by application code.

Functions

ALWAYS_INLINE static k_spinlock_key_t k_spin_lock(struct k_spinlock *l)
Lock a spinlock.

This routine locks the specified spinlock, returning a key handle representing inter-
rupt state needed at unlock time. Upon returning, the calling thread is guaranteed not
to be suspended or interrupted on its current CPU until it calls k_spin_unlock(). The im-
plementation guarantees mutual exclusion: exactly one thread on one CPU will return
from k_spin_lock() at a time. Other CPUs trying to acquire a lock already held by an-
other CPU will enter an implementation-defined busy loop (“spinning”) until the lock
is released.

Separate spin locks may be nested. It is legal to lock an (unlocked) spin lock while
holding a different lock. Spin locks are not recursive, however: an attempt to acquire
a spin lock that the CPU already holds will deadlock.

In circumstances where only one CPU exists, the behavior of k_spin_lock() remains
as specified above, though obviously no spinning will take place. Implementations
may be free to optimize in uniprocessor contexts such that the locking reduces to an
interrupt mask operation.

Parameters
• l – A pointer to the spinlock to lock

Returns
A key value that must be passed to k_spin_unlock() when the lock is re-
leased.

ALWAYS_INLINE static int k_spin_trylock(struct k_spinlock *l, k_spinlock_key_t *k)
Attempt to lock a spinlock.

This routine makes one attempt to lock l. If it is successful, then it will store the key
into k.

See also

k_spin_lock
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See also

k_spin_unlock

Parameters
• l – [in] A pointer to the spinlock to lock

• k – [out] A pointer to the spinlock key

Return values
• 0 – on success

• -EBUSY – if another thread holds the lock

ALWAYS_INLINE static void k_spin_unlock(struct k_spinlock *l, k_spinlock_key_t key)
Unlock a spin lock.

This releases a lock acquired by k_spin_lock(). After this function is called, any CPU will
be able to acquire the lock. If other CPUs are currently spinning inside k_spin_lock()
waiting for this lock, exactly one of them will return synchronously with the lock held.

Spin locks must be properly nested. A call to k_spin_unlock() must be made on the lock
object most recently locked using k_spin_lock(), using the key value that it returned.
Attempts to unlock mis-nested locks, or to unlock locks that are not held, or to passing
a key parameter other than the one returned from k_spin_lock(), are illegal. When
CONFIG_SPIN_VALIDATE is set, some of these errors can be detected by the framework.

Parameters
• l – A pointer to the spinlock to release

• key – The value returned from k_spin_lock() when this lock was acquired

struct k_spinlock
#include <spinlock.h> Kernel Spin Lock.

This struct defines a spin lock record on which CPUs can wait with k_spin_lock(). Any
number of spinlocks may be defined in application code.

3.1.2 Data Passing

These pages cover kernel objects which can be used to pass data between threads and ISRs.

The following table summarizes their high-level features.
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Object Bidirec-
tional?

Data
struc-
ture

Data
item
size

Data
Align-
ment

ISRs can
receive?

ISRs can
send?

Overrun han-
dling

FIFO No Queue Arbi-
trary
[1]

4 B [2] Yes [3] Yes N/A

LIFO No Queue Arbi-
trary
[1]

4 B [2] Yes [3] Yes N/A

Stack No Array Word Word Yes [3] Yes Undefined be-
havior

Message
queue

No Ring
buffer

Arbi-
trary
[6]

Power
of two

Yes [3] Yes Pend thread or
return -errno

Mailbox Yes Queue Arbi-
trary
[1]

Arbi-
trary

No No N/A

Pipe No Ring
buffer
[4]

Arbi-
trary

Arbi-
trary

Yes [5] Yes [5] Pend thread or
return -errno

[1] Callers allocate space for queue overhead in the data elements themselves.

[2] Objects added with k_fifo_alloc_put() and k_lifo_alloc_put() do not have alignment constraints,
but use temporary memory from the calling thread’s resource pool.

[3] ISRs can receive only when passing K_NO_WAIT as the timeout argument.

[4] Optional.

[5] ISRS can send and/or receive only when passing K_NO_WAIT as the timeout argument.

[6] Data item size must be a multiple of the data alignment.

Queues

A Queue in Zephyr is a kernel object that implements a traditional queue, allowing threads and
ISRs to add and remove data items of any size. The queue is similar to a FIFO and serves as the
underlying implementation for both k_fifo and k_lifo. For more information on usage see k_fifo.

Configuration Options Related configuration options:

• None

API Reference

group queue_apis

Defines

K_QUEUE_DEFINE(name)
Statically define and initialize a queue.

The queue can be accessed outside the module where it is defined using:
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extern struct k_queue <name>;

Parameters
• name – Name of the queue.

Functions

void k_queue_init(struct k_queue *queue)
Initialize a queue.

This routine initializes a queue object, prior to its first use.

Parameters
• queue – Address of the queue.

void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.

This routine causes first thread pending on queue, if any, to return from k_queue_get()
call with NULL value (as if timeout expired). If the queue is being waited on by k_poll(),
it will return with -EINTR and K_POLL_STATE_CANCELLED state (and per above, sub-
sequent k_queue_get() will return NULL).

Function properties (list may not be complete)
isr-ok

Parameters
• queue – Address of the queue.

void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.

This routine appends a data item to queue. A queue data item must be aligned on a
word boundary, and the first word of the item is reserved for the kernel’s use.

Function properties (list may not be complete)
isr-ok

Parameters
• queue – Address of the queue.

• data – Address of the data item.

int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.

This routine appends a data item to queue. There is an implicit memory allocation to
create an additional temporary bookkeeping data structure from the calling thread’s
resource pool, which is automatically freed when the item is removed. The data itself
is not copied.

Function properties (list may not be complete)
isr-ok
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Parameters
• queue – Address of the queue.

• data – Address of the data item.

Return values
• 0 – on success

• -ENOMEM – if there isn’t sufficient RAM in the caller’s resource pool

void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.

This routine prepends a data item to queue. A queue data item must be aligned on a
word boundary, and the first word of the item is reserved for the kernel’s use.

Function properties (list may not be complete)
isr-ok

Parameters
• queue – Address of the queue.

• data – Address of the data item.

int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.

This routine prepends a data item to queue. There is an implicit memory allocation to
create an additional temporary bookkeeping data structure from the calling thread’s
resource pool, which is automatically freed when the item is removed. The data itself
is not copied.

Function properties (list may not be complete)
isr-ok

Parameters
• queue – Address of the queue.

• data – Address of the data item.

Return values
• 0 – on success

• -ENOMEM – if there isn’t sufficient RAM in the caller’s resource pool

void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.

This routine inserts a data item to queue after previous item. A queue data item must be
aligned on a word boundary, and the first word of the item is reserved for the kernel’s
use.

Function properties (list may not be complete)
isr-ok

Parameters
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• queue – Address of the queue.

• prev – Address of the previous data item.

• data – Address of the data item.

int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.

This routine adds a list of data items to queue in one operation. The data items must
be in a singly-linked list, with the first word in each data item pointing to the next data
item; the list must be NULL-terminated.

Function properties (list may not be complete)
isr-ok

Parameters
• queue – Address of the queue.

• head – Pointer to first node in singly-linked list.

• tail – Pointer to last node in singly-linked list.

Return values
• 0 – on success

• -EINVAL – on invalid supplied data

int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.

This routine adds a list of data items to queue in one operation. The data items must
be in a singly-linked list implemented using a sys_slist_t object. Upon completion, the
original list is empty.

Function properties (list may not be complete)
isr-ok

Parameters
• queue – Address of the queue.

• list – Pointer to sys_slist_t object.

Return values
• 0 – on success

• -EINVAL – on invalid data

void *k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.

This routine removes first data item from queue. The first word of the data item is
reserved for the kernel’s use.

Function properties (list may not be complete)
isr-ok
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Note

timeout must be set to K_NO_WAIT if called from ISR.

Parameters
• queue – Address of the queue.

• timeout – Waiting period to obtain a data item, or one of the special val-
ues K_NO_WAIT and K_FOREVER.

Returns
Address of the data item if successful; NULL if returned without waiting,
or waiting period timed out.

bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.

This routine removes data item from queue. The first word of the data item
is reserved for the kernel’s use. Removing elements from k_queue rely on
sys_slist_find_and_remove which is not a constant time operation.

Function properties (list may not be complete)
isr-ok

Note

timeout must be set to K_NO_WAIT if called from ISR.

Parameters
• queue – Address of the queue.

• data – Address of the data item.

Returns
true if data item was removed

bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it’s not present already.

This routine appends data item to queue. The first word of the data item is reserved
for the kernel’s use. Appending elements to k_queue relies on sys_slist_is_node_in_list
which is not a constant time operation.

Function properties (list may not be complete)
isr-ok

Parameters
• queue – Address of the queue.

• data – Address of the data item.

Returns
true if data item was added, false if not
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int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.

Note that the data might be already gone by the time this function returns if other
threads are also trying to read from the queue.

Function properties (list may not be complete)
isr-ok

Parameters
• queue – Address of the queue.

Returns
Non-zero if the queue is empty.

Returns
0 if data is available.

void *k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.

Return element from the head of queue without removing it.

Parameters
• queue – Address of the queue.

Returns
Head element, or NULL if queue is empty.

void *k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.

Return element from the tail of queue without removing it.

Parameters
• queue – Address of the queue.

Returns
Tail element, or NULL if queue is empty.

FIFOs

A FIFO is a kernel object that implements a traditional first in, first out (FIFO) queue, allowing
threads and ISRs to add and remove data items of any size.

• Concepts

• Implementation

– Defining a FIFO

– Writing to a FIFO

– Reading from a FIFO

• Suggested Uses

• Configuration Options

• API Reference
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Concepts Any number of FIFOs can be defined (limited only by available RAM). Each FIFO is
referenced by its memory address.

A FIFO has the following key properties:

• A queue of data items that have been added but not yet removed. The queue is imple-
mented as a simple linked list.

A FIFO must be initialized before it can be used. This sets its queue to empty.

FIFO data items must be aligned on a word boundary, as the kernel reserves the first word of an
item for use as a pointer to the next data item in the queue. Consequently, a data item that holds
N bytes of application data requires N+4 (or N+8) bytes of memory. There are no alignment or
reserved space requirements for data items if they are added with k_fifo_alloc_put(), instead
additional memory is temporarily allocated from the calling thread’s resource pool.

Note

FIFO data items are restricted to single active instance across all FIFO data queues. Any at-
tempt to re-add a FIFO data item to a queue before it has been removed from the queue to
which it was previously added will result in undefined behavior.

A data item may be added to a FIFO by a thread or an ISR. The item is given directly to a waiting
thread, if one exists; otherwise the item is added to the FIFO’s queue. There is no limit to the
number of items that may be queued.

A data item may be removed from a FIFO by a thread. If the FIFO’s queue is empty a thread
may choose to wait for a data item to be given. Any number of threads may wait on an empty
FIFO simultaneously. When a data item is added, it is given to the highest priority thread that
has waited longest.

Note

The kernel does allow an ISR to remove an item from a FIFO, however the ISR must not at-
tempt to wait if the FIFO is empty.

If desired, multiple data items can be added to a FIFO in a single operation if they are chained
together into a singly-linked list. This capability can be useful if multiple writers are adding sets
of related data items to the FIFO, as it ensures the data items in each set are not interleaved with
other data items. Adding multiple data items to a FIFO is also more efficient than adding them
one at a time, and can be used to guarantee that anyone who removes the first data item in a set
will be able to remove the remaining data items without waiting.

Implementation

Defining a FIFO A FIFO is defined using a variable of type k_fifo. It must then be initialized
by calling k_fifo_init().

The following code defines and initializes an empty FIFO.

struct k_fifo my_fifo;

k_fifo_init(&my_fifo);

Alternatively, an empty FIFO can be defined and initialized at compile time by calling
K_FIFO_DEFINE.

The following code has the same effect as the code segment above.

3.1. Kernel Services 435



Zephyr Project Documentation, Release 3.7.99

K_FIFO_DEFINE(my_fifo);

Writing to a FIFO A data item is added to a FIFO by calling k_fifo_put().

The following code builds on the example above, and uses the FIFO to send data to one or more
consumer threads.

struct data_item_t {
void *fifo_reserved; /* 1st word reserved for use by FIFO */
...

};

struct data_item_t tx_data;

void producer_thread(int unused1, int unused2, int unused3)
{

while (1) {
/* create data item to send */
tx_data = ...

/* send data to consumers */
k_fifo_put(&my_fifo, &tx_data);

...
}

}

Additionally, a singly-linked list of data items can be added to a FIFO by calling
k_fifo_put_list() or k_fifo_put_slist().

Finally, a data item can be added to a FIFO with k_fifo_alloc_put(). With this API, there is no
need to reserve space for the kernel’s use in the data item, instead additional memory will be
allocated from the calling thread’s resource pool until the item is read.

Reading from a FIFO A data item is removed from a FIFO by calling k_fifo_get().

The following code builds on the example above, and uses the FIFO to obtain data items from a
producer thread, which are then processed in some manner.

void consumer_thread(int unused1, int unused2, int unused3)
{

struct data_item_t *rx_data;

while (1) {
rx_data = k_fifo_get(&my_fifo, K_FOREVER);

/* process FIFO data item */
...

}
}

Suggested Uses Use a FIFO to asynchronously transfer data items of arbitrary size in a “first
in, first out” manner.

Configuration Options Related configuration options:

• None
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API Reference

group fifo_apis

Defines

k_fifo_init(fifo)
Initialize a FIFO queue.

This routine initializes a FIFO queue, prior to its first use.

Parameters
• fifo – Address of the FIFO queue.

k_fifo_cancel_wait(fifo)
Cancel waiting on a FIFO queue.

This routine causes first thread pending on fifo, if any, to return from k_fifo_get() call
with NULL value (as if timeout expired).

Function properties (list may not be complete)
isr-ok

Parameters
• fifo – Address of the FIFO queue.

k_fifo_put(fifo, data)
Add an element to a FIFO queue.

This routine adds a data item to fifo. A FIFO data item must be aligned on a word
boundary, and the first word of the item is reserved for the kernel’s use.

Function properties (list may not be complete)
isr-ok

Parameters
• fifo – Address of the FIFO.

• data – Address of the data item.

k_fifo_alloc_put(fifo, data)
Add an element to a FIFO queue.

This routine adds a data item to fifo. There is an implicit memory allocation to create an
additional temporary bookkeeping data structure from the calling thread’s resource
pool, which is automatically freed when the item is removed. The data itself is not
copied.

Function properties (list may not be complete)
isr-ok

Parameters
• fifo – Address of the FIFO.

• data – Address of the data item.
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Return values
• 0 – on success

• -ENOMEM – if there isn’t sufficient RAM in the caller’s resource pool

k_fifo_put_list(fifo, head, tail)
Atomically add a list of elements to a FIFO.

This routine adds a list of data items to fifo in one operation. The data items must be
in a singly-linked list, with the first word of each data item pointing to the next data
item; the list must be NULL-terminated.

Function properties (list may not be complete)
isr-ok

Parameters
• fifo – Address of the FIFO queue.

• head – Pointer to first node in singly-linked list.

• tail – Pointer to last node in singly-linked list.

k_fifo_put_slist(fifo, list)
Atomically add a list of elements to a FIFO queue.

This routine adds a list of data items to fifo in one operation. The data items must
be in a singly-linked list implemented using a sys_slist_t object. Upon completion, the
sys_slist_t object is invalid and must be re-initialized via sys_slist_init().

Function properties (list may not be complete)
isr-ok

Parameters
• fifo – Address of the FIFO queue.

• list – Pointer to sys_slist_t object.

k_fifo_get(fifo, timeout)
Get an element from a FIFO queue.

This routine removes a data item from fifo in a “first in, first out” manner. The first
word of the data item is reserved for the kernel’s use.

Function properties (list may not be complete)
isr-ok

Note

timeout must be set to K_NO_WAIT if called from ISR.

Parameters
• fifo – Address of the FIFO queue.

• timeout – Waiting period to obtain a data item, or one of the special val-
ues K_NO_WAIT and K_FOREVER.
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Returns
Address of the data item if successful; NULL if returned without waiting,
or waiting period timed out.

k_fifo_is_empty(fifo)
Query a FIFO queue to see if it has data available.

Note that the data might be already gone by the time this function returns if other
threads is also trying to read from the FIFO.

Function properties (list may not be complete)
isr-ok

Parameters
• fifo – Address of the FIFO queue.

Returns
Non-zero if the FIFO queue is empty.

Returns
0 if data is available.

k_fifo_peek_head(fifo)
Peek element at the head of a FIFO queue.

Return element from the head of FIFO queue without removing it. A usecase for this
is if elements of the FIFO object are themselves containers. Then on each iteration of
processing, a head container will be peeked, and some data processed out of it, and
only if the container is empty, it will be completely remove from the FIFO queue.

Parameters
• fifo – Address of the FIFO queue.

Returns
Head element, or NULL if the FIFO queue is empty.

k_fifo_peek_tail(fifo)
Peek element at the tail of FIFO queue.

Return element from the tail of FIFO queue (without removing it). A usecase for this is
if elements of the FIFO queue are themselves containers. Then it may be useful to add
more data to the last container in a FIFO queue.

Parameters
• fifo – Address of the FIFO queue.

Returns
Tail element, or NULL if a FIFO queue is empty.

K_FIFO_DEFINE(name)
Statically define and initialize a FIFO queue.

The FIFO queue can be accessed outside the module where it is defined using:

extern struct k_fifo <name>;

Parameters
• name – Name of the FIFO queue.
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LIFOs

A LIFO is a kernel object that implements a traditional last in, first out (LIFO) queue, allowing
threads and ISRs to add and remove data items of any size.

• Concepts

• Implementation

– Defining a LIFO

– Writing to a LIFO

– Reading from a LIFO

• Suggested Uses

• Configuration Options

• API Reference

Concepts Any number of LIFOs can be defined (limited only by available RAM). Each LIFO is
referenced by its memory address.

A LIFO has the following key properties:

• A queue of data items that have been added but not yet removed. The queue is imple-
mented as a simple linked list.

A LIFO must be initialized before it can be used. This sets its queue to empty.

LIFO data items must be aligned on a word boundary, as the kernel reserves the first word of an
item for use as a pointer to the next data item in the queue. Consequently, a data item that holds
N bytes of application data requires N+4 (or N+8) bytes of memory. There are no alignment or
reserved space requirements for data items if they are added with k_lifo_alloc_put(), instead
additional memory is temporarily allocated from the calling thread’s resource pool.

Note

LIFO data items are restricted to single active instance across all LIFO data queues. Any at-
tempt to re-add a LIFO data item to a queue before it has been removed from the queue to
which it was previously added will result in undefined behavior.

A data item may be added to a LIFO by a thread or an ISR. The item is given directly to a waiting
thread, if one exists; otherwise the item is added to the LIFO’s queue. There is no limit to the
number of items that may be queued.

A data item may be removed from a LIFO by a thread. If the LIFO’s queue is empty a thread
may choose to wait for a data item to be given. Any number of threads may wait on an empty
LIFO simultaneously. When a data item is added, it is given to the highest priority thread that
has waited longest.

Note

The kernel does allow an ISR to remove an item from a LIFO, however the ISR must not at-
tempt to wait if the LIFO is empty.
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Implementation

Defining a LIFO A LIFO is defined using a variable of type k_lifo. It must then be initialized
by calling k_lifo_init().

The following defines and initializes an empty LIFO.

struct k_lifo my_lifo;

k_lifo_init(&my_lifo);

Alternatively, an empty LIFO can be defined and initialized at compile time by calling
K_LIFO_DEFINE.

The following code has the same effect as the code segment above.

K_LIFO_DEFINE(my_lifo);

Writing to a LIFO A data item is added to a LIFO by calling k_lifo_put().

The following code builds on the example above, and uses the LIFO to send data to one or more
consumer threads.

struct data_item_t {
void *LIFO_reserved; /* 1st word reserved for use by LIFO */
...

};

struct data_item_t tx data;

void producer_thread(int unused1, int unused2, int unused3)
{

while (1) {
/* create data item to send */
tx_data = ...

/* send data to consumers */
k_lifo_put(&my_lifo, &tx_data);

...
}

}

A data item can be added to a LIFO with k_lifo_alloc_put(). With this API, there is no need to
reserve space for the kernel’s use in the data item, instead additional memory will be allocated
from the calling thread’s resource pool until the item is read.

Reading from a LIFO A data item is removed from a LIFO by calling k_lifo_get().

The following code builds on the example above, and uses the LIFO to obtain data items from a
producer thread, which are then processed in some manner.

void consumer_thread(int unused1, int unused2, int unused3)
{

struct data_item_t *rx_data;

while (1) {
rx_data = k_lifo_get(&my_lifo, K_FOREVER);

/* process LIFO data item */
(continues on next page)
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(continued from previous page)
...

}
}

Suggested Uses Use a LIFO to asynchronously transfer data items of arbitrary size in a “last in,
first out” manner.

Configuration Options Related configuration options:

• None.

API Reference

group lifo_apis

Defines

k_lifo_init(lifo)
Initialize a LIFO queue.

This routine initializes a LIFO queue object, prior to its first use.

Parameters
• lifo – Address of the LIFO queue.

k_lifo_put(lifo, data)
Add an element to a LIFO queue.

This routine adds a data item to lifo. A LIFO queue data item must be aligned on a word
boundary, and the first word of the item is reserved for the kernel’s use.

Function properties (list may not be complete)
isr-ok

Parameters
• lifo – Address of the LIFO queue.

• data – Address of the data item.

k_lifo_alloc_put(lifo, data)
Add an element to a LIFO queue.

This routine adds a data item to lifo. There is an implicit memory allocation to create an
additional temporary bookkeeping data structure from the calling thread’s resource
pool, which is automatically freed when the item is removed. The data itself is not
copied.

Function properties (list may not be complete)
isr-ok

Parameters
• lifo – Address of the LIFO.
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• data – Address of the data item.

Return values
• 0 – on success

• -ENOMEM – if there isn’t sufficient RAM in the caller’s resource pool

k_lifo_get(lifo, timeout)
Get an element from a LIFO queue.

This routine removes a data item from LIFO in a “last in, first out” manner. The first
word of the data item is reserved for the kernel’s use.

Function properties (list may not be complete)
isr-ok

Note

timeout must be set to K_NO_WAIT if called from ISR.

Parameters
• lifo – Address of the LIFO queue.

• timeout – Waiting period to obtain a data item, or one of the special val-
ues K_NO_WAIT and K_FOREVER.

Returns
Address of the data item if successful; NULL if returned without waiting,
or waiting period timed out.

K_LIFO_DEFINE(name)
Statically define and initialize a LIFO queue.

The LIFO queue can be accessed outside the module where it is defined using:

extern struct k_lifo <name>;

Parameters
• name – Name of the fifo.

Stacks

A stack is a kernel object that implements a traditional last in, first out (LIFO) queue, allowing
threads and ISRs to add and remove a limited number of integer data values.

• Concepts

• Implementation

– Defining a Stack

– Pushing to a Stack

– Popping from a Stack

• Suggested Uses
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• Configuration Options

• API Reference

Concepts Any number of stacks can be defined (limited only by available RAM). Each stack is
referenced by its memory address.

A stack has the following key properties:

• A queue of integer data values that have been added but not yet removed. The queue is
implemented using an array of stack_data_t values and must be aligned on a native word
boundary. The stack_data_t type corresponds to the native word size i.e. 32 bits or 64 bits
depending on the CPU architecture and compilation mode.

• A maximum quantity of data values that can be queued in the array.

A stack must be initialized before it can be used. This sets its queue to empty.

A data value can be added to a stack by a thread or an ISR. The value is given directly to a waiting
thread, if one exists; otherwise the value is added to the LIFO’s queue.

Note

If CONFIG_NO_RUNTIME_CHECKS is enabled, the kernel will not detect and prevent attempts to
add a data value to a stack that has already reached its maximum quantity of queued values.
Adding a data value to a stack that is already full will result in array overflow, and lead to
unpredictable behavior.

A data value may be removed from a stack by a thread. If the stack’s queue is empty a thread
may choose to wait for it to be given. Any number of threads may wait on an empty stack simul-
taneously. When a data item is added, it is given to the highest priority thread that has waited
longest.

Note

The kernel does allow an ISR to remove an item from a stack, however the ISR must not
attempt to wait if the stack is empty.

Implementation

Defining a Stack A stack is defined using a variable of type k_stack. It must then be initialized
by calling k_stack_init() or k_stack_alloc_init(). In the latter case, a buffer is not provided
and it is instead allocated from the calling thread’s resource pool.

The following code defines and initializes an empty stack capable of holding up to ten word-sized
data values.

#define MAX_ITEMS 10

stack_data_t my_stack_array[MAX_ITEMS];
struct k_stack my_stack;

k_stack_init(&my_stack, my_stack_array, MAX_ITEMS);
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Alternatively, a stack can be defined and initialized at compile time by calling K_STACK_DEFINE.

The following code has the same effect as the code segment above. Observe that the macro de-
fines both the stack and its array of data values.

K_STACK_DEFINE(my_stack, MAX_ITEMS);

Pushing to a Stack A data item is added to a stack by calling k_stack_push().

The following code builds on the example above, and shows how a thread can create a pool of
data structures by saving their memory addresses in a stack.

/* define array of data structures */
struct my_buffer_type {

int field1;
...
};

struct my_buffer_type my_buffers[MAX_ITEMS];

/* save address of each data structure in a stack */
for (int i = 0; i < MAX_ITEMS; i++) {

k_stack_push(&my_stack, (stack_data_t)&my_buffers[i]);
}

Popping from a Stack A data item is taken from a stack by calling k_stack_pop().

The following code builds on the example above, and shows how a thread can dynamically allo-
cate an unused data structure. When the data structure is no longer required, the thread must
push its address back on the stack to allow the data structure to be reused.

struct my_buffer_type *new_buffer;

k_stack_pop(&buffer_stack, (stack_data_t *)&new_buffer, K_FOREVER);
new_buffer->field1 = ...

Suggested Uses Use a stack to store and retrieve integer data values in a “last in, first out”
manner, when the maximum number of stored items is known.

Configuration Options Related configuration options:

• None.

API Reference

group stack_apis

Defines

K_STACK_DEFINE(name, stack_num_entries)
Statically define and initialize a stack.

The stack can be accessed outside the module where it is defined using:

extern struct k_stack <name>;
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Parameters
• name – Name of the stack.

• stack_num_entries – Maximum number of values that can be stacked.

Functions

void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.

This routine initializes a stack object, prior to its first use.

Parameters
• stack – Address of the stack.

• buffer – Address of array used to hold stacked values.

• num_entries – Maximum number of values that can be stacked.

int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.

This routine initializes a stack object, prior to its first use. Internal buffers will be
allocated from the calling thread’s resource pool. This memory will be released if
k_stack_cleanup() is called, or userspace is enabled and the stack object loses all refer-
ences to it.

Parameters
• stack – Address of the stack.

• num_entries – Maximum number of values that can be stacked.

Returns
-ENOMEM if memory couldn’t be allocated

int k_stack_cleanup(struct k_stack *stack)
Release a stack’s allocated buffer.

If a stack object was given a dynamically allocated buffer via k_stack_alloc_init(), this
will free it. This function does nothing if the buffer wasn’t dynamically allocated.

Parameters
• stack – Address of the stack.

Return values
• 0 – on success

• -EAGAIN – when object is still in use

int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.

This routine adds a stack_data_t value data to stack.

Function properties (list may not be complete)
isr-ok

Parameters
• stack – Address of the stack.

• data – Value to push onto the stack.
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Return values
• 0 – on success

• -ENOMEM – if stack is full

int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.

This routine removes a stack_data_t value from stack in a “last in,

first out” manner and stores the value in data.

Function properties (list may not be complete)
isr-ok

Note

timeout must be set to K_NO_WAIT if called from ISR.

Parameters
• stack – Address of the stack.

• data – Address of area to hold the value popped from the stack.

• timeout – Waiting period to obtain a value, or one of the special values
K_NO_WAIT and K_FOREVER.

Return values
• 0 – Element popped from stack.

• -EBUSY – Returned without waiting.

• -EAGAIN – Waiting period timed out.

Message Queues

A message queue is a kernel object that implements a simple message queue, allowing threads
and ISRs to asynchronously send and receive fixed-size data items.

• Concepts

• Implementation

– Defining a Message Queue

– Writing to a Message Queue

– Reading from a Message Queue

– Peeking into a Message Queue

• Suggested Uses

• Configuration Options

• API Reference
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Concepts Any number of message queues can be defined (limited only by available RAM). Each
message queue is referenced by its memory address.

A message queue has the following key properties:

• A ring buffer of data items that have been sent but not yet received.

• A data item size, measured in bytes.

• A maximum quantity of data items that can be queued in the ring buffer.

A message queue must be initialized before it can be used. This sets its ring buffer to empty.

A data item can be sent to a message queue by a thread or an ISR. The data item pointed at by
the sending thread is copied to a waiting thread, if one exists; otherwise the item is copied to the
message queue’s ring buffer, if space is available. In either case, the size of the data area being
sent must equal the message queue’s data item size.

If a thread attempts to send a data item when the ring buffer is full, the sending thread may
choose to wait for space to become available. Any number of sending threads may wait simul-
taneously when the ring buffer is full; when space becomes available it is given to the highest
priority sending thread that has waited the longest.

A data item can be received from a message queue by a thread. The data item is copied to the
area specified by the receiving thread; the size of the receiving area must equal the message
queue’s data item size.

If a thread attempts to receive a data item when the ring buffer is empty, the receiving thread
may choose to wait for a data item to be sent. Any number of receiving threads may wait simul-
taneously when the ring buffer is empty; when a data item becomes available it is given to the
highest priority receiving thread that has waited the longest.

A thread can also peek at the message on the head of a message queue without removing it from
the queue. The data item is copied to the area specified by the receiving thread; the size of the
receiving area must equal the message queue’s data item size.

Note

The kernel does allow an ISR to receive an item from a message queue, however the ISR must
not attempt to wait if the message queue is empty.

Note

Alignment of the message queue’s ring buffer is not necessary. The underlying implementa-
tion uses memcpy() (which is alignment-agnostic) and does not expose any internal pointers.

Implementation

Defining aMessageQueue A message queue is defined using a variable of type k_msgq. It must
then be initialized by calling k_msgq_init().

The following code defines and initializes an empty message queue that is capable of holding 10
items, each of which is 12 bytes long.

struct data_item_type {
uint32_t field1;
uint32_t field2;
uint32_t field3;

};
(continues on next page)
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(continued from previous page)

char my_msgq_buffer[10 * sizeof(struct data_item_type)];
struct k_msgq my_msgq;

k_msgq_init(&my_msgq, my_msgq_buffer, sizeof(struct data_item_type), 10);

Alternatively, a message queue can be defined and initialized at compile time by calling
K_MSGQ_DEFINE.

The following code has the same effect as the code segment above. Observe that the macro de-
fines both the message queue and its buffer.

K_MSGQ_DEFINE(my_msgq, sizeof(struct data_item_type), 10, 1);

Writing to aMessageQueue A data item is added to a message queue by calling k_msgq_put().

The following code builds on the example above, and uses the message queue to pass data items
from a producing thread to one or more consuming threads. If the message queue fills up be-
cause the consumers can’t keep up, the producing thread throws away all existing data so the
newer data can be saved.

void producer_thread(void)
{

struct data_item_type data;

while (1) {
/* create data item to send (e.g. measurement, timestamp, ...) */
data = ...

/* send data to consumers */
while (k_msgq_put(&my_msgq, &data, K_NO_WAIT) != 0) {

/* message queue is full: purge old data & try again */
k_msgq_purge(&my_msgq);

}

/* data item was successfully added to message queue */
}

}

Reading from a Message Queue A data item is taken from a message queue by calling
k_msgq_get().

The following code builds on the example above, and uses the message queue to process data
items generated by one or more producing threads. Note that the return value of k_msgq_get()
should be tested as -ENOMSG can be returned due to k_msgq_purge().

void consumer_thread(void)
{

struct data_item_type data;

while (1) {
/* get a data item */
k_msgq_get(&my_msgq, &data, K_FOREVER);

/* process data item */
...

}
}
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Peeking into a Message Queue A data item is read from a message queue by calling
k_msgq_peek().

The following code peeks into the message queue to read the data item at the head of the queue
that is generated by one or more producing threads.

void consumer_thread(void)
{

struct data_item_type data;

while (1) {
/* read a data item by peeking into the queue */
k_msgq_peek(&my_msgq, &data);

/* process data item */
...

}
}

Suggested Uses Use a message queue to transfer small data items between threads in an asyn-
chronous manner.

Note

A message queue can be used to transfer large data items, if desired. However, this can in-
crease interrupt latency as interrupts are locked while a data item is written or read. The
time to write or read a data item increases linearly with its size since the item is copied in its
entirety to or from the buffer in memory. For this reason, it is usually preferable to transfer
large data items by exchanging a pointer to the data item, rather than the data item itself.

A synchronous transfer can be achieved by using the kernel’s mailbox object type.

Configuration Options Related configuration options:

• None.

API Reference

group msgq_apis

Defines

K_MSGQ_FLAG_ALLOC

K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align)
Statically define and initialize a message queue.

The message queue’s ring buffer contains space for q_max_msgs messages, each of
which is q_msg_size bytes long. Alignment of the message queue’s ring buffer is not
necessary, setting q_align to 1 is sufficient.

The message queue can be accessed outside the module where it is defined using:

extern struct k_msgq <name>;
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Parameters
• q_name – Name of the message queue.

• q_msg_size – Message size (in bytes).

• q_max_msgs – Maximum number of messages that can be queued.

• q_align – Alignment of the message queue’s ring buffer (power of 2).

Functions

void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.

This routine initializes a message queue object, prior to its first use.

The message queue’s ring buffer must contain space for max_msgs messages, each of
which is msg_size bytes long. Alignment of the message queue’s ring buffer is not nec-
essary.

Parameters
• msgq – Address of the message queue.

• buffer – Pointer to ring buffer that holds queued messages.

• msg_size – Message size (in bytes).

• max_msgs – Maximum number of messages that can be queued.

int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.

This routine initializes a message queue object, prior to its first use, allocating its in-
ternal ring buffer from the calling thread’s resource pool.

Memory allocated for the ring buffer can be released by calling k_msgq_cleanup(), or
if userspace is enabled and the msgq object loses all of its references.

Parameters
• msgq – Address of the message queue.

• msg_size – Message size (in bytes).

• max_msgs – Maximum number of messages that can be queued.

Returns
0 on success, -ENOMEM if there was insufficient memory in the thread’s
resource pool, or -EINVAL if the size parameters cause an integer overflow.

int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.

Releases memory allocated for the ring buffer.

Parameters
• msgq – message queue to cleanup

Return values
• 0 – on success

• -EBUSY – Queue not empty
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int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.

This routine sends a message to message queue q.

Function properties (list may not be complete)
isr-ok

Note

The message content is copied from data into msgq and the data pointer is not re-
tained, so the message content will not be modified by this function.

Parameters
• msgq – Address of the message queue.

• data – Pointer to the message.

• timeout – Waiting period to add the message, or one of the special values
K_NO_WAIT and K_FOREVER.

Return values
• 0 – Message sent.

• -ENOMSG – Returned without waiting or queue purged.

• -EAGAIN – Waiting period timed out.

int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.

This routine receives a message from message queue q in a “first in,

first out” manner.

Function properties (list may not be complete)
isr-ok

Note

timeout must be set to K_NO_WAIT if called from ISR.

Parameters
• msgq – Address of the message queue.

• data – Address of area to hold the received message.

• timeout – Waiting period to receive the message, or one of the special
values K_NO_WAIT and K_FOREVER.

Return values
• 0 – Message received.

• -ENOMSG – Returned without waiting.

• -EAGAIN – Waiting period timed out.
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int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.

This routine reads a message from message queue q in a “first in,

first out” manner and leaves the message in the queue.

Function properties (list may not be complete)
isr-ok

Parameters
• msgq – Address of the message queue.

• data – Address of area to hold the message read from the queue.

Return values
• 0 – Message read.

• -ENOMSG – Returned when the queue has no message.

int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.

This routine reads a message from message queue at the specified index and
leaves the message in the queue. k_msgq_peek_at(msgq, data, 0) is equivalent to
k_msgq_peek(msgq, data)

Function properties (list may not be complete)
isr-ok

Parameters
• msgq – Address of the message queue.

• data – Address of area to hold the message read from the queue.

• idx – Message queue index at which to peek

Return values
• 0 – Message read.

• -ENOMSG – Returned when the queue has no message at index.

void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.

This routine discards all unreceived messages in a message queue’s ring buffer. Any
threads that are blocked waiting to send a message to the message queue are unblocked
and see an -ENOMSG error code.

Parameters
• msgq – Address of the message queue.

uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.

This routine returns the number of unused entries in a message queue’s ring buffer.

Parameters
• msgq – Address of the message queue.
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Returns
Number of unused ring buffer entries.

void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.

This routine fetches basic attributes of message queue into attr argument.

Parameters
• msgq – Address of the message queue.

• attrs – pointer to message queue attribute structure.

uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.

This routine returns the number of messages in a message queue’s ring buffer.

Parameters
• msgq – Address of the message queue.

Returns
Number of messages.

struct k_msgq
#include <kernel.h> Message Queue Structure.

Public Members

_wait_q_t wait_q
Message queue wait queue.

struct k_spinlock lock
Lock.

size_t msg_size
Message size.

uint32_t max_msgs
Maximal number of messages.

char *buffer_start
Start of message buffer.

char *buffer_end
End of message buffer.

char *read_ptr
Read pointer.

char *write_ptr
Write pointer.
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uint32_t used_msgs
Number of used messages.

uint8_t flags
Message queue.

struct k_msgq_attrs
#include <kernel.h> Message Queue Attributes.

Public Members

size_t msg_size
Message Size.

uint32_t max_msgs
Maximal number of messages.

uint32_t used_msgs
Used messages.

Mailboxes

A mailbox is a kernel object that provides enhanced message queue capabilities that go beyond
the capabilities of a message queue object. A mailbox allows threads to send and receive mes-
sages of any size synchronously or asynchronously.

• Concepts

– Message Format

– Message Lifecycle

– Thread Compatibility

– Message Flow Control

• Implementation

– Defining a Mailbox

– Message Descriptors

– Sending a Message

– Receiving a Message

• Suggested Uses

• Configuration Options

• API Reference

Concepts Any number of mailboxes can be defined (limited only by available RAM). Each mail-
box is referenced by its memory address.
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A mailbox has the following key properties:

• A send queue of messages that have been sent but not yet received.

• A receive queue of threads that are waiting to receive a message.

A mailbox must be initialized before it can be used. This sets both of its queues to empty.

A mailbox allows threads, but not ISRs, to exchange messages. A thread that sends a message
is known as the sending thread, while a thread that receives the message is known as the re-
ceiving thread. Each message may be received by only one thread (i.e. point-to-multipoint and
broadcast messaging is not supported).

Messages exchanged using a mailbox are handled non-anonymously, allowing both threads par-
ticipating in an exchange to know (and even specify) the identity of the other thread.

Message Format A message descriptor is a data structure that specifies where a message’s
data is located, and how the message is to be handled by the mailbox. Both the sending thread
and the receiving thread supply a message descriptor when accessing a mailbox. The mailbox
uses the message descriptors to perform a message exchange between compatible sending and
receiving threads. The mailbox also updates certain message descriptor fields during the ex-
change, allowing both threads to know what has occurred.

A mailbox message contains zero or more bytes of message data. The size and format of the
message data is application-defined, and can vary from one message to the next.

A message buffer is an area of memory provided by the thread that sends or receives the mes-
sage data. An array or structure variable can often be used for this purpose.

A message that has neither form of message data is called an empty message.

Note

A message whose message buffer exists, but contains zero bytes of actual data, is not an empty
message.

Message Lifecycle The life cycle of a message is straightforward. A message is created when it
is given to a mailbox by the sending thread. The message is then owned by the mailbox until it is
given to a receiving thread. The receiving thread may retrieve the message data when it receives
the message from the mailbox, or it may perform data retrieval during a second, subsequent
mailbox operation. Only when data retrieval has occurred is the message deleted by the mailbox.

Thread Compatibility A sending thread can specify the address of the thread to which the
message is sent, or send it to any thread by specifying K_ANY. Likewise, a receiving thread can
specify the address of the thread from which it wishes to receive a message, or it can receive a
message from any thread by specifying K_ANY. A message is exchanged only when the require-
ments of both the sending thread and receiving thread are satisfied; such threads are said to be
compatible.

For example, if thread A sends a message to thread B (and only thread B) it will be received by
thread B if thread B tries to receive a message from thread A or if thread B tries to receive from
any thread. The exchange will not occur if thread B tries to receive a message from thread C.
The message can never be received by thread C, even if it tries to receive a message from thread
A (or from any thread).
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Message Flow Control Mailbox messages can be exchanged synchronously or asyn-
chronously. In a synchronous exchange, the sending thread blocks until the message has been
fully processed by the receiving thread. In an asynchronous exchange, the sending thread does
not wait until the message has been received by another thread before continuing; this allows
the sending thread to do other work (such as gather data that will be used in the next message)
before the message is given to a receiving thread and fully processed. The technique used for a
given message exchange is determined by the sending thread.

The synchronous exchange technique provides an implicit form of flow control, preventing
a sending thread from generating messages faster than they can be consumed by receiving
threads. The asynchronous exchange technique provides an explicit form of flow control, which
allows a sending thread to determine if a previously sent message still exists before sending a
subsequent message.

Implementation

Defining a Mailbox A mailbox is defined using a variable of type k_mbox. It must then be
initialized by calling k_mbox_init().

The following code defines and initializes an empty mailbox.

struct k_mbox my_mailbox;

k_mbox_init(&my_mailbox);

Alternatively, a mailbox can be defined and initialized at compile time by calling K_MBOX_DEFINE.

The following code has the same effect as the code segment above.

K_MBOX_DEFINE(my_mailbox);

Message Descriptors A message descriptor is a structure of type k_mbox_msg. Only the fields
listed below should be used; any other fields are for internal mailbox use only.

info
A 32-bit value that is exchanged by the message sender and receiver, and whose meaning
is defined by the application. This exchange is bi-directional, allowing the sender to pass
a value to the receiver during any message exchange, and allowing the receiver to pass a
value to the sender during a synchronous message exchange.

size
The message data size, in bytes. Set it to zero when sending an empty message, or when
sending a message buffer with no actual data. When receiving a message, set it to the max-
imum amount of data desired, or to zero if the message data is not wanted. The mailbox
updates this field with the actual number of data bytes exchanged once the message is re-
ceived.

tx_data
A pointer to the sending thread’s message buffer. Set it to NULL when sending an empty
message. Leave this field uninitialized when receiving a message.

tx_target_thread
The address of the desired receiving thread. Set it to K_ANY to allow any thread to receive
the message. Leave this field uninitialized when receiving a message. The mailbox updates
this field with the actual receiver’s address once the message is received.

rx_source_thread
The address of the desired sending thread. Set it to K_ANY to receive a message sent by any
thread. Leave this field uninitialized when sending a message. The mailbox updates this
field with the actual sender’s address when the message is put into the mailbox.
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Sending a Message A thread sends a message by first creating its message data, if any.

Next, the sending thread creates a message descriptor that characterizes the message to be sent,
as described in the previous section.

Finally, the sending thread calls a mailbox send API to initiate the message exchange. The mes-
sage is immediately given to a compatible receiving thread, if one is currently waiting. Other-
wise, the message is added to the mailbox’s send queue.

Any number of messages may exist simultaneously on a send queue. The messages in the send
queue are sorted according to the priority of the sending thread. Messages of equal priority are
sorted so that the oldest message can be received first.

For a synchronous send operation, the operation normally completes when a receiving thread
has both received the message and retrieved the message data. If the message is not received
before the waiting period specified by the sending thread is reached, the message is removed
from the mailbox’s send queue and the send operation fails. When a send operation completes
successfully the sending thread can examine the message descriptor to determine which thread
received the message, how much data was exchanged, and the application-defined info value
supplied by the receiving thread.

Note

A synchronous send operation may block the sending thread indefinitely, even when the
thread specifies a maximum waiting period. The waiting period only limits how long the
mailbox waits before the message is received by another thread. Once a message is received
there is no limit to the time the receiving thread may take to retrieve the message data and
unblock the sending thread.

For an asynchronous send operation, the operation always completes immediately. This allows
the sending thread to continue processing regardless of whether the message is given to a receiv-
ing thread immediately or added to the send queue. The sending thread may optionally specify
a semaphore that the mailbox gives when the message is deleted by the mailbox, for example,
when the message has been received and its data retrieved by a receiving thread. The use of
a semaphore allows the sending thread to easily implement a flow control mechanism that en-
sures that the mailbox holds no more than an application-specified number of messages from a
sending thread (or set of sending threads) at any point in time.

Note

A thread that sends a message asynchronously has no way to determine which thread re-
ceived the message, how much data was exchanged, or the application-defined info value
supplied by the receiving thread.

Sending an Empty Message This code uses a mailbox to synchronously pass 4 byte random
values to any consuming thread that wants one. The message “info” field is large enough to
carry the information being exchanged, so the data portion of the message isn’t used.

void producer_thread(void)
{

struct k_mbox_msg send_msg;

while (1) {

/* generate random value to send */
uint32_t random_value = sys_rand32_get();

(continues on next page)
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(continued from previous page)
/* prepare to send empty message */
send_msg.info = random_value;
send_msg.size = 0;
send_msg.tx_data = NULL;
send_msg.tx_target_thread = K_ANY;

/* send message and wait until a consumer receives it */
k_mbox_put(&my_mailbox, &send_msg, K_FOREVER);

}
}

Sending Data Using a Message Buffer This code uses a mailbox to synchronously pass
variable-sized requests from a producing thread to any consuming thread that wants it. The
message “info” field is used to exchange information about the maximum size message buffer
that each thread can handle.

void producer_thread(void)
{

char buffer[100];
int buffer_bytes_used;

struct k_mbox_msg send_msg;

while (1) {

/* generate data to send */
...
buffer_bytes_used = ... ;
memcpy(buffer, source, buffer_bytes_used);

/* prepare to send message */
send_msg.info = buffer_bytes_used;
send_msg.size = buffer_bytes_used;
send_msg.tx_data = buffer;
send_msg.tx_target_thread = K_ANY;

/* send message and wait until a consumer receives it */
k_mbox_put(&my_mailbox, &send_msg, K_FOREVER);

/* info, size, and tx_target_thread fields have been updated */

/* verify that message data was fully received */
if (send_msg.size < buffer_bytes_used) {

printf("some message data dropped during transfer!");
printf("receiver only had room for %d bytes", send_msg.info);

}
}

}

Receiving a Message A thread receives a message by first creating a message descriptor that
characterizes the message it wants to receive. It then calls one of the mailbox receive APIs. The
mailbox searches its send queue and takes the message from the first compatible thread it finds.
If no compatible thread exists, the receiving thread may choose to wait for one. If no compatible
thread appears before the waiting period specified by the receiving thread is reached, the re-
ceive operation fails. Once a receive operation completes successfully the receiving thread can
examine the message descriptor to determine which thread sent the message, how much data
was exchanged, and the application-defined info value supplied by the sending thread.
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Any number of receiving threads may wait simultaneously on a mailboxes’ receive queue. The
threads are sorted according to their priority; threads of equal priority are sorted so that the one
that started waiting first can receive a message first.

Note

Receiving threads do not always receive messages in a first in, first out (FIFO) order, due to the
thread compatibility constraints specified by the message descriptors. For example, if thread
A waits to receive a message only from thread X and then thread B waits to receive a message
from thread Y, an incoming message from thread Y to any thread will be given to thread B
and thread A will continue to wait.

The receiving thread controls both the quantity of data it retrieves from an incoming message
and where the data ends up. The thread may choose to take all of the data in the message, to
take only the initial part of the data, or to take no data at all. Similarly, the thread may choose to
have the data copied into a message buffer of its choice.

The following sections outline various approaches a receiving thread may use when retrieving
message data.

Retrieving Data at Receive Time The most straightforward way for a thread to retrieve mes-
sage data is to specify a message buffer when the message is received. The thread indicates both
the location of the message buffer (which must not be NULL) and its size.

The mailbox copies the message’s data to the message buffer as part of the receive operation.
If the message buffer is not big enough to contain all of the message’s data, any uncopied data
is lost. If the message is not big enough to fill all of the buffer with data, the unused portion
of the message buffer is left unchanged. In all cases the mailbox updates the receiving thread’s
message descriptor to indicate how many data bytes were copied (if any).

The immediate data retrieval technique is best suited for small messages where the maximum
size of a message is known in advance.

The following code uses a mailbox to process variable-sized requests from any producing thread,
using the immediate data retrieval technique. The message “info” field is used to exchange in-
formation about the maximum size message buffer that each thread can handle.

void consumer_thread(void)
{

struct k_mbox_msg recv_msg;
char buffer[100];

int i;
int total;

while (1) {
/* prepare to receive message */
recv_msg.info = 100;
recv_msg.size = 100;
recv_msg.rx_source_thread = K_ANY;

/* get a data item, waiting as long as needed */
k_mbox_get(&my_mailbox, &recv_msg, buffer, K_FOREVER);

/* info, size, and rx_source_thread fields have been updated */

/* verify that message data was fully received */
if (recv_msg.info != recv_msg.size) {

printf("some message data dropped during transfer!");
printf("sender tried to send %d bytes", recv_msg.info);

(continues on next page)
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}

/* compute sum of all message bytes (from 0 to 100 of them) */
total = 0;
for (i = 0; i < recv_msg.size; i++) {

total += buffer[i];
}

}
}

Retrieving Data Later Using a Message Buffer A receiving thread may choose to defer mes-
sage data retrieval at the time the message is received, so that it can retrieve the data into a
message buffer at a later time. The thread does this by specifying a message buffer location of
NULL and a size indicating the maximum amount of data it is willing to retrieve later.

The mailbox does not copy any message data as part of the receive operation. However, the
mailbox still updates the receiving thread’s message descriptor to indicate how many data bytes
are available for retrieval.

The receiving thread must then respond as follows:

• If the message descriptor size is zero, then either the sender’s message contained no data or
the receiving thread did not want to receive any data. The receiving thread does not need to
take any further action, since the mailbox has already completed data retrieval and deleted
the message.

• If the message descriptor size is non-zero and the receiving thread still wants to retrieve the
data, the thread must call k_mbox_data_get() and supply a message buffer large enough to
hold the data. The mailbox copies the data into the message buffer and deletes the message.

• If the message descriptor size is non-zero and the receiving thread does notwant to retrieve
the data, the thread must call k_mbox_data_get() and specify a message buffer of NULL. The
mailbox deletes the message without copying the data.

The subsequent data retrieval technique is suitable for applications where immediate retrieval
of message data is undesirable. For example, it can be used when memory limitations make it
impractical for the receiving thread to always supply a message buffer capable of holding the
largest possible incoming message.

The following code uses a mailbox’s deferred data retrieval mechanism to get message data from
a producing thread only if the message meets certain criteria, thereby eliminating unneeded data
copying. The message “info” field supplied by the sender is used to classify the message.

void consumer_thread(void)
{

struct k_mbox_msg recv_msg;
char buffer[10000];

while (1) {
/* prepare to receive message */
recv_msg.size = 10000;
recv_msg.rx_source_thread = K_ANY;

/* get message, but not its data */
k_mbox_get(&my_mailbox, &recv_msg, NULL, K_FOREVER);

/* get message data for only certain types of messages */
if (is_message_type_ok(recv_msg.info)) {

/* retrieve message data and delete the message */
k_mbox_data_get(&recv_msg, buffer);

(continues on next page)
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/* process data in "buffer" */
...

} else {
/* ignore message data and delete the message */
k_mbox_data_get(&recv_msg, NULL);

}
}

}

Suggested Uses Use a mailbox to transfer data items between threads whenever the capabili-
ties of a message queue are insufficient.

Configuration Options Related configuration options:

• CONFIG_NUM_MBOX_ASYNC_MSGS

API Reference

group mailbox_apis

Defines

K_MBOX_DEFINE(name)
Statically define and initialize a mailbox.

The mailbox is to be accessed outside the module where it is defined using:

extern struct k_mbox <name>;

Parameters
• name – Name of the mailbox.

Functions

void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.

This routine initializes a mailbox object, prior to its first use.

Parameters
• mbox – Address of the mailbox.

int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.

This routine sends a message to mbox and waits for a receiver to both receive and
process it. The message data may be in a buffer or non-existent (i.e. an empty message).

Parameters
• mbox – Address of the mailbox.

• tx_msg – Address of the transmit message descriptor.
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• timeout – Waiting period for the message to be received, or one of the
special values K_NO_WAIT and K_FOREVER. Once the message has been
received, this routine waits as long as necessary for the message to be
completely processed.

Return values
• 0 – Message sent.

• -ENOMSG – Returned without waiting.

• -EAGAIN – Waiting period timed out.

void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem
*sem)

Send a mailbox message in an asynchronous manner.

This routine sends a message to mbox without waiting for a receiver to process it. The
message data may be in a buffer or non-existent (i.e. an empty message). Optionally,
the semaphore sem will be given when the message has been both received and com-
pletely processed by the receiver.

Parameters
• mbox – Address of the mailbox.

• tx_msg – Address of the transmit message descriptor.

• sem – Address of a semaphore, or NULL if none is needed.

int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer,
k_timeout_t timeout)

Receive a mailbox message.

This routine receives a message from mbox, then optionally retrieves its data and dis-
poses of the message.

Parameters
• mbox – Address of the mailbox.

• rx_msg – Address of the receive message descriptor.

• buffer – Address of the buffer to receive data, or NULL to defer data
retrieval and message disposal until later.

• timeout – Waiting period for a message to be received, or one of the spe-
cial values K_NO_WAIT and K_FOREVER.

Return values
• 0 – Message received.

• -ENOMSG – Returned without waiting.

• -EAGAIN – Waiting period timed out.

void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.

This routine completes the processing of a received message by retrieving its data into
a buffer, then disposing of the message.

Alternatively, this routine can be used to dispose of a received message without re-
trieving its data.

Parameters
• rx_msg – Address of the receive message descriptor.
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• buffer – Address of the buffer to receive data, or NULL to discard the
data.

struct k_mbox_msg
#include <kernel.h> Mailbox Message Structure.

Public Members

size_t size
size of message (in bytes)

uint32_t info
application-defined information value

void *tx_data
sender’s message data buffer

k_tid_t rx_source_thread
source thread id

k_tid_t tx_target_thread
target thread id

struct k_mbox
#include <kernel.h> Mailbox Structure.

Public Members

_wait_q_t tx_msg_queue
Transmit messages queue.

_wait_q_t rx_msg_queue
Receive message queue.

Pipes

A pipe is a kernel object that allows a thread to send a byte stream to another thread. Pipes can
be used to synchronously transfer chunks of data in whole or in part.

• Concepts

• Implementation

– Writing to a Pipe

– Reading from a Pipe

– Flushing a Pipe’s Buffer
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– Flushing a Pipe

• Suggested uses

• Configuration Options

• API Reference

Concepts The pipe can be configured with a ring buffer which holds data that has been sent
but not yet received; alternatively, the pipe may have no ring buffer.

Any number of pipes can be defined (limited only by available RAM). Each pipe is referenced by
its memory address.

A pipe has the following key property:

• A size that indicates the size of the pipe’s ring buffer. Note that a size of zero defines a pipe
with no ring buffer.

A pipe must be initialized before it can be used. The pipe is initially empty.

Data is synchronously sent either in whole or in part to a pipe by a thread. If the specified
minimum number of bytes can not be immediately satisfied, then the operation will either fail
immediately or attempt to send as many bytes as possible and then pend in the hope that the
send can be completed later. Accepted data is either copied to the pipe’s ring buffer or directly
to the waiting reader(s).

Data is synchronously received from a pipe by a thread. If the specified minimum number of
bytes can not be immediately satisfied, then the operation will either fail immediately or attempt
to receive as many bytes as possible and then pend in the hope that the receive can be completed
later. Accepted data is either copied from the pipe’s ring buffer or directly from the waiting
sender(s).

Data may also be flushed from a pipe by a thread. Flushing can be performed either on the
entire pipe or on only its ring buffer. Flushing the entire pipe is equivalent to reading all the
information in the ring buffer and waiting to be written into a giant temporary buffer which is
then discarded. Flushing the ring buffer is equivalent to reading only the data in the ring buffer
into a temporary buffer which is then discarded. Flushing the ring buffer does not guarantee
that the ring buffer will stay empty; flushing it may allow a pended writer to fill the ring buffer.

Note

Flushing does not in practice allocate or use additional buffers.

Note

The kernel does allow for an ISR to flush a pipe from an ISR. It also allows it to send/receive
data to/from one provided it does not attempt to wait for space/data.

Implementation A pipe is defined using a variable of type k_pipe and an optional character
buffer of type unsigned char. It must then be initialized by calling k_pipe_init().

The following code defines and initializes an empty pipe that has a ring buffer capable of holding
100 bytes and is aligned to a 4-byte boundary.
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unsigned char __aligned(4) my_ring_buffer[100];
struct k_pipe my_pipe;

k_pipe_init(&my_pipe, my_ring_buffer, sizeof(my_ring_buffer));

Alternatively, a pipe can be defined and initialized at compile time by calling K_PIPE_DEFINE.

The following code has the same effect as the code segment above. Observe that macro defines
both the pipe and its ring buffer.

K_PIPE_DEFINE(my_pipe, 100, 4);

Writing to a Pipe Data is added to a pipe by calling k_pipe_put().

The following code builds on the example above, and uses the pipe to pass data from a producing
thread to one or more consuming threads. If the pipe’s ring buffer fills up because the consumers
can’t keep up, the producing thread waits for a specified amount of time.

struct message_header {
...

};

void producer_thread(void)
{

unsigned char *data;
size_t total_size;
size_t bytes_written;
int rc;
...

while (1) {
/* Craft message to send in the pipe */
data = ...;
total_size = ...;

/* send data to the consumers */
rc = k_pipe_put(&my_pipe, data, total_size, &bytes_written,

sizeof(struct message_header), K_NO_WAIT);

if (rc < 0) {
/* Incomplete message header sent */
...

} else if (bytes_written < total_size) {
/* Some of the data was sent */
...

} else {
/* All data sent */
...

}
}

}

Reading from a Pipe Data is read from the pipe by calling k_pipe_get().

The following code builds on the example above, and uses the pipe to process data items gener-
ated by one or more producing threads.

void consumer_thread(void)
{

unsigned char buffer[120];
(continues on next page)
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size_t bytes_read;
struct message_header *header = (struct message_header *)buffer;

while (1) {
rc = k_pipe_get(&my_pipe, buffer, sizeof(buffer), &bytes_read,

sizeof(*header), K_MSEC(100));

if ((rc < 0) || (bytes_read < sizeof (*header))) {
/* Incomplete message header received */
...

} else if (header->num_data_bytes + sizeof(*header) > bytes_read) {
/* Only some data was received */
...

} else {
/* All data was received */
...

}
}

}

Use a pipe to send streams of data between threads.

Note

A pipe can be used to transfer long streams of data if desired. However it is often preferable
to send pointers to large data items to avoid copying the data.

Flushing a Pipe’s Buffer Data is flushed from the pipe’s ring buffer by calling
k_pipe_buffer_flush().

The following code builds on the examples above, and flushes the pipe’s buffer.

void monitor_thread(void)
{

while (1) {
...
/* Pipe buffer contains stale data. Flush it. */
k_pipe_buffer_flush(&my_pipe);
...

}
}

Flushing a Pipe All data in the pipe is flushed by calling k_pipe_flush().

The following code builds on the examples above, and flushes all the data in the pipe.

void monitor_thread(void)
{

while (1) {
...
/* Critical error detected. Flush the entire pipe to reset it. */
k_pipe_flush(&my_pipe);
...

}
}
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Suggested uses Use a pipe to send streams of data between threads.

Note

A pipe can be used to transfer long streams of data if desired. However it is often preferable
to send pointers to large data items to avoid copying the data. Copying large data items will
negatively impact interrupt latency as a spinlock is held while copying that data.

Configuration Options Related configuration options:

• CONFIG_PIPES

API Reference

group pipe_apis

Defines

K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align)
Statically define and initialize a pipe.

The pipe can be accessed outside the module where it is defined using:

extern struct k_pipe <name>;

Parameters
• name – Name of the pipe.

• pipe_buffer_size – Size of the pipe’s ring buffer (in bytes), or zero if no
ring buffer is used.

• pipe_align – Alignment of the pipe’s ring buffer (power of 2).

Functions

void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
Initialize a pipe.

This routine initializes a pipe object, prior to its first use.

Parameters
• pipe – Address of the pipe.

• buffer – Address of the pipe’s ring buffer, or NULL if no ring buffer is
used.

• size – Size of the pipe’s ring buffer (in bytes), or zero if no ring buffer is
used.

int k_pipe_cleanup(struct k_pipe *pipe)
Release a pipe’s allocated buffer.

If a pipe object was given a dynamically allocated buffer via k_pipe_alloc_init(), this
will free it. This function does nothing if the buffer wasn’t dynamically allocated.

Parameters
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• pipe – Address of the pipe.

Return values
• 0 – on success

• -EAGAIN – nothing to cleanup

int k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
Initialize a pipe and allocate a buffer for it.

Storage for the buffer region will be allocated from the calling thread’s resource pool.
This memory will be released if k_pipe_cleanup() is called, or userspace is enabled and
the pipe object loses all references to it.

This function should only be called on uninitialized pipe objects.

Parameters
• pipe – Address of the pipe.

• size – Size of the pipe’s ring buffer (in bytes), or zero if no ring buffer is
used.

Return values
• 0 – on success

• -ENOMEM – if memory couldn’t be allocated

int k_pipe_put(struct k_pipe *pipe, const void *data, size_t bytes_to_write, size_t
*bytes_written, size_t min_xfer, k_timeout_t timeout)

Write data to a pipe.

This routine writes up to bytes_to_write bytes of data to pipe.

Parameters
• pipe – Address of the pipe.

• data – Address of data to write.

• bytes_to_write – Size of data (in bytes).

• bytes_written – Address of area to hold the number of bytes written.

• min_xfer – Minimum number of bytes to write.

• timeout – Waiting period to wait for the data to be written, or one of the
special values K_NO_WAIT and K_FOREVER.

Return values
• 0 – At least min_xfer bytes of data were written.

• -EIO – Returned without waiting; zero data bytes were written.

• -EAGAIN – Waiting period timed out; between zero and min_xfer minus
one data bytes were written.

int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read,
size_t min_xfer, k_timeout_t timeout)

Read data from a pipe.

This routine reads up to bytes_to_read bytes of data from pipe.

Parameters
• pipe – Address of the pipe.

• data – Address to place the data read from pipe.

• bytes_to_read – Maximum number of data bytes to read.
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• bytes_read – Address of area to hold the number of bytes read.

• min_xfer – Minimum number of data bytes to read.

• timeout – Waiting period to wait for the data to be read, or one of the
special values K_NO_WAIT and K_FOREVER.

Return values
• 0 – At least min_xfer bytes of data were read.

• -EINVAL – invalid parameters supplied

• -EIO – Returned without waiting; zero data bytes were read.

• -EAGAIN – Waiting period timed out; between zero and min_xfer minus
one data bytes were read.

size_t k_pipe_read_avail(struct k_pipe *pipe)
Query the number of bytes that may be read from pipe.

Parameters
• pipe – Address of the pipe.

Return values
a – number n such that 0 <= n <= k_pipe::size; the result is zero for un-
buffered pipes.

size_t k_pipe_write_avail(struct k_pipe *pipe)
Query the number of bytes that may be written to pipe.

Parameters
• pipe – Address of the pipe.

Return values
a – number n such that 0 <= n <= k_pipe::size; the result is zero for un-
buffered pipes.

void k_pipe_flush(struct k_pipe *pipe)
Flush the pipe of write data.

This routine flushes the pipe. Flushing the pipe is equivalent to reading both all the
data in the pipe’s buffer and all the data waiting to go into that pipe into a large tem-
porary buffer and discarding the buffer. Any writers that were previously pended
become unpended.

Parameters
• pipe – Address of the pipe.

void k_pipe_buffer_flush(struct k_pipe *pipe)
Flush the pipe’s internal buffer.

This routine flushes the pipe’s internal buffer. This is equivalent to reading up to N
bytes from the pipe (where N is the size of the pipe’s buffer) into a temporary buffer
and then discarding that buffer. If there were writers previously pending, then some
may unpend as they try to fill up the pipe’s emptied buffer.

Parameters
• pipe – Address of the pipe.

struct k_pipe
#include <kernel.h> Pipe Structure.
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Public Members

unsigned char *buffer
Pipe buffer: may be NULL.

size_t size
Buffer size.

size_t bytes_used
Number of bytes used in buffer.

size_t read_index
Where in buffer to read from.

size_t write_index
Where in buffer to write.

struct k_spinlock lock
Synchronization lock.

_wait_q_t readers
Reader wait queue.

_wait_q_t writers
Writer wait queue.

uint8_t flags
Wait queue.

Flags

3.1.3 Memory Management

See Memory Management.

3.1.4 Timing

These pages cover timing related services.

Kernel Timing

Zephyr provides a robust and scalable timing framework to enable reporting and tracking of
timed events from hardware timing sources of arbitrary precision.
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Time Units Kernel time is tracked in several units which are used for different purposes.

Real time values, typically specified in milliseconds or microseconds, are the default presenta-
tion of time to application code. They have the advantages of being universally portable and
pervasively understood, though they may not match the precision of the underlying hardware
perfectly.

The kernel presents a “cycle” count via the k_cycle_get_32() and k_cycle_get_64() APIs. The
intent is that this counter represents the fastest cycle counter that the operating system is able
to present to the user (for example, a CPU cycle counter) and that the read operation is very
fast. The expectation is that very sensitive application code might use this in a polling manner to
achieve maximal precision. The frequency of this counter is required to be steady over time, and
is available from sys_clock_hw_cycles_per_sec() (which on almost all platforms is a runtime
constant that evaluates to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC).

For asynchronous timekeeping, the kernel defines a “ticks” concept. A “tick” is the internal count
in which the kernel does all its internal uptime and timeout bookkeeping. Interrupts are ex-
pected to be delivered on tick boundaries to the extent practical, and no fractional ticks are
tracked. The choice of tick rate is configurable via CONFIG_SYS_CLOCK_TICKS_PER_SEC. Defaults
on most hardware platforms (ones that support setting arbitrary interrupt timeouts) are ex-
pected to be in the range of 10 kHz, with software emulation platforms and legacy drivers using
a more traditional 100 Hz value.

Conversion Zephyr provides an extensively enumerated conversion library with rounding
control for all time units. Any unit of “ms” (milliseconds), “us” (microseconds), “tick”, or “cyc”
can be converted to any other. Control of rounding is provided, and each conversion is available
in “floor” (round down to nearest output unit), “ceil” (round up) and “near” (round to nearest).
Finally the output precision can be specified as either 32 or 64 bits.

For example: k_ms_to_ticks_ceil32() will convert a millisecond input value to the next higher
number of ticks, returning a result truncated to 32 bits of precision; and k_cyc_to_us_floor64()
will convert a measured cycle count to an elapsed number of microseconds in a full 64 bits of
precision. See the reference documentation for the full enumeration of conversion routines.

On most platforms, where the various counter rates are integral multiples of each other and
where the output fits within a single word, these conversions expand to a 2-4 operation sequence,
requiring full precision only where actually required and requested.

Uptime The kernel tracks a system uptime count on behalf of the application. This is available
at all times via k_uptime_get(), which provides an uptime value in milliseconds since system
boot. This is expected to be the utility used by most portable application code.

The internal tracking, however, is as a 64 bit integer count of ticks. Apps with precise timing
requirements (that are willing to do their own conversions to portable real time units) may access
this with k_uptime_ticks().

Timeouts The Zephyr kernel provides many APIs with a “timeout” parameter. Conceptually,
this indicates the time at which an event will occur. For example:

• Kernel blocking operations like k_sem_take() or k_queue_get() may provide a timeout af-
ter which the routine will return with an error code if no data is available.

• Kernel k_timer objects must specify delays for their duration and period.

• The kernel k_work_delayable API provides a timeout parameter indicating when a work
queue item will be added to the system queue.

All these values are specified using a k_timeout_t value. This is an opaque struct type that must
be initialized using one of a family of kernel timeout macros. The most common, K_MSEC, defines
a time in milliseconds after the current time.
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What is meant by “current time” for relative timeouts depends on the context:

• When scheduling a relative timeout from within a timeout callback (e.g. from
within the expiry function passed to k_timer_init() or the work handler passed to
k_work_init_delayable()), “current time” is the exact time at which the currently firing
timeout was originally scheduled even if the “real time” will already have advanced. This is
to ensure that timers scheduled from within another timer’s callback will always be calcu-
lated with a precise offset to the firing timer. It is thereby possible to fire at regular intervals
without introducing systematic clock drift over time.

• When scheduling a timeout from application context, “current time” means the value re-
turned by k_uptime_ticks() at the time at which the kernel receives the timeout value.

Other options for timeout initialization follow the unit conventions described above: K_NSEC(),
K_USEC, K_TICKS and K_CYC() specify timeout values that will expire after specified numbers of
nanoseconds, microseconds, ticks and cycles, respectively.

Precision of k_timeout_t values is configurable, with the default being 32 bits. Large uptime
counts in non-tick units will experience complicated rollover semantics, so it is expected that
timing-sensitive applications with long uptimes will be configured to use a 64 bit timeout type.

Finally, it is possible to specify timeouts as absolute times since system boot. A timeout initialized
with K_TIMEOUT_ABS_MS indicates a timeout that will expire after the system uptime reaches the
specified value. There are likewise nanosecond, microsecond, cycles and ticks variants of this
API.

Timing Internals

Timeout Queue All Zephyr k_timeout_t events specified using the API above are managed in a
single, global queue of events. Each event is stored in a double-linked list, with an attendant delta
count in ticks from the previous event. The action to take on an event is specified as a callback
function pointer provided by the subsystem requesting the event, along with a _timeout tracking
struct that is expected to be embedded within subsystem-defined data structures (for example:
a wait_q struct, or a k_tid_t thread struct).

Note that all variant units passed via a k_timeout_t are converted to ticks once on insertion into
the list. There no multiple-conversion steps internal to the kernel, so precision is guaranteed at
the tick level no matter how many events exist or how long a timeout might be.

Note that the list structure means that the CPU work involved in managing large numbers of
timeouts is quadratic in the number of active timeouts. The API design of the timeout queue was
intended to permit a more scalable backend data structure, but no such implementation exists
currently.

Timer Drivers Kernel timing at the tick level is driven by a timer driver with a comparatively
simple API.

• The driver is expected to be able to “announce” new ticks to the kernel via the
sys_clock_announce() call, which passes an integer number of ticks that have elapsed
since the last announce call (or system boot). These calls can occur at any time, but the
driver is expected to attempt to ensure (to the extent practical given interrupt latency in-
teractions) that they occur near tick boundaries (i.e. not “halfway through” a tick), and most
importantly that they be correct over time and subject to minimal skew vs. other counters
and real world time.

• The driver is expected to provide a sys_clock_set_timeout() call to the kernel which in-
dicates how many ticks may elapse before the kernel must receive an announce call to
trigger registered timeouts. It is legal to announce new ticks before that moment (though
they must be correct) but delay after that will cause events to be missed. Note that the time-
out value passed here is in a delta from current time, but that does not absolve the driver of
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the requirement to provide ticks at a steady rate over time. Naive implementations of this
function are subject to bugs where the fractional tick gets “reset” incorrectly and causes
clock skew.

• The driver is expected to provide a sys_clock_elapsed() call which provides a current
indication of how many ticks have elapsed (as compared to a real world clock) since the
last call to sys_clock_announce(), which the kernel needs to test newly arriving timeouts
for expiration.

Note that a natural implementation of this API results in a “tickless” kernel, which receives and
processes timer interrupts only for registered events, relying on programmable hardware coun-
ters to provide irregular interrupts. But a traditional, “ticked” or “dumb” counter driver can be
trivially implemented also:

• The driver can receive interrupts at a regular rate corresponding to the OS tick rate, calling
sys_clock_announce() with an argument of one each time.

• The driver can ignore calls to sys_clock_set_timeout(), as every tick will be announced
regardless of timeout status.

• The driver can return zero for every call to sys_clock_elapsed() as no more than one
tick can be detected as having elapsed (because otherwise an interrupt would have been
received).

SMP Details In general, the timer API described above does not change when run in a multi-
processor context. The kernel will internally synchronize all access appropriately, and ensure
that all critical sections are small and minimal. But some notes are important to detail:

• Zephyr is agnostic about which CPU services timer interrupts. It is not illegal (though prob-
ably undesirable in some circumstances) to have every timer interrupt handled on a single
processor. Existing SMP architectures implement symmetric timer drivers.

• The sys_clock_announce() call is expected to be globally synchronized at the driver level.
The kernel does not do any per-CPU tracking, and expects that if two timer interrupts fire
near simultaneously, that only one will provide the current tick count to the timing subsys-
tem. The other may legally provide a tick count of zero if no ticks have elapsed. It should
not “skip” the announce call because of timeslicing requirements (see below).

• Some SMP hardware uses a single, global timer device, others use a per-CPU counter. The
complexity here (for example: ensuring counter synchronization between CPUs) is ex-
pected to be managed by the driver, not the kernel.

• The next timeout value passed back to the driver via sys_clock_set_timeout() is done
identically for every CPU. So by default, every CPU will see simultaneous timer interrupts
for every event, even though by definition only one of them should see a non-zero ticks
argument to sys_clock_announce(). This is probably a correct default for timing sensitive
applications (because it minimizes the chance that an errant ISR or interrupt lock will delay
a timeout), but may be a performance problem in some cases. The current design expects
that any such optimization is the responsibility of the timer driver.

Time Slicing An auxiliary job of the timing subsystem is to provide tick counters to the sched-
uler that allow implementation of time slicing of threads. A thread time-slice cannot be a time-
out value, as it does not reflect a global expiration but instead a per-CPU value that needs to be
tracked independently on each CPU in an SMP context.

Because there may be no other hardware available to drive timeslicing, Zephyr multiplexes the
existing timer driver. This means that the value passed to sys_clock_set_timeout() may be
clamped to a smaller value than the current next timeout when a time sliced thread is currently
scheduled.
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Subsystems that keep millisecond APIs In general, code like this will port just like applica-
tions code will. Millisecond values from the user may be treated any way the subsystem likes,
and then converted into kernel timeouts using K_MSEC() at the point where they are presented
to the kernel.

Obviously this comes at the cost of not being able to use new features, like the higher precision
timeout constructors or absolute timeouts. But for many subsystems with simple needs, this may
be acceptable.

One complexity is K_FOREVER. Subsystems that might have been able to accept this value to their
millisecond API in the past no longer can, because it is no longer an integral type. Such code will
need to use a different, integer-valued token to represent “forever”. K_NO_WAIT has the same
typesafety concern too, of course, but as it is (and has always been) simply a numerical zero, it
has a natural porting path.

Subsystems using k_timeout_t Ideally, code that takes a “timeout” parameter specifying a
time to wait should be using the kernel native abstraction where possible. But k_timeout_t is
opaque, and needs to be converted before it can be inspected by an application.

Some conversions are simple. Code that needs to test for K_FOREVER can simply use the
K_TIMEOUT_EQ() macro to test the opaque struct for equality and take special action.

The more complicated case is when the subsystem needs to take a timeout and loop, waiting
for it to finish while doing some processing that may require multiple blocking operations on
underlying kernel code. For example, consider this design:

void my_wait_for_event(struct my_subsys *obj, int32_t timeout_in_ms)
{

while (true) {
uint32_t start = k_uptime_get_32();

if (is_event_complete(obj)) {
return;

}

/* Wait for notification of state change */
k_sem_take(obj->sem, timeout_in_ms);

/* Subtract elapsed time */
timeout_in_ms -= (k_uptime_get_32() - start);

}
}

This code requires that the timeout value be inspected, which is no longer possible.
For situations like this, the new API provides the internal sys_timepoint_calc() and
sys_timepoint_timeout() routines that converts an arbitrary timeout to and from a timepoint
value based on an uptime tick at which it will expire. So such a loop might look like:

void my_wait_for_event(struct my_subsys *obj, k_timeout_t timeout)
{

/* Compute the end time from the timeout */
k_timepoint_t end = sys_timepoint_calc(timeout);

do {
if (is_event_complete(obj)) {

return;
}

/* Update timeout with remaining time */
timeout = sys_timepoint_timeout(end);

(continues on next page)
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(continued from previous page)
/* Wait for notification of state change */
k_sem_take(obj->sem, timeout);

} while (!K_TIMEOUT_EQ(timeout, K_NO_WAIT));
}

Note that sys_timepoint_calc() accepts special values K_FOREVER and K_NO_WAIT, and
works identically for absolute timeouts as well as conventional ones. Conversely,
sys_timepoint_timeout() may return K_FOREVER or K_NO_WAIT if those were used to create the
timepoint, the later also being returned if the timepoint is now in the past. For simple cases,
sys_timepoint_expired() can be used as well.

But some care is still required for subsystems that use those. Note that delta timeouts need to
be interpreted relative to a “current time”, and obviously that time is the time of the call to
sys_timepoint_calc(). But the user expects that the time is the time they passed the timeout
to you. Care must be taken to call this function just once, as synchronously as possible to the
timeout creation in user code. It should not be used on a “stored” timeout value, and should
never be called iteratively in a loop.

API Reference

group clock_apis
System Clock APIs.

Defines

K_NO_WAIT
Generate null timeout delay.

This macro generates a timeout delay that instructs a kernel API not to wait if the re-
quested operation cannot be performed immediately.

Returns
Timeout delay value.

K_NSEC(t)
Generate timeout delay from nanoseconds.

This macro generates a timeout delay that instructs a kernel API to wait up to tnanosec-
onds to perform the requested operation. Note that timer precision is limited to the
tick rate, not the requested value.

Parameters
• t – Duration in nanoseconds.

Returns
Timeout delay value.

K_USEC(t)
Generate timeout delay from microseconds.

This macro generates a timeout delay that instructs a kernel API to wait up to t mi-
croseconds to perform the requested operation. Note that timer precision is limited to
the tick rate, not the requested value.

Parameters
• t – Duration in microseconds.
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Returns
Timeout delay value.

K_CYC(t)
Generate timeout delay from cycles.

This macro generates a timeout delay that instructs a kernel API to wait up to t cycles
to perform the requested operation.

Parameters
• t – Duration in cycles.

Returns
Timeout delay value.

K_TICKS(t)
Generate timeout delay from system ticks.

This macro generates a timeout delay that instructs a kernel API to wait up to t ticks to
perform the requested operation.

Parameters
• t – Duration in system ticks.

Returns
Timeout delay value.

K_MSEC(ms)
Generate timeout delay from milliseconds.

This macro generates a timeout delay that instructs a kernel API to wait up to ms mil-
liseconds to perform the requested operation.

Parameters
• ms – Duration in milliseconds.

Returns
Timeout delay value.

K_SECONDS(s)
Generate timeout delay from seconds.

This macro generates a timeout delay that instructs a kernel API to wait up to s seconds
to perform the requested operation.

Parameters
• s – Duration in seconds.

Returns
Timeout delay value.

K_MINUTES(m)
Generate timeout delay from minutes.

This macro generates a timeout delay that instructs a kernel API to wait up to m min-
utes to perform the requested operation.

Parameters
• m – Duration in minutes.

Returns
Timeout delay value.
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K_HOURS(h)
Generate timeout delay from hours.

This macro generates a timeout delay that instructs a kernel API to wait up to h hours
to perform the requested operation.

Parameters
• h – Duration in hours.

Returns
Timeout delay value.

K_FOREVER
Generate infinite timeout delay.

This macro generates a timeout delay that instructs a kernel API to wait as long as
necessary to perform the requested operation.

Returns
Timeout delay value.

K_TICKS_FOREVER

K_TIMEOUT_EQ(a, b)
Compare timeouts for equality.

The k_timeout_t object is an opaque struct that should not be inspected by application
code. This macro exists so that users can test timeout objects for equality with known
constants (e.g. K_NO_WAIT and K_FOREVER) when implementing their own APIs in
terms of Zephyr timeout constants.

Returns
True if the timeout objects are identical

NSEC_PER_USEC
number of nanoseconds per micorsecond

NSEC_PER_MSEC
number of nanoseconds per millisecond

USEC_PER_MSEC
number of microseconds per millisecond

MSEC_PER_SEC
number of milliseconds per second

SEC_PER_MIN
number of seconds per minute

MIN_PER_HOUR
number of minutes per hour

HOUR_PER_DAY
number of hours per day
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USEC_PER_SEC
number of microseconds per second

NSEC_PER_SEC
number of nanoseconds per second

SYS_CLOCK_HW_CYCLES_TO_NS_AVG(X, NCYCLES)
SYS_CLOCK_HW_CYCLES_TO_NS_AVG converts CPU clock cycles to nanoseconds and
calculates the average cycle time.

Typedefs

typedef uint32_t k_ticks_t
Tick precision used in timeout APIs.

This type defines the word size of the timeout values used in k_timeout_t objects, and
thus defines an upper bound on maximum timeout length (or equivalently minimum
tick duration). Note that this does not affect the size of the system uptime counter,
which is always a 64 bit count of ticks.

Functions

void sys_clock_set_timeout(int32_t ticks, bool idle)
Set system clock timeout.

Informs the system clock driver that the next needed call to sys_clock_announce() will
not be until the specified number of ticks from the current time have elapsed. Note that
spurious calls to sys_clock_announce() are allowed (i.e. it’s legal to announce every tick
and implement this function as a noop), the requirement is that one tick announce-
ment should occur within one tick BEFORE the specified expiration (that is, passing
ticks==1 means “announce

the next tick”, this convention was chosen to match legacy usage). Similarly a ticks
value of zero (or even negative) is legal and treated identically: it simply indicates the
kernel would like the next tick announcement as soon as possible.

Note that ticks can also be passed the special value K_TICKS_FOREVER, indicating that
no future timer interrupts are expected or required and that the system is permitted
to enter an indefinite sleep even if this could cause rollover of the internal counter (i.e.
the system uptime counter is allowed to be wrong

Note also that it is conventional for the kernel to pass INT_MAX for ticks if it wants to
preserve the uptime tick count but doesn’t have a specific event to await. The intent
here is that the driver will schedule any needed timeout as far into the future as possi-
ble. For the specific case of INT_MAX, the next call to sys_clock_announce() may occur
at any point in the future, not just at INT_MAX ticks. But the correspondence between
the announced ticks and real-world time must be correct.

A final note about SMP: note that the call to sys_clock_set_timeout() is made on
any CPU, and reflects the next timeout desired globally. The resulting calls(s) to
sys_clock_announce() must be properly serialized by the driver such that a given tick
is announced exactly once across the system. The kernel does not (cannot, really) at-
tempt to serialize things by “assigning” timeouts to specific CPUs.

Parameters
• ticks – Timeout in tick units
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• idle – Hint to the driver that the system is about to enter the idle state
immediately after setting the timeout

void sys_clock_idle_exit(void)
Timer idle exit notification.

This notifies the timer driver that the system is exiting the idle and allows it to do
whatever bookkeeping is needed to restore timer operation and compute elapsed ticks.

Note

Legacy timer drivers also use this opportunity to call back into sys_clock_announce()
to notify the kernel of expired ticks. This is allowed for compatibility, but not rec-
ommended. The kernel will figure that out on its own.

void sys_clock_announce(int32_t ticks)
Announce time progress to the kernel.

Informs the kernel that the specified number of ticks have elapsed since the last call to
sys_clock_announce() (or system startup for the first call). The timer driver is expected
to delivery these announcements as close as practical (subject to hardware and latency
limitations) to tick boundaries.

Parameters
• ticks – Elapsed time, in ticks

uint32_t sys_clock_elapsed(void)
Ticks elapsed since last sys_clock_announce() call.

Queries the clock driver for the current time elapsed since the last call to
sys_clock_announce() was made. The kernel will call this with appropriate locking,
the driver needs only provide an instantaneous answer.

void sys_clock_disable(void)
Disable system timer.

Note

Not all system timer drivers has the capability of being disabled. The config CON-
FIG_SYSTEM_TIMER_HAS_DISABLE_SUPPORT can be used to check if the system timer
has the capability of being disabled.

uint32_t sys_clock_cycle_get_32(void)
Hardware cycle counter.

Timer drivers are generally responsible for the system cycle counter as well as the tick
announcements. This function is generally called out of the architecture layer (

See also

arch_k_cycle_get_32()) to implement the cycle counter, though the user-facing
API is owned by the architecture, not the driver. The rate must match CON-
FIG_SYS_CLOCK_HW_CYCLES_PER_SEC.
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Note

If the counter clock is large enough for this to wrap its full range within a few sec-
onds (i.e. CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC is greater than 50Mhz) then
it is recommended to also implement sys_clock_cycle_get_64().

Returns
The current cycle time. This should count up monotonically through the
full 32 bit space, wrapping at 0xffffffff. Hardware with fewer bits of preci-
sion in the timer is expected to synthesize a 32 bit count.

uint64_t sys_clock_cycle_get_64(void)
64 bit hardware cycle counter

As for sys_clock_cycle_get_32(), but with a 64 bit return value. Not all hard-
ware has 64 bit counters. This function need be implemented only if CON-
FIG_TIMER_HAS_64BIT_CYCLE_COUNTER is set.

Note

If the counter clock is large enough for sys_clock_cycle_get_32() to wrap its full range
within a few seconds (i.e. CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC is greater
than 50Mhz) then it is recommended to implement this API.

Returns
The current cycle time. This should count up monotonically through the
full 64 bit space, wrapping at 2^64-1. Hardware with fewer bits of precision
in the timer is generally not expected to implement this API.

int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.

This routine returns the elapsed time since the system booted, in ticks (c.f. CON-
FIG_SYS_CLOCK_TICKS_PER_SEC ), which is the fundamental unit of resolution of kernel
timekeeping.

Returns
Current uptime in ticks.

static inline int64_t k_uptime_get(void)
Get system uptime.

This routine returns the elapsed time since the system booted, in milliseconds.

Note

While this function returns time in milliseconds, it does not mean it has millisecond
resolution. The actual resolution depends on CONFIG_SYS_CLOCK_TICKS_PER_SEC
config option.

Returns
Current uptime in milliseconds.
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static inline uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).

This routine returns the lower 32 bits of the system uptime in milliseconds.

Because correct conversion requires full precision of the system clock there is no ben-
efit to using this over k_uptime_get() unless you know the application will never run
long enough for the system clock to approach 2^32 ticks. Calls to this function may
involve interrupt blocking and 64-bit math.

Note

While this function returns time in milliseconds, it does not mean it has millisecond
resolution. The actual resolution depends on CONFIG_SYS_CLOCK_TICKS_PER_SEC
config option

Returns
The low 32 bits of the current uptime, in milliseconds.

static inline uint32_t k_uptime_seconds(void)
Get system uptime in seconds.

This routine returns the elapsed time since the system booted, in seconds.

Returns
Current uptime in seconds.

static inline int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.

This routine computes the elapsed time between the current system uptime and an
earlier reference time, in milliseconds.

Parameters
• reftime – Pointer to a reference time, which is updated to the current

uptime upon return.

Returns
Elapsed time.

static inline uint32_t k_cycle_get_32(void)
Read the hardware clock.

This routine returns the current time, as measured by the system’s hardware clock.

Returns
Current hardware clock up-counter (in cycles).

static inline uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.

This routine returns the current time in 64-bits, as measured by the system’s hardware
clock, if available.

See also

CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER
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Returns
Current hardware clock up-counter (in cycles).

uint32_t sys_clock_tick_get_32(void)
Return the lower part of the current system tick count.

Returns
the current system tick count

int64_t sys_clock_tick_get(void)
Return the current system tick count.

Returns
the current system tick count

k_timepoint_t sys_timepoint_calc(k_timeout_t timeout)
Calculate a timepoint value.

Returns a timepoint corresponding to the expiration (relative to an unlocked “now”!)
of a timeout object. When used correctly, this should be called once, synchronously
with the user passing a new timeout value. It should not be used iteratively to adjust
a timeout (see sys_timepoint_timeout() for that purpose).

See also

sys_timepoint_timeout()

See also

sys_timepoint_expired()

Parameters
• timeout – Timeout value relative to current time (may also be K_FOREVER

or K_NO_WAIT).

Return values
Timepoint – value corresponding to given timeout

k_timeout_t sys_timepoint_timeout(k_timepoint_t timepoint)
Remaining time to given timepoint.

Returns the timeout interval between current time and provided timepoint. If the time-
point is now in the past or if it was created with K_NO_WAIT then K_NO_WAIT is returned.
If it was created with K_FOREVER then K_FOREVER is returned.

See also

sys_timepoint_calc()

Parameters
• timepoint – Timepoint for which a timeout value is wanted.
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Return values
Corresponding – timeout value.

static inline uint64_t sys_clock_timeout_end_calc(k_timeout_t timeout)
Provided for backward compatibility.

This is deprecated. Consider sys_timepoint_calc() instead.

See also

sys_timepoint_calc()

static inline int sys_timepoint_cmp(k_timepoint_t a, k_timepoint_t b)
Compare two timepoint values.

This function is used to compare two timepoint values.

Parameters
• a – Timepoint to compare

• b – Timepoint to compare against.

Returns
zero if both timepoints are the same. Negative value if timepoint a is before
timepoint b, positive otherwise.

static inline bool sys_timepoint_expired(k_timepoint_t timepoint)
Indicates if timepoint is expired.

See also

sys_timepoint_calc()

Parameters
• timepoint – Timepoint to evaluate

Return values
true – if the timepoint is in the past, false otherwise

struct k_timeout_t
#include <sys_clock.h> Kernel timeout type.

Timeout arguments presented to kernel APIs are stored in this opaque type, which
is capable of representing times in various formats and units. It should be con-
structed from application data using one of the macros defined for this purpose (e.g.
K_MSEC(), K_TIMEOUT_ABS_TICKS(), etc…), or be one of the two constants K_NO_WAIT
or K_FOREVER. Applications should not inspect the internal data once constructed.
Timeout values may be compared for equality with the K_TIMEOUT_EQ() macro.

struct k_timepoint_t
#include <sys_clock.h> Kernel timepoint type.

Absolute timepoints are stored in this opaque type. It is best not to inspect its content
directly.
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See also

sys_timepoint_calc()

See also

sys_timepoint_timeout()

See also

sys_timepoint_expired()

Timers

A timer is a kernel object that measures the passage of time using the kernel’s system clock. When
a timer’s specified time limit is reached it can perform an application-defined action, or it can
simply record the expiration and wait for the application to read its status.

• Concepts

• Implementation

– Defining a Timer

– Using a Timer Expiry Function

– Reading Timer Status

– Using Timer Status Synchronization

• Suggested Uses

• Configuration Options

• API Reference

Concepts Any number of timers can be defined (limited only by available RAM). Each timer is
referenced by its memory address.

A timer has the following key properties:

• A duration specifying the time interval before the timer expires for the first time. This is a
k_timeout_t value that may be initialized via different units.

• A period specifying the time interval between all timer expirations after the first one, also
a k_timeout_t. It must be non-negative. A period of K_NO_WAIT (i.e. zero) or K_FOREVER
means that the timer is a one-shot timer that stops after a single expiration. (For example
then, if a timer is started with a duration of 200 and a period of 75, it will first expire after
200 ms and then every 75 ms after that.)

• An expiry function that is executed each time the timer expires. The function is executed
by the system clock interrupt handler. If no expiry function is required a NULL function can
be specified.
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• A stop function that is executed if the timer is stopped prematurely while running. The
function is executed by the thread that stops the timer. If no stop function is required a
NULL function can be specified.

• A status value that indicates how many times the timer has expired since the status value
was last read.

A timer must be initialized before it can be used. This specifies its expiry function and stop
function values, sets the timer’s status to zero, and puts the timer into the stopped state.

A timer is started by specifying a duration and a period. The timer’s status is reset to zero, and
then the timer enters the running state and begins counting down towards expiry.

Note that the timer’s duration and period parameters specify minimum delays that will elapse.
Because of internal system timer precision (and potentially runtime interactions like interrupt
delay) it is possible that more time may have passed as measured by reads from the relevant
system time APIs. But at least this much time is guaranteed to have elapsed.

When a running timer expires its status is incremented and the timer executes its expiry func-
tion, if one exists; If a thread is waiting on the timer, it is unblocked. If the timer’s period is zero
the timer enters the stopped state; otherwise, the timer restarts with a new duration equal to its
period.

A running timer can be stopped in mid-countdown, if desired. The timer’s status is left un-
changed, then the timer enters the stopped state and executes its stop function, if one exists.
If a thread is waiting on the timer, it is unblocked. Attempting to stop a non-running timer is
permitted, but has no effect on the timer since it is already stopped.

A running timer can be restarted in mid-countdown, if desired. The timer’s status is reset to zero,
then the timer begins counting down using the new duration and period values specified by the
caller. If a thread is waiting on the timer, it continues waiting.

A timer’s status can be read directly at any time to determine how many times the timer has
expired since its status was last read. Reading a timer’s status resets its value to zero. The amount
of time remaining before the timer expires can also be read; a value of zero indicates that the
timer is stopped.

A thread may read a timer’s status indirectly by synchronizing with the timer. This blocks the
thread until the timer’s status is non-zero (indicating that it has expired at least once) or the
timer is stopped; if the timer status is already non-zero or the timer is already stopped the thread
continues without waiting. The synchronization operation returns the timer’s status and resets
it to zero.

Note

Only a single user should examine the status of any given timer, since reading the status
(directly or indirectly) changes its value. Similarly, only a single thread at a time should syn-
chronize with a given timer. ISRs are not permitted to synchronize with timers, since ISRs
are not allowed to block.

Implementation

Defining a Timer A timer is defined using a variable of type k_timer. It must then be initialized
by calling k_timer_init().

The following code defines and initializes a timer.

struct k_timer my_timer;
extern void my_expiry_function(struct k_timer *timer_id);

(continues on next page)
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(continued from previous page)

k_timer_init(&my_timer, my_expiry_function, NULL);

Alternatively, a timer can be defined and initialized at compile time by calling K_TIMER_DEFINE.

The following code has the same effect as the code segment above.

K_TIMER_DEFINE(my_timer, my_expiry_function, NULL);

Using a TimerExpiry Function The following code uses a timer to perform a non-trivial action
on a periodic basis. Since the required work cannot be done at the interrupt level, the timer’s
expiry function submits a work item to the system workqueue, whose thread performs the work.

void my_work_handler(struct k_work *work)
{

/* do the processing that needs to be done periodically */
...

}

K_WORK_DEFINE(my_work, my_work_handler);

void my_timer_handler(struct k_timer *dummy)
{

k_work_submit(&my_work);
}

K_TIMER_DEFINE(my_timer, my_timer_handler, NULL);

...

/* start a periodic timer that expires once every second */
k_timer_start(&my_timer, K_SECONDS(1), K_SECONDS(1));

Reading Timer Status The following code reads a timer’s status directly to determine if the
timer has expired or not.

K_TIMER_DEFINE(my_status_timer, NULL, NULL);

...

/* start a one-shot timer that expires after 200 ms */
k_timer_start(&my_status_timer, K_MSEC(200), K_NO_WAIT);

/* do work */
...

/* check timer status */
if (k_timer_status_get(&my_status_timer) > 0) {

/* timer has expired */
} else if (k_timer_remaining_get(&my_status_timer) == 0) {

/* timer was stopped (by someone else) before expiring */
} else {

/* timer is still running */
}

Using Timer Status Synchronization The following code performs timer status synchroniza-
tion to allow a thread to do useful work while ensuring that a pair of protocol operations are
separated by the specified time interval.
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K_TIMER_DEFINE(my_sync_timer, NULL, NULL);

...

/* do first protocol operation */
...

/* start a one-shot timer that expires after 500 ms */
k_timer_start(&my_sync_timer, K_MSEC(500), K_NO_WAIT);

/* do other work */
...

/* ensure timer has expired (waiting for expiry, if necessary) */
k_timer_status_sync(&my_sync_timer);

/* do second protocol operation */
...

Note

If the thread had no other work to do it could simply sleep between the two protocol opera-
tions, without using a timer.

Suggested Uses Use a timer to initiate an asynchronous operation after a specified amount of
time.

Use a timer to determine whether or not a specified amount of time has elapsed. In particular,
timers should be used when higher precision and/or unit control is required than that afforded
by the simpler k_sleep() and k_usleep() calls.

Use a timer to perform other work while carrying out operations involving time limits.

Note

If a thread needs to measure the time required to perform an operation it can read the system
clock or the hardware clock directly, rather than using a timer.

Configuration Options Related configuration options:

• None

Related code samples

KSCAN
Use the KSCAN API to read key presses and releases on a keyboard matrix.

API Reference

group timer_apis
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Defines

K_TIMER_DEFINE(name, expiry_fn, stop_fn)
Statically define and initialize a timer.

The timer can be accessed outside the module where it is defined using:

extern struct k_timer <name>;

Parameters
• name – Name of the timer variable.

• expiry_fn – Function to invoke each time the timer expires.

• stop_fn – Function to invoke if the timer is stopped while running.

Typedefs

typedef void (*k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.

A timer’s expiry function is executed by the system clock interrupt handler each time
the timer expires. The expiry function is optional, and is only invoked if the timer has
been initialized with one.

Param timer
Address of timer.

typedef void (*k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.

A timer’s stop function is executed if the timer is stopped prematurely. The function
runs in the context of call that stops the timer. As k_timer_stop() can be invoked from
an ISR, the stop function must be callable from interrupt context (isr-ok).

The stop function is optional, and is only invoked if the timer has been initialized with
one.

Param timer
Address of timer.

Functions

void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t
stop_fn)

Initialize a timer.

This routine initializes a timer, prior to its first use.

Parameters
• timer – Address of timer.

• expiry_fn – Function to invoke each time the timer expires.

• stop_fn – Function to invoke if the timer is stopped while running.

3.1. Kernel Services 489



Zephyr Project Documentation, Release 3.7.99

void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.

This routine starts a timer, and resets its status to zero. The timer begins counting
down using the specified duration and period values.

Attempting to start a timer that is already running is permitted. The timer’s status is
reset to zero and the timer begins counting down using the new duration and period
values.

Parameters
• timer – Address of timer.

• duration – Initial timer duration.

• period – Timer period.

void k_timer_stop(struct k_timer *timer)
Stop a timer.

This routine stops a running timer prematurely. The timer’s stop function, if one exists,
is invoked by the caller.

Attempting to stop a timer that is not running is permitted, but has no effect on the
timer.

Function properties (list may not be complete)
isr-ok

Note

The stop handler has to be callable from ISRs if k_timer_stop is to be called from
ISRs.

Parameters
• timer – Address of timer.

uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.

This routine reads the timer’s status, which indicates the number of times it has ex-
pired since its status was last read.

Calling this routine resets the timer’s status to zero.

Parameters
• timer – Address of timer.

Returns
Timer status.

uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.

This routine blocks the calling thread until the timer’s status is non-zero (indicating
that it has expired at least once since it was last examined) or the timer is stopped. If the
timer status is already non-zero, or the timer is already stopped, the caller continues
without waiting.

Calling this routine resets the timer’s status to zero.
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This routine must not be used by interrupt handlers, since they are not allowed to
block.

Parameters
• timer – Address of timer.

Returns
Timer status.

k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.

This routine returns the future system uptime reached at the next time of expiration
of the timer, in units of system ticks. If the timer is not running, current system time is
returned.

Parameters
• timer – The timer object

Returns
Uptime of expiration, in ticks

k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.

This routine computes the time remaining before a running timer next expires, in units
of system ticks. If the timer is not running, it returns zero.

Parameters
• timer – The timer object

Returns
Remaining time until expiration, in ticks

static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.

This routine computes the (approximate) time remaining before a running timer next
expires. If the timer is not running, it returns zero.

Parameters
• timer – Address of timer.

Returns
Remaining time (in milliseconds).

void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.

This routine records the user_data with the timer, to be retrieved later.

It can be used e.g. in a timer handler shared across multiple subsystems to retrieve
data specific to the subsystem this timer is associated with.

Parameters
• timer – Address of timer.

• user_data – User data to associate with the timer.

void *k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.

Parameters
• timer – Address of timer.
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Returns
The user data.

3.1.5 Other

These pages cover other kernel services.

Atomic Services

An atomic variable is one that can be read and modified by threads and ISRs in an uninterruptible
manner. It is a 32-bit variable on 32-bit machines and a 64-bit variable on 64-bit machines.

• Concepts

• Implementation

– Defining an Atomic Variable

– Manipulating an Atomic Variable

– Manipulating an Array of Atomic Variables

– Memory Ordering

• Suggested Uses

• Configuration Options

• API Reference

Concepts Any number of atomic variables can be defined (limited only by available RAM).

Using the kernel’s atomic APIs to manipulate an atomic variable guarantees that the desired
operation occurs correctly, even if higher priority contexts also manipulate the same variable.

The kernel also supports the atomic manipulation of a single bit in an array of atomic variables.

Implementation

Defining an Atomic Variable An atomic variable is defined using a variable of type atomic_t.

By default an atomic variable is initialized to zero. However, it can be given a different value
using ATOMIC_INIT:

atomic_t flags = ATOMIC_INIT(0xFF);

Manipulating an Atomic Variable An atomic variable is manipulated using the APIs listed at
the end of this section.

The following code shows how an atomic variable can be used to keep track of the number of
times a function has been invoked. Since the count is incremented atomically, there is no risk
that it will become corrupted in mid-increment if a thread calling the function is interrupted if
by a higher priority context that also calls the routine.
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atomic_t call_count;

int call_counting_routine(void)
{

/* increment invocation counter */
atomic_inc(&call_count);

/* do rest of routine's processing */
...

}

Manipulating an Array of Atomic Variables An array of 32-bit atomic variables can be de-
fined in the conventional manner. However, you can also define an N-bit array of atomic vari-
ables using ATOMIC_DEFINE.

A single bit in array of atomic variables can be manipulated using the APIs listed at the end of
this section that end with _bit().

The following code shows how a set of 200 flag bits can be implemented using an array of atomic
variables.

#define NUM_FLAG_BITS 200

ATOMIC_DEFINE(flag_bits, NUM_FLAG_BITS);

/* set specified flag bit & return its previous value */
int set_flag_bit(int bit_position)
{

return (int)atomic_set_bit(flag_bits, bit_position);
}

Memory Ordering For consistency and correctness, all Zephyr atomic APIs are expected to in-
clude a full memory barrier (in the sense of e.g. “serializing” instructions on x86, “DMB” on ARM,
or a “sequentially consistent” operation as defined by the C++ memory model) where needed by
hardware to guarantee a reliable picture across contexts. Any architecture-specific implemen-
tations are responsible for ensuring this behavior.

Suggested Uses Use an atomic variable to implement critical section processing that only re-
quires the manipulation of a single 32-bit value.

Use multiple atomic variables to implement critical section processing on a set of flag bits in a
bit array longer than 32 bits.

Note

Using atomic variables is typically far more efficient than using other techniques to imple-
ment critical sections such as using a mutex or locking interrupts.

Configuration Options Related configuration options:

• CONFIG_ATOMIC_OPERATIONS_BUILTIN
• CONFIG_ATOMIC_OPERATIONS_ARCH
• CONFIG_ATOMIC_OPERATIONS_C
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Important

All atomic services APIs can be used by both threads and ISRs.

API Reference

group atomic_apis

Defines

ATOMIC_INIT(i)
Initialize an atomic variable.

This macro can be used to initialize an atomic variable. For example,

atomic_t my_var = ATOMIC_INIT(75);

Parameters
• i – Value to assign to atomic variable.

ATOMIC_PTR_INIT(p)
Initialize an atomic pointer variable.

This macro can be used to initialize an atomic pointer variable. For example,

atomic_ptr_t my_ptr = ATOMIC_PTR_INIT(&data);

Parameters
• p – Pointer value to assign to atomic pointer variable.

ATOMIC_BITMAP_SIZE(num_bits)
This macro computes the number of atomic variables necessary to represent a bitmap
with num_bits.

Parameters
• num_bits – Number of bits.

ATOMIC_DEFINE(name, num_bits)
Define an array of atomic variables.

This macro defines an array of atomic variables containing at least num_bits bits.

Note

If used from file scope, the bits of the array are initialized to zero; if used from
within a function, the bits are left uninitialized.

Parameters
• name – Name of array of atomic variables.

• num_bits – Number of bits needed.
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Functions

static inline bool atomic_test_bit(const atomic_t *target, int bit)
Atomically test a bit.

This routine tests whether bit number bit of target is set or not. The target may be a
single atomic variable or an array of them.

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable or array.

• bit – Bit number (starting from 0).

Returns
true if the bit was set, false if it wasn’t.

static inline bool atomic_test_and_clear_bit(atomic_t *target, int bit)
Atomically test and clear a bit.

Atomically clear bit number bit of target and return its old value. The target may be a
single atomic variable or an array of them.

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable or array.

• bit – Bit number (starting from 0).

Returns
false if the bit was already cleared, true if it wasn’t.

static inline bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit.

Atomically set bit number bit of target and return its old value. The target may be a
single atomic variable or an array of them.

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable or array.

• bit – Bit number (starting from 0).
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Returns
true if the bit was already set, false if it wasn’t.

static inline void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.

Atomically clear bit number bit of target. The target may be a single atomic variable
or an array of them.

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable or array.

• bit – Bit number (starting from 0).

static inline void atomic_set_bit(atomic_t *target, int bit)
Atomically set a bit.

Atomically set bit number bit of target. The target may be a single atomic variable or
an array of them.

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable or array.

• bit – Bit number (starting from 0).

static inline void atomic_set_bit_to(atomic_t *target, int bit, bool val)
Atomically set a bit to a given value.

Atomically set bit number bit of target to value val. The target may be a single atomic
variable or an array of them.

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable or array.

• bit – Bit number (starting from 0).

• val – true for 1, false for 0.
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bool atomic_cas(atomic_t *target, atomic_val_t old_value, atomic_val_t new_value)
Atomic compare-and-set.

This routine performs an atomic compare-and-set on target. If the current value of
target equals old_value, target is set to new_value. If the current value of target does
not equal old_value, target is left unchanged.

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable.

• old_value – Original value to compare against.

• new_value – New value to store.

Returns
true if new_value is written, false otherwise.

bool atomic_ptr_cas(atomic_ptr_t *target, atomic_ptr_val_t old_value, atomic_ptr_val_t
new_value)

Atomic compare-and-set with pointer values.

This routine performs an atomic compare-and-set on target. If the current value of
target equals old_value, target is set to new_value. If the current value of target does
not equal old_value, target is left unchanged.

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable.

• old_value – Original value to compare against.

• new_value – New value to store.

Returns
true if new_value is written, false otherwise.

atomic_val_t atomic_add(atomic_t *target, atomic_val_t value)
Atomic addition.

This routine performs an atomic addition on target.

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable.
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• value – Value to add.

Returns
Previous value of target.

atomic_val_t atomic_sub(atomic_t *target, atomic_val_t value)
Atomic subtraction.

This routine performs an atomic subtraction on target.

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable.

• value – Value to subtract.

Returns
Previous value of target.

atomic_val_t atomic_inc(atomic_t *target)
Atomic increment.

This routine performs an atomic increment by 1 on target.

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable.

Returns
Previous value of target.

atomic_val_t atomic_dec(atomic_t *target)
Atomic decrement.

This routine performs an atomic decrement by 1 on target.

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable.

Returns
Previous value of target.
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atomic_val_t atomic_get(const atomic_t *target)
Atomic get.

This routine performs an atomic read on target.

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable.

Returns
Value of target.

atomic_ptr_val_t atomic_ptr_get(const atomic_ptr_t *target)
Atomic get a pointer value.

This routine performs an atomic read on target.

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of pointer variable.

Returns
Value of target.

atomic_val_t atomic_set(atomic_t *target, atomic_val_t value)
Atomic get-and-set.

This routine atomically sets target to value and returns the previous value of target.

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable.

• value – Value to write to target.

Returns
Previous value of target.

atomic_ptr_val_t atomic_ptr_set(atomic_ptr_t *target, atomic_ptr_val_t value)
Atomic get-and-set for pointer values.

This routine atomically sets target to value and returns the previous value of target.
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Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable.

• value – Value to write to target.

Returns
Previous value of target.

atomic_val_t atomic_clear(atomic_t *target)
Atomic clear.

This routine atomically sets target to zero and returns its previous value. (Hence, it is
equivalent to atomic_set(target, 0).)

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable.

Returns
Previous value of target.

atomic_ptr_val_t atomic_ptr_clear(atomic_ptr_t *target)
Atomic clear of a pointer value.

This routine atomically sets target to zero and returns its previous value. (Hence, it is
equivalent to atomic_set(target, 0).)

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable.

Returns
Previous value of target.

atomic_val_t atomic_or(atomic_t *target, atomic_val_t value)
Atomic bitwise inclusive OR.

This routine atomically sets target to the bitwise inclusive OR of target and value.
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Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable.

• value – Value to OR.

Returns
Previous value of target.

atomic_val_t atomic_xor(atomic_t *target, atomic_val_t value)
Atomic bitwise exclusive OR (XOR).

This routine atomically sets target to the bitwise exclusive OR (XOR) of target and value.

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable.

• value – Value to XOR

Returns
Previous value of target.

atomic_val_t atomic_and(atomic_t *target, atomic_val_t value)
Atomic bitwise AND.

This routine atomically sets target to the bitwise AND of target and value.

Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable.

• value – Value to AND.

Returns
Previous value of target.

atomic_val_t atomic_nand(atomic_t *target, atomic_val_t value)
Atomic bitwise NAND.

This routine atomically sets target to the bitwise NAND of target and value. (This op-
eration is equivalent to target = ~(target & value).)
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Note

As for all atomic APIs, includes a full/sequentially-consistent memory barrier
(where applicable).

Parameters
• target – Address of atomic variable.

• value – Value to NAND.

Returns
Previous value of target.

Floating Point Services

The kernel allows threads to use floating point registers on board configurations that support
these registers.

Note

Floating point services are currently available only for boards based on ARM Cortex-M SoCs
supporting the Floating Point Extension, the Intel x86 architecture, the SPARC architecture
and ARCv2 SoCs supporting the Floating Point Extension. The services provided are architec-
ture specific.

The kernel does not support the use of floating point registers by ISRs.

• Concepts

– No FP registers mode

– Unshared FP registers mode

– Shared FP registers mode

• Implementation

– Performing Floating Point Arithmetic

• Suggested Uses

• Configuration Options

• API Reference

Concepts The kernel can be configured to provide only the floating point services required by
an application. Three modes of operation are supported, which are described below. In addition,
the kernel’s support for the SSE registers can be included or omitted, as desired.

No FP registers mode This mode is used when the application has no threads that use floating
point registers. It is the kernel’s default floating point services mode.

If a thread uses any floating point register, the kernel generates a fatal error condition and aborts
the thread.
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Unshared FP registers mode This mode is used when the application has only a single thread
that uses floating point registers.

On x86 platforms, the kernel initializes the floating point registers so they can be used by any
thread (initialization in skipped on ARM Cortex-M platforms and ARCv2 platforms). The floating
point registers are left unchanged whenever a context switch occurs.

Note

The behavior is undefined, if two or more threads attempt to use the floating point regis-
ters, as the kernel does not attempt to detect (or prevent) multiple threads from using these
registers.

Shared FP registers mode This mode is used when the application has two or more threads
that use floating point registers. Depending upon the underlying CPU architecture, the kernel
supports one or more of the following thread sub-classes:

• non-user: A thread that cannot use any floating point registers

• FPU user: A thread that can use the standard floating point registers

• SSE user: A thread that can use both the standard floating point registers and SSE registers

The kernel initializes and enables access to the floating point registers, so they can be used by any
thread, then saves and restores these registers during context switches to ensure the computa-
tions performed by each FPU user or SSE user are not impacted by the computations performed
by the other users.

Note

The Shared FP registers mode is the default Floating Point Services mode in ARM Cortex-M.

ARM Cortex-M architecture (with the Floating Point Extension) On the ARM Cortex-M ar-
chitecture with the Floating Point Extension, the kernel treats all threads as FPU users when
shared FP registers mode is enabled. This means that any thread is allowed to access the floating
point registers. The ARM kernel automatically detects that a given thread is using the floating
point registers the first time the thread accesses them.

Pretag a thread that intends to use the FP registers by using one of the techniques listed below.

• A statically-created ARM thread can be pretagged by passing the K_FP_REGS option to
K_THREAD_DEFINE.

• A dynamically-created ARM thread can be pretagged by passing the K_FP_REGS option to
k_thread_create().

Pretagging a thread with the K_FP_REGS option instructs the MPU-based stack protection mecha-
nism to properly configure the size of the thread’s guard region to always guarantee stack over-
flow detection, and enable lazy stacking for the given thread upon thread creation.

During thread context switching the ARM kernel saves the callee-saved floating point registers,
if the switched-out thread has been using them. Additionally, the caller-saved floating point reg-
isters are saved on the thread’s stack. If the switched-in thread has been using the floating point
registers, the kernel restores the callee-saved FP registers of the switched-in thread and the caller-
saved FP context is restored from the thread’s stack. Thus, the kernel does not save or restore
the FP context of threads that are not using the FP registers.

Each thread that intends to use the floating point registers must provide an extra 72 bytes of
stack space where the callee-saved FP context can be saved.
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Lazy Stacking is currently enabled in Zephyr applications on ARM Cortex-M architecture, mini-
mizing interrupt latency, when the floating point context is active.

When the MPU-based stack protection mechanism is not enabled, lazy stacking is always active
in the Zephyr application. When the MPU-based stack protection is enabled, the following rules
apply with respect to lazy stacking:

• Lazy stacking is activated by default on threads that are pretagged with K_FP_REGS
• Lazy stacking is activated dynamically on threads that are not pretagged with K_FP_REGS,

as soon as the kernel detects that they are using the floating point registers.

If an ARM thread does not require use of the floating point registers any more, it can call
k_float_disable(). This instructs the kernel not to save or restore its FP context during thread
context switching.

Note

The Shared FP registers mode is the default Floating Point Services mode on ARM64. The com-
piler is free to optimize code using FP/SIMD registers, and library functions such as memcpy
are known to make use of them.

ARM64 architecture On the ARM64 (Aarch64) architecture the kernel treats each thread as
a FPU user on a case-by-case basis. A “lazy save” algorithm is used during context switching
which updates the floating point registers only when it is absolutely necessary. For example, the
registers are not saved when switching from an FPU user to a non-user thread, and then back to
the original FPU user.

FPU register usage by ISRs is supported although not recommended. When an ISR uses floating
point or SIMD registers, then the access is trapped, the current FPU user context is saved in the
thread object and the ISR is resumed with interrupts disabled so to prevent another IRQ from
interrupting the ISR and potentially requesting FPU usage. Because ISR don’t have a persistent
register context, there are no provision for saving an ISR’s FPU context either, hence the IRQ
disabling.

Each thread object becomes 512 bytes larger when Shared FP registers mode is enabled.

ARCv2 architecture On the ARCv2 architecture, the kernel treats each thread as a non-user or
FPU user and the thread must be tagged by one of the following techniques.

• A statically-created ARC thread can be tagged by passing the K_FP_REGS option to
K_THREAD_DEFINE.

• A dynamically-created ARC thread can be tagged by passing the K_FP_REGS to
k_thread_create().

If an ARC thread does not require use of the floating point registers any more, it can call
k_float_disable(). This instructs the kernel not to save or restore its FP context during thread
context switching.

During thread context switching the ARC kernel saves the callee-saved floating point registers, if
the switched-out thread has been using them. Additionally, the caller-saved floating point regis-
ters are saved on the thread’s stack. If the switched-in thread has been using the floating point
registers, the kernel restores the callee-saved FP registers of the switched-in thread and the caller-
saved FP context is restored from the thread’s stack. Thus, the kernel does not save or restore
the FP context of threads that are not using the FP registers. An extra 16 bytes (single floating
point hardware) or 32 bytes (double floating point hardware) of stack space is required to load
and store floating point registers.

504 Chapter 3. Kernel

https://developer.arm.com/documentation/dai0298/a


Zephyr Project Documentation, Release 3.7.99

RISC-V architecture On the RISC-V architecture the kernel treats each thread as an FPU user on
a case-by-case basis with the FPU access allocated on demand. A “lazy save” algorithm is used
during context switching which updates the floating point registers only when it is absolutely
necessary. For example, the FPU registers are not saved when switching from an FPU user to a
non-user thread (or an FPU user that doesn’t touch the FPU during its scheduling slot), and then
back to the original FPU user.

FPU register usage by ISRs is supported although not recommended. When an ISR uses floating
point or SIMD registers, then the access is trapped, the current FPU user context is saved in the
thread object and the ISR is resumed with interrupts disabled so to prevent another IRQ from
interrupting the ISR and potentially requesting FPU usage. Because ISR don’t have a persistent
register context, there are no provision for saving an ISR’s FPU context either, hence the IRQ
disabling.

As an optimization, the FPU context is preemptively restored upon scheduling back an “active
FPU user” thread that had its FPU context saved away due to FPU usage by another thread. Ac-
tive FPU users are so designated when they make the FPU state “dirty” during their most recent
scheduling slot before being scheduled out. So if a thread doesn’t modify the FPU state within its
scheduling slot and another thread claims the FPU for itself afterwards then that first thread will
be subjected to the on-demand regime and won’t have its FPU context restored until it attempts
to access it again. But if that thread does modify the FPU before being scheduled out then it is
likely to continue using it when scheduled back in and preemptively restoring its FPU context
saves on the exception trap overhead that would occur otherwise.

Each thread object becomes 136 bytes (single-precision floating point hardware) or 264 bytes
(double-precision floating point hardware) larger when Shared FP registers mode is enabled.

SPARC architecture On the SPARC architecture, the kernel treats each thread as a non-user or
FPU user and the thread must be tagged by one of the following techniques:

• A statically-created thread can be tagged by passing the K_FP_REGS option to
K_THREAD_DEFINE.

• A dynamically-created thread can be tagged by passing the K_FP_REGS to
k_thread_create().

During thread context switch at exit from interrupt handler, the SPARC kernel saves all float-
ing point registers, if the FPU was enabled in the switched-out thread. Floating point registers
are saved on the thread’s stack. Floating point registers are restored when a thread context is re-
stored iff they were saved at the context save. Saving and restoring of the floating point registers
is synchronous and thus not lazy. The FPU is always disabled when an ISR is called (independent
of CONFIG_FPU_SHARING).

Floating point disabling with k_float_disable() is not implemented.

When CONFIG_FPU_SHARING is used, then 136 bytes of stack space is required for each FPU user
thread to load and store floating point registers. No extra stack is required if CONFIG_FPU_SHARING
is not used.

x86 architecture On the x86 architecture the kernel treats each thread as a non-user, FPU user
or SSE user on a case-by-case basis. A “lazy save” algorithm is used during context switching
which updates the floating point registers only when it is absolutely necessary. For example, the
registers are not saved when switching from an FPU user to a non-user thread, and then back
to the original FPU user. The following table indicates the amount of additional stack space a
thread must provide so the registers can be saved properly.
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Thread type FP register use Extra stack space required
cooperative any 0 bytes
preemptive none 0 bytes
preemptive FPU 108 bytes
preemptive SSE 464 bytes

The x86 kernel automatically detects that a given thread is using the floating point registers the
first time the thread accesses them. The thread is tagged as an SSE user if the kernel has been
configured to support the SSE registers, or as an FPU user if the SSE registers are not supported. If
this would result in a thread that is an FPU user being tagged as an SSE user, or if the application
wants to avoid the exception handling overhead involved in auto-tagging threads, it is possible
to pretag a thread using one of the techniques listed below.

• A statically-created x86 thread can be pretagged by passing the K_FP_REGS or K_SSE_REGS
option to K_THREAD_DEFINE.

• A dynamically-created x86 thread can be pretagged by passing the K_FP_REGS or K_SSE_REGS
option to k_thread_create().

• An already-created x86 thread can pretag itself once it has started by passing the K_FP_REGS
or K_SSE_REGS option to k_float_enable().

If an x86 thread uses the floating point registers infrequently it can call k_float_disable() to
remove its tagging as an FPU user or SSE user. This eliminates the need for the kernel to take
steps to preserve the contents of the floating point registers during context switches when there
is no need to do so. When the thread again needs to use the floating point registers it can re-tag
itself as an FPU user or SSE user by calling k_float_enable().

Implementation

Performing Floating Point Arithmetic No special coding is required for a thread to use float-
ing point arithmetic if the kernel is properly configured.

The following code shows how a routine can use floating point arithmetic to avoid overflow
issues when computing the average of a series of integer values.

int average(int *values, int num_values)
{

double sum;
int i;

sum = 0.0;

for (i = 0; i < num_values; i++) {
sum += *values;
values++;

}

return (int)((sum / num_values) + 0.5);
}

Suggested Uses Use the kernel floating point services when an application needs to perform
floating point operations.
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Configuration Options To configure unshared FP registers mode, enable the CONFIG_FPU con-
figuration option and leave the CONFIG_FPU_SHARING configuration option disabled.

To configure shared FP registers mode, enable both the CONFIG_FPU configuration option and the
CONFIG_FPU_SHARING configuration option. Also, ensure that any thread that uses the floating
point registers has sufficient added stack space for saving floating point register values during
context switches, as described above.

For x86, use the CONFIG_X86_SSE configuration option to enable support for SSEx instructions.

API Reference

group float_apis

Functions

int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.

This routine informs the kernel that the specified thread will no longer be using the
floating point registers.

Warning

Some architectures apply restrictions on how the disabling of floating point preser-
vation may be requested, see arch_float_disable.

Warning

This routine should only be used to disable floating point support for a thread that
currently has such support enabled.

Parameters
• thread – ID of thread.

Return values
• 0 – On success.

• -ENOTSUP – If the floating point disabling is not implemented. -EINVAL If
the floating point disabling could not be performed.

int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.

This routine informs the kernel that the specified thread will use the floating point
registers.

Invoking this routine initializes the thread’s floating point context info to that of an
FPU that has been reset. The next time the thread is scheduled by z_swap() it will
either inherit an FPU that is guaranteed to be in a “sane” state (if the most recent user
of the FPU was cooperatively swapped out) or the thread’s own floating point context
will be loaded (if the most recent user of the FPU was preempted, or if this thread is
the first user of the FPU). Thereafter, the kernel will protect the thread’s FP context so
that it is not altered during a preemptive context switch.
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The options parameter indicates which floating point register sets will be used by the
specified thread.

For x86 options:

• K_FP_REGS indicates x87 FPU and MMX registers only

• K_SSE_REGS indicates SSE registers (and also x87 FPU and MMX registers)

Warning

Some architectures apply restrictions on how the enabling of floating point preser-
vation may be requested, see arch_float_enable.

Warning

This routine should only be used to enable floating point support for a thread that
currently has such support enabled.

Parameters
• thread – ID of thread.

• options – architecture dependent options

Return values
• 0 – On success.

• -ENOTSUP – If the floating point enabling is not implemented. -EINVAL If
the floating point enabling could not be performed.

Version

Kernel version handling and APIs related to kernel version being used.

API Reference
uint32_t sys_kernel_version_get(void)

Return the kernel version of the present build.

The kernel version is a four-byte value, whose format is described in the file “ker-
nel_version.h”.

Returns
kernel version

SYS_KERNEL_VER_MAJOR(ver)

SYS_KERNEL_VER_MINOR(ver)

SYS_KERNEL_VER_PATCHLEVEL(ver)

Fatal Errors

Software Errors Triggered in Source Code Zephyr provides several methods for inducing
fatal error conditions through either build-time checks, conditionally compiled assertions, or
deliberately invoked panic or oops conditions.
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Runtime Assertions Zephyr provides some macros to perform runtime assertions which may
be conditionally compiled. Their definitions may be found in include/zephyr/sys/__assert.h.

Assertions are enabled by setting the __ASSERT_ON preprocessor symbol to a non-zero value.
There are two ways to do this:

• Use the CONFIG_ASSERT and CONFIG_ASSERT_LEVEL kconfig options.

• Add -D__ASSERT_ON=<level> to the project’s CFLAGS, either on the build command line or
in a CMakeLists.txt.

The __ASSERT_ON method takes precedence over the kconfig option if both are used.

Specifying an assertion level of 1 causes the compiler to issue warnings that the kernel contains
debug-type __ASSERT() statements; this reminder is issued since assertion code is not normally
present in a final product. Specifying assertion level 2 suppresses these warnings.

Assertions are enabled by default when running Zephyr test cases, as configured by the CON-
FIG_TEST option.

The policy for what to do when encountering a failed assertion is controlled by the implemen-
tation of assert_post_action(). Zephyr provides a default implementation with weak linkage
which invokes a kernel oops if the thread that failed the assertion was running in user mode,
and a kernel panic otherwise.

__ASSERT() The __ASSERT() macro can be used inside kernel and application code to perform
optional runtime checks which will induce a fatal error if the check does not pass. The macro
takes a string message which will be printed to provide context to the assertion. In addition, the
kernel will print a text representation of the expression code that was evaluated, and the file and
line number where the assertion can be found.

For example:

__ASSERT(foo == 0xF0CACC1A, "Invalid value of foo, got 0x%x", foo);

If at runtime foo had some unexpected value, the error produced may look like the following:

ASSERTION FAIL [foo == 0xF0CACC1A] @ ZEPHYR_BASE/tests/kernel/fatal/src/main.c:367
Invalid value of foo, got 0xdeadbeef

[00:00:00.000,000] <err> os: r0/a1: 0x00000004 r1/a2: 0x0000016f r2/a3: 0x00000000
[00:00:00.000,000] <err> os: r3/a4: 0x00000000 r12/ip: 0x00000000 r14/lr: 0x00000a6d
[00:00:00.000,000] <err> os: xpsr: 0x61000000
[00:00:00.000,000] <err> os: Faulting instruction address (r15/pc): 0x00009fe4
[00:00:00.000,000] <err> os: >>> ZEPHYR FATAL ERROR 4: Kernel panic
[00:00:00.000,000] <err> os: Current thread: 0x20000414 (main)
[00:00:00.000,000] <err> os: Halting system

__ASSERT_EVAL() The __ASSERT_EVAL() macro can also be used inside kernel and application
code, with special semantics for the evaluation of its arguments.

It makes use of the __ASSERT() macro, but has some extra flexibility. It allows the developer to
specify different actions depending whether the __ASSERT()macro is enabled or not. This can be
particularly useful to prevent the compiler from generating comments (errors, warnings or re-
marks) about variables that are only used with __ASSERT() being assigned a value, but otherwise
unused when the __ASSERT() macro is disabled.

Consider the following example:

int x;
x = foo();
__ASSERT(x != 0, "foo() returned zero!");
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If __ASSERT() is disabled, then ‘x’ is assigned a value, but never used. This type of situation can
be resolved using the __ASSERT_EVAL() macro.

__ASSERT_EVAL ((void) foo(),
int x = foo(),
x != 0,
"foo() returned zero!");

The first parameter tells __ASSERT_EVAL() what to do if __ASSERT() is disabled. The second pa-
rameter tells __ASSERT_EVAL() what to do if __ASSERT() is enabled. The third and fourth param-
eters are the parameters it passes to __ASSERT().

__ASSERT_NO_MSG() The __ASSERT_NO_MSG() macro can be used to perform an assertion that
reports the failed test and its location, but lacks additional debugging information provided to
assist the user in diagnosing the problem; its use is discouraged.

Build Assertions Zephyr provides two macros for performing build-time assertion checks.
These are evaluated completely at compile-time, and are always checked.

BUILD_ASSERT() This has the same semantics as C’s _Static_assert or C++’s static_assert.
If the evaluation fails, a build error will be generated by the compiler. If the compiler supports
it, the provided message will be printed to provide further context.

Unlike __ASSERT(), the message must be a static string, without printf()-like format codes or
extra arguments.

For example, suppose this check fails:

BUILD_ASSERT(FOO == 2000, "Invalid value of FOO");

With GCC, the output resembles:

tests/kernel/fatal/src/main.c: In function 'test_main':
include/toolchain/gcc.h:28:37: error: static assertion failed: "Invalid value of FOO"
#define BUILD_ASSERT(EXPR, MSG) _Static_assert(EXPR, "" MSG)

^~~~~~~~~~~~~~
tests/kernel/fatal/src/main.c:370:2: note: in expansion of macro 'BUILD_ASSERT'
BUILD_ASSERT(FOO == 2000,
^~~~~~~~~~~~~~~~

Kernel Oops A kernel oops is a software triggered fatal error invoked by k_oops(). This should
be used to indicate an unrecoverable condition in application logic.

The fatal error reason code generated will be K_ERR_KERNEL_OOPS.

Kernel Panic A kernel error is a software triggered fatal error invoked by k_panic(). This
should be used to indicate that the Zephyr kernel is in an unrecoverable state. Implementations
of k_sys_fatal_error_handler() should not return if the kernel encounters a panic condition,
as the entire system needs to be reset.

Threads running in user mode are not permitted to invoke k_panic(), and doing so will
generate a kernel oops instead. Otherwise, the fatal error reason code generated will be
K_ERR_KERNEL_PANIC.

Exceptions
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Spurious Interrupts If the CPU receives a hardware interrupt on an interrupt line that has
not had a handler installed with IRQ_CONNECT() or irq_connect_dynamic(), then the kernel will
generate a fatal error with the reason code K_ERR_SPURIOUS_IRQ().

Stack Overflows In the event that a thread pushes more data onto its execution stack than its
stack buffer provides, the kernel may be able to detect this situation and generate a fatal error
with a reason code of K_ERR_STACK_CHK_FAIL.

If a thread is running in user mode, then stack overflows are always caught, as the thread will
simply not have permission to write to adjacent memory addresses outside of the stack buffer.
Because this is enforced by the memory protection hardware, there is no risk of data corruption
to memory that the thread would not otherwise be able to write to.

If a thread is running in supervisor mode, or if CONFIG_USERSPACE is not enabled, depending on
configuration stack overflows may or may not be caught. CONFIG_HW_STACK_PROTECTION is sup-
ported on some architectures and will catch stack overflows in supervisor mode, including when
handling a system call on behalf of a user thread. Typically this is implemented via dedicated
CPU features, or read-only MMU/MPU guard regions placed immediately adjacent to the stack
buffer. Stack overflows caught in this way can detect the overflow, but cannot guarantee against
data corruption and should be treated as a very serious condition impacting the health of the
entire system.

If a platform lacks memory management hardware support, CONFIG_STACK_SENTINEL is a
software-only stack overflow detection feature which periodically checks if a sentinel value at
the end of the stack buffer has been corrupted. It does not require hardware support, but pro-
vides no protection against data corruption. Since the checks are typically done at interrupt exit,
the overflow may be detected a nontrivial amount of time after the stack actually overflowed.

Finally, Zephyr supports GCC compiler stack canaries via CONFIG_STACK_CANARIES. If enabled,
the compiler will insert a canary value randomly generated at boot into function stack frames,
checking that the canary has not been overwritten at function exit. If the check fails, the com-
piler invokes __stack_chk_fail(), whose Zephyr implementation invokes a fatal stack overflow
error. An error in this case does not indicate that the entire stack buffer has overflowed, but in-
stead that the current function stack frame has been corrupted. See the compiler documentation
for more details.

Other Exceptions Any other type of unhandled CPU exception will generate an error code of
K_ERR_CPU_EXCEPTION.

Fatal Error Handling The policy for what to do when encountering a fatal error is determined
by the implementation of the k_sys_fatal_error_handler() function. This function has a de-
fault implementation with weak linkage that calls LOG_PANIC() to dump all pending logging mes-
sages and then unconditionally halts the system with k_fatal_halt().

Applications are free to implement their own error handling policy by overriding the implemen-
tation of k_sys_fatal_error_handler(). If the implementation returns, the faulting thread will
be aborted and the system will otherwise continue to function. See the documentation for this
function for additional details and constraints.

API Reference

group fatal_apis

Functions

3.1. Kernel Services 511



Zephyr Project Documentation, Release 3.7.99

FUNC_NORETURN void k_fatal_halt(unsigned int reason)
Halt the system on a fatal error.

Invokes architecture-specific code to power off or halt the system in a low power state.
Lacking that, lock interrupts and sit in an idle loop.

Parameters
• reason – Fatal exception reason code

void k_sys_fatal_error_handler(unsigned int reason, const struct arch_esf *esf)
Fatal error policy handler.

This function is not invoked by application code, but is declared as a weak symbol so
that applications may introduce their own policy.

The default implementation of this function halts the system unconditionally. Depend-
ing on architecture support, this may be a simple infinite loop, power off the hardware,
or exit an emulator.

If this function returns, then the currently executing thread will be aborted.

A few notes for custom implementations:

• If the error is determined to be unrecoverable, LOG_PANIC() should be invoked to
flush any pending logging buffers.

• K_ERR_KERNEL_PANIC indicates a severe unrecoverable error in the kernel itself,
and should not be considered recoverable. There is an assertion in z_fatal_error()
to enforce this.

• Even outside of a kernel panic, unless the fault occurred in user mode, the ker-
nel itself may be in an inconsistent state, with API calls to kernel objects possibly
exhibiting undefined behavior or triggering another exception.

Parameters
• reason – The reason for the fatal error

• esf – Exception context, with details and partial or full register state
when the error occurred. May in some cases be NULL.

Thread Local Storage (TLS)

Thread Local Storage (TLS) allows variables to be allocated on a per-thread basis. These variables
are stored in the thread stack which means every thread has its own copy of these variables.

Zephyr currently requires toolchain support for TLS.

Configuration To enable thread local storage in Zephyr, CONFIG_THREAD_LOCAL_STORAGE needs
to be enabled. Note that this option may not be available if the architecture or the SoC does
not have the hidden option CONFIG_ARCH_HAS_THREAD_LOCAL_STORAGE enabled, which means the
architecture or the SoC does not have the necessary code to support thread local storage and/or
the toolchain does not support TLS.

CONFIG_ERRNO_IN_TLS can be enabled together with CONFIG_ERRNO to let the variable errno be a
thread local variable. This allows user threads to access the value of errno without making a
system call.

512 Chapter 3. Kernel



Zephyr Project Documentation, Release 3.7.99

Declaring and Using Thread Local Variables The keyword __thread can be used to declare
thread local variables.

For example, to declare a thread local variable in header files:

extern __thread int i;

And to declare the actual variable in source files:

__thread int i;

Keyword static can also be used to limit the variable within a source file:

static __thread int j;

Using the thread local variable is the same as using other variable, for example:

void testing(void) {
i = 10;

}

3.2 Device Driver Model

3.2.1 Introduction

The Zephyr kernel supports a variety of device drivers. Whether a driver is available depends
on the board and the driver.

The Zephyr device model provides a consistent device model for configuring the drivers that are
part of a system. The device model is responsible for initializing all the drivers configured into
the system.

Each type of driver (e.g. UART, SPI, I2C) is supported by a generic type API.

In this model the driver fills in the pointer to the structure containing the function pointers to
its API functions during driver initialization. These structures are placed into the RAM section
in initialization level order.

[Not supported by viewer]

Instance 2 of Device Driver 1

Instance 1 of Device Driver 1

[Not supported by viewer]

[Not supported by viewer]

API 1

API 2

API 3

[Not supported by viewer]

API Impl 1

API Impl 2

API Impl 3

Subsystem 1

Device Driver APIs Device Driver Instances Device Driver Implementations

[Not supported by viewer]

API Impl 1

API Impl 2

API Impl 3

[Not supported by viewer]

[Not supported by viewer]

API Impl 1

API Impl 2

API Impl 3

[Not supported by viewer]

API 1

API 2

API 3

Instance 1 of Device Driver 2

[Not supported by viewer]

[Not supported by viewer]

Instance 1 of Device Driver 3
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3.2.2 Standard Drivers

Device drivers which are present on all supported board configurations are listed below.

• Interrupt controller: This device driver is used by the kernel’s interrupt management
subsystem.

• Timer: This device driver is used by the kernel’s system clock and hardware clock subsys-
tem.

• Serial communication: This device driver is used by the kernel’s system console subsys-
tem.

• Entropy: This device driver provides a source of entropy numbers for the random number
generator subsystem.

Important

Use the random API functions for random values. Entropy functions should not be di-
rectly used as a random number generator source as some hardware implementations
are designed to be an entropy seed source for random number generators and will not
provide cryptographically secure random number streams.

3.2.3 Synchronous Calls

Zephyr provides a set of device drivers for multiple boards. Each driver should support an
interrupt-based implementation, rather than polling, unless the specific hardware does not pro-
vide any interrupt.

High-level calls accessed through device-specific APIs, such as i2c.h or spi.h, are usually in-
tended as synchronous. Thus, these calls should be blocking.

3.2.4 Driver APIs

The following APIs for device drivers are provided by device.h. The APIs are intended for use
in device drivers only and should not be used in applications.

DEVICE_DEFINE()
Create device object and related data structures including setting it up for boot-time initial-
ization.

DEVICE_NAME_GET()
Converts a device identifier to the global identifier for a device object.

DEVICE_GET()
Obtain a pointer to a device object by name.

DEVICE_DECLARE()
Declare a device object. Use this when you need a forward reference to a device that has
not yet been defined.

3.2.5 Driver Data Structures

The device initialization macros populate some data structures at build time which are split into
read-only and runtime-mutable parts. At a high level we have:
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struct device {
const char *name;
const void *config;
const void *api;
void * const data;

};

The config member is for read-only configuration data set at build time. For example, base
memory mapped IO addresses, IRQ line numbers, or other fixed physical characteristics of the
device. This is the config pointer passed to DEVICE_DEFINE() and related macros.

The data struct is kept in RAM, and is used by the driver for per-instance runtime housekeeping.
For example, it may contain reference counts, semaphores, scratch buffers, etc.

The api struct maps generic subsystem APIs to the device-specific implementations in the driver.
It is typically read-only and populated at build time. The next section describes this in more
detail.

3.2.6 Subsystems and API Structures

Most drivers will be implementing a device-independent subsystem API. Applications can sim-
ply program to that generic API, and application code is not specific to any particular driver
implementation.

A subsystem API definition typically looks like this:

typedef int (*subsystem_do_this_t)(const struct device *dev, int foo, int bar);
typedef void (*subsystem_do_that_t)(const struct device *dev, void *baz);

struct subsystem_api {
subsystem_do_this_t do_this;
subsystem_do_that_t do_that;

};

static inline int subsystem_do_this(const struct device *dev, int foo, int bar)
{

struct subsystem_api *api;

api = (struct subsystem_api *)dev->api;
return api->do_this(dev, foo, bar);

}

static inline void subsystem_do_that(const struct device *dev, void *baz)
{

struct subsystem_api *api;

api = (struct subsystem_api *)dev->api;
api->do_that(dev, baz);

}

A driver implementing a particular subsystem will define the real implementation of these APIs,
and populate an instance of subsystem_api structure:

static int my_driver_do_this(const struct device *dev, int foo, int bar)
{

...
}

static void my_driver_do_that(const struct device *dev, void *baz)
{

...
(continues on next page)
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(continued from previous page)
}

static struct subsystem_api my_driver_api_funcs = {
.do_this = my_driver_do_this,
.do_that = my_driver_do_that

};

The driver would then pass my_driver_api_funcs as the api argument to DEVICE_DEFINE().

Note

Since pointers to the API functions are referenced in the api struct, they will always be in-
cluded in the binary even if unused; gc-sections linker option will always see at least one
reference to them. Providing for link-time size optimizations with driver APIs in most cases
requires that the optional feature be controlled by a Kconfig option.

3.2.7 Device-Specific API Extensions

Some devices can be cast as an instance of a driver subsystem such as GPIO, but provide addi-
tional functionality that cannot be exposed through the standard API. These devices combine
subsystem operations with device-specific APIs, described in a device-specific header.

A device-specific API definition typically looks like this:

#include <zephyr/drivers/subsystem.h>

/* When extensions need not be invoked from user mode threads */
int specific_do_that(const struct device *dev, int foo);

/* When extensions must be invokable from user mode threads */
__syscall int specific_from_user(const struct device *dev, int bar);

/* Only needed when extensions include syscalls */
#include <zephyr/syscalls/specific.h>

A driver implementing extensions to the subsystem will define the real implementation of both
the subsystem API and the specific APIs:

static int generic_do_this(const struct device *dev, void *arg)
{

...
}

static struct generic_api api {
...
.do_this = generic_do_this,
...

};

/* supervisor-only API is globally visible */
int specific_do_that(const struct device *dev, int foo)
{

...
}

/* syscall API passes through a translation */
int z_impl_specific_from_user(const struct device *dev, int bar)
{

(continues on next page)
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(continued from previous page)
...

}

#ifdef CONFIG_USERSPACE

#include <zephyr/internal/syscall_handler.h>

int z_vrfy_specific_from_user(const struct device *dev, int bar)
{

K_OOPS(K_SYSCALL_SPECIFIC_DRIVER(dev, K_OBJ_DRIVER_GENERIC, &api));
return z_impl_specific_do_that(dev, bar)

}

#include <zephyr/syscalls/specific_from_user_mrsh.c>

#endif /* CONFIG_USERSPACE */

Applications use the device through both the subsystem and specific APIs.

Note

Public API for device-specific extensions should be prefixed with the compatible for the device
to which it applies. For example, if adding special functions to support the Maxim DS3231 the
identifier fragment specific in the examples above would be maxim_ds3231.

3.2.8 Single Driver, Multiple Instances

Some drivers may be instantiated multiple times in a given system. For example there can be
multiple GPIO banks, or multiple UARTS. Each instance of the driver will have a different config
struct and data struct.

Configuring interrupts for multiple drivers instances is a special case. If each instance needs to
configure a different interrupt line, this can be accomplished through the use of per-instance
configuration functions, since the parameters to IRQ_CONNECT() need to be resolvable at build
time.

For example, let’s say we need to configure two instances of my_driver, each with a different
interrupt line. In drivers/subsystem/subsystem_my_driver.h:

typedef void (*my_driver_config_irq_t)(const struct device *dev);

struct my_driver_config {
DEVICE_MMIO_ROM;
my_driver_config_irq_t config_func;

};

In the implementation of the common init function:

void my_driver_isr(const struct device *dev)
{

/* Handle interrupt */
...

}

int my_driver_init(const struct device *dev)
{

const struct my_driver_config *config = dev->config;

(continues on next page)
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(continued from previous page)
DEVICE_MMIO_MAP(dev, K_MEM_CACHE_NONE);

/* Do other initialization stuff */
...

config->config_func(dev);

return 0;
}

Then when the particular instance is declared:

#if CONFIG_MY_DRIVER_0

DEVICE_DECLARE(my_driver_0);

static void my_driver_config_irq_0(const struct device *dev)
{

IRQ_CONNECT(MY_DRIVER_0_IRQ, MY_DRIVER_0_PRI, my_driver_isr,
DEVICE_GET(my_driver_0), MY_DRIVER_0_FLAGS);

}

const static struct my_driver_config my_driver_config_0 = {
DEVICE_MMIO_ROM_INIT(DT_DRV_INST(0)),
.config_func = my_driver_config_irq_0

}

static struct my_data_0;

DEVICE_DEFINE(my_driver_0, MY_DRIVER_0_NAME, my_driver_init,
NULL, &my_data_0, &my_driver_config_0,
POST_KERNEL, MY_DRIVER_0_PRIORITY, &my_api_funcs);

#endif /* CONFIG_MY_DRIVER_0 */

Note the use of DEVICE_DECLARE() to avoid a circular dependency on providing the IRQ handler
argument and the definition of the device itself.

3.2.9 Initialization Levels

Drivers may depend on other drivers being initialized first, or require the use of kernel ser-
vices. DEVICE_DEFINE() and related APIs allow the user to specify at what time during the boot
sequence the init function will be executed. Any driver will specify one of four initialization
levels:

PRE_KERNEL_1
Used for devices that have no dependencies, such as those that rely solely on hardware
present in the processor/SOC. These devices cannot use any kernel services during config-
uration, since the kernel services are not yet available. The interrupt subsystem will be
configured however so it’s OK to set up interrupts. Init functions at this level run on the
interrupt stack.

PRE_KERNEL_2
Used for devices that rely on the initialization of devices initialized as part of the
PRE_KERNEL_1 level. These devices cannot use any kernel services during configuration,
since the kernel services are not yet available. Init functions at this level run on the inter-
rupt stack.

POST_KERNEL
Used for devices that require kernel services during configuration. Init functions at this
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level run in context of the kernel main task.

Within each initialization level you may specify a priority level, relative to other devices
in the same initialization level. The priority level is specified as an integer value in the
range 0 to 99; lower values indicate earlier initialization. The priority level must be a
decimal integer literal without leading zeroes or sign (e.g. 32), or an equivalent symbolic
name (e.g. \#define MY_INIT_PRIO 32); symbolic expressions are not permitted (e.g. CON-
FIG_KERNEL_INIT_PRIORITY_DEFAULT + 5).

Drivers and other system utilities can determine whether startup is still in pre-kernel states by
using the k_is_pre_kernel() function.

3.2.10 Deferred initialization

Initialization of devices can also be deferred to a later time. In this case, the device is not au-
tomatically initialized by Zephyr at boot time. Instead, the device is initialized when the ap-
plication calls device_init(). To defer a device driver initialization, add the property zephyr,
deferred-init to the associated device node in the DTS file. For example:

/ {
a-driver@40000000 {

reg = <0x40000000 0x1000>;
zephyr,deferred-init;

};
};

3.2.11 System Drivers

In some cases you may just need to run a function at boot. For such cases, the SYS_INIT can be
used. This macro does not take any config or runtime data structures and there isn’t a way to
later get a device pointer by name. The same device policies for initialization level and priority
apply.

3.2.12 Inspecting the initialization sequence

Device drivers declared with DEVICE_DEFINE (or any variations of it) and SYS_INIT are processed
at boot time and the corresponding initialization functions are called sequentially according to
their specified level and priority.

Sometimes it’s useful to inspect the final sequence of initialization function call as produced by
the linker. To do that, use the initlevels CMake target, for example west build -t initlevels.

3.2.13 Error handling

In general, it’s best to use __ASSERT() macros instead of propagating return values unless the
failure is expected to occur during the normal course of operation (such as a storage device full).
Bad parameters, programming errors, consistency checks, pathological/unrecoverable failures,
etc., should be handled by assertions.

When it is appropriate to return error conditions for the caller to check, 0 should be re-
turned on success and a POSIX errno.h code returned on failure. See https://github.com/
zephyrproject-rtos/zephyr/wiki/Naming-Conventions#return-codes for details about this.
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3.2.14 Memory Mapping

On some systems, the linear address of peripheral memory-mapped I/O (MMIO) regions cannot
be known at build time:

• The I/O ranges must be probed at runtime from the bus, such as with PCI express

• A memory management unit (MMU) is active, and the physical address of the MMIO range
must be mapped into the page tables at some virtual memory location determined by the
kernel.

These systems must maintain storage for the MMIO range within RAM and establish the mapping
within the driver’s init function. Other systems do not care about this and can use MMIO physical
addresses directly from DTS and do not need any RAM-based storage for it.

For drivers that may need to deal with this situation, a set of APIs under the DEVICE_MMIO scope
are defined, along with a mapping function device_map().

Device Model Drivers with one MMIO region

The simplest case is for drivers which need to maintain one MMIO region. These drivers will
need to use the DEVICE_MMIO_ROM and DEVICE_MMIO_RAM macros in the definitions for their con-
fig_info and driver_data structures, with initialization of the config_info from DTS using DE-
VICE_MMIO_ROM_INIT. A call to DEVICE_MMIO_MAP() is made within the init function:

struct my_driver_config {
DEVICE_MMIO_ROM; /* Must be first */
...

}

struct my_driver_dev_data {
DEVICE_MMIO_RAM; /* Must be first */
...

}

const static struct my_driver_config my_driver_config_0 = {
DEVICE_MMIO_ROM_INIT(DT_DRV_INST(...)),
...

}

int my_driver_init(const struct device *dev)
{

...
DEVICE_MMIO_MAP(dev, K_MEM_CACHE_NONE);
...

}

int my_driver_some_function(const struct device *dev)
{

...
/* Write some data to the MMIO region */
sys_write32(0xDEADBEEF, DEVICE_MMIO_GET(dev));
...

}

The particular expansion of these macros depends on configuration. On a device with no MMU
or PCI-e, DEVICE_MMIO_MAP and DEVICE_MMIO_RAM expand to nothing.
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Device Model Drivers with multiple MMIO regions

Some drivers may have multiple MMIO regions. In addition, some drivers may already be im-
plementing a form of inheritance which requires some other data to be placed first in the con-
fig_info and driver_data structures.

This can be managed with the DEVICE_MMIO_NAMED variant macros. These require that DEV_CFG()
and DEV_DATA() macros be defined to obtain a properly typed pointer to the driver’s config_info
or dev_data structs. For example:

struct my_driver_config {
...
DEVICE_MMIO_NAMED_ROM(corge);
DEVICE_MMIO_NAMED_ROM(grault);

...
}

struct my_driver_dev_data {
...

DEVICE_MMIO_NAMED_RAM(corge);
DEVICE_MMIO_NAMED_RAM(grault);
...

}

#define DEV_CFG(_dev) \
((const struct my_driver_config *)((_dev)->config))

#define DEV_DATA(_dev) \
((struct my_driver_dev_data *)((_dev)->data))

const static struct my_driver_config my_driver_config_0 = {
...
DEVICE_MMIO_NAMED_ROM_INIT(corge, DT_DRV_INST(...)),
DEVICE_MMIO_NAMED_ROM_INIT(grault, DT_DRV_INST(...)),
...

}

int my_driver_init(const struct device *dev)
{

...
DEVICE_MMIO_NAMED_MAP(dev, corge, K_MEM_CACHE_NONE);
DEVICE_MMIO_NAMED_MAP(dev, grault, K_MEM_CACHE_NONE);
...

}

int my_driver_some_function(const struct device *dev)
{

...
/* Write some data to the MMIO regions */
sys_write32(0xDEADBEEF, DEVICE_MMIO_GET(dev, grault));
sys_write32(0xF0CCAC1A, DEVICE_MMIO_GET(dev, corge));
...

}

Device Model Drivers with multiple MMIO regions in the same DT node

Some drivers may have multiple MMIO regions defined into the same DT device node using the
reg-names property to differentiate them, for example:
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/dts-v1/;

/ {
a-driver@40000000 {

reg = <0x40000000 0x1000>,
<0x40001000 0x1000>;

reg-names = "corge", "grault";
};

};

This can be managed as seen in the previous section but this time using the DE-
VICE_MMIO_NAMED_ROM_INIT_BY_NAME macro instead. So the only difference would be in the
driver config struct:

const static struct my_driver_config my_driver_config_0 = {
...
DEVICE_MMIO_NAMED_ROM_INIT_BY_NAME(corge, DT_DRV_INST(...)),
DEVICE_MMIO_NAMED_ROM_INIT_BY_NAME(grault, DT_DRV_INST(...)),
...

}

Drivers that do not use Zephyr Device Model

Some drivers or driver-like code may not user Zephyr’s device model, and alternative storage
must be arranged for the MMIO data. An example of this are timer drivers, or interrupt con-
troller code.

This can be managed with the DEVICE_MMIO_TOPLEVEL set of macros, for example:

DEVICE_MMIO_TOPLEVEL_STATIC(my_regs, DT_DRV_INST(..));

void some_init_code(...)
{

...
DEVICE_MMIO_TOPLEVEL_MAP(my_regs, K_MEM_CACHE_NONE);
...

}

void some_function(...)
...
sys_write32(DEVICE_MMIO_TOPLEVEL_GET(my_regs), 0xDEADBEEF);
...

}

Drivers that do not use DTS

Some drivers may not obtain the MMIO physical address from DTS, such as is the case with PCI-E.
In this case the device_map() function may be used directly:

void some_init_code(...)
{

...
struct pcie_bar mbar;
bool bar_found = pcie_get_mbar(bdf, index, &mbar);

device_map(DEVICE_MMIO_RAM_PTR(dev), mbar.phys_addr, mbar.size, K_MEM_CACHE_NONE);
...

}
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For these cases, DEVICE_MMIO_ROM directives may be omitted.

3.2.15 API Reference

group device_model
Device Model.

Since
1.0

Version
1.1.0

Defines

DEVICE_HANDLE_NULL
Flag value used to identify an unknown device.

DEVICE_NAME_GET(dev_id)
Expands to the name of a global device object.

Return the full name of a device object symbol created by DEVICE_DEFINE(), using the
dev_id provided to DEVICE_DEFINE(). This is the name of the global variable storing
the device structure, not a pointer to the string in the device::name field.

It is meant to be used for declaring extern symbols pointing to device objects before
using the DEVICE_GET macro to get the device object.

This macro is normally only useful within device driver source code. In other situa-
tions, you are probably looking for device_get_binding().

Parameters
• dev_id – Device identifier.

Returns
The full name of the device object defined by device definition macros.

DEVICE_DEFINE(dev_id, name, init_fn, pm, data, config, level, prio, api)
Create a device object and set it up for boot time initialization.

This macro defines a device that is automatically configured by the kernel during sys-
tem initialization. This macro should only be used when the device is not being allo-
cated from a devicetree node. If you are allocating a device from a devicetree node,
use DEVICE_DT_DEFINE() or DEVICE_DT_INST_DEFINE() instead.

Parameters
• dev_id – A unique token which is used in the name of the global device

structure as a C identifier.

• name – A string name for the device, which will be stored in device::name.
This name can be used to look up the device with device_get_binding().
This must be less than Z_DEVICE_MAX_NAME_LEN characters (including
terminating NULL) in order to be looked up from user mode.

• init_fn – Pointer to the device’s initialization function, which will be run
by the kernel during system initialization. Can be NULL.
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• pm – Pointer to the device’s power management resources, a pm_device,
which will be stored in device::pm field. Use NULL if the device does not
use PM.

• data – Pointer to the device’s private mutable data, which will be stored
in device::data.

• config – Pointer to the device’s private constant data, which will be
stored in device::config.

• level – The device’s initialization level (PRE_KERNEL_1, PRE_KERNEL_2
or POST_KERNEL).

• prio – The device’s priority within its initialization level. See SYS_INIT()
for details.

• api – Pointer to the device’s API structure. Can be NULL.

DEVICE_DT_NAME(node_id)
Return a string name for a devicetree node.

This macro returns a string literal usable as a device’s name from a devicetree node
identifier.

Parameters
• node_id – The devicetree node identifier.

Returns
The value of the node’s label property, if it has one. Otherwise, the node’s
full name in node-name@unit-address form.

DEVICE_DT_DEFER(node_id)
Determine if a devicetree node initialization should be deferred.

Parameters
• node_id – The devicetree node identifier.

Returns
Boolean stating if node initialization should be deferred.

DEVICE_DT_DEFINE(node_id, init_fn, pm, data, config, level, prio, api, ...)
Create a device object from a devicetree node identifier and set it up for boot time
initialization.

This macro defines a device that is automatically configured by the kernel during sys-
tem initialization. The global device object’s name as a C identifier is derived from the
node’s dependency ordinal. device::name is set to DEVICE_DT_NAME(node_id).

The device is declared with extern visibility, so a pointer to a global device object can
be obtained with DEVICE_DT_GET(node_id) from any source file that includes <zephyr/
device.h>. Before using the pointer, the referenced object should be checked using
device_is_ready().

Parameters
• node_id – The devicetree node identifier.

• init_fn – Pointer to the device’s initialization function, which will be run
by the kernel during system initialization. Can be NULL.

• pm – Pointer to the device’s power management resources, a pm_device,
which will be stored in device::pm. Use NULL if the device does not use
PM.

• data – Pointer to the device’s private mutable data, which will be stored
in device::data.
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• config – Pointer to the device’s private constant data, which will be
stored in device::config field.

• level – The device’s initialization level (PRE_KERNEL_1, PRE_KERNEL_2
or POST_KERNEL).

• prio – The device’s priority within its initialization level. See SYS_INIT()
for details.

• api – Pointer to the device’s API structure. Can be NULL.

DEVICE_DT_INST_DEFINE(inst, ...)
LikeDEVICE_DT_DEFINE(), but uses an instance of a DT_DRV_COMPAT compatible instead
of a node identifier.

Parameters
• inst – Instance number. The node_id argument to DEVICE_DT_DEFINE()

is set to DT_DRV_INST(inst).

• ... – Other parameters as expected by DEVICE_DT_DEFINE().

DEVICE_DT_NAME_GET(node_id)
The name of the global device object for node_id.

Returns the name of the global device structure as a C identifier. The device must be
allocated using DEVICE_DT_DEFINE() or DEVICE_DT_INST_DEFINE() for this to work.

This macro is normally only useful within device driver source code. In other situa-
tions, you are probably looking for DEVICE_DT_GET().

Parameters
• node_id – Devicetree node identifier

Returns
The name of the device object as a C identifier

DEVICE_DT_GET(node_id)
Get a device reference from a devicetree node identifier.

Returns a pointer to a device object created from a devicetree node, if any device was
allocated by a driver.

If no such device was allocated, this will fail at linker time. If you get an error that looks
like undefined reference to __device_dts_ord_<N>, that is what happened. Check
to make sure your device driver is being compiled, usually by enabling the Kconfig
options it requires.

Parameters
• node_id – A devicetree node identifier

Returns
A pointer to the device object created for that node

DEVICE_DT_INST_GET(inst)
Get a device reference for an instance of a DT_DRV_COMPAT compatible.

This is equivalent to DEVICE_DT_GET(DT_DRV_INST(inst)).

Parameters
• inst – DT_DRV_COMPAT instance number

Returns
A pointer to the device object created for that instance
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DEVICE_DT_GET_ANY(compat)
Get a device reference from a devicetree compatible.

If an enabled devicetree node has the given compatible and a device object was created
from it, this returns a pointer to that device.

If there no such devices, this returns NULL.

If there are multiple, this returns an arbitrary one.

If this returns non-NULL, the device must be checked for readiness before use, e.g.
with device_is_ready().

Parameters
• compat – lowercase-and-underscores devicetree compatible

Returns
a pointer to a device, or NULL

DEVICE_DT_GET_ONE(compat)
Get a device reference from a devicetree compatible.

If an enabled devicetree node has the given compatible and a device object was created
from it, this returns a pointer to that device.

If there are no such devices, this will fail at compile time.

If there are multiple, this returns an arbitrary one.

If this returns non-NULL, the device must be checked for readiness before use, e.g.
with device_is_ready().

Parameters
• compat – lowercase-and-underscores devicetree compatible

Returns
a pointer to a device

DEVICE_DT_GET_OR_NULL(node_id)
Utility macro to obtain an optional reference to a device.

If the node identifier refers to a node with status okay, this returns DE-
VICE_DT_GET(node_id). Otherwise, it returns NULL.

Parameters
• node_id – devicetree node identifier

Returns
a device reference for the node identifier, which may be NULL.

DEVICE_GET(dev_id)
Obtain a pointer to a device object by name.

Return the address of a device object created by DEVICE_DEFINE(), using the dev_id
provided to DEVICE_DEFINE().

Parameters
• dev_id – Device identifier.

Returns
A pointer to the device object created by DEVICE_DEFINE()
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DEVICE_DECLARE(dev_id)
Declare a static device object.

This macro can be used at the top-level to declare a device, such that DEVICE_GET()
may be used before the full declaration in DEVICE_DEFINE().

This is often useful when configuring interrupts statically in a device’s init or per-
instance config function, as the init function itself is required by DEVICE_DEFINE()
and use of DEVICE_GET() inside it creates a circular dependency.

Parameters
• dev_id – Device identifier.

DEVICE_INIT_DT_GET(node_id)
Get a init_entry reference from a devicetree node.

Parameters
• node_id – A devicetree node identifier

Returns
A pointer to the init_entry object created for that node

DEVICE_INIT_GET(dev_id)
Get a init_entry reference from a device identifier.

Parameters
• dev_id – Device identifier.

Returns
A pointer to the init_entry object created for that device

Typedefs

typedef int16_t device_handle_t
Type used to represent a “handle” for a device.

Every device has an associated handle. You can get a pointer to a device from its handle
and vice versa, but the handle uses less space than a pointer. The device.h API mainly
uses handles to store lists of multiple devices in a compact way.

The extreme values and zero have special significance. Negative values identify func-
tionality that does not correspond to a Zephyr device, such as the system clock or a
SYS_INIT() function.

See also

device_handle_get()

See also

device_from_handle()
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typedef int (*device_visitor_callback_t)(const struct device *dev, void *context)
Prototype for functions used when iterating over a set of devices.

Such a function may be used in API that identifies a set of devices and provides a visitor
API supporting caller-specific interaction with each device in the set.

The visit is said to succeed if the visitor returns a non-negative value.

See also

device_required_foreach()

See also

device_supported_foreach()

Param dev
a device in the set being iterated

Param context
state used to support the visitor function

Return
A non-negative number to allow walking to continue, and a negative error
code to case the iteration to stop.

Functions

static inline device_handle_t device_handle_get(const struct device *dev)
Get the handle for a given device.

Parameters
• dev – the device for which a handle is desired.

Returns
the handle for the device, or DEVICE_HANDLE_NULL if the device does not
have an associated handle.

static inline const struct device *device_from_handle(device_handle_t dev_handle)
Get the device corresponding to a handle.

Parameters
• dev_handle – the device handle

Returns
the device that has that handle, or a null pointer if dev_handle does not
identify a device.

static inline const device_handle_t *device_required_handles_get(const struct device
*dev, size_t *count)

Get the device handles for devicetree dependencies of this device.

This function returns a pointer to an array of device handles. The length of the array
is stored in the count parameter.
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The array contains a handle for each device that dev requires directly, as determined
from the devicetree. This does not include transitive dependencies; you must recur-
sively determine those.

Parameters
• dev – the device for which dependencies are desired.

• count – pointer to where this function should store the length of the re-
turned array. No value is stored if the call returns a null pointer. The
value may be set to zero if the device has no devicetree dependencies.

Returns
a pointer to a sequence of count device handles, or a null pointer if dev
does not have any dependency data.

static inline const device_handle_t *device_injected_handles_get(const struct device
*dev, size_t *count)

Get the device handles for injected dependencies of this device.

This function returns a pointer to an array of device handles. The length of the array
is stored in the count parameter.

The array contains a handle for each device that dev manually injected as a depen-
dency, via providing extra arguments to Z_DEVICE_DEFINE. This does not include tran-
sitive dependencies; you must recursively determine those.

Parameters
• dev – the device for which injected dependencies are desired.

• count – pointer to where this function should store the length of the re-
turned array. No value is stored if the call returns a null pointer. The
value may be set to zero if the device has no devicetree dependencies.

Returns
a pointer to a sequence of *count device handles, or a null pointer if dev
does not have any dependency data.

static inline const device_handle_t *device_supported_handles_get(const struct device
*dev, size_t *count)

Get the set of handles that this device supports.

This function returns a pointer to an array of device handles. The length of the array
is stored in the count parameter.

The array contains a handle for each device that dev “supports” &#8212; that is, devices
that require dev directly &#8212; as determined from the devicetree. This does not
include transitive dependencies; you must recursively determine those.

Parameters
• dev – the device for which supports are desired.

• count – pointer to where this function should store the length of the re-
turned array. No value is stored if the call returns a null pointer. The
value may be set to zero if nothing in the devicetree depends on dev.

Returns
a pointer to a sequence of *count device handles, or a null pointer if dev
does not have any dependency data.

int device_required_foreach(const struct device *dev, device_visitor_callback_t
visitor_cb, void *context)

Visit every device that dev directly requires.
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Zephyr maintains information about which devices are directly required by another
device; for example an I2C-based sensor driver will require an I2C controller for com-
munication. Required devices can derive from statically-defined devicetree relation-
ships or dependencies registered at runtime.

This API supports operating on the set of required devices. Example uses include mak-
ing sure required devices are ready before the requiring device is used, and releasing
them when the requiring device is no longer needed.

There is no guarantee on the order in which required devices are visited.

If the visitor_cb function returns a negative value iteration is halted, and the returned
value from the visitor is returned from this function.

Note

This API is not available to unprivileged threads.

Parameters
• dev – a device of interest. The devices that this device depends on will be

used as the set of devices to visit. This parameter must not be null.

• visitor_cb – the function that should be invoked on each device in the
dependency set. This parameter must not be null.

• context – state that is passed through to the visitor function. This param-
eter may be null if visitor_cb tolerates a null context.

Returns
The number of devices that were visited if all visits succeed, or the negative
value returned from the first visit that did not succeed.

int device_supported_foreach(const struct device *dev, device_visitor_callback_t
visitor_cb, void *context)

Visit every device that dev directly supports.

Zephyr maintains information about which devices are directly supported by another
device; for example an I2C controller will support an I2C-based sensor driver. Sup-
ported devices can derive from statically-defined devicetree relationships.

This API supports operating on the set of supported devices. Example uses include
iterating over the devices connected to a regulator when it is powered on.

There is no guarantee on the order in which required devices are visited.

If the visitor_cb function returns a negative value iteration is halted, and the returned
value from the visitor is returned from this function.

Note

This API is not available to unprivileged threads.

Parameters
• dev – a device of interest. The devices that this device supports will be

used as the set of devices to visit. This parameter must not be null.

• visitor_cb – the function that should be invoked on each device in the
support set. This parameter must not be null.

530 Chapter 3. Kernel



Zephyr Project Documentation, Release 3.7.99

• context – state that is passed through to the visitor function. This param-
eter may be null if visitor_cb tolerates a null context.

Returns
The number of devices that were visited if all visits succeed, or the negative
value returned from the first visit that did not succeed.

const struct device *device_get_binding(const char *name)
Get a device reference from its device::name field.

This function iterates through the devices on the system. If a device with the given
name field is found, and that device initialized successfully at boot time, this function
returns a pointer to the device.

If no device has the given name, this function returns NULL.

This function also returns NULL when a device is found, but it failed to initialize suc-
cessfully at boot time. (To troubleshoot this case, set a breakpoint on your device
driver’s initialization function.)

Parameters
• name – device name to search for. A null pointer, or a pointer to an empty

string, will cause NULL to be returned.

Returns
pointer to device structure with the given name; NULL if the device is not
found or if the device with that name’s initialization function failed.

bool device_is_ready(const struct device *dev)
Verify that a device is ready for use.

Indicates whether the provided device pointer is for a device known to be in a state
where it can be used with its standard API.

This can be used with device pointers captured from DEVICE_DT_GET(), which does
not include the readiness checks of device_get_binding(). At minimum this means that
the device has been successfully initialized.

Parameters
• dev – pointer to the device in question.

Return values
• true – If the device is ready for use.

• false – If the device is not ready for use or if a NULL device pointer is
passed as argument.

int device_init(const struct device *dev)
Initialize a device.

A device whose initialization was deferred (by marking it as zephyr,deferred-init on
devicetree) needs to be initialized manually via this call. Note that only devices whose
initialization was deferred can be initialized via this call - one can not try to initialize
a non initialization deferred device that failed initialization with this call.

Parameters
• dev – device to be initialized.

Return values
• -ENOENT – If device was not found - or isn’t a deferred one.

• -errno – For other errors.
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struct device_state
#include <device.h> Runtime device dynamic structure (in RAM) per driver instance.

Fields in this are expected to be default-initialized to zero. The kernel driver infras-
tructure and driver access functions are responsible for ensuring that any non-zero
initialization is done before they are accessed.

Public Members

uint8_t init_res
Device initialization return code (positive errno value).

Device initialization functions return a negative errno code if they fail. In Zephyr,
errno values do not exceed 255, so we can store the positive result value in a uint8_t
type.

bool initialized
Indicates the device initialization function has been invoked.

struct device
#include <device.h> Runtime device structure (in ROM) per driver instance.

Public Members

const char *name
Name of the device instance.

const void *config
Address of device instance config information.

const void *api
Address of the API structure exposed by the device instance.

struct device_state *state
Address of the common device state.

void *data
Address of the device instance private data.

const device_handle_t *deps
Optional pointer to dependencies associated with the device.

This encodes a sequence of sets of device handles that have some relationship
to this node. The individual sets are extracted with dedicated API, such as de-
vice_required_handles_get(). Only available if CONFIG_DEVICE_DEPS is enabled.

union device
Reference to the device PM resources (only available if CONFIG_PM_DEVICE is en-
abled).
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3.3 User Mode

Zephyr offers the capability to run threads at a reduced privilege level which we call user mode.
The current implementation is designed for devices with MPU hardware.

For details on creating threads that run in user mode, please see Lifecycle.

3.3.1 Overview

Threat Model

User mode threads are considered to be untrusted by Zephyr and are therefore isolated from
other user mode threads and from the kernel. A flawed or malicious user mode thread cannot
leak or modify the private data/resources of another thread or the kernel, and cannot interfere
with or control another user mode thread or the kernel.

Example use-cases of Zephyr’s user mode features:

• The kernel can protect against many unintentional programming errors which could oth-
erwise silently or spectacularly corrupt the system.

• The kernel can sandbox complex data parsers such as interpreters, network protocols, and
filesystems such that malicious third-party code or data cannot compromise the kernel or
other threads.

• The kernel can support the notion of multiple logical “applications”, each with their own
group of threads and private data structures, which are isolated from each other if one
crashes or is otherwise compromised.

Design Goals For threads running in a non-privileged CPU state (hereafter referred to as ‘user
mode’) we aim to protect against the following:

• We prevent access to memory not specifically granted, or incorrect access to memory that
has an incompatible policy, such as attempting to write to a read-only area.

– Access to thread stack buffers will be controlled with a policy which partially depends
on the underlying memory protection hardware.

* A user thread will by default have read/write access to its own stack buffer.

* A user thread will never by default have access to user thread stacks that are not
members of the same memory domain.

* A user thread will never by default have access to thread stacks owned by a su-
pervisor thread, or thread stacks used to handle system call privilege elevations,
interrupts, or CPU exceptions.

* A user thread may have read/write access to the stacks of other user threads in the
same memory domain, depending on hardware.

· On MPU systems, threads may only access their own stack buffer.

· On MMU systems, threads may access any user thread stack in the same mem-
ory domain. Portable code should not assume this.

– By default, program text and read-only data are accessible to all threads on read-only
basis, kernel-wide. This policy may be adjusted.

– User threads by default are not granted default access to any memory except what is
noted above.

• We prevent use of device drivers or kernel objects not specifically granted, with the per-
mission granularity on a per object or per driver instance basis.
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• We validate kernel or driver API calls with incorrect parameters that would otherwise
cause a crash or corruption of data structures private to the kernel. This includes:

– Using the wrong kernel object type.

– Using parameters outside of proper bounds or with nonsensical values.

– Passing memory buffers that the calling thread does not have sufficient access to read
or write, depending on the semantics of the API.

– Use of kernel objects that are not in a proper initialization state.

• We ensure the detection and safe handling of user mode stack overflows.

• We prevent invoking system calls to functions excluded by the kernel configuration.

• We prevent disabling of or tampering with kernel-defined and hardware- enforced memory
protections.

• We prevent re-entry from user to supervisor mode except through the kernel- defined sys-
tem calls and interrupt handlers.

• We prevent the introduction of new executable code by user mode threads, except to the
extent to which this is supported by kernel system calls.

We are specifically not protecting against the following attacks:

• The kernel itself, and any threads that are executing in supervisor mode, are assumed to
be trusted.

• The toolchain and any supplemental programs used by the build system are assumed to be
trusted.

• The kernel build is assumed to be trusted. There is considerable build-time logic for creat-
ing the tables of valid kernel objects, defining system calls, and configuring interrupts. The
.elf binary files that are worked with during this process are all assumed to be trusted code.

• We can’t protect against mistakes made in memory domain configuration done in kernel
mode that exposes private kernel data structures to a user thread. RAM for kernel objects
should always be configured as supervisor-only.

• It is possible to make top-level declarations of user mode threads and assign them permis-
sions to kernel objects. In general, all C and header files that are part of the kernel build
producing zephyr.elf are assumed to be trusted.

• We do not protect against denial of service attacks through thread CPU starvation. Zephyr
has no thread priority aging and a user thread of a particular priority can starve all threads
of lower priority, and also other threads of the same priority if time-slicing is not enabled.

• There are build-time defined limits on how many threads can be active simultaneously,
after which creation of new user threads will fail.

• Stack overflows for threads running in supervisor mode may be caught, but the integrity
of the system cannot be guaranteed.

High-level Policy Details

Broadly speaking, we accomplish these thread-level memory protection goals through the fol-
lowing mechanisms:

• Any user thread will only have access to a subset of memory: typically its stack, program
text, read-only data, and any partitions configured in the Memory Protection Design it be-
longs to. Access to any other RAM must be done on the thread’s behalf through system
calls, or specifically granted by a supervisor thread using the memory domain APIs. Newly
created threads inherit the memory domain configuration of the parent. Threads may com-
municate with each other by having shared membership of the same memory domains, or
via kernel objects such as semaphores and pipes.
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• User threads cannot directly access memory belonging to kernel objects. Although pointers
to kernel objects are used to reference them, actual manipulation of kernel objects is done
through system call interfaces. Device drivers and threads stacks are also considered kernel
objects. This ensures that any data inside a kernel object that is private to the kernel cannot
be tampered with.

• User threads by default have no permission to access any kernel object or driver other
than their own thread object. Such access must be granted by another thread that is either
in supervisor mode or has permission on both the receiving thread object and the kernel
object being granted access to. The creation of new threads has an option to automatically
inherit permissions of all kernel objects granted to the parent, except the parent thread
itself.

• For performance and footprint reasons Zephyr normally does little or no parameter er-
ror checking for kernel object or device driver APIs. Access from user mode through sys-
tem calls involves an extra layer of handler functions, which are expected to rigorously
validate access permissions and type of the object, check the validity of other parameters
through bounds checking or other means, and verify proper read/write access to any mem-
ory buffers involved.

• Thread stacks are defined in such a way that exceeding the specified stack space will gen-
erate a hardware fault. The way this is done specifically varies per architecture.

Constraints

All kernel objects, thread stacks, and device driver instances must be defined at build time if they
are to be used from user mode. Dynamic use-cases for kernel objects will need to go through pre-
defined pools of available objects.

There are some constraints if additional application binary data is loaded for execution after the
kernel starts:

• Loaded object code will not be able to define any kernel objects that will be recognized by
the kernel. This code will instead need to use APIs for requesting kernel objects from pools.

• Similarly, since the loaded object code will not be part of the kernel build process, this code
will not be able to install interrupt handlers, instantiate device drivers, or define system
calls, regardless of what mode it runs in.

• Loaded object code that does not come from a verified source should always be entered
with the CPU already in user mode.

3.3.2 Memory Protection Design

Zephyr’s memory protection design is geared towards microcontrollers with MPU (Memory Pro-
tection Unit) hardware. We do support some architectures, such as x86, which have a paged
MMU (Memory Management Unit), but in that case the MMU is used like an MPU with an iden-
tity page table.

All of the discussion below will be using MPU terminology; systems with MMUs can be considered
to have an MPU with an unlimited number of programmable regions.

There are a few different levels on how memory access is configured when Zephyr memory
protection features are enabled, which we will describe here:

Boot Time Memory Configuration

This is the configuration of the MPU after the kernel has started up. It should contain the follow-
ing:
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• Any configuration of memory regions which need to have special caching or write-back
policies for basic hardware and driver function. Note that most MPUs have the concept of
a default memory access policy map, which can be enabled as a “background” mapping for
any area of memory that doesn’t have an MPU region configuring it. It is strongly recom-
mended to use this to maximize the number of available MPU regions for the end user. On
ARMv7-M/ARMv8-M this is called the System Address Map, other CPUs may have similar
capabilities.

• A read-only, executable region or regions for program text and ro-data, that is accessible
to user mode. This could be further sub-divided into a read-only region for ro-data, and a
read-only, executable region for text, but this will require an additional MPU region. This
is required so that threads running in user mode can read ro-data and fetch instructions.

• Depending on configuration, user-accessible read-write regions to support extra features
like GCOV, HEP, etc.

Assuming there is a background map which allows supervisor mode to access any memory it
needs, and regions are defined which grant user mode access to text/ro-data, this is sufficient for
the boot time configuration.

Hardware Stack Overflow

CONFIG_HW_STACK_PROTECTION is an optional feature which detects stack buffer overflows when
the system is running in supervisor mode. This catches issues when the entire stack buffer has
overflowed, and not individual stack frames, use compiler-assisted CONFIG_STACK_CANARIES for
that.

Like any crash in supervisor mode, no guarantees can be made about the overall health of the
system after a supervisor mode stack overflow, and any instances of this should be treated as a
serious error. However it’s still very useful to know when these overflows happen, as without
robust detection logic the system will either crash in mysterious ways or behave in an undefined
manner when the stack buffer overflows.

Some systems implement this feature by creating at runtime a ‘guard’ MPU region which is set to
be read-only and is at either the beginning or immediately preceding the supervisor mode stack
buffer. If the stack overflows an exception will be generated.

This feature is optional and is not required to catch stack overflows in user mode; disabling this
may free 1-2 MPU regions depending on the MPU design.

Other systems may have dedicated CPU support for catching stack overflows and no extra MPU
regions will be required.

Thread Stack

Any thread running in user mode will need access to its own stack buffer. On context switch into
a user mode thread, a dedicated MPU region or MMU page table entries will be programmed with
the bounds of the stack buffer. A thread exceeding its stack buffer will start pushing data onto
memory it doesn’t have access to and a memory access violation exception will be generated.

Note that user threads have access to the stacks of other user threads in the same memory do-
main. This is the minimum required for architectures to support memory domains. Architecture
can further restrict access to stacks so each user thread only has access to its own stack if such ar-
chitecture advertises this capability via CONFIG_ARCH_MEM_DOMAIN_SUPPORTS_ISOLATED_STACKS.
This behavior is enabled by default if supported and can be selectively disabled via CON-
FIG_MEM_DOMAIN_ISOLATED_STACKS if architecture supports both operating modes. However,
some architectures may decide to enable this all the time, and thus this option cannot be dis-
abled. Regardless of these kconfigs, user threads cannot access the stacks of other user threads
outside of their memory domains.
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Thread Resource Pools

A small subset of kernel APIs, invoked as system calls, require heap memory allocations. This
memory is used only by the kernel and is not accessible directly by user mode. In order to use
these system calls, invoking threads must assign themselves to a resource pool, which is a k_heap
object. Memory is drawn from a thread’s resource pool using z_thread_malloc() and freed with
k_free().

The APIs which use resource pools are as follows, with any alternatives noted for users who do
not want heap allocations within their application:

• k_stack_alloc_init() sets up a k_stack with its storage buffer allocated out of a resource
pool instead of a buffer provided by the user. An alternative is to declare k_stacks that
are automatically initialized at boot with K_STACK_DEFINE(), or to initialize the k_stack in
supervisor mode with k_stack_init().

• k_pipe_alloc_init() sets up a k_pipe object with its storage buffer allocated out of a re-
source pool instead of a buffer provided by the user. An alternative is to declare k_pipes
that are automatically initialized at boot with K_PIPE_DEFINE(), or to initialize the k_pipe
in supervisor mode with k_pipe_init().

• k_msgq_alloc_init() sets up a k_msgq object with its storage buffer allocated out of a re-
source pool instead of a buffer provided by the user. An alternative is to declare a k_msgq
that is automatically initialized at boot with K_MSGQ_DEFINE(), or to initialize the k_msgq in
supervisor mode with k_msgq_init().

• k_poll() when invoked from user mode, needs to make a kernel-side copy of the provided
events array while waiting for an event. This copy is freed when k_poll() returns for any
reason.

• k_queue_alloc_prepend() and k_queue_alloc_append() allocate a container structure to
place the data in, since the internal bookkeeping information that defines the queue cannot
be placed in the memory provided by the user.

• k_object_alloc() allows for entire kernel objects to be dynamically allocated at runtime
and a usable pointer to them returned to the caller.

The relevant API is k_thread_heap_assign() which assigns a k_heap to draw these allocations
from for the target thread.

If the system heap is enabled, then the system heap may be used with
k_thread_system_pool_assign(), but it is preferable for different logical applications run-
ning on the system to have their own pools.

Memory Domains

The kernel ensures that any user thread will have access to its own stack buffer, plus program
text and read-only data. The memory domain APIs are the way to grant access to additional
blocks of memory to a user thread.

Conceptually, a memory domain is a collection of some number of memory partitions. The max-
imum number of memory partitions in a domain is limited by the number of available MPU
regions. This is why it is important to minimize the number of boot-time MPU regions.

Memory domains are not intended to control access to memory from supervisor mode. In some
cases this may be unavoidable; for example some architectures do not allow for the definition of
regions which are read-only to user mode but read-write to supervisor mode. A great deal of care
must be taken when working with such regions to not unintentionally cause the kernel to crash
when accessing such a region. Any attempt to use memory domain APIs to control supervisor
mode access is at best undefined behavior; supervisor mode access policy is only intended to be
controlled by boot-time memory regions.
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Memory domain APIs are only available to supervisor mode. The only control user mode has
over memory domains is that any user thread’s child threads will automatically become mem-
bers of the parent’s domain.

All threads are members of a memory domain, including supervisor threads (even though this
has no implications on their memory access). There is a default domain k_mem_domain_default
which will be assigned to threads if they have not been specifically assigned to a domain, or
inherited a memory domain membership from their parent thread. The main thread starts as a
member of the default domain.

Memory Partitions Each memory partition consists of a memory address, a size, and access
attributes. It is intended that memory partitions are used to control access to system memory.
Defining memory partitions are subject to the following constraints:

• The partition must represent a memory region that can be programmed by the underlying
memory management hardware, and needs to conform to any underlying hardware con-
straints. For example, many MPU-based systems require that partitions be sized to some
power of two, and aligned to their own size. For MMU-based systems, the partition must
be aligned to a page and the size some multiple of the page size.

• Partitions within the same memory domain may not overlap each other. There is no notion
of precedence among partitions within a memory domain. Partitions within a memory
domain are assumed to have a higher precedence than any boot-time memory regions,
however whether a memory domain partition can overlap a boot-time memory region is
architecture specific.

• The same partition may be specified in multiple memory domains. For example there may
be a shared memory area that multiple domains grant access to.

• Care must be taken in determining what memory to expose in a partition. It is not appro-
priate to provide direct user mode access to any memory containing private kernel data.

• Memory domain partitions are intended to control access to system RAM. Configuration of
memory partitions which do not correspond to RAM may not be supported by the architec-
ture; this is true for MMU-based systems.

There are two ways to define memory partitions: either manually or automatically.

Manual Memory Partitions The following code declares a global array buf, and then declares
a read-write partition for it which may be added to a domain:

uint8_t __aligned(32) buf[32];

K_MEM_PARTITION_DEFINE(my_partition, buf, sizeof(buf),
K_MEM_PARTITION_P_RW_U_RW);

This does not scale particularly well when we are trying to contain multiple objects spread out
across several C files into a single partition.

Automatic Memory Partitions Automatic memory partitions are created by the build system.
All globals which need to be placed inside a partition are tagged with their destination partition.
The build system will then coalesce all of these into a single contiguous block of memory, zero
any BSS variables at boot, and define a memory partition of appropriate base address and size
which contains all the tagged data.

Automatic memory partitions are only configured as read-write regions. They are defined
with K_APPMEM_PARTITION_DEFINE(). Global variables are then routed to this partition using
K_APP_DMEM() for initialized data and K_APP_BMEM() for BSS.
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Fig. 2: Automatic Memory Domain build flow

#include <zephyr/app_memory/app_memdomain.h>

/* Declare a k_mem_partition "my_partition" that is read-write to
* user mode. Note that we do not specify a base address or size.
*/

K_APPMEM_PARTITION_DEFINE(my_partition);

/* The global variable var1 will be inside the bounds of my_partition
* and be initialized with 37 at boot.
*/

K_APP_DMEM(my_partition) int var1 = 37;

/* The global variable var2 will be inside the bounds of my_partition
* and be zeroed at boot size K_APP_BMEM() was used, indicating a BSS
* variable.
*/

K_APP_BMEM(my_partition) int var2;

The build system will ensure that the base address of my_partition will be properly aligned,
and the total size of the region conforms to the memory management hardware requirements,
adding padding if necessary.

If multiple partitions are being created, a variadic preprocessor macro can be used as provided
in app_macro_support.h:

FOR_EACH(K_APPMEM_PARTITION_DEFINE, part0, part1, part2);

Automatic Partitions for Static Library Globals The build-time logic for setting up automatic
memory partitions is in scripts/build/gen_app_partitions.py. If a static library is linked into
Zephyr, it is possible to route all the globals in that library to a specific memory partition with
the --library argument.

For example, if the Newlib C library is enabled, the Newlib globals all need to be placed in
z_libc_partition. The invocation of the script in the top-level CMakeLists.txt adds the fol-
lowing:

gen_app_partitions.py ... --library libc.a z_libc_partition ..
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For pre-compiled libraries there is no support for expressing this in the project-level configura-
tion or build files; the toplevel CMakeLists.txt must be edited.

For Zephyr libraries created using zephyr_library or zephyr_library_named the
zephyr_library_app_memory function can be used to specify the memory partition where
all globals in the library should be placed.

Pre-definedMemory Partitions There are a few memory partitions which are pre-defined by
the system:

• z_malloc_partition - This partition contains the system-wide pool of memory used by libc
malloc(). Due to possible starvation issues, it is not recommended to draw heap memory
from a global pool, instead it is better to define various sys_heap objects and assign them
to specific memory domains.

• z_libc_partition - Contains globals required by the C library and runtime. Required
when using either the Minimal C library or the Newlib C Library. Required when CON-
FIG_STACK_CANARIES is enabled.

Library-specific partitions are listed in include/app_memory/partitions.h. For example, to use
the MBEDTLS library from user mode, the k_mbedtls_partition must be added to the domain.

Memory Domain Usage

Create aMemoryDomain A memory domain is defined using a variable of type k_mem_domain.
It must then be initialized by calling k_mem_domain_init().

The following code defines and initializes an empty memory domain.

struct k_mem_domain app0_domain;

k_mem_domain_init(&app0_domain, 0, NULL);

Add Memory Partitions into a Memory Domain There are two ways to add memory parti-
tions into a memory domain.

This first code sample shows how to add memory partitions while creating a memory domain.

/* the start address of the MPU region needs to align with its size */
uint8_t __aligned(32) app0_buf[32];
uint8_t __aligned(32) app1_buf[32];

K_MEM_PARTITION_DEFINE(app0_part0, app0_buf, sizeof(app0_buf),
K_MEM_PARTITION_P_RW_U_RW);

K_MEM_PARTITION_DEFINE(app0_part1, app1_buf, sizeof(app1_buf),
K_MEM_PARTITION_P_RW_U_RO);

struct k_mem_partition *app0_parts[] = {
app0_part0,
app0_part1

};

k_mem_domain_init(&app0_domain, ARRAY_SIZE(app0_parts), app0_parts);

This second code sample shows how to add memory partitions into an initialized memory do-
main one by one.
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/* the start address of the MPU region needs to align with its size */
uint8_t __aligned(32) app0_buf[32];
uint8_t __aligned(32) app1_buf[32];

K_MEM_PARTITION_DEFINE(app0_part0, app0_buf, sizeof(app0_buf),
K_MEM_PARTITION_P_RW_U_RW);

K_MEM_PARTITION_DEFINE(app0_part1, app1_buf, sizeof(app1_buf),
K_MEM_PARTITION_P_RW_U_RO);

k_mem_domain_add_partition(&app0_domain, &app0_part0);
k_mem_domain_add_partition(&app0_domain, &app0_part1);

Note

The maximum number of memory partitions is limited by the maximum number of MPU
regions or the maximum number of MMU tables.

Memory Domain Assignment Any thread may join a memory domain, and any memory do-
main may have multiple threads assigned to it. Threads are assigned to memory domains with
an API call:

k_mem_domain_add_thread(&app0_domain, app_thread_id);

If the thread was already a member of some other domain (including the default domain), it will
be removed from it in favor of the new one.

In addition, if a thread is a member of a memory domain, and it creates a child thread, that
thread will belong to the domain as well.

Remove a Memory Partition from a Memory Domain The following code shows how to re-
move a memory partition from a memory domain.

k_mem_domain_remove_partition(&app0_domain, &app0_part1);

The k_mem_domain_remove_partition() API finds the memory partition that matches the given
parameter and removes that partition from the memory domain.

Available Partition Attributes When defining a partition, we need to set access permission
attributes to the partition. Since the access control of memory partitions relies on either an MPU
or MMU, the available partition attributes would be architecture dependent.

The complete list of available partition attributes for a specific architecture is found in the
architecture-specific include file include/zephyr/arch/<arch name>/arch.h, (for example,
include/zehpyr/arch/arm/arch.h.) Some examples of partition attributes are:

/* Denote partition is privileged read/write, unprivileged read/write */
K_MEM_PARTITION_P_RW_U_RW
/* Denote partition is privileged read/write, unprivileged read-only */
K_MEM_PARTITION_P_RW_U_RO

In almost all cases K_MEM_PARTITION_P_RW_U_RW is the right choice.

Configuration Options

Related configuration options:
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• CONFIG_MAX_DOMAIN_PARTITIONS

API Reference

The following memory domain APIs are provided by include/zephyr/kernel.h:

group mem_domain_apis

Defines

K_MEM_PARTITION_DEFINE(name, start, size, attr)
Statically declare a memory partition.

Functions

int k_mem_domain_init(struct k_mem_domain *domain, uint8_t num_parts, struct
k_mem_partition *parts[])

Initialize a memory domain.

Initialize a memory domain with given name and memory partitions.

See documentation for k_mem_domain_add_partition() for details about partition con-
straints.

Do not call k_mem_domain_init() on the same memory domain more than once, doing
so is undefined behavior.

Parameters
• domain – The memory domain to be initialized.

• num_parts – The number of array items of “parts” parameter.

• parts – An array of pointers to the memory partitions. Can be NULL if
num_parts is zero.

Return values
• 0 – if successful

• -EINVAL – if invalid parameters supplied

• -ENOMEM – if insufficient memory

int k_mem_domain_add_partition(struct k_mem_domain *domain, struct k_mem_partition
*part)

Add a memory partition into a memory domain.

Add a memory partition into a memory domain. Partitions must conform to the fol-
lowing constraints:

• Partitions in the same memory domain may not overlap each other.

• Partitions must not be defined which expose private kernel data structures or ker-
nel objects.

• The starting address alignment, and the partition size must conform to the con-
straints of the underlying memory management hardware, which varies per ar-
chitecture.
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• Memory domain partitions are only intended to control access to memory from
user mode threads.

• If CONFIG_EXECUTE_XOR_WRITE is enabled, the partition must not allow both
writes and execution.

Violating these constraints may lead to CPU exceptions or undefined behavior.

Parameters
• domain – The memory domain to be added a memory partition.

• part – The memory partition to be added

Return values
• 0 – if successful

• -EINVAL – if invalid parameters supplied

• -ENOSPC – if no free partition slots available

int k_mem_domain_remove_partition(struct k_mem_domain *domain, struct
k_mem_partition *part)

Remove a memory partition from a memory domain.

Remove a memory partition from a memory domain.

Parameters
• domain – The memory domain to be removed a memory partition.

• part – The memory partition to be removed

Return values
• 0 – if successful

• -EINVAL – if invalid parameters supplied

• -ENOENT – if no matching partition found

int k_mem_domain_add_thread(struct k_mem_domain *domain, k_tid_t thread)
Add a thread into a memory domain.

Add a thread into a memory domain. It will be removed from whatever memory do-
main it previously belonged to.

Parameters
• domain – The memory domain that the thread is going to be added into.

• thread – ID of thread going to be added into the memory domain.

Returns
0 if successful, fails otherwise.

Variables

struct k_mem_domain k_mem_domain_default
Default memory domain.

All threads are a member of some memory domain, even if running in supervisor
mode. Threads belong to this default memory domain if they haven’t been added to
or inherited membership from some other domain.

This memory domain has the z_libc_partition partition for the C library added to it if
exists.
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struct k_mem_partition
#include <mem_domain.h> Memory Partition.

A memory partition is a region of memory in the linear address space with a specific
access policy.

The alignment of the starting address, and the alignment of the size value may have
varying requirements based on the capabilities of the underlying memory manage-
ment hardware; arbitrary values are unlikely to work.

Public Members

uintptr_t start
start address of memory partition

size_t size
size of memory partition

k_mem_partition_attr_t attr
attribute of memory partition

struct k_mem_domain
#include <mem_domain.h> Memory Domain.

A memory domain is a collection of memory partitions, used to represent a user
thread’s access policy for the linear address space. A thread may be a member of only
one memory domain, but any memory domain may have multiple threads that are
members.

Supervisor threads may also be a member of a memory domain; this has no implica-
tions on their memory access but can be useful as any child threads inherit the memory
domain membership of the parent.

A user thread belonging to a memory domain with no active partitions will have guar-
anteed access to its own stack buffer, program text, and read-only data.

Public Members

struct k_mem_partition partitions[CONFIG_MAX_DOMAIN_PARTITIONS]
partitions in the domain

sys_dlist_t mem_domain_q
Doubly linked list of member threads.

uint8_t num_partitions
number of active partitions in the domain

3.3.3 Kernel Objects

A kernel object can be one of three classes of data:

• A core kernel object, such as a semaphore, thread, pipe, etc.
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• A thread stack, which is an array of z_thread_stack_element and declared with
K_THREAD_STACK_DEFINE()

• A device driver instance (const struct device) that belongs to one of a defined set of subsys-
tems

The set of known kernel objects and driver subsystems is defined in include/kernel.h as
k_objects.

Kernel objects are completely opaque to user threads. User threads work with addresses to ker-
nel objects when making API calls, but may never dereference these addresses, doing so will
cause a memory protection fault. All kernel objects must be placed in memory that is not acces-
sible by user threads.

Since user threads may not directly manipulate kernel objects, all use of them must go through
system calls. In order to perform a system call on a kernel object, checks are performed by
system call handler functions that the kernel object address is valid and that the calling thread
has sufficient permissions to work with it.

Permission on an object also has the semantics of a reference to an object. This is significant
for certain object APIs which do temporary allocations, or objects which themselves have been
allocated from a runtime memory pool.

If an object loses all references, two events may happen:

• If the object has an associated cleanup function, the cleanup function may be called to re-
lease any runtime-allocated buffers the object was using.

• If the object itself was dynamically allocated, the memory for the object will be freed.

Object Placement

Kernel objects that are only used by supervisor threads have no restrictions and can be located
anywhere in the binary, or even declared on stacks. However, to prevent accidental or inten-
tional corruption by user threads, they must not be located in any memory that user threads
have direct access to.

In order for a static kernel object to be usable by a user thread via system call APIs, several
conditions must be met on how the kernel object is declared:

• The object must be declared as a top-level global at build time, such that it appears in the
ELF symbol table. It is permitted to declare kernel objects with static scope. The post-build
script scripts/build/gen_kobject_list.py scans the generated ELF file to find kernel objects and
places their memory addresses in a special table of kernel object metadata. Kernel objects
may be members of arrays or embedded within other data structures.

• Kernel objects must be located in memory reserved for the kernel. They must not be located
in any memory partitions that are user-accessible.

• Any memory reserved for a kernel object must be used exclusively for that object. Kernel
objects may not be members of a union data type.

Kernel objects that are found but do not meet the above conditions will not be included in the
generated table that is used to validate kernel object pointers passed in from user mode.

The debug output of the scripts/build/gen_kobject_list.py script may be useful when debugging
why some object was unexpectedly not being tracked. This information will be printed if the
script is run with the --verbose flag, or if the build system is invoked with verbose output.

Dynamic Objects

Kernel objects may also be allocated at runtime if CONFIG_DYNAMIC_OBJECTS is enabled. In this
case, the k_object_alloc() API may be used to instantiate an object from the calling thread’s
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resource pool. Such allocations may be freed in two ways:

• Supervisor threads may call k_object_free() to force a dynamic object to be released.

• If an object’s references drop to zero (which happens when no threads have permissions on
it) the object will be automatically freed. User threads may drop their own permission on
an object with k_object_release(), and their permissions are automatically cleared when
a thread terminates. Supervisor threads may additionally revoke references for another
thread using k_object_access_revoke().

Because permissions are also used for reference counting, it is important for supervisor threads
to acquire permissions on objects they are using even though the access control aspects of the
permission system are not enforced.

Implementation Details The scripts/build/gen_kobject_list.py script is a post-build step which
finds all the valid kernel object instances in the binary. It accomplishes this by parsing the
DWARF debug information present in the generated ELF file for the kernel.

Any instances of structs or arrays corresponding to kernel objects that meet the object placement
criteria will have their memory addresses placed in a special perfect hash table of kernel objects
generated by the ‘gperf’ tool. When a system call is made and the kernel is presented with a
memory address of what may or may not be a valid kernel object, the address can be validated
with a constant-time lookup in this table.

Drivers are a special case. All drivers are instances of device, but it is important to know what
subsystem a driver belongs to so that incorrect operations, such as calling a UART API on a sensor
driver object, can be prevented. When a device struct is found, its API pointer is examined to
determine what subsystem the driver belongs to.

The table itself maps kernel object memory addresses to instances of z_object, which has all the
metadata for that object. This includes:

• A bitfield indicating permissions on that object. All threads have a numerical ID assigned
to them at build time, used to index the permission bitfield for an object to see if that thread
has permission on it. The size of this bitfield is controlled by the CONFIG_MAX_THREAD_BYTES
option and the build system will generate an error if this value is too low.

• A type field indicating what kind of object this is, which is some instance of k_objects.

• A set of flags for that object. This is currently used to track initialization state and whether
an object is public or not.

• An extra data field. The semantics of this field vary by object type, see the definition of
z_object_data.

Dynamic objects allocated at runtime are tracked in a runtime red/black tree which is used in
parallel to the gperf table when validating object pointers.

Supervisor Thread Access Permission

Supervisor threads can access any kernel object. However, permissions for supervisor threads
are still tracked for two reasons:

• If a supervisor thread calls k_thread_user_mode_enter(), the thread will then run in user
mode with any permissions it had been granted (in many cases, by itself) when it was a
supervisor thread.

• If a supervisor thread creates a user thread with the K_INHERIT_PERMS option, the child
thread will be granted the same permissions as the parent thread, except the parent thread
object.
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User Thread Access Permission

By default, when a user thread is created, it will only have access permissions on its own thread
object. Other kernel objects by default are not usable. Access to them needs to be explicitly or
implicitly granted. There are several ways to do this.

• If a thread is created with the K_INHERIT_PERMS, that thread will inherit all the permissions
of the parent thread, except the parent thread object.

• A thread that has permission on an object, or is running in supervisor mode, may grant
permission on that object to another thread via the k_object_access_grant()API. The con-
venience pseudo-function k_thread_access_grant() may also be used, which accepts an
arbitrary number of pointers to kernel objects and calls k_object_access_grant() on each
of them. The thread being granted permission, or the object whose access is being granted,
do not need to be in an initialized state. If the caller is from user mode, the caller must have
permissions on both the kernel object and the target thread object.

• Supervisor threads may declare a particular kernel object to be a public object, usable by all
current and future threads with the k_object_access_all_grant() API. You must assume
that any untrusted or exploited code will then be able to access the object. Use this API with
caution!

• If a thread was declared statically with K_THREAD_DEFINE(), then the
K_THREAD_ACCESS_GRANT() may be used to grant that thread access to a set of kernel
objects at boot time.

Once a thread has been granted access to an object, such access may be removed with the
k_object_access_revoke() API. This API is not available to user threads, however user threads
may use k_object_release() to relinquish their own permissions on an object.

API calls from supervisor mode to set permissions on kernel objects that are not being tracked
by the kernel will be no-ops. Doing the same from user mode will result in a fatal error for the
calling thread.

Objects allocated with k_object_alloc() implicitly grant permission on the allocated object to
the calling thread.

Initialization State

Most operations on kernel objects will fail if the object is considered to be in an uninitialized
state. The appropriate init function for the object must be performed first.

Some objects will be implicitly initialized at boot:

• Kernel objects that were declared with static initialization macros (such as K_SEM_DEFINE
for semaphores) will be in an initialized state at build time.

• Device driver objects are considered initialized after their init function is run by the kernel
early in the boot process.

If a kernel object is initialized with a private static initializer, the object must have
k_object_init() called on it at some point by a supervisor thread, otherwise the kernel will
consider the object uninitialized if accessed by a user thread. This is very uncommon, typically
only for kernel objects that are embedded within some larger struct and initialized statically.

struct foo {
struct k_sem sem;
...

};

struct foo my_foo = {
.sem = Z_SEM_INITIALIZER(my_foo.sem, 0, 1),

(continues on next page)
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(continued from previous page)
...

};

...
k_object_init(&my_foo.sem);
...

Creating New Kernel Object Types

When implementing new kernel features or driver subsystems, it may be necessary to define
some new kernel object types. There are different steps needed for creating core kernel objects
and new driver subsystems.

Creating New Core Kernel Objects
• In scripts/build/gen_kobject_list.py, add the name of the struct to the kobjects list.

Instances of the new struct should now be tracked.

Creating New Driver Subsystem Kernel Objects All driver instances are device. They are
differentiated by what API struct they are set to.

• In scripts/build/gen_kobject_list.py, add the name of the API struct for the new sub-
system to the subsystems list.

Driver instances of the new subsystem should now be tracked.

Configuration Options

Related configuration options:

• CONFIG_USERSPACE
• CONFIG_MAX_THREAD_BYTES

API Reference

group usermode_apis

Defines

K_THREAD_ACCESS_GRANT(name_, ...)
Grant a static thread access to a list of kernel objects.

For threads declared with K_THREAD_DEFINE(), grant the thread access to a set of
kernel objects. These objects do not need to be in an initialized state. The permissions
will be granted when the threads are initialized in the early boot sequence.

All arguments beyond the first must be pointers to kernel objects.

Parameters
• name_ – Name of the thread, as passed to K_THREAD_DEFINE()
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K_OBJ_FLAG_INITIALIZED
Object initialized.

K_OBJ_FLAG_PUBLIC
Object is Public.

K_OBJ_FLAG_ALLOC
Object allocated.

K_OBJ_FLAG_DRIVER
Driver Object.

Functions

void k_object_access_grant(const void *object, struct k_thread *thread)
Grant a thread access to a kernel object.

The thread will be granted access to the object if the caller is from supervisor mode, or
the caller is from user mode AND has permissions on both the object and the thread
whose access is being granted.

Parameters
• object – Address of kernel object

• thread – Thread to grant access to the object

void k_object_access_revoke(const void *object, struct k_thread *thread)
Revoke a thread’s access to a kernel object.

The thread will lose access to the object if the caller is from supervisor mode, or the
caller is from user mode AND has permissions on both the object and the thread whose
access is being revoked.

Parameters
• object – Address of kernel object

• thread – Thread to remove access to the object

void k_object_release(const void *object)
Release an object.

Allows user threads to drop their own permission on an object Their permissions are
automatically cleared when a thread terminates.

Parameters
• object – The object to be released

void k_object_access_all_grant(const void *object)
Grant all present and future threads access to an object.

If the caller is from supervisor mode, or the caller is from user mode and have suf-
ficient permissions on the object, then that object will have permissions granted to it
for all current and future threads running in the system, effectively becoming a public
kernel object.

Use of this API should be avoided on systems that are running untrusted code as it is
possible for such code to derive the addresses of kernel objects and perform unwanted
operations on them.
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It is not possible to revoke permissions on public objects; once public, any thread may
use it.

Parameters
• object – Address of kernel object

bool k_object_is_valid(const void *obj, enum k_objects otype)
Check if a kernel object is of certain type and is valid.

This checks if the kernel object exists, of certain type, and has been initialized.

Parameters
• obj – Address of the kernel object

• otype – Object type (use K_OBJ_ANY for ignoring type checking)

Returns
True if kernel object (obj) exists, of certain type, and has been initialized.
False otherwise.

void *k_object_alloc(enum k_objects otype)
Allocate a kernel object of a designated type.

This will instantiate at runtime a kernel object of the specified type, returning a pointer
to it. The object will be returned in an uninitialized state, with the calling thread being
granted permission on it. The memory for the object will be allocated out of the calling
thread’s resource pool.

Note

This function is available only if CONFIG_DYNAMIC_OBJECTS is selected.

Note

Thread stack object has to use k_object_alloc_size() since stacks may have different
sizes.

Parameters
• otype – Requested kernel object type

Returns
A pointer to the allocated kernel object, or NULL if memory wasn’t avail-
able

void *k_object_alloc_size(enum k_objects otype, size_t size)
Allocate a kernel object of a designated type and a given size.

This will instantiate at runtime a kernel object of the specified type, returning a pointer
to it. The object will be returned in an uninitialized state, with the calling thread being
granted permission on it. The memory for the object will be allocated out of the calling
thread’s resource pool.

This function is specially helpful for thread stack objects because their sizes can vary.
Other objects should probably look k_object_alloc().

Note

This function is available only if CONFIG_DYNAMIC_OBJECTS is selected.
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Parameters
• otype – Requested kernel object type

• size – Requested kernel object size

Returns
A pointer to the allocated kernel object, or NULL if memory wasn’t avail-
able

void k_object_free(void *obj)
Free a kernel object previously allocated with k_object_alloc()

This will return memory for a kernel object back to resource pool it was allocated from.
Care must be exercised that the object will not be used during or after when this call
is made.

Note

This function is available only if CONFIG_DYNAMIC_OBJECTS is selected.

Parameters
• obj – Pointer to the kernel object memory address.

3.3.4 System Calls

User threads run with a reduced set of privileges than supervisor threads: certain CPU instruc-
tions may not be used, and they have access to only a limited part of the memory map. System
calls (may) allow user threads to perform operations not directly available to them.

When defining system calls, it is very important to ensure that access to the API’s private data
is done exclusively through system call interfaces. Private kernel data should never be made
available to user mode threads directly. For example, the k_queue APIs were intentionally not
made available as they store bookkeeping information about the queue directly in the queue
buffers which are visible from user mode.

APIs that allow the user to register callback functions that run in supervisor mode should never
be exposed as system calls. Reserve these for supervisor-mode access only.

This section describes how to declare new system calls and discusses a few implementation de-
tails relevant to them.

Components

All system calls have the following components:

• A C prototype prefixed with __syscall for the API. It will be declared in some header
under include/ or in another SYSCALL_INCLUDE_DIRS directory. This prototype is never
implemented manually, instead it gets created by the scripts/build/gen_syscalls.py script.
What gets generated is an inline function which either calls the implementation function
directly (if called from supervisor mode) or goes through privilege elevation and validation
steps (if called from user mode).

• An implementation function, which is the real implementation of the system call. The
implementation function may assume that all parameters passed in have been validated if
it was invoked from user mode.

• A verification function, which wraps the implementation function and does validation of
all the arguments passed in.
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• An unmarshalling function, which is an automatically generated handler that must be
included by user source code.

C Prototype

The C prototype represents how the API is invoked from either user or supervisor mode. For
example, to initialize a semaphore:

__syscall void k_sem_init(struct k_sem *sem, unsigned int initial_count,
unsigned int limit);

The __syscall attribute is very special. To the C compiler, it simply expands to ‘static inline’.
However to the post-build scripts/build/parse_syscalls.py script, it indicates that this API is a sys-
tem call. The scripts/build/parse_syscalls.py script does some parsing of the function prototype,
to determine the data types of its return value and arguments, and has some limitations:

• Array arguments must be passed in as pointers, not arrays. For example, int foo[] or int
foo[12] is not allowed, but should instead be expressed as int *foo.

• Function pointers horribly confuse the limited parser. The workaround is to typedef them
first, and then express in the argument list in terms of that typedef.

• __syscall must be the first thing in the prototype.

The preprocessor is intentionally not used when determining the set of system calls to generate.
However, any generated system calls that don’t actually have a verification function defined
(because the related feature is not enabled in the kernel configuration) will instead point to a
special verification for unimplemented system calls. Data type definitions for APIs should not
have conditional visibility to the compiler.

Any header file that declares system calls must include a special generated header at the very
bottom of the header file. This header follows the naming convention syscalls/<name of header
file>. For example, at the bottom of include/sensor.h:

#include <zephyr/syscalls/sensor.h>

C prototype functions must be declared in one of the directories listed in the CMake
variable SYSCALL_INCLUDE_DIRS. This list always contains APPLICATION_SOURCE_DIR when
CONFIG_APPLICATION_DEFINED_SYSCALL is set, or ${ZEPHYR_BASE}/subsys/testsuite/ztest/
include when CONFIG_ZTEST is set. Additional paths can be added to the list through the
CMake command line or in CMake code that is run before find_package(Zephyr ...) is run.
${ZEPHYR_BASE}/include is always scanned for potential syscall prototypes.

Note that not all syscalls will be included in the final binaries. CMake functions
zephyr_syscall_header and zephyr_syscall_header_ifdef are used to specify which header
files contain syscall prototypes where those syscalls must be present in the final binaries. Note
that header files inside directories listed in CMake variable SYSCALL_INCLUDE_DIRS will always
have their syscalls present in final binaries. To force all syscalls to be included in the final bina-
ries, turn on CONFIG_EMIT_ALL_SYSCALLS.

Invocation Context Source code that uses system call APIs can be made more efficient if it is
known that all the code inside a particular C file runs exclusively in user mode, or exclusively in
supervisor mode. The system will look for the definition of macros __ZEPHYR_SUPERVISOR__ or
__ZEPHYR_USER__, typically these will be added to the compiler flags in the build system for the
related files.

• If CONFIG_USERSPACE is not enabled, all APIs just directly call the implementation function.

• Otherwise, the default case is to make a runtime check to see if the processor is currently
running in user mode, and either make the system call or directly call the implementation
function as appropriate.
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• If __ZEPHYR_SUPERVISOR__ is defined, then it is assumed that all the code runs in supervisor
mode and all APIs just directly call the implementation function. If the code was actually
running in user mode, there will be a CPU exception as soon as it tries to do something it
isn’t allowed to do.

• If __ZEPHYR_USER__ is defined, then it is assumed that all the code runs in user mode and
system calls are unconditionally made.

Implementation Details Declaring an API with __syscall causes some code to be generated
in C and header files by the scripts/build/gen_syscalls.py script, all of which can be found in the
project out directory under include/generated/:

• The system call is added to the enumerated type of system call IDs, which is expressed in
include/generated/zephyr/syscall_list.h. It is the name of the API in uppercase, pre-
fixed with K_SYSCALL_.

• An entry for the system call is created in the dispatch table _k_syscall_table, expressed
in include/generated/zephyr/syscall_dispatch.c
– This table only contains syscalls where their corresponding prototypes are declared in

header files when CONFIG_EMIT_ALL_SYSCALLS is enabled:

* Indicated by CMake functions zephyr_syscall_header and
zephyr_syscall_header_ifdef, or

* Under directories specified in CMake variable SYSCALL_INCLUDE_DIRS.

• A weak verification function is declared, which is just an alias of the ‘unimplemented sys-
tem call’ verifier. This is necessary since the real verification function may or may not be
built depending on the kernel configuration. For example, if a user thread makes a sen-
sor subsystem API call, but the sensor subsystem is not enabled, the weak verifier will be
invoked instead.

• An unmarshalling function is defined in include/generated/<name>_mrsh.c
The body of the API is created in the generated system header. Using the example of
k_sem_init(), this API is declared in include/kernel.h. At the bottom of include/kernel.h
is:

#include <zephyr/syscalls/kernel.h>

Inside this header is the body of k_sem_init():

static inline void k_sem_init(struct k_sem * sem, unsigned int initial_count, unsigned int␣
↪→limit)
{
#ifdef CONFIG_USERSPACE

if (z_syscall_trap()) {
arch_syscall_invoke3(*(uintptr_t *)&sem, *(uintptr_t *)&initial_count,␣

↪→*(uintptr_t *)&limit, K_SYSCALL_K_SEM_INIT);
return;

}
compiler_barrier();

#endif
z_impl_k_sem_init(sem, initial_count, limit);

}

This generates an inline function that takes three arguments with void return value. Depending
on context it will either directly call the implementation function or go through a system call
elevation. A prototype for the implementation function is also automatically generated.

The final layer is the invocation of the system call itself. All architectures implementing
system calls must implement the seven inline functions _arch_syscall_invoke0() through
_arch_syscall_invoke6(). These functions marshal arguments into designated CPU registers
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and perform the necessary privilege elevation. Parameters of API inline function, before being
passed as arguments to system call, are C casted to uintptr_t which matches size of register. Ex-
ception to above is passing 64-bit parameters on 32-bit systems, in which case 64-bit parameters
are split into lower and higher part and passed as two consecutive arguments. There is always
a uintptr_t type return value, which may be neglected if not needed.

Fig. 3: System Call execution flow

Some system calls may have more than six arguments, but number of arguments passed via
registers is limited to six for all architectures. Additional arguments will need to be passed in
an array in the source memory space, which needs to be treated as untrusted memory in the
verification function. This code (packing, unpacking and validation) is generated automatically
as needed in the stub above and in the unmarshalling function.

System calls return uintptr_t type value that is C casted, by wrapper, to a return type of API
prototype declaration. This means that 64-bit value may not be directly returned, from a system
call to its wrapper, on 32-bit systems. To solve the problem the automatically generated wrapper
function defines 64-bit intermediate variable, which is considered untrusted buffer, on its stack
and passes pointer to that variable to the system call, as a final argument. Upon return from
the system call the value written to that buffer will be returned by the wrapper function. The
problem does not exist on 64-bit systems which are able to return 64-bit values directly.

Implementation Function

The implementation function is what actually does the work for the API. Zephyr normally does
little to no error checking of arguments, or does this kind of checking with assertions. When
writing the implementation function, validation of any parameters is optional and should be
done with assertions.

All implementation functions must follow the naming convention, which is the name of the API
prefixed with z_impl_. Implementation functions may be declared in the same header as the
API as a static inline function or declared in some C file. There is no prototype needed for imple-
mentation functions, these are automatically generated.

Verification Function

The verification function runs on the kernel side when a user thread makes a system call. When
the user thread makes a software interrupt to elevate to supervisor mode, the common system
call entry point uses the system call ID provided by the user to look up the appropriate unmar-
shalling function for that system call and jump into it. This in turn calls the verification function.
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Verification and unmarshalling functions only run when system call APIs are invoked from user
mode. If an API is invoked from supervisor mode, the implementation is simply called and there
is no software trap.

The purpose of the verification function is to validate all the arguments passed in. This includes:

• Any kernel object pointers provided. For example, the semaphore APIs must ensure that the
semaphore object passed in is a valid semaphore and that the calling thread has permission
on it.

• Any memory buffers passed in from user mode. Checks must be made that the calling
thread has read or write permissions on the provided buffer.

• Any other arguments that have a limited range of valid values.

Verification functions involve a great deal of boilerplate code which has been made simpler by
some macros in include/zephyr/internal/syscall_handler.h. Verification functions should be de-
clared using these macros.

Argument Validation Several macros exist to validate arguments:

• K_SYSCALL_OBJ() Checks a memory address to assert that it is a valid kernel object of the
expected type, that the calling thread has permissions on it, and that the object is initialized.

• K_SYSCALL_OBJ_INIT() is the same as K_SYSCALL_OBJ(), except that the provided object
may be uninitialized. This is useful for verifiers of object init functions.

• K_SYSCALL_OBJ_NEVER_INIT() is the same as K_SYSCALL_OBJ(), except that the pro-
vided object must be uninitialized. This is not used very often, currently only for
k_thread_create().

• K_SYSCALL_MEMORY_READ() validates a memory buffer of a particular size. The calling
thread must have read permissions on the entire buffer.

• K_SYSCALL_MEMORY_WRITE() is the same as K_SYSCALL_MEMORY_READ() but the calling thread
must additionally have write permissions.

• K_SYSCALL_MEMORY_ARRAY_READ() validates an array whose total size is expressed as sep-
arate arguments for the number of elements and the element size. This macro correctly
accounts for multiplication overflow when computing the total size. The calling thread
must have read permissions on the total size.

• K_SYSCALL_MEMORY_ARRAY_WRITE() is the same as K_SYSCALL_MEMORY_ARRAY_READ() but the
calling thread must additionally have write permissions.

• K_SYSCALL_VERIFY_MSG() does a runtime check of some boolean expression which must
evaluate to true otherwise the check will fail. A variant K_SYSCALL_VERIFY exists which
does not take a message parameter, instead printing the expression tested if it fails. The
latter should only be used for the most obvious of tests.

• K_SYSCALL_DRIVER_OP() checks at runtime if a driver instance is capable of performing a
particular operation. While this macro can be used by itself, it’s mostly a building block
for macros that are automatically generated for every driver subsystem. For instance, to
validate the GPIO driver, one could use the K_SYSCALL_DRIVER_GPIO() macro.

• K_SYSCALL_SPECIFIC_DRIVER() is a runtime check to verify that a provided pointer is a valid
instance of a specific device driver, that the calling thread has permissions on it, and that
the driver has been initialized. It does this by checking the API structure pointer that is
stored within the driver instance and ensuring that it matches the provided value, which
should be the address of the specific driver’s API structure.

If any check fails, the macros will return a nonzero value. The macro K_OOPS() can be used to
induce a kernel oops which will kill the calling thread. This is done instead of returning some
error condition to keep the APIs the same when calling from supervisor mode.
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Verifier Definition All system calls are dispatched to a verifier function with a prefixed
z_vrfy_ name based on the system call. They have exactly the same return type and argument
types as the wrapped system call. Their job is to execute the system call (generally by calling the
implementation function) after having validated all arguments.

The verifier is itself invoked by an automatically generated unmarshaller function which takes
care of unpacking the register arguments from the architecture layer and casting them to the
correct type. This is defined in a header file that must be included from user code, generally
somewhere after the definition of the verifier in a translation unit (so that it can be inlined).

For example:

static int z_vrfy_k_sem_take(struct k_sem *sem, int32_t timeout)
{

K_OOPS(K_SYSCALL_OBJ(sem, K_OBJ_SEM));
return z_impl_k_sem_take(sem, timeout);

}
#include <zephyr/syscalls/k_sem_take_mrsh.c>

Verification Memory Access Policies Parameters passed to system calls by reference require
special handling, because the value of these parameters can be changed at any time by any user
thread that has access to the memory that parameter points to. If the kernel makes any logical
decisions based on the contents of this memory, this can open up the kernel to attacks even if
checking is done. This is a class of exploits known as TOCTOU (Time Of Check to Time Of Use).

The proper procedure to mitigate these attacks is to make a copies in the verification function,
and only perform parameter checks on the copies, which user threads will never have access to.
The implementation functions get passed the copy and not the original data sent by the user. The
k_usermode_to_copy() and k_usermode_from_copy() APIs exist for this purpose.

There is one exception in place, with respect to large data buffers which are only used to provide
a memory area that is either only written to, or whose contents are never used for any validation
or control flow. Further discussion of this later in this section.

As a first example, consider a parameter which is used as an output parameter for some integral
value:

int z_vrfy_some_syscall(int *out_param)
{

int local_out_param;
int ret;

ret = z_impl_some_syscall(&local_out_param);
K_OOPS(k_usermode_to_copy(out_param, &local_out_param, sizeof(*out_param)));
return ret;

}

Here we have allocated local_out_param on the stack, passed its address to the implementation
function, and then used k_usermode_to_copy() to fill in the memory passed in by the caller.

It might be tempting to do something more concise:

int z_vrfy_some_syscall(int *out_param)
{

K_OOPS(K_SYSCALL_MEMORY_WRITE(out_param, sizeof(*out_param)));
return z_impl_some_syscall(out_param);

}

However, this is unsafe if the implementation ever does any reads to this memory as part of its
logic. For example, it could be used to store some counter value, and this could be meddled with
by user threads that have access to its memory. It is by far safest for small integral values to do
the copying as shown in the first example.
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Some parameters may be input/output. For instance, it’s not uncommon to see APIs which pass
in a pointer to some size_t which is a maximum allowable size, which is then updated by the
implementation to reflect the actual number of bytes processed. This too should use a stack copy:

int z_vrfy_in_out_syscall(size_t *size_ptr)
{

size_t size;
int ret;

K_OOPS(k_usermode_from_copy(&size, size_ptr, sizeof(size));
ret = z_impl_in_out_syscall(&size);
K_OOPS(k_usermode_to_copy(size_ptr, &size, sizeof(size)));
return ret;

}

Many system calls pass in structures or even linked data structures. All should be copied. Typi-
cally this is done by allocating copies on the stack:

struct bar {
...

};

struct foo {
...
struct bar *bar_left;
struct bar *bar_right;

};

int z_vrfy_must_alloc(struct foo *foo)
{

int ret;
struct foo foo_copy;
struct bar bar_right_copy;
struct bar bar_left_copy;

K_OOPS(k_usermode_from_copy(&foo_copy, foo, sizeof(*foo)));
K_OOPS(k_usermode_from_copy(&bar_right_copy, foo_copy.bar_right,

sizeof(struct bar)));
foo_copy.bar_right = &bar_right_copy;
K_OOPS(k_usermode_from_copy(&bar_left_copy, foo_copy.bar_left,

sizeof(struct bar)));
foo_copy.bar_left = &bar_left_copy;

return z_impl_must_alloc(&foo_copy);
}

In some cases the amount of data isn’t known at compile time or may be too large to allocate
on the stack. In this scenario, it may be necessary to draw memory from the caller’s resource
pool via z_thread_malloc(). This should always be considered last resort. Functional safety
programming guidelines heavily discourage usage of heap and the fact that a resource pool is
used must be clearly documented. Any issues with allocation must be reported, to a caller, with
returning the -ENOMEM . The K_OOPS() should never be used to verify if resource allocation has
been successful.

struct bar {
...

};

struct foo {
size_t count;
struct bar *bar_list; /* array of struct bar of size count */

};
(continues on next page)
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(continued from previous page)

int z_vrfy_must_alloc(struct foo *foo)
{

int ret;
struct foo foo_copy;
struct bar *bar_list_copy;
size_t bar_list_bytes;

/* Safely copy foo into foo_copy */
K_OOPS(k_usermode_from_copy(&foo_copy, foo, sizeof(*foo)));

/* Bounds check the count member, in the copy we made */
if (foo_copy.count > 32) {

return -EINVAL;
}

/* Allocate RAM for the bar_list, replace the pointer in
* foo_copy */

bar_list_bytes = foo_copy.count * sizeof(struct_bar);
bar_list_copy = z_thread_malloc(bar_list_bytes);
if (bar_list_copy == NULL) {

return -ENOMEM;
}
K_OOPS(k_usermode_from_copy(bar_list_copy, foo_copy.bar_list,

bar_list_bytes));
foo_copy.bar_list = bar_list_copy;

ret = z_impl_must_alloc(&foo_copy);

/* All done with the memory, free it and return */
k_free(foo_copy.bar_list_copy);
return ret;

}

Finally, we must consider large data buffers. These represent areas of user memory which ei-
ther have data copied out of, or copied into. It is permitted to pass these pointers to the im-
plementation function directly. The caller’s access to the buffer still must be validated with
K_SYSCALL_MEMORY APIs. The following constraints need to be met:

• If the buffer is used by the implementation function to write data, such as data captured
from some MMIO region, the implementation function must only write this data, and never
read it.

• If the buffer is used by the implementation function to read data, such as a block of memory
to write to some hardware destination, this data must be read without any processing. No
conditional logic can be implemented due to the data buffer’s contents. If such logic is
required a copy must be made.

• The buffer must only be used synchronously with the call. The implementation must not
ever save the buffer address and use it asynchronously, such as when an interrupt fires.

int z_vrfy_get_data_from_kernel(void *buf, size_t size)
{

K_OOPS(K_SYSCALL_MEMORY_WRITE(buf, size));
return z_impl_get_data_from_kernel(buf, size);

}

Verification Return Value Policies When verifying system calls, it’s important to note which
kinds of verification failures should propagate a return value to the caller, and which should
simply invoke K_OOPS() which kills the calling thread. The current conventions are as follows:
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1. For system calls that are defined but not compiled, invocations of these missing system calls
are routed to handler_no_syscall() which invokes K_OOPS().

2. Any invalid access to memory found by the set of K_SYSCALL_MEMORY APIs,
k_usermode_from_copy(), k_usermode_to_copy() should trigger a K_OOPS. This hap-
pens when the caller doesn’t have appropriate permissions on the memory buffer or some
size calculation overflowed.

3. Most system calls take kernel object pointers as an argument, checked either with
one of the K_SYSCALL_OBJ functions, K_SYSCALL_DRIVER_nnnnn, or manually using
k_object_validate(). These can fail for a variety of reasons: missing driver API, bad ker-
nel object pointer, wrong kernel object type, or improper initialization state. These issues
should always invoke K_OOPS().

4. Any error resulting from a failed memory heap allocation, often from invoking
z_thread_malloc(), should propagate -ENOMEM to the caller.

5. General parameter checks should be done in the implementation function, in most cases
using CHECKIF().

• The behavior of CHECKIF() depends on the kernel configuration, but if user mode is en-
abled, CONFIG_RUNTIME_ERROR_CHECKS is enforced, which guarantees that these checks
will be made and a return value propagated.

6. It is totally forbidden for any kind of kernel mode callback function to be registered from
user mode. APIs which simply install callbacks shall not be exposed as system calls. Some
driver subsystem APIs may take optional function callback pointers. User mode verification
functions for these APIs must enforce that these are NULL and should invoke K_OOPS() if
not.

7. Some parameter checks are enforced only from user mode. These should be checked in the
verification function and propagate a return value to the caller if possible.

There are some known exceptions to these policies currently in Zephyr:

• k_thread_join() and k_thread_abort() are no-ops if the thread object isn’t initialized.
This is because for threads, the initialization bit pulls double-duty to indicate whether a
thread is running, cleared upon exit. See #23030.

• k_thread_create() invokes K_OOPS() for parameter checks, due to a great deal of existing
code ignoring the return value. This will also be addressed by #23030.

• k_thread_abort() invokes K_OOPS() if an essential thread is aborted, as the function has
no return value.

• Various system calls related to logging invoke K_OOPS() when bad parameters are passed
in as they do not propagate errors.

Configuration Options

Related configuration options:

• CONFIG_USERSPACE
• CONFIG_EMIT_ALL_SYSCALLS

APIs

Helper macros for creating system call verification functions are provided in in-
clude/zephyr/internal/syscall_handler.h:

• K_SYSCALL_OBJ()
• K_SYSCALL_OBJ_INIT()
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• K_SYSCALL_OBJ_NEVER_INIT()
• K_OOPS()
• K_SYSCALL_MEMORY_READ()
• K_SYSCALL_MEMORY_WRITE()
• K_SYSCALL_MEMORY_ARRAY_READ()
• K_SYSCALL_MEMORY_ARRAY_WRITE()
• K_SYSCALL_VERIFY_MSG()
• K_SYSCALL_VERIFY

Functions for invoking system calls are defined in include/zephyr/syscall.h:

• _arch_syscall_invoke0()
• _arch_syscall_invoke1()
• _arch_syscall_invoke2()
• _arch_syscall_invoke3()
• _arch_syscall_invoke4()
• _arch_syscall_invoke5()
• _arch_syscall_invoke6()

3.3.5 MPU Stack Objects

Thread Stack Creation

Thread stacks are declared statically with K_THREAD_STACK_DEFINE().

For architectures which utilize memory protection unit (MPU) hardware, stacks are physically
contiguous allocations. This contiguous allocation has implications for the placement of stacks in
memory, as well as the implementation of other features such as stack protection and userspace.
The implications for placement are directly attributed to the alignment requirements for MPU
regions. This is discussed in the memory placement section below.

Stack Guards

Stack protection mechanisms require hardware support that can restrict access to memory.
Memory protection units can provide this kind of support. The MPU provides a fixed number of
regions. Each region contains information about the start, end, size, and access attributes to be
enforced on that particular region.

Stack guards are implemented by using a single MPU region and setting the attributes for that
region to not allow write access. If invalid accesses occur, a fault ensues. The stack guard is
defined at the bottom (the lowest address) of the stack.

Memory Placement

During stack creation, a set of constraints are enforced on the allocation of memory. These con-
straints include determining the alignment of the stack and the correct sizing of the stack. During
linking of the binary, these constraints are used to place the stacks properly.
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The main source of the memory constraints is the MPU design for the SoC. The MPU design may
require specific constraints on the region definition. These can include alignment of beginning
and end addresses, sizes of allocations, or even interactions between overlapping regions.

Some MPUs require that each region be aligned to a power of two. These SoCs will have CON-
FIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT defined. This means that a 1500 byte stack should
be aligned to a 2kB boundary and the stack size should also be adjusted to 2kB to ensure that
nothing else is placed in the remainder of the region. SoCs which include the unmodified ARM
v7m MPU will have these constraints.

Some ARM MPUs use start and end addresses to define MPU regions and both the start and end
addresses require 32 byte alignment. An example of this kind of MPU is found in the NXP FRDM
K64F.

MPUs may have a region priority mechanisms that use the highest priority region that covers
the memory access to determine the enforcement policy. Others may logically OR regions to
determine enforcement policy.

Size and alignment constraints may result in stack allocations being larger than the requested
size. Region priority mechanisms may result in some added complexity when implementing
stack guards.

3.3.6 MPU Backed Userspace

The MPU backed userspace implementation requires the creation of a secondary set of stacks.
These stacks exist in a 1:1 relationship with each thread stack defined in the system. The privi-
leged stacks are created as a part of the build process.

A post-build script scripts/build/gen_kobject_list.py scans the generated ELF file and finds all of
the thread stack objects. A set of privileged stacks, a lookup table, and a set of helper functions
are created and added to the image.

During the process of dropping a thread to user mode, the privileged stack information is filled in
and later used by the swap and system call infrastructure to configure the MPU regions properly
for the thread stack and guard (if applicable).

During system calls, the user mode thread’s access to the system call and the passed-in param-
eters are all validated. The user mode thread is then elevated to privileged mode, the stack is
switched to use the privileged stack, and the call is made to the specified kernel API. On return
from the kernel API, the thread is set back to user mode and the stack is restored to the user
stack.

3.4 Memory Management

The following contains various topics regarding memory management.

3.4.1 Memory Heaps

Zephyr provides a collection of utilities that allow threads to dynamically allocate memory.

Synchronized Heap Allocator

Creating aHeap The simplest way to define a heap is statically, with the K_HEAP_DEFINE macro.
This creates a static k_heap variable with a given name that manages a memory region of the
specified size.
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Heaps can also be created to manage arbitrary regions of application-controlled memory using
k_heap_init().

AllocatingMemory Memory can be allocated from a heap using k_heap_alloc(), passing it the
address of the heap object and the number of bytes desired. This functions similarly to standard
C malloc(), returning a NULL pointer on an allocation failure.

The heap supports blocking operation, allowing threads to go to sleep until memory is available.
The final argument is a k_timeout_t timeout value indicating how long the thread may sleep
before returning, or else one of the constant timeout values K_NO_WAIT or K_FOREVER.

Releasing Memory Memory allocated with k_heap_alloc() must be released using
k_heap_free(). Similar to standard C free(), the pointer provided must be either a NULL
value or a pointer previously returned by k_heap_alloc() for the same heap. Freeing a NULL
value is defined to have no effect.

Low Level Heap Allocator

The underlying implementation of the k_heap abstraction is provided a data structure named
sys_heap. This implements exactly the same allocation semantics, but provides no kernel syn-
chronization tools. It is available for applications that want to manage their own blocks of mem-
ory in contexts (for example, userspace) where synchronization is unavailable or more compli-
cated. Unlike k_heap, all calls to any sys_heap functions on a single heap must be serialized by
the caller. Simultaneous use from separate threads is disallowed.

Implementation Internally, the sys_heapmemory block is partitioned into “chunks” of 8 bytes.
All allocations are made out of a contiguous region of chunks. The first chunk of every allocation
or unused block is prefixed by a chunk header that stores the length of the chunk, the length of
the next lower (“left”) chunk in physical memory, a bit indicating whether the chunk is in use,
and chunk-indexed link pointers to the previous and next chunk in a “free list” to which unused
chunks are added.

The heap code takes reasonable care to avoid fragmentation. Free block lists are stored in
“buckets” by their size, each bucket storing blocks within one power of two (i.e. a bucket for
blocks of 3-4 chunks, another for 5-8, 9-16, etc…) this allows new allocations to be made from the
smallest/most-fragmented blocks available. Also, as allocations are freed and added to the heap,
they are automatically combined with adjacent free blocks to prevent fragmentation.

All metadata is stored at the beginning of the contiguous block of heap memory, including the
variable-length list of bucket list heads (which depend on heap size). The only external memory
required is the sys_heap structure itself.

The sys_heap functions are unsynchronized. Care must be taken by any users to prevent con-
current access. Only one context may be inside one of the API functions at a time.

The heap code takes care to present high performance and reliable latency. All sys_heap API
functions are guaranteed to complete within constant time. On typical architectures, they will
all complete within 1-200 cycles. One complexity is that the search of the minimum bucket size
for an allocation (the set of free blocks that “might fit”) has a compile-time upper bound of itera-
tions to prevent unbounded list searches, at the expense of some fragmentation resistance. This
CONFIG_SYS_HEAP_ALLOC_LOOPS value may be chosen by the user at build time, and defaults to a
value of 3.
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Multi-Heap Wrapper Utility

The sys_heap utility requires that all managed memory be in a single contiguous block. It is
common for complicated microcontroller applications to have more complicated memory setups
that they still want to manage dynamically as a “heap”. For example, the memory might exist as
separate discontiguous regions, different areas may have different cache, performance or power
behavior, peripheral devices may only be able to perform DMA to certain regions, etc…

For those situations, Zephyr provides a sys_multi_heap utility. Effectively this is a simple
wrapper around a set of one or more sys_heap objects. It should be initialized after its child
heaps via sys_multi_heap_init(), after which each heap can be added to the managed set via
sys_multi_heap_add_heap(). No destruction utility is provided; just as for sys_heap, applica-
tions that want to destroy a multi heap should simply ensure all allocated blocks are freed (or at
least will never be used again) and repurpose the underlying memory for another usage.

It has a single pair of allocation entry points, sys_multi_heap_alloc() and
sys_multi_heap_aligned_alloc(). These behave identically to the sys_heap functions with
similar names, except that they also accept an opaque “configuration” parameter. This pointer
is uninspected by the multi heap code itself; instead it is passed to a callback function provided
at initialization time. This application-provided callback is responsible for doing the underlying
allocation from one of the managed heaps, and may use the configuration parameter in any
way it likes to make that decision.

When unused, a multi heap may be freed via sys_multi_heap_free(). The application does not
need to pass a configuration parameter. Memory allocated from any of the managed sys_heap
objects may be freed with in the same way.

System Heap

The system heap is a predefined memory allocator that allows threads to dynamically allocate
memory from a common memory region in a malloc()-like manner.

Only a single system heap is defined. Unlike other heaps or memory pools, the system heap
cannot be directly referenced using its memory address.

The size of the system heap is configurable to arbitrary sizes, subject to space availability.

A thread can dynamically allocate a chunk of heap memory by calling k_malloc(). The address
of the allocated chunk is guaranteed to be aligned on a multiple of pointer sizes. If a suitable
chunk of heap memory cannot be found NULL is returned.

When the thread is finished with a chunk of heap memory it can release the chunk back to the
system heap by calling k_free().

Defining the HeapMemory Pool The size of the heap memory pool is specified using the CON-
FIG_HEAP_MEM_POOL_SIZE configuration option.

By default, the heap memory pool size is zero bytes. This value instructs the kernel not to define
the heap memory pool object. The maximum size is limited by the amount of available memory
in the system. The project build will fail in the link stage if the size specified can not be supported.

In addition, each subsystem (board, driver, library, etc) can set a custom requirement by defining
a Kconfig option with the prefix HEAP_MEM_POOL_ADD_SIZE_ (this value is in bytes). If multiple
subsystems specify custom values, the sum of these will be used as the minimum requirement.
If the application tries to set a value that’s less than the minimum value, this will be ignored and
the minimum value will be used instead.

To force a smaller than minimum value to be used, the application may enable the CON-
FIG_HEAP_MEM_POOL_IGNORE_MIN option. This can be useful when optimizing the heap size and
the minimum requirement can be more accurately determined for a specific application.
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Allocating Memory A chunk of heap memory is allocated by calling k_malloc().

The following code allocates a 200 byte chunk of heap memory, then fills it with zeros. A warning
is issued if a suitable chunk is not obtained.

char *mem_ptr;

mem_ptr = k_malloc(200);
if (mem_ptr != NULL)) {

memset(mem_ptr, 0, 200);
...

} else {
printf("Memory not allocated");

}

Releasing Memory A chunk of heap memory is released by calling k_free().

The following code allocates a 75 byte chunk of memory, then releases it once it is no longer
needed.

char *mem_ptr;

mem_ptr = k_malloc(75);
... /* use memory block */
k_free(mem_ptr);

Suggested Uses Use the heap memory pool to dynamically allocate memory in a malloc()-like
manner.

Configuration Options Related configuration options:

• CONFIG_HEAP_MEM_POOL_SIZE

API Reference

group heap_apis

Defines

K_HEAP_DEFINE(name, bytes)
Define a static k_heap.

This macro defines and initializes a static memory region and k_heap of the requested
size. After kernel start, &name can be used as if k_heap_init() had been called.

Note that this macro enforces a minimum size on the memory region to accommodate
metadata requirements. Very small heaps will be padded to fit.

Parameters
• name – Symbol name for the struct k_heap object

• bytes – Size of memory region, in bytes
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K_HEAP_DEFINE_NOCACHE(name, bytes)
Define a static k_heap in uncached memory.

This macro defines and initializes a static memory region and k_heap of the requested
size in uncached memory. After kernel start, &name can be used as if k_heap_init() had
been called.

Note that this macro enforces a minimum size on the memory region to accommodate
metadata requirements. Very small heaps will be padded to fit.

Parameters
• name – Symbol name for the struct k_heap object

• bytes – Size of memory region, in bytes

Functions

void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.

This constructs a synchronized k_heap object over a memory region specified by the
user. Note that while any alignment and size can be passed as valid parameters, in-
ternal alignment restrictions inside the inner sys_heap mean that not all bytes may be
usable as allocated memory.

Parameters
• h – Heap struct to initialize

• mem – Pointer to memory.

• bytes – Size of memory region, in bytes

void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t
timeout)

Allocate aligned memory from a k_heap.

Behaves in all ways like k_heap_alloc(), except that the returned memory (if available)
will have a starting address in memory which is a multiple of the specified power-of-
two alignment value in bytes. The resulting memory can be returned to the heap using
k_heap_free().

Function properties (list may not be complete)
isr-ok

Note

timeout must be set to K_NO_WAIT if called from ISR.

Note

When CONFIG_MULTITHREADING=n any timeout is treated as K_NO_WAIT.

Parameters
• h – Heap from which to allocate

• align – Alignment in bytes, must be a power of two
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• bytes – Number of bytes requested

• timeout – How long to wait, or K_NO_WAIT

Returns
Pointer to memory the caller can now use

void *k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.

Allocates and returns a memory buffer from the memory region owned by the heap.
If no memory is available immediately, the call will block for the specified timeout
(constructed via the standard timeout API, or K_NO_WAIT or K_FOREVER) waiting for
memory to be freed. If the allocation cannot be performed by the expiration of the
timeout, NULL will be returned. Allocated memory is aligned on a multiple of pointer
sizes.

Function properties (list may not be complete)
isr-ok

Note

timeout must be set to K_NO_WAIT if called from ISR.

Note

When CONFIG_MULTITHREADING=n any timeout is treated as K_NO_WAIT.

Parameters
• h – Heap from which to allocate

• bytes – Desired size of block to allocate

• timeout – How long to wait, or K_NO_WAIT

Returns
A pointer to valid heap memory, or NULL

void *k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
Reallocate memory from a k_heap.

Reallocates and returns a memory buffer from the memory region owned by the heap.
If no memory is available immediately, the call will block for the specified timeout
(constructed via the standard timeout API, or K_NO_WAIT or K_FOREVER) waiting
for memory to be freed. If the allocation cannot be performed by the expiration of
the timeout, NULL will be returned. Reallocated memory is aligned on a multiple of
pointer sizes.

Function properties (list may not be complete)
isr-ok

Note

timeout must be set to K_NO_WAIT if called from ISR.
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Note

When CONFIG_MULTITHREADING=n any timeout is treated as K_NO_WAIT.

Parameters
• h – Heap from which to allocate

• ptr – Original pointer returned from a previous allocation

• bytes – Desired size of block to allocate

• timeout – How long to wait, or K_NO_WAIT

Returns
Pointer to memory the caller can now use, or NULL

void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()

Returns the specified memory block, which must have been returned from
k_heap_alloc(), to the heap for use by other callers. Passing a NULL block is legal, and
has no effect.

Parameters
• h – Heap to which to return the memory

• mem – A valid memory block, or NULL

void *k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.

This routine provides semantics similar to aligned_alloc(); memory is allocated
from the heap with a specified alignment. However, one minor difference is that
k_aligned_alloc() accepts any non-zero size, whereas aligned_alloc() only accepts a
size that is an integral multiple of align.

Above, aligned_alloc() refers to: C11 standard (ISO/IEC 9899:2011): 7.22.3.1 The
aligned_alloc function (p: 347-348)

Parameters
• align – Alignment of memory requested (in bytes).

• size – Amount of memory requested (in bytes).

Returns
Address of the allocated memory if successful; otherwise NULL.

void *k_malloc(size_t size)
Allocate memory from the heap.

This routine provides traditional malloc() semantics. Memory is allocated from the
heap memory pool. Allocated memory is aligned on a multiple of pointer sizes.

Parameters
• size – Amount of memory requested (in bytes).

Returns
Address of the allocated memory if successful; otherwise NULL.
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void k_free(void *ptr)
Free memory allocated from heap.

This routine provides traditional free() semantics. The memory being returned must
have been allocated from the heap memory pool.

If ptr is NULL, no operation is performed.

Parameters
• ptr – Pointer to previously allocated memory.

void *k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.

This routine provides traditional calloc() semantics. Memory is allocated from the
heap memory pool and zeroed.

Parameters
• nmemb – Number of elements in the requested array

• size – Size of each array element (in bytes).

Returns
Address of the allocated memory if successful; otherwise NULL.

void *k_realloc(void *ptr, size_t size)
Expand the size of an existing allocation.

Returns a pointer to a new memory region with the same contents, but a different
allocated size. If the new allocation can be expanded in place, the pointer returned
will be identical. Otherwise the data will be copies to a new block and the old one will
be freed as per sys_heap_free(). If the specified size is smaller than the original, the
block will be truncated in place and the remaining memory returned to the heap. If
the allocation of a new block fails, then NULL will be returned and the old block will
not be freed or modified.

Parameters
• ptr – Original pointer returned from a previous allocation

• size – Amount of memory requested (in bytes).

Returns
Pointer to memory the caller can now use, or NULL.

struct k_heap
#include <kernel.h>

group low_level_heap_allocator

Defines

sys_heap_realloc(heap, ptr, bytes)

Functions

void sys_heap_init(struct sys_heap *heap, void *mem, size_t bytes)
Initialize sys_heap.

Initializes a sys_heap struct to manage the specified memory.
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Parameters
• heap – Heap to initialize

• mem – Untyped pointer to unused memory

• bytes – Size of region pointed to by mem

void *sys_heap_alloc(struct sys_heap *heap, size_t bytes)
Allocate memory from a sys_heap.

Returns a pointer to a block of unused memory in the heap. This memory will not
otherwise be used until it is freed with sys_heap_free(). If no memory can be allocated,
NULL will be returned. The allocated memory is guaranteed to have a starting ad-
dress which is a multiple of sizeof(void *). If a bigger alignment is necessary then
sys_heap_aligned_alloc() should be used instead.

Note

The sys_heap implementation is not internally synchronized. No two sys_heap
functions should operate on the same heap at the same time. All locking must be
provided by the user.

Parameters
• heap – Heap from which to allocate

• bytes – Number of bytes requested

Returns
Pointer to memory the caller can now use

void *sys_heap_aligned_alloc(struct sys_heap *heap, size_t align, size_t bytes)
Allocate aligned memory from a sys_heap.

Behaves in all ways like sys_heap_alloc(), except that the returned memory (if avail-
able) will have a starting address in memory which is a multiple of the speci-
fied power-of-two alignment value in bytes. With align=0 this behaves exactly
like sys_heap_alloc(). The resulting memory can be returned to the heap using
sys_heap_free().

Parameters
• heap – Heap from which to allocate

• align – Alignment in bytes, must be a power of two

• bytes – Number of bytes requested

Returns
Pointer to memory the caller can now use

void sys_heap_free(struct sys_heap *heap, void *mem)
Free memory into a sys_heap.

De-allocates a pointer to memory previously returned from sys_heap_alloc such that it
can be used for other purposes. The caller must not use the memory region after entry
to this function.

Note
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The sys_heap implementation is not internally synchronized. No two sys_heap
functions should operate on the same heap at the same time. All locking must be
provided by the user.

Parameters
• heap – Heap to which to return the memory

• mem – A pointer previously returned from sys_heap_alloc()

void *sys_heap_aligned_realloc(struct sys_heap *heap, void *ptr, size_t align, size_t
bytes)

Expand the size of an existing allocation.

Returns a pointer to a new memory region with the same contents, but a different
allocated size. If the new allocation can be expanded in place, the pointer returned
will be identical. Otherwise the data will be copies to a new block and the old one will
be freed as per sys_heap_free(). If the specified size is smaller than the original, the
block will be truncated in place and the remaining memory returned to the heap. If
the allocation of a new block fails, then NULL will be returned and the old block will
not be freed or modified.

Parameters
• heap – Heap from which to allocate

• ptr – Original pointer returned from a previous allocation

• align – Alignment in bytes, must be a power of two

• bytes – Number of bytes requested for the new block

Returns
Pointer to memory the caller can now use, or NULL

size_t sys_heap_usable_size(struct sys_heap *heap, void *mem)
Return allocated memory size.

Returns the size, in bytes, of a block returned from a successful sys_heap_alloc() or
sys_heap_alloc_aligned() call. The value returned is the size of the heap-managed
memory, which may be larger than the number of bytes requested due to allocation
granularity. The heap code is guaranteed to make no access to this region of memory
until a subsequent sys_heap_free() on the same pointer.

Parameters
• heap – Heap containing the block

• mem – Pointer to memory allocated from this heap

Returns
Size in bytes of the memory region

bool sys_heap_validate(struct sys_heap *heap)
Validate heap integrity.

Validates the internal integrity of a sys_heap. Intended for unit test and validation
code, though potentially useful as a user API for applications with complicated runtime
reliability requirements. Note: this cannot catch every possible error, but if it returns
true then the heap is in a consistent state and can correctly handle any sys_heap_alloc()
request and free any live pointer returned from a previous allocation.

Parameters
• heap – Heap to validate
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Returns
true, if the heap is valid, otherwise false

void sys_heap_stress(void *(*alloc_fn)(void *arg, size_t bytes), void (*free_fn)(void *arg,
void *p), void *arg, size_t total_bytes, uint32_t op_count, void
*scratch_mem, size_t scratch_bytes, int target_percent, struct
z_heap_stress_result *result)

sys_heap stress test rig

Test rig for heap allocation validation. This will loop for op_count cycles, in each it-
eration making a random choice to allocate or free a pointer of randomized (power
law) size based on heuristics designed to keep the heap in a state where it is near tar-
get_percent full. Allocation and free operations are provided by the caller as callbacks
(i.e. this can in theory test any heap). Results, including counts of frees and success-
ful/unsuccessful allocations, are returned via the result struct.

Parameters
• alloc_fn – Callback to perform an allocation. Passes back the arg param-

eter as a context handle.

• free_fn – Callback to perform a free of a pointer returned from alloc.
Passes back the arg parameter as a context handle.

• arg – Context handle to pass back to the callbacks

• total_bytes – Size of the byte array the heap was initialized in

• op_count – How many iterations to test

• scratch_mem – A pointer to scratch memory to be used by the test. Should
be about 1/2 the size of the heap for tests that need to stress fragmenta-
tion.

• scratch_bytes – Size of the memory pointed to by scratch_mem

• target_percent – Percentage fill value (1-100) to which the random allo-
cation choices will seek. High values will result in significant allocation
failures and a very fragmented heap.

• result – Struct into which to store test results.

void sys_heap_print_info(struct sys_heap *heap, bool dump_chunks)
Print heap internal structure information to the console.

Print information on the heap structure such as its size, chunk buckets, chunk list and
some statistics for debugging purpose.

Parameters
• heap – Heap to print information about

• dump_chunks – True to print the entire heap chunk list

group multi_heap_wrapper

Typedefs

typedef void *(*sys_multi_heap_fn_t)(struct sys_multi_heap *mheap, void *cfg, size_t
align, size_t size)

Multi-heap choice function.

This is a user-provided functions whose responsibility is selecting a specific sys_heap
backend based on the opaque cfg value, which is specified by the user as an argument
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to sys_multi_heap_alloc(), and performing the allocation on behalf of the caller. The
callback is free to choose any registered heap backend to perform the allocation, and
may choose to pad the user-provided values as needed, and to use an aligned allocation
where required by the specified configuration.

NULL may be returned, which will cause the allocation to fail and a NULL reported to
the calling code.

Parammheap
Multi-heap structure.

Param cfg
An opaque user-provided value. It may be interpreted in any way by the
application

Param align
Alignment of requested memory (or zero for no alignment)

Param size
The user-specified allocation size in bytes

Return
A pointer to the allocated memory

Functions

void sys_multi_heap_init(struct sys_multi_heap *heap, sys_multi_heap_fn_t choice_fn)
Initialize multi-heap.

Initialize a sys_multi_heap struct with the specified choice function. Note that individ-
ual heaps must be added later with sys_multi_heap_add_heap so that the heap bounds
can be tracked by the multi heap code.

Note

In general a multiheap is likely to be instantiated semi-statically from system config-
uration (for example, via linker-provided bounds on available memory in different
regions, or from devicetree definitions of hardware-provided addressable memory,
etc…). The general expectation is that a soc- or board-level platform device will be
initialized at system boot from these upstream configuration sources and not that
an application will assemble a multi-heap on its own.

Parameters
• heap – A sys_multi_heap to initialize

• choice_fn – A sys_multi_heap_fn_t callback used to select heaps at allo-
cation time

void sys_multi_heap_add_heap(struct sys_multi_heap *mheap, struct sys_heap *heap,
void *user_data)

Add sys_heap to multi heap.

This adds a known sys_heap backend to an existing multi heap, allowing the multi
heap internals to track the bounds of the heap and determine which heap (if any) from
which a freed block was allocated.

Parameters
• mheap – A sys_multi_heap to which to add a heap

• heap – The heap to add
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• user_data – pointer to any data for the heap

void *sys_multi_heap_alloc(struct sys_multi_heap *mheap, void *cfg, size_t bytes)
Allocate memory from multi heap.

Just as for sys_heap_alloc(), allocates a block of memory of the specified size in bytes.
Takes an opaque configuration pointer passed to the multi heap choice function, which
is used by integration code to choose a heap backend.

Parameters
• mheap – Multi heap pointer

• cfg – Opaque configuration parameter, as for sys_multi_heap_fn_t

• bytes – Requested size of the allocation, in bytes

Returns
A valid pointer to heap memory, or NULL if no memory is available

void *sys_multi_heap_aligned_alloc(struct sys_multi_heap *mheap, void *cfg, size_t
align, size_t bytes)

Allocate aligned memory from multi heap.

Just as for sys_multi_heap_alloc(), allocates a block of memory of the specified size in
bytes. Takes an additional parameter specifying a power of two alignment, in bytes.

Parameters
• mheap – Multi heap pointer

• cfg – Opaque configuration parameter, as for sys_multi_heap_fn_t

• align – Power of two alignment for the returned pointer, in bytes

• bytes – Requested size of the allocation, in bytes

Returns
A valid pointer to heap memory, or NULL if no memory is available

const struct sys_multi_heap_rec *sys_multi_heap_get_heap(const struct sys_multi_heap
*mheap, void *addr)

Get a specific heap for provided address.

Finds a single system heap (with user_data) controlling the provided pointer

Parameters
• mheap – Multi heap pointer

• addr – address to be found, must be a pointer to a block allocated by
sys_multi_heap_alloc

Returns
0 multi_heap_rec pointer to a structure to be filled with return data or
NULL if the heap has not been found

void sys_multi_heap_free(struct sys_multi_heap *mheap, void *block)
Free memory allocated from multi heap.

Returns the specified block, which must be the return value of a previously successful
sys_multi_heap_alloc() or sys_multi_heap_aligned_alloc() call, to the heap backend from
which it was allocated.

Accepts NULL as a block parameter, which is specified to have no effect.

Parameters
• mheap – Multi heap pointer
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• block – Block to free, must be a pointer to a block allocated by
sys_multi_heap_alloc

struct sys_multi_heap_rec
#include <multi_heap.h>

struct sys_multi_heap
#include <multi_heap.h>

Heap listener

group heap_listener_apis

Defines

HEAP_ID_FROM_POINTER(heap_pointer)
Construct heap identifier from heap pointer.

Construct a heap identifier from a pointer to the heap object, such as sys_heap.

Parameters
• heap_pointer – Pointer to the heap object

HEAP_ID_LIBC
Libc heap identifier.

Identifier of the global libc heap.

HEAP_LISTENER_ALLOC_DEFINE(name, _heap_id, _alloc_cb)
Define heap event listener node for allocation event.

Sample usage:

void on_heap_alloc(uintptr_t heap_id, void *mem, size_t bytes)
{
LOG_INF("Memory allocated at %p, size %ld", mem, bytes);

}

HEAP_LISTENER_ALLOC_DEFINE(my_listener, HEAP_ID_LIBC, on_heap_alloc);

Parameters
• name – Name of the heap event listener object

• _heap_id – Identifier of the heap to be listened

• _alloc_cb – Function to be called for allocation event

HEAP_LISTENER_FREE_DEFINE(name, _heap_id, _free_cb)
Define heap event listener node for free event.

Sample usage:
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void on_heap_free(uintptr_t heap_id, void *mem, size_t bytes)
{
LOG_INF("Memory freed at %p, size %ld", mem, bytes);

}

HEAP_LISTENER_FREE_DEFINE(my_listener, HEAP_ID_LIBC, on_heap_free);

Parameters
• name – Name of the heap event listener object

• _heap_id – Identifier of the heap to be listened

• _free_cb – Function to be called for free event

HEAP_LISTENER_RESIZE_DEFINE(name, _heap_id, _resize_cb)
Define heap event listener node for resize event.

Sample usage:

void on_heap_resized(uintptr_t heap_id, void *old_heap_end, void *new_heap_end)
{
LOG_INF("Libc heap end moved from %p to %p", old_heap_end, new_heap_end);

}

HEAP_LISTENER_RESIZE_DEFINE(my_listener, HEAP_ID_LIBC, on_heap_resized);

Parameters
• name – Name of the heap event listener object

• _heap_id – Identifier of the heap to be listened

• _resize_cb – Function to be called when the listened heap is resized

Typedefs

typedef void (*heap_listener_resize_cb_t)(uintptr_t heap_id, void *old_heap_end, void
*new_heap_end)

Callback used when heap is resized.

Note

Minimal C library does not emit this event.

Param heap_id
Identifier of heap being resized

Param old_heap_end
Pointer to end of heap before resize

Param new_heap_end
Pointer to end of heap after resize

typedef void (*heap_listener_alloc_cb_t)(uintptr_t heap_id, void *mem, size_t bytes)
Callback used when there is heap allocation.
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Note

Heaps managed by libraries outside of code in Zephyr main code repository may
not emit this event.

Note

The number of bytes allocated may not match exactly to the request to the allocation
function. Internal mechanism of the heap may allocate more than requested.

Param heap_id
Heap identifier

Parammem
Pointer to the allocated memory

Param bytes
Size of allocated memory

typedef void (*heap_listener_free_cb_t)(uintptr_t heap_id, void *mem, size_t bytes)
Callback used when memory is freed from heap.

Note

Heaps managed by libraries outside of code in Zephyr main code repository may
not emit this event.

Note

The number of bytes freed may not match exactly to the request to the allocation
function. Internal mechanism of the heap dictates how memory is allocated or
freed.

Param heap_id
Heap identifier

Parammem
Pointer to the freed memory

Param bytes
Size of freed memory

Enums

enum heap_event_types
Values:

enumerator HEAP_EVT_UNKNOWN = 0

enumerator HEAP_RESIZE
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enumerator HEAP_ALLOC

enumerator HEAP_FREE

enumerator HEAP_REALLOC

enumerator HEAP_MAX_EVENTS

Functions

void heap_listener_register(struct heap_listener *listener)
Register heap event listener.

Add the listener to the global list of heap listeners that can be notified by different heap
implementations upon certain events related to the heap usage.

Parameters
• listener – Pointer to the heap_listener object

void heap_listener_unregister(struct heap_listener *listener)
Unregister heap event listener.

Remove the listener from the global list of heap listeners that can be notified by differ-
ent heap implementations upon certain events related to the heap usage.

Parameters
• listener – Pointer to the heap_listener object

void heap_listener_notify_alloc(uintptr_t heap_id, void *mem, size_t bytes)
Notify listeners of heap allocation event.

Notify registered heap event listeners with matching heap identifier that an allocation
has been done on heap

Parameters
• heap_id – Heap identifier

• mem – Pointer to the allocated memory

• bytes – Size of allocated memory

void heap_listener_notify_free(uintptr_t heap_id, void *mem, size_t bytes)
Notify listeners of heap free event.

Notify registered heap event listeners with matching heap identifier that memory is
freed on heap

Parameters
• heap_id – Heap identifier

• mem – Pointer to the freed memory

• bytes – Size of freed memory

void heap_listener_notify_resize(uintptr_t heap_id, void *old_heap_end, void
*new_heap_end)

Notify listeners of heap resize event.

Notify registered heap event listeners with matching heap identifier that the heap has
been resized.
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Parameters
• heap_id – Heap identifier

• old_heap_end – Address of the heap end before the change

• new_heap_end – Address of the heap end after the change

struct heap_listener
#include <heap_listener.h>

Public Members

sys_snode_t node
Singly linked list node.

uintptr_t heap_id
Identifier of the heap whose events are listened.

It can be a heap pointer, if the heap is represented as an object, or 0 in the case of
the global libc heap.

enum heap_event_types event
The heap event to be notified.

3.4.2 Shared Multi Heap

The shared multi-heap memory pool manager uses the multi-heap allocator to manage a set
of reserved memory regions with different capabilities / attributes (cacheable, non-cacheable,
etc…).

All the different regions can be added at run-time to the shared multi-heap pool providing an
opaque “attribute” value (an integer or enum value) that can be used by drivers or applications
to request memory with certain capabilities.

This framework is commonly used as follow:

1. At boot time some platform code initialize the shared multi-heap framework us-
ing shared_multi_heap_pool_init() and add the memory regions to the pool with
shared_multi_heap_add(), possibly gathering the needed information for the regions from
the DT.

2. Each memory region encoded in a shared_multi_heap_region structure. This structure is
also carrying an opaque and user-defined integer value that is used to define the region
capabilities (for example: cacheability, cpu affinity, etc…)

// Init the shared multi-heap pool
shared_multi_heap_pool_init()

// Fill the struct with the data for cacheable memory
struct shared_multi_heap_region cacheable_r0 = {

.addr = addr_r0,

.size = size_r0,

.attr = SMH_REG_ATTR_CACHEABLE,
};

// Add the region to the pool
(continues on next page)
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(continued from previous page)
shared_multi_heap_add(&cacheable_r0, NULL);

// Add another cacheable region
struct shared_multi_heap_region cacheable_r1 = {

.addr = addr_r1,

.size = size_r1,

.attr = SMH_REG_ATTR_CACHEABLE,
};

shared_multi_heap_add(&cacheable_r0, NULL);

// Add a non-cacheable region
struct shared_multi_heap_region non_cacheable_r2 = {

.addr = addr_r2,

.size = size_r2,

.attr = SMH_REG_ATTR_NON_CACHEABLE,
};

shared_multi_heap_add(&non_cacheable_r2, NULL);

3. When a driver or application needs some dynamic memory with a certain capability, it
can use shared_multi_heap_alloc() (or the aligned version) to request the memory by
using the opaque parameter to select the correct set of attributes for the needed memory.
The framework will take care of selecting the correct heap (thus memory region) to carve
memory from, based on the opaque parameter and the runtime state of the heaps (available
memory, heap state, etc…)

// Allocate 4K from cacheable memory
shared_multi_heap_alloc(SMH_REG_ATTR_CACHEABLE, 0x1000);

// Allocate 4K from non-cacheable memory
shared_multi_heap_alloc(SMH_REG_ATTR_NON_CACHEABLE, 0x1000);

Adding new attributes

The API does not enforce any attributes, but at least it defines the two most common ones:
SMH_REG_ATTR_CACHEABLE and SMH_REG_ATTR_NON_CACHEABLE.

group shared_multi_heap
Shared Multi-Heap (SMH) interface.

The shared multi-heap manager uses the multi-heap allocator to manage a set of memory
regions with different capabilities / attributes (cacheable, non-cacheable, etc…).

All the different regions can be added at run-time to the shared multi-heap pool provid-
ing an opaque “attribute” value (an integer or enum value) that can be used by drivers or
applications to request memory with certain capabilities.

This framework is commonly used as follow:

• At boot time some platform code initialize the shared multi-heap framework us-
ing shared_multi_heap_pool_init and add the memory regions to the pool with
shared_multi_heap_add, possibly gathering the needed information for the regions
from the DT.

• Each memory region encoded in a shared_multi_heap_region structure. This structure
is also carrying an opaque and user-defined integer value that is used to define the
region capabilities (for example: cacheability, cpu affinity, etc…)
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• When a driver or application needs some dynamic memory with a certain capability,
it can use shared_multi_heap_alloc (or the aligned version) to request the memory by
using the opaque parameter to select the correct set of attributes for the needed mem-
ory. The framework will take care of selecting the correct heap (thus memory region)
to carve memory from, based on the opaque parameter and the runtime state of the
heaps (available memory, heap state, etc…)

Defines

MAX_SHARED_MULTI_HEAP_ATTR
Maximum number of standard attributes.

Enums

enum shared_multi_heap_attr
SMH region attributes enumeration type.

Enumeration type for some common memory region attributes.

Values:

enumerator SMH_REG_ATTR_CACHEABLE
cacheable

enumerator SMH_REG_ATTR_NON_CACHEABLE
non-cacheable

enumerator SMH_REG_ATTR_NUM
must be the last item

Functions

int shared_multi_heap_pool_init(void)
Init the pool.

This must be the first function to be called to initialize the shared multi-heap pool. All
the individual heaps must be added later with shared_multi_heap_add.

Note

As for the generic multi-heap allocator the expectation is that this function will be
called at soc- or board-level.

Return values
• 0 – on success.

• -EALREADY – when the pool was already inited.

• other – errno codes
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void *shared_multi_heap_alloc(enum shared_multi_heap_attr attr, size_t bytes)
Allocate memory from the memory shared multi-heap pool.

Allocates a block of memory of the specified size in bytes and with a specified capability
/ attribute. The opaque attribute parameter is used by the backend to select the correct
heap to allocate memory from.

Parameters
• attr – capability / attribute requested for the memory block.

• bytes – requested size of the allocation in bytes.

Return values
• ptr – a valid pointer to heap memory.

• err – NULL if no memory is available.

void *shared_multi_heap_aligned_alloc(enum shared_multi_heap_attr attr, size_t align,
size_t bytes)

Allocate aligned memory from the memory shared multi-heap pool.

Allocates a block of memory of the specified size in bytes and with a specified capability
/ attribute. Takes an additional parameter specifying a power of two alignment in
bytes.

Parameters
• attr – capability / attribute requested for the memory block.

• align – power of two alignment for the returned pointer, in bytes.

• bytes – requested size of the allocation in bytes.

Return values
• ptr – a valid pointer to heap memory.

• err – NULL if no memory is available.

void shared_multi_heap_free(void *block)
Free memory from the shared multi-heap pool.

Used to free the passed block of memory that must be the return value of a previously
call to shared_multi_heap_alloc or shared_multi_heap_aligned_alloc.

Parameters
• block – block to free, must be a pointer to a block allocated by

shared_multi_heap_alloc or shared_multi_heap_aligned_alloc.

int shared_multi_heap_add(struct shared_multi_heap_region *region, void *user_data)
Add an heap region to the shared multi-heap pool.

This adds a shared multi-heap region to the multi-heap pool.

Parameters
• user_data – pointer to any data for the heap.

• region – pointer to the memory region to be added.

Return values
• 0 – on success.

• -EINVAL – when the region attribute is out-of-bound.

• -ENOMEM – when there are no more heaps available.

• other – errno codes
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struct shared_multi_heap_region
#include <shared_multi_heap.h> SMH region struct.

This struct is carrying information about the memory region to be added in the multi-
heap pool.

Public Members

uint32_t attr
Memory heap attribute.

uintptr_t addr
Memory heap starting virtual address.

size_t size
Memory heap size in bytes.

3.4.3 Memory Slabs

A memory slab is a kernel object that allows memory blocks to be dynamically allocated from a
designated memory region. All memory blocks in a memory slab have a single fixed size, allow-
ing them to be allocated and released efficiently and avoiding memory fragmentation concerns.

• Concepts

– Internal Operation

• Implementation

– Defining a Memory Slab

– Allocating a Memory Block

– Releasing a Memory Block

• Suggested Uses

• Configuration Options

• API Reference

Concepts

Any number of memory slabs can be defined (limited only by available RAM). Each memory slab
is referenced by its memory address.

A memory slab has the following key properties:

• The block size of each block, measured in bytes. It must be at least 4N bytes long, where N
is greater than 0.

• The number of blocks available for allocation. It must be greater than zero.

• A buffer that provides the memory for the memory slab’s blocks. It must be at least “block
size” times “number of blocks” bytes long.
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The memory slab’s buffer must be aligned to an N-byte boundary, where N is a power of 2 larger
than 2 (i.e. 4, 8, 16, …). To ensure that all memory blocks in the buffer are similarly aligned to
this boundary, the block size must also be a multiple of N.

A memory slab must be initialized before it can be used. This marks all of its blocks as unused.

A thread that needs to use a memory block simply allocates it from a memory slab. When the
thread finishes with a memory block, it must release the block back to the memory slab so the
block can be reused.

If all the blocks are currently in use, a thread can optionally wait for one to become available.
Any number of threads may wait on an empty memory slab simultaneously; when a memory
block becomes available, it is given to the highest-priority thread that has waited the longest.

Unlike a heap, more than one memory slab can be defined, if needed. This allows for a memory
slab with smaller blocks and others with larger-sized blocks. Alternatively, a memory pool object
may be used.

Internal Operation A memory slab’s buffer is an array of fixed-size blocks, with no wasted
space between the blocks.

The memory slab keeps track of unallocated blocks using a linked list; the first 4 bytes of each
unused block provide the necessary linkage.

Implementation

Defining aMemory Slab A memory slab is defined using a variable of type k_mem_slab. It must
then be initialized by calling k_mem_slab_init().

The following code defines and initializes a memory slab that has 6 blocks that are 400 bytes
long, each of which is aligned to a 4-byte boundary.

struct k_mem_slab my_slab;
char __aligned(4) my_slab_buffer[6 * 400];

k_mem_slab_init(&my_slab, my_slab_buffer, 400, 6);

Alternatively, a memory slab can be defined and initialized at compile time by calling
K_MEM_SLAB_DEFINE.

The following code has the same effect as the code segment above. Observe that the macro de-
fines both the memory slab and its buffer.

K_MEM_SLAB_DEFINE(my_slab, 400, 6, 4);

Similarly, you can define a memory slab in private scope:

K_MEM_SLAB_DEFINE_STATIC(my_slab, 400, 6, 4);

Allocating a Memory Block A memory block is allocated by calling k_mem_slab_alloc().

The following code builds on the example above, and waits up to 100 milliseconds for a memory
block to become available, then fills it with zeroes. A warning is printed if a suitable block is not
obtained.

char *block_ptr;

if (k_mem_slab_alloc(&my_slab, (void **)&block_ptr, K_MSEC(100)) == 0) {
memset(block_ptr, 0, 400);
...

(continues on next page)
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(continued from previous page)
} else {

printf("Memory allocation time-out");
}

Releasing a Memory Block A memory block is released by calling k_mem_slab_free().

The following code builds on the example above, and allocates a memory block, then releases it
once it is no longer needed.

char *block_ptr;

k_mem_slab_alloc(&my_slab, (void **)&block_ptr, K_FOREVER);
... /* use memory block pointed at by block_ptr */
k_mem_slab_free(&my_slab, (void *)block_ptr);

Suggested Uses

Use a memory slab to allocate and free memory in fixed-size blocks.

Use memory slab blocks when sending large amounts of data from one thread to another, to
avoid unnecessary copying of the data.

Configuration Options

Related configuration options:

• CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION

API Reference

group mem_slab_apis

Defines

K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align)
Statically define and initialize a memory slab in a public (non-static) scope.

The memory slab’s buffer contains slab_num_blocks memory blocks that are
slab_block_size bytes long. The buffer is aligned to a slab_align -byte boundary. To
ensure that each memory block is similarly aligned to this boundary, slab_block_size
must also be a multiple of slab_align.

The memory slab can be accessed outside the module where it is defined using:

extern struct k_mem_slab <name>;

Note

This macro cannot be used together with a static keyword. If such a use-case is
desired, use K_MEM_SLAB_DEFINE_STATIC instead.
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Parameters
• name – Name of the memory slab.

• slab_block_size – Size of each memory block (in bytes).

• slab_num_blocks – Number memory blocks.

• slab_align – Alignment of the memory slab’s buffer (power of 2).

K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align)
Statically define and initialize a memory slab in a private (static) scope.

The memory slab’s buffer contains slab_num_blocks memory blocks that are
slab_block_size bytes long. The buffer is aligned to a slab_align -byte boundary. To
ensure that each memory block is similarly aligned to this boundary, slab_block_size
must also be a multiple of slab_align.

Parameters
• name – Name of the memory slab.

• slab_block_size – Size of each memory block (in bytes).

• slab_num_blocks – Number memory blocks.

• slab_align – Alignment of the memory slab’s buffer (power of 2).

Functions

int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t
num_blocks)

Initialize a memory slab.

Initializes a memory slab, prior to its first use.

The memory slab’s buffer contains slab_num_blocks memory blocks that are
slab_block_size bytes long. The buffer must be aligned to an N-byte boundary match-
ing a word boundary, where N is a power of 2 (i.e. 4 on 32-bit systems, 8, 16, …). To
ensure that each memory block is similarly aligned to this boundary, slab_block_size
must also be a multiple of N.

Parameters
• slab – Address of the memory slab.

• buffer – Pointer to buffer used for the memory blocks.

• block_size – Size of each memory block (in bytes).

• num_blocks – Number of memory blocks.

Return values
• 0 – on success

• -EINVAL – invalid data supplied

int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.

This routine allocates a memory block from a memory slab.

Function properties (list may not be complete)
isr-ok
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Note

timeout must be set to K_NO_WAIT if called from ISR.

Note

When CONFIG_MULTITHREADING=n any timeout is treated as K_NO_WAIT.

Parameters
• slab – Address of the memory slab.

• mem – Pointer to block address area.

• timeout – Waiting period to wait for operation to complete. Use
K_NO_WAIT to return without waiting, or K_FOREVER to wait as long
as necessary.

Return values
• 0 – Memory allocated. The block address area pointed at by mem is set

to the starting address of the memory block.

• -ENOMEM – Returned without waiting.

• -EAGAIN – Waiting period timed out.

• -EINVAL – Invalid data supplied

void k_mem_slab_free(struct k_mem_slab *slab, void *mem)
Free memory allocated from a memory slab.

This routine releases a previously allocated memory block back to its associated mem-
ory slab.

Parameters
• slab – Address of the memory slab.

• mem – Pointer to the memory block (as returned by k_mem_slab_alloc()).

static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.

This routine gets the number of memory blocks that are currently allocated in slab.

Parameters
• slab – Address of the memory slab.

Returns
Number of allocated memory blocks.

static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.

This routine gets the maximum number of memory blocks that were allocated in slab.

Parameters
• slab – Address of the memory slab.

Returns
Maximum number of allocated memory blocks.
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static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.

This routine gets the number of memory blocks that are currently unallocated in slab.

Parameters
• slab – Address of the memory slab.

Returns
Number of unallocated memory blocks.

int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats
*stats)

Get the memory stats for a memory slab.

This routine gets the runtime memory usage stats for the slab slab.

Parameters
• slab – Address of the memory slab

• stats – Pointer to memory into which to copy memory usage statistics

Return values
• 0 – Success

• -EINVAL – Any parameter points to NULL

int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.

This routine resets the maximum memory usage for the slab slab to its current usage.

Parameters
• slab – Address of the memory slab

Return values
• 0 – Success

• -EINVAL – Memory slab is NULL

3.4.4 Memory Blocks Allocator

The Memory Blocks Allocator allows memory blocks to be dynamically allocated from a desig-
nated memory region, where:

• All memory blocks have a single fixed size.

• Multiple blocks can be allocated or freed at the same time.

• A group of blocks allocated together may not be contiguous. This is useful for operations
such as scatter-gather DMA transfers.

• Bookkeeping of allocated blocks is done outside of the associated buffer (unlike memory
slab). This allows the buffer to reside in memory regions where these can be powered
down to conserve energy.

• Concepts

– Internal Operation

• Memory Blocks Allocator
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• Multi Memory Blocks Allocator Group

• Usage

– Defining a Memory Blocks Allocator

– Allocating Memory Blocks

– Releasing a Memory Block

– Using Multi Memory Blocks Allocator Group

• API Reference

Concepts

Any number of Memory Blocks Allocator can be defined (limited only by available RAM). Each
allocator is referenced by its memory address.

A memory blocks allocator has the following key properties:

• The block size of each block, measured in bytes. It must be at least 4N bytes long, where N
is greater than 0.

• The number of blocks available for allocation. It must be greater than zero.

• A buffer that provides the memory for the memory slab’s blocks. It must be at least “block
size” times “number of blocks” bytes long.

• A blocks bitmap to keep track of which block has been allocated.

The buffer must be aligned to an N-byte boundary, where N is a power of 2 larger than 2 (i.e. 4,
8, 16, …). To ensure that all memory blocks in the buffer are similarly aligned to this boundary,
the block size must also be a multiple of N.

Due to the use of internal bookkeeping structures and their creation, each memory blocks allo-
cator must be declared and defined at compile time.

Internal Operation Each buffer associated with an allocator is an array of fixed-size blocks,
with no wasted space between the blocks.

The memory blocks allocator keeps track of unallocated blocks using a bitmap.

Memory Blocks Allocator

Internally, the memory blocks allocator uses a bitmap to keep track of which blocks have been
allocated. Each allocator, utilizing the sys_bitarray interface, gets memory blocks one by one
from the backing buffer up to the requested number of blocks. All the metadata about an alloca-
tor is stored outside of the backing buffer. This allows the memory region of the backing buffer
to be powered down to conserve energy, as the allocator code never touches the content of the
buffer.

Multi Memory Blocks Allocator Group

The Multi Memory Blocks Allocator Group utility functions provide a convenient to manage a
group of allocators. A custom allocator choosing function is used to choose which allocator to
use among this group.
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An allocator group should be initialized at runtime via sys_multi_mem_blocks_init(). Each
allocator can then be added via sys_multi_mem_blocks_add_allocator().

To allocate memory blocks from group, sys_multi_mem_blocks_alloc() is called with an opaque
“configuration” parameter. This parameter is passed directly to the allocator choosing function
so that an appropriate allocator can be chosen. After an allocator is chosen, memory blocks are
allocated via sys_mem_blocks_alloc().

Allocated memory blocks can be freed via sys_multi_mem_blocks_free(). The caller does
not need to pass a configuration parameter. The allocator code matches the passed in
memory addresses to find the correct allocator and then memory blocks are freed via
sys_mem_blocks_free().

Usage

Defining a Memory Blocks Allocator A memory blocks allocator is defined using a variable
of type sys_mem_blocks_t. It needs to be defined and initialized at compile time by calling
SYS_MEM_BLOCKS_DEFINE.

The following code defines and initializes a memory blocks allocator which has 4 blocks that are
64 bytes long, each of which is aligned to a 4-byte boundary:

SYS_MEM_BLOCKS_DEFINE(allocator, 64, 4, 4);

Similarly, you can define a memory blocks allocator in private scope:

SYS_MEM_BLOCKS_DEFINE_STATIC(static_allocator, 64, 4, 4);

A pre-defined buffer can also be provided to the allocator where the buffer can be placed sepa-
rately. Note that the alignment of the buffer needs to be done at its definition.

uint8_t __aligned(4) backing_buffer[64 * 4];
SYS_MEM_BLOCKS_DEFINE_WITH_EXT_BUF(allocator, 64, 4, backing_buffer);

Allocating Memory Blocks Memory blocks can be allocated by calling
sys_mem_blocks_alloc().

int ret;
uintptr_t blocks[2];

ret = sys_mem_blocks_alloc(allocator, 2, blocks);

If ret == 0, the array blocks will contain an array of memory addresses pointing to the allocated
blocks.

Releasing a Memory Block Memory blocks are released by calling sys_mem_blocks_free().

The following code builds on the example above which allocates 2 memory blocks, then releases
them once they are no longer needed.

int ret;
uintptr_t blocks[2];

ret = sys_mem_blocks_alloc(allocator, 2, blocks);
... /* perform some operations on the allocated memory blocks */
ret = sys_mem_blocks_free(allocator, 2, blocks);
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Using Multi Memory Blocks Allocator Group The following code demonstrates how to ini-
tialize an allocator group:

sys_mem_blocks_t *choice_fn(struct sys_multi_mem_blocks *group, void *cfg)
{

...
}

SYS_MEM_BLOCKS_DEFINE(allocator0, 64, 4, 4);
SYS_MEM_BLOCKS_DEFINE(allocator1, 64, 4, 4);

static sys_multi_mem_blocks_t alloc_group;

sys_multi_mem_blocks_init(&alloc_group, choice_fn);
sys_multi_mem_blocks_add_allocator(&alloc_group, &allocator0);
sys_multi_mem_blocks_add_allocator(&alloc_group, &allocator1);

To allocate and free memory blocks from the group:

int ret;
uintptr_t blocks[1];
size_t blk_size;

ret = sys_multi_mem_blocks_alloc(&alloc_group, UINT_TO_POINTER(0),
1, blocks, &blk_size);

ret = sys_multi_mem_blocks_free(&alloc_group, 1, blocks);

API Reference

group mem_blocks_apis

Defines

SYS_MEM_BLOCKS_DEFINE(name, blk_sz, num_blks, buf_align)
Create a memory block object with a new backing buffer.

Parameters
• name – Name of the memory block object.

• blk_sz – Size of each memory block (in bytes).

• num_blks – Total number of memory blocks.

• buf_align – Alignment of the memory block buffer (power of 2).

SYS_MEM_BLOCKS_DEFINE_STATIC(name, blk_sz, num_blks, buf_align)
Create a static memory block object with a new backing buffer.

Parameters
• name – Name of the memory block object.

• blk_sz – Size of each memory block (in bytes).

• num_blks – Total number of memory blocks.

• buf_align – Alignment of the memory block buffer (power of 2).
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SYS_MEM_BLOCKS_DEFINE_WITH_EXT_BUF(name, blk_sz, num_blks, buf)
Create a memory block object with a providing backing buffer.

Parameters
• name – Name of the memory block object.

• blk_sz – Size of each memory block (in bytes).

• num_blks – Total number of memory blocks.

• buf – Backing buffer of type uint8_t.

SYS_MEM_BLOCKS_DEFINE_STATIC_WITH_EXT_BUF(name, blk_sz, num_blks, buf)
Create a static memory block object with a providing backing buffer.

Parameters
• name – Name of the memory block object.

• blk_sz – Size of each memory block (in bytes).

• num_blks – Total number of memory blocks.

• buf – Backing buffer of type uint8_t.

Typedefs

typedef struct sys_mem_blocks sys_mem_blocks_t
Memory Blocks Allocator.

typedef struct sys_multi_mem_blocks sys_multi_mem_blocks_t
Multi Memory Blocks Allocator.

typedef sys_mem_blocks_t *(*sys_multi_mem_blocks_choice_fn_t)(struct
sys_multi_mem_blocks *group, void *cfg)

Multi memory blocks allocator choice function.

This is a user-provided functions whose responsibility is selecting a specific memory
blocks allocator based on the opaque cfg value, which is specified by the user as an ar-
gument to sys_multi_mem_blocks_alloc(). The callback returns a pointer to the chosen
allocator where the allocation is performed.

NULL may be returned, which will cause the allocation to fail and a -EINVAL reported
to the calling code.

Param group
Multi memory blocks allocator structure.

Param cfg
An opaque user-provided value. It may be interpreted in any way by the
application.

Return
A pointer to the chosen allocator, or NULL if none is chosen.

Functions
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int sys_mem_blocks_alloc(sys_mem_blocks_t *mem_block, size_t count, void
**out_blocks)

Allocate multiple memory blocks.

Allocate multiple memory blocks, and place their pointers into the output array.

Parameters
• mem_block – [in] Pointer to memory block object.

• count – [in] Number of blocks to allocate.

• out_blocks – [out]Output array to be populated by pointers to the mem-
ory blocks. It must have at least count elements.

Return values
• 0 – Successful

• -EINVAL – Invalid argument supplied.

• -ENOMEM – Not enough blocks for allocation.

int sys_mem_blocks_alloc_contiguous(sys_mem_blocks_t *mem_block, size_t count, void
**out_block)

Allocate a contiguous set of memory blocks.

Allocate multiple memory blocks, and place their pointers into the output array.

Parameters
• mem_block – [in] Pointer to memory block object.

• count – [in] Number of blocks to allocate.

• out_block – [out] Output pointer to the start of the allocated block set

Return values
• 0 – Successful

• -EINVAL – Invalid argument supplied.

• -ENOMEM – Not enough contiguous blocks for allocation.

int sys_mem_blocks_get(sys_mem_blocks_t *mem_block, void *in_block, size_t count)
Force allocation of a specified blocks in a memory block object.

Allocate a specified blocks in a memory block object. Note: use caution when mixing
sys_mem_blocks_get and sys_mem_blocks_alloc, allocation may take any of the free
memory space

Parameters
• mem_block – [in] Pointer to memory block object.

• in_block – [in] Address of the first required block to allocate

• count – [in] Number of blocks to allocate.

Return values
• 0 – Successful

• -EINVAL – Invalid argument supplied.

• -ENOMEM – Some of blocks are taken and cannot be allocated

int sys_mem_blocks_is_region_free(sys_mem_blocks_t *mem_block, void *in_block,
size_t count)

check if the region is free
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Parameters
• mem_block – [in] Pointer to memory block object.

• in_block – [in] Address of the first block to check

• count – [in] Number of blocks to check.

Return values
• 1 – All memory blocks are free

• 0 – At least one of the memory blocks is taken

int sys_mem_blocks_free(sys_mem_blocks_t *mem_block, size_t count, void **in_blocks)
Free multiple memory blocks.

Free multiple memory blocks according to the array of memory block pointers.

Parameters
• mem_block – [in] Pointer to memory block object.

• count – [in] Number of blocks to free.

• in_blocks – [in] Input array of pointers to the memory blocks.

Return values
• 0 – Successful

• -EINVAL – Invalid argument supplied.

• -EFAULT – Invalid pointers supplied.

int sys_mem_blocks_free_contiguous(sys_mem_blocks_t *mem_block, void *block, size_t
count)

Free contiguous multiple memory blocks.

Free contiguous multiple memory blocks

Parameters
• mem_block – [in] Pointer to memory block object.

• block – [in] Pointer to the first memory block

• count – [in] Number of blocks to free.

Return values
• 0 – Successful

• -EINVAL – Invalid argument supplied.

• -EFAULT – Invalid pointer supplied.

void sys_multi_mem_blocks_init(sys_multi_mem_blocks_t *group,
sys_multi_mem_blocks_choice_fn_t choice_fn)

Initialize multi memory blocks allocator group.

Initialize a sys_multi_mem_block struct with the specified choice function. Note that
individual allocator must be added later with sys_multi_mem_blocks_add_allocator.

Parameters
• group – Multi memory blocks allocator structure.

• choice_fn – A sys_multi_mem_blocks_choice_fn_t callback used to select
the allocator to be used at allocation time
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void sys_multi_mem_blocks_add_allocator(sys_multi_mem_blocks_t *group,
sys_mem_blocks_t *alloc)

Add an allocator to an allocator group.

This adds a known allocator to an existing multi memory blocks allocator group.

Parameters
• group – Multi memory blocks allocator structure.

• alloc – Allocator to add

int sys_multi_mem_blocks_alloc(sys_multi_mem_blocks_t *group, void *cfg, size_t count,
void **out_blocks, size_t *blk_size)

Allocate memory from multi memory blocks allocator group.

Just as for sys_mem_blocks_alloc(), allocates multiple blocks of memory. Takes an
opaque configuration pointer passed to the choice function, which is used by integra-
tion code to choose an allocator.

Parameters
• group – [in] Multi memory blocks allocator structure.

• cfg – [in] Opaque configuration parameter, as for
sys_multi_mem_blocks_choice_fn_t

• count – [in] Number of blocks to allocate

• out_blocks – [out]Output array to be populated by pointers to the mem-
ory blocks. It must have at least count elements.

• blk_size – [out] If not NULL, output the block size of the chosen allocator.

Return values
• 0 – Successful

• -EINVAL – Invalid argument supplied, or no allocator chosen.

• -ENOMEM – Not enough blocks for allocation.

int sys_multi_mem_blocks_free(sys_multi_mem_blocks_t *group, size_t count, void
**in_blocks)

Free memory allocated from multi memory blocks allocator group.

Free previous allocated memory blocks from sys_multi_mem_blocks_alloc().

Note that all blocks in in_blocks must be from the same allocator.

Parameters
• group – [in] Multi memory blocks allocator structure.

• count – [in] Number of blocks to free.

• in_blocks – [in] Input array of pointers to the memory blocks.

Return values
• 0 – Successful

• -EINVAL – Invalid argument supplied, or no allocator chosen.

• -EFAULT – Invalid pointer(s) supplied.
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3.4.5 Demand Paging

Demand paging provides a mechanism where data is only brought into physical memory as re-
quired by current execution context. The physical memory is conceptually divided in page-sized
page frames as regions to hold data.

• When the processor tries to access data and the data page exists in one of the page frames,
the execution continues without any interruptions.

• When the processor tries to access the data page that does not exist in any page frames, a
page fault occurs. The paging code then brings in the corresponding data page from back-
ing store into physical memory if there is a free page frame. If there is no more free page
frames, the eviction algorithm is invoked to select a data page to be paged out, thus freeing
up a page frame for new data to be paged in. If this data page has been modified after it
is first paged in, the data will be written back into the backing store. If no modifications is
done or after written back into backing store, the data page is now considered paged out
and the corresponding page frame is now free. The paging code then invokes the backing
store to page in the data page corresponding to the location of the requested data. The back-
ing store copies that data page into the free page frame. Now the data page is in physical
memory and execution can continue.

There are functions where paging in and out can be invoked manually using k_mem_page_in()
and k_mem_page_out(). k_mem_page_in() can be used to page in data pages in anticipation that
they are required in the near future. This is used to minimize number of page faults as these data
pages are already in physical memory, and thus minimizing latency. k_mem_page_out() can be
used to page out data pages where they are not going to be accessed for a considerable amount
of time. This frees up page frames so that the next page in can be executed faster as the paging
code does not need to invoke the eviction algorithm.

Terminology

Data Page
A data page is a page-sized region of data. It may exist in a page frame, or be paged out
to some backing store. Its location can always be looked up in the CPU’s page tables (or
equivalent) by virtual address. The data type will always be void * or in some cases uint8_t
* when doing pointer arithmetic.

Page Frame
A page frame is a page-sized physical memory region in RAM. It is a container where a data
page may be placed. It is always referred to by physical address. Zephyr has a convention of
using uintptr_t for physical addresses. For every page frame, a struct k_mem_page_frame
is instantiated to store metadata. Flags for each page frame:

• K_MEM_PAGE_FRAME_FREE indicates a page frame is unused and on the list of free page
frames. When this flag is set, none of the other flags are meaningful and they must not
be modified.

• K_MEM_PAGE_FRAME_PINNED indicates a page frame is pinned in memory and should
never be paged out.

• K_MEM_PAGE_FRAME_RESERVED indicates a physical page reserved by hardware and
should not be used at all.

• K_MEM_PAGE_FRAME_MAPPED is set when a physical page is mapped to virtual memory
address.

• K_MEM_PAGE_FRAME_BUSY indicates a page frame is currently involved in a page-in/out
operation.

• K_MEM_PAGE_FRAME_BACKED indicates a page frame has a clean copy in the backing store.
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K_MEM_SCRATCH_PAGE
The virtual address of a special page provided to the backing store to: * Copy a data page
from k_MEM_SCRATCH_PAGE to the specified location; or, * Copy a data page from the pro-
vided location to K_MEM_SCRATCH_PAGE. This is used as an intermediate page for page in/out
operations. This scratch needs to be mapped read/write for backing store code to access.
However the data page itself may only be mapped as read-only in virtual address space. If
this page is provided as-is to backing store, the data page must be re-mapped as read/write
which has security implications as the data page is no longer read-only to other parts of the
application.

Paging Statistics

Paging statistics can be obtained via various function calls when CON-
FIG_DEMAND_PAGING_TIMING_HISTOGRAM_NUM_BINS is enabled:

• Overall statistics via k_mem_paging_stats_get()
• Per-thread statistics via k_mem_paging_thread_stats_get() if CON-
FIG_DEMAND_PAGING_THREAD_STATS is enabled

• Execution time histogram can be obtained when CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
is enabled, and CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM_NUM_BINS is defined.
Note that the timing is highly dependent on the architecture, SoC or board. It
is highly recommended that k_mem_paging_eviction_histogram_bounds[] and
k_mem_paging_backing_store_histogram_bounds[] be defined for a particular appli-
cation.

– Execution time histogram of eviction algorithm via
k_mem_paging_histogram_eviction_get()

– Execution time histogram of backing store doing page-in via
k_mem_paging_histogram_backing_store_page_in_get()

– Execution time histogram of backing store doing page-out via
k_mem_paging_histogram_backing_store_page_out_get()

Eviction Algorithm

The eviction algorithm is used to determine which data page and its corresponding page frame
can be paged out to free up a page frame for the next page in operation. There are two functions
which are called from the kernel paging code:

• k_mem_paging_eviction_init() is called to initialize the eviction algorithm. This is called
at POST_KERNEL.

• k_mem_paging_eviction_select() is called to select a data page to evict. A function argu-
ment dirty is written to signal the caller whether the selected data page has been modified
since it is first paged in. If the dirty bit is returned as set, the paging code signals to the
backing store to write the data page back into storage (thus updating its content). The func-
tion returns a pointer to the page frame corresponding to the selected data page.

Currently, a NRU (Not-Recently-Used) eviction algorithm has been implemented as a sample. This
is a very simple algorithm which ranks each data page on whether they have been accessed and
modified. The selection is based on this ranking.

To implement a new eviction algorithm, the two functions mentioned above must be imple-
mented.
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Backing Store

Backing store is responsible for paging in/out data page between their corresponding page
frames and storage. These are the functions which must be implemented:

• k_mem_paging_backing_store_init() is called to initialized the backing store at
POST_KERNEL.

• k_mem_paging_backing_store_location_get() is called to reserve a backing store lo-
cation so a data page can be paged out. This location token is passed to
k_mem_paging_backing_store_page_out() to perform actual page out operation.

• k_mem_paging_backing_store_location_free() is called to free a backing store location
(the location token) which can then be used for subsequent page out operation.

• k_mem_paging_backing_store_page_in() copies a data page from the backing store
location associated with the provided location token to the page pointed by
K_MEM_SCRATCH_PAGE.

• k_mem_paging_backing_store_page_out() copies a data page from K_MEM_SCRATCH_PAGE to
the backing store location associated with the provided location token.

• k_mem_paging_backing_store_page_finalize() is invoked after
k_mem_paging_backing_store_page_in() so that the page frame struct may be updated for
internal accounting. This can be a no-op.

To implement a new backing store, the functions mentioned above must be implemented.
k_mem_paging_backing_store_page_finalize() can be an empty function if so desired.

API Reference

group mem-demand-paging

Functions

int k_mem_page_out(void *addr, size_t size)
Evict a page-aligned virtual memory region to the backing store.

Useful if it is known that a memory region will not be used for some time. All the data
pages within the specified region will be evicted to the backing store if they weren’t
already, with their associated page frames marked as available for mappings or page-
ins.

None of the associated page frames mapped to the provided region should be pinned.

Note that there are no guarantees how long these pages will be evicted, they could take
page faults immediately.

If CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled, this function may not be called
by ISRs as the backing store may be in-use.

Parameters
• addr – Base page-aligned virtual address

• size – Page-aligned data region size

Return values
• 0 – Success

• -ENOMEM – Insufficient space in backing store to satisfy request. The re-
gion may be partially paged out.
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void k_mem_page_in(void *addr, size_t size)
Load a virtual data region into memory.

After the function completes, all the page frames associated with this function will be
paged in. However, they are not guaranteed to stay there. This is useful if the region is
known to be used soon.

If CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled, this function may not be called
by ISRs as the backing store may be in-use.

Parameters
• addr – Base page-aligned virtual address

• size – Page-aligned data region size

void k_mem_pin(void *addr, size_t size)
Pin an aligned virtual data region, paging in as necessary.

After the function completes, all the page frames associated with this region will be
resident in memory and pinned such that they stay that way. This is a stronger version
of z_mem_page_in().

If CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled, this function may not be called
by ISRs as the backing store may be in-use.

Parameters
• addr – Base page-aligned virtual address

• size – Page-aligned data region size

void k_mem_unpin(void *addr, size_t size)
Un-pin an aligned virtual data region.

After the function completes, all the page frames associated with this region will
be no longer marked as pinned. This does not evict the region, follow this with
z_mem_page_out() if you need that.

Parameters
• addr – Base page-aligned virtual address

• size – Page-aligned data region size

void k_mem_paging_stats_get(struct k_mem_paging_stats_t *stats)
Get the paging statistics since system startup.

This populates the paging statistics struct being passed in as argument.

Parameters
• stats – [inout] Paging statistics struct to be filled.

void k_mem_paging_thread_stats_get(struct k_thread *thread, struct
k_mem_paging_stats_t *stats)

Get the paging statistics since system startup for a thread.

This populates the paging statistics struct being passed in as argument for a particular
thread.

Parameters
• thread – [in] Thread

• stats – [inout] Paging statistics struct to be filled.
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void k_mem_paging_histogram_eviction_get(struct k_mem_paging_histogram_t *hist)
Get the eviction timing histogram.

This populates the timing histogram struct being passed in as argument.

Parameters
• hist – [inout] Timing histogram struct to be filled.

void k_mem_paging_histogram_backing_store_page_in_get(struct
k_mem_paging_histogram_t
*hist)

Get the backing store page-in timing histogram.

This populates the timing histogram struct being passed in as argument.

Parameters
• hist – [inout] Timing histogram struct to be filled.

void k_mem_paging_histogram_backing_store_page_out_get(struct
k_mem_paging_histogram_t
*hist)

Get the backing store page-out timing histogram.

This populates the timing histogram struct being passed in as argument.

Parameters
• hist – [inout] Timing histogram struct to be filled.

struct k_mem_paging_stats_t
#include <demand_paging.h> Paging Statistics.

Public Members

unsigned long cnt
Number of page faults.

unsigned long irq_locked
Number of page faults with IRQ locked.

unsigned long irq_unlocked
Number of page faults with IRQ unlocked.

unsigned long in_isr
Number of page faults while in ISR.

unsigned long clean
Number of clean pages selected for eviction.

unsigned long dirty
Number of dirty pages selected for eviction.

struct k_mem_paging_histogram_t
#include <demand_paging.h> Paging Statistics Histograms.

3.4. Memory Management 599



Zephyr Project Documentation, Release 3.7.99

Eviction Algorithm APIs

group mem-demand-paging-eviction
Eviction algorithm APIs.

Functions

void k_mem_paging_eviction_add(struct k_mem_page_frame *pf)
Submit a page frame for eviction candidate tracking.

The kernel will invoke this to tell the eviction algorithm the provided page frame may
be considered as a potential eviction candidate.

This function will never be called before the initial k_mem_paging_eviction_init().

This function is invoked with interrupts locked.

Parameters
• pf – [in] The page frame to add

void k_mem_paging_eviction_remove(struct k_mem_page_frame *pf)
Remove a page frame from potential eviction candidates.

The kernel will invoke this to tell the eviction algorithm the provided page frame may
no longer be considered as a potential eviction candidate.

This function will only be called with page frames that were submitted using
k_mem_paging_eviction_add() beforehand.

This function is invoked with interrupts locked.

Parameters
• pf – [in] The page frame to remove

void k_mem_paging_eviction_accessed(uintptr_t phys)
Process a page frame as being newly accessed.

The architecture-specific memory fault handler will invoke this to tell the eviction algo-
rithm the provided physical address belongs to a page frame being accessed and such
page frame should become unlikely to be considered as the next eviction candidate.

This function is invoked with interrupts locked.

Parameters
• phys – [in] The physical address being accessed

struct k_mem_page_frame *k_mem_paging_eviction_select(bool *dirty)
Select a page frame for eviction.

The kernel will invoke this to choose a page frame to evict if there are no free page
frames. It is not guaranteed that the returned page frame will actually be evicted. If it
is then the kernel will call k_mem_paging_eviction_remove() with it.

This function will never be called before the initial k_mem_paging_eviction_init().

This function is invoked with interrupts locked.

Parameters
• dirty – [out] Whether the page to evict is dirty

Returns
The page frame to evict
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void k_mem_paging_eviction_init(void)
Initialization function.

Called at POST_KERNEL to perform any necessary initialization tasks for the eviction
algorithm. k_mem_paging_eviction_select() is guaranteed to never be called until this
has returned, and this will only be called once.

Backing Store APIs

group mem-demand-paging-backing-store
Backing store APIs.

Functions

int k_mem_paging_backing_store_location_get(struct k_mem_page_frame *pf, uintptr_t
*location, bool page_fault)

Reserve or fetch a storage location for a data page loaded into a page frame.

The returned location token must be unique to the mapped virtual address. This loca-
tion will be used in the backing store to page out data page contents for later retrieval.
The location value must be page-aligned.

This function may be called multiple times on the same data page. If its page frame has
its K_MEM_PAGE_FRAME_BACKED bit set, it is expected to return the previous backing
store location for the data page containing a cached clean copy. This clean copy may
be updated on page-out, or used to discard clean pages without needing to write out
their contents.

If the backing store is full, some other backing store location which caches a loaded
data page may be selected, in which case its associated page frame will have the
K_MEM_PAGE_FRAME_BACKED bit cleared (as it is no longer cached).

k_mem_page_frame_to_virt(pf) will indicate the virtual address the page is currently
mapped to. Large, sparse backing stores which can contain the entire address space
may simply generate location tokens purely as a function of that virtual address with
no other management necessary.

This function distinguishes whether it was called on behalf of a page fault. A free
backing store location must always be reserved in order for page faults to succeed. If
the page_fault parameter is not set, this function should return -ENOMEM even if one
location is available.

This function is invoked with interrupts locked.

Parameters
• pf – Virtual address to obtain a storage location

• location – [out] storage location token

• page_fault – Whether this request was for a page fault

Returns
0 Success

Returns
-ENOMEM Backing store is full

void k_mem_paging_backing_store_location_free(uintptr_t location)
Free a backing store location.

Any stored data may be discarded, and the location token associated with this address
may be re-used for some other data page.
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This function is invoked with interrupts locked.

Parameters
• location – Location token to free

void k_mem_paging_backing_store_page_out(uintptr_t location)
Copy a data page from K_MEM_SCRATCH_PAGE to the specified location.

Immediately before this is called, K_MEM_SCRATCH_PAGE will be mapped read-write
to the intended source page frame for the calling context.

Calls to this and k_mem_paging_backing_store_page_in() will always be serialized, but
interrupts may be enabled.

Parameters
• location – Location token for the data page, for later retrieval

void k_mem_paging_backing_store_page_in(uintptr_t location)
Copy a data page from the provided location to K_MEM_SCRATCH_PAGE.

Immediately before this is called, K_MEM_SCRATCH_PAGE will be mapped read-write
to the intended destination page frame for the calling context.

Calls to this and k_mem_paging_backing_store_page_out() will always be serialized, but
interrupts may be enabled.

Parameters
• location – Location token for the data page

void k_mem_paging_backing_store_page_finalize(struct k_mem_page_frame *pf,
uintptr_t location)

Update internal accounting after a page-in.

This is invoked after k_mem_paging_backing_store_page_in() and interrupts have
been* re-locked, making it safe to access the k_mem_page_frame data. The location
value will be the same passed to k_mem_paging_backing_store_page_in().

The primary use-case for this is to update custom fields for the backing store in the
page frame, to reflect where the data should be evicted to if it is paged out again. This
may be a no-op in some implementations.

If the backing store caches paged-in data pages, this is the appropriate time to set the
K_MEM_PAGE_FRAME_BACKED bit. The kernel only skips paging out clean data pages
if they are noted as clean in the page tables and the K_MEM_PAGE_FRAME_BACKED
bit is set in their associated page frame.

Parameters
• pf – Page frame that was loaded in

• location – Location of where the loaded data page was retrieved

void k_mem_paging_backing_store_init(void)
Backing store initialization function.

The implementation may expect to receive page in/out calls as soon as this returns, but
not before that. Called at POST_KERNEL.

This function is expected to do two things:

• Initialize any internal data structures and accounting for the backing store.

• If the backing store already contains all or some loaded kernel data pages at boot
time, K_MEM_PAGE_FRAME_BACKED should be appropriately set for their associ-
ated page frames, and any internal accounting set up appropriately.

602 Chapter 3. Kernel



Zephyr Project Documentation, Release 3.7.99

3.4.6 Virtual Memory

Virtual memory (VM) in Zephyr provides developers with the ability to fine tune access to mem-
ory. To utilize virtual memory, the platform must support Memory Management Unit (MMU)
and it must be enabled in the build. Due to the target of Zephyr mainly being embedded sys-
tems, virtual memory support in Zephyr differs a bit from that in traditional operating systems:

Mapping of Kernel Image
Default is to do 1:1 mapping for the kernel image (including code and data) between phys-
ical and virtual memory address spaces, if demand paging is not enabled. Deviation from
this requires careful manipulation of linker script.

Secondary Storage
Basic virtual memory support does not utilize secondary storage to extend usable memory.
The maximum usable memory is the same as the physical memory.

• Demand Paging enables utilizing secondary storage as a backing store for virtual mem-
ory, thus allowing larger usable memory than the available physical memory. Note
that demand paging needs to be explicitly enabled.

• Although the virtual memory space can be larger than physical memory space, without
enabling demand paging, all virtually mapped memory must be backed by physical
memory.

Kconfigs

Required These are the Kconfigs that need to be enabled or defined for kernel to support vir-
tual memory.

• CONFIG_MMU: must be enabled for virtual memory support in kernel.

• CONFIG_MMU_PAGE_SIZE: size of a memory page. Default is 4KB.

• CONFIG_KERNEL_VM_BASE: base address of virtual address space.

• CONFIG_KERNEL_VM_SIZE: size of virtual address space. Default is 8MB.

• CONFIG_KERNEL_VM_OFFSET: kernel image starts at this offset from CONFIG_KERNEL_VM_BASE.

Optional
• CONFIG_KERNEL_DIRECT_MAP: permits 1:1 mappings between virtual and physical addresses,

instead of kernel choosing addresses within the virtual address space. This is useful for
mapping device MMIO regions for more precise access control.

Memory Map Overview

This is an overview of the memory map of the virtual memory address space. Note that the Z_*
macros, which are used in code, may have different meanings depending on architecture and
Kconfigs, which will be explained below.

+--------------+ <- K_MEM_VIRT_RAM_START
| Undefined VM | <- architecture specific reserved area
+--------------+ <- K_MEM_KERNEL_VIRT_START
| Mapping for |
| main kernel |
| image |
| |
| |
+--------------+ <- K_MEM_VM_FREE_START

(continues on next page)
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(continued from previous page)
| |
| Unused, |
| Available VM |
| |
|..............| <- grows downward as more mappings are made
| Mapping |
+--------------+
| Mapping |
+--------------+
| ... |
+--------------+
| Mapping |
+--------------+ <- memory mappings start here
| Reserved | <- special purpose virtual page(s) of size K_MEM_VM_RESERVED
+--------------+ <- K_MEM_VIRT_RAM_END

• K_MEM_VIRT_RAM_START is the beginning of the virtual memory address space. This needs
to be page aligned. Currently, it is the same as CONFIG_KERNEL_VM_BASE.

• K_MEM_VIRT_RAM_SIZE is the size of the virtual memory address space. This needs to be page
aligned. Currently, it is the same as CONFIG_KERNEL_VM_SIZE.

• K_MEM_VIRT_RAM_END is simply (K_MEM_VIRT_RAM_START + K_MEM_VIRT_RAM_SIZE).

• K_MEM_KERNEL_VIRT_START is the same as z_mapped_start specified in the linker script. This
is the virtual address of the beginning of the kernel image at boot time.

• K_MEM_KERNEL_VIRT_END is the same as z_mapped_end specified in the linker script. This is
the virtual address of the end of the kernel image at boot time.

• K_MEM_VM_FREE_START is the beginning of the virtual address space where addresses can be
allocated for memory mapping. This depends on whether CONFIG_ARCH_MAPS_ALL_RAM is
enabled.

– If it is enabled, which means all physical memory are mapped in virtual memory ad-
dress space, and it is the same as (CONFIG_SRAM_BASE_ADDRESS + CONFIG_SRAM_SIZE).

– If it is disabled, K_MEM_VM_FREE_START is the same K_MEM_KERNEL_VIRT_END which is the
end of the kernel image.

• K_MEM_VM_RESERVED is an area reserved to support kernel functions. For example, some
addresses are reserved to support demand paging.

Virtual Memory Mappings

SettingupMappings at Boot In general, most supported architectures set up the memory map-
pings at boot as following:

• .text section is read-only and executable. It is accessible in both kernel and user modes.

• .rodata section is read-only and non-executable. It is accessible in both kernel and user
modes.

• Other kernel sections, such as .data, .bss and .noinit, are read-write and non-executable.
They are only accessible in kernel mode.

– Stacks for user mode threads are automatically granted read-write access to their cor-
responding user mode threads during thread creation.

– Global variables, by default, are not accessible to user mode threads. Refer to Memory
Domains and Partitions on how to use global variables in user mode threads, and on
how to share data between user mode threads.
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Caching modes for these mappings are architecture specific. They can be none, write-back, or
write-through.

Note that SoCs have their own additional mappings required to boot where these mappings are
defined under their own SoC configurations. These mappings usually include device MMIO re-
gions needed to setup the hardware.

Mapping Anonymous Memory The unused physical memory can be mapped in virtual ad-
dress space on demand. This is conceptually similar to memory allocation from heap, but these
mappings must be aligned on page size and have finer access control.

• k_mem_map() can be used to map unused physical memory:

– The requested size must be multiple of page size.

– The address returned is inside the virtual address space between
K_MEM_VM_FREE_START and K_MEM_VIRT_RAM_END.

– The mapped region is not guaranteed to be physically contiguous in memory.

– Guard pages immediately before and after the mapped virtual region are automati-
cally allocated to catch access issue due to buffer underrun or overrun.

• The mapped region can be unmapped (i.e. freed) via k_mem_unmap():

– Caution must be exercised to give the pass the same region size to both k_mem_map()
and k_mem_unmap(). The unmapping function does not check if it is a valid mapped
region before unmapping.

API Reference

group kernel_memory_management
Kernel Memory Management.

Caching mode definitions.

These are mutually exclusive.

K_MEM_CACHE_NONE
No caching.

Most drivers want this.

K_MEM_CACHE_WT
Write-through caching.

Used by certain drivers.

K_MEM_CACHE_WB
Full write-back caching.

Any RAM mapped wants this.

K_MEM_CACHE_MASK
Reserved bits for cache modes in k_map() flags argument.
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Region permission attributes.

Default is read-only, no user, no exec

K_MEM_PERM_RW
Region will have read/write access (and not read-only)

K_MEM_PERM_EXEC
Region will be executable (normally forbidden)

K_MEM_PERM_USER
Region will be accessible to user mode (normally supervisor-only)

Region mapping behaviour attributes

K_MEM_DIRECT_MAP
Region will be mapped to 1:1 virtual and physical address.

k_mem_map() control flags

K_MEM_MAP_UNINIT
The mapped region is not guaranteed to be zeroed.

This may improve performance. The associated page frames may contain indetermi-
nate data, zeroes, or even sensitive information.

This may not be used with K_MEM_PERM_USER as there are no circumstances where
this is safe.

K_MEM_MAP_LOCK
Region will be pinned in memory and never paged.

Such memory is guaranteed to never produce a page fault due to page-outs or copy-
on-write once the mapping call has returned. Physical page frames will be pre-fetched
as necessary and pinned.

Functions

size_t k_mem_free_get(void)
Return the amount of free memory available.

The returned value will reflect how many free RAM page frames are available. If de-
mand paging is enabled, it may still be possible to allocate more.

The information reported by this function may go stale immediately if concurrent
memory mappings or page-ins take place.

Returns
Free physical RAM, in bytes
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static inline void *k_mem_map(size_t size, uint32_t flags)
Map anonymous memory into Zephyr’s address space.

This function effectively increases the data space available to Zephyr. The kernel will
choose a base virtual address and return it to the caller. The memory will have access
permissions for all contexts set per the provided flags argument.

If user thread access control needs to be managed in any way, do not enable
K_MEM_PERM_USER flags here; instead manage the region’s permissions with mem-
ory domain APIs after the mapping has been established. Setting K_MEM_PERM_USER
here will allow all user threads to access this memory which is usually undesirable.

Unless K_MEM_MAP_UNINIT is used, the returned memory will be zeroed.

The mapped region is not guaranteed to be physically contiguous in memory. Physi-
cally contiguous buffers should be allocated statically and pinned at build time.

Pages mapped in this way have write-back cache settings.

The returned virtual memory pointer will be page-aligned. The size parameter, and
any base address for re-mapping purposes must be page- aligned.

Note that the allocation includes two guard pages immediately before and after the
requested region. The total size of the allocation will be the requested size plus the
size of these two guard pages.

Many K_MEM_MAP_* flags have been implemented to alter the behavior of this func-
tion, with details in the documentation for these flags.

Parameters
• size – Size of the memory mapping. This must be page-aligned.

• flags – K_MEM_PERM_*, K_MEM_MAP_* control flags.

Returns
The mapped memory location, or NULL if insufficient virtual address
space, insufficient physical memory to establish the mapping, or insuffi-
cient memory for paging structures.

static inline void k_mem_unmap(void *addr, size_t size)
Un-map mapped memory.

This removes a memory mapping for the provided page-aligned region. Associated
page frames will be free and the kernel may re-use the associated virtual address re-
gion. Any paged out data pages may be discarded.

Calling this function on a region which was not mapped to begin with is undefined
behavior.

Parameters
• addr – Page-aligned memory region base virtual address

• size – Page-aligned memory region size

size_t k_mem_region_align(uintptr_t *aligned_addr, size_t *aligned_size, uintptr_t addr,
size_t size, size_t align)

Given an arbitrary region, provide a aligned region that covers it.

The returned region will have both its base address and size aligned to the provided
alignment value.

Parameters
• aligned_addr – [out] Aligned address

• aligned_size – [out] Aligned region size
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• addr – [in] Region base address

• size – [in] Region size

• align – [in] What to align the address and size to

Return values
offset – between aligned_addr and addr

3.5 Data Structures

Zephyr provides a library of common general purpose data structures used within the kernel,
but useful by application code in general. These include list and balanced tree structures for
storing ordered data, and a ring buffer for managing “byte stream” data in a clean way.

Note that in general, the collections are implemented as “intrusive” data structures. The “node”
data is the only struct used by the library code, and it does not store a pointer or other metadata
to indicate what user data is “owned” by that node. Instead, the expectation is that the node will
be itself embedded within a user-defined struct. Macros are provided to retrieve a user struct
address from the embedded node pointer in a clean way. The purpose behind this design is to
allow the collections to be used in contexts where dynamic allocation is disallowed (i.e. there is
no need to allocate node objects because the memory is provided by the user).

Note also that these libraries are uniformly unsynchronized; access to them is not threadsafe by
default. These are data structures, not synchronization primitives. The expectation is that any
locking needed will be provided by the user.

3.5.1 Single-linked List

Zephyr provides a sys_slist_t type for storing simple singly-linked list data (i.e. data where
each list element stores a pointer to the next element, but not the previous one). This supports
constant-time access to the first (head) and last (tail) elements of the list, insertion before the
head and after the tail of the list and constant time removal of the head. Removal of subsequent
nodes requires access to the “previous” pointer and thus can only be performed in linear time
by searching the list.

The sys_slist_t struct may be instantiated by the user in any accessible memory. It should be
initialized with either sys_slist_init() or by static assignment from SYS_SLIST_STATIC_INIT
before use. Its interior fields are opaque and should not be accessed by user code.

The end nodes of a list may be retrieved with sys_slist_peek_head() and
sys_slist_peek_tail(), which will return NULL if the list is empty, otherwise a pointer
to a sys_snode_t struct.

The sys_snode_t struct represents the data to be inserted. In general, it is expected to be al-
located/controlled by the user, usually embedded within a struct which is to be added to the
list. The container struct pointer may be retrieved from a list node using SYS_SLIST_CONTAINER,
passing it the struct name of the containing struct and the field name of the node. In-
ternally, the sys_snode_t struct contains only a next pointer, which may be accessed with
sys_slist_peek_next().

Lists may be modified by adding a single node at the head or tail with sys_slist_prepend()
and sys_slist_append(). They may also have a node added to an interior point
with sys_slist_insert(), which inserts a new node after an existing one. Similarly
sys_slist_remove() will remove a node given a pointer to its predecessor. These operations
are all constant time.

Convenience routines exist for more complicated modifications to a list.
sys_slist_merge_slist() will append an entire list to an existing one.
sys_slist_append_list() will append a bounded subset of an existing list in constant
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time. And sys_slist_find_and_remove() will search a list (in linear time) for a given node and
remove it if present.

Finally the slist implementation provides a set of “for each” macros that allows for iterat-
ing over a list in a natural way without needing to manually traverse the next pointers.
SYS_SLIST_FOR_EACH_NODE will enumerate every node in a list given a local variable to store the
node pointer. SYS_SLIST_FOR_EACH_NODE_SAFE behaves similarly, but has a more complicated
implementation that requires an extra scratch variable for storage and allows the user to delete
the iterated node during the iteration. Each of those macros also exists in a “container” vari-
ant (SYS_SLIST_FOR_EACH_CONTAINER and SYS_SLIST_FOR_EACH_CONTAINER_SAFE) which assigns
a local variable of a type that matches the user’s container struct and not the node struct, per-
forming the required offsets internally. And SYS_SLIST_ITERATE_FROM_NODE exists to allow for
enumerating a node and all its successors only, without inspecting the earlier part of the list.

Single-linked List Internals

The slist code is designed to be minimal and conventional. Internally, a sys_slist_t struct is
nothing more than a pair of “head” and “tail” pointer fields. And a sys_snode_t stores only a
single “next” pointer.

Fig. 4: An slist containing three elements.

Fig. 5: An empty slist

The specific implementation of the list code, however, is done with an internal “Z_GENLIST”
template API which allows for extracting those fields from arbitrary structures and emits an
arbitrarily named set of functions. This allows for implementing more complicated single-linked
list variants using the same basic primitives. The genlist implementor is responsible for a custom
implementation of the primitive operations only: an “init” step for each struct, and a “get” and
“set” primitives for each of head, tail and next pointers on their relevant structs. These inline
functions are passed as parameters to the genlist macro expansion.

Only one such variant, sflist, exists in Zephyr at the moment.

Flagged List

The sys_sflist_t is implemented using the described genlist template API. With the exception
of symbol naming (“sflist” instead of “slist”) and the additional API described next, it operates in
all ways identically to the slist API.
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It adds the ability to associate exactly two bits of user defined “flags” with each list node. These
can be accessed and modified with sys_sfnode_flags_get() and sys_sfnode_flags_set(). In-
ternally, the flags are stored unioned with the bottom bits of the next pointer and incur no SRAM
storage overhead when compared with the simpler slist code.

Single-linked List API Reference

group single-linked-list_apis
Single-linked list implementation.

Single-linked list implementation using inline macros/functions. This API is not thread safe,
and thus if a list is used across threads, calls to functions must be protected with synchro-
nization primitives.

Defines

SYS_SLIST_FOR_EACH_NODE(__sl, __sn)
Provide the primitive to iterate on a list Note: the loop is unsafe and thus __sn should
not be removed.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SLIST_FOR_EACH_NODE(l, n) {
<user code>

}

This and other SYS_SLIST_*() macros are not thread safe.

Parameters
• __sl – A pointer on a sys_slist_t to iterate on

• __sn – A sys_snode_t pointer to peek each node of the list

SYS_SLIST_ITERATE_FROM_NODE(__sl, __sn)
Provide the primitive to iterate on a list, from a node in the list Note: the loop is unsafe
and thus __sn should not be removed.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SLIST_ITERATE_FROM_NODE(l, n) {
<user code>

}

Like SYS_SLIST_FOR_EACH_NODE(), but __dn already contains a node in the list where
to start searching for the next entry from. If NULL, it starts from the head.

This and other SYS_SLIST_*() macros are not thread safe.

Parameters
• __sl – A pointer on a sys_slist_t to iterate on

• __sn – A sys_snode_t pointer to peek each node of the list it contains the
starting node, or NULL to start from the head

SYS_SLIST_FOR_EACH_NODE_SAFE(__sl, __sn, __sns)
Provide the primitive to safely iterate on a list Note: __sn can be removed, it will not
break the loop.

User MUST add the loop statement curly braces enclosing its own code:
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SYS_SLIST_FOR_EACH_NODE_SAFE(l, n, s) {
<user code>

}

This and other SYS_SLIST_*() macros are not thread safe.

Parameters
• __sl – A pointer on a sys_slist_t to iterate on

• __sn – A sys_snode_t pointer to peek each node of the list

• __sns – A sys_snode_t pointer for the loop to run safely

SYS_SLIST_CONTAINER(__ln, __cn, __n)
Provide the primitive to resolve the container of a list node Note: it is safe to use with
NULL pointer nodes.

Parameters
• __ln – A pointer on a sys_node_t to get its container

• __cn – Container struct type pointer

• __n – The field name of sys_node_t within the container struct

SYS_SLIST_PEEK_HEAD_CONTAINER(__sl, __cn, __n)
Provide the primitive to peek container of the list head.

Parameters
• __sl – A pointer on a sys_slist_t to peek

• __cn – Container struct type pointer

• __n – The field name of sys_node_t within the container struct

SYS_SLIST_PEEK_TAIL_CONTAINER(__sl, __cn, __n)
Provide the primitive to peek container of the list tail.

Parameters
• __sl – A pointer on a sys_slist_t to peek

• __cn – Container struct type pointer

• __n – The field name of sys_node_t within the container struct

SYS_SLIST_PEEK_NEXT_CONTAINER(__cn, __n)
Provide the primitive to peek the next container.

Parameters
• __cn – Container struct type pointer

• __n – The field name of sys_node_t within the container struct

SYS_SLIST_FOR_EACH_CONTAINER(__sl, __cn, __n)
Provide the primitive to iterate on a list under a container Note: the loop is unsafe and
thus __cn should not be detached.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SLIST_FOR_EACH_CONTAINER(l, c, n) {
<user code>

}

Parameters
• __sl – A pointer on a sys_slist_t to iterate on
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• __cn – A pointer to peek each entry of the list

• __n – The field name of sys_node_t within the container struct

SYS_SLIST_FOR_EACH_CONTAINER_SAFE(__sl, __cn, __cns, __n)
Provide the primitive to safely iterate on a list under a container Note: __cn can be
detached, it will not break the loop.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SLIST_FOR_EACH_NODE_SAFE(l, c, cn, n) {
<user code>

}

Parameters
• __sl – A pointer on a sys_slist_t to iterate on

• __cn – A pointer to peek each entry of the list

• __cns – A pointer for the loop to run safely

• __n – The field name of sys_node_t within the container struct

SYS_SLIST_STATIC_INIT(ptr_to_list)
Statically initialize a single-linked list.

Parameters
• ptr_to_list – A pointer on the list to initialize

Typedefs

typedef struct _snode sys_snode_t
Single-linked list node structure.

typedef struct _slist sys_slist_t
Single-linked list structure.

Functions

static inline void sys_slist_init(sys_slist_t *list)
Initialize a list.

Parameters
• list – A pointer on the list to initialize

static inline sys_snode_t *sys_slist_peek_head(sys_slist_t *list)
Peek the first node from the list.

Parameters
• list – A point on the list to peek the first node from

Returns
A pointer on the first node of the list (or NULL if none)
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static inline sys_snode_t *sys_slist_peek_tail(sys_slist_t *list)
Peek the last node from the list.

Parameters
• list – A point on the list to peek the last node from

Returns
A pointer on the last node of the list (or NULL if none)

static inline bool sys_slist_is_empty(sys_slist_t *list)
Test if the given list is empty.

Parameters
• list – A pointer on the list to test

Returns
a boolean, true if it’s empty, false otherwise

static inline sys_snode_t *sys_slist_peek_next_no_check(sys_snode_t *node)
Peek the next node from current node, node is not NULL.

Faster then sys_slist_peek_next() if node is known not to be NULL.

Parameters
• node – A pointer on the node where to peek the next node

Returns
a pointer on the next node (or NULL if none)

static inline sys_snode_t *sys_slist_peek_next(sys_snode_t *node)
Peek the next node from current node.

Parameters
• node – A pointer on the node where to peek the next node

Returns
a pointer on the next node (or NULL if none)

static inline void sys_slist_prepend(sys_slist_t *list, sys_snode_t *node)
Prepend a node to the given list.

This and other sys_slist_*() functions are not thread safe.

Parameters
• list – A pointer on the list to affect

• node – A pointer on the node to prepend

static inline void sys_slist_append(sys_slist_t *list, sys_snode_t *node)
Append a node to the given list.

This and other sys_slist_*() functions are not thread safe.

Parameters
• list – A pointer on the list to affect

• node – A pointer on the node to append

static inline void sys_slist_append_list(sys_slist_t *list, void *head, void *tail)
Append a list to the given list.

Append a singly-linked, NULL-terminated list consisting of nodes containing the
pointer to the next node as the first element of a node, to list. This and other sys_slist_*()
functions are not thread safe.
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FIXME: Why are the element parameters void *?

Parameters
• list – A pointer on the list to affect

• head – A pointer to the first element of the list to append

• tail – A pointer to the last element of the list to append

static inline void sys_slist_merge_slist(sys_slist_t *list, sys_slist_t *list_to_append)
merge two slists, appending the second one to the first

When the operation is completed, the appending list is empty. This and other
sys_slist_*() functions are not thread safe.

Parameters
• list – A pointer on the list to affect

• list_to_append – A pointer to the list to append.

static inline void sys_slist_insert(sys_slist_t *list, sys_snode_t *prev, sys_snode_t *node)
Insert a node to the given list.

This and other sys_slist_*() functions are not thread safe.

Parameters
• list – A pointer on the list to affect

• prev – A pointer on the previous node

• node – A pointer on the node to insert

static inline sys_snode_t *sys_slist_get_not_empty(sys_slist_t *list)
Fetch and remove the first node of the given list.

List must be known to be non-empty. This and other sys_slist_*() functions are not
thread safe.

Parameters
• list – A pointer on the list to affect

Returns
A pointer to the first node of the list

static inline sys_snode_t *sys_slist_get(sys_slist_t *list)
Fetch and remove the first node of the given list.

This and other sys_slist_*() functions are not thread safe.

Parameters
• list – A pointer on the list to affect

Returns
A pointer to the first node of the list (or NULL if empty)

static inline void sys_slist_remove(sys_slist_t *list, sys_snode_t *prev_node, sys_snode_t
*node)

Remove a node.

This and other sys_slist_*() functions are not thread safe.

Parameters
• list – A pointer on the list to affect

• prev_node – A pointer on the previous node (can be NULL, which means
the node is the list’s head)
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• node – A pointer on the node to remove

static inline bool sys_slist_find_and_remove(sys_slist_t *list, sys_snode_t *node)
Find and remove a node from a list.

This and other sys_slist_*() functions are not thread safe.

Parameters
• list – A pointer on the list to affect

• node – A pointer on the node to remove from the list

Returns
true if node was removed

static inline bool sys_slist_find(sys_slist_t *list, sys_snode_t *node, sys_snode_t **prev)
Find if a node is already linked in a singly linked list.

This and other sys_slist_*() functions are not thread safe.

Parameters
• list – A pointer to the list to check

• node – A pointer to the node to search in the list

• prev – [out] A pointer to the previous node

Returns
true if node was found in the list, false otherwise

static inline size_t sys_slist_len(sys_slist_t *list)
Compute the size of the given list in O(n) time.

Parameters
• list – A pointer on the list

Returns
an integer equal to the size of the list, or 0 if empty

Flagged List API Reference

group flagged-single-linked-list_apis
Flagged single-linked list implementation.

Similar to Single-linked list with the added ability to define user “flags” bits for
each node. They can be accessed and modified using the sys_sfnode_flags_get() and
sys_sfnode_flags_set() APIs.

Flagged single-linked list implementation using inline macros/functions. This API is not
thread safe, and thus if a list is used across threads, calls to functions must be protected
with synchronization primitives.

Defines

SYS_SFLIST_FOR_EACH_NODE(__sl, __sn)
Provide the primitive to iterate on a list Note: the loop is unsafe and thus __sn should
not be removed.

User MUST add the loop statement curly braces enclosing its own code:
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SYS_SFLIST_FOR_EACH_NODE(l, n) {
<user code>

}

This and other SYS_SFLIST_*() macros are not thread safe.

Parameters
• __sl – A pointer on a sys_sflist_t to iterate on

• __sn – A sys_sfnode_t pointer to peek each node of the list

SYS_SFLIST_ITERATE_FROM_NODE(__sl, __sn)
Provide the primitive to iterate on a list, from a node in the list Note: the loop is unsafe
and thus __sn should not be removed.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SFLIST_ITERATE_FROM_NODE(l, n) {
<user code>

}

Like SYS_SFLIST_FOR_EACH_NODE(), but __dn already contains a node in the list where
to start searching for the next entry from. If NULL, it starts from the head.

This and other SYS_SFLIST_*() macros are not thread safe.

Parameters
• __sl – A pointer on a sys_sflist_t to iterate on

• __sn – A sys_sfnode_t pointer to peek each node of the list it contains the
starting node, or NULL to start from the head

SYS_SFLIST_FOR_EACH_NODE_SAFE(__sl, __sn, __sns)
Provide the primitive to safely iterate on a list Note: __sn can be removed, it will not
break the loop.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SFLIST_FOR_EACH_NODE_SAFE(l, n, s) {
<user code>

}

This and other SYS_SFLIST_*() macros are not thread safe.

Parameters
• __sl – A pointer on a sys_sflist_t to iterate on

• __sn – A sys_sfnode_t pointer to peek each node of the list

• __sns – A sys_sfnode_t pointer for the loop to run safely

SYS_SFLIST_CONTAINER(__ln, __cn, __n)
Provide the primitive to resolve the container of a list node Note: it is safe to use with
NULL pointer nodes.

Parameters
• __ln – A pointer on a sys_sfnode_t to get its container

• __cn – Container struct type pointer

• __n – The field name of sys_sfnode_t within the container struct

616 Chapter 3. Kernel



Zephyr Project Documentation, Release 3.7.99

SYS_SFLIST_PEEK_HEAD_CONTAINER(__sl, __cn, __n)
Provide the primitive to peek container of the list head.

Parameters
• __sl – A pointer on a sys_sflist_t to peek

• __cn – Container struct type pointer

• __n – The field name of sys_sfnode_t within the container struct

SYS_SFLIST_PEEK_TAIL_CONTAINER(__sl, __cn, __n)
Provide the primitive to peek container of the list tail.

Parameters
• __sl – A pointer on a sys_sflist_t to peek

• __cn – Container struct type pointer

• __n – The field name of sys_sfnode_t within the container struct

SYS_SFLIST_PEEK_NEXT_CONTAINER(__cn, __n)
Provide the primitive to peek the next container.

Parameters
• __cn – Container struct type pointer

• __n – The field name of sys_sfnode_t within the container struct

SYS_SFLIST_FOR_EACH_CONTAINER(__sl, __cn, __n)
Provide the primitive to iterate on a list under a container Note: the loop is unsafe and
thus __cn should not be detached.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SFLIST_FOR_EACH_CONTAINER(l, c, n) {
<user code>

}

Parameters
• __sl – A pointer on a sys_sflist_t to iterate on

• __cn – A pointer to peek each entry of the list

• __n – The field name of sys_sfnode_t within the container struct

SYS_SFLIST_FOR_EACH_CONTAINER_SAFE(__sl, __cn, __cns, __n)
Provide the primitive to safely iterate on a list under a container Note: __cn can be
detached, it will not break the loop.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SFLIST_FOR_EACH_NODE_SAFE(l, c, cn, n) {
<user code>

}

Parameters
• __sl – A pointer on a sys_sflist_t to iterate on

• __cn – A pointer to peek each entry of the list

• __cns – A pointer for the loop to run safely

• __n – The field name of sys_sfnode_t within the container struct
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SYS_SFLIST_STATIC_INIT(ptr_to_list)
Statically initialize a flagged single-linked list.

Parameters
• ptr_to_list – A pointer on the list to initialize

SYS_SFLIST_FLAGS_MASK

Typedefs

typedef struct _sfnode sys_sfnode_t
Flagged single-linked list node structure.

typedef struct _sflist sys_sflist_t
Flagged single-linked list structure.

Functions

static inline void sys_sflist_init(sys_sflist_t *list)
Initialize a list.

Parameters
• list – A pointer on the list to initialize

static inline uint8_t sys_sfnode_flags_get(sys_sfnode_t *node)
Fetch flags value for a particular sfnode.

Parameters
• node – A pointer to the node to fetch flags from

Returns
The value of flags, which will be between 0 and 3 on 32-bit architectures,
or between 0 and 7 on 64-bit architectures

static inline sys_sfnode_t *sys_sflist_peek_head(sys_sflist_t *list)
Peek the first node from the list.

Parameters
• list – A point on the list to peek the first node from

Returns
A pointer on the first node of the list (or NULL if none)

static inline sys_sfnode_t *sys_sflist_peek_tail(sys_sflist_t *list)
Peek the last node from the list.

Parameters
• list – A point on the list to peek the last node from

Returns
A pointer on the last node of the list (or NULL if none)
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static inline void sys_sfnode_init(sys_sfnode_t *node, uint8_t flags)
Initialize an sflist node.

Set an initial flags value for this slist node, which can be a value between 0 and 3 on
32-bit architectures, or between 0 and 7 on 64-bit architectures. These flags will persist
even if the node is moved around within a list, removed, or transplanted to a different
slist.

This is ever so slightly faster than sys_sfnode_flags_set() and should only be used on a
node that hasn’t been added to any list.

Parameters
• node – A pointer to the node to set the flags on

• flags – The flags value to set

static inline void sys_sfnode_flags_set(sys_sfnode_t *node, uint8_t flags)
Set flags value for an sflist node.

Set a flags value for this slist node, which can be a value between 0 and 3 on 32-bit
architectures, or between 0 and 7 on 64-bit architectures. These flags will persist even
if the node is moved around within a list, removed, or transplanted to a different slist.

Parameters
• node – A pointer to the node to set the flags on

• flags – The flags value to set

static inline bool sys_sflist_is_empty(sys_sflist_t *list)
Test if the given list is empty.

Parameters
• list – A pointer on the list to test

Returns
a boolean, true if it’s empty, false otherwise

static inline sys_sfnode_t *sys_sflist_peek_next_no_check(sys_sfnode_t *node)
Peek the next node from current node, node is not NULL.

Faster then sys_sflist_peek_next() if node is known not to be NULL.

Parameters
• node – A pointer on the node where to peek the next node

Returns
a pointer on the next node (or NULL if none)

static inline sys_sfnode_t *sys_sflist_peek_next(sys_sfnode_t *node)
Peek the next node from current node.

Parameters
• node – A pointer on the node where to peek the next node

Returns
a pointer on the next node (or NULL if none)

static inline void sys_sflist_prepend(sys_sflist_t *list, sys_sfnode_t *node)
Prepend a node to the given list.

This and other sys_sflist_*() functions are not thread safe.

Parameters
• list – A pointer on the list to affect
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• node – A pointer on the node to prepend

static inline void sys_sflist_append(sys_sflist_t *list, sys_sfnode_t *node)
Append a node to the given list.

This and other sys_sflist_*() functions are not thread safe.

Parameters
• list – A pointer on the list to affect

• node – A pointer on the node to append

static inline void sys_sflist_append_list(sys_sflist_t *list, void *head, void *tail)
Append a list to the given list.

Append a singly-linked, NULL-terminated list consisting of nodes containing the
pointer to the next node as the first element of a node, to list. This and other
sys_sflist_*() functions are not thread safe.

FIXME: Why are the element parameters void *?

Parameters
• list – A pointer on the list to affect

• head – A pointer to the first element of the list to append

• tail – A pointer to the last element of the list to append

static inline void sys_sflist_merge_sflist(sys_sflist_t *list, sys_sflist_t *list_to_append)
merge two sflists, appending the second one to the first

When the operation is completed, the appending list is empty. This and other
sys_sflist_*() functions are not thread safe.

Parameters
• list – A pointer on the list to affect

• list_to_append – A pointer to the list to append.

static inline void sys_sflist_insert(sys_sflist_t *list, sys_sfnode_t *prev, sys_sfnode_t
*node)

Insert a node to the given list.

This and other sys_sflist_*() functions are not thread safe.

Parameters
• list – A pointer on the list to affect

• prev – A pointer on the previous node

• node – A pointer on the node to insert

static inline sys_sfnode_t *sys_sflist_get_not_empty(sys_sflist_t *list)
Fetch and remove the first node of the given list.

List must be known to be non-empty. This and other sys_sflist_*() functions are not
thread safe.

Parameters
• list – A pointer on the list to affect

Returns
A pointer to the first node of the list
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static inline sys_sfnode_t *sys_sflist_get(sys_sflist_t *list)
Fetch and remove the first node of the given list.

This and other sys_sflist_*() functions are not thread safe.

Parameters
• list – A pointer on the list to affect

Returns
A pointer to the first node of the list (or NULL if empty)

static inline void sys_sflist_remove(sys_sflist_t *list, sys_sfnode_t *prev_node,
sys_sfnode_t *node)

Remove a node.

This and other sys_sflist_*() functions are not thread safe.

Parameters
• list – A pointer on the list to affect

• prev_node – A pointer on the previous node (can be NULL, which means
the node is the list’s head)

• node – A pointer on the node to remove

static inline bool sys_sflist_find_and_remove(sys_sflist_t *list, sys_sfnode_t *node)
Find and remove a node from a list.

This and other sys_sflist_*() functions are not thread safe.

Parameters
• list – A pointer on the list to affect

• node – A pointer on the node to remove from the list

Returns
true if node was removed

static inline size_t sys_sflist_len(sys_sflist_t *list)
Compute the size of the given list in O(n) time.

Parameters
• list – A pointer on the list

Returns
an integer equal to the size of the list, or 0 if empty

3.5.2 Double-linked List

Similar to the single-linked list in many respects, Zephyr includes a double-linked implementa-
tion. This provides the same algorithmic behavior for all the existing slist operations, but also
allows for constant-time removal and insertion (at all points: before or after the head, tail or any
internal node). To do this, the list stores two pointers per node, and thus has somewhat higher
runtime code and memory space needs.

A sys_dlist_t struct may be instantiated by the user in any accessible memory. It must be ini-
tialized with sys_dlist_init() or SYS_DLIST_STATIC_INIT before use. The sys_dnode_t struct
is expected to be provided by the user for any nodes added to the list (typically embedded within
the struct to be tracked, as described above). It must be initialized in zeroed/bss memory or with
sys_dnode_init() before use.

Primitive operations may retrieve the head/tail of a list and the next/prev pointers of
a node with sys_dlist_peek_head(), sys_dlist_peek_tail(), sys_dlist_peek_next() and
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sys_dlist_peek_prev(). These can all return NULL where appropriate (i.e. for empty lists, or
nodes at the endpoints of the list).

A dlist can be modified in constant time by removing a node with sys_dlist_remove(), by adding
a node to the head or tail of a list with sys_dlist_prepend() and sys_dlist_append(), or by
inserting a node before an existing node with sys_dlist_insert().

As for slist, each node in a dlist can be processed in a natural code block style using
SYS_DLIST_FOR_EACH_NODE. This macro also exists in a “FROM_NODE” form which allows for it-
erating from a known starting point, a “SAFE” variant that allows for removing the node being
inspected within the code block, a “CONTAINER” style that provides the pointer to a containing
struct instead of the raw node, and a “CONTAINER_SAFE” variant that provides both properties.

Convenience utilities provided by dlist include sys_dlist_insert_at(), which inserts a node
that linearly searches through a list to find the right insertion point, which is provided by the user
as a C callback function pointer, and sys_dnode_is_linked(), which will affirmatively return
whether or not a node is currently linked into a dlist or not (via an implementation that has zero
overhead vs. the normal list processing).

Double-linked List Internals

Internally, the dlist implementation is minimal: the sys_dlist_t struct contains “head” and
“tail” pointer fields, the sys_dnode_t contains “prev” and “next” pointers, and no other data is
stored. But in practice the two structs are internally identical, and the list struct is inserted as a
node into the list itself. This allows for a very clean symmetry of operations:

• An empty list has backpointers to itself in the list struct, which can be trivially detected.

• The head and tail of the list can be detected by comparing the prev/next pointers of a node
vs. the list struct address.

• An insertion or deletion never needs to check for the special case of inserting at the head
or tail. There are never any NULL pointers within the list to be avoided. Exactly the same
operations are run, without tests or branches, for all list modification primitives.

Effectively, a dlist of N nodes can be thought of as a “ring” of “N+1” nodes, where one node
represents the list tracking struct.

Fig. 6: A dlist containing three elements. Note that the list struct appears as a fourth “element”
in the list.

Doubly-linked List API Reference

group doubly-linked-list_apis
Doubly-linked list implementation.

Doubly-linked list implementation using inline macros/functions. This API is not thread
safe, and thus if a list is used across threads, calls to functions must be protected with syn-
chronization primitives.
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Fig. 7: An dlist containing just one element.

Fig. 8: An empty dlist.
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The lists are expected to be initialized such that both the head and tail pointers point to the
list itself. Initializing the lists in such a fashion simplifies the adding and removing of nodes
to/from the list.

Defines

SYS_DLIST_FOR_EACH_NODE(__dl, __dn)
Provide the primitive to iterate on a list Note: the loop is unsafe and thus __dn should
not be removed.

User MUST add the loop statement curly braces enclosing its own code:

SYS_DLIST_FOR_EACH_NODE(l, n) {
<user code>

}

This and other SYS_DLIST_*() macros are not thread safe.

Parameters
• __dl – A pointer on a sys_dlist_t to iterate on

• __dn – A sys_dnode_t pointer to peek each node of the list

SYS_DLIST_ITERATE_FROM_NODE(__dl, __dn)
Provide the primitive to iterate on a list, from a node in the list Note: the loop is unsafe
and thus __dn should not be removed.

User MUST add the loop statement curly braces enclosing its own code:

SYS_DLIST_ITERATE_FROM_NODE(l, n) {
<user code>

}

Like SYS_DLIST_FOR_EACH_NODE(), but __dn already contains a node in the list where
to start searching for the next entry from. If NULL, it starts from the head.

This and other SYS_DLIST_*() macros are not thread safe.

Parameters
• __dl – A pointer on a sys_dlist_t to iterate on

• __dn – A sys_dnode_t pointer to peek each node of the list; it contains the
starting node, or NULL to start from the head

SYS_DLIST_FOR_EACH_NODE_SAFE(__dl, __dn, __dns)
Provide the primitive to safely iterate on a list Note: __dn can be removed, it will not
break the loop.

User MUST add the loop statement curly braces enclosing its own code:

SYS_DLIST_FOR_EACH_NODE_SAFE(l, n, s) {
<user code>

}

This and other SYS_DLIST_*() macros are not thread safe.

Parameters
• __dl – A pointer on a sys_dlist_t to iterate on

• __dn – A sys_dnode_t pointer to peek each node of the list

• __dns – A sys_dnode_t pointer for the loop to run safely
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SYS_DLIST_CONTAINER(__dn, __cn, __n)
Provide the primitive to resolve the container of a list node Note: it is safe to use with
NULL pointer nodes.

Parameters
• __dn – A pointer on a sys_dnode_t to get its container

• __cn – Container struct type pointer

• __n – The field name of sys_dnode_t within the container struct

SYS_DLIST_PEEK_HEAD_CONTAINER(__dl, __cn, __n)
Provide the primitive to peek container of the list head.

Parameters
• __dl – A pointer on a sys_dlist_t to peek

• __cn – Container struct type pointer

• __n – The field name of sys_dnode_t within the container struct

SYS_DLIST_PEEK_NEXT_CONTAINER(__dl, __cn, __n)
Provide the primitive to peek the next container.

Parameters
• __dl – A pointer on a sys_dlist_t to peek

• __cn – Container struct type pointer

• __n – The field name of sys_dnode_t within the container struct

SYS_DLIST_FOR_EACH_CONTAINER(__dl, __cn, __n)
Provide the primitive to iterate on a list under a container Note: the loop is unsafe and
thus __cn should not be detached.

User MUST add the loop statement curly braces enclosing its own code:

SYS_DLIST_FOR_EACH_CONTAINER(l, c, n) {
<user code>

}

Parameters
• __dl – A pointer on a sys_dlist_t to iterate on

• __cn – A container struct type pointer to peek each entry of the list

• __n – The field name of sys_dnode_t within the container struct

SYS_DLIST_FOR_EACH_CONTAINER_SAFE(__dl, __cn, __cns, __n)
Provide the primitive to safely iterate on a list under a container Note: __cn can be
detached, it will not break the loop.

User MUST add the loop statement curly braces enclosing its own code:

SYS_DLIST_FOR_EACH_CONTAINER_SAFE(l, c, cn, n) {
<user code>

}

Parameters
• __dl – A pointer on a sys_dlist_t to iterate on

• __cn – A container struct type pointer to peek each entry of the list
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• __cns – A container struct type pointer for the loop to run safely

• __n – The field name of sys_dnode_t within the container struct

SYS_DLIST_STATIC_INIT(ptr_to_list)
Static initializer for a doubly-linked list.

Typedefs

typedef struct _dnode sys_dlist_t
Doubly-linked list structure.

typedef struct _dnode sys_dnode_t
Doubly-linked list node structure.

Functions

static inline void sys_dlist_init(sys_dlist_t *list)
initialize list to its empty state

Parameters
• list – the doubly-linked list

static inline void sys_dnode_init(sys_dnode_t *node)
initialize node to its state when not in a list

Parameters
• node – the node

static inline bool sys_dnode_is_linked(const sys_dnode_t *node)
check if a node is a member of any list

Parameters
• node – the node

Returns
true if node is linked into a list, false if it is not

static inline bool sys_dlist_is_head(sys_dlist_t *list, sys_dnode_t *node)
check if a node is the list’s head

Parameters
• list – the doubly-linked list to operate on

• node – the node to check

Returns
true if node is the head, false otherwise

static inline bool sys_dlist_is_tail(sys_dlist_t *list, sys_dnode_t *node)
check if a node is the list’s tail

Parameters
• list – the doubly-linked list to operate on

• node – the node to check
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Returns
true if node is the tail, false otherwise

static inline bool sys_dlist_is_empty(sys_dlist_t *list)
check if the list is empty

Parameters
• list – the doubly-linked list to operate on

Returns
true if empty, false otherwise

static inline bool sys_dlist_has_multiple_nodes(sys_dlist_t *list)
check if more than one node present

This and other sys_dlist_*() functions are not thread safe.

Parameters
• list – the doubly-linked list to operate on

Returns
true if multiple nodes, false otherwise

static inline sys_dnode_t *sys_dlist_peek_head(sys_dlist_t *list)
get a reference to the head item in the list

Parameters
• list – the doubly-linked list to operate on

Returns
a pointer to the head element, NULL if list is empty

static inline sys_dnode_t *sys_dlist_peek_head_not_empty(sys_dlist_t *list)
get a reference to the head item in the list

The list must be known to be non-empty.

Parameters
• list – the doubly-linked list to operate on

Returns
a pointer to the head element

static inline sys_dnode_t *sys_dlist_peek_next_no_check(sys_dlist_t *list, sys_dnode_t
*node)

get a reference to the next item in the list, node is not NULL

Faster than sys_dlist_peek_next() if node is known not to be NULL.

Parameters
• list – the doubly-linked list to operate on

• node – the node from which to get the next element in the list

Returns
a pointer to the next element from a node, NULL if node is the tail

static inline sys_dnode_t *sys_dlist_peek_next(sys_dlist_t *list, sys_dnode_t *node)
get a reference to the next item in the list

Parameters
• list – the doubly-linked list to operate on

• node – the node from which to get the next element in the list
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Returns
a pointer to the next element from a node, NULL if node is the tail or NULL
(when node comes from reading the head of an empty list).

static inline sys_dnode_t *sys_dlist_peek_prev_no_check(sys_dlist_t *list, sys_dnode_t
*node)

get a reference to the previous item in the list, node is not NULL

Faster than sys_dlist_peek_prev() if node is known not to be NULL.

Parameters
• list – the doubly-linked list to operate on

• node – the node from which to get the previous element in the list

Returns
a pointer to the previous element from a node, NULL if node is the tail

static inline sys_dnode_t *sys_dlist_peek_prev(sys_dlist_t *list, sys_dnode_t *node)
get a reference to the previous item in the list

Parameters
• list – the doubly-linked list to operate on

• node – the node from which to get the previous element in the list

Returns
a pointer to the previous element from a node, NULL if node is the tail or
NULL (when node comes from reading the head of an empty list).

static inline sys_dnode_t *sys_dlist_peek_tail(sys_dlist_t *list)
get a reference to the tail item in the list

Parameters
• list – the doubly-linked list to operate on

Returns
a pointer to the tail element, NULL if list is empty

static inline void sys_dlist_append(sys_dlist_t *list, sys_dnode_t *node)
add node to tail of list

This and other sys_dlist_*() functions are not thread safe.

Parameters
• list – the doubly-linked list to operate on

• node – the element to append

static inline void sys_dlist_prepend(sys_dlist_t *list, sys_dnode_t *node)
add node to head of list

This and other sys_dlist_*() functions are not thread safe.

Parameters
• list – the doubly-linked list to operate on

• node – the element to append

static inline void sys_dlist_insert(sys_dnode_t *successor, sys_dnode_t *node)
Insert a node into a list.

Insert a node before a specified node in a dlist.

Parameters
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• successor – the position before which “node” will be inserted

• node – the element to insert

static inline void sys_dlist_insert_at(sys_dlist_t *list, sys_dnode_t *node, int
(*cond)(sys_dnode_t *node, void *data), void
*data)

insert node at position

Insert a node in a location depending on a external condition. The cond() function
checks if the node is to be inserted before the current node against which it is checked.
This and other sys_dlist_*() functions are not thread safe.

Parameters
• list – the doubly-linked list to operate on

• node – the element to insert

• cond – a function that determines if the current node is the correct insert
point

• data – parameter to cond()

static inline void sys_dlist_remove(sys_dnode_t *node)
remove a specific node from a list

The list is implicit from the node. The node must be part of a list. This and other
sys_dlist_*() functions are not thread safe.

Parameters
• node – the node to remove

static inline sys_dnode_t *sys_dlist_get(sys_dlist_t *list)
get the first node in a list

This and other sys_dlist_*() functions are not thread safe.

Parameters
• list – the doubly-linked list to operate on

Returns
the first node in the list, NULL if list is empty

static inline size_t sys_dlist_len(sys_dlist_t *list)
Compute the size of the given list in O(n) time.

Parameters
• list – A pointer on the list

Returns
an integer equal to the size of the list, or 0 if empty

3.5.3 Multi Producer Single Consumer Packet Buffer

AMulti Producer Single Consumer Packet Buffer (MPSC_PBUF) is a circular buffer, whose contents
are stored in first-in-first-out order. Variable size packets are stored in the buffer. Packet buffer
works under assumption that there is a single context that consumes the data. However, it is
possible that another context may interfere to flush the data and never come back (panic case).
Packet is produced in two steps: first requested amount of data is allocated, producer fills the
data and commits it. Consuming a packet is also performed in two steps: consumer claims the
packet, gets pointer to it and length and later on packet is freed. This approach reduces memory
copying.
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A MPSC Packet Buffer has the following key properties:

• Allocate, commit scheme used for packet producing.

• Claim, free scheme used for packet consuming.

• Allocator ensures that contiguous memory of requested length is allocated.

• Following policies can be applied when requested space cannot be allocated:

– Overwrite - oldest entries are dropped until requested amount of memory can be al-
located. For each dropped packet user callback is called.

– No overwrite - When requested amount of space cannot be allocated, allocation fails.

• Dedicated, optimized API for storing short packets.

• Allocation with timeout.

Internals

Each packet in the buffer contains MPSC_PBUF specific header which is used for internal manage-
ment. Header consists of 2 bit flags. In order to optimize memory usage, header can be added
on top of the user header using MPSC_PBUF_HDR and remaining bits in the first word can be ap-
plication specific. Header consists of following flags:

• valid - bit set to one when packet contains valid user packet

• busy - bit set when packet is being consumed (claimed but not free)

Header state:

valid busy description
0 0 space is free
1 0 valid packet
1 1 claimed valid packet
0 1 internal skip packet

Packet buffer space contains free space, valid user packets and internal skip packets. Internal
skip packets indicates padding, e.g. at the end of the buffer.

Allocation Using pairs for read and write indexes, available space is determined. If space can
be allocated, temporary write index is moved and pointer to a space within buffer is returned.
Packet header is reset. If allocation required wrapping of the write index, a skip packet is added
to the end of buffer. If space cannot be allocated and overwrite is disabled then NULL pointer is
returned or context blocks if allocation was with timeout.

Allocation with overwrite If overwrite is enabled, oldest packets are dropped until requested
amount of space can be allocated. When packets are dropped busy flag is checked in the header
to ensure that currently consumed packet is not overwritten. In that case, skip packet is added
before busy packet and packets following the busy packet are dropped. When busy packet is
being freed, such situation is detected and packet is converted to skip packet to avoid double
processing.

Usage

Packet header definition Packet header details can be found in in-
clude/zephyr/sys/mpsc_packet.h. API functions can be found in include/zephyr/sys/mpsc_pbuf.h.
Headers are split to avoid include spam when declaring the packet.
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User header structure must start with internal header:

#include <zephyr/sys/mpsc_packet.h>

struct foo_header {
MPSC_PBUF_HDR;
uint32_t length: 32 - MPSC_PBUF_HDR_BITS;

};

Packet buffer configuration Configuration structure contains buffer details, configuration
flags and callbacks. Following callbacks are used by the packet buffer:

• Drop notification - callback called whenever a packet is dropped due to overwrite.

• Get packet length - callback to determine packet length

Packet producing Standard, two step method:

foo_packet *packet = mpsc_pbuf_alloc(buffer, len, K_NO_WAIT);

fill_data(packet);

mpsc_pbuf_commit(buffer, packet);

Performance optimized storing of small packets:

• 32 bit word packet

• 32 bit word with pointer packet

Note that since packets are written by value, they should already contain valid bit set in the
header.

mpsc_pbuf_put_word(buffer, data);
mpsc_pbuf_put_word_ext(buffer, data, ptr);

Packet consuming Two step method:

foo_packet *packet = mpsc_pbuf_claim(buffer);

process(packet);

mpsc_pbuf_free(buffer, packet);

3.5.4 Single Producer Single Consumer Packet Buffer

A Single Producer Single Consumer Packet Buffer (SPSC_PBUF) is a circular buffer, whose contents
are stored in first-in-first-out order. Variable size packets are stored in the buffer. Packet buffer
works under assumption that there is a single context that produces packets and a single context
that consumes the data.

Implementation is focused on performance and memory footprint.

Packets are added to the buffer using spsc_pbuf_write() which copies a data into the buffer. If
the buffer is full error is returned.

Packets are copied out of the buffer using spsc_pbuf_read().
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3.5.5 Balanced Red/Black Tree

For circumstances where sorted containers may become large at runtime, a list becomes prob-
lematic due to algorithmic costs of searching it. For these situations, Zephyr provides a bal-
anced tree implementation which has runtimes on search and removal operations bounded at
O(log2(N)) for a tree of size N. This is implemented using a conventional red/black tree as de-
scribed by multiple academic sources.

The rbtree tracking struct for a rbtree may be initialized anywhere in user accessible memory. It
should contain only zero bits before first use. No specific initialization API is needed or required.

Unlike a list, where position is explicit, the ordering of nodes within an rbtree must be provided
as a predicate function by the user. A function of type rb_lessthan_t() should be assigned to the
lessthan_fn field of the rbtree struct before any tree operations are attempted. This function
should, as its name suggests, return a boolean True value if the first node argument is “less than”
the second in the ordering desired by the tree. Note that “equal” is not allowed, nodes within a
tree must have a single fixed order for the algorithm to work correctly.

As with the slist and dlist containers, nodes within an rbtree are represented as a rbnode struc-
ture which exists in user-managed memory, typically embedded within the data structure being
tracked in the tree. Unlike the list code, the data within an rbnode is entirely opaque. It is not
possible for the user to extract the binary tree topology and “manually” traverse the tree as it is
for a list.

Nodes can be inserted into a tree with rb_insert() and removed with rb_remove(). Access to the
“first” and “last” nodes within a tree (in the sense of the order defined by the comparison func-
tion) is provided by rb_get_min() and rb_get_max(). There is also a predicate, rb_contains(),
which returns a boolean True if the provided node pointer exists as an element within the tree.
As described above, all of these routines are guaranteed to have at most log time complexity in
the size of the tree.

There are two mechanisms provided for enumerating all elements in an rbtree. The first,
rb_walk(), is a simple callback implementation where the caller specifies a C function pointer
and an untyped argument to be passed to it, and the tree code calls that function for each node
in order. This has the advantage of a very simple implementation, at the cost of a somewhat
more cumbersome API for the user (not unlike ISO C’s bsearch() routine). It is a recursive im-
plementation, however, and is thus not always available in environments that forbid the use of
unbounded stack techniques like recursion.

There is also a RB_FOR_EACH iterator provided, which, like the similar APIs for the lists, works
to iterate over a list in a more natural way, using a nested code block instead of a callback. It is
also nonrecursive, though it requires log-sized space on the stack by default (however, this can
be configured to use a fixed/maximally size buffer instead where needed to avoid the dynamic
allocation). As with the lists, this is also available in a RB_FOR_EACH_CONTAINER variant which
enumerates using a pointer to a container field and not the raw node pointer.

Tree Internals

As described, the Zephyr rbtree implementation is a conventional red/black tree as described
pervasively in academic sources. Low level details about the algorithm are out of scope for this
document, as they match existing conventions. This discussion will be limited to details notable
or specific to the Zephyr implementation.

The core invariant guaranteed by the tree is that the path from the root of the tree to any leaf
is no more than twice as long as the path to any other leaf. This is achieved by associating one
bit of “color” with each node, either red or black, and enforcing a rule that no red child can be
a child of another red child (i.e. that the number of black nodes on any path to the root must be
the same, and that no more than that number of “extra” red nodes may be present). This rule is
enforced by a set of rotation rules used to “fix” trees following modification.
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Fig. 9: A maximally unbalanced rbtree with a black height of two. No more nodes can be added
underneath the rightmost node without rebalancing.
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These rotations are conceptually implemented on top of a primitive that “swaps” the position of
one node with another in the list. Typical implementations effect this by simply swapping the
nodes internal “data” pointers, but because the Zephyr rbnode is intrusive, that cannot work.
Zephyr must include somewhat more elaborate code to handle the edge cases (for example, one
swapped node can be the root, or the two may already be parent/child).

The rbnode struct for a Zephyr rbtree contains only two pointers, representing the “left”, and
“right” children of a node within the binary tree. Traversal of a tree for rebalancing following
modification, however, routinely requires the ability to iterate “upwards” from a node as well.
It is very common for red/black trees in the industry to store a third “parent” pointer for this
purpose. Zephyr avoids this requirement by building a “stack” of node pointers locally as it
traverses downward through the tree and updating it appropriately as modifications are made.
So a Zephyr rbtree can be implemented with no more runtime storage overhead than a dlist.

These properties, of a balanced tree data structure that works with only two pointers of data
per node and that works without any need for a memory allocation API, are quite rare in the
industry and are somewhat unique to Zephyr.

Red/Black Tree API Reference

group rbtree_apis
Balanced Red/Black Tree implementation.

This implements an intrusive balanced tree that guarantees O(log2(N)) runtime for all op-
erations and amortized O(1) behavior for creation and destruction of whole trees. The algo-
rithms and naming are conventional per existing academic and didactic implementations,
c.f.:

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree

The implementation is size-optimized to prioritize runtime memory usage. The data struc-
ture is intrusive, which is to say the rbnode handle is intended to be placed in a separate
struct, in the same way as with other such structures (e.g. Zephyr’s Doubly-linked list), and
requires no data pointer to be stored in the node. The color bit is unioned with a pointer
(fairly common for such libraries). Most notably, there is no “parent” pointer stored in the
node, the upper structure of the tree being generated dynamically via a stack as the tree is
recursed. So the overall memory overhead of a node is just two pointers, identical with a
doubly-linked list.

Defines

RB_FOR_EACH(tree, node)
Walk a tree in-order without recursing.

While rb_walk() is very simple, recursing on the C stack can be clumsy for some pur-
poses and on some architectures wastes significant memory in stack frames. This
macro implements a non-recursive “foreach” loop that can iterate directly on the tree,
at a moderate cost in code size.

Note that the resulting loop is not safe against modifications to the tree. Changes to the
tree structure during the loop will produce incorrect results, as nodes may be skipped
or duplicated. Unlike linked lists, no _SAFE variant exists.

Note also that the macro expands its arguments multiple times, so they should not be
expressions with side effects.

Parameters
• tree – A pointer to a struct rbtree to walk
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• node – The symbol name of a local struct rbnode* variable to use as the
iterator

RB_FOR_EACH_CONTAINER(tree, node, field)
Loop over rbtree with implicit container field logic.

As for RB_FOR_EACH(), but “node” can have an arbitrary type containing a struct rbn-
ode.

Parameters
• tree – A pointer to a struct rbtree to walk

• node – The symbol name of a local iterator

• field – The field name of a struct rbnode inside node

Typedefs

typedef bool (*rb_lessthan_t)(struct rbnode *a, struct rbnode *b)
Red/black tree comparison predicate.

Compares the two nodes and returns true if node A is strictly less than B according to
the tree’s sorting criteria, false otherwise.

Note that during insert, the new node being inserted will always be “A”, where “B” is
the existing node within the tree against which it is being compared. This trait can be
used (with care!) to implement “most/least recently added” semantics between nodes
which would otherwise compare as equal.

typedef void (*rb_visit_t)(struct rbnode *node, void *cookie)
Prototype for node visitor callback.

Param node
Node being visited

Param cookie
User-specified data

Functions

void rb_insert(struct rbtree *tree, struct rbnode *node)
Insert node into tree.

void rb_remove(struct rbtree *tree, struct rbnode *node)
Remove node from tree.

static inline struct rbnode *rb_get_min(struct rbtree *tree)
Returns the lowest-sorted member of the tree.

static inline struct rbnode *rb_get_max(struct rbtree *tree)
Returns the highest-sorted member of the tree.

bool rb_contains(struct rbtree *tree, struct rbnode *node)
Returns true if the given node is part of the tree.

Note that this does not internally dereference the node pointer (though the tree’s
lessthan callback might!), it just tests it for equality with items in the tree. So it’s feasi-
ble to use this to implement a “set” construct by simply testing the pointer value itself.
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static inline void rb_walk(struct rbtree *tree, rb_visit_t visit_fn, void *cookie)
Walk/enumerate a rbtree.

Very simple recursive enumeration. Low code size, but requiring a separate function
can be clumsy for the user and there is no way to break out of the loop early. See
RB_FOR_EACH for an iterative implementation.

struct rbnode
#include <rb.h> Balanced red/black tree node structure.

struct rbtree
#include <rb.h> Balanced red/black tree structure.

Public Members

struct rbnode *root
Root node of the tree.

rb_lessthan_t lessthan_fn
Comparison function for nodes in the tree.

3.5.6 Ring Buffers

A ring buffer is a circular buffer, whose contents are stored in first-in-first-out order.

For circumstances where an application needs to implement asynchronous “streaming” copying
of data, Zephyr provides a struct ring_buf abstraction to manage copies of such data in and
out of a shared buffer of memory.

Two content data modes are supported:

• Byte mode: raw bytes can be enqueued and dequeued.

• Data item mode: Multiple 32-bit word data items with metadata can be enqueued and
dequeued from the ring buffer in chunks of up to 1020 bytes. Each data item also has two
associated metadata values: a type identifier and a 16-bit integer value, both of which are
application-specific.

While the underlying data structure is the same, it is not legal to mix these two modes on a single
ring buffer instance. A ring buffer initialized with a byte count must be used only with the “bytes”
API, one initialized with a word count must use the “items” calls.

• Concepts

– Byte mode

– Data item mode

– Concurrency

– Internal Operation

• Implementation

– Defining a Ring Buffer

– Enqueuing Data

636 Chapter 3. Kernel



Zephyr Project Documentation, Release 3.7.99

– Retrieving Data

• Configuration Options

• API Reference

Concepts

Any number of ring buffers can be defined (limited only by available RAM). Each ring buffer is
referenced by its memory address.

A ring buffer has the following key properties:

• A data buffer of bytes or 32-bit words. The data buffer contains the raw bytes or 32-bit
words that have been added to the ring buffer but not yet removed.

• A data buffer size, measured in bytes or 32-bit words. This governs the maximum amount
of data (including possible metadata values) the ring buffer can hold.

A ring buffer must be initialized before it can be used. This sets its data buffer to empty.

A struct ring_buf may be placed anywhere in user-accessible memory, and must be initialized
with ring_buf_init() or ring_buf_item_init() before use. This must be provided a region
of user-controlled memory for use as the buffer itself. Note carefully that the units of the size
of the buffer passed change (either bytes or words) depending on how the ring buffer will be
used later. Macros for combining these steps in a single static declaration exist for convenience.
RING_BUF_DECLARE will declare and statically initialize a ring buffer with a specified byte count,
where RING_BUF_ITEM_DECLARE will declare and statically initialize a buffer with a given count
of 32 bit words. RING_BUF_ITEM_SIZEOF will compute the size in 32-bit words corresponding to a
type or an expression. Note: rounds up if the size is not a multiple of 32 bits.

“Bytes” data may be copied into the ring buffer using ring_buf_put(), passing a data pointer
and byte count. These bytes will be copied into the buffer in order, as many as will fit in the
allocated buffer. The total number of bytes copied (which may be fewer than provided) will be
returned. Likewise ring_buf_get() will copy bytes out of the ring buffer in the order that they
were written, into a user-provided buffer, returning the number of bytes that were transferred.

To avoid multiply-copied-data situations, a “claim” API exists for byte mode.
ring_buf_put_claim() takes a byte size value from the user and returns a pointer to memory
internal to the ring buffer that can be used to receive those bytes, along with a size of the
contiguous internal region (which may be smaller than requested). The user can then copy data
into that region at a later time without assembling all the bytes in a single region first. When
complete, ring_buf_put_finish() can be used to signal the buffer that the transfer is complete,
passing the number of bytes actually transferred. At this point a new transfer can be initiated.
Similarly, ring_buf_get_claim() returns a pointer to internal ring buffer data from which the
user can read without making a verbatim copy, and ring_buf_get_finish() signals the buffer
with how many bytes have been consumed and allows for a new transfer to begin.

“Items” mode works similarly to bytes mode, except that all transfers are in units of 32 bit words
and all memory is assumed to be aligned on 32 bit boundaries. The write and read operations
are ring_buf_item_put() and ring_buf_item_get(), and work otherwise identically to the bytes
mode APIs. There no “claim” API provided for items mode. One important difference is that
unlike ring_buf_put(), ring_buf_item_put()will not do a partial transfer; it will return an error
in the case where the provided data does not fit in its entirety.

The user can manage the capacity of a ring buffer without modifying it using either
ring_buf_space_get() or ring_buf_item_space_get() which returns the number of free bytes
or free 32-bit item words respectively, or by testing the ring_buf_is_empty() predicate.
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Finally, a ring_buf_reset() call exists to immediately empty a ring buffer, discarding the track-
ing of any bytes or items already written to the buffer. It does not modify the memory contents
of the buffer itself, however.

Byte mode A byte mode ring buffer instance is declared using RING_BUF_DECLARE()
and accessed using: ring_buf_put_claim(), ring_buf_put_finish(), ring_buf_get_claim(),
ring_buf_get_finish(), ring_buf_put() and ring_buf_get().

Data can be copied into the ring buffer (see ring_buf_put()) or ring buffer memory can be used
directly by the user. In the latter case, the operation is split into three stages:

1. allocating the buffer (ring_buf_put_claim()) when user requests the destination location
where data can be written.

2. writing the data by the user (e.g. buffer written by DMA).

3. indicating the amount of data written to the provided buffer (ring_buf_put_finish()). The
amount can be less than or equal to the allocated amount.

Data can be retrieved from a ring buffer through copying (see ring_buf_get()) or accessed di-
rectly by address. In the latter case, the operation is split into three stages:

1. retrieving source location with valid data written to a ring buffer (see
ring_buf_get_claim()).

2. processing data

3. freeing processed data (see ring_buf_get_finish()). The amount freed can be less than or
equal or to the retrieved amount.

Data item mode A data item mode ring buffer instance is declared using
RING_BUF_ITEM_DECLARE() and accessed using ring_buf_item_put() and ring_buf_item_get().

A ring buffer data item is an array of 32-bit words from 0 to 1020 bytes in length. When a data
item is enqueued (ring_buf_item_put()) its contents are copied to the data buffer, along with
its associated metadata values (which occupy one additional 32-bit word). If the ring buffer has
insufficient space to hold the new data item the enqueue operation fails.

A data item is dequeued (ring_buf_item_get()) from a ring buffer by removing the oldest en-
queued item. The contents of the dequeued data item, as well as its two metadata values, are
copied to areas supplied by the retriever. If the ring buffer is empty, or if the data array supplied
by the retriever is not large enough to hold the data item’s data, the dequeue operation fails.

Concurrency The ring buffer APIs do not provide any concurrency control. Depending on
usage (particularly with respect to number of concurrent readers/writers) applications may need
to protect the ring buffer with mutexes and/or use semaphores to notify consumers that there is
data to read.

For the trivial case of one producer and one consumer, concurrency control shouldn’t be needed.

Internal Operation Data streamed through a ring buffer is always written to the next byte
within the buffer, wrapping around to the first element after reaching the end, thus the “ring”
structure. Internally, the struct ring_buf contains its own buffer pointer and its size, and also
a set of “head” and “tail” indices representing where the next read and write operations may
occur.

This boundary is invisible to the user using the normal put/get APIs, but becomes a barrier to
the “claim” API, because obviously no contiguous region can be returned that crosses the end of
the buffer. This can be surprising to application code, and produce performance artifacts when
transfers need to happen close to the end of the buffer, as the number of calls to claim/finish
needs to double for such transfers.
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Implementation

Defining a Ring Buffer A ring buffer is defined using a variable of type ring_buf . It must then
be initialized by calling ring_buf_init() or ring_buf_item_init().

The following code defines and initializes an empty data item mode ring buffer (which is part
of a larger data structure). The ring buffer’s data buffer is capable of holding 64 words of data
and metadata information.

#define MY_RING_BUF_WORDS 64

struct my_struct {
struct ring_buf rb;
uint32_t buffer[MY_RING_BUF_WORDS];
...

};
struct my_struct ms;

void init_my_struct {
ring_buf_item_init(&ms.rb, MY_RING_BUF_WORDS, ms.buffer);
...

}

Alternatively, a ring buffer can be defined and initialized at compile time using one of two macros
at file scope. Each macro defines both the ring buffer itself and its data buffer.

The following code defines a data item mode ring buffer:

#define MY_RING_BUF_WORDS 93
RING_BUF_ITEM_DECLARE(my_ring_buf, MY_RING_BUF_WORDS);

The following code defines a ring buffer intended to be used for raw bytes:

#define MY_RING_BUF_BYTES 93
RING_BUF_DECLARE(my_ring_buf, MY_RING_BUF_BYTES);

Enqueuing Data Bytes are copied to a byte mode ring buffer by calling ring_buf_put().

uint8_t my_data[MY_RING_BUF_BYTES];
uint32_t ret;

ret = ring_buf_put(&ring_buf, my_data, MY_RING_BUF_BYTES);
if (ret != MY_RING_BUF_BYTES) {

/* not enough room, partial copy. */
...

}

Data can be added to a byte mode ring buffer by directly accessing the ring buffer’s memory.
For example:

uint32_t size;
uint32_t rx_size;
uint8_t *data;
int err;

/* Allocate buffer within a ring buffer memory. */
size = ring_buf_put_claim(&ring_buf, &data, MY_RING_BUF_BYTES);

/* Work directly on a ring buffer memory. */
rx_size = uart_rx(data, size);

(continues on next page)
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(continued from previous page)
/* Indicate amount of valid data. rx_size can be equal or less than size. */
err = ring_buf_put_finish(&ring_buf, rx_size);
if (err != 0) {

/* This shouldn't happen unless rx_size > size */
...

}

A data item is added to a ring buffer by calling ring_buf_item_put().

uint32_t data[MY_DATA_WORDS];
int ret;

ret = ring_buf_item_put(&ring_buf, TYPE_FOO, 0, data, MY_DATA_WORDS);
if (ret == -EMSGSIZE) {

/* not enough room for the data item */
...

}

If the data item requires only the type or application-specific integer value (i.e. it has no data
array), a size of 0 and data pointer of NULL can be specified.

int ret;

ret = ring_buf_item_put(&ring_buf, TYPE_BAR, 17, NULL, 0);
if (ret == -EMSGSIZE) {

/* not enough room for the data item */
...

}

Retrieving Data Data bytes are copied out from a byte mode ring buffer by calling
ring_buf_get(). For example:

uint8_t my_data[MY_DATA_BYTES];
size_t ret;

ret = ring_buf_get(&ring_buf, my_data, sizeof(my_data));
if (ret != sizeof(my_data)) {

/* Fewer bytes copied. */
} else {

/* Requested amount of bytes retrieved. */
...

}

Data can be retrieved from a byte mode ring buffer by direct operations on the ring buffer’s
memory. For example:

uint32_t size;
uint32_t proc_size;
uint8_t *data;
int err;

/* Get buffer within a ring buffer memory. */
size = ring_buf_get_claim(&ring_buf, &data, MY_RING_BUF_BYTES);

/* Work directly on a ring buffer memory. */
proc_size = process(data, size);

/* Indicate amount of data that can be freed. proc_size can be equal or less
* than size.

(continues on next page)
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(continued from previous page)
*/

err = ring_buf_get_finish(&ring_buf, proc_size);
if (err != 0) {

/* proc_size exceeds amount of valid data in a ring buffer. */
...

}

A data item is removed from a ring buffer by calling ring_buf_item_get().

uint32_t my_data[MY_DATA_WORDS];
uint16_t my_type;
uint8_t my_value;
uint8_t my_size;
int ret;

my_size = MY_DATA_WORDS;
ret = ring_buf_item_get(&ring_buf, &my_type, &my_value, my_data, &my_size);
if (ret == -EMSGSIZE) {

printk("Buffer is too small, need %d uint32_t\n", my_size);
} else if (ret == -EAGAIN) {

printk("Ring buffer is empty\n");
} else {

printk("Got item of type %u value &u of size %u dwords\n",
my_type, my_value, my_size);

...
}

Configuration Options

Related configuration options:

• CONFIG_RING_BUFFER: Enable ring buffer.

API Reference

The following ring buffer APIs are provided by include/zephyr/sys/ring_buffer.h:

group ring_buffer_apis
Simple ring buffer implementation.

Defines

RING_BUF_DECLARE(name, size8)
Define and initialize a ring buffer for byte data.

This macro establishes a ring buffer of an arbitrary size. The basic storage unit is a
byte.

The ring buffer can be accessed outside the module where it is defined using:

extern struct ring_buf <name>;

Parameters
• name – Name of the ring buffer.

• size8 – Size of ring buffer (in bytes).
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RING_BUF_ITEM_DECLARE(name, size32)
Define and initialize an “item based” ring buffer.

This macro establishes an “item based” ring buffer. Each data item is an array of 32-bit
words (from zero to 1020 bytes in length), coupled with a 16-bit type identifier and an
8-bit integer value.

The ring buffer can be accessed outside the module where it is defined using:

extern struct ring_buf <name>;

Parameters
• name – Name of the ring buffer.

• size32 – Size of ring buffer (in 32-bit words).

RING_BUF_ITEM_DECLARE_SIZE(name, size32)
Define and initialize an “item based” ring buffer.

This exists for backward compatibility reasons. RING_BUF_ITEM_DECLARE should be
used instead.

Parameters
• name – Name of the ring buffer.

• size32 – Size of ring buffer (in 32-bit words).

RING_BUF_ITEM_DECLARE_POW2(name, pow)
Define and initialize a power-of-2 sized “item based” ring buffer.

This macro establishes an “item based” ring buffer by specifying its size us-
ing a power of 2. This exists mainly for backward compatibility reasons.
RING_BUF_ITEM_DECLARE should be used instead.

Parameters
• name – Name of the ring buffer.

• pow – Ring buffer size exponent.

RING_BUF_ITEM_SIZEOF(expr)
Compute the ring buffer size in 32-bit needed to store an element.

The argument can be a type or an expression. Note: rounds up if the size is not a
multiple of 32 bits.

Parameters
• expr – Expression or type to compute the size of

Functions

static inline void ring_buf_internal_reset(struct ring_buf *buf, int32_t value)
Function to force ring_buf internal states to given value.

Any value other than 0 makes sense only in validation testing context.

static inline void ring_buf_init(struct ring_buf *buf, uint32_t size, uint8_t *data)
Initialize a ring buffer for byte data.

This routine initializes a ring buffer, prior to its first use. It is only used for ring buffers
not defined using RING_BUF_DECLARE.

Parameters

642 Chapter 3. Kernel



Zephyr Project Documentation, Release 3.7.99

• buf – Address of ring buffer.

• size – Ring buffer size (in bytes).

• data – Ring buffer data area (uint8_t data[size]).

static inline void ring_buf_item_init(struct ring_buf *buf, uint32_t size, uint32_t *data)
Initialize an “item based” ring buffer.

This routine initializes a ring buffer, prior to its first use. It is only used for ring buffers
not defined using RING_BUF_ITEM_DECLARE.

Each data item is an array of 32-bit words (from zero to 1020 bytes in length), coupled
with a 16-bit type identifier and an 8-bit integer value.

Each data item is an array of 32-bit words (from zero to 1020 bytes in length), coupled
with a 16-bit type identifier and an 8-bit integer value.

Parameters
• buf – Address of ring buffer.

• size – Ring buffer size (in 32-bit words)

• data – Ring buffer data area (uint32_t data[size]).

static inline bool ring_buf_is_empty(struct ring_buf *buf)
Determine if a ring buffer is empty.

Parameters
• buf – Address of ring buffer.

Returns
true if the ring buffer is empty, or false if not.

static inline void ring_buf_reset(struct ring_buf *buf)
Reset ring buffer state.

Parameters
• buf – Address of ring buffer.

static inline uint32_t ring_buf_space_get(struct ring_buf *buf)
Determine free space in a ring buffer.

Parameters
• buf – Address of ring buffer.

Returns
Ring buffer free space (in bytes).

static inline uint32_t ring_buf_item_space_get(struct ring_buf *buf)
Determine free space in an “item based” ring buffer.

Parameters
• buf – Address of ring buffer.

Returns
Ring buffer free space (in 32-bit words).

static inline uint32_t ring_buf_capacity_get(struct ring_buf *buf)
Return ring buffer capacity.

Parameters
• buf – Address of ring buffer.
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Returns
Ring buffer capacity (in bytes).

static inline uint32_t ring_buf_size_get(struct ring_buf *buf)
Determine used space in a ring buffer.

Parameters
• buf – Address of ring buffer.

Returns
Ring buffer space used (in bytes).

uint32_t ring_buf_put_claim(struct ring_buf *buf, uint8_t **data, uint32_t size)
Allocate buffer for writing data to a ring buffer.

With this routine, memory copying can be reduced since internal ring buffer can be
used directly by the user. Once data is written to allocated area number of bytes written
must be confirmed (see ring_buf_put_finish).

Warning

Use cases involving multiple writers to the ring buffer must prevent concurrent
write operations, either by preventing all writers from being preempted or by using
a mutex to govern writes to the ring buffer.

Warning

Ring buffer instance should not mix byte access and item access (calls prefixed with
ring_buf_item_).

Parameters
• buf – [in] Address of ring buffer.

• data – [out] Pointer to the address. It is set to a location within ring
buffer.

• size – [in] Requested allocation size (in bytes).

Returns
Size of allocated buffer which can be smaller than requested if there is not
enough free space or buffer wraps.

int ring_buf_put_finish(struct ring_buf *buf, uint32_t size)
Indicate number of bytes written to allocated buffers.

The number of bytes must be equal to or lower than the sum corresponding to all
preceding ring_buf_put_claim invocations (or even 0). Surplus bytes will be returned
to the available free buffer space.

Warning

Use cases involving multiple writers to the ring buffer must prevent concurrent
write operations, either by preventing all writers from being preempted or by using
a mutex to govern writes to the ring buffer.
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Warning

Ring buffer instance should not mix byte access and item access (calls prefixed with
ring_buf_item_).

Parameters
• buf – Address of ring buffer.

• size – Number of valid bytes in the allocated buffers.

Return values
• 0 – Successful operation.

• -EINVAL – Provided size exceeds free space in the ring buffer.

uint32_t ring_buf_put(struct ring_buf *buf, const uint8_t *data, uint32_t size)
Write (copy) data to a ring buffer.

This routine writes data to a ring buffer buf.

Warning

Use cases involving multiple writers to the ring buffer must prevent concurrent
write operations, either by preventing all writers from being preempted or by using
a mutex to govern writes to the ring buffer.

Warning

Ring buffer instance should not mix byte access and item access (calls prefixed with
ring_buf_item_).

Parameters
• buf – Address of ring buffer.

• data – Address of data.

• size – Data size (in bytes).

Return values
Number – of bytes written.

uint32_t ring_buf_get_claim(struct ring_buf *buf, uint8_t **data, uint32_t size)
Get address of a valid data in a ring buffer.

With this routine, memory copying can be reduced since internal ring buffer can
be used directly by the user. Once data is processed it must be freed using
ring_buf_get_finish.

Warning

Use cases involving multiple reads of the ring buffer must prevent concurrent read
operations, either by preventing all readers from being preempted or by using a
mutex to govern reads to the ring buffer.
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Warning

Ring buffer instance should not mix byte access and item access (calls prefixed with
ring_buf_item_).

Parameters
• buf – [in] Address of ring buffer.

• data – [out] Pointer to the address. It is set to a location within ring
buffer.

• size – [in] Requested size (in bytes).

Returns
Number of valid bytes in the provided buffer which can be smaller than
requested if there is not enough free space or buffer wraps.

int ring_buf_get_finish(struct ring_buf *buf, uint32_t size)
Indicate number of bytes read from claimed buffer.

The number of bytes must be equal or lower than the sum corresponding to all pre-
ceding ring_buf_get_claim invocations (or even 0). Surplus bytes will remain available
in the buffer.

Warning

Use cases involving multiple reads of the ring buffer must prevent concurrent read
operations, either by preventing all readers from being preempted or by using a
mutex to govern reads to the ring buffer.

Warning

Ring buffer instance should not mix byte access and item mode (calls prefixed with
ring_buf_item_).

Parameters
• buf – Address of ring buffer.

• size – Number of bytes that can be freed.

Return values
• 0 – Successful operation.

• -EINVAL – Provided size exceeds valid bytes in the ring buffer.

uint32_t ring_buf_get(struct ring_buf *buf, uint8_t *data, uint32_t size)
Read data from a ring buffer.

This routine reads data from a ring buffer buf.

Warning

Use cases involving multiple reads of the ring buffer must prevent concurrent read
operations, either by preventing all readers from being preempted or by using a
mutex to govern reads to the ring buffer.
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Warning

Ring buffer instance should not mix byte access and item mode (calls prefixed with
ring_buf_item_).

Parameters
• buf – Address of ring buffer.

• data – Address of the output buffer. Can be NULL to discard data.

• size – Data size (in bytes).

Return values
Number – of bytes written to the output buffer.

uint32_t ring_buf_peek(struct ring_buf *buf, uint8_t *data, uint32_t size)
Peek at data from a ring buffer.

This routine reads data from a ring buffer buf without removal.

Warning

Use cases involving multiple reads of the ring buffer must prevent concurrent read
operations, either by preventing all readers from being preempted or by using a
mutex to govern reads to the ring buffer.

Warning

Ring buffer instance should not mix byte access and item mode (calls prefixed with
ring_buf_item_).

Warning

Multiple calls to peek will result in the same data being ‘peeked’ multiple
times. To remove data, use either ring_buf_get or ring_buf_get_claim followed by
ring_buf_get_finish with a non-zero size.

Parameters
• buf – Address of ring buffer.

• data – Address of the output buffer. Cannot be NULL.

• size – Data size (in bytes).

Return values
Number – of bytes written to the output buffer.

int ring_buf_item_put(struct ring_buf *buf, uint16_t type, uint8_t value, uint32_t *data,
uint8_t size32)

Write a data item to a ring buffer.

This routine writes a data item to ring buffer buf. The data item is an array of 32-bit
words (from zero to 1020 bytes in length), coupled with a 16-bit type identifier and an
8-bit integer value.
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Warning

Use cases involving multiple writers to the ring buffer must prevent concurrent
write operations, either by preventing all writers from being preempted or by using
a mutex to govern writes to the ring buffer.

Parameters
• buf – Address of ring buffer.

• type – Data item’s type identifier (application specific).

• value – Data item’s integer value (application specific).

• data – Address of data item.

• size32 – Data item size (number of 32-bit words).

Return values
• 0 – Data item was written.

• -EMSGSIZE – Ring buffer has insufficient free space.

int ring_buf_item_get(struct ring_buf *buf, uint16_t *type, uint8_t *value, uint32_t *data,
uint8_t *size32)

Read a data item from a ring buffer.

This routine reads a data item from ring buffer buf. The data item is an array of 32-bit
words (up to 1020 bytes in length), coupled with a 16-bit type identifier and an 8-bit
integer value.

Warning

Use cases involving multiple reads of the ring buffer must prevent concurrent read
operations, either by preventing all readers from being preempted or by using a
mutex to govern reads to the ring buffer.

Parameters
• buf – Address of ring buffer.

• type – Area to store the data item’s type identifier.

• value – Area to store the data item’s integer value.

• data – Area to store the data item. Can be NULL to discard data.

• size32 – Size of the data item storage area (number of 32-bit chunks).

Return values
• 0 – Data item was fetched; size32 now contains the number of 32-bit

words read into data area data.

• -EAGAIN – Ring buffer is empty.

• -EMSGSIZE – Data area data is too small; size32 now contains the number
of 32-bit words needed.

struct ring_buf
#include <ring_buffer.h> A structure to represent a ring buffer.
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3.5.7 Multi Producer Single Consumer Lock Free Queue

A Multi Producer Single Consumer Lock Free Queue (MPSC) is an lockfree intrusive queue based
on atomic pointer swaps as described by Dmitry Vyukov at 1024cores.

API Reference

group mpsc_lockfree
Multiple Producer Single Consumer (MPSC) Lockfree Queue API.

Defines

mpsc_ptr_get(ptr)

mpsc_ptr_set(ptr, val)

mpsc_ptr_set_get(ptr, val)

MPSC_INIT(symbol)
Static initializer for a mpsc queue.

Since the queue is

Parameters
• symbol – name of the queue

Typedefs

typedef atomic_ptr_t mpsc_ptr_t

Functions

static inline void mpsc_init(struct mpsc *q)
Initialize queue.

Parameters
• q – Queue to initialize or reset

ALWAYS_INLINE static void mpsc_push(struct mpsc *q, struct mpsc_node *n)
Push a node.

Parameters
• q – Queue to push the node to

• n – Node to push into the queue

static inline struct mpsc_node *mpsc_pop(struct mpsc *q)
Pop a node off of the list.

Return values
• NULL – When no node is available

• node – When node is available
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struct mpsc_node
#include <mpsc_lockfree.h> Queue member.

struct mpsc
#include <mpsc_lockfree.h> MPSC Queue.

3.5.8 Single Producer Single Consumer Lock Free Queue

A Single Producer Single Consumer Lock Free Queue (SPSC) is a lock free atomic ring buffer based
queue.

API Reference

group spsc_lockfree
Single Producer Single Consumer (SPSC) Lockfree Queue API.

Defines

SPSC_INITIALIZER(sz, buf)
Statically initialize an spsc.

Parameters
• sz – Size of the spsc, must be power of 2 (ex: 2, 4, 8)

• buf – Buffer pointer

SPSC_DECLARE(name, type)
Declare an anonymous struct type for an spsc.

Parameters
• name – Name of the spsc symbol to be provided

• type – Type stored in the spsc

SPSC_DEFINE(name, type, sz)
Define an spsc with a fixed size.

Parameters
• name – Name of the spsc symbol to be provided

• type – Type stored in the spsc

• sz – Size of the spsc, must be power of 2 (ex: 2, 4, 8)

spsc_size(spsc)
Size of the SPSC queue.

Parameters
• spsc – SPSC reference

spsc_reset(spsc)
Initialize/reset a spsc such that its empty.

Note that this is not safe to do while being used in a producer/consumer situation with
multiple calling contexts (isrs/threads).
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Parameters
• spsc – SPSC to initialize/reset

spsc_acquire(spsc)
Acquire an element to produce from the SPSC.

Parameters
• spsc – SPSC to acquire an element from for producing

Returns
A pointer to the acquired element or null if the spsc is full

spsc_produce(spsc)
Produce one previously acquired element to the SPSC.

This makes one element available to the consumer immediately

Parameters
• spsc – SPSC to produce the previously acquired element or do nothing

spsc_produce_all(spsc)
Produce all previously acquired elements to the SPSC.

This makes all previous acquired elements available to the consumer immediately

Parameters
• spsc – SPSC to produce all previously acquired elements or do nothing

spsc_drop_all(spsc)
Drop all previously acquired elements.

This makes all previous acquired elements available to be acquired again

Parameters
• spsc – SPSC to drop all previously acquired elements or do nothing

spsc_consume(spsc)
Consume an element from the spsc.

Parameters
• spsc – Spsc to consume from

Returns
Pointer to element or null if no consumable elements left

spsc_release(spsc)
Release a consumed element.

Parameters
• spsc – SPSC to release consumed element or do nothing

spsc_release_all(spsc)
Release all consumed elements.

Parameters
• spsc – SPSC to release consumed elements or do nothing

spsc_acquirable(spsc)
Count of acquirable in spsc.

Parameters
• spsc – SPSC to get item count for
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spsc_consumable(spsc)
Count of consumables in spsc.

Parameters
• spsc – SPSC to get item count for

spsc_peek(spsc)
Peek at the first available item in queue.

Parameters
• spsc – Spsc to peek into

Returns
Pointer to element or null if no consumable elements left

spsc_next(spsc, item)
Peek at the next item in the queue from a given one.

Parameters
• spsc – SPSC to peek at

• item – Pointer to an item in the queue

Returns
Pointer to element or null if none left

spsc_prev(spsc, item)
Get the previous item in the queue from a given one.

Parameters
• spsc – SPSC to peek at

• item – Pointer to an item in the queue

Returns
Pointer to element or null if none left

struct spsc
Common SPSC attributes.

Warning

Not to be manipulated without the macros!

3.6 Executing Time Functions

The timing functions can be used to obtain execution time of a section of code to aid in analysis
and optimization.

Please note that the timing functions may use a different timer than the default kernel timer,
where the timer being used is specified by architecture, SoC or board configuration.

3.6.1 Configuration

To allow using the timing functions, CONFIG_TIMING_FUNCTIONS needs to be enabled.
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3.6.2 Usage

To gather timing information:

1. Call timing_init() to initialize the timer.

2. Call timing_start() to signal the start of gathering of timing information. This usually
starts the timer.

3. Call timing_counter_get() to mark the start of code execution.

4. Call timing_counter_get() to mark the end of code execution.

5. Call timing_cycles_get() to get the number of timer cycles between start and end of code
execution.

6. Call timing_cycles_to_ns() with total number of cycles to convert number of cycles to
nanoseconds.

7. Repeat from step 3 to gather timing information for other blocks of code.

8. Call timing_stop() to signal the end of gathering of timing information. This usually stops
the timer.

Example

This shows an example on how to use the timing functions:

#include <zephyr/timing/timing.h>

void gather_timing(void)
{

timing_t start_time, end_time;
uint64_t total_cycles;
uint64_t total_ns;

timing_init();
timing_start();

start_time = timing_counter_get();

code_execution_to_be_measured();

end_time = timing_counter_get();

total_cycles = timing_cycles_get(&start_time, &end_time);
total_ns = timing_cycles_to_ns(total_cycles);

timing_stop();
}

3.6.3 API documentation

group timing_api
Timing Measurement APIs.

The timing measurement APIs can be used to obtain execution time of a section of code to
aid in analysis and optimization.

Please note that the timing functions may use a different timer than the default kernel timer,
where the timer being used is specified by architecture, SoC or board configuration.
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Functions

void timing_init(void)
Initialize the timing subsystem.

Perform the necessary steps to initialize the timing subsystem.

void timing_start(void)
Signal the start of the timing information gathering.

Signal to the timing subsystem that timing information will be gathered from this point
forward.

void timing_stop(void)
Signal the end of the timing information gathering.

Signal to the timing subsystem that timing information is no longer being gathered
from this point forward.

static inline timing_t timing_counter_get(void)
Return timing counter.

Returns
Timing counter.

static inline uint64_t timing_cycles_get(volatile timing_t *const start, volatile timing_t
*const end)

Get number of cycles between start and end.

For some architectures or SoCs, the raw numbers from counter need to be scaled to
obtain actual number of cycles.

Parameters
• start – Pointer to counter at start of a measured execution.

• end – Pointer to counter at stop of a measured execution.

Returns
Number of cycles between start and end.

static inline uint64_t timing_freq_get(void)
Get frequency of counter used (in Hz).

Returns
Frequency of counter used for timing in Hz.

static inline uint64_t timing_cycles_to_ns(uint64_t cycles)
Convert number of cycles into nanoseconds.

Parameters
• cycles – Number of cycles

Returns
Converted time value

static inline uint64_t timing_cycles_to_ns_avg(uint64_t cycles, uint32_t count)
Convert number of cycles into nanoseconds with averaging.

Parameters
• cycles – Number of cycles

• count – Times of accumulated cycles to average over

Returns
Converted time value
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static inline uint32_t timing_freq_get_mhz(void)
Get frequency of counter used (in MHz).

Returns
Frequency of counter used for timing in MHz.

group timing_api_arch
Arch specific Timing Measurement APIs.

Implements the necessary bits to support timing measurement using architecture specific
timing measurement mechanism.

Functions

void arch_timing_init(void)
Initialize the timing subsystem.

Perform the necessary steps to initialize the timing subsystem.

See also

timing_init()

void arch_timing_start(void)
Signal the start of the timing information gathering.

Signal to the timing subsystem that timing information will be gathered from this point
forward.

See also

timing_start()

Note

Any call to arch_timing_counter_get() must be done between calls to
arch_timing_start() and arch_timing_stop(), and on the same CPU core.

void arch_timing_stop(void)
Signal the end of the timing information gathering.

Signal to the timing subsystem that timing information is no longer being gathered
from this point forward.

See also

timing_stop()
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Note

Any call to arch_timing_counter_get() must be done between calls to
arch_timing_start() and arch_timing_stop(), and on the same CPU core.

timing_t arch_timing_counter_get(void)
Return timing counter.

See also

timing_counter_get()

Note

Any call to arch_timing_counter_get() must be done between calls to
arch_timing_start() and arch_timing_stop(), and on the same CPU core.

Note

Not all architectures have a timing counter with 64 bit precision. It is possible to
see this value “go backwards” due to internal rollover. Timing code must be pre-
pared to address the rollover (with platform-dependent code, e.g. by casting to a
uint32_t before subtraction) or by using arch_timing_cycles_get() which is required
to understand the distinction.

Returns
Timing counter.

uint64_t arch_timing_cycles_get(volatile timing_t *const start, volatile timing_t *const
end)

Get number of cycles between start and end.

See also

timing_cycles_get()
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Note

For some architectures, the raw numbers from counter need to be scaled to ob-
tain actual number of cycles, or may roll over internally. This function computes a
positive-definite interval between two returned cycle values.

Parameters
• start – Pointer to counter at start of a measured execution.

• end – Pointer to counter at stop of a measured execution.

Returns
Number of cycles between start and end.

uint64_t arch_timing_freq_get(void)
Get frequency of counter used (in Hz).

See also

timing_freq_get()

Returns
Frequency of counter used for timing in Hz.

uint64_t arch_timing_cycles_to_ns(uint64_t cycles)
Convert number of cycles into nanoseconds.

See also

timing_cycles_to_ns()

Parameters
• cycles – Number of cycles

Returns
Converted time value

uint64_t arch_timing_cycles_to_ns_avg(uint64_t cycles, uint32_t count)
Convert number of cycles into nanoseconds with averaging.

See also

timing_cycles_to_ns_avg()

Parameters
• cycles – Number of cycles

• count – Times of accumulated cycles to average over
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Returns
Converted time value

uint32_t arch_timing_freq_get_mhz(void)
Get frequency of counter used (in MHz).

See also

timing_freq_get_mhz()

Returns
Frequency of counter used for timing in MHz.

group timing_api_soc
SoC specific Timing Measurement APIs.

Implements the necessary bits to support timing measurement using SoC specific timing
measurement mechanism.

Functions

void soc_timing_init(void)
Initialize the timing subsystem on SoC.

Perform the necessary steps to initialize the timing subsystem.

See also

timing_init()

void soc_timing_start(void)
Signal the start of the timing information gathering.

Signal to the timing subsystem that timing information will be gathered from this point
forward.

See also

timing_start()

void soc_timing_stop(void)
Signal the end of the timing information gathering.

Signal to the timing subsystem that timing information is no longer being gathered
from this point forward.
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See also

timing_stop()

timing_t soc_timing_counter_get(void)
Return timing counter.

See also

timing_counter_get()

Note

Not all SoCs have timing counters with 64 bit precision. It is possible to see this
value “go backwards” due to internal rollover. Timing code must be prepared to
address the rollover (with SoC dependent code, e.g. by casting to a uint32_t before
subtraction) or by using soc_timing_cycles_get() which is required to understand
the distinction.

Returns
Timing counter.

uint64_t soc_timing_cycles_get(volatile timing_t *const start, volatile timing_t *const
end)

Get number of cycles between start and end.

See also

timing_cycles_get()

Note

The raw numbers from counter need to be scaled to obtain actual number of cycles,
or may roll over internally. This function computes a positive-definite interval be-
tween two returned cycle values.

Parameters
• start – Pointer to counter at start of a measured execution.

• end – Pointer to counter at stop of a measured execution.

Returns
Number of cycles between start and end.

uint64_t soc_timing_freq_get(void)
Get frequency of counter used (in Hz).
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See also

timing_freq_get()

Returns
Frequency of counter used for timing in Hz.

uint64_t soc_timing_cycles_to_ns(uint64_t cycles)
Convert number of cycles into nanoseconds.

See also

timing_cycles_to_ns()

Parameters
• cycles – Number of cycles

Returns
Converted time value

uint64_t soc_timing_cycles_to_ns_avg(uint64_t cycles, uint32_t count)
Convert number of cycles into nanoseconds with averaging.

See also

timing_cycles_to_ns_avg()

Parameters
• cycles – Number of cycles

• count – Times of accumulated cycles to average over

Returns
Converted time value

uint32_t soc_timing_freq_get_mhz(void)
Get frequency of counter used (in MHz).

See also

timing_freq_get_mhz()

Returns
Frequency of counter used for timing in MHz.
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group timing_api_board
Board specific Timing Measurement APIs.

Implements the necessary bits to support timing measurement using board specific timing
measurement mechanism.

Functions

void board_timing_init(void)
Initialize the timing subsystem.

Perform the necessary steps to initialize the timing subsystem.

See also

timing_init()

void board_timing_start(void)
Signal the start of the timing information gathering.

Signal to the timing subsystem that timing information will be gathered from this point
forward.

See also

timing_start()

void board_timing_stop(void)
Signal the end of the timing information gathering.

Signal to the timing subsystem that timing information is no longer being gathered
from this point forward.

See also

timing_stop()

timing_t board_timing_counter_get(void)
Return timing counter.

See also

timing_counter_get()
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Note

Not all timing counters have 64 bit precision. It is possible to see this value “go
backwards” due to internal rollover. Timing code must be prepared to address
the rollover (with board dependent code, e.g. by casting to a uint32_t before sub-
traction) or by using board_timing_cycles_get() which is required to understand the
distinction.

Returns
Timing counter.

uint64_t board_timing_cycles_get(volatile timing_t *const start, volatile timing_t *const
end)

Get number of cycles between start and end.

See also

timing_cycles_get()

Note

The raw numbers from counter need to be scaled to obtain actual number of cycles,
or may roll over internally. This function computes a positive-definite interval be-
tween two returned cycle values.

Parameters
• start – Pointer to counter at start of a measured execution.

• end – Pointer to counter at stop of a measured execution.

Returns
Number of cycles between start and end.

uint64_t board_timing_freq_get(void)
Get frequency of counter used (in Hz).

See also

timing_freq_get()

Returns
Frequency of counter used for timing in Hz.

uint64_t board_timing_cycles_to_ns(uint64_t cycles)
Convert number of cycles into nanoseconds.
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See also

timing_cycles_to_ns()

Parameters
• cycles – Number of cycles

Returns
Converted time value

uint64_t board_timing_cycles_to_ns_avg(uint64_t cycles, uint32_t count)
Convert number of cycles into nanoseconds with averaging.

See also

timing_cycles_to_ns_avg()

Parameters
• cycles – Number of cycles

• count – Times of accumulated cycles to average over

Returns
Converted time value

uint32_t board_timing_freq_get_mhz(void)
Get frequency of counter used (in MHz).

See also

timing_freq_get_mhz()

Returns
Frequency of counter used for timing in MHz.

3.7 Object Cores

Object cores are a kernel debugging tool that can be used to both identify and perform operations
on registered objects.

• Object Core Concepts

• Object Core Statistics Concepts

• Implementation

– Defining a New Object Type

– Initializing a New Object Core
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– Walking a List of Object Cores

– Object Core Statistics Querying

• Configuration Options

• API Reference

3.7.1 Object Core Concepts

Each instance of an object embeds an object core field named obj_core. Objects of the same type
are linked together via their respective object cores to form a singly linked list. Each object core
also links to the their respective object type. Each object type contains a singly linked list linking
together all the object cores of that type. Object types are also linked together via a singly linked
list. Together, this can allow debugging tools to traverse all the objects in the system.

Object cores have been integrated into following kernel objects:
• Condition Variables

• Events

• FIFOs and LIFOs

• Mailboxes

• Memory Slabs

• Message Queues

• Mutexes

• Pipes

• Semaphores

• Threads

• Timers

• System Memory Blocks

Developers are free to integrate them if desired into other objects within their projects.

3.7.2 Object Core Statistics Concepts

A variety of kernel objects allow for the gathering and reporting of statistics. Object cores provide
a uniform means to retrieve that information via object core statistics. When enabled, the object
type contains a pointer to a statistics descriptor that defines the various operations that have
been enabled for interfacing with the object’s statistics. Additionally, the object core contains
a pointer to the “raw” statistical information associated with that object. Raw data is the raw,
unmanipulated data associated with the statistics. Queried data may be “raw”, but it may also
have been manipulated in some way by calculation (such as determining an average).

The following table indicates both what objects have been integrated into the object core statis-
tics as well as the structures used for both “raw” and “queried” data.
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Object Raw Data Type Query Data Type
struct mem_slab struct mem_slab_info struct sys_memory_stats
struct sys_mem_blocks struct sys_mem_blocks_info struct sys_memory_stats
struct k_thread struct k_cycle_stats struct k_thread_runtime_stats
struct _cpu struct k_cycle_stats struct k_thread_runtime_stats
struct z_kernel struct k_cycle_stats[num CPUs] struct k_thread_runtime_stats

3.7.3 Implementation

Defining a New Object Type

An object type is defined using a global variable of type k_obj_type. It must be initialized before
any objects of that type are initialized. The following code shows how a new object type can be
initialized for use with object cores and object core statistics.

/* Unique object type ID */

#define K_OBJ_TYPE_MY_NEW_TYPE K_OBJ_TYPE_ID_GEN("UNIQ")
struct k_obj_type my_obj_type;

struct my_obj_type_raw_info {
...

};

struct my_obj_type_query_stats {
...

};

struct my_new_obj {
...
struct k_obj_core obj_core;
struct my_obj_type_raw_info info;

};

struct k_obj_core_stats_desc my_obj_type_stats_desc = {
.raw_size = sizeof(struct my_obj_type_raw_stats),
.query_size = sizeof(struct my_obj_type_query_stats),
.raw = my_obj_type_stats_raw,
.query = my_obj_type_stats_query,
.reset = my_obj_type_stats_reset,
.disable = NULL, /* Stats gathering is always on */
.enable = NULL, /* Stats gathering is always on */

};

void my_obj_type_init(void)
{

z_obj_type_init(&my_obj_type, K_OBJ_TYPE_MY_NEW_TYPE,
offsetof(struct my_new_obj, obj_core);

k_obj_type_stats_init(&my_obj_type, &my_obj_type_stats_desc);
}

Initializing a New Object Core

Kernel objects that have already been integrated into the object core framework automatically
have their object cores initialized when the object is initialized. However, developers that wish

3.7. Object Cores 665



Zephyr Project Documentation, Release 3.7.99

to add their own objects into the framework need to both initialize the object core and link it.
The following code builds on the example above and initializes the object core.

void my_new_obj_init(struct my_new_obj *new_obj)
{

...
k_obj_core_init(K_OBJ_CORE(new_obj), &my_obj_type);
k_obj_core_link(K_OBJ_CORE(new_obj));
k_obj_core_stats_register(K_OBJ_CORE(new_obj), &new_obj->raw_stats,

sizeof(struct my_obj_type_raw_info));
}

Walking a List of Object Cores

Two routines exist for walking the list of object cores linked to an object type. These are
k_obj_type_walk_locked() and k_obj_type_walk_unlocked(). The following code builds upon
the example above and prints the addresses of all the objects of that new object type.

int walk_op(struct k_obj_core *obj_core, void *data)
{

uint8_t *ptr;

ptr = obj_core;
ptr -= obj_core->type->obj_core_offset;

printk("%p\n", ptr);

return 0;
}

void print_object_addresses(void)
{

struct k_obj_type *obj_type;

/* Find the object type */

obj_type = k_obj_type_find(K_OBJ_TYPE_MY_NEW_TYPE);

/* Walk the list of objects */

k_obj_type_walk_unlocked(obj_type, walk_op, NULL);
}

Object Core Statistics Querying

The following code builds on the examples above and shows how an object integrated into the
object core statistics framework can both retrieve queried data and reset the stats associated
with the object.

struct my_new_obj my_obj;

...

void my_func(void)
{

struct my_obj_type_query_stats my_stats;
int status;

(continues on next page)
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(continued from previous page)
my_obj_type_init(&my_obj);

...

status = k_obj_core_stats_query(K_OBJ_CORE(&my_obj),
&my_stats, sizeof(my_stats));

if (status != 0) {
/* Failed to get stats */
...

} else {
k_obj_core_stats_reset(K_OBJ_CORE(&my_obj));

}

...
}

3.7.4 Configuration Options

Related configuration options:

• CONFIG_OBJ_CORE
• CONFIG_OBJ_CORE_CONDVAR
• CONFIG_OBJ_CORE_EVENT
• CONFIG_OBJ_CORE_FIFO
• CONFIG_OBJ_CORE_LIFO
• CONFIG_OBJ_CORE_MAILBOX
• CONFIG_OBJ_CORE_MEM_SLAB
• CONFIG_OBJ_CORE_MSGQ
• CONFIG_OBJ_CORE_MUTEX
• CONFIG_OBJ_CORE_PIPE
• CONFIG_OBJ_CORE_SEM
• CONFIG_OBJ_CORE_STACK
• CONFIG_OBJ_CORE_THREAD
• CONFIG_OBJ_CORE_TIMER
• CONFIG_OBJ_CORE_SYS_MEM_BLOCKS
• CONFIG_OBJ_CORE_STATS
• CONFIG_OBJ_CORE_STATS_MEM_SLAB
• CONFIG_OBJ_CORE_STATS_THREAD
• CONFIG_OBJ_CORE_STATS_SYSTEM
• CONFIG_OBJ_CORE_STATS_SYS_MEM_BLOCKS

3.7.5 API Reference

group obj_core_apis
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Defines

K_OBJ_CORE(kobj)
Convert kernel object pointer into its object core pointer.

K_OBJ_TYPE_ID_GEN(s)
Generate new object type IDs based on a 4 letter string.

K_OBJ_TYPE_CONDVAR_ID
Condition variable object type.

K_OBJ_TYPE_CPU_ID
CPU object type.

K_OBJ_TYPE_EVENT_ID
Event object type.

K_OBJ_TYPE_FIFO_ID
FIFO object type.

K_OBJ_TYPE_KERNEL_ID
Kernel object type.

K_OBJ_TYPE_LIFO_ID
LIFO object type.

K_OBJ_TYPE_MEM_BLOCK_ID
Memory block object type.

K_OBJ_TYPE_MBOX_ID
Mailbox object type.

K_OBJ_TYPE_MEM_SLAB_ID
Memory slab object type.

K_OBJ_TYPE_MSGQ_ID
Message queue object type.

K_OBJ_TYPE_MUTEX_ID
Mutex object type.

K_OBJ_TYPE_PIPE_ID
Pipe object type.

K_OBJ_TYPE_SEM_ID
Semaphore object type.

K_OBJ_TYPE_STACK_ID
Stack object type.
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K_OBJ_TYPE_THREAD_ID
Thread object type.

K_OBJ_TYPE_TIMER_ID
Timer object type.

Functions

struct k_obj_type *k_obj_type_find(uint32_t type_id)
Find a specific object type by ID.

Given an object type ID, this function searches for the object type that is associated
with the specified type ID type_id.

Parameters
• type_id – Type ID associated with object type

Return values
• NULL – if object type not found

• Pointer – to object type if found

int k_obj_type_walk_locked(struct k_obj_type *type, int (*func)(struct k_obj_core*, void*),
void *data)

Walk the object type’s list of object cores.

This function takes a global spinlock and walks the object type’s list of object cores and
invokes the callback function on each element while holding that lock. Although this
will ensure that the list is not modified, one can expect a significant penalty in terms
of performance and latency.

The callback function shall either return non-zero to stop further walking, or it shall
return 0 to continue walking.

Parameters
• type – Pointer to the object type

• func – Callback to invoke on each object core of the object type

• data – Custom data passed to the callback

Return values
non-zero – if walk is terminated by the callback; otherwise 0

int k_obj_type_walk_unlocked(struct k_obj_type *type, int (*func)(struct k_obj_core*,
void*), void *data)

Walk the object type’s list of object cores.

This function is similar to k_obj_type_walk_locked() except that it walks the list without
obtaining the global spinlock. No synchronization is provided here. Mutation of the
list of objects while this function is in progress must be prevented at the application
layer, otherwise undefined/unreliable behavior, corruption and/or crashes may result.

The callback function shall either return non-zero to stop further walking, or it shall
return 0 to continue walking.

Parameters
• type – Pointer to the object type

• func – Callback to invoke on each object core of the object type
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• data – Custom data passed to the callback

Return values
non-zero – if walk is terminated by the callback; otherwise 0

void k_obj_core_init(struct k_obj_core *obj_core, struct k_obj_type *type)
Initialize the core of the kernel object.

Initializing the kernel object core associates it with the specified kernel object type.

Parameters
• obj_core – Pointer to the kernel object to initialize

• type – Pointer to the kernel object type

void k_obj_core_link(struct k_obj_core *obj_core)
Link the kernel object to the kernel object type list.

A kernel object can be optionally linked into the kernel object type’s list of objects. A
kernel object must have been initialized before it can be linked. Linked kernel objects
can be traversed and have information extracted from them by system tools.

Parameters
• obj_core – Pointer to the kernel object

void k_obj_core_init_and_link(struct k_obj_core *obj_core, struct k_obj_type *type)
Automatically link the kernel object after initializing it.

A useful wrapper to both initialize the core of the kernel object and automatically link
it into the kernel object type’s list of objects.

Parameters
• obj_core – Pointer to the kernel object to initialize

• type – Pointer to the kernel object type

void k_obj_core_unlink(struct k_obj_core *obj_core)
Unlink the kernel object from the kernel object type list.

Kernel objects can be unlinked from their respective kernel object type lists. If on a
list, it must be done at the end of the kernel object’s life cycle.

Parameters
• obj_core – Pointer to the kernel object

struct k_obj_core_stats_desc
#include <obj_core.h> Object core statistics descriptor.

Public Members

size_t raw_size
Internal representation stats buffer size.

size_t query_size
Stats buffer size used for reporting.

int (*raw)(struct k_obj_core *obj_core, void *stats)
Function pointer to retrieve internal representation of stats.
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int (*query)(struct k_obj_core *obj_core, void *stats)
Function pointer to retrieve reported statistics.

int (*reset)(struct k_obj_core *obj_core)
Function pointer to reset object’s statistics.

int (*disable)(struct k_obj_core *obj_core)
Function pointer to disable object’s statistics gathering.

int (*enable)(struct k_obj_core *obj_core)
Function pointer to enable object’s statistics gathering.

struct k_obj_type
#include <obj_core.h> Object type structure.

Public Members

sys_snode_t node
Node within list of object types.

sys_slist_t list
List of objects of this object type.

uint32_t id
Unique type ID.

size_t obj_core_offset
Offset to obj_core field.

struct k_obj_core
#include <obj_core.h> Object core structure.

Public Members

sys_snode_t node
Object node within object type’s list.

struct k_obj_type *type
Object type to which object belongs.

group obj_core_stats_apis

Functions
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int k_obj_core_stats_register(struct k_obj_core *obj_core, void *stats, size_t stats_len)
Register kernel object for gathering statistics.

Before a kernel object can gather statistics, it must be registered to do so. Registering
will also automatically enable the kernel object to gather its statistics.

Parameters
• obj_core – Pointer to kernel object core

• stats – Pointer to raw kernel statistics

• stats_len – Size of raw kernel statistics buffer

Return values
• 0 – on success

• -errno – on failure

int k_obj_core_stats_deregister(struct k_obj_core *obj_core)
Deregister kernel object from gathering statistics.

Deregistering a kernel object core from gathering statistics prevents it from gathering
any more statistics. It is expected to be invoked at the end of a kernel object’s life cycle.

Parameters
• obj_core – Pointer to kernel object core

Return values
• 0 – on success

• -errno – on failure

int k_obj_core_stats_raw(struct k_obj_core *obj_core, void *stats, size_t stats_len)
Retrieve the raw statistics associated with the kernel object.

This function copies the raw statistics associated with the kernel object core specified
by obj_core into the buffer stats. Note that the size of the buffer (stats_len) must match
the size specified by the kernel object type’s statistics descriptor.

Parameters
• obj_core – Pointer to kernel object core

• stats – Pointer to memory buffer into which to copy raw stats

• stats_len – Length of the memory buffer

Return values
• 0 – on success

• -errno – on failure

int k_obj_core_stats_query(struct k_obj_core *obj_core, void *stats, size_t stats_len)
Retrieve the statistics associated with the kernel object.

This function copies the statistics associated with the kernel object core specified by
obj_core into the buffer stats. Unlike the raw statistics this may report calculated val-
ues such as averages. Note that the size of the buffer (stats_len) must match the size
specified by the kernel object type’s statistics descriptor.

Parameters
• obj_core – Pointer to kernel object core

• stats – Pointer to memory buffer into which to copy the queried stats

• stats_len – Length of the memory buffer
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Return values
• 0 – on success

• -errno – on failure

int k_obj_core_stats_reset(struct k_obj_core *obj_core)
Reset the stats associated with the kernel object.

This function resets the statistics associated with the kernel object core specified by
obj_core.

Parameters
• obj_core – Pointer to kernel object core

Return values
• 0 – on success

• -errno – on failure

int k_obj_core_stats_disable(struct k_obj_core *obj_core)
Stop gathering the stats associated with the kernel object.

This function temporarily stops the gathering of statistics associated with the kernel
object core specified by obj_core. The gathering of statistics can be resumed by invok-
ing :c:func :k_obj_core_stats_enable.

Parameters
• obj_core – Pointer to kernel object core

Return values
• 0 – on success

• -errno – on failure

int k_obj_core_stats_enable(struct k_obj_core *obj_core)
Reset the stats associated with the kernel object.

This function resumes the gathering of statistics associated with the kernel object core
specified by obj_core.

Parameters
• obj_core – Pointer to kernel object core

Return values
• 0 – on success

• -errno – on failure

3.8 Time Utilities

3.8.1 Overview

Uptime in Zephyr is based on the a tick counter. With the default CONFIG_TICKLESS_KERNEL
this counter advances at a nominally constant rate from zero at the instant the system
started. The POSIX equivalent to this counter is something like CLOCK_MONOTONIC or, in Linux,
CLOCK_MONOTONIC_RAW. k_uptime_get() provides a millisecond representation of this time.

Applications often need to correlate the Zephyr internal time with external time scales used
in daily life, such as local time or Coordinated Universal Time. These systems interpret time
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in different ways and may have discontinuities due to leap seconds and local time offsets like
daylight saving time.

Because of these discontinuities, as well as significant inaccuracies in the clocks underlying the
cycle counter, the offset between time estimated from the Zephyr clock and the actual time in a
“real” civil time scale is not constant and can vary widely over the runtime of a Zephyr applica-
tion.

The time utilities API supports:

• converting between time representations

• synchronizing and aligning time scales

For terminology and concepts that support these functions see Concepts Underlying Time Support
in Zephyr.

3.8.2 Time Utility APIs

Representation Transformation

Time scale instants can be represented in multiple ways including:

• Seconds since an epoch. POSIX representations of time in this form include time_t and
struct timespec, which are generally interpreted as a representation of “UNIX Time”.

• Calendar time as a year, month, day, hour, minutes, and seconds relative to an epoch. POSIX
representations of time in this form include struct tm.

Keep in mind that these are simply time representations that must be interpreted relative to a
time scale which may be local time, UTC, or some other continuous or discontinuous scale.

Some necessary transformations are available in standard C library routines. For example,
time_t measuring seconds since the POSIX EPOCH is converted to struct tm representing cal-
endar time with gmtime(). Sub-second timestamps like struct timespec can also use this to
produce the calendar time representation and deal with sub-second offsets separately.

The inverse transformation is not standardized: APIs like mktime() expect information
about time zones. Zephyr provides this transformation with timeutil_timegm() and timeu-
til_timegm64().

group timeutil_repr_apis

Functions

int64_t timeutil_timegm64(const struct tm *tm)
Convert broken-down time to a POSIX epoch offset in seconds.

See also

http://man7.org/linux/man-pages/man3/timegm.3.html

Parameters
• tm – pointer to broken down time.

Returns
the corresponding time in the POSIX epoch time scale.

674 Chapter 3. Kernel

https://what-if.xkcd.com/26/
https://tools.ietf.org/html/rfc8536#section-2
https://pubs.opengroup.org/onlinepubs/9699919799/functions/gmtime.html
http://man7.org/linux/man-pages/man3/timegm.3.html


Zephyr Project Documentation, Release 3.7.99

time_t timeutil_timegm(const struct tm *tm)
Convert broken-down time to a POSIX epoch offset in seconds.

See also

http://man7.org/linux/man-pages/man3/timegm.3.html

Parameters
• tm – pointer to broken down time.

Returns
the corresponding time in the POSIX epoch time scale. If the time cannot
be represented then (time_t)-1 is returned and errno is set to ERANGE`.

Time Scale Synchronization

There are several factors that affect synchronizing time scales:

• The rate of discrete instant representation change. For example Zephyr uptime is tracked
in ticks which advance at events that nominally occur at CONFIG_SYS_CLOCK_TICKS_PER_SEC
Hertz, while an external time source may provide data in whole or fractional seconds (e.g.
microseconds).

• The absolute offset required to align the two scales at a single instant.

• The relative error between observable instants in each scale, required to align multiple
instants consistently. For example a reference clock that’s conditioned by a 1-pulse-per-
second GPS signal will be much more accurate than a Zephyr system clock driven by a RC
oscillator with a +/- 250 ppm error.

Synchronization or alignment between time scales is done with a multi-step process:

• An instant in a time scale is represented by an (unsigned) 64-bit integer, assumed to advance
at a fixed nominal rate.

• timeutil_sync_config records the nominal rates of a reference time scale/source (e.g. TAI)
and a local time source (e.g. k_uptime_ticks()).

• timeutil_sync_instant records the representation of a single instant in both the reference
and local time scales.

• timeutil_sync_state provides storage for an initial instant, a recently received second
observation, and a skew that can adjust for relative errors in the actual rate of each time
scale.

• timeutil_sync_ref_from_local() and timeutil_sync_local_from_ref() convert instants
in one time scale to another taking into account skew that can be estimated from the two
instances stored in the state structure by timeutil_sync_estimate_skew().

group timeutil_sync_apis

Functions

int timeutil_sync_state_update(struct timeutil_sync_state *tsp, const struct
timeutil_sync_instant *inst)
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Record a new instant in the time synchronization state.

Note that this updates only the latest persisted instant. The skew is not adjusted auto-
matically.

Parameters
• tsp – pointer to a timeutil_sync_state object.

• inst – the new instant to be recorded. This becomes the base instant if
there is no base instant, otherwise the value must be strictly after the
base instant in both the reference and local time scales.

Return values
• 0 – if installation succeeded in providing a new base

• 1 – if installation provided a new latest instant

• -EINVAL – if the new instant is not compatible with the base instant

int timeutil_sync_state_set_skew(struct timeutil_sync_state *tsp, float skew, const struct
timeutil_sync_instant *base)

Update the state with a new skew and possibly base value.

Set the skew from a value retrieved from persistent storage, or calculated based on
recent skew estimations including from timeutil_sync_estimate_skew().

Optionally update the base timestamp. If the base is replaced the latest instant will be
cleared until timeutil_sync_state_update() is invoked.

Parameters
• tsp – pointer to a time synchronization state.

• skew – the skew to be used. The value must be positive and shouldn’t be
too far away from 1.

• base – optional new base to be set. If provided this becomes the base
timestamp that will be used along with skew to convert between refer-
ence and local timescale instants. Setting the base clears the captured
latest value.

Returns
0 if skew was updated

Returns
-EINVAL if skew was not valid

float timeutil_sync_estimate_skew(const struct timeutil_sync_state *tsp)
Estimate the skew based on current state.

Using the base and latest syncpoints from the state determine the skew of the local
clock relative to the reference clock. See timeutil_sync_state::skew.

Parameters
• tsp – pointer to a time synchronization state. The base and latest sync-

points must be present and the latest syncpoint must be after the base
point in the local time scale.

Returns
the estimated skew, or zero if skew could not be estimated.

int timeutil_sync_ref_from_local(const struct timeutil_sync_state *tsp, uint64_t local,
uint64_t *refp)

Interpolate a reference timescale instant from a local instant.
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Parameters
• tsp – pointer to a time synchronization state. This must have a base and

a skew installed.

• local – an instant measured in the local timescale. This may be before
or after the base instant.

• refp – where the corresponding instant in the reference timescale should
be stored. A negative interpolated reference time produces an error. If
interpolation fails the referenced object is not modified.

Return values
• 0 – if interpolated using a skew of 1

• 1 – if interpolated using a skew not equal to 1

• -EINVAL –

– the times synchronization state is not adequately initialized

– refp is null

• -ERANGE – the interpolated reference time would be negative

int timeutil_sync_local_from_ref(const struct timeutil_sync_state *tsp, uint64_t ref,
int64_t *localp)

Interpolate a local timescale instant from a reference instant.

Parameters
• tsp – pointer to a time synchronization state. This must have a base and

a skew installed.

• ref – an instant measured in the reference timescale. This may be before
or after the base instant.

• localp – where the corresponding instant in the local timescale should
be stored. An interpolated value before local time 0 is provided without
error. If interpolation fails the referenced object is not modified.

Return values
• 0 – if successful with a skew of 1

• 1 – if successful with a skew not equal to 1

• -EINVAL –

– the time synchronization state is not adequately initialized

– refp is null

int32_t timeutil_sync_skew_to_ppb(float skew)
Convert from a skew to an error in parts-per-billion.

A skew of 1.0 has zero error. A skew less than 1 has a positive error (clock is faster
than it should be). A skew greater than one has a negative error (clock is slower than
it should be).

Note that due to the limited precision of float compared with double the smallest error
that can be represented is about 120 ppb. A “precise” time source may have error on
the order of 2000 ppb.

A skew greater than 3.14748 may underflow the 32-bit representation; this represents
a clock running at less than 1/3 its nominal rate.

Returns
skew error represented as parts-per-billion, or INT32_MIN if the skew can-
not be represented in the return type.
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struct timeutil_sync_config
#include <timeutil.h> Immutable state for synchronizing two clocks.

Values required to convert durations between two time scales.

Note

The accuracy of the translation and calculated skew between sources depends on
the resolution of these frequencies. A reference frequency with microsecond or
nanosecond resolution would produce the most accurate tracking when the local
reference is the Zephyr tick counter. A reference source like an RTC chip with 1
Hz resolution requires a much larger interval between sampled instants to detect
relative clock drift.

Public Members

uint32_t ref_Hz
The nominal instance counter rate in Hz.

This value is assumed to be precise, but may drift depending on the reference clock
source.

The value must be positive.

uint32_t local_Hz
The nominal local counter rate in Hz.

This value is assumed to be inaccurate but reasonably stable. For a local clock
driven by a crystal oscillator an error of 25 ppm is common; for an RC oscillator
larger errors should be expected. The timeutil_sync infrastructure can calculate
the skew between the local and reference clocks and apply it when converting
between time scales.

The value must be positive.

struct timeutil_sync_instant
#include <timeutil.h> Representation of an instant in two time scales.

Capturing the same instant in two time scales provides a registration point that can be
used to convert between those time scales.

Public Members

uint64_t ref
An instant in the reference time scale.

This must never be zero in an initialized timeutil_sync_instant object.

uint64_t local
The corresponding instance in the local time scale.

This may be zero in a valid timeutil_sync_instant object.
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struct timeutil_sync_state
#include <timeutil.h> State required to convert instants between time scales.

This state in conjunction with functions that manipulate it capture the offset informa-
tion necessary to convert between two timescales along with information that corrects
for skew due to inaccuracies in clock rates.

State objects should be zero-initialized before use.

Public Members

const struct timeutil_sync_config *cfg
Pointer to reference and local rate information.

struct timeutil_sync_instant base
The base instant in both time scales.

struct timeutil_sync_instant latest
The most recent instant in both time scales.

This is captured here to provide data for skew calculation.

float skew
The scale factor used to correct for clock skew.

The nominal rate for the local counter is assumed to be inaccurate but stable, i.e.
it will generally be some parts-per-million faster or slower than specified.

A duration in observed local clock ticks must be multiplied by this value to produce
a duration in ticks of a clock operating at the nominal local rate.

A zero value indicates that the skew has not been initialized. If the value is zero
when base is initialized the skew will be set to 1. Otherwise the skew is assigned
through timeutil_sync_state_set_skew().

3.8.3 Concepts Underlying Time Support in Zephyr

Terms from ISO/TC 154/WG 5 N0038 (ISO/WD 8601-1) and elsewhere:

• A time axis is a representation of time as an ordered sequence of instants.

• A time scale is a way of representing an instant relative to an origin that serves as the epoch.

• A time scale ismonotonic (increasing) if the representation of successive time instants never
decreases in value.

• A time scale is continuous if the representation has no abrupt changes in value, e.g. jumping
forward or back when going between successive instants.

• Civil time generally refers to time scales that legally defined by civil authorities, like local
governments, often to align local midnight to solar time.

Relevant Time Scales

International Atomic Time (TAI) is a time scale based on averaging clocks that count in SI seconds.
TAI is a monotonic and continuous time scale.
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Universal Time (UT) is a time scale based on Earth’s rotation. UT is a discontinuous time scale
as it requires occasional adjustments (leap seconds) to maintain alignment to changes in Earth’s
rotation. Thus the difference between TAI and UT varies over time. There are several variants
of UT, with UTC being the most common.

UT times are independent of location. UT is the basis for Standard Time (or “local time”) which
is the time at a particular location. Standard time has a fixed offset from UT at any given instant,
primarily influenced by longitude, but the offset may be adjusted (“daylight saving time”) to align
standard time to the local solar time. In a sense local time is “more discontinuous” than UT.

POSIX Time is a time scale that counts seconds since the “POSIX epoch” at 1970-01-01T00:00:00Z
(i.e. the start of 1970 UTC). UNIX Time is an extension of POSIX time using negative values to
represent times before the POSIX epoch. Both of these scales assume that every day has exactly
86400 seconds. In normal use instants in these scales correspond to times in the UTC scale, so
they inherit the discontinuity.

The continuous analogue is UNIX Leap Time which is UNIX time plus all leap-second corrections
added after the POSIX epoch (when TAI-UTC was 8 s).

Example of Time Scale Differences A positive leap second was introduced at the end of 2016,
increasing the difference between TAI and UTC from 36 seconds to 37 seconds. There was no
leap second introduced at the end of 1999, when the difference between TAI and UTC was only
32 seconds. The following table shows relevant civil and epoch times in several scales:

UTC Date UNIX time TAI Date TAI-UTC UNIX Leap Time
1970-01-01T00:00:00Z 0 1970-01-01T00:00:08 +8 0
1999-12-31T23:59:28Z 946684768 2000-01-01T00:00:00 +32 946684792
1999-12-31T23:59:59Z 946684799 2000-01-01T00:00:31 +32 946684823
2000-01-01T00:00:00Z 946684800 2000-01-01T00:00:32 +32 946684824
2016-12-31T23:59:59Z 1483228799 2017-01-01T00:00:35 +36 1483228827
2016-12-31T23:59:60Z undefined 2017-01-01T00:00:36 +36 1483228828
2017-01-01T00:00:00Z 1483228800 2017-01-01T00:00:37 +37 1483228829

Functional Requirements The Zephyr tick counter has no concept of leap seconds or standard
time offsets and is a continuous time scale. However it can be relatively inaccurate, with drifts
as much as three minutes per hour (assuming an RC timer with 5% tolerance).

There are two stages required to support conversion between Zephyr time and common human
time scales:

• Translation between the continuous but inaccurate Zephyr time scale and an accurate ex-
ternal stable time scale;

• Translation between the stable time scale and the (possibly discontinuous) civil time scale.

The API around timeutil_sync_state_update() supports the first step of converting between
continuous time scales.

The second step requires external information including schedules of leap seconds and local
time offset changes. This may be best provided by an external library, and is not currently part
of the time utility APIs.

Selecting an External Source and Time Scale If an application requires civil time accuracy
within several seconds then UTC could be used as the stable time source. However, if the exter-
nal source adjusts to a leap second there will be a discontinuity: the elapsed time between two
observations taken at 1 Hz is not equal to the numeric difference between their timestamps.

For precise activities a continuous scale that is independent of local and solar adjustments sim-
plifies things considerably. Suitable continuous scales include:
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• GPS time: epoch of 1980-01-06T00:00:00Z, continuous following TAI with an offset of TAI-
GPS=19 s.

• Bluetooth Mesh time: epoch of 2000-01-01T00:00:00Z, continuous following TAI with an
offset of -32.

• UNIX Leap Time: epoch of 1970-01-01T00:00:00Z, continuous following TAI with an offset
of -8.

Because C and Zephyr library functions support conversion between integral and calendar time
representations using the UNIX epoch, UNIX Leap Time is an ideal choice for the external time
scale.

The mechanism used to populate synchronization points is not relevant: it may involve reading
from a local high-precision RTC peripheral, exchanging packets over a network using a protocol
like NTP or PTP, or processing NMEA messages received a GPS with or without a 1pps signal.

3.9 Utilities

This page contains reference documentation for <sys/util.h>, which provides miscellaneous
utility functions and macros.

group sys-util

Since
2.4

Version
0.1.0

Defines

POINTER_TO_UINT(x)
Cast x, a pointer, to an unsigned integer.

UINT_TO_POINTER(x)
Cast x, an unsigned integer, to a void*.

POINTER_TO_INT(x)
Cast x, a pointer, to a signed integer.

INT_TO_POINTER(x)
Cast x, a signed integer, to a void*.

BITS_PER_LONG
Number of bits in a long int.

BITS_PER_LONG_LONG
Number of bits in a long long int.

GENMASK(h, l)
Create a contiguous bitmask starting at bit position l and ending at position h.

GENMASK64(h, l)
Create a contiguous 64-bit bitmask starting at bit position l and ending at position h.
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LSB_GET(value)
Extract the Least Significant Bit from value.

FIELD_GET(mask, value)
Extract a bitfield element from value corresponding to the field mask mask.

FIELD_PREP(mask, value)
Prepare a bitfield element using value with mask representing its field position and
width.

The result should be combined with other fields using a logical OR.

ZERO_OR_COMPILE_ERROR(cond)
0 if cond is true-ish; causes a compile error otherwise.

IS_ARRAY(array)
Zero if array has an array type, a compile error otherwise.

This macro is available only from C, not C++.

ARRAY_SIZE(array)
Number of elements in the given array.

In C++, due to language limitations, this will accept as array any type that implements
operator[]. The results may not be particularly meaningful in this case.

In C, passing a pointer as array causes a compile error.

IS_ARRAY_ELEMENT(array, ptr)
Whether ptr is an element of array.

This macro can be seen as a slightly stricter version of PART_OF_ARRAY in that it also
ensures that ptr is aligned to an array-element boundary of array.

In C, passing a pointer as array causes a compile error.

Parameters
• array – the array in question

• ptr – the pointer to check

Returns
1 if ptr is part of array, 0 otherwise

ARRAY_INDEX(array, ptr)
Index of ptr within array.

With CONFIG_ASSERT=y, this macro will trigger a runtime assertion when ptr does not
fall into the range of array or when ptr is not aligned to an array-element boundary
of array.

In C, passing a pointer as array causes a compile error.

Parameters
• array – the array in question

• ptr – pointer to an element of array
Returns

the array index of ptr within array, on success

PART_OF_ARRAY(array, ptr)
Check if a pointer ptr lies within array.

In C but not C++, this causes a compile error if array is not an array (e.g. if ptr and
array are mixed up).
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Parameters
• array – an array

• ptr – a pointer

Returns
1 if ptr is part of array, 0 otherwise

ARRAY_INDEX_FLOOR(array, ptr)
Array-index of ptr within array, rounded down.

This macro behaves much like ARRAY_INDEX with the notable difference that it ac-
cepts any ptr in the range of array rather than exclusively a ptr aligned to an array-
element boundary of array.

With CONFIG_ASSERT=y, this macro will trigger a runtime assertion when ptr does not
fall into the range of array.

In C, passing a pointer as array causes a compile error.

Parameters
• array – the array in question

• ptr – pointer to an element of array
Returns

the array index of ptr within array, on success

ARRAY_FOR_EACH(array, idx)
Iterate over members of an array using an index variable.

Parameters
• array – the array in question

• idx – name of array index variable

ARRAY_FOR_EACH_PTR(array, ptr)
Iterate over members of an array using a pointer.

Parameters
• array – the array in question

• ptr – pointer to an element of array
SAME_TYPE(a, b)

Validate if two entities have a compatible type.

Parameters
• a – the first entity to be compared

• b – the second entity to be compared

Returns
1 if the two elements are compatible, 0 if they are not

CONTAINER_OF_VALIDATE(ptr, type, field)
Validate CONTAINER_OF parameters, only applies to C mode.

CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.

Example:
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struct foo {
int bar;

};

struct foo my_foo;
int *ptr = &my_foo.bar;

struct foo *container = CONTAINER_OF(ptr, struct foo, bar);

Above, container points at my_foo.

Parameters
• ptr – pointer to a structure element

• type – name of the type that ptr is an element of

• field – the name of the field within the struct ptr points to

Returns
a pointer to the structure that contains ptr

SIZEOF_FIELD(type, member)
Report the size of a struct field in bytes.

Parameters
• type – The structure containing the field of interest.

• member – The field to return the size of.

Returns
The field size.

CONCAT(...)
Concatenate input arguments.

Concatenate provided tokens into a combined token during the preprocessor pass.
This can be used to, for ex., build an identifier out of multiple parts, where one of
those parts may be, for ex, a number, another macro, or a macro argument.

Parameters
• ... – Tokens to concatencate

Returns
Concatenated token.

IS_ALIGNED(ptr, align)
Check if ptr is aligned to align alignment.

ROUND_UP(x, align)
Value of x rounded up to the next multiple of align.

ROUND_DOWN(x, align)
Value of x rounded down to the previous multiple of align.

WB_UP(x)
Value of x rounded up to the next word boundary.

WB_DN(x)
Value of x rounded down to the previous word boundary.

DIV_ROUND_UP(n, d)
Divide and round up.

Example:
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DIV_ROUND_UP(1, 2); // 1
DIV_ROUND_UP(3, 2); // 2

Parameters
• n – Numerator.

• d – Denominator.

Returns
The result of n / d, rounded up.

DIV_ROUND_CLOSEST(n, d)
Divide and round to the nearest integer.

Example:

DIV_ROUND_CLOSEST(5, 2); // 3
DIV_ROUND_CLOSEST(5, -2); // -3
DIV_ROUND_CLOSEST(5, 3); // 2

Parameters
• n – Numerator.

• d – Denominator.

Returns
The result of n / d, rounded to the nearest integer.

ceiling_fraction(numerator, divider)
Ceiling function applied to numerator / divider as a fraction.

Deprecated:
Use DIV_ROUND_UP() instead.

MAX(a, b)
Obtain the maximum of two values.

Note

Arguments are evaluated twice. Use Z_MAX for a GCC-only, single evaluation ver-
sion

Parameters
• a – First value.

• b – Second value.

Returns
Maximum value of a and b.

MIN(a, b)
Obtain the minimum of two values.
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Note

Arguments are evaluated twice. Use Z_MIN for a GCC-only, single evaluation ver-
sion

Parameters
• a – First value.

• b – Second value.

Returns
Minimum value of a and b.

CLAMP(val, low, high)
Clamp a value to a given range.

Note

Arguments are evaluated multiple times. Use Z_CLAMP for a GCC-only, single eval-
uation version.

Parameters
• val – Value to be clamped.

• low – Lowest allowed value (inclusive).

• high – Highest allowed value (inclusive).

Returns
Clamped value.

IN_RANGE(val, min, max)
Checks if a value is within range.

Note

val is evaluated twice.

Parameters
• val – Value to be checked.

• min – Lower bound (inclusive).

• max – Upper bound (inclusive).

Return values
• true – If value is within range

• false – If the value is not within range

LOG2(x)
Compute log2(x)
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Note

This macro expands its argument multiple times (to permit use in constant expres-
sions), which must not have side effects.

Parameters
• x – An unsigned integral value to compute logarithm of (positive only)

Returns
log2(x) when 1 <= x <= max(x), -1 when x < 1

LOG2CEIL(x)
Compute ceil(log2(x))

Note

This macro expands its argument multiple times (to permit use in constant expres-
sions), which must not have side effects.

Parameters
• x – An unsigned integral value

Returns
ceil(log2(x)) when 1 <= x <= max(type(x)), 0 when x < 1

NHPOT(x)
Compute next highest power of two.

Equivalent to 2^ceil(log2(x))

Note

This macro expands its argument multiple times (to permit use in constant expres-
sions), which must not have side effects.

Parameters
• x – An unsigned integral value

Returns
2^ceil(log2(x)) or 0 if 2^ceil(log2(x)) would saturate 64-bits

KB(x)
Number of bytes in x kibibytes.

MB(x)
Number of bytes in x mebibytes.

GB(x)
Number of bytes in x gibibytes.

KHZ(x)
Number of Hz in x kHz.

MHZ(x)
Number of Hz in x MHz.
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WAIT_FOR(expr, timeout, delay_stmt)
Wait for an expression to return true with a timeout.

Spin on an expression with a timeout and optional delay between iterations

Commonly needed when waiting on hardware to complete an asynchronous request
to read/write/initialize/reset, but useful for any expression.

Parameters
• expr – Truth expression upon which to poll, e.g.: XYZREG & XYZREG_EN

• timeout – Timeout to wait for in microseconds, e.g.: 1000 (1ms)

• delay_stmt – Delay statement to perform each poll iteration e.g.: NULL,
k_yield(), k_msleep(1) or k_busy_wait(1)

Return values
expr – As a boolean return, if false then it has timed out.

BIT(n)
Unsigned integer with bit position n set (signed in assembly language).

BIT64(_n)
64-bit unsigned integer with bit position _n set.

WRITE_BIT(var, bit, set)
Set or clear a bit depending on a boolean value.

The argument var is a variable whose value is written to as a side effect.

Parameters
• var – Variable to be altered

• bit – Bit number

• set – if 0, clears bit in var; any other value sets bit
BIT_MASK(n)

Bit mask with bits 0 through n-1 (inclusive) set, or 0 if n is 0.

BIT64_MASK(n)
64-bit bit mask with bits 0 through n-1 (inclusive) set, or 0 if n is 0.

IS_POWER_OF_TWO(x)
Check if a x is a power of two.

IS_SHIFTED_BIT_MASK(m, s)
Check if bits are set continuously from the specified bit.

The macro is not dependent on the bit-width.

Parameters
• m – Check whether the bits are set continuously or not.

• s – Specify the lowest bit for that is continuously set bits.

IS_BIT_MASK(m)
Check if bits are set continuously from the LSB.

Parameters
• m – Check whether the bits are set continuously from LSB.
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IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.

This trick was pioneered in Linux as the config_enabled() macro. It has the effect of
taking a macro value that may be defined to “1” or may not be defined at all and turning
it into a literal expression that can be handled by the C compiler instead of just the
preprocessor. It is often used with a CONFIG_FOO macro which may be defined to 1 via
Kconfig, or left undefined.

That is, it works similarly to #if defined(CONFIG_FOO) except that its expansion is a C
expression. Thus, much #ifdef usage can be replaced with equivalents like:

if (IS_ENABLED(CONFIG_FOO)) {
do_something_with_foo

}

This is cleaner since the compiler can generate errors and warnings for
do_something_with_foo even when CONFIG_FOO is undefined.

Note: Use of IS_ENABLED in a #if statement is discouraged as it doesn’t provide any
benefit vs plain #if defined()

Parameters
• config_macro – Macro to check

Returns
1 if config_macro is defined to 1, 0 otherwise (including if config_macro is
not defined)

COND_CODE_1(_flag, _if_1_code, _else_code)
Insert code depending on whether _flag expands to 1 or not.

This relies on similar tricks as IS_ENABLED(), but as the result of _flag expansion,
results in either _if_1_code or _else_code is expanded.

To prevent the preprocessor from treating commas as argument separators, the
_if_1_code and _else_code expressions must be inside brackets/parentheses: ().
These are stripped away during macro expansion.

Example:

COND_CODE_1(CONFIG_FLAG, (uint32_t x;), (there_is_no_flag();))

If CONFIG_FLAG is defined to 1, this expands to:

uint32_t x;

It expands to there_is_no_flag(); otherwise.

This could be used as an alternative to:

#if defined(CONFIG_FLAG) && (CONFIG_FLAG == 1)
#define MAYBE_DECLARE(x) uint32_t x
#else
#define MAYBE_DECLARE(x) there_is_no_flag()
#endif

MAYBE_DECLARE(x);

However, the advantage of COND_CODE_1() is that code is resolved in place where it is
used, while the #if method defines MAYBE_DECLARE on two lines and requires it to be
invoked again on a separate line. This makes COND_CODE_1() more concise and also
sometimes more useful when used within another macro’s expansion.
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Note

_flag can be the result of preprocessor expansion, e.g. an expression involving
NUM_VA_ARGS_LESS_1(...). However, _if_1_code is only expanded if _flag ex-
pands to the integer literal 1. Integer expressions that evaluate to 1, e.g. after doing
some arithmetic, will not work.

Parameters
• _flag – evaluated flag

• _if_1_code – result if _flag expands to 1; must be in parentheses

• _else_code – result otherwise; must be in parentheses

COND_CODE_0(_flag, _if_0_code, _else_code)
Like COND_CODE_1() except tests if _flag is 0.

This is like COND_CODE_1(), except that it tests whether _flag expands to the integer
literal 0. It expands to _if_0_code if so, and _else_code otherwise; both of these must
be enclosed in parentheses.

See also

COND_CODE_1()

Parameters
• _flag – evaluated flag

• _if_0_code – result if _flag expands to 0; must be in parentheses

• _else_code – result otherwise; must be in parentheses

IF_ENABLED(_flag, _code)
Insert code if _flag is defined and equals 1.

Like COND_CODE_1(), this expands to _code if _flag is defined to 1; it expands to noth-
ing otherwise.

Example:

IF_ENABLED(CONFIG_FLAG, (uint32_t foo;))

If CONFIG_FLAG is defined to 1, this expands to:

uint32_t foo;

and to nothing otherwise.

It can be considered as a more compact alternative to:

#if defined(CONFIG_FLAG) && (CONFIG_FLAG == 1)
uint32_t foo;
#endif

Parameters
• _flag – evaluated flag

• _code – result if _flag expands to 1; must be in parentheses
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IF_DISABLED(_flag, _code)
Insert code if _flag is not defined as 1.

This expands to nothing if _flag is defined and equal to 1; it expands to _code other-
wise.

Example:

IF_DISABLED(CONFIG_FLAG, (uint32_t foo;))

If CONFIG_FLAG isn’t defined or different than 1, this expands to:

uint32_t foo;

and to nothing otherwise.

IF_DISABLED does the opposite of IF_ENABLED.

Parameters
• _flag – evaluated flag

• _code – result if _flag does not expand to 1; must be in parentheses

IS_EMPTY(...)
Check if a macro has a replacement expression.

If a is a macro defined to a nonempty value, this will return true, otherwise it will
return false. It only works with defined macros, so an additional #ifdef test may be
needed in some cases.

This macro may be used with COND_CODE_1() and COND_CODE_0() while processing
__VA_ARGS__ to avoid processing empty arguments.

Example:

#define EMPTY
#define NON_EMPTY 1
#undef UNDEFINED
IS_EMPTY(EMPTY)
IS_EMPTY(NON_EMPTY)
IS_EMPTY(UNDEFINED)
#if defined(EMPTY) && IS_EMPTY(EMPTY) == true
some_conditional_code
#endif

In above examples, the invocations of IS_EMPTY(…) return true, false, and true;
some_conditional_code is included.

Parameters
• ... – macro to check for emptiness (may be __VA_ARGS__)

IS_EQ(a, b)
Like a == b, but does evaluation and short-circuiting at C preprocessor time.

This however only works for integer literal from 0 to 4095.

LIST_DROP_EMPTY(...)
Remove empty arguments from list.

During macro expansion, __VA_ARGS__ and other preprocessor generated lists may
contain empty elements, e.g.:

#define LIST ,a,b,,d,

Using EMPTY to show each empty element, LIST contains:
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EMPTY, a, b, EMPTY, d

When processing such lists, e.g. using FOR_EACH(), all empty elements will be pro-
cessed, and may require filtering out. To make that process easier, it is enough to
invoke LIST_DROP_EMPTY which will remove all empty elements.

Example:

LIST_DROP_EMPTY(LIST)

expands to:

a, b, d

Parameters
• ... – list to be processed

EMPTY
Macro with an empty expansion.

This trivial definition is provided for readability when a macro should expand to an
empty result, which e.g. is sometimes needed to silence checkpatch.

Example:

#define LIST_ITEM(n) , item##n

The above would cause checkpatch to complain, but:

#define LIST_ITEM(n) EMPTY, item##n

would not.

IDENTITY(V)
Macro that expands to its argument.

This is useful in macros like FOR_EACH() when there is no transformation required on
the list elements.

Parameters
• V – any value

GET_ARG_N(N, ...)
Get nth argument from argument list.

Parameters
• N – Argument index to fetch. Counter from 1.

• ... – Variable list of arguments from which one argument is returned.

Returns
Nth argument.

GET_ARGS_LESS_N(N, ...)
Strips n first arguments from the argument list.

Parameters
• N – Number of arguments to discard.

• ... – Variable list of arguments.
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Returns
argument list without N first arguments.

UTIL_OR(a, b)
Like a || b, but does evaluation and short-circuiting at C preprocessor time.

This is not the same as the binary || operator; in particular, a should expand to an
integer literal 0 or 1. However, b can be any value.

This can be useful when b is an expression that would cause a build error when a is 1.

UTIL_AND(a, b)
Like a && b, but does evaluation and short-circuiting at C preprocessor time.

This is not the same as the binary &&, however; in particular, a should expand to an
integer literal 0 or 1. However, b can be any value.

This can be useful when b is an expression that would cause a build error when a is 0.

UTIL_INC(x)
UTIL_INC(x) for an integer literal x from 0 to 4095 expands to an integer literal whose
value is x+1.

See also

UTIL_DEC(x)

UTIL_DEC(x)
UTIL_DEC(x) for an integer literal x from 0 to 4095 expands to an integer literal whose
value is x-1.

See also

UTIL_INC(x)

UTIL_X2(y)
UTIL_X2(y) for an integer literal y from 0 to 4095 expands to an integer literal whose
value is 2y.

LISTIFY(LEN, F, sep, ...)
Generates a sequence of code with configurable separator.

Example:

#define FOO(i, _) MY_PWM ## i
{ LISTIFY(PWM_COUNT, FOO, (,)) }

The above two lines expand to:

{ MY_PWM0 , MY_PWM1 }

Note

Calling LISTIFY with undefined arguments has undefined behavior.

Parameters
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• LEN – The length of the sequence. Must be an integer literal less than
4095.

• F – A macro function that accepts at least two arguments: F(i, ...). F
is called repeatedly in the expansion. Its first argument i is the index in
the sequence, and the variable list of arguments passed to LISTIFY are
passed through to F.

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this
is required to enable providing a comma as separator.

FOR_EACH(F, sep, ...)
Call a macro F on each provided argument with a given separator between each call.

Example:

#define F(x) int a##x
FOR_EACH(F, (;), 4, 5, 6);

This expands to:

int a4;
int a5;
int a6;

Parameters
• F – Macro to invoke

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this
is required to enable providing a comma as separator.

• ... – Variable argument list. The macro F is invoked as F(element) for
each element in the list.

FOR_EACH_NONEMPTY_TERM(F, term, ...)
Like FOR_EACH(), but with a terminator instead of a separator, and drops empty ele-
ments from the argument list.

The sep argument to FOR_EACH(F, (sep), a, b) is a separator which is placed between
calls to F, like this:

FOR_EACH(F, (sep), a, b) // F(a) sep F(b)
// ^^^ no sep here!

By contrast, the term argument to FOR_EACH_NONEMPTY_TERM(F, (term),a, b) is added
after each time F appears in the expansion:

FOR_EACH_NONEMPTY_TERM(F, (term), a, b) // F(a) term F(b) term
// ^^^^

Further, any empty elements are dropped:

FOR_EACH_NONEMPTY_TERM(F, (term), a, EMPTY, b) // F(a) term F(b) term

This is more convenient in some cases, because FOR_EACH_NONEMPTY_TERM() ex-
pands to nothing when given an empty argument list, and it’s often cumbersome to
write a macro F that does the right thing even when given an empty argument.

One example is when __VA_ARGS__ may or may not be empty, and the results are em-
bedded in a larger initializer:
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#define SQUARE(x) ((x)*(x))

int my_array[] = {
FOR_EACH_NONEMPTY_TERM(SQUARE, (,), FOO(...))
FOR_EACH_NONEMPTY_TERM(SQUARE, (,), BAR(...))
FOR_EACH_NONEMPTY_TERM(SQUARE, (,), BAZ(...))

};

This is more convenient than:

a. figuring out whether the FOO, BAR, and BAZ expansions are empty and adding a
comma manually (or not) between FOR_EACH() calls

b. rewriting SQUARE so it reacts appropriately when “x” is empty (which would be
necessary if e.g. FOO expands to nothing)

Parameters
• F – Macro to invoke on each nonempty element of the variable arguments

• term – Terminator (e.g. comma or semicolon) placed after each invoca-
tion of F. Must be in parentheses; this is required to enable providing a
comma as separator.

• ... – Variable argument list. The macro F is invoked as F(element) for
each nonempty element in the list.

FOR_EACH_IDX(F, sep, ...)
Call macro F on each provided argument, with the argument’s index as an additional
parameter.

This is like FOR_EACH(), except F should be a macro which takes two arguments:
F(index, variable_arg).

Example:

#define F(idx, x) int a##idx = x
FOR_EACH_IDX(F, (;), 4, 5, 6);

This expands to:

int a0 = 4;
int a1 = 5;
int a2 = 6;

Parameters
• F – Macro to invoke

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this
is required to enable providing a comma as separator.

• ... – Variable argument list. The macro F is invoked as F(index, ele-
ment) for each element in the list.

FOR_EACH_FIXED_ARG(F, sep, fixed_arg, ...)
Call macro F on each provided argument, with an additional fixed argument as a pa-
rameter.

This is like FOR_EACH(), except F should be a macro which takes two arguments:
F(variable_arg, fixed_arg).

Example:
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static void func(int val, void *dev);
FOR_EACH_FIXED_ARG(func, (;), dev, 4, 5, 6);

This expands to:

func(4, dev);
func(5, dev);
func(6, dev);

Parameters
• F – Macro to invoke

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this
is required to enable providing a comma as separator.

• fixed_arg – Fixed argument passed to F as the second macro parameter.

• ... – Variable argument list. The macro F is invoked as F(element,
fixed_arg) for each element in the list.

FOR_EACH_IDX_FIXED_ARG(F, sep, fixed_arg, ...)
Calls macro F for each variable argument with an index and fixed argument.

This is like the combination of FOR_EACH_IDX() with FOR_EACH_FIXED_ARG().

Example:

#define F(idx, x, fixed_arg) int fixed_arg##idx = x
FOR_EACH_IDX_FIXED_ARG(F, (;), a, 4, 5, 6);

This expands to:

int a0 = 4;
int a1 = 5;
int a2 = 6;

Parameters
• F – Macro to invoke

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; This
is required to enable providing a comma as separator.

• fixed_arg – Fixed argument passed to F as the third macro parameter.

• ... – Variable list of arguments. The macro F is invoked as F(index,
element, fixed_arg) for each element in the list.

REVERSE_ARGS(...)
Reverse arguments order.

Parameters
• ... – Variable argument list.

NUM_VA_ARGS_LESS_1(...)
Number of arguments in the variable arguments list minus one.

Note

Supports up to 64 arguments.
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Parameters
• ... – List of arguments

Returns
Number of variadic arguments in the argument list, minus one

NUM_VA_ARGS(...)
Number of arguments in the variable arguments list.

Note

Supports up to 63 arguments.

Parameters
• ... – List of arguments

Returns
Number of variadic arguments in the argument list

MACRO_MAP_CAT(...)
Mapping macro that pastes results together.

This is similar to FOR_EACH() in that it invokes a macro repeatedly on each element
of __VA_ARGS__. However, unlike FOR_EACH(), MACRO_MAP_CAT() pastes the results
together into a single token.

For example, with this macro FOO:

#define FOO(x) item_##x##_

MACRO_MAP_CAT(FOO, a, b, c), expands to the token:

item_a_item_b_item_c_

Parameters
• ... – Macro to expand on each argument, followed by its arguments.

(The macro should take exactly one argument.)

Returns
The results of expanding the macro on each argument, all pasted together

MACRO_MAP_CAT_N(N, ...)
Mapping macro that pastes a fixed number of results together.

Similar to MACRO_MAP_CAT(), but expects a fixed number of arguments. If more ar-
guments are given than are expected, the rest are ignored.

Parameters
• N – Number of arguments to map

• ... – Macro to expand on each argument, followed by its arguments.
(The macro should take exactly one argument.)

Returns
The results of expanding the macro on each argument, all pasted together
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Functions

static inline bool is_power_of_two(unsigned int x)
Is x a power of two?

Parameters
• x – value to check

Returns
true if x is a power of two, false otherwise

ALWAYS_INLINE static bool is_null_no_warn(void *p)
Is p equal to NULL?

Some macros may need to check their arguments against NULL to support multiple
use-cases, but NULL checks can generate warnings if such a macro is used in contexts
where that particular argument can never be NULL.

The warnings can be triggered if: a) all macros are expanded (e.g. when using CON-
FIG_COMPILER_SAVE_TEMPS=y) or b) tracking of macro expansions are turned off (-
ftrack-macro-expansion=0)

The warnings can be circumvented by using this inline function for doing the NULL
check within the macro. The compiler is still able to optimize the NULL check out at a
later stage.

Parameters
• p – Pointer to check

Returns
true if p is equal to NULL, false otherwise

static inline int64_t arithmetic_shift_right(int64_t value, uint8_t shift)
Arithmetic shift right.

Parameters
• value – value to shift

• shift – number of bits to shift

Returns
value shifted right by shift; opened bit positions are filled with the sign
bit

static inline void bytecpy(void *dst, const void *src, size_t size)
byte by byte memcpy.

Copy size bytes of src into dest. This is guaranteed to be done byte by byte.

Parameters
• dst – Pointer to the destination memory.

• src – Pointer to the source of the data.

• size – The number of bytes to copy.

static inline void byteswp(void *a, void *b, size_t size)
byte by byte swap.

Swap size bytes between memory regions a and b. This is guaranteed to be done byte
by byte.

Parameters
• a – Pointer to the first memory region.
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• b – Pointer to the second memory region.

• size – The number of bytes to swap.

int char2hex(char c, uint8_t *x)
Convert a single character into a hexadecimal nibble.

Parameters
• c – The character to convert

• x – The address of storage for the converted number.

Returns
Zero on success or (negative) error code otherwise.

int hex2char(uint8_t x, char *c)
Convert a single hexadecimal nibble into a character.

Parameters
• c – The number to convert

• x – The address of storage for the converted character.

Returns
Zero on success or (negative) error code otherwise.

size_t bin2hex(const uint8_t *buf, size_t buflen, char *hex, size_t hexlen)
Convert a binary array into string representation.

Parameters
• buf – The binary array to convert

• buflen – The length of the binary array to convert

• hex – Address of where to store the string representation.

• hexlen – Size of the storage area for string representation.

Returns
The length of the converted string, or 0 if an error occurred.

size_t hex2bin(const char *hex, size_t hexlen, uint8_t *buf, size_t buflen)
Convert a hexadecimal string into a binary array.

Parameters
• hex – The hexadecimal string to convert

• hexlen – The length of the hexadecimal string to convert.

• buf – Address of where to store the binary data

• buflen – Size of the storage area for binary data

Returns
The length of the binary array, or 0 if an error occurred.

static inline uint8_t bcd2bin(uint8_t bcd)
Convert a binary coded decimal (BCD 8421) value to binary.

Parameters
• bcd – BCD 8421 value to convert.

Returns
Binary representation of input value.
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static inline uint8_t bin2bcd(uint8_t bin)
Convert a binary value to binary coded decimal (BCD 8421).

Parameters
• bin – Binary value to convert.

Returns
BCD 8421 representation of input value.

uint8_t u8_to_dec(char *buf, uint8_t buflen, uint8_t value)
Convert a uint8_t into a decimal string representation.

Convert a uint8_t value into its ASCII decimal string representation. The string is ter-
minated if there is enough space in buf.

Parameters
• buf – Address of where to store the string representation.

• buflen – Size of the storage area for string representation.

• value – The value to convert to decimal string

Returns
The length of the converted string (excluding terminator if any), or 0 if an
error occurred.

static inline int32_t sign_extend(uint32_t value, uint8_t index)
Sign extend an 8, 16 or 32 bit value using the index bit as sign bit.

Parameters
• value – The value to sign expand.

• index – 0 based bit index to sign bit (0 to 31)

static inline int64_t sign_extend_64(uint64_t value, uint8_t index)
Sign extend a 64 bit value using the index bit as sign bit.

Parameters
• value – The value to sign expand.

• index – 0 based bit index to sign bit (0 to 63)

char *utf8_trunc(char *utf8_str)
Properly truncate a NULL-terminated UTF-8 string.

Take a NULL-terminated UTF-8 string and ensure that if the string has been truncated
(by setting the NULL terminator) earlier by other means, that the string ends with a
properly formatted UTF-8 character (1-4 bytes).

Parameters
• utf8_str – NULL-terminated string

Returns
Pointer to the utf8_str

char *utf8_lcpy(char *dst, const char *src, size_t n)
Copies a UTF-8 encoded string from src to dst.

The resulting dst will always be NULL terminated if n is larger than 0, and the dst
string will always be properly UTF-8 truncated.

Parameters
• dst – The destination of the UTF-8 string.

• src – The source string
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• n – The size of the dst buffer. Maximum number of characters copied is
n - 1. If 0 nothing will be done, and the dst will not be NULL terminated.

Returns
Pointer to the dst

static inline void mem_xor_n(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, size_t
len)

XOR n bytes.

Parameters
• dst – Destination of where to store result. Shall be len bytes.

• src1 – First source. Shall be len bytes.

• src2 – Second source. Shall be len bytes.

• len – Number of bytes to XOR.

static inline void mem_xor_32(uint8_t dst[4], const uint8_t src1[4], const uint8_t src2[4])
XOR 32 bits.

Parameters
• dst – Destination of where to store result. Shall be 32 bits.

• src1 – First source. Shall be 32 bits.

• src2 – Second source. Shall be 32 bits.

static inline void mem_xor_128(uint8_t dst[16], const uint8_t src1[16], const uint8_t
src2[16])

XOR 128 bits.

Parameters
• dst – Destination of where to store result. Shall be 128 bits.

• src1 – First source. Shall be 128 bits.

• src2 – Second source. Shall be 128 bits.

3.10 Iterable Sections

This page contains the reference documentation for the iterable sections APIs, which can be
used for defining iterable areas of equally-sized data structures, that can be iterated on using
STRUCT_SECTION_FOREACH.

3.10.1 Usage

Iterable section elements are typically used by defining the data structure and associated initial-
izer in a common header file, so that they can be instantiated anywhere in the code base.

struct my_data {
int a, b;

};

#define DEFINE_DATA(name, _a, _b) \
STRUCT_SECTION_ITERABLE(my_data, name) = { \

.a = _a, \

.b = _b, \
(continues on next page)
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(continued from previous page)
}

...

DEFINE_DATA(d1, 1, 2);
DEFINE_DATA(d2, 3, 4);
DEFINE_DATA(d3, 5, 6);

Then the linker has to be setup to place the place the structure in a contiguous segment using one
of the linker macros such as ITERABLE_SECTION_RAM or ITERABLE_SECTION_ROM. Custom linker
snippets are normally declared using one of the zephyr_linker_sources() CMake functions, us-
ing the appropriate section identifier, DATA_SECTIONS for RAM structures and SECTIONS for ROM
ones.

# CMakeLists.txt
zephyr_linker_sources(DATA_SECTIONS iterables.ld)

# iterables.ld
ITERABLE_SECTION_RAM(my_data, 4)

The data can then be accessed using STRUCT_SECTION_FOREACH.

STRUCT_SECTION_FOREACH(my_data, data) {
printk("%p: a: %d, b: %d\n", data, data->a, data->b);

}

Note

The linker is going to place the entries sorted by name, so the example above would visit d1,
d2 and d3 in that order, regardless of how they were defined in the code.

3.10.2 API Reference

group iterable_section_apis
Iterable Sections APIs.

Defines

ITERABLE_SECTION_ROM(struct_type, subalign)
Define a read-only iterable section output.

Define an output section which will set up an iterable area of equally-sized data struc-
tures. For use with STRUCT_SECTION_ITERABLE(). Input sections will be sorted by
name, per ld’s SORT_BY_NAME.

This macro should be used for read-only data.

Note that this keeps the symbols in the image even though they are not being directly
referenced. Use this when symbols are indirectly referenced by iterating through the
section.

ITERABLE_SECTION_ROM_NUMERIC(struct_type, subalign)
Define a read-only iterable section output, sorted numerically.
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This version of ITERABLE_SECTION_ROM() sorts the entries numerically, that is, SEC-
NAME_10 will come after SECNAME_2. _ separator is required, and up to 2 numeric digits
are handled (0-99).

See also

ITERABLE_SECTION_ROM()

ITERABLE_SECTION_ROM_GC_ALLOWED(struct_type, subalign)
Define a garbage collectable read-only iterable section output.

Define an output section which will set up an iterable area of equally-sized data struc-
tures. For use with STRUCT_SECTION_ITERABLE(). Input sections will be sorted by
name, per ld’s SORT_BY_NAME.

This macro should be used for read-only data.

Note that the symbols within the section can be garbage collected.

ITERABLE_SECTION_RAM(struct_type, subalign)
Define a read-write iterable section output.

Define an output section which will set up an iterable area of equally-sized data struc-
tures. For use with STRUCT_SECTION_ITERABLE(). Input sections will be sorted by
name, per ld’s SORT_BY_NAME.

This macro should be used for read-write data that is modified at runtime.

Note that this keeps the symbols in the image even though they are not being directly
referenced. Use this when symbols are indirectly referenced by iterating through the
section.

ITERABLE_SECTION_RAM_NUMERIC(struct_type, subalign)
Define a read-write iterable section output, sorted numerically.

This version of ITERABLE_SECTION_RAM() sorts the entries numerically, that is, SEC-
NAME10 will come after SECNAME2. Up to 2 numeric digits are handled (0-99).

See also

ITERABLE_SECTION_RAM()

ITERABLE_SECTION_RAM_GC_ALLOWED(struct_type, subalign)
Define a garbage collectable read-write iterable section output.

Define an output section which will set up an iterable area of equally-sized data struc-
tures. For use with STRUCT_SECTION_ITERABLE(). Input sections will be sorted by
name, per ld’s SORT_BY_NAME.

This macro should be used for read-write data that is modified at runtime.

Note that the symbols within the section can be garbage collected.

TYPE_SECTION_ITERABLE(type, varname, secname, section_postfix)
Defines a new element for an iterable section for a generic type.

Convenience helper combining __in_section() and Z_DECL_ALIGN(). The section name
will be ‘.[SECNAME].static.[SECTION_POSTFIX]’
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In the linker script, create output sections for these using ITERABLE_SECTION_ROM()
or ITERABLE_SECTION_RAM().

Note

In order to store the element in ROM, a const specifier has to be added to the decla-
ration: const TYPE_SECTION_ITERABLE(…);

Parameters
• type – [in] data type of variable

• varname – [in] name of variable to place in section

• secname – [in] type name of iterable section.

• section_postfix – [in] postfix to use in section name

TYPE_SECTION_START(secname)
iterable section start symbol for a generic type

will return ‘_[OUT_TYPE]_list_start’.

Parameters
• secname – [in] type name of iterable section. For ‘struct foobar’ this

would be TYPE_SECTION_START(foobar)

TYPE_SECTION_END(secname)
iterable section end symbol for a generic type

will return ‘_<SECNAME>_list_end’.

Parameters
• secname – [in] type name of iterable section. For ‘struct foobar’ this

would be TYPE_SECTION_START(foobar)

TYPE_SECTION_START_EXTERN(type, secname)
iterable section extern for start symbol for a generic type

Helper macro to give extern for start of iterable section. The macro typically will be
called TYPE_SECTION_START_EXTERN(struct foobar, foobar). This allows the macro to
hand different types as well as cases where the type and section name may differ.

Parameters
• type – [in] data type of section

• secname – [in] name of output section

TYPE_SECTION_END_EXTERN(type, secname)
iterable section extern for end symbol for a generic type

Helper macro to give extern for end of iterable section. The macro typically will be
called TYPE_SECTION_END_EXTERN(struct foobar, foobar). This allows the macro to
hand different types as well as cases where the type and section name may differ.

Parameters
• type – [in] data type of section

• secname – [in] name of output section
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TYPE_SECTION_FOREACH(type, secname, iterator)
Iterate over a specified iterable section for a generic type.

Iterator for structure instances gathered by TYPE_SECTION_ITERABLE(). The linker
must provide a _<SECNAME>_list_start symbol and a _<SECNAME>_list_end symbol to
mark the start and the end of the list of struct objects to iterate over. This is normally
done using ITERABLE_SECTION_ROM() or ITERABLE_SECTION_RAM() in the linker
script.

TYPE_SECTION_GET(type, secname, i, dst)
Get element from section for a generic type.

Note

There is no protection against reading beyond the section.

Parameters
• type – [in] type of element

• secname – [in] name of output section

• i – [in] Index.

• dst – [out] Pointer to location where pointer to element is written.

TYPE_SECTION_COUNT(type, secname, dst)
Count elements in a section for a generic type.

Parameters
• type – [in] type of element

• secname – [in] name of output section

• dst – [out] Pointer to location where result is written.

STRUCT_SECTION_START(struct_type)
iterable section start symbol for a struct type

Parameters
• struct_type – [in] data type of section

STRUCT_SECTION_START_EXTERN(struct_type)
iterable section extern for start symbol for a struct

Helper macro to give extern for start of iterable section.

Parameters
• struct_type – [in] data type of section

STRUCT_SECTION_END(struct_type)
iterable section end symbol for a struct type

Parameters
• struct_type – [in] data type of section

STRUCT_SECTION_END_EXTERN(struct_type)
iterable section extern for end symbol for a struct

Helper macro to give extern for end of iterable section.

Parameters
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• struct_type – [in] data type of section

STRUCT_SECTION_ITERABLE_ALTERNATE(secname, struct_type, varname)
Defines a new element of alternate data type for an iterable section.

Special variant of STRUCT_SECTION_ITERABLE(), for placing alternate data types
within the iterable section of a specific data type. The data type sizes and semantics
must be equivalent!

STRUCT_SECTION_ITERABLE_ARRAY_ALTERNATE(secname, struct_type, varname, size)
Defines an array of elements of alternate data type for an iterable section.

See also

STRUCT_SECTION_ITERABLE_ALTERNATE

STRUCT_SECTION_ITERABLE(struct_type, varname)
Defines a new element for an iterable section.

Convenience helper combining __in_section() and Z_DECL_ALIGN(). The section name
is the struct type prepended with an underscore. The subsection is “static” and the
subsubsection is the variable name.

In the linker script, create output sections for these using ITERABLE_SECTION_ROM()
or ITERABLE_SECTION_RAM().

Note

In order to store the element in ROM, a const specifier has to be added to the decla-
ration: const STRUCT_SECTION_ITERABLE(…);

STRUCT_SECTION_ITERABLE_ARRAY(struct_type, varname, size)
Defines an array of elements for an iterable section.

See also

STRUCT_SECTION_ITERABLE

STRUCT_SECTION_ITERABLE_NAMED(struct_type, name, varname)
Defines a new element for an iterable section with a custom name.

The name can be used to customize how iterable section entries are sorted.

See also

STRUCT_SECTION_ITERABLE()

STRUCT_SECTION_ITERABLE_NAMED_ALTERNATE(struct_type, secname, name, varname)
Defines a new element for an iterable section with a custom name, placed in a custom
section.

The name can be used to customize how iterable section entries are sorted.
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See also

STRUCT_SECTION_ITERABLE_NAMED()

STRUCT_SECTION_FOREACH_ALTERNATE(secname, struct_type, iterator)
Iterate over a specified iterable section (alternate).

Iterator for structure instances gathered by STRUCT_SECTION_ITERABLE(). The linker
must provide a _<SECNAME>_list_start symbol and a _<SECNAME>_list_end symbol to
mark the start and the end of the list of struct objects to iterate over. This is normally
done using ITERABLE_SECTION_ROM() or ITERABLE_SECTION_RAM() in the linker
script.

STRUCT_SECTION_FOREACH(struct_type, iterator)
Iterate over a specified iterable section.

Iterator for structure instances gathered by STRUCT_SECTION_ITERABLE(). The linker
must provide a _<struct_type>_list_start symbol and a _<struct_type>_list_end sym-
bol to mark the start and the end of the list of struct objects to iterate over. This is
normally done using ITERABLE_SECTION_ROM() or ITERABLE_SECTION_RAM() in the
linker script.

STRUCT_SECTION_GET(struct_type, i, dst)
Get element from section.

Note

There is no protection against reading beyond the section.

Parameters
• struct_type – [in] Struct type.

• i – [in] Index.

• dst – [out] Pointer to location where pointer to element is written.

STRUCT_SECTION_COUNT(struct_type, dst)
Count elements in a section.

Parameters
• struct_type – [in] Struct type

• dst – [out] Pointer to location where result is written.

3.11 Code And Data Relocation

3.11.1 Overview

This feature will allow relocating .text, .rodata, .data, and .bss sections from required files
and place them in the required memory region. The memory region and file are given to the
scripts/build/gen_relocate_app.py script in the form of a string. This script is always invoked from
inside cmake.

This script provides a robust way to re-order the memory contents without actually
having to modify the code. In simple terms this script will do the job of __at-
tribute__((section("name"))) for a bunch of files together.
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3.11.2 Details

The memory region and file are given to the scripts/build/gen_relocate_app.py script in the form
of a string.

An example of such a string is: SRAM2:/home/xyz/zephyr/samples/hello_world/src/main.c,
SRAM1:/home/xyz/zephyr/samples/hello_world/src/main2.c
This script is invoked with the following parameters: python3 gen_relocate_app.py -i in-
put_string -o generated_linker -c generated_code
Kconfig CONFIG_CODE_DATA_RELOCATION option, when enabled in prj.conf, will invoke the script
and do the required relocation.

This script also trigger the generation of linker_relocate.ld and code_relocation.c files. The
linker_relocate.ld file creates appropriate sections and links the required functions or vari-
ables from all the selected files.

Note

The text section is split into 2 parts in the main linker script. The first section will have some
info regarding vector tables and other debug related info. The second section will have the
complete text section. This is needed to force the required functions and data variables to the
correct locations. This is due to the behavior of the linker. The linker will only link once and
hence this text section had to be split to make room for the generated linker script.

The code_relocation.cfile has code that is needed for initializing data sections, and a copy of the
text sections (if XIP). Also this contains code needed for bss zeroing and for data copy operations
from ROM to required memory type.

The procedure to invoke this feature is:
• Enable CONFIG_CODE_DATA_RELOCATION in the prj.conf file

• Inside the CMakeLists.txt file in the project, mention all the files that need relocation.

zephyr_code_relocate(FILES src/*.c LOCATION SRAM2)
Where the first argument is the file/files and the second argument is the memory where it
must be placed.

Note

function zephyr_code_relocate() can be called as many times as required.

Additional Configurations

This section shows additional configuration options that can be set in CMakeLists.txt
• if the memory is SRAM1, SRAM2, CCD, or AON, then place the full object in the sections for

example:

zephyr_code_relocate(FILES src/file1.c LOCATION SRAM2)
zephyr_code_relocate(FILES src/file2.c LOCATION SRAM)

• if the memory type is appended with _DATA, _TEXT, _RODATA or _BSS, only the selected
memory is placed in the required memory region. for example:

zephyr_code_relocate(FILES src/file1.c LOCATION SRAM2_DATA)
zephyr_code_relocate(FILES src/file2.c LOCATION SRAM2_TEXT)
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• Multiple regions can also be appended together such as: SRAM2_DATA_BSS. This will place
data and bss inside SRAM2.

• Multiple files can be passed to the FILES argument, or CMake generator expressions can be
used to relocate a comma-separated list of files

file(GLOB sources "file*.c")
zephyr_code_relocate(FILES ${sources} LOCATION SRAM)
zephyr_code_relocate(FILES $<TARGET_PROPERTY:my_tgt,SOURCES> LOCATION SRAM)

NOKEEP flag

By default, all relocated functions and variables will be marked with KEEP() when generating
linker_relocate.ld. Therefore, if any input file happens to contain unused symbols, then they
will not be discarded by the linker, even when it is invoked with --gc-sections. If you’d like to
override this behavior, you can pass NOKEEP to your zephyr_code_relocate() call.

zephyr_code_relocate(FILES src/file1.c LOCATION SRAM2_TEXT NOKEEP)

The example above will help ensure that any unused code found in the .text sections of file1.c
will not stick to SRAM2.

NOCOPY flag

When a NOCOPY option is passed to the zephyr_code_relocate() function, the relocation code is
not generated in code_relocation.c. This flag can be used when we want to move the content
of a specific file (or set of files) to a XIP area.

This example will place the .text section of the xip_external_flash.c file to the EXTFLASH mem-
ory region where it will be executed from (XIP). The .data will be relocated as usual into SRAM.

zephyr_code_relocate(FILES src/xip_external_flash.c LOCATION EXTFLASH_TEXT NOCOPY)
zephyr_code_relocate(FILES src/xip_external_flash.c LOCATION SRAM_DATA)

Relocating libraries

Libraries can be relocated using the LIBRARY argument to zephyr_code_relocation() with the
library name. For example, the following snippet will relocate serial drivers to SRAM2:

zephyr_code_relocate(LIBRARY drivers__serial LOCATION SRAM2)

Tips

Take care if relocating kernel/arch files, some contain early initialization code that executes be-
fore code relocation takes place.

Additional MPU/MMU configuration may be required to ensure that the destination memory
region is configured to allow code execution.

Samples/ Tests

A test showcasing this feature is provided at $ZEPHYR_BASE/tests/application_development/
code_relocation
This test shows how the code relocation feature is used.
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This test will place .text, .data, .bss from 3 files to various parts in the SRAM using a custom linker
file derived from include/zephyr/arch/arm/cortex_m/scripts/linker.ld
A sample showcasing the NOCOPY flag is provided at $ZEPHYR_BASE/samples/
application_development/code_relocation_nocopy/
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Chapter 4

OS Services

4.1 Binary Descriptors

Binary Descriptors are constant data objects storing information about the binary executable.
Unlike “regular” constants, binary descriptors are linked to a known offset in the binary, making
them accessible to other programs, such as a different image running on the same device or a
host tool. A few examples of constants that would make useful binary descriptors are: kernel
version, app version, build time, compiler version, environment variables, compiling host name,
etc.

Binary descriptors are created by using the DEFINE_BINDESC_* macros. For example:

#include <zephyr/bindesc.h>

BINDESC_STR_DEFINE(my_string, 2, "Hello world!"); // Unique ID is 2

my_string could then be accessed using:

printk("my_string: %s\n", BINDESC_GET_STR(my_string));

But it could also be retrieved by west bindesc:

$ west bindesc custom_search STR 2 build/zephyr/zephyr.bin
"Hello world!"

4.1.1 Internals

Binary descriptors are implemented with a TLV (tag, length, value) header linked to a known
offset in the binary image. This offset may vary between architectures, but generally the de-
scriptors are linked as close to the beginning of the image as possible. In architectures where
the image must begin with a vector table (such as ARM), the descriptors are linked right after
the vector table. The reset vector points to the beginning of the text section, which is after the
descriptors. In architectures where the image must begin with executable code (e.g. x86), a jump
instruction is injected at the beginning of the image, in order to skip over the binary descriptors,
which are right after the jump instruction.

Each tag is a 16 bit unsigned integer, where the most significant nibble (4 bits) is the type (cur-
rently uint, string or bytes), and the rest is the ID. The ID is globally unique to each descriptor.
For example, the ID of the app version string is 0x800, and a string is denoted by 0x1, making the
app version tag 0x1800. The length is a 16 bit number equal to the length of the data in bytes.
The data is the actual descriptor value. All binary descriptor numbers (magic, tags, uints) are
laid out in memory in the endianness native to the SoC. west bindesc assumes little endian by
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default, so if the image belongs to a big endian SoC, the appropriate flag should be given to the
tool.

The binary descriptor header starts with the magic number 0xb9863e5a7ea46046. It’s followed
by the TLVs, and ends with the DESCRIPTORS_END (0xffff) tag. The tags are always aligned to 32
bits. If the value of the previous descriptor had a non-aligned length, zero padding will be added
to ensure that the current tag is aligned.

Putting it all together, here is what the example above would look like in memory (of a little
endian SoC):

46 60 a4 7e 5a 3e 86 b9 02 10 0d 00 48 65 6c 6c 6f 20 77 6f 72 6c 64 21 00 00 00 00 ff ff
| magic | tag |length| H e l l o w o r l d ! | pad | end␣
↪→|

4.1.2 Usage

Binary descriptors are always created by the BINDESC_*_DEFINE macros. As shown in the exam-
ple above, a descriptor can be generated from any string or integer, with any ID. However, it is
recommended to comply with the standard tags defined in include/zephyr/bindesc.h, as that
would have the following benefits:

1. The west bindesc tool would be able to recognize what the descriptor means and print a
meaningful tag

2. It would enforce consistency between various apps from various sources

3. It allows upstream-ability of descriptor generation (see Standard Descriptors)

To define a descriptor with a standard tag, just use the tags included from bindesc.h:

#include <zephyr/bindesc.h>

BINDESC_STR_DEFINE(app_version, BINDESC_ID_APP_VERSION_STRING, "1.2.3");

Standard Descriptors

Some descriptors might be trivial to implement, and could therefore be implemented in a stan-
dard way in upstream Zephyr. These could then be enabled via Kconfig, instead of requiring
every user to reimplement them. These include build times, kernel version, and host info. For
example, to add the build date and time as a string, the following configs should be enabled:

# Enable binary descriptors
CONFIG_BINDESC=y

# Enable definition of binary descriptors
CONFIG_BINDESC_DEFINE=y

# Enable default build time binary descriptors
CONFIG_BINDESC_DEFINE_BUILD_TIME=y
CONFIG_BINDESC_BUILD_DATE_TIME_STRING=y

To avoid collisions with user defined descriptors, the standard descriptors were allotted the
range between 0x800-0xfff. This leaves 0x000-0x7ff to users. For more information read the
help sections of these Kconfig symbols. By convention, each Kconfig symbol corresponds to a bi-
nary descriptor whose name is the Kconfig name (with CONFIG_BINDESC_ removed) in lower case.
For example, CONFIG_BINDESC_KERNEL_VERSION_STRING creates a descriptor that can be accessed
using BINDESC_GET_STR(kernel_version_string).
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west bindesc tool

west is able to parse and display binary descriptors from a given executable image.

For more information refer to west bindesc --help or the documentation.

4.1.3 API Reference

Related code samples

Binary descriptors ”Hello World”
Set and access binary descriptors for a basic Zephyr application.

group bindesc_define
Binary Descriptor Definition.

Defines

BINDESC_ID_APP_VERSION_STRING
The app version string such as “1.2.3”.

BINDESC_ID_APP_VERSION_MAJOR
The app version major such as 1.

BINDESC_ID_APP_VERSION_MINOR
The app version minor such as 2.

BINDESC_ID_APP_VERSION_PATCHLEVEL
The app version patchlevel such as 3.

BINDESC_ID_APP_VERSION_NUMBER
The app version number such as 0x10203.

BINDESC_ID_KERNEL_VERSION_STRING
The kernel version string such as “3.4.0”.

BINDESC_ID_KERNEL_VERSION_MAJOR
The kernel version major such as 3.

BINDESC_ID_KERNEL_VERSION_MINOR
The kernel version minor such as 4.

BINDESC_ID_KERNEL_VERSION_PATCHLEVEL
The kernel version patchlevel such as 0.

BINDESC_ID_KERNEL_VERSION_NUMBER
The kernel version number such as 0x30400.
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BINDESC_ID_BUILD_TIME_YEAR
The year the image was compiled in.

BINDESC_ID_BUILD_TIME_MONTH
The month of the year the image was compiled in.

BINDESC_ID_BUILD_TIME_DAY
The day of the month the image was compiled in.

BINDESC_ID_BUILD_TIME_HOUR
The hour of the day the image was compiled in.

BINDESC_ID_BUILD_TIME_MINUTE
The minute the image was compiled in.

BINDESC_ID_BUILD_TIME_SECOND
The second the image was compiled in.

BINDESC_ID_BUILD_TIME_UNIX
The UNIX time (seconds since midnight of 1970/01/01) the image was compiled in.

BINDESC_ID_BUILD_DATE_TIME_STRING
The date and time of compilation such as “2023/02/05 00:07:04”.

BINDESC_ID_BUILD_DATE_STRING
The date of compilation such as “2023/02/05”.

BINDESC_ID_BUILD_TIME_STRING
The time of compilation such as “00:07:04”.

BINDESC_ID_HOST_NAME
The name of the host that compiled the image.

BINDESC_ID_C_COMPILER_NAME
The C compiler name.

BINDESC_ID_C_COMPILER_VERSION
The C compiler version.

BINDESC_ID_CXX_COMPILER_NAME
The C++ compiler name.

BINDESC_ID_CXX_COMPILER_VERSION
The C++ compiler version.

BINDESC_TAG_DESCRIPTORS_END
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4.2 Console

Related code samples

Console echo
Echo an input character back to the output using the Console API.

group console_api
Console API.

Functions

int console_init(void)
Initialize console device.

This function should be called once to initialize pull-style access to console via con-
sole_getchar() function and buffered output using console_putchar() function. This
function supersedes, and incompatible with, callback (push-style) console handling
(via console_input_fn callback, etc.).

Returns
0 on success, error code (<0) otherwise

ssize_t console_read(void *dummy, void *buf, size_t size)
Read data from console.

Parameters
• dummy – ignored, present to follow read() prototype

• buf – buffer to read data to

• size – maximum number of bytes to read

Returns
>0, number of actually read bytes (can be less than size param) =0, in case
of EOF <0, in case of error (e.g. -EAGAIN if timeout expired). errno variable
is also set.

ssize_t console_write(void *dummy, const void *buf, size_t size)
Write data to console.

Parameters
• dummy – ignored, present to follow write() prototype

• buf – buffer to write data to

• size – maximum number of bytes to write

Returns
=>0, number of actually written bytes (can be less than size param) <0, in
case of error (e.g. -EAGAIN if timeout expired). errno variable is also set.

int console_getchar(void)
Get next char from console input buffer.

Return next input character from console. If no characters available, this function
will block. This function is similar to ANSI C getchar() function and is intended to ease
porting of existing software. Before this function can be used, console_init() should be
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called once. This function is incompatible with native Zephyr callback-based console
input processing, shell subsystem, or console_getline().

Returns
0-255: a character read, including control characters. <0: error occurred.

int console_putchar(char c)
Output a char to console (buffered).

Puts a character into console output buffer. It will be sent to a console asynchronously,
e.g. using an IRQ handler.

Returns
<0 on error, otherwise 0.

void console_getline_init(void)
Initialize console_getline() call.

This function should be called once to initialize pull-style access to console via con-
sole_getline() function. This function supersedes, and incompatible with, callback
(push-style) console handling (via console_input_fn callback, etc.).

char *console_getline(void)
Get next line from console input buffer.

Return next input line from console. Until full line is available, this function will
block. This function is similar to ANSI C gets() function (except a line is returned in
system-owned buffer, and system takes care of the buffer overflow checks) and is in-
tended to ease porting of existing software. Before this function can be used, con-
sole_getline_init() should be called once. This function is incompatible with native
Zephyr callback-based console input processing, shell subsystem, or console_getchar().

Returns
A pointer to a line read, not including EOL character(s). A line resides in a
system-owned buffer, so an application should finish any processing of this
line immediately after console_getline() call, or the buffer can be reused.

4.3 Cryptography

The crypto section contains information regarding the cryptographic primitives supported by
the Zephyr kernel. Use the information to understand the principles behind the operation of the
different algorithms and how they were implemented.

The following crypto libraries have been included:

4.3.1 PSA Crypto

Overview

The PSA (Platform Security Architecture) Crypto API offers a portable programming interface
for cryptographic operations and key storage across a wide range of hardware. It is designed
to be user-friendly while still providing access to the low-level primitives essential for modern
cryptography.

It is created and maintained by Arm. Arm developed the PSA as a comprehensive security frame-
work to address the increasing security needs of connected devices.

In Zephyr, the PSA Crypto API is implemented using Mbed TLS, an open-source cryptographic
library that provides the underlying cryptographic functions.
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Design Goals

The interface is suitable for a vast range of devices: from special-purpose cryptographic pro-
cessors that process data with a built-in key, to constrained devices running custom application
code, such as microcontrollers, and multi-application devices, such as servers. It follows the
principle of cryptographic agility.

Algorithm Flexibility
The PSA Crypto API supports a wide range of cryptographic algorithms, allowing developers
to switch between different cryptographic methods as needed. This flexibility is crucial for
maintaining security as new algorithms emerge and existing ones become obsolete.

Key Management
The PSA Crypto API includes robust key management features that support the creation,
storage, and use of cryptographic keys in a secure and flexible manner. It uses opaque
key identifiers, which allows for easy key replacement and updates without exposing key
material.

Implementation Independence
The PSA Crypto API abstracts the underlying cryptographic library, meaning that the spe-
cific implementation can be changed without affecting the application code. This abstrac-
tion supports cryptographic agility by enabling the use of different cryptographic libraries
or hardware accelerators as needed.

Future-Proofing
By adhering to cryptographic agility, PSA Crypto ensures that applications can quickly
adapt to new cryptographic standards and practices, enhancing long-term security and
compliance.

Examples of Applications

Network Security (TLS)
The API provides all of the cryptographic primitives needed to establish TLS connections.

Secure Storage
The API provides all primitives related to storage encryption, block or file-based, with mas-
ter encryption keys stored inside a key store.

Network Credentials
The API provides network credential management inside a key store, for example, for
X.509-based authentication or pre-shared keys on enterprise networks.

Device Pairing
The API provides support for key agreement protocols that are often used for secure pairing
of devices over wireless channels. For example, the pairing of an NFC token or a Bluetooth
device might use key agreement protocols upon first use.

Secure Boot
The API provides primitives for use during firmware integrity and authenticity validation,
during a secure or trusted boot process.

Attestation
The API provides primitives used in attestation activities. Attestation is the ability for a
device to sign an array of bytes with a device private key and return the result to the caller.
There are several use cases; ranging from attestation of the device state, to the ability to
generate a key pair and prove that it has been generated inside a secure key store. The API
provides access to the algorithms commonly used for attestation.

Factory Provisioning
Most IoT devices receive a unique identity during the factory provisioning process, or once
they have been deployed to the field. This API provides the APIs necessary for populating
a device with keys that represent that identity.
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Usage considerations

Always check for errors
Most functions in the PSA Crypto API can return errors. All functions that can fail have the
return type psa_status_t. A few functions cannot fail, and thus, return void or some other
type.

If an error occurs, unless otherwise specified, the content of the output parameters is un-
defined and must not be used.

Some common causes of errors include:

• In implementations where the keys are stored and processed in a separate environ-
ment from the application, all functions that need to access the cryptography process-
ing environment might fail due to an error in the communication between the two
environments.

• If an algorithm is implemented with a hardware accelerator, which is logically separate
from the application processor, the accelerator might fail, even when the application
processor keeps running normally.

• Most functions might fail due to a lack of resources. However, some implementations
guarantee that certain functions always have sufficient memory.

• All functions that access persistent keys might fail due to a storage failure.

• All functions that require randomness might fail due to a lack of entropy. Implementa-
tions are encouraged to seed the random generator with sufficient entropy during the
execution of psa_crypto_init(). However, some security standards require periodic
reseeding from a hardware random generator, which can fail.

Shared memory and concurrency
Some environments allow applications to be multithreaded, while others do not. In some
environments, applications can share memory with a different security context. In envi-
ronments with multithreaded applications or shared memory, applications must be written
carefully to avoid data corruption or leakage. This specification requires the application to
obey certain constraints.

In general, the PSA Crypto API allows either one writer or any number of simultaneous
readers, on any given object. In other words, if two or more calls access the same object
concurrently, then the behavior is only well-defined if all the calls are only reading from the
object and do not modify it. Read accesses include reading memory by input parameters
and reading keystore content by using a key. For more details, refer to Concurrent calls

If an application shares memory with another security context, it can pass shared mem-
ory blocks as input buffers or output buffers, but not as non-buffer parameters. For more
details, refer to Stability of parameters.

Cleaning up after use
To minimize impact if the system is compromised, it is recommended that applications
wipe all sensitive data from memory when it is no longer used. That way, only data that is
currently in use can be leaked, and past data is not compromised.

Wiping sensitive data includes:

• Clearing temporary buffers in the stack or on the heap.

• Aborting operations if they will not be finished.

• Destroying keys that are no longer used.

References

• PSA Crypto
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• Mbed TLS

4.3.2 Random Number Generation

The random API subsystem provides random number generation APIs in both cryptographically
and non-cryptographically secure instances. Which random API to use is based on the crypto-
graphic requirements of the random number. The non-cryptographic APIs will return random
values much faster if non-cryptographic values are needed.

The cryptographically secure random functions shall be compliant to the FIPS 140-2 [?] recom-
mended algorithms. Hardware based random-number generators (RNG) can be used on plat-
forms with appropriate hardware support. Platforms without hardware RNG support shall use
the CTR-DRBG algorithm. The algorithm can be provided by TinyCrypt or mbedTLS depending
on your application performance and resource requirements.

Note

The CTR-DRBG generator needs an entropy source to establish and maintain the
cryptographic security of the PRNG.

Kconfig Options

These options can be found in the following path subsys/random/Kconfig.

CONFIG_TEST_RANDOM_GENERATOR
For testing, this option allows a non-random number generator to be used and permits
random number APIs to return values that are not truly random.

The random number generator choice group allows selection of the RNG source function for the
system via the RNG_GENERATOR_CHOICE choice group. An override of the default value can be
specified in the SOC or board .defconfig file by using:

choice RNG_GENERATOR_CHOICE
default XOSHIRO_RANDOM_GENERATOR

endchoice

The random number generators available include:

CONFIG_TIMER_RANDOM_GENERATOR
enables number generator based on system timer clock. This number generator is not ran-
dom and used for testing only.

CONFIG_ENTROPY_DEVICE_RANDOM_GENERATOR
enables a random number generator that uses the enabled hardware entropy gathering
driver to generate random numbers.

CONFIG_XOSHIRO_RANDOM_GENERATOR
enables the Xoshiro128++ pseudo-random number generator, that uses the entropy driver
as a seed source.

The CSPRNG_GENERATOR_CHOICE choice group provides selection of the cryptographically se-
cure random number generator source function. An override of the default value can be speci-
fied in the SOC or board .defconfig file by using:

choice CSPRNG_GENERATOR_CHOICE
default CTR_DRBG_CSPRNG_GENERATOR

endchoice

The cryptographically secure random number generators available include:
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CONFIG_HARDWARE_DEVICE_CS_GENERATOR
enables a cryptographically secure random number generator using the hardware random
generator driver

CONFIG_CTR_DRBG_CSPRNG_GENERATOR
enables the CTR-DRBG pseudo-random number generator. The CTR-DRBG is a FIPS140-2
recommended cryptographically secure random number generator.

Personalization data can be provided in addition to the entropy source to make the initialization
of the CTR-DRBG as unique as possible.

CONFIG_CS_CTR_DRBG_PERSONALIZATION
CTR-DRBG Initialization Personalization string

API Reference

Related code samples

AWS IoT Core MQTT
Connect to AWS IoT Core and publish messages using MQTT.

Microsoft Azure IoT Hub MQTT
Connect to Azure IoT Hub and publish messages using MQTT.

group random_api
Random Function APIs.

Since
1.0

Version
1.0.0

Functions

void sys_rand_get(void *dst, size_t len)
Fill the destination buffer with random data values that should pass general random-
ness tests.

Note

The random values returned are not considered cryptographically secure random
number values.

Parameters
• dst – [out] destination buffer to fill with random data.

• len – size of the destination buffer.

int sys_csrand_get(void *dst, size_t len)
Fill the destination buffer with cryptographically secure random data values.

720 Chapter 4. OS Services



Zephyr Project Documentation, Release 3.7.99

Note

If the random values requested do not need to be cryptographically secure then use
sys_rand_get() instead.

Parameters
• dst – [out] destination buffer to fill.

• len – size of the destination buffer.

Returns
0 if success, -EIO if entropy reseed error

static inline uint8_t sys_rand8_get(void)
Return a 8-bit random value that should pass general randomness tests.

Note

The random value returned is not a cryptographically secure random number
value.

Returns
8-bit random value.

static inline uint16_t sys_rand16_get(void)
Return a 16-bit random value that should pass general randomness tests.

Note

The random value returned is not a cryptographically secure random number
value.

Returns
16-bit random value.

static inline uint32_t sys_rand32_get(void)
Return a 32-bit random value that should pass general randomness tests.

Note

The random value returned is not a cryptographically secure random number
value.

Returns
32-bit random value.

static inline uint64_t sys_rand64_get(void)
Return a 64-bit random value that should pass general randomness tests.

Note

The random value returned is not a cryptographically secure random number
value.
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Returns
64-bit random value.

4.3.3 Crypto APIs

Overview

API Reference

Related code samples

Crypto
Use the crypto APIs to perform various encryption/decryption operations.

Generic API for crypto drivers

group crypto
Crypto APIs.

Since
1.7

Version
1.0.0

Defines

CAP_OPAQUE_KEY_HNDL

CAP_RAW_KEY

CAP_KEY_LOADING_API

CAP_INPLACE_OPS
Whether the output is placed in separate buffer or not.

CAP_SEPARATE_IO_BUFS

CAP_SYNC_OPS
These denotes if the output (completion of a cipher_xxx_op) is conveyed by the op func-
tion returning, or it is conveyed by an async notification.

CAP_ASYNC_OPS

CAP_AUTONONCE
Whether the hardware/driver supports autononce feature.
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CAP_NO_IV_PREFIX
Don’t prefix IV to cipher blocks.

Functions

static inline int crypto_query_hwcaps(const struct device *dev)
Query the crypto hardware capabilities.

This API is used by the app to query the capabilities supported by the crypto device.
Based on this the app can specify a subset of the supported options to be honored for
a session during cipher_begin_session().

Parameters
• dev – Pointer to the device structure for the driver instance.

Returns
bitmask of supported options.

struct crypto_driver_api
#include <crypto.h> Crypto driver API definition.

Ciphers API

group crypto_cipher
Crypto Cipher APIs.

Typedefs

typedef int (*block_op_t)(struct cipher_ctx *ctx, struct cipher_pkt *pkt)

typedef int (*cbc_op_t)(struct cipher_ctx *ctx, struct cipher_pkt *pkt, uint8_t *iv)

typedef int (*ctr_op_t)(struct cipher_ctx *ctx, struct cipher_pkt *pkt, uint8_t *ctr)

typedef int (*ccm_op_t)(struct cipher_ctx *ctx, struct cipher_aead_pkt *pkt, uint8_t *nonce)

typedef int (*gcm_op_t)(struct cipher_ctx *ctx, struct cipher_aead_pkt *pkt, uint8_t *nonce)

typedef void (*cipher_completion_cb)(struct cipher_pkt *completed, int status)

Enums

enum cipher_algo
Cipher Algorithm.

Values:

enumerator CRYPTO_CIPHER_ALGO_AES = 1
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enum cipher_op
Cipher Operation.

Values:

enumerator CRYPTO_CIPHER_OP_DECRYPT = 0

enumerator CRYPTO_CIPHER_OP_ENCRYPT = 1

enum cipher_mode
Possible cipher mode options.

More to be added as required.

Values:

enumerator CRYPTO_CIPHER_MODE_ECB = 1

enumerator CRYPTO_CIPHER_MODE_CBC = 2

enumerator CRYPTO_CIPHER_MODE_CTR = 3

enumerator CRYPTO_CIPHER_MODE_CCM = 4

enumerator CRYPTO_CIPHER_MODE_GCM = 5

Functions

static inline int cipher_begin_session(const struct device *dev, struct cipher_ctx *ctx,
enum cipher_algo algo, enum cipher_mode mode,
enum cipher_op optype)

Setup a crypto session.

Initializes one time parameters, like the session key, algorithm and cipher mode which
may remain constant for all operations in the session. The state may be cached in
hardware and/or driver data state variables.

Parameters
• dev – Pointer to the device structure for the driver instance.

• ctx – Pointer to the context structure. Various one time parameters like
key, keylength, etc. are supplied via this structure. The structure docu-
mentation specifies which fields are to be populated by the app before
making this call.

• algo – The crypto algorithm to be used in this session. e.g AES

• mode – The cipher mode to be used in this session. e.g CBC, CTR

• optype – Whether we should encrypt or decrypt in this session

Returns
0 on success, negative errno code on fail.
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static inline int cipher_free_session(const struct device *dev, struct cipher_ctx *ctx)
Cleanup a crypto session.

Clears the hardware and/or driver state of a previous session.

Parameters
• dev – Pointer to the device structure for the driver instance.

• ctx – Pointer to the crypto context structure of the session to be freed.

Returns
0 on success, negative errno code on fail.

static inline int cipher_callback_set(const struct device *dev, cipher_completion_cb cb)
Registers an async crypto op completion callback with the driver.

The application can register an async crypto op completion callback handler to be in-
voked by the driver, on completion of a prior request submitted via cipher_do_op().
Based on crypto device hardware semantics, this is likely to be invoked from an ISR
context.

Parameters
• dev – Pointer to the device structure for the driver instance.

• cb – Pointer to application callback to be called by the driver.

Returns
0 on success, -ENOTSUP if the driver does not support async op, negative
errno code on other error.

static inline int cipher_block_op(struct cipher_ctx *ctx, struct cipher_pkt *pkt)
Perform single-block crypto operation (ECB cipher mode).

This should not be overloaded to operate on multiple blocks for security reasons.

Parameters
• ctx – Pointer to the crypto context of this op.

• pkt – Structure holding the input/output buffer pointers.

Returns
0 on success, negative errno code on fail.

static inline int cipher_cbc_op(struct cipher_ctx *ctx, struct cipher_pkt *pkt, uint8_t *iv)
Perform Cipher Block Chaining (CBC) crypto operation.

Parameters
• ctx – Pointer to the crypto context of this op.

• pkt – Structure holding the input/output buffer pointers.

• iv – Initialization Vector (IV) for the operation. Same IV value should
not be reused across multiple operations (within a session context) for
security.

Returns
0 on success, negative errno code on fail.

static inline int cipher_ctr_op(struct cipher_ctx *ctx, struct cipher_pkt *pkt, uint8_t *iv)
Perform Counter (CTR) mode crypto operation.

Parameters
• ctx – Pointer to the crypto context of this op.

• pkt – Structure holding the input/output buffer pointers.
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• iv – Initialization Vector (IV) for the operation. We use a split
counter formed by appending IV and ctr. Consequently ivlen =
keylen - ctrlen. ‘ctrlen’ is specified during session setup through
the ‘ctx.mode_params.ctr_params.ctr_len’ parameter. IV should not be
reused across multiple operations (within a session context) for security.
The non-IV part of the split counter is transparent to the caller and is fully
managed by the crypto provider.

Returns
0 on success, negative errno code on fail.

static inline int cipher_ccm_op(struct cipher_ctx *ctx, struct cipher_aead_pkt *pkt, uint8_t
*nonce)

Perform Counter with CBC-MAC (CCM) mode crypto operation.

Parameters
• ctx – Pointer to the crypto context of this op.

• pkt – Structure holding the input/output, Associated Data (AD) and auth
tag buffer pointers.

• nonce – Nonce for the operation. Same nonce value should not be reused
across multiple operations (within a session context) for security.

Returns
0 on success, negative errno code on fail.

static inline int cipher_gcm_op(struct cipher_ctx *ctx, struct cipher_aead_pkt *pkt, uint8_t
*nonce)

Perform Galois/Counter Mode (GCM) crypto operation.

Parameters
• ctx – Pointer to the crypto context of this op.

• pkt – Structure holding the input/output, Associated Data (AD) and auth
tag buffer pointers.

• nonce – Nonce for the operation. Same nonce value should not be reused
across multiple operations (within a session context) for security.

Returns
0 on success, negative errno code on fail.

struct cipher_ops
#include <cipher.h>

struct ccm_params
#include <cipher.h>

struct ctr_params
#include <cipher.h>

struct gcm_params
#include <cipher.h>

struct cipher_ctx
#include <cipher.h> Structure encoding session parameters.

Refer to comments for individual fields to know the contract in terms of who fills what
and when w.r.t begin_session() call.
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Public Members

struct cipher_ops ops
Place for driver to return function pointers to be invoked per cipher operation.

To be populated by crypto driver on return from begin_session() based on the
algo/mode chosen by the app.

union cipher_ctx key
To be populated by the app before calling begin_session()

const struct device *device
The device driver instance this crypto context relates to.

Will be populated by the begin_session() API.

void *drv_sessn_state
If the driver supports multiple simultaneously crypto sessions, this will identify
the specific driver state this crypto session relates to.

Since dynamic memory allocation is not possible, it is suggested that at build time
drivers allocate space for the max simultaneous sessions they intend to support.
To be populated by the driver on return from begin_session().

void *app_sessn_state
Place for the user app to put info relevant stuff for resuming when completion
callback happens for async ops.

Totally managed by the app.

union cipher_ctx mode_params
Cypher mode parameters, which remain constant for all ops in a session.

To be populated by the app before calling begin_session().

uint16_t keylen
Cryptographic keylength in bytes.

To be populated by the app before calling begin_session()

uint16_t flags
How certain fields are to be interpreted for this session.

(A bitmask of CAP_* below.) To be populated by the app before calling be-
gin_session(). An app can obtain the capability flags supported by a hw/driver by
calling crypto_query_hwcaps().

struct cipher_pkt
#include <cipher.h> Structure encoding IO parameters of one cryptographic operation
like encrypt/decrypt.

The fields which has not been explicitly called out has to be filled up by the app before
making the cipher_xxx_op() call.
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Public Members

uint8_t *in_buf
Start address of input buffer.

int in_len
Bytes to be operated upon.

uint8_t *out_buf
Start of the output buffer, to be allocated by the application.

Can be NULL for in-place ops. To be populated with contents by the driver on
return from op / async callback.

int out_buf_max
Size of the out_buf area allocated by the application.

Drivers should not write past the size of output buffer.

int out_len
To be populated by driver on return from cipher_xxx_op() and holds the size of the
actual result.

struct cipher_ctx *ctx
Context this packet relates to.

This can be useful to get the session details, especially for async ops. Will be pop-
ulated by the cipher_xxx_op() API based on the ctx parameter.

struct cipher_aead_pkt
#include <cipher.h> Structure encoding IO parameters in AEAD (Authenticated Encryp-
tion with Associated Data) scenario like in CCM.

App has to furnish valid contents prior to making cipher_ccm_op() call.

Public Members

uint8_t *ad
Start address for Associated Data.

This has to be supplied by app.

uint32_t ad_len
Size of Associated Data.

This has to be supplied by the app.

uint8_t *tag
Start address for the auth hash.

For an encryption op this will be populated by the driver when it returns from
cipher_ccm_op call. For a decryption op this has to be supplied by the app.
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4.4 Debugging

4.4.1 Thread analyzer

The thread analyzer module enables all the Zephyr options required to track the thread infor-
mation, e.g. thread stack size usage and other runtime thread runtime statistics.

The analysis is performed on demand when the application calls thread_analyzer_run() or
thread_analyzer_print().

For example, to build the synchronization sample with Thread Analyser enabled, do the follow-
ing:

west build -b qemu_x86 samples/synchronization/ -- -DCONFIG_QEMU_ICOUNT=n -
↪→DCONFIG_THREAD_ANALYZER=y \
-DCONFIG_THREAD_ANALYZER_USE_PRINTK=y -DCONFIG_THREAD_ANALYZER_AUTO=y \
-DCONFIG_THREAD_ANALYZER_AUTO_INTERVAL=5

When you run the generated application in Qemu, you will get the additional information from
Thread Analyzer:

thread_a: Hello World from cpu 0 on qemu_x86!
Thread analyze:
thread_b : STACK: unused 740 usage 284 / 1024 (27 %); CPU: 0 %
thread_analyzer : STACK: unused 8 usage 504 / 512 (98 %); CPU: 0 %
thread_a : STACK: unused 648 usage 376 / 1024 (36 %); CPU: 98 %
idle : STACK: unused 204 usage 116 / 320 (36 %); CPU: 0 %

thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
Thread analyze:
thread_b : STACK: unused 648 usage 376 / 1024 (36 %); CPU: 7 %
thread_analyzer : STACK: unused 8 usage 504 / 512 (98 %); CPU: 0 %
thread_a : STACK: unused 648 usage 376 / 1024 (36 %); CPU: 9 %
idle : STACK: unused 204 usage 116 / 320 (36 %); CPU: 82 %

thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
Thread analyze:
thread_b : STACK: unused 648 usage 376 / 1024 (36 %); CPU: 7 %
thread_analyzer : STACK: unused 8 usage 504 / 512 (98 %); CPU: 0 %
thread_a : STACK: unused 648 usage 376 / 1024 (36 %); CPU: 8 %
idle : STACK: unused 204 usage 116 / 320 (36 %); CPU: 83 %

thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
thread_b: Hello World from cpu 0 on qemu_x86!

Configuration

Configure this module using the following options.
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• THREAD_ANALYZER: enable the module.

• THREAD_ANALYZER_USE_PRINTK: use printk for thread statistics.

• THREAD_ANALYZER_USE_LOG: use the logger for thread statistics.

• THREAD_ANALYZER_AUTO: run the thread analyzer automatically. You do not need to add any
code to the application when using this option.

• THREAD_ANALYZER_AUTO_INTERVAL: the time for which the module sleeps between consecu-
tive printing of thread analysis in automatic mode.

• THREAD_ANALYZER_AUTO_STACK_SIZE: the stack for thread analyzer automatic thread.

• THREAD_NAME: enable this option in the kernel to print the name of the thread instead of its
ID.

• THREAD_RUNTIME_STATS: enable this option to print thread runtime data such as utilization
(This options is automatically selected by THREAD_ANALYZER).

API documentation

group thread_analyzer
Module for analyzing threads.

This module implements functions and the configuration that simplifies thread analysis.

Typedefs

typedef void (*thread_analyzer_cb)(struct thread_analyzer_info *info)
Thread analyzer stack size callback function.

Callback function with thread analysis information.

Param info
Thread analysis information.

Functions

void thread_analyzer_run(thread_analyzer_cb cb, unsigned int cpu)
Run the thread analyzer and provide information to the callback.

This function analyzes the current state for all threads and calls a given
callback on every thread found. In the special case when Kconfig option
THREAD_ANALYZER_AUTO_SEPARATE_CORES is set, the function analyzes only the
threads running on the specified cpu.

Parameters
• cb – The callback function handler

• cpu – cpu to analyze, ignored if THREAD_ANALYZER_AUTO_SEPARATE_CORES=n

void thread_analyzer_print(unsigned int cpu)
Run the thread analyzer and print stack size statistics.

This function runs the thread analyzer and prints the output in standard form. In the
special case when Kconfig option THREAD_ANALYZER_AUTO_SEPARATE_CORES is set,
the function analyzes only the threads running on the specified cpu.

Parameters
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• cpu – cpu to analyze, ignored if THREAD_ANALYZER_AUTO_SEPARATE_CORES=n

struct thread_analyzer_info
#include <thread_analyzer.h>

Public Members

const char *name
The name of the thread or stringified address of the thread handle if name is not
set.

size_t stack_size
The total size of the stack.

size_t stack_used
Stack size in used.

4.4.2 Core Dump

The core dump module enables dumping the CPU registers and memory content for offline de-
bugging. This module is called when a fatal error is encountered and prints or stores data ac-
cording to which backends are enabled.

Configuration

Configure this module using the following options.

• DEBUG_COREDUMP: enable the module.

Here are the options to enable output backends for core dump:

• DEBUG_COREDUMP_BACKEND_LOGGING: use log module for core dump output.

• DEBUG_COREDUMP_BACKEND_FLASH_PARTITION: use flash partition for core dump output.

• DEBUG_COREDUMP_BACKEND_NULL: fallback core dump backend if other backends cannot be
enabled. All output is sent to null.

Here are the choices regarding memory dump:

• DEBUG_COREDUMP_MEMORY_DUMP_MIN: only dumps the stack of the exception thread, its thread
struct, and some other bare minimal data to support walking the stack in the debugger. Use
this only if absolute minimum of data dump is desired.

Additional memory can be included in a dump (even with the “DE-
BUG_COREDUMP_MEMORY_DUMP_MIN” config selected) through one or more coredump
devices

Usage

When the core dump module is enabled, during a fatal error, CPU registers and memory content
are printed or stored according to which backends are enabled. This core dump data can fed into
a custom-made GDB server as a remote target for GDB (and other GDB compatible debuggers).
CPU registers, memory content and stack can be examined in the debugger.

This usually involves the following steps:
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1. Get the core dump log from the device depending on enabled backends. For example, if the
log module backend is used, get the log output from the log module backend.

2. Convert the core dump log into a binary format that can be parsed by the GDB server. For
example, scripts/coredump/coredump_serial_log_parser.py can be used to convert the se-
rial console log into a binary file.

3. Start the custom GDB server using the script scripts/coredump/coredump_gdbserver.py
with the core dump binary log file, and the Zephyr ELF file as parameters. The GDB server
can also be started from within GDB, see below.

4. Start the debugger corresponding to the target architecture.

Note

Developers for Intel ADSP CAVS 15-25 platforms using ZEPHYR_TOOLCHAIN_VARIANT=zephyr
should use the debugger in the xtensa-intel_apl_adsp toolchain of the SDK.

5. When DEBUG_COREDUMP_BACKEND_FLASH_PARTITION is enabled the core dump data is stored
in the flash partition. The flash partition must be defined in the device tree:

&flash0 {
partitions {

coredump_partition: partition@255000 {
label = "coredump-partition";
reg = <0x255000 DT_SIZE_K(4)>;

};
};

Example This example uses the log module backend tied to serial console. This was done on
qemu_x86 where a null pointer was dereferenced.

This is the core dump log from the serial console, and is stored in coredump.log:

Booting from ROM..*** Booting Zephyr OS build zephyr-v2.3.0-1840-g7bba91944a63 ***
Hello World! qemu_x86
E: Page fault at address 0x0 (error code 0x2)
E: Linear address not present in page tables
E: PDE: 0x0000000000115827 Writable, User, Execute Enabled
E: PTE: Non-present
E: EAX: 0x00000000, EBX: 0x00000000, ECX: 0x00119d74, EDX: 0x000003f8
E: ESI: 0x00000000, EDI: 0x00101aa7, EBP: 0x00119d10, ESP: 0x00119d00
E: EFLAGS: 0x00000206 CS: 0x0008 CR3: 0x00119000
E: call trace:
E: EIP: 0x00100459
E: 0x00100477 (0x0)
E: 0x00100492 (0x0)
E: 0x001004c8 (0x0)
E: 0x00105465 (0x105465)
E: 0x00101abe (0x0)
E: >>> ZEPHYR FATAL ERROR 0: CPU exception on CPU 0
E: Current thread: 0x00119080 (unknown)
E: #CD:BEGIN#
E: #CD:5a4501000100050000000000
E: #CD:4101003800
E: #CD:0e0000000200000000000000749d1100f803000000000000009d1100109d1100
E: #CD:00000000a71a100059041000060200000800000000901100
E: #CD:4d010080901100e0901100
E: #CD:0100000000000000000000000180000000000000000000000000000000000000
E: #CD:00000000000000000000000000000000e364100000000000000000004c9c1100

(continues on next page)

732 Chapter 4. OS Services

https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/coredump/coredump_serial_log_parser.py
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/coredump/coredump_gdbserver.py


Zephyr Project Documentation, Release 3.7.99

(continued from previous page)
E: #CD:000000000000000000000000b49911000004000000000000fc03000000000000
E: #CD:4d0100b4991100b49d1100
E: #CD:f8030000020000000200000002000000f8030000fd03000a02000000dc9e1100
E: #CD:149a1160fd03000002000000dc9e1100249a110087201000049f11000a000000
E: #CD:349a11000a4f1000049f11000a9e1100449a11000a8b10000200000002000000
E: #CD:449a1100388b1000049f11000a000000549a1100ad201000049f11000a000000
E: #CD:749a11000a201000049f11000a000000649a11000a201000049f11000a000000
E: #CD:749a1100e8201000049f11000a000000949a1100890b10000a0000000a000000
E: #CD:a49a1100890b10000a0000000a000000f8030000189b11000200000002000000
E: #CD:f49a1100289b11000a000000189b1100049b11009b0710000a000000289b1100
E: #CD:f49a110087201000049f110045000000f49a1100509011000a00000020901100
E: #CD:f49a110060901100049f1100ffffffff0000000000000000049f1100ffffffff
E: #CD:0000000000000000630b1000189b1100349b1100af0b1000630b1000289b1100
E: #CD:55891000789b11000000000020901100549b1100480000004a891000609b1100
E: #CD:649b1100d00b10004a891000709b110000000000609b11000a00000000000000
E: #CD:849b1100709b11004a89100000000000949b1100794a10000000000058901100
E: #CD:20901100c34a10000a00001734020000d001000000000000d49b110038000000
E: #CD:c49b110078481000b49911000004000000000000000000000c9c11000c9c1100
E: #CD:149c110000000000d49b110038000000f49b1100da481000b499110000040000
E: #CD:0e0000000200000000000000744d0100b4991100b49d1100009d1100109d1100
E: #CD:149c110099471000b4991100000400000800000000901100ad861000409c1100
E: #CD:349c1100e94710008090110000000000349c1100b64710008086100045000000
E: #CD:849c11002d53100000000000d09c11008090110020861000f5ffffff8c9c1100
E: #CD:000000000000000000000000a71a1000a49c1100020200008090110000000000
E: #CD:a49c1100020200000800000000000000a49c11001937100000000000d09c1100
E: #CD:0c9d0000bc9c0000b49d1100b4991100c49c1100ae37100000000000d09c1100
E: #CD:0800000000000000c888100000000000109d11005d031000d09c1100009d1100
E: #CD:109d11000000000000000000a71a1000f803000000000000749d110002000000
E: #CD:5904100008000000060200000e0000000202000002020000000000002c9d1100
E: #CD:7704100000000000d00b1000c9881000549d110000000000489d110092041000
E: #CD:00000000689d1100549d11000000000000000000689d1100c804100000000000
E: #CD:c0881000000000007c9d110000000000749d11007c9d11006554100065541000
E: #CD:00000000000000009c9d1100be1a100000000000000000000000000038041000
E: #CD:08000000020200000000000000000000f4531000000000000000000000000000
E: #CD:END#
E: Halting system

1. Run the core dump serial log converter:

./scripts/coredump/coredump_serial_log_parser.py coredump.log coredump.bin

2. Start the custom GDB server:

./scripts/coredump/coredump_gdbserver.py build/zephyr/zephyr.elf coredump.bin

3. Start GDB:

<path to SDK>/x86_64-zephyr-elf/bin/x86_64-zephyr-elf-gdb build/zephyr/zephyr.elf

4. Inside GDB, connect to the GDB server via port 1234:

(gdb) target remote localhost:1234

5. Examine the CPU registers:

(gdb) info registers

Output from GDB:

eax 0x0 0
ecx 0x119d74 1154420

(continues on next page)
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(continued from previous page)
edx 0x3f8 1016
ebx 0x0 0
esp 0x119d00 0x119d00 <z_main_stack+844>
ebp 0x119d10 0x119d10 <z_main_stack+860>
esi 0x0 0
edi 0x101aa7 1055399
eip 0x100459 0x100459 <func_3+16>
eflags 0x206 [ PF IF ]
cs 0x8 8
ss <unavailable>
ds <unavailable>
es <unavailable>
fs <unavailable>
gs <unavailable>

6. Examine the backtrace:

(gdb) bt

Output from GDB:

#0 0x00100459 in func_3 (addr=0x0) at zephyr/rtos/zephyr/samples/hello_world/src/main.
↪→c:14
#1 0x00100477 in func_2 (addr=0x0) at zephyr/rtos/zephyr/samples/hello_world/src/main.
↪→c:21
#2 0x00100492 in func_1 (addr=0x0) at zephyr/rtos/zephyr/samples/hello_world/src/main.
↪→c:28
#3 0x001004c8 in main () at zephyr/rtos/zephyr/samples/hello_world/src/main.c:42

Starting the GDB server from within GDB You can use target remote | to start the custom
GDB server from inside GDB, instead of in a separate shell.

1. Start GDB:

<path to SDK>/x86_64-zephyr-elf/bin/x86_64-zephyr-elf-gdb build/zephyr/zephyr.elf

2. Inside GDB, start the GDB server using the --pipe option:

(gdb) target remote | ./scripts/coredump/coredump_gdbserver.py --pipe build/zephyr/
↪→zephyr.elf coredump.bin

File Format

The core dump binary file consists of one file header, one architecture-specific block, and multi-
ple memory blocks. All numbers in the headers below are little endian.

File Header The file header consists of the following fields:
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Table 1: Core dump binary file header

Field Data
Type

Description

ID char[2] Z, E as identifier of file.
Header version uint16_t Identify the version of the header. This needs to be incremented

whenever the header struct is modified. This allows parser to
reject older header versions so it will not incorrectly parse the
header.

Target code uint16_t Indicate which target (e.g. architecture or SoC) so the parser can
instantiate the correct register block parser.

Pointer size ‘uint8_t’ Size of uintptr_t in power of 2. (e.g. 5 for 32-bit, 6 for 64-bit).
This is needed to accommodate 32-bit and 64-bit target in parsing
the memory block addresses.

Flags uint8_t
Fatal error rea-
son

un-
signed
int

Reason for the fatal error, as the same in enum
k_fatal_error_reason defined in include/zephyr/fatal.h

Architecture-specific Block The architecture-specific block contains the byte stream of data
specific to the target architecture (e.g. CPU registers)

Table 2: Architecture-specific Block

Field Data
Type

Description

ID char A to indicate this is a architecture-specific block.
Header version uint16_t Identify the version of this block. To be interpreted by the target

architecture specific block parser.
Number of bytes uint16_tNumber of bytes following the header which contains the byte

stream for target data. The format of the byte stream is specific
to the target and is only being parsed by the target parser.

Register byte
stream

uint8_t[]Contains target architecture specific data.

Memory Block The memory block contains the start and end addresses and the data within
the memory region.

Table 3: Memory Block

Field Data
Type

Description

ID char M to indicate this is a memory block.
Header version uint16_t Identify the version of the header. This needs to be incremented

whenever the header struct is modified. This allows parser to
reject older header versions so it will not incorrectly parse the
header.

Start address uintptr_tThe start address of the memory region.
End address uintptr_tThe end address of the memory region.
Memory byte
stream

uint8_t[]Contains the memory content between the start and end ad-
dresses.
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Adding New Target

The architecture-specific block is target specific and requires new dumping routine and parser
for new targets. To add a new target, the following needs to be done:

1. Add a new target code to the enum coredump_tgt_code in in-
clude/zephyr/debug/coredump.h.

2. Implement arch_coredump_tgt_code_get() simply to return the newly introduced target
code.

3. Implement arch_coredump_info_dump() to construct a target architecture block and call
coredump_buffer_output() to output the block to core dump backend.

4. Add a parser to the core dump GDB stub scripts under scripts/coredump/gdbstubs/
1. Extends the gdbstubs.gdbstub.GdbStub class.

2. During __init__, store the GDB signal corresponding to the exception reason in self.
gdb_signal.

3. Parse the architecture-specific block from self.logfile.get_arch_data(). This needs
to match the format as implemented in step 3 (inside arch_coredump_info_dump()).

4. Implement the abstract method handle_register_group_read_packet where it re-
turns the register group as GDB expected. Refer to GDB’s code and documentation
on what it is expecting for the new target.

5. Optionally implement handle_register_single_read_packet for registers not cov-
ered in the g packet.

5. Extend get_gdbstub() in scripts/coredump/gdbstubs/__init__.py to return the newly imple-
mented GDB stub.

API documentation

group coredump_apis
Coredump APIs.

Enums

enum coredump_query_id
Query ID.

Values:

enumerator COREDUMP_QUERY_GET_ERROR
Returns error code from backend.

enumerator COREDUMP_QUERY_HAS_STORED_DUMP
Check if there is a stored coredump from backend.

Returns:
• 1 if there is a stored coredump, 0 if none.
• -ENOTSUP if this query is not supported.
• Otherwise, error code from backend.
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enumerator COREDUMP_QUERY_GET_STORED_DUMP_SIZE
Returns:

• coredump raw size from backend, 0 if none.
• -ENOTSUP if this query is not supported.
• Otherwise, error code from backend.

enumerator COREDUMP_QUERY_MAX
Max value for query ID.

enum coredump_cmd_id
Command ID.

Values:

enumerator COREDUMP_CMD_CLEAR_ERROR
Clear error code from backend.

Returns 0 if successful, failed otherwise.

enumerator COREDUMP_CMD_VERIFY_STORED_DUMP
Verify that the stored coredump is valid.

Returns:
• 1 if valid.
• 0 if not valid or no stored coredump.
• -ENOTSUP if this command is not supported.
• Otherwise, error code from backend.

enumerator COREDUMP_CMD_ERASE_STORED_DUMP
Erase the stored coredump.

Returns:
• 0 if successful.
• -ENOTSUP if this command is not supported.
• Otherwise, error code from backend.

enumerator COREDUMP_CMD_COPY_STORED_DUMP
Copy the raw stored coredump.

Returns:
• copied size if successful
• 0 if stored coredump is not found
• -ENOTSUP if this command is not supported.
• Otherwise, error code from backend.

enumerator COREDUMP_CMD_INVALIDATE_STORED_DUMP
Invalidate the stored coredump.

This is faster than erasing the whole partition.

Returns:
• 0 if successful.
• -ENOTSUP if this command is not supported.
• Otherwise, error code from backend.
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enumerator COREDUMP_CMD_MAX
Max value for command ID.

Functions

static inline void coredump(unsigned int reason, const struct arch_esf *esf, struct k_thread
*thread)

Perform coredump.

Normally, this is called inside z_fatal_error() to generate coredump when a fatal error
is encountered. This can also be called on demand whenever a coredump is desired.

Parameters
• reason – Reason for the fatal error

• esf – Exception context

• thread – Thread information to dump

static inline void coredump_memory_dump(uintptr_t start_addr, uintptr_t end_addr)
Dump memory region.

Parameters
• start_addr – Start address of memory region to be dumped

• end_addr – End address of memory region to be dumped

static inline void coredump_buffer_output(uint8_t *buf, size_t buflen)
Output the buffer via coredump.

This outputs the buffer of byte array to the coredump backend. For example, this can
be called to output the coredump section containing registers, or a section for memory
dump.

Parameters
• buf – Buffer to be send to coredump output

• buflen – Buffer length

static inline int coredump_query(enum coredump_query_id query_id, void *arg)
Perform query on coredump subsystem.

Query the coredump subsystem for information, for example, if there is an error.

Parameters
• query_id – [in] Query ID

• arg – [inout] Pointer to argument for exchanging information

Returns
Depends on the query

static inline int coredump_cmd(enum coredump_cmd_id query_id, void *arg)
Perform command on coredump subsystem.

Perform command on coredump subsystem, for example, output the stored coredump
via logging.

Parameters
• cmd_id – [in] Command ID

• arg – [inout] Pointer to argument for exchanging information
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Returns
Depends on the command

struct coredump_cmd_copy_arg
#include <coredump.h> Coredump copy command (CORE-
DUMP_CMD_COPY_STORED_DUMP) argument definition.

Public Members

off_t offset
Copy offset.

uint8_t *buffer
Copy destination buffer.

size_t length
Copy length.

group arch-coredump

Functions

void arch_coredump_info_dump(const struct arch_esf *esf)
Architecture-specific handling during coredump.

This dumps architecture-specific information during coredump.

Parameters
• esf – Exception Stack Frame (arch-specific)

uint16_t arch_coredump_tgt_code_get(void)
Get the target code specified by the architecture.

4.4.3 GDB stub

• Overview

• Features

• Enabling GDB Stub

– Using Serial Backend

• Debugging

– Using Serial Backend

• Example
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Overview

The gdbstub feature provides an implementation of the GDB Remote Serial Protocol (RSP) that
allows you to remotely debug Zephyr using GDB.

The protocol supports different connection types: serial, UDP/IP and TCP/IP. Zephyr currently
supports only serial device communication.

The GDB program acts as a client while the Zephyr gdbstub acts as a server. When this feature
is enabled, Zephyr stops its execution after gdb_init() starts gdbstub service and waits for a
GDB connection. Once a connection is established it is possible to synchronously interact with
Zephyr. Note that currently it is not possible to asynchronously send commands to the target.

Features

The following features are supported:

• Add and remove breakpoints

• Continue and step the target

• Print backtrace

• Read or write general registers

• Read or write the memory

Enabling GDB Stub

GDB stub can be enabled with the CONFIG_GDBSTUB option.

Using Serial Backend The serial backend for GDB stub can be enabled with the CON-
FIG_GDBSTUB_SERIAL_BACKEND option.

Since serial backend utilizes UART devices to send and receive GDB commands,

• If there are spare UART devices on the board, set zephyr,gdbstub-uart property of the
chosen node to the spare UART device so that printk() and log messages are not being
printed to the same UART device used for GDB.

• For boards with only one UART device, printk() and logging must be disabled if they are
also using the same UART device for output. GDB related messages may interleave with log
messages which may have unintended consequences. Usually this can be done by disabling
CONFIG_PRINTK and CONFIG_LOG.

Debugging

Using Serial Backend
1. Build with GDB stub and serial backend enabled.

2. Flash built image onto board and reset the board.

• Execution should now be paused at gdb_init().

3. Execute GDB on development machine and connect to the GDB stub.

target remote <serial device>

For example,
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target remote /dev/ttyUSB1

4. GDB commands can be used to start debugging.

Example

There is a test application tests/subsys/debug/gdbstub with one of its test cases debug.gdbstub.
breakpoints demonstrating how the Zephyr GDB stub can be used. The test also has a case to
connect to the QEMU’s GDB stub implementation (at a custom port tcp:1235) as a reference to
validate the test script itself.

Run the test with the following command from your ZEPHYR_BASE directory:

./scripts/twister -p qemu_x86 -T tests/subsys/debug/gdbstub

The test should run successfully, and now let’s do something similar step-by-step to demonstrate
how the Zephyr GDB stub works from the GDB user’s perspective.

In the snippets below use and expect your appropriate directories instead of <SDK install di-
rectory>, <build_directory>, <ZEPHYR_BASE>.

1. Open two terminal windows.

2. On the first terminal, build and run the test application:

# From the root of the zephyr repository
west build -b qemu_x86 tests/subsys/debug/gdbstub -- '-DCONFIG_QEMU_EXTRA_FLAGS="-
↪→serial tcp:localhost:5678,server"'
west build -t run

Note how we set CONFIG_QEMU_EXTRA_FLAGS to direct QEMU serial console port to the local-
host TCP port 5678 to wait for a connection from the GDB remote command we are going
to do on the next steps.

3. On the second terminal, start GDB:

<SDK install directory>/x86_64-zephyr-elf/bin/x86_64-zephyr-elf-gdb

1. Tell GDB where to look for the built ELF file:

(gdb) symbol-file <build directory>/zephyr/zephyr.elf

Response from GDB:

Reading symbols from <build directory>/zephyr/zephyr.elf...

2. Tell GDB to connect to the Zephyr gdbstub serial backend which is exposed earlier as
a server through the TCP port -serial redirection at QEMU.

(gdb) target remote localhost:5678

Response from GDB:

Remote debugging using localhost:5678
arch_gdb_init () at <ZEPHYR_BASE>/arch/x86/core/ia32/gdbstub.c:252
252 }

GDB also shows where the code execution is stopped. In this case, it is at
arch/x86/core/ia32/gdbstub.c, line 252.

3. Use command bt or backtrace to show the backtrace of stack frames.
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(gdb) bt
#0 arch_gdb_init () at <ZEPHYR_BASE>/arch/x86/core/ia32/gdbstub.c:252
#1 0x00104140 in gdb_init () at <ZEPHYR_BASE>/zephyr/subsys/debug/gdbstub.c:852
#2 0x00109c13 in z_sys_init_run_level (level=INIT_LEVEL_PRE_KERNEL_2) at <ZEPHYR_
↪→BASE>/kernel/init.c:360
#3 0x00109e73 in z_cstart () at <ZEPHYR_BASE>/kernel/init.c:630
#4 0x00104422 in z_prep_c (arg=0x1245bc <x86_cpu_boot_arg>) at <ZEPHYR_BASE>/
↪→arch/x86/core/prep_c.c:80
#5 0x001000c9 in __csSet () at <ZEPHYR_BASE>/arch/x86/core/ia32/crt0.S:290
#6 0x001245bc in uart_dev ()
#7 0x00134988 in z_interrupt_stacks ()
#8 0x00000000 in ?? ()

4. Use command list to show the source code and surroundings where code execution
is stopped.

(gdb) list
247 __asm__ volatile ("int3");
248
249 #ifdef CONFIG_GDBSTUB_TRACE
250 printk("gdbstub:%s GDB is connected\n", __func__);
251 #endif
252 }
253
254 /* Hook current IDT. */
255 _EXCEPTION_CONNECT_NOCODE(z_gdb_debug_isr, IV_DEBUG, 3);
256 _EXCEPTION_CONNECT_NOCODE(z_gdb_break_isr, IV_BREAKPOINT, 3);

5. Use command s or step to step through program until it reaches a different source
line. Now that it finished executing arch_gdb_init() and is continuing in gdb_init().

(gdb) s
gdb_init () at <ZEPHYR_BASE>/subsys/debug/gdbstub.c:857
857 return 0;

(gdb) list
852 arch_gdb_init();
853
854 #ifdef CONFIG_GDBSTUB_TRACE
855 printk("gdbstub:%s exit\n", __func__);
856 #endif
857 return 0;
858 }
859
860 #ifdef CONFIG_XTENSA
861 /*

6. Use command br or break to setup a breakpoint. For this example set up a breakpoint
at main(), and let code execution continue without any intervention using command
c (or continue).

(gdb) break main
Breakpoint 1 at 0x10064d: file <ZEPHYR_BASE>/tests/subsys/debug/gdbstub/src/main.
↪→c, line 27.

(gdb) continue
Continuing.

Once code execution reaches main(), execution will be stopped and GDB prompt re-
turns.
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Breakpoint 1, main () at <ZEPHYR_BASE>/tests/subsys/debug/gdbstub/src/main.c:27
27 printk("%s():enter\n", __func__);

Now GDB is waiting at the beginning of main():

(gdb) list
22
23 int main(void)
24 {
25 int ret;
26
27 printk("%s():enter\n", __func__);
28 ret = test();
29 printk("ret=%d\n", ret);
30 return 0;
31 }

7. To examine the value of ret, the command p or print can be used.

(gdb) p ret
$1 = 1273788

Since ret has not been initialized, it contains some random value.

8. If step (s or step) is used here, it will continue execution skipping the interior of test().
To examine code execution inside test(), a breakpoint can be set for test(), or simply
using si (or stepi) to execute one machine instruction, where it has the side effect of
going into the function. The GDB command finish can be used to continue execution
without intervention until the function returns.

(gdb) finish
Run till exit from #0 test () at <ZEPHYR_BASE>/tests/subsys/debug/gdbstub/src/
↪→main.c:17
0x00100667 in main () at <ZEPHYR_BASE>/tests/subsys/debug/gdbstub/src/main.c:28
28 ret = test();
Value returned is $2 = 30

9. Examine ret again which should have the return value from test(). Sometimes, the
assignment is not done until another step is issued, as in this case. This is due to the
assignment code is done after returning from function. The assignment code is gener-
ated by the toolchain as machine instructions which are not visible when viewing the
corresponding C source file.

(gdb) p ret
$3 = 1273788
(gdb) step
29 printk("ret=%d\n", ret);
(gdb) p ret
$4 = 30

10. If continue is issued here, code execution will continue indefinitely as there are no
breakpoints to further stop execution. Breaking execution in GDB via Ctrl-C does not
currently work as the Zephyr gdbstub does not support this functionality yet. Switch
to the first console with QEMU running the Zephyr image and stop it manually with
Ctrl+a x. When the same test is executed by Twister, it automatically takes care of
stopping the QEMU instance.
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4.4.4 Cortex-M Debug Monitor

Monitor mode debugging is a Cortex-M feature, that provides a non-halting approach to debug-
ging. With this it’s possible to continue the execution of high-priority interrupts, even when
waiting on a breakpoint. This strategy makes it possible to debug time-sensitive software, that
would otherwise crash when the core halts (e.g. applications that need to keep communication
links alive).

Zephyr provides support for enabling and configuring the Debug Monitor exception. It also con-
tains a ready implementation of the interrupt, which can be used with SEGGER J-Link debuggers.

Configuration

Configure this module using the following options.

• CONFIG_CORTEX_M_DEBUG_MONITOR_HOOK: enable the module. This option, by itself, requires
an implementation of debug monitor interrupt that will be executed every time the pro-
gram enters a breakpoint.

With a SEGGER debug probe, it’s possible to use a ready, SEGGER-provided implementation of
the interrupt.

• CONFIG_SEGGER_DEBUGMON: enables SEGGER debug monitor interrupt. Can be used with SEG-
GER JLinkGDBServer and a SEGGER debug probe.

Usage

When monitor mode debugging is enabled, entering a breakpoint will not halt the processor,
but rather generate an interrupt with ISR implemented under z_arm_debug_monitor symbol.
CONFIG_CORTEX_M_DEBUG_MONITOR_HOOK config configures this interrupt to be the lowest available
priority, which will allow other interrupts to execute while processor spins on a breakpoint.

Using SEGGER-provided ISR The ready implementation provided with CON-
FIG_SEGGER_DEBUGMON provides functionality required to debug in the monitor mode using
regular GDB commands. Steps to configure SEGGER debug monitor:

1. Build a sample with CONFIG_CORTEX_M_DEBUG_MONITOR_HOOK` and CONFIG_SEGGER_DEBUGMON
configs enabled.

2. Attach JLink GDB server to the target. Example linux command: JLinkGDBServerCLExe
-device <device> -if swd.

3. Connect to the server with your GDB installation. Example linux command:
arm-none-eabi-gdb --ex="file build/zephyr.elf" --ex="target remote local-
host:2331".

4. Enable monitor mode debugging in GDB using command: monitor exec SetMonModeDe-
bug=1.

After these steps use regular gdb commands to debug your program.

Using other custom ISR In order to provide a custom debug monitor interrupt, override
z_arm_debug_monitor symbol. Additionally, manual configuration of some registers is required
(see debug monitor sample).
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4.4.5 MIPI STP Decoder

The MIPI System Trace Protocol (MIPI STP) was developed as a generic base protocol that can
be shared by multiple application-specific trace protocols. It serves as a wrapper protocol that
merges disparate streams that typically contain different trace protocols from different trace
sources. Stream consists of opcode (shortest is 4 bit long) followed by optional data and optional
timestamp. There are opcodes for data (8, 16, 32, 64 bit data marked/not marked, with or with-
out timestamp), stream recognition (master and channel), synchronization (ASYNC opcode) and
others.

One example where protocol is used is ARM Coresight STM (System Trace Macrocell) where data
written to Stimulus Port registers maps directly to STP stream.

This module can be used to perform on-chip decoding of the data stream. STP v2 is used.

Usage

Decoder is initialized with a callback. A callback is called on each decoded opcode. Decoder
has internal state since there are dependency between opcodes (e.g. timestamp can be rel-
ative). Decoder can be in synchronization or not. Initial state is configurable. If decoder is
not synchronized to the stream then it decodes each nibble in search for ASYNC opcode. Loss
of synchronization can be indicated to the decoder by calling mipi_stp_decoder_sync_loss().
mipi_stp_decoder_decode() is used to decode the data.

Limitations

There are following limitations:

• Decoder supports only little endian architectures.

• When decoding nibbles, it is more efficient when core supports unaligned memory access.
Implementation supports optimized version with unaligned memory access and generic
one. Optimized version is used for ARM Cortex-M (expect for M0).

• Limited set of the most common opcodes is implemented.

API documentation

group mipi_stp_decoder_apis

Defines

STP_DECODER_TYPE2STR(_type)
Convert type to a string literal.

Parameters
• _type – type

Returns
String literal.
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Typedefs

typedef void (*mipi_stp_decoder_cb)(enum mipi_stp_decoder_ctrl_type type, union
mipi_stp_decoder_data data, uint64_t *ts, bool marked)

Callback signature.

Callback is called whenever an element from STPv2 stream is decoded.

Note

Callback is called with interrupts locked.

Param type
Type. See mipi_stp_decoder_ctrl_type.

Param data
Data. Data associated with a given type.

Param ts
Timestamp. Present if not NULL.

Parammarked
Set to true if opcode was marked.

Enums

enum mipi_stp_decoder_ctrl_type
STPv2 opcodes.

Values:

enumerator STP_DATA4 = 1

enumerator STP_DATA8 = 2

enumerator STP_DATA16 = 4

enumerator STP_DATA32 = 8

enumerator STP_DATA64 = 16

enumerator STP_DECODER_NULL = 128

enumerator STP_DECODER_MASTER

enumerator STP_DECODER_MERROR

enumerator STP_DECODER_CHANNEL

enumerator STP_DECODER_VERSION
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enumerator STP_DECODER_FREQ

enumerator STP_DECODER_GERROR

enumerator STP_DECODER_FLAG

enumerator STP_DECODER_ASYNC

enumerator STP_DECODER_NOT_SUPPORTED

Functions

int mipi_stp_decoder_init(const struct mipi_stp_decoder_config *config)
Initialize the decoder.

Parameters
• config – Configuration.

Return values
• 0 – On successful initialization.

• negative – On failure.

int mipi_stp_decoder_decode(const uint8_t *data, size_t len)
Decode STPv2 stream.

Function decodes the stream and calls the callback for every decoded element.

Parameters
• data – Data.

• len – Data length.

Return values
• 0 – On successful decoding.

• negative – On failure.

void mipi_stp_decoder_sync_loss(void)
Indicate synchronization loss.

If detected, then decoder starts to look for ASYNC marker and drops all data until
ASYNC is found. Synchronization can be lost when there is data loss (e.g. due to over-
flow).

union mipi_stp_decoder_data
#include <mipi_stp_decoder.h> Union with data associated with a given STP opcode.

Public Members

uint16_t id
ID - used for master and channel.
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uint64_t freq
Frequency.

uint32_t ver
Version.

uint32_t err
Error code.

uint32_t dummy
Dummy.

uint64_t data
Data.

struct mipi_stp_decoder_config
#include <mipi_stp_decoder.h> Decoder configuration.

Public Members

bool start_out_of_sync
Indicates that decoder start in out of sync state.

mipi_stp_decoder_cb cb
Callback.

4.4.6 Symbol Table (Symtab)

The Symtab module, when enabled, will generate full symbol table during the Zephyr linking
stage that keep tracks of the information about the functions’ name and address, for advanced
application with a lot of functions, this is expected to consume a sizable amount of ROM.

Currently, this is being used to look up the function names during a stack trace in supported
architectures.

Usage

Application can gain access to the symbol table data structure by including the symtab.h header
file and call symtab_get(). For now, we only provide symtab_find_symbol_name() function
to look-up the symbol name and offset of an address. More advanced functionalities and be
achieved by directly accessing the members of the data structure.

Configuration

Configure this module using the following options.

• CONFIG_SYMTAB: enable the generation of the symbol table.
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API documentation

group symtab_apis

Functions

const struct symtab_info *const symtab_get(void)
Get the pointer to the symbol table.

Returns
Pointer to the symbol table.

const char *const symtab_find_symbol_name(uintptr_t addr, uint32_t *offset)
Find the symbol name with a binary search.

Parameters
• addr – [in] Address of the symbol to find

• offset – [out] Offset of the symbol from the nearest symbol. If the sym-
bol can’t be found, this will be 0.

Returns
Name of the nearest symbol if found, otherwise “?” is returned.

struct symtab_info
#include <symtab.h>

4.5 Device Management

4.5.1 MCUmgr

Overview

The management subsystem allows remote management of Zephyr-enabled devices. The follow-
ing management operations are available:

• Image management

• File System management

• OS management

• Settings (config) management

• Shell management

• Statistic management

• Zephyr management

over the following transports:

• BLE (Bluetooth Low Energy)

• Serial (UART)

• UDP over IP
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The management subsystem is based on the Simple Management Protocol (SMP) provided by
MCUmgr, an open source project that provides a management subsystem that is portable across
multiple real-time operating systems.

The management subsystem is located in subsys/mgmt/ inside of the Zephyr tree.

Additionally, there is a sample server that provides management functionality over BLE and
serial.

Tools/libraries

There are various tools and libraries available which enable usage of MCUmgr functionality on
a device which are listed below. Note that these tools are not part of or related to the Zephyr
project.
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Table 4: Tools and Libraries for MCUmgr

Name OS support Transports Groups Type Language
OS IMG Stat Set-

tings
FS Shell Zephyr

AuTerm Windows, Linux,
macOS

Serial, Blue-
tooth, UDP

✓ ✓ ✓ ✓ ✓ ✓ ✓ App C++ (Qt)

mcumgr-client Windows, Linux,
macOS

Serial × ✓ × × × × × App Rust

mcumgr-web Windows, Linux,
macOS

Bluetooth × ✓ × × × × × Web (chrome
only)

Javascript

nRF Connect Device Manager:
Android and iOS

iOS, Android Bluetooth ✓ ✓ ✓ ✓ ✓ ✓ ✓ Library, App Java, Kotlin,
Swift

Zephyr MCUmgr client (in-tree) Linux, Zephyr Serial, Blue-
tooth, UDP

✓ ✓ × × × × × Library C
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Note that a tick for a particular group indicates basic support for that group in the code, it is
possible that not all commands/features of a group are supported by the implementation.

J-Link Virtual MSD Interaction Note

On boards where a J-Link OB is present which has both CDC and MSC (virtual Mass Storage De-
vice, also known as drag-and-drop) support, the MSD functionality can prevent MCUmgr com-
mands over the CDC UART port from working due to how USB endpoints are configured in the
J-Link firmware (for example on the Nordic nrf52840dk/nrf52840 board) because of limiting the
maximum packet size (most likely to occur when using image management commands for up-
dating firmware). This issue can be resolved by disabling MSD functionality on the J-Link device,
follow the instructions on nordic_segger_msd to disable MSD support.

Bootloader Integration

The Device Firmware Upgrade subsystem integrates the management subsystem with the boot-
loader, providing the ability to send and upgrade a Zephyr image to a device.

Currently only the MCUboot bootloader is supported. See MCUboot for more information.

Discord channel

Developers welcome!

• Discord mcumgr channel: https://discord.com/invite/Ck7jw53nU2

API Reference

group mcumgr_mgmt_api
MCUmgr mgmt API.

Since
1.11

Version
1.0.0

Defines

MGMT_CTXT_SET_RC_RSN(mc, rsn)

MGMT_CTXT_RC_RSN(mc)

MGMT_RETURN_CHECK(ok)
Used at end of MCUmgr handlers to return an error if the message size limit was
reached, or OK if it was not.

MGMT_HDR_SIZE
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Typedefs

typedef void *(*mgmt_alloc_rsp_fn)(const void *src_buf, void *arg)
Allocates a buffer suitable for holding a response.

If a source buf is provided, its user data is copied into the new buffer.

Param src_buf
An optional source buffer to copy user data from.

Param arg
Optional streamer argument.

Return
Newly-allocated buffer on success NULL on failure.

typedef void (*mgmt_reset_buf_fn)(void *buf, void *arg)
Resets a buffer to a length of 0.

The buffer’s user data remains, but its payload is cleared.

Param buf
The buffer to reset.

Param arg
Optional streamer argument.

typedef int (*mgmt_handler_fn)(struct smp_streamer *ctxt)
Processes a request and writes the corresponding response.

A separate handler is required for each supported op-ID pair.

Param ctxt
The mcumgr context to use.

Return
0 if a response was successfully encoded, mcumgr_err_t code on failure.

Enums

enum mcumgr_op_t
Opcodes; encoded in first byte of header.

Values:

enumerator MGMT_OP_READ = 0
Read op-code.

enumerator MGMT_OP_READ_RSP
Read response op-code.

enumerator MGMT_OP_WRITE
Write op-code.

enumerator MGMT_OP_WRITE_RSP
Write response op-code.

4.5. Device Management 753



Zephyr Project Documentation, Release 3.7.99

enum mcumgr_group_t
MCUmgr groups.

The first 64 groups are reserved for system level mcumgr commands. Per-user com-
mands are then defined after group 64.

Values:

enumerator MGMT_GROUP_ID_OS = 0
OS (operating system) group.

enumerator MGMT_GROUP_ID_IMAGE
Image management group, used for uploading firmware images.

enumerator MGMT_GROUP_ID_STAT
Statistic management group, used for retrieving statistics.

enumerator MGMT_GROUP_ID_SETTINGS
Settings management (config) group, used for reading/writing settings.

enumerator MGMT_GROUP_ID_LOG
Log management group (unused)

enumerator MGMT_GROUP_ID_CRASH
Crash group (unused)

enumerator MGMT_GROUP_ID_SPLIT
Split image management group (unused)

enumerator MGMT_GROUP_ID_RUN
Run group (unused)

enumerator MGMT_GROUP_ID_FS
FS (file system) group, used for performing file IO operations.

enumerator MGMT_GROUP_ID_SHELL
Shell management group, used for executing shell commands.

enumerator MGMT_GROUP_ID_PERUSER = 64
User groups defined from 64 onwards.

enumerator ZEPHYR_MGMT_GRP_BASIC = (MGMT_GROUP_ID_PERUSER - 1)
Zephyr-specific groups decrease from PERUSER to avoid collision with upstream
and user-defined groups.

Zephyr-specific: Basic group

enum mcumgr_err_t
MCUmgr error codes.

Values:
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enumerator MGMT_ERR_EOK = 0
No error (success).

enumerator MGMT_ERR_EUNKNOWN
Unknown error.

enumerator MGMT_ERR_ENOMEM
Insufficient memory (likely not enough space for CBOR object).

enumerator MGMT_ERR_EINVAL
Error in input value.

enumerator MGMT_ERR_ETIMEOUT
Operation timed out.

enumerator MGMT_ERR_ENOENT
No such file/entry.

enumerator MGMT_ERR_EBADSTATE
Current state disallows command.

enumerator MGMT_ERR_EMSGSIZE
Response too large.

enumerator MGMT_ERR_ENOTSUP
Command not supported.

enumerator MGMT_ERR_ECORRUPT
Corrupt.

enumerator MGMT_ERR_EBUSY
Command blocked by processing of other command.

enumerator MGMT_ERR_EACCESSDENIED
Access to specific function, command or resource denied.

enumerator MGMT_ERR_UNSUPPORTED_TOO_OLD
Requested SMP MCUmgr protocol version is not supported (too old)

enumerator MGMT_ERR_UNSUPPORTED_TOO_NEW
Requested SMP MCUmgr protocol version is not supported (too new)

enumerator MGMT_ERR_EPERUSER = 256
User errors defined from 256 onwards.

Functions
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void mgmt_register_group(struct mgmt_group *group)
Registers a full command group.

Parameters
• group – The group to register.

void mgmt_unregister_group(struct mgmt_group *group)
Unregisters a full command group.

Parameters
• group – The group to register.

const struct mgmt_handler *mgmt_find_handler(uint16_t group_id, uint16_t
command_id)

Finds a registered command handler.

Parameters
• group_id – The group of the command to find.

• command_id – The ID of the command to find.

Returns
The requested command handler on success; NULL on failure.

const struct mgmt_group *mgmt_find_group(uint16_t group_id)
Finds a registered command group.

Parameters
• group_id – The group id of the command group to find.

Returns
The requested group on success; NULL on failure.

const struct mgmt_handler *mgmt_get_handler(const struct mgmt_group *group, uint16_t
command_id)

Finds a registered command handler.

Parameters
• group – The group of the command to find.

• command_id – The ID of the command to find.

Returns
The requested command handler on success; NULL on failure.

struct mgmt_handler
#include <mgmt.h> Read handler and write handler for a single command ID.

Set use_custom_payload to true when using a user defined payload type

struct mgmt_group
#include <mgmt.h> A collection of handlers for an entire command group.

Public Members

sys_snode_t node
Entry list node.

756 Chapter 4. OS Services



Zephyr Project Documentation, Release 3.7.99

const struct mgmt_handler *mg_handlers
Array of handlers; one entry per command ID.

uint16_t mg_group_id
The numeric ID of this group.

4.5.2 MCUmgr handlers

Overview

MCUmgr functions by having group handlers which identify a group of functions relating to a
specific management area, which is addressed with a 16-bit identification value, mcumgr_group_t
contains the management groups available in Zephyr with their corresponding group ID values.
The group ID is included in SMP headers to identify which group a command belongs to, there is
also an 8-bit command ID which identifies the function of that group to execute - see SMPProtocol
Specification for details on the SMP protocol and header. There can only be one registered group
per unique ID.

Implementation

MCUmgr handlers can be added externally by application code or by module code, they do not
have to reside in the upstream Zephyr tree to be usable. The first step to creating a handler is to
create the folder structure for it, the typical Zephyr MCUmgr group layout is as follows:

<dir>/grp/<grp_name>_mgmt/
├── CMakeLists.txt
├── Kconfig
├── include
├──── <grp_name>_mgmt.h
├──── <grp_name>_mgmt_callbacks.h
├── src
└──── <grp_name>_mgmt.c

Note that the header files in upstream Zephyr MCUmgr handlers reside in the zephyr/include/
zephyr/mgmt/mcumgr/grp/<grp_name>_mgmt directory to allow the files to be globally included
by applications.

Initial header <grp_name>_mgmt.h The purpose of the header file is to provide defines which
can be used by the MCUmgr handler itself and application code, e.g. to reference the command
IDs for executing functions. An example file would look similar to:

1 /*
2 * Copyright (c) 2023 Nordic Semiconductor ASA
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6 #ifndef H_EXAMPLE_MGMT_
7 #define H_EXAMPLE_MGMT_
8

9 #ifdef __cplusplus
10 extern "C" {
11 #endif
12

13 /**
14 * Group ID for example management group.

(continues on next page)
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(continued from previous page)
15 */
16 #define MGMT_GROUP_ID_EXAMPLE MGMT_GROUP_ID_PERUSER
17

18 /**
19 * Command IDs for example management group.
20 */
21 #define EXAMPLE_MGMT_ID_TEST 0
22 #define EXAMPLE_MGMT_ID_OTHER 1
23

24 /**
25 * Command result codes for example management group.
26 */
27 enum example_mgmt_err_code_t {
28 /** No error, this is implied if there is no ret value in the response */
29 EXAMPLE_MGMT_ERR_OK = 0,
30

31 /** Unknown error occurred. */
32 EXAMPLE_MGMT_ERR_UNKNOWN,
33

34 /** The provided value is not wanted at this time. */
35 EXAMPLE_MGMT_ERR_NOT_WANTED,
36

37 /** The provided value was rejected by a hook. */
38 EXAMPLE_MGMT_ERR_REJECTED_BY_HOOK,
39 };
40

41 #ifdef __cplusplus
42 }
43 #endif
44

45 #endif

This provides the defines for 2 command test and other and sets up the SMP version 2 error
responses (which have unique error codes per group as opposed to the legacy SMP version 1
error responses that return a mcumgr_err_t - there should always be an OK error code with the
value 0 and an unknown error code with the value 1. The above example then adds an error code
of not wanted with value 2. In addition, the group ID is set to be MGMT_GROUP_ID_PERUSER, which
is the start group ID for user-defined groups, note that group IDs need to be unique so other
custom groups should use different values, a central index header file (as upstream Zephyr has)
can be used to distribute group IDs more easily.

Initial header <grp_name>_mgmt_callbacks.h The purpose of the header file is to provide
defines which can be used by the MCUmgr handler itself and application code, e.g. to reference
the command IDs for executing functions. An example file would look similar to:

1 /*
2 * Copyright (c) 2023 Nordic Semiconductor ASA
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6 #ifndef H_MCUMGR_EXAMPLE_MGMT_CALLBACKS_
7 #define H_MCUMGR_EXAMPLE_MGMT_CALLBACKS_
8 #include <stdint.h>
9 #include <zephyr/mgmt/mcumgr/mgmt/callbacks.h>

10

11 #ifdef __cplusplus
12 extern "C" {
13 #endif
14

(continues on next page)
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(continued from previous page)
15 /* This is the event ID for the example group */
16 #define MGMT_EVT_GRP_EXAMPLE MGMT_EVT_GRP_USER_CUSTOM_START
17

18 /* MGMT event opcodes for example management group */
19 enum example_mgmt_group_events {
20 /* Callback when the other command is received, data is example_mgmt_other_data */
21 MGMT_EVT_OP_EXAMPLE_OTHER = MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_EXAMPLE, 0),
22

23 /* Used to enable all smp_group events */
24 MGMT_EVT_OP_EXAMPLE_MGMT_ALL = MGMT_DEF_EVT_OP_ALL(MGMT_EVT_GRP_EXAMPLE),
25 };
26

27 /* Structure provided in the #MGMT_EVT_OP_EXAMPLE_OTHER notification callback */
28 struct example_mgmt_other_data {
29 /* Contains the user supplied value */
30 uint32_t user_value;
31 };
32

33 #ifdef __cplusplus
34 }
35 #endif
36

37 #endif

This sets up a single event which application (or module) code can register for to receive
a callback when the function handler is executed, which allows the flow of the handler to
be changed (i.e. to return an error instead of continuing). The event group ID is set to
MGMT_EVT_GRP_USER_CUSTOM_START, which is the start event ID for user-defined groups, note that
event IDs need to be unique so other custom groups should use different values, a central index
header file (as upstream Zephyr has) can be used to distribute event IDs more easily.

Initial source <grp_name>_mgmt.c The purpose of this source file is to handle the incoming
MCUmgr commands, provide responses, and register the transport with MCUmgr so that com-
mands will be sent to it. An example file would look similar to:

1 /*
2 * Copyright (c) 2023 Nordic Semiconductor ASA
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6 #include <zephyr/kernel.h>
7 #include <zephyr/mgmt/mcumgr/mgmt/mgmt.h>
8 #include <zephyr/mgmt/mcumgr/smp/smp.h>
9 #include <zephyr/mgmt/mcumgr/mgmt/handlers.h>

10 /* The below should be updated with the real name of the file */
11 #include <example_mgmt.h>
12 #include <zephyr/logging/log.h>
13 #include <assert.h>
14 #include <limits.h>
15 #include <string.h>
16 #include <stdio.h>
17 #include <zcbor_common.h>
18 #include <zcbor_decode.h>
19 #include <zcbor_encode.h>
20 #include <mgmt/mcumgr/util/zcbor_bulk.h>
21

22 #if defined(CONFIG_MCUMGR_MGMT_NOTIFICATION_HOOKS)
23 #include <zephyr/mgmt/mcumgr/mgmt/callbacks.h>
24 #if defined(CONFIG_MCUMGR_GRP_EXAMPLE_OTHER_HOOK)

(continues on next page)
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(continued from previous page)
25 /* The below should be updated with the real name of the file */
26 #include <example_mgmt_callbacks.h>
27 #endif
28 #endif
29

30 LOG_MODULE_REGISTER(mcumgr_example_grp, CONFIG_MCUMGR_GRP_EXAMPLE_LOG_LEVEL);
31 /* Example function with "read" command support, requires both parameters are supplied */
32 static int example_mgmt_test(struct smp_streamer *ctxt)
33 {
34 uint32_t uint_value = 0;
35 zcbor_state_t *zse = ctxt->writer->zs;
36 zcbor_state_t *zsd = ctxt->reader->zs;
37 bool ok;
38 struct zcbor_string string_value = { 0 };
39 size_t decoded;
40 struct zcbor_map_decode_key_val example_test_decode[] = {
41 ZCBOR_MAP_DECODE_KEY_DECODER("uint_key", zcbor_uint32_decode, &uint_value),
42 ZCBOR_MAP_DECODE_KEY_DECODER("string_key", zcbor_tstr_decode, &string_

↪→value),
43 };
44

45 LOG_DBG("Example test function called");
46

47 ok = zcbor_map_decode_bulk(zsd, example_test_decode, ARRAY_SIZE(example_test_
↪→decode),

48 &decoded) == 0;
49 /* Check that both parameters were supplied and that the value of "string_key" is␣

↪→not
50 * empty
51 */
52 if (!ok || string_value.len == 0 || !zcbor_map_decode_bulk_key_found(
53 example_test_decode, ARRAY_SIZE(example_test_decode), "uint_key

↪→")) {
54 return MGMT_ERR_EINVAL;
55 }
56

57 /* If the value of "uint_key" is over 50, return an error of "not wanted" */
58 if (uint_value > 50) {
59 ok = smp_add_cmd_err(zse, MGMT_GROUP_ID_EXAMPLE, EXAMPLE_MGMT_ERR_NOT_

↪→WANTED);
60 goto end;
61 }
62

63 /* Otherwise, return an integer value of 4691 */
64 ok = zcbor_tstr_put_lit(zse, "return_int") &&
65 zcbor_int32_put(zse, 4691);
66

67 end:
68 /* If "ok" is false, then there was an error processing the output cbor message,␣

↪→which
69 * likely indicates a lack of available memory
70 */
71 return (ok ? MGMT_ERR_EOK : MGMT_ERR_EMSGSIZE);
72 }
73

74 /* Example function with "write" command support */
75 static int example_mgmt_other(struct smp_streamer *ctxt)
76 {
77 uint32_t user_value = 0;
78 zcbor_state_t *zse = ctxt->writer->zs;
79 zcbor_state_t *zsd = ctxt->reader->zs;

(continues on next page)
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(continued from previous page)
80 bool ok;
81 size_t decoded;
82 struct zcbor_map_decode_key_val example_other_decode[] = {
83 ZCBOR_MAP_DECODE_KEY_DECODER("user_value", zcbor_uint32_decode, &user_

↪→value),
84 };
85

86 #if defined(CONFIG_MCUMGR_GRP_EXAMPLE_OTHER_HOOK)
87 struct example_mgmt_other_data other_data;
88 enum mgmt_cb_return status;
89 int32_t err_rc;
90 uint16_t err_group;
91 #endif
92

93 LOG_DBG("Example other function called");
94

95 ok = zcbor_map_decode_bulk(zsd, example_other_decode, ARRAY_SIZE(example_other_
↪→decode),

96 &decoded) == 0;
97

98 /* The supplied value is optional, therefore do not return an error if it was not
99 * provided

100 */
101 if (!ok) {
102 return MGMT_ERR_EINVAL;
103 }
104

105 #if defined(CONFIG_MCUMGR_GRP_EXAMPLE_OTHER_HOOK)
106 /* Send request to application to check what to do */
107 other_data.user_value = user_value;
108 status = mgmt_callback_notify(MGMT_EVT_OP_EXAMPLE_OTHER, &other_data, sizeof(other_

↪→data),
109 &err_rc, &err_group);
110 if (status != MGMT_CB_OK) {
111 /* If a callback returned an RC error, exit out, if it returned a group␣

↪→error
112 * code, add the error code to the response and return to the calling␣

↪→function to
113 * have it sent back to the client
114 */
115 if (status == MGMT_CB_ERROR_RC) {
116 return err_rc;
117 }
118

119 ok = smp_add_cmd_err(zse, err_group, (uint16_t)err_rc);
120 goto end;
121 }
122 #endif
123 /* Return some dummy data to the client */
124 ok = zcbor_tstr_put_lit(zse, "return_string") &&
125 zcbor_tstr_put_lit(zse, "some dummy data!");
126

127 #if defined(CONFIG_MCUMGR_GRP_EXAMPLE_OTHER_HOOK)
128 end:
129 #endif
130 /* If "ok" is false, then there was an error processing the output cbor message,␣

↪→which
131 * likely indicates a lack of available memory
132 */
133 return (ok ? MGMT_ERR_EOK : MGMT_ERR_EMSGSIZE);
134 }

(continues on next page)
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(continued from previous page)
135

136 #ifdef CONFIG_MCUMGR_SMP_SUPPORT_ORIGINAL_PROTOCOL
137 /* This is a lookup function that converts from SMP version 2 group error codes to legacy
138 * MCUmgr error codes, it is only included if support for the original protocol is enabled.
139 * Note that in SMP version 2, MCUmgr error codes can still be returned, but are to be used
140 * only for general SMP/MCUmgr errors. The success/OK error code is not used in translation
141 * functions as it is automatically handled by the base SMP code.
142 */
143 static int example_mgmt_translate_error_code(uint16_t err)
144 {
145 int rc;
146

147 switch (err) {
148 case EXAMPLE_MGMT_ERR_NOT_WANTED:
149 rc = MGMT_ERR_ENOENT;
150 break;
151

152 case EXAMPLE_MGMT_ERR_REJECTED_BY_HOOK:
153 rc = MGMT_ERR_EBADSTATE;
154 break;
155

156 case EXAMPLE_MGMT_ERR_UNKNOWN:
157 default:
158 rc = MGMT_ERR_EUNKNOWN;
159 }
160

161 return rc;
162 }
163 #endif
164

165 static const struct mgmt_handler example_mgmt_handlers[] = {
166 [EXAMPLE_MGMT_ID_TEST] = {
167 .mh_read = example_mgmt_test,
168 .mh_write = NULL,
169 },
170 [EXAMPLE_MGMT_ID_OTHER] = {
171 .mh_read = NULL,
172 .mh_write = example_mgmt_other,
173 },
174 };
175

176 static struct mgmt_group example_mgmt_group = {
177 .mg_handlers = example_mgmt_handlers,
178 .mg_handlers_count = ARRAY_SIZE(example_mgmt_handlers),
179 .mg_group_id = MGMT_GROUP_ID_EXAMPLE,
180 #ifdef CONFIG_MCUMGR_SMP_SUPPORT_ORIGINAL_PROTOCOL
181 .mg_translate_error = example_mgmt_translate_error_code,
182 #endif
183 };
184

185 static void example_mgmt_register_group(void)
186 {
187 /* This function is called during system init before main() is invoked, if the
188 * handler needs to set anything up before it can be used, it should do it here.
189 * This register the group so that clients can call the function handlers.
190 */
191 mgmt_register_group(&example_mgmt_group);
192 }
193

194 MCUMGR_HANDLER_DEFINE(example_mgmt, example_mgmt_register_group);

The above code creates 2 function handlers, test which supports read requests and takes 2 re-
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quired parameters, and other which supports write requests and takes 1 optional parameter,
this function handler has an optional notification callback feature that allows other parts of the
code to listen for the event and take any required actions that are necessary or prevent further
execution of the function by returning an error, further details on MCUmgr callback functional-
ity can be found on MCUmgr Callbacks.

Note that other code referencing callbacks for custom MCUmgr handlers needs to include both
the base Zephyr callback include file and the custom handler callback file, only in-tree Zephyr
handler headers are included when including the upstream Zephyr callback header file.

Initial Kconfig The purpose of the Kconfig file is to provide options which users can enable or
change relating to the functionality of the handler being implemented. An example file would
look similar to:

# Copyright Nordic Semiconductor ASA 2023. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
# The Kconfig file is dedicated to example management group of
# of MCUmgr subsystem and provides Kconfig options to configure
# group commands behaviour and other aspects.
#
# Options defined in this file should be prefixed:
# MCUMGR_GRP_EXAMPLE_ -- general group options;
#
# When adding Kconfig options, that control the same feature,
# try to group them together by the same stem after prefix.
if MCUMGR

menuconfig MCUMGR_GRP_EXAMPLE_APP
bool "MCUmgr handlers for example management (app)"
select MCUMGR_SMP_CBOR_MIN_DECODING_LEVEL_2
default y
help
Enables MCUmgr handlers for example management. This demonstrates the
file at application-level.

if MCUMGR_GRP_EXAMPLE_APP
config MCUMGR_GRP_EXAMPLE_OTHER_HOOK

bool "Other hook"
depends on MCUMGR_MGMT_NOTIFICATION_HOOKS
help
Allows applications to receive callback when the "other" example
management function is called

module = MCUMGR_GRP_EXAMPLE
module-str = mcumgr_grp_example
source "subsys/logging/Kconfig.template.log_config"

endif

endif

source "Kconfig.zephyr"

Initial CMakeLists.txt The CMakeLists.txt file is used by the build system to setup files to com-
pile, include directories to add and specify options that can be changed. A basic file only need to
include the source files if the Kconfig options are enabled. An example file would look similar
to:

Zephyr module
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# Copyright (c) 2023 Nordic Semiconductor ASA
# SPDX-License-Identifier: Apache-2.0

if(CONFIG_MCUMGR_GRP_EXAMPLE_MODULE)
zephyr_library(mgmt_mcumgr_grp_example)
# The below should be updated with the real name of the file
zephyr_library_sources(src/example_mgmt.c)
zephyr_include_directories(include)

endif()

Application

if(CONFIG_MCUMGR_GRP_EXAMPLE_APP)
target_sources(app PRIVATE example_as_module/src/example_mgmt.c)
zephyr_include_directories(example_as_module/include)

endif()

Including from application

Application-specific MCUmgr handlers can be added by creating/editing application build files.
Example modifications are shown below.

Example CMakeLists.txt The application CMakeLists.txt file can load the CMake file for the
example MCUmgr handler by adding the following:

add_subdirectory(mcumgr/grp/<grp_name>)

Example Kconfig The application Kconfig file can include the Kconfig file for the example
MCUmgr handler by adding the following to the Kconfig file in the application directory (or
creating it if it does not exist):

rsource "mcumgr/grp/<grp_name>/Kconfig"

# Include Zephyr's Kconfig
source "Kconfig.zephyr"

Including from Zephyr Module

Zephyr Modules (External projects) can be used to add custom MCUmgr handlers to multiple
different applications without needing to duplicate the code in each application’s source tree,
see Module yaml file description for details on how to set up the module files. Example files are
shown below.

Example zephyr/module.yml This is an example file which can be used to load the Kconfig and
CMake files from the root of the module directory, and would be placed at zephyr/module.yml:

build:
kconfig: Kconfig
cmake: .
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Example CMakeLists.txt This is an example CMakeLists.txt file which loads the CMake file for
the example MCUmgr handler, and would be placed at CMakeLists.txt:

add_subdirectory(mcumgr/grp/<grp_name>)

Example Kconfig This is an example Kconfig file which loads the Kconfig file for the example
MCUmgr handler, and would be placed at Kconfig:

rsource "mcumgr/grp/<grp_name>/Kconfig"

Demonstration handler

There is a demonstration project which includes configuration for both application and
zephyr module-MCUmgr handlers which can be used as a basis for created your own in
tests/subsys/mgmt/mcumgr/handler_demo/.

4.5.3 MCUmgr Callbacks

Overview

MCUmgr has a customisable callback/notification system that allows application (and module)
code to receive callbacks for MCUmgr events that they are interested in and react to them or
return a status code to the calling function that provides control over if the action should be
allowed or not. An example of this is with the fs_mgmt group, whereby file access can be gated,
the callback allows the application to inspect the request path and allow or deny access to said
file, or it can rewrite the provided path to a different path for transparent file redirection support.

Implementation

Enabling The base callback/notification system can be enabled using CON-
FIG_MCUMGR_MGMT_NOTIFICATION_HOOKS which will compile the registration and notification
system into the code. This will not provide any callbacks by default as the callbacks that are
supported by a build must also be selected by enabling the Kconfig’s for the required callbacks
(see Events for further details). A callback function with the mgmt_cb type definition can then be
declared and registered by calling mgmt_callback_register() for the desired event inside of a
:c:struct‘mgmt_callback‘ structure. Handlers are called in the order that they were registered.

With the system enabled, a basic handler can be set up and defined in application code as per:

#include <zephyr/kernel.h>
#include <zephyr/mgmt/mcumgr/mgmt/mgmt.h>
#include <zephyr/mgmt/mcumgr/mgmt/callbacks.h>

struct mgmt_callback my_callback;

enum mgmt_cb_return my_function(uint32_t event, enum mgmt_cb_return prev_status,
int32_t *rc, uint16_t *group, bool *abort_more,
void *data, size_t data_size)

{
if (event == MGMT_EVT_OP_CMD_DONE) {

/* This is the event we registered for */
}

/* Return OK status code to continue with acceptance to underlying handler */
(continues on next page)
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(continued from previous page)
return MGMT_CB_OK;

}

int main()
{

my_callback.callback = my_function;
my_callback.event_id = MGMT_EVT_OP_CMD_DONE;
mgmt_callback_register(&my_callback);

}

This code registers a handler for the MGMT_EVT_OP_CMD_DONE event, which will be called after a
MCUmgr command has been processed and output generated, note that this requires that CON-
FIG_MCUMGR_SMP_COMMAND_STATUS_HOOKS be enabled to receive this callback.

Multiple callbacks can be setup to use a single function as a common callback, and many dif-
ferent functions can be used for each event by registering each group once, or all notifications
for a whole group can be enabled by using one of the MGMT_EVT_OP_*_ALL events, alternatively
a handler can setup for every notification by using MGMT_EVT_OP_ALL. When setting up handlers,
events can be combined that are in the same group only, for example 5 img_mgmt callbacks
can be setup with a single registration call, but to also setup a callback for an os_mgmt callback,
this must be done as a separate registration. Group IDs are numerical increments, event IDs are
bitmask values, hence the restriction.

As an example, the following registration is allowed, which will register for 3 SMP events with a
single callback function in a single registration:

my_callback.callback = my_function;
my_callback.event_id = (MGMT_EVT_OP_CMD_RECV |

MGMT_EVT_OP_CMD_STATUS |
MGMT_EVT_OP_CMD_DONE);

mgmt_callback_register(&my_callback);

The following code is not allowed, and will cause undefined operation, because it mixes the IMG
management group with the OS management group whereby the group is not a bitmask value,
only the event is:

my_callback.callback = my_function;
my_callback.event_id = (MGMT_EVT_OP_IMG_MGMT_DFU_STARTED |

MGMT_EVT_OP_OS_MGMT_RESET);
mgmt_callback_register(&my_callback);

Events Events can be selected by enabling their corresponding Kconfig option:

• CONFIG_MCUMGR_SMP_COMMAND_STATUS_HOOKS
MCUmgr command status (MGMT_EVT_OP_CMD_RECV , MGMT_EVT_OP_CMD_STATUS,
MGMT_EVT_OP_CMD_DONE)

• CONFIG_MCUMGR_GRP_FS_FILE_ACCESS_HOOK
fs_mgmt file access (MGMT_EVT_OP_FS_MGMT_FILE_ACCESS)

• CONFIG_MCUMGR_GRP_IMG_UPLOAD_CHECK_HOOK
img_mgmt upload check (MGMT_EVT_OP_IMG_MGMT_DFU_CHUNK)

• CONFIG_MCUMGR_GRP_IMG_STATUS_HOOKS
img_mgmt upload status (MGMT_EVT_OP_IMG_MGMT_DFU_STOPPED,
MGMT_EVT_OP_IMG_MGMT_DFU_STARTED, MGMT_EVT_OP_IMG_MGMT_DFU_PENDING,
MGMT_EVT_OP_IMG_MGMT_DFU_CONFIRMED)

• CONFIG_MCUMGR_GRP_OS_RESET_HOOK
os_mgmt reset check (MGMT_EVT_OP_OS_MGMT_RESET)
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• CONFIG_MCUMGR_GRP_SETTINGS_ACCESS_HOOK
settings_mgmt access (MGMT_EVT_OP_SETTINGS_MGMT_ACCESS)

Actions Some callbacks expect a return status to either allow or disallow an operation, an ex-
ample is the fs_mgmt access hook which allows for access to files to be allowed or denied. With
these handlers, the first non-OK error code returned by a handler will be returned to the MCUmgr
client.

An example of selectively denying file access:

#include <zephyr/kernel.h>
#include <zephyr/mgmt/mcumgr/mgmt/mgmt.h>
#include <zephyr/mgmt/mcumgr/mgmt/callbacks.h>
#include <string.h>

struct mgmt_callback my_callback;

enum mgmt_cb_return my_function(uint32_t event, enum mgmt_cb_return prev_status,
int32_t *rc, uint16_t *group, bool *abort_more,
void *data, size_t data_size)

{
/* Only run this handler if a previous handler has not failed */
if (event == MGMT_EVT_OP_FS_MGMT_FILE_ACCESS && prev_status == MGMT_CB_OK) {

struct fs_mgmt_file_access *fs_data = (struct fs_mgmt_file_access *)data;

/* Check if this is an upload and deny access if it is, otherwise check
* the path and deny if is matches a name
*/
if (fs_data->access == FS_MGMT_FILE_ACCESS_WRITE) {

/* Return an access denied error code to the client and abort calling
* further handlers
*/

*abort_more = true;
*rc = MGMT_ERR_EACCESSDENIED;

return MGMT_CB_ERROR_RC;
} else if (strcmp(fs_data->filename, "/lfs1/false_deny.txt") == 0) {

/* Return a no entry error code to the client, call additional handlers
* (which will have failed set to true)
*/

*rc = MGMT_ERR_ENOENT;

return MGMT_CB_ERROR_RC;
}

}

/* Return OK status code to continue with acceptance to underlying handler */
return MGMT_CB_OK;

}

int main()
{

my_callback.callback = my_function;
my_callback.event_id = MGMT_EVT_OP_FS_MGMT_FILE_ACCESS;
mgmt_callback_register(&my_callback);

}

This code registers a handler for the MGMT_EVT_OP_FS_MGMT_FILE_ACCESS event, which will be
called after a fs_mgmt file read/write command has been received to check if access to the file
should be allowed or not, note that this requires that CONFIG_MCUMGR_GRP_FS_FILE_ACCESS_HOOK
be enabled to receive this callback. Two types of errors can be returned, the rc parameter can
be set to an mcumgr_err_t error code and MGMT_CB_ERROR_RC can be returned, or a group error
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code (introduced with version 2 of the MCUmgr protocol) can be set by setting the group value
to the group and rc value to the group error code and returning MGMT_CB_ERROR_ERR.

MCUmgrCommandCallbackUsage/AddingNewEvent Types To add a callback to a MCUmgr
command, mgmt_callback_notify() can be called with the event ID and, optionally, a data struct
to pass to the callback (which can be modified by handlers). If no data needs to be passed back,
NULL can be used instead, and size of the data set to 0.

An example MCUmgr command handler:

#include <zephyr/kernel.h>
#include <zcbor_common.h>
#include <zcbor_encode.h>
#include <zephyr/mgmt/mcumgr/smp/smp.h>
#include <zephyr/mgmt/mcumgr/mgmt/mgmt.h>
#include <zephyr/mgmt/mcumgr/mgmt/callbacks.h>

#define MGMT_EVT_GRP_USER_ONE MGMT_EVT_GRP_USER_CUSTOM_START

enum user_one_group_events {
/** Callback on first post, data is test_struct. */
MGMT_EVT_OP_USER_ONE_FIRST = MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_USER_ONE, 0),

/** Callback on second post, data is test_struct. */
MGMT_EVT_OP_USER_ONE_SECOND = MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_USER_ONE, 1),

/** Used to enable all user_one events. */
MGMT_EVT_OP_USER_ONE_ALL = MGMT_DEF_EVT_OP_ALL(MGMT_EVT_GRP_USER_ONE),

};

struct test_struct {
uint8_t some_value;

};

static int test_command(struct mgmt_ctxt *ctxt)
{

int rc;
int err_rc;
uint16_t err_group;
zcbor_state_t *zse = ctxt->cnbe->zs;
bool ok;
struct test_struct test_data = {

.some_value = 8,
};

rc = mgmt_callback_notify(MGMT_EVT_OP_USER_ONE_FIRST, &test_data,
sizeof(test_data), &err_rc, &err_group);

if (rc != MGMT_CB_OK) {
/* A handler returned a failure code */
if (rc == MGMT_CB_ERROR_RC) {

/* The failure code is the RC value */
return err_rc;

}

/* The failure is a group and ID error value */
ok = smp_add_cmd_err(zse, err_group, (uint16_t)err_rc);
goto end;

}

/* All handlers returned success codes */
(continues on next page)
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(continued from previous page)
ok = zcbor_tstr_put_lit(zse, "output_value") &&

zcbor_int32_put(zse, 1234);

end:
rc = (ok ? MGMT_ERR_EOK : MGMT_ERR_EMSGSIZE);

return rc;
}

If no response is required for the callback, the function call be called and casted to void.

Migration

If there is existing code using the previous callback system(s) in Zephyr 3.2 or earlier, then it will
need to be migrated to the new system. To migrate code, the following callback registration func-
tions will need to be migrated to register for callbacks using mgmt_callback_register() (note
that CONFIG_MCUMGR_MGMT_NOTIFICATION_HOOKS will need to be set to enable the new notification
system in addition to any migrations):

• mgmt_evt
Using MGMT_EVT_OP_CMD_RECV , MGMT_EVT_OP_CMD_STATUS, or MGMT_EVT_OP_CMD_DONE as
drop-in replacements for events of the same name, where the provided data is
mgmt_evt_op_cmd_arg. CONFIG_MCUMGR_SMP_COMMAND_STATUS_HOOKS needs to be set.

• fs_mgmt_register_evt_cb
Using MGMT_EVT_OP_FS_MGMT_FILE_ACCESS where the provided data is
fs_mgmt_file_access. Instead of returning true to allow the action or false
to deny, a MCUmgr result code needs to be returned, MGMT_ERR_EOK will allow
the action, any other return code will disallow it and return that code to the
client (MGMT_ERR_EACCESSDENIED can be used for an access denied error). CON-
FIG_MCUMGR_GRP_IMG_STATUS_HOOKS needs to be set.

• img_mgmt_register_callbacks
Using MGMT_EVT_OP_IMG_MGMT_DFU_STARTED if dfu_started_cb was
used, MGMT_EVT_OP_IMG_MGMT_DFU_STOPPED if dfu_stopped_cb was used,
MGMT_EVT_OP_IMG_MGMT_DFU_PENDING if dfu_pending_cb was used or
MGMT_EVT_OP_IMG_MGMT_DFU_CONFIRMED if dfu_confirmed_cb was used. These call-
backs do not have any return status. CONFIG_MCUMGR_GRP_IMG_STATUS_HOOKS needs to
be set.

• img_mgmt_set_upload_cb
Using MGMT_EVT_OP_IMG_MGMT_DFU_CHUNK where the provided data is
img_mgmt_upload_check. Instead of returning true to allow the action or false
to deny, a MCUmgr result code needs to be returned, MGMT_ERR_EOK will allow
the action, any other return code will disallow it and return that code to the
client (MGMT_ERR_EACCESSDENIED can be used for an access denied error). CON-
FIG_MCUMGR_GRP_IMG_UPLOAD_CHECK_HOOK needs to be set.

• os_mgmt_register_reset_evt_cb
Using MGMT_EVT_OP_OS_MGMT_RESET. Instead of returning true to allow the action
or false to deny, a MCUmgr result code needs to be returned, MGMT_ERR_EOK will
allow the action, any other return code will disallow it and return that code to
the client (MGMT_ERR_EACCESSDENIED can be used for an access denied error). CON-
FIG_MCUMGR_SMP_COMMAND_STATUS_HOOKS needs to be set.

API Reference
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group mcumgr_callback_api
MCUmgr callback API.

Defines

MGMT_EVT_GET_GROUP(event)
Get group from event.

MGMT_EVT_GET_ID(event)
Get event ID from event.

MGMT_CB_ERROR_RET

Typedefs

typedef enum mgmt_cb_return (*mgmt_cb)(uint32_t event, enum mgmt_cb_return
prev_status, int32_t *rc, uint16_t *group, bool *abort_more, void *data, size_t data_size)

Function to be called on MGMT notification/event.

This callback function is used to notify an application or system about a MCUmgr mgmt
event.

Param event
mcumgr_op_t.

Param prev_status
mgmt_cb_return of the previous handler calls, if it is an error then it will
be the first error that was returned by a handler (i.e. this handler is being
called for a notification only, the return code will be ignored).

Param rc
If prev_status is MGMT_CB_ERROR_RC then this is the SMP error
that was returned by the first handler that failed. If prev_status is
MGMT_CB_ERROR_ERR then this will be the group error rc code returned
by the first handler that failed. If the handler wishes to raise an SMP er-
ror, this must be set to the mcumgr_err_t status and MGMT_CB_ERROR_RC
must be returned by the function, if the handler wishes to raise a ret error,
this must be set to the group ret status and MGMT_CB_ERROR_ERR must be
returned by the function.

Param group
If prev_status is MGMT_CB_ERROR_ERR then this is the group of the ret
error that was returned by the first handler that failed. If the handler
wishes to raise a ret error, this must be set to the group ret status and
MGMT_CB_ERROR_ERR must be returned by the function.

Param abort_more
Set to true to abort further processing by additional handlers.

Param data
Optional event argument.

Param data_size
Size of optional event argument (0 if no data is provided).

Return
mgmt_cb_return indicating the status to return to the calling code (only
checked when this is the first failure reported by a handler).
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Enums

enum mgmt_cb_return
MGMT event callback return value.

Values:

enumerator MGMT_CB_OK
No error.

enumerator MGMT_CB_ERROR_RC
SMP protocol error and err_rc contains the mcumgr_err_t error code.

enumerator MGMT_CB_ERROR_ERR
Group (application-level) error and err_group contains the group ID that caused
the error and err_rc contains the error code of that group to return.

enum mgmt_cb_groups
MGMT event callback group IDs.

Note that this is not a 1:1 mapping with mcumgr_group_t values.

Values:

enumerator MGMT_EVT_GRP_ALL = 0

enumerator MGMT_EVT_GRP_SMP

enumerator MGMT_EVT_GRP_OS

enumerator MGMT_EVT_GRP_IMG

enumerator MGMT_EVT_GRP_FS

enumerator MGMT_EVT_GRP_SETTINGS

enumerator MGMT_EVT_GRP_USER_CUSTOM_START = MGMT_GROUP_ID_PERUSER

enum smp_all_events
MGMT event opcodes for all command processing.

Values:

enumerator MGMT_EVT_OP_ALL = MGMT_DEF_EVT_OP_ALL(MGMT_EVT_GRP_ALL)
Used to enable all events.

enum smp_group_events
MGMT event opcodes for base SMP command processing.

Values:
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enumerator MGMT_EVT_OP_CMD_RECV = MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_SMP,
0)

Callback when a command is received, data is mgmt_evt_op_cmd_arg().

enumerator MGMT_EVT_OP_CMD_STATUS =
MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_SMP, 1)

Callback when a status is updated, data is mgmt_evt_op_cmd_arg().

enumerator MGMT_EVT_OP_CMD_DONE = MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_SMP,
2)

Callback when a command has been processed, data is mgmt_evt_op_cmd_arg().

enumerator MGMT_EVT_OP_CMD_ALL =
MGMT_DEF_EVT_OP_ALL(MGMT_EVT_GRP_SMP)

Used to enable all smp_group events.

enum fs_mgmt_group_events
MGMT event opcodes for filesystem management group.

Values:

enumerator MGMT_EVT_OP_FS_MGMT_FILE_ACCESS =
MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_FS, 0)

Callback when a file has been accessed, data is fs_mgmt_file_access().

enumerator MGMT_EVT_OP_FS_MGMT_ALL =
MGMT_DEF_EVT_OP_ALL(MGMT_EVT_GRP_FS)

Used to enable all fs_mgmt_group events.

enum img_mgmt_group_events
MGMT event opcodes for image management group.

Values:

enumerator MGMT_EVT_OP_IMG_MGMT_DFU_CHUNK =
MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_IMG, 0)

Callback when a client sends a file upload chunk, data is
img_mgmt_upload_check().

enumerator MGMT_EVT_OP_IMG_MGMT_DFU_STOPPED =
MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_IMG, 1)

Callback when a DFU operation is stopped.

enumerator MGMT_EVT_OP_IMG_MGMT_DFU_STARTED =
MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_IMG, 2)

Callback when a DFU operation is started.

enumerator MGMT_EVT_OP_IMG_MGMT_DFU_PENDING =
MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_IMG, 3)

Callback when a DFU operation has finished being transferred.

enumerator MGMT_EVT_OP_IMG_MGMT_DFU_CONFIRMED =
MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_IMG, 4)
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Callback when an image has been confirmed.

enumerator MGMT_EVT_OP_IMG_MGMT_DFU_CHUNK_WRITE_COMPLETE =
MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_IMG, 5)

Callback when an image write command has finished writing to flash.

enumerator MGMT_EVT_OP_IMG_MGMT_ALL =
MGMT_DEF_EVT_OP_ALL(MGMT_EVT_GRP_IMG)

Used to enable all img_mgmt_group events.

enum os_mgmt_group_events
MGMT event opcodes for operating system management group.

Values:

enumerator MGMT_EVT_OP_OS_MGMT_RESET =
MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_OS, 0)

Callback when a reset command has been received, data is os_mgmt_reset_data.

enumerator MGMT_EVT_OP_OS_MGMT_INFO_CHECK =
MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_OS, 1)

Callback when an info command is processed, data is os_mgmt_info_check.

enumerator MGMT_EVT_OP_OS_MGMT_INFO_APPEND =
MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_OS, 2)

Callback when an info command needs to output data, data is
os_mgmt_info_append.

enumerator MGMT_EVT_OP_OS_MGMT_DATETIME_GET =
MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_OS, 3)

Callback when a datetime get command has been received.

enumerator MGMT_EVT_OP_OS_MGMT_DATETIME_SET =
MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_OS, 4)

Callback when a datetime set command has been received, data is struct rtc_time().

enumerator MGMT_EVT_OP_OS_MGMT_ALL =
MGMT_DEF_EVT_OP_ALL(MGMT_EVT_GRP_OS)

Used to enable all os_mgmt_group events.

enum settings_mgmt_group_events
MGMT event opcodes for settings management group.

Values:

enumerator MGMT_EVT_OP_SETTINGS_MGMT_ACCESS =
MGMT_DEF_EVT_OP_ID(MGMT_EVT_GRP_SETTINGS, 0)

Callback when a setting is read/written/deleted.

enumerator MGMT_EVT_OP_SETTINGS_MGMT_ALL =
MGMT_DEF_EVT_OP_ALL(MGMT_EVT_GRP_SETTINGS)

Used to enable all settings_mgmt_group events.
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Functions

uint8_t mgmt_evt_get_index(uint32_t event)
Get event ID index from event.

Parameters
• event – Event to get ID index from.

Returns
Event index.

enum mgmt_cb_return mgmt_callback_notify(uint32_t event, void *data, size_t data_size,
int32_t *err_rc, uint16_t *err_group)

This function is called to notify registered callbacks about mcumgr notifica-
tions/events.

Parameters
• event – mcumgr_op_t.

• data – Optional event argument.

• data_size – Size of optional event argument (0 if none).

• err_rc – Pointer to rc value.

• err_group – Pointer to group value.

Returns
mgmt_cb_return either MGMT_CB_OK if all handlers returned it, or
MGMT_CB_ERROR_RC if the first failed handler returned an SMP er-
ror (in which case err_rc will be updated with the SMP error) or
MGMT_CB_ERROR_ERR if the first failed handler returned a ret group and
error (in which case err_group will be updated with the failed group ID
and err_rc will be updated with the group-specific error code).

void mgmt_callback_register(struct mgmt_callback *callback)
Register event callback function.

Parameters
• callback – Callback struct.

void mgmt_callback_unregister(struct mgmt_callback *callback)
Unregister event callback function.

Parameters
• callback – Callback struct.

struct mgmt_callback
#include <callbacks.h> MGMT callback struct.

Public Members

sys_snode_t node
Entry list node.

mgmt_cb callback
Callback that will be called.
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uint32_t event_id
MGMT_EVT_[…] Event ID for handler to be called on.

This has special meaning if MGMT_EVT_OP_ALL is used (which will cover all
events for all groups), or MGMT_EVT_OP_*_MGMT_ALL (which will cover all
events for a single group). For events that are part of a single group, they can
be or’d together for this to have one registration trigger on multiple events, please
note that this will only work for a single group, to register for events in different
groups, they must be registered separately.

struct mgmt_evt_op_cmd_arg
#include <callbacks.h> Arguments for MGMT_EVT_OP_CMD_RECV ,
MGMT_EVT_OP_CMD_STATUS and MGMT_EVT_OP_CMD_DONE.

Public Members

uint16_t group
mcumgr_group_t

uint8_t id
Message ID within group.

uint8_t op
mcumgr_op_t used in MGMT_EVT_OP_CMD_RECV

int err
mcumgr_err_t, used in MGMT_EVT_OP_CMD_DONE

int status
img_mgmt_id_upload_t, used in MGMT_EVT_OP_CMD_STATUS

4.5.4 Fixing and backporting fixes to Zephyr v2.7 MCUmgr

The processes described in this document apply to both the zephyr repository itself and the
MCUmgr module defined in west.yml.

Note

Currently, the backporting process, described in this document, is required only when pro-
viding changes to Zephyr version 2.7 LTS

There are two different processes: one for issues that have also been fixed in the current version
of Zephyr (backports), and one for issues that are being fixed only in a previous version.

The upstream MCUmgr repository is located in this page. The Zephyr fork used in version 2.7
and earlier is located here. Versions of Zephyr past 2.7 use the MCUmgr library that is part of
the Zephyr code base.
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Possible origins of a code change

In Zephyr version 2.7 and earlier, you must first apply the fix to the upstream repository of
MCUmgr and then bring it to Zephyr with snapshot updates.

As such, there are four possible ways to apply a change to the 2.7 branch:

• The fix, done directly to the Zephyr held code of the MCUmgr library, is backported to the
v2.7-branch.

• The fix, ported to the Zephyr held code from the upstream repository, is backported to the
v2.7-branch.

• The fix, done upstream and no longer relevant to the current version, is directly
backported

to the v2.7-branch.

• The fix, not present upstream and not relevant for the current version of Zephyr, is
directly applied to the v2.7-branch.

The first three cases are cases of backports , the last one is a case of a new fix and has no corre-
sponding fix in the current version.

Applying fixes to previous versions of MCUmgr

This section indicates how to apply fixes to previous versions of MCUmgr.

Creating a bug report Every proposed fix requires a bug report submitted for the specified
version of Zephyr affected by the bug.

In case the reported bug in a previous version has already been fixed in the current version, the
description of the bug must be copied with the following:

• Additional references to the bug in the current version

• The PR for the current version

• The SHAs of the commits, if the PR has already been merged

You must also apply the backport v2.7-branch label to the bug report.

Creating the pull request for the fix You can either create a backport pull request or a new-fix
pull request.

Creating backport pull requests Backporting a fix means that some or all of the fix commits,
as they exist in the current version, are ported to a previous version.

Note

Backporting requires the fix for the current version to be already merged.

To create a backport pull request, do the following:

1. Port the fix commits from the current version to the previous version. Even if some of the
commits require changes, keep the commit messages of all the ported commits as close to
the ones in the original commits as possible, adding the following line:
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"Backporting commit <sha>"

``<sha>`` indicates the SHA of the commit after it has been already merged in the current␣
↪→version.

1. Create the pull request selecting v2.7-branch as the merge target.

2. Update west.yml within Zephyr, creating a pull-request to update the MCUmgr library ref-
erenced in Zephyr 2.7.

Creating new-fix pull requests When the fix needed does not have a corresponding fix in the
current version, the bug report must follow the ordinary process.

1. Create the pull request selecting v2.7-branch as the merge target.

2. Update west.yml within Zephyr, creating a pull-request to update the MCUmgr library ref-
erenced in Zephyr 2.7.

Configuration management

This chapter describes the maintainers’ side of accepting and merging fixes and backports.

Prerequisites As a maintainer, these are the steps required before proceeding with the merge
process:

1. Check if the author has followed the correct steps that are required to apply the fix, as de-
scribed in Applying fixes to previous versions of MCUmgr.

1. Ensure that the author of the fix has also provided the west.yml update for Zephyr 2.7.

The specific merging process depends on where the fix comes from and whether it is a backport
or a new fix.

Merging a backported fix There are two possible sources of backports:

• The Zephyr code base

• A direct fix from upstream

Both cases are similar and differ only in the branch name.

To merge a backported fix after the pull request for the fix has gone through the review process,
as a maintainer, do the following:

1. Create a branch named as follow:

backport-<source>-<pr_num>-to_v2.7-branch

<source> can be one of the following:

• upstream - if the fix has originally been merged to the upstream repository.

• zephyr - if the fix has been applied to the Zephyr internal MCUmgr library (past 2.7
versions).

<pr_num> is the number of the original pull request that has already been merged.

For example, a branch named backport-upstream-137-to-v2.7-branch indicates a back-
port of pull request 137, which has already been merged to the upstream repository of
MCUmgr.

2. Push the reviewed pull-request branch to the newly created branch and merge the backport
branch to v2.7-branch.
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Merging a new fix Merging a new fix, that is not a backport of either any upstream or Zephyr
fix, does not require any special treatment. Apply the fix directly at the top of v2.7-branch.

Mergewest.yml As an MCUmgr maintainer, you may not be able to merge the west.ymlupdate,
to introduce the fix to Zephyr. However, you are responsible for such a merge to happen as soon
as possible after the MCUmgr fixes have been applied to the v2.7-branch of the MCUmgr.

4.5.5 SMP Protocol Specification

This is description of Simple Management Protocol, SMP, that is used by MCUmgr to pass requests
to devices and receive responses from them.

SMP is an application layer protocol. The underlying transport layer is not in scope of this doc-
umentation.

Note

SMP in this context refers to SMP for MCUmgr (Simple Management Protocol), it is unrelated
to SMP in Bluetooth (Security Manager Protocol), but there is an MCUmgr SMP transport for
Bluetooth.

Frame: The envelope

Each frame consists of a header and data. The Data Length field in the header may be used for
reassembly purposes if underlying transport layer supports fragmentation. Frames are encoded
in “Big Endian” (Network endianness) when fields are more than one byte long, and takes the
following form:

3 2 1 0
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Res Ver OP Flags Data Length
Group ID Sequence Num Command ID
Data …

Note

The original specification states that SMP should support receiving both the “Little-endian”
and “Big-endian” frames but in reality the MCUmgr library is hardcoded to always treat “Net-
work” side as “Big-endian”.

Data is optional and is not present when Data Length is zero. The encoding of data depends on
the target of group/ID.

A description of the various fields and their meaning:
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Field Description
Res This is reserved, not-used field and must be always set to 0.
Ver
(Ver-
sion)

This indicates the version of the protocol being used, this should be set to 0b01 to use
the newer SMP transport where error codes are more detailed and returned in the map,
otherwise left as 0b00 to use the legacy SMP protocol. Versions 0b10 and 0b11 are re-
served for future use and should not be used.

OP mcumgr_op_t, determines whether information is written to a device or requested from
it and whether a packet contains request to an SMP server or response from it.

Flags Reserved for flags; there are no flags defined yet, the field should be set to 0
Data
Length

Length of the Data field

Group
ID

mcumgr_group_t, see Management Group ID’s for further details.

Se-
quence
Num

This is a frame sequence number. The number is increased by one with each request
frame. The Sequence Num of a response should match the one in the request.

Com-
mand
ID

This is a command, within Group.

Data This is data payload of the Data Length size. It is optional as Data Length may be set to
zero, which means that no data follows the header.

Note

Contents of Data depends on a value of an OP, a Group ID, and a Command ID.

Management Group ID’s The SMP protocol supports predefined common groups and allows
user defined groups. The following table presents a list of common groups:

Decimal ID Group description
0 Default/OS Management Group
1 Application/software image management group
2 Statistics management
3 Settings (Config) Management Group
4 Application/system log management (currently not used by Zephyr)
5 Run-time tests (unused by Zephyr)
6 Split image management (unused by Zephyr)
7 Test crashing application (unused by Zephyr)
8 File management
9 Shell management
63 Zephyr Management Group
64 This is the base group for defining an application specific management groups.

The payload for above groups, except for user groups (64 and above) is always CBOR encoded.
The group 64, and above can define their own scheme for data communication.

Minimal response

Regardless of a command issued, as long as there is SMP client on the other side of a request,
a response should be issued containing the header followed by CBOR map container. Lack of
response is only allowed when there is no SMP service or device is non-responsive.
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Minimal response SMP data Minimal response is:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)

}

where:

“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

Note that in the case of a successful command, an empty map will be returned (rc/err is only
returned if there is an error condition, therefore if only an empty map is returned or a response
lacks these, the request can be considered as being successful. For SMP version 2, errors relating
to SMP itself that are not group specific will still be returned as rc errors, SMP version 2 clients
must therefore be able to handle both types of errors.

Specifications of management groups supported by Zephyr

Default/OS Management Group OS management group defines following commands:

Command ID Command description
0 Echo
1 Console/Terminal echo control; unimplemented by Zephyr
2 Task Statistics
3 Memory pool statistics
4 Date-time string
5 System reset
6 MCUMGR parameters
7 OS/Application info
8 Bootloader information

Echo command Echo command responses by sending back string that it has received.

Echo request Echo request header fields:

OP Group ID Command ID
0 or 2 0 0
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CBOR data of request:

{
(str)"d" : (str)

}

where:

“d” string to be replied by echo service.

Echo response Echo response header fields:

OP Group ID Command ID Note
1 0 0 When request OP was 0
3 0 0 When request OP was 2

CBOR data of successful response:

{
(str)"r" : (str)

}

In case of error the CBOR data takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)

}

where:

“r” replying echo string.
“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

Task statistics command The command responds with some system statistics.

Task statistics request Task statistics request header fields:
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OP Group ID Command ID
0 0 2

The command sends an empty CBOR map as data.

Task statistics response Task statistics response header fields:

OP Group ID Command ID
1 0 2

CBOR data of successful response:

{
(str)"tasks" : {

(str)<task_name> : {
(str)"prio" : (uint)
(str)"tid" : (uint)
(str)"state" : (uint)
(str)"stkuse" : (uint)
(str)"stksiz" : (uint)
(str)"cswcnt" : (uint)
(str)"runtime" : (uint)
(str)"last_checkin" : (uint)
(str)"next_checkin" : (uint)

}
...

}
}

In case of error the CBOR data takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)

}

where:
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<task_name>string identifying task.
“prio” task priority.
“tid” numeric task ID.
“state” numeric task state.
“stkuse” task’s/thread’s stack usage.
“stksiz” task’s/thread’s stack size.
“cswcnt” task’s/thread’s context switches.
“run-
time”

task’s/thread’s runtime in “ticks”.

“last_checkin”set to 0 by Zephyr.
“next_checkin”set to 0 by Zephyr.
“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

Note

The unit for “stkuse” and “stksiz” is system dependent and in case of Zephyr this is number
of 4 byte words.

Memory pool statistics The command is used to obtain information on memory pools active
in running system.

Memory pool statistic request Memory pool statistics request header fields:

OP Group ID Command ID
0 0 3

The command sends an empty CBOR map as data.

Memory pool statistics response Memory pool statistics response header fields:

OP Group ID Command ID
1 0 3

CBOR data of successful response:

{
(str)<pool_name> {

(str)"blksiz" : (int)
(str)"nblks" : (int)
(str)"nfree" : (int)
(str)"min' : (int)

}
...

}
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In case of error the CBOR data takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)

}

where:

<pool_name>string representing the pool name, used as a key for dictionary with pool statistics
data.

“blksiz” size of the memory block in the pool.
“nblks” number of blocks in the pool.
“nfree” number of free blocks.
“min” lowest number of free blocks the pool reached during run-time.
“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

Date-time command The command allows to obtain string representing current time-date on
a device or set a new time to a device. The time format used, by both set and get operations, is:

“yyyy-MM-dd’T’HH:mm:ss.SSSSSSZZZZZ”

Date-time get The command allows to obtain date-time from a device.

Date-time get request Date-time request header fields:

OP Group ID Command ID
0 0 4

The command sends an empty CBOR map as data.

Date-time get response Date-time get response header fields:

OP Group ID Command ID
1 0 4

CBOR data of successful response:
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{
(str)"datetime" : (str)

}

In case of error the CBOR data takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)

}

where:

“date-
time”

String in format: yyyy-MM-dd'T'HH:mm:ss.SSSSSSZZZZZ.

“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

Date-time set The command allows to set date-time to a device.

Date-time set request Date-time set request header fields:

OP Group ID Command ID
2 0 4

CBOR data of response:

{
(str)"datetime" : (str)

}

where:

“datetime” String in format: yyyy-MM-dd'T'HH:mm:ss.SSSSSSZZZZZ.

Date-time set response Date-time set response header fields:

OP Group ID Command ID
3 0 4
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The command sends an empty CBOR map as data if successful. In case of error the CBOR data
takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)

}

where:

“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

System reset Performs reset of system. The device should issue response before resetting so
that the SMP client could receive information that the command has been accepted. By default,
this command is accepted in all conditions, however if the CONFIG_MCUMGR_GRP_OS_RESET_HOOK is
enabled and an application registers a callback, the callback will be called when this command
is issued and can be used to perform any necessary tidy operations prior to the module reboot-
ing, or to reject the reset request outright altogether with an error response. For details on this
functionality, see ref:‘mcumgr_callbacks.

System reset request System reset request header fields:

OP Group ID Command ID
2 0 5

Normally the command sends an empty CBOR map as data, but if a previous reset attempt has
responded with “rc” equal to MGMT_ERR_EBUSY then the following map may be sent to force a
reset:

{
(opt)"force" : (int)

}

where:

“force” Force reset if value > 0, optional if 0.

System reset response System reset response header fields
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OP Group ID Command ID
3 0 5

The command sends an empty CBOR map as data if successful. In case of error the CBOR data
takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)

}

where:

“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

MCUmgr Parameters Used to obtain parameters of mcumgr library.

MCUmgr Parameters Request MCUmgr parameters request header fields:

OP Group ID Command ID
0 0 6

The command sends an empty CBOR map as data.

MCUmgr Parameters Response MCUmgr parameters response header fields

OP Group ID Command ID
1 0 6

CBOR data of successful response:

{
(str)"buf_size" : (uint)
(str)"buf_count" : (uint)

}
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In case of error the CBOR data takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)

}

where:

“buf_size” Single SMP buffer size, this includes SMP header and CBOR payload.
“buf_count” Number of SMP buffers supported.
“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

OS/Application Info Used to obtain information on running image, similar functionality to the
linux uname command, allowing details such as kernel name, kernel version, build date/time,
processor type and application-defined details to be returned. This functionality can be enabled
with CONFIG_MCUMGR_GRP_OS_INFO.

OS/Application Info Request OS/Application info request header fields:

OP Group ID Command ID
0 0 7

CBOR data of request:

{
(str,opt)"format" : (str)

}

where:

“for-
mat”

Format specifier of returned response, fields are appended in their natural ascending
index order, not the order of characters that are received by the command. Format
specifiers: * s Kernel name * n Node name * r Kernel release * v Kernel version * b Build
date and time (requires CONFIG_MCUMGR_GRP_OS_INFO_BUILD_DATE_TIME) * m Machine * p
Processor * i Hardware platform * o Operating system * a All fields (shorthand for all
above options) If this option is not provided, the s Kernel name option will be used.
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OS/Application Info Response OS/Application info response header fields

OP Group ID Command ID
1 0 7

CBOR data of successful response:

{
(str)"output" : (str)

}

In case of error the CBOR data takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)

}

where:

“output” Text response including requested parameters.
“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

Bootloader Information Allows retrieving information about the on-board bootloader and its
parameters.

Bootloader Information Request Bootloader information request header:

OP Group ID Command ID
0 0 8

CBOR data of request:

{
(str,opt)"query" : (str)

}

where:
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“query”Is string representing query for parameters, with no restrictions how the query looks
like as processing of query is left for bootloader backend. If there is no query, then
response will return string identifying the bootloader.

Bootloader Information Response Bootloader information response header:

OP Group ID Command ID
1 0 8

In case when no “query” has been provided in request, CBOR data of response:

{
(str)"bootloader" : (str)

}

where:

“bootloader” String representing bootloader name

In case when “query” is provided:

{
(str,opt)<response> : ()
...

}

where:

<re-
sponse>

Response to “query”. This is optional and may be left out in case when query yields no
response, SMP version 2 error code of OS_MGMT_ERR_QUERY_YIELDS_NO_ANSWER is
expected. Response may have more than one parameter reported back or it may be a
map, that is dependent on bootloader backednd and query.

… Parameter characteristic information.

Parameter may be accompanied by additional, parameter specific, information keywords with
assigned values.

In case of error the CBOR data takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)

}
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where:

“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

Bootloader Information: MCUboot In case when MCUboot is application bootloader, empty
request will be responded with:

{
(str)"bootloader" : (str)"MCUboot"

}

Currently “MCUboot” supports querying for mode of operation:

{
(str)"query" : (str)"mode"

}

Response to “mode” is:

{
(str)"mode" : (int)
(str,opt)"no-downgrade" : (bool)

}

where “mode” is one of:

-1 Unknown mode of MCUboot.
0 MCUboot is in single application mode.
1 MCUboot is in swap using scratch partition mode.
2 MCUboot is in overwrite (upgrade-only) mode.
3 MCUboot is in swap without scratch mode.
4 MCUboot is in DirectXIP without revert mode.
5 MCUboot is in DirectXIP with revert mode.
6 MCUboot is in RAM loader mode.

The no-downgrade field is a flag, which is always sent when true, indicating that MCUboot has
downgrade prevention enabled; downgrade prevention means that if the uploaded image has
a lower version than the currently running application, it will not be used for an update by
MCUboot.

MCUmgr may reject images with a lower version in this configuration.

Application/software image management group Application/software image management
group defines following commands:
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Command ID Command description
0 State of images
1 Image upload
2 File (reserved but not supported by Zephyr)
3 Corelist (reserved but not supported by Zephyr)
4 Coreload (reserved but not supported by Zephyr)
5 Image erase

Notion of “slots” and “images” in Zephyr The “slot” and “image” definition comes from mcu-
boot where “image” would consist of two “slots”, further named “primary” and “secondary”; the
application is supposed to run from the “primary slot” and update is supposed to be uploaded to
the “secondary slot”; the mcuboot is responsible in swapping slots on boot. This means that pair
of slots is dedicated to single upgradable application. In case of Zephyr this gets a little bit con-
fusing because DTS will use “slot0_partition” and “slot1_partition”, as label of fixed-partition
dedicated to single application, but will name them as “image-0” and “image-1” respectively.

Currently Zephyr supports at most two images, in which case mapping is as follows:

Image Slot labels Slot Names
1 “slot0_partition” “slot1_partition” “image-0” “image-1”
2 “slot2_partition” “slot3_partition” “image-2” “image-3”

State of images The command is used to set state of images and obtain list of images with their
current state.

Get state of images request Get state of images request header fields:

OP Group ID Command ID
0 1 0

The command sends an empty CBOR map as data.

Get state of images response Get state of images response header fields:

OP Group ID Command ID
1 1 0

Note

Below definition of the response contains “image” field that has been marked as optional(opt):
the field may not appear in response when target application does not support more than one
image. The field is mandatory when application supports more than one application image
to allow identifying which image information is listed.

A response will only contain information for valid images, if an image can not be identified as
valid it is simply skipped.

CBOR data of successful response:
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{
(str)"images" : [

{
(str,opt)"image" : (uint)
(str)"slot" : (uint)
(str)"version" : (str)
(str,opt*)"hash" : (byte str)
(str,opt)"bootable" : (bool)
(str,opt)"pending" : (bool)
(str,opt)"confirmed" : (bool)
(str,opt)"active" : (bool)
(str,opt)"permanent" : (bool)

}
...

]
(str,opt)"splitStatus" : (int)

}

In case of error the CBOR data takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)
(str,opt)"rsn" : (str)

}

where:
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“image” semi-optional image number; the field is not
required when only one image is supported
by the running application.

“slot” slot number within “image”; each image has
two slots : primary (running one) = 0 and sec-
ondary (for DFU dual-bank purposes) = 1.

“version” string representing image version, as set with
imgtool.

“hash” SHA256 hash of the image header and
body. Note that this will not be the
same as the SHA256 of the whole file, it
is the field in the MCUboot TLV section
that contains a hash of the data which
is used for signature verification purposes.
This field is optional but only optional
when using MCUboot’s serial recovery fea-
ture with one pair of image slots, Kconfig CON-
FIG_BOOT_SERIAL_IMG_GRP_HASH can be dis-
abled to remove support for hashes in this
configuration. MCUmgr in applications must
support sending hashes.

Note

See IMAGE_TLV_SHA256 in the MCUboot im-
age format documentation link below.

“bootable” true if image has bootable flag set; this field
does not have to be present if false.

“pending” true if image is set for next swap; this field
does not have to be present if false.

“confirmed” true if image has been confirmed; this field
does not have to be present if false.

“active” true if image is currently active application;
this field does not have to be present if false.

“permanent” true if image is to stay in primary slot after the
next boot; this does not have to be present if
false.

“splitStatus” states whether loader of split image is com-
patible with application part; this is unused
by Zephyr.

“err” -> “group” mcumgr_group_t group of the group-based er-
ror code. Only appears if an error is returned
when using SMP version 2.

“err” -> “rc” contains the index of the group-based error
code. Only appears if non-zero (error condi-
tion) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error
condition) when using SMP version 1 or for
SMP errors when using SMP version 2.

“rsn” optional string that clarifies reason for
an error; specifically useful when rc is
MGMT_ERR_EUNKNOWN.

Note
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For more information on how does image/slots function, please refer to the MCUBoot doc-
umentation https://docs.mcuboot.com/design.html#image-slots For information on MCUboot
image format, please reset to the MCUboot documentation https://docs.mcuboot.com/design.
html#image-format

Set state of image request Set state of image request header fields:

OP Group ID Command ID
2 1 0

CBOR data of request:

{
(str,opt)"hash" : (str)
(str)"confirm" : (bool)

}

If “confirm” is false or not provided, an image with the “hash” will be set for test, which means
that it will not be marked as permanent and upon hard reset the previous application will be re-
stored to the primary slot. In case when “confirm” is true, the “hash” is optional as the currently
running application will be assumed as target for confirmation.

Set state of image response The response takes the same format asGet state of images response

Image upload The image upload command allows to update application image.

Image upload request The image upload request is sent for each chunk of image that is up-
loaded, until complete image gets uploaded to a device.

Image upload request header fields:

OP Group ID Command ID
2 1 1

CBOR data of request:

{
(str,opt)"image" : (uint)
(str,opt)"len" : (uint)
(str)"off" : (uint)
(str,opt)"sha" : (byte str)
(str)"data" : (byte str)
(str,opt)"upgrade" : (bool)

}

where:
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“im-
age”

optional image number, it does not have to appear in request at all, in which case it is
assumed to be 0. Should only be present when “off” is 0.

“len” optional length of an image. Must appear when “off” is 0.
“off” offset of image chunk the request carries.
“sha” SHA256 hash of an upload; this is used to identify an upload session (e.g. to allow

MCUmgr to continue a broken session), and for image verification purposes. This must
be a full SHA256 hash of the whole image being uploaded, or not included if the hash is
not available (in which case, upload session continuation and image verification func-
tionality will be unavailable). Should only be present when “off” is 0.

“data”image data to write at provided offset.
“up-
grade”

optional flag that states that only upgrade should be allowed, so if the version of up-
loaded software is not higher then already on a device, the image upload will be
rejected. Zephyr compares major, minor and revision (x.y.z) by default unless CON-
FIG_MCUMGR_GRP_IMG_VERSION_CMP_USE_BUILD_NUMBER is set, whereby it will compare
build numbers too. Should only be present when “off” is 0.

Note

There is no field representing size of chunk that is carried as “data” because that information
is embedded within “data” field itself.

Note

It is possible that a server will respond to an upload with “off” of 0, this may happen if an
upload on another transport (or outside of MCUmgr entirely) is started, if the device has re-
booted or if a packet has been lost. If this happens, a client must re-send all the required and
optional fields that it sent in the original first packet so that the upload state can be re-created
by the server. If the original fields are not included, the upload will be unable to continue.

The MCUmgr library uses “sha” field to tag ongoing update session, to be able to continue it in
case when it gets broken, and for upload verification purposes. If library gets request with “off”
equal zero it checks stored “sha” within its state and if it matches it will respond to update client
application with offset that it should continue with. If this hash is not available (e.g. because
a file is being streamed) then it must not be provided, image verification and upload session
continuation features will be unavailable in this case.

Image upload response Image upload response header fields:

OP Group ID Command ID
3 1 1

CBOR data of successful response:

{
(str,opt)"off" : (uint)
(str,opt)"match" : (bool)

}

In case of error the CBOR data takes the form:

SMP version 2
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{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)
(str,opt)"rsn" : (str)

}

where:

“off” offset of last successfully written byte of update.
“match” indicates if the uploaded data successfully matches the provided SHA256 hash or

not, only sent in the final packet if CONFIG_IMG_ENABLE_IMAGE_CHECK is enabled.
“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

“rsn” optional string that clarifies reason for an error; specifically useful when rc is
MGMT_ERR_EUNKNOWN.

The “off” field is only included in responses to successfully processed requests; if “rc” is negative
then “off” may not appear.

Image erase The command is used for erasing image slot on a target device.

Note

This is synchronous command which means that a sender of request will not receive response
until the command completes, which can take a long time.

Image erase request Image erase request header fields:

OP Group ID Command ID
2 1 5

CBOR data of request:

{
(str,opt)"slot" : (uint)

}

where:

“slot” optional slot number, it does not have to appear in the request at all, in which case it is
assumed to be 1.
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Image erase response Image erase response header fields:

OP Group ID Command ID
3 1 5

The command sends an empty CBOR map as data if successful. In case of error the CBOR data
takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)
(str,opt)"rsn" : (str)

}

where:

“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

“rsn” optional string that clarifies reason for an error; specifically useful when rc is
MGMT_ERR_EUNKNOWN.

Note

Response from Zephyr running device may have “rc” value of MGMT_ERR_EBADSTATE, which
means that the secondary image has been marked for next boot already and may not be
erased.

Statisticsmanagement Statistics management allows to obtain data gathered by Statistics sub-
system of Zephyr, enabled with CONFIG_STATS.

Statistics management group defines commands:

Command ID Command description
0 Group data
1 List groups

Statistics: group data The command is used to obtain data for group specified by a
name. The name is one of group names as registered, with STATS_INIT_AND_REG macro or
stats_init_and_reg() function call, within module that gathers the statistics.
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Statistics: group data request Statistics group data request header:

OP Group ID Command ID
0 2 0

CBOR data of request:

{
(str)"name" : (str)

}

where:

“name” group name.

Statistics: group data response Statistics group data response header:

OP Group ID Command ID
1 2 0

CBOR data of successful response:

{
(str)"name" : (str)
(str)"fields" : {

(str)<entry_name> : (uint)
...

}
}

In case of error the CBOR data takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)

}

where:
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“name” this is name of group the response contains data for.
“fields” this is map of entries within groups that consists of pairs where the entry name

is mapped to value it represents in statistics.
<en-
try_name>

single entry to value mapping; value is hardcoded to unsigned integer type, in a
CBOR meaning.

“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

Statistics: list of groups The command is used to obtain list of groups of statistics that are
gathered on a device. This is a list of names as given to groups with STATS_INIT_AND_REG macro
or stats_init_and_reg() function calls, within module that gathers the statistics; this means
that this command may be considered optional as it is known during compilation what groups
will be included into build and listing them is not needed prior to issuing a query.

Statistics: list of groups request Statistics group list request header:

OP Group ID Command ID
0 2 1

The command sends an empty CBOR map as data.

Statistics: list of groups response Statistics group list request header:

OP Group ID Command ID
1 2 1

CBOR data of successful response:

{
(str)"stat_list" : [

(str)<stat_group_name>, ...
]

}

In case of error the CBOR data takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)
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{
(str)"rc" : (int)

}

where:

“stat_list” array of strings representing group names; this array may be empty if there are
no groups.

“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

Settings (Config) Management Group Settings management group (known as Configuration
Manager in the original MCUmgr repository) defines the following commands:

Command ID Command description
0 Read/write setting
1 Delete setting
2 Commit settings
3 Load/Save settings

Note that the Zephyr version adds additional commands and features which are not supported
by the original upstream version, however, the original client functionality should work for
read/write functionality.

Read/write setting command Read/write setting command allows updating a setting entry on
a device or getting the current value of a setting from a device.

Read setting request Read setting request header fields:

OP Group ID Command ID
0 3 0

CBOR data of request:

{
(str)"name" : (str)
(str,opt)"max_size" : (uint)

}

where:

“name” string of the setting to retrieve
“max_size” optional maximum size of data to return
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Read setting response Read setting response header fields:

OP Group ID Command ID
1 3 0

CBOR data of successful response:

{
(str)"val" : (bstr)
(str,opt)"max_size" : (uint)

}

In case of error the CBOR data takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1

{
(str)"rc" : (int)

}

where:

“val” binary string of the returned data, note that the underlying data type cannot be spec-
ified through this and must be known by the client.

“max_size”will be set if the maximum supported data size is smaller than the maximum re-
quested data size, and contains the maximum data size which the device supports,
equivalent to kconfig:option:CONFIG_MCUMGR_GRP_SETTINGS_NAME_LEN.

“err”
->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is re-
turned when using SMP version 2.

“err”
->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version 1
or for SMP errors when using SMP version 2.

Write setting request Write setting request header fields:

OP Group ID Command ID
2 3 0

CBOR data of request:

{
(str)"name" : (str)
(str)"val" : (bstr)

}
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where:

“name” string of the setting to update/set
“val” value to set the setting to

Write setting response Write setting response header fields:

OP Group ID Command ID
3 3 0

The command sends an empty CBOR map as data if successful. In case of error the CBOR data
takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1

{
(str)"rc" : (int)

}

where:

“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

Delete setting command Delete setting command allows deleting a setting on a device.

Delete setting request Delete setting request header fields:

OP Group ID Command ID
2 3 1

CBOR data of request:

{
(str)"name" : (str)

}

where:
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“name” string of the setting to delete

Delete setting response Delete setting response header fields:

OP Group ID Command ID
3 3 1

The command sends an empty CBOR map as data if successful. In case of error the CBOR data
takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1

{
(str)"rc" : (int)

}

where:

“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

Commit settings command Commit settings command allows committing all settings that
have been set but not yet applied on a device.

Commit settings request Commit settings request header fields:

OP Group ID Command ID
2 3 2

The command sends an empty CBOR map as data.

Commit settings response Commit settings response header fields:

OP Group ID Command ID
3 3 2
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The command sends an empty CBOR map as data if successful. In case of error the CBOR data
takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1

{
(str)"rc" : (int)

}

where:

“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

Load/Save settings command Load/Save settings command allows loading/saving all serial-
ized items from/to persistent storage on a device.

Load settings request Load settings request header fields:

OP Group ID Command ID
0 3 3

The command sends an empty CBOR map as data.

Load settings response Load settings response header fields:

OP Group ID Command ID
1 3 3

The command sends an empty CBOR map as data if successful. In case of error the CBOR data
takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1
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{
(str)"rc" : (int)

}

where:

“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

Save settings request Save settings request header fields:

OP Group ID Command ID
2 3 3

The command sends an empty CBOR map as data.

Save settings response Save settings response header fields:

OP Group ID Command ID
3 3 3

The command sends an empty CBOR map as data if successful. In case of error the CBOR data
takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1

{
(str)"rc" : (int)

}

where:

“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.
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Settings access callback There is a settings access MCUmgr callback available (see
MCUmgr Callbacks for details on callbacks) which allows for applications/modules
to know when settings management commands are used and, optionally, block ac-
cess (for example through the use of a security mechanism). This callback can be
enabled with CONFIG_MCUMGR_GRP_SETTINGS_ACCESS_HOOK, registered with the event
MGMT_EVT_OP_SETTINGS_MGMT_ACCESS, whereby the supplied callback data is set-
tings_mgmt_access.

File management The file management group provides commands that allow to upload and
download files to/from a device.

File management group defines following commands:

Command ID Command description
0 File download/upload
1 File status
2 File hash/checksum
3 Supported file hash/checksum types
4 File close

File download Command allows to download contents of an existing file from specified path
of a target device. Client applications must keep track of data they have already downloaded
and where their position in the file is (MCUmgr will cache these also), and issue subsequent
requests, with modified offset, to gather the entire file. Request does not carry size of requested
chunk, the size is specified by application itself. Note that file handles will remain open for
consecutive requests (as long as an idle timeout has not been reached and another transport
does not make use of uploading/downloading files using fs_mgmt), but files are not exclusively
owned by MCUmgr, for the time of download session, and may change between requests or even
be removed.

Note

By default, all file upload/download requests are unconditionally allowed. However, if the
Kconfig option CONFIG_MCUMGR_GRP_FS_FILE_ACCESS_HOOK is enabled, then an application can
register a callback handler for MGMT_EVT_OP_FS_MGMT_FILE_ACCESS (see MCUmgr callbacks),
which allows for allowing or declining access to reading/writing a particular file, or for rewrit-
ing the path supplied by the client.

File download request File download request header:

OP Group ID Command ID
0 8 0

CBOR data of request:

{
(str)"off" : (uint)
(str)"name" : (str)

}

where:
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“off” offset to start download at
“name” absolute path to a file

File download response File download response header:

OP Group ID Command ID
1 8 0

CBOR data of successful response:

{
(str)"off" : (uint)
(str)"data" : (byte str)
(str,opt)"len" : (uint)

}

In case of error the CBOR data takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)

}

where:

“off” offset the response is for.
“data” chunk of data read from file; it is CBOR encoded stream of bytes with embedded

size; “data” appears only in responses where “rc” is 0.
“len” length of file, this field is only mandatory when “off” is 0.
“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

File upload Allows to upload a file to a specified location. Command will automatically over-
write existing file or create a new one if it does not exist at specified path. The protocol supports
stateless upload where each requests carries different chunk of a file and it is client side respon-
sibility to track progress of upload.

Note that file handles will remain open for consecutive requests (as long as an idle timeout has
not been reached, but files are not exclusively owned by MCUmgr, for the time of download ses-
sion, and may change between requests or even be removed. Note that file handles will remain
open for consecutive requests (as long as an idle timeout has not been reached and another
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transport does not make use of uploading/downloading files using fs_mgmt), but files are not
exclusively owned by MCUmgr, for the time of download session, and may change between re-
quests or even be removed.

Note

Weirdly, the current Zephyr implementation is half-stateless as is able to hold single up-
load context, holding information on ongoing upload, that consists of bool flag indicating
in-progress upload, last successfully uploaded offset and total length only.

Note

By default, all file upload/download requests are unconditionally allowed. However, if the
Kconfig option CONFIG_MCUMGR_GRP_FS_FILE_ACCESS_HOOK is enabled, then an application can
register a callback handler for MGMT_EVT_OP_FS_MGMT_FILE_ACCESS (see MCUmgr callbacks),
which allows for allowing or declining access to reading/writing a particular file, or for rewrit-
ing the path supplied by the client.

File upload request File upload request header:

OP Group ID Command ID
2 8 0

CBOR data of request:

{
(str)"off" : (uint)
(str)"data" : (str)
(str)"name" : (str)
(str,opt)"len" : (uint)

}

where:

“off” offset to start/continue upload at.
“data” chunk of data to write to the file; it is CBOR encoded with length embedded.
“name” absolute path to a file.
“len” length of file, this field is only mandatory when “off” is 0.

File upload response File upload response header:

OP Group ID Command ID
3 8 0

CBOR data of successful response:

{
(str)"off" : (uint)

}
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In case of error the CBOR data takes the form:

where:

“off” offset of last successfully written data.
“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

File status Command allows to retrieve status of an existing file from specified path of a target
device.

File status request File status request header:

OP Group ID Command ID
0 8 1

CBOR data of request:

{
(str)"name" : (str)

}

where:

“name” absolute path to a file.

File status response File status response header:

OP Group ID Command ID
1 8 1

CBOR data of successful response:

{
(str)"len" : (uint)

}

In case of error the CBOR data takes form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

810 Chapter 4. OS Services



Zephyr Project Documentation, Release 3.7.99

{
(str)"rc" : (int)

}

where:

“len” length of file (in bytes).
“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

File hash/checksum Command allows to generate a hash/checksum of an existing file
at a specified path on a target device. Note that kernel heap memory is required for
buffers to be allocated for this to function, and large stack memory buffers are required
for generation of the output hash/checksum. Requires CONFIG_MCUMGR_GRP_FS_CHECKSUM_HASH
to be enabled for the base functionality, supported hash/checksum are opt-in with CON-
FIG_MCUMGR_GRP_FS_CHECKSUM_IEEE_CRC32 or CONFIG_MCUMGR_GRP_FS_HASH_SHA256.

File hash/checksum request File hash/checksum request header:

OP Group ID Command ID
0 8 2

CBOR data of request:

{
(str)"name" : (str)
(str,opt)"type" : (str)
(str,opt)"off" : (uint)
(str,opt)"len" : (uint)

}

where:

“name” absolute path to a file.
“type” type of hash/checksum to perform Hash/checksum types or omit to use default.
“off” offset to start hash/checksum calculation at (optional, 0 if not provided).
“len” maximum length of data to read from file to generate hash/checksum with (optional,

full file size if not provided).

Hash/checksum types

String name Hash/checksum Byte string Size (bytes)
crc32 IEEE CRC32 checksum No 4
sha256 SHA256 (Secure Hash Algorithm) Yes 32

Note that the default type will be crc32 if it is enabled, or sha256 if crc32 is not enabled.
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File hash/checksum response File hash/checksum response header:

OP Group ID Command ID
1 8 2

CBOR data of successful response:

{
(str)"type" : (str)
(str,opt)"off" : (uint)
(str)"len" : (uint)
(str)"output" : (uint or bstr)

}

In case of error the CBOR data takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)

}

where:

“type” type of hash/checksum that was performed Hash/checksum types.
“off” offset that hash/checksum calculation started at (only present if not 0).
“len” length of input data used for hash/checksum generation (in bytes).
“output” output hash/checksum.
“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

Supported file hash/checksum types Command allows listing which hash
and checksum types are available on a device. Requires Kconfig CON-
FIG_MCUMGR_GRP_FS_CHECKSUM_HASH_SUPPORTED_CMD to be enabled.

Supported file hash/checksum types request Supported file hash/checksum types request
header:

OP Group ID Command ID
0 8 3

The command sends empty CBOR map as data.
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Supported file hash/checksum types response Supported file hash/checksum types response
header:

OP Group ID Command ID
1 8 3

CBOR data of successful response:

{
(str)"types" : {

(str)<hash_checksum_name> : {
(str)"format" : (uint)
(str)"size" : (uint)

}
...

}
}

In case of error the CBOR data takes form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)

}

where:

<hash_checksum_name>name of the hash/checksum type Hash/checksum types.
“format” format that the hash/checksum returns where 0 is for numerical and 1 is for

byte array.
“size” size (in bytes) of output hash/checksum response.
“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an
error is returned when using SMP version 2.

“err” -> “rc” contains the index of the group-based error code. Only appears if non-zero
(error condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP
version 1 or for SMP errors when using SMP version 2.

File close Command allows closing any open file handles held by fs_mgmt upload/download
requests that might have stalled or be incomplete.

File close request File close request header:

OP Group ID Command ID
2 8 4
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The command sends empty CBOR map as data.

File close response File close response header:

OP Group ID Command ID
3 8 4

The command sends an empty CBOR map as data if successful. In case of error the CBOR data
takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)

}

where:

“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

Shell management Shell management allows passing commands to the shell subsystem over
the SMP protocol.

Shell management group defines following commands:

Command ID Command description
0 Shell command line execute

Shell command line execute The command allows to execute command line in a similar way
to typing it into a shell, but both a request and a response are transported over SMP.

Shell command line execute request Execute command request header:

OP Group ID Command ID
2 9 0

CBOR data of request:
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{
(str)"argv" : [

(str)<cmd>
(str,opt)<arg>
...

]
}

where:

“argv” array consisting of strings representing command and its arguments.
<cmd> command to be executed.
<arg> optional arguments to command.

Shell command line execute response Command line execute response header fields:

OP Group ID Command ID
3 9 0

CBOR data of successful response:

{
(str)"o" : (str)
(str)"ret" : (int)

}

In case of error the CBOR data takes the form:

SMP version 2

{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1 (and non-group SMP version 2)

{
(str)"rc" : (int)

}

where:

“o” command output.
“ret” return code from shell command execution.
“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.
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Note

In older versions of Zephyr, “rc” was used for both the mcumgr status code and shell
command execution return code, this legacy behaviour can be restored by enabling CON-
FIG_MCUMGR_GRP_SHELL_LEGACY_RC_RETURN_CODE

4.5.6 SMP Transport Specification

The documents specifies information needed for implementing server and client side SMP trans-
ports.

BLE (Bluetooth Low Energy)

MCUmgr Clients need to use following BLE Characteristics, when implementing SMP client:

• Service UUID: 8D53DC1D-1DB7-4CD3-868B-8A527460AA84

• Characteristic UUID: DA2E7828-FBCE-4E01-AE9E-261174997C48

All SMP communication utilizes a single GATT characteristic. An SMP request is sent via a GATT
Write Without Response command. An SMP response is sent in the form of a GATT Notification

If an SMP request or response is too large to fit in a single GATT command, the sender fragments
it across several packets. No additional framing is introduced when a request or response is
fragmented; the payload is simply split among several packets. Since GATT guarantees ordered
delivery of packets, the SMP header in the first fragment contains sufficient information for re-
assembly.

UART/serial and console

SMP protocol specification by MCUmgr subsystem of Zephyr uses basic framing of data to allow
multiplexing of UART channel. Multiplexing requires prefixing each frame with two byte marker
and terminating it with newline. Currently MCUmgr imposes a 127 byte limit on frame size,
although there are no real protocol constraints that require that limit. The limit includes the
prefix and the newline character, so the allowed payload size is actually 124 bytes.

Although no such transport exists in Zephyr, it is possible to implement MCUmgr client/server
over UART transport that does not have framing at all, or uses hardware serial port control, or
other means of framing.

Frame fragmenting SMP protocol over serial is fragmented into MTU size frames; each frame
consists of two byte start marker, body and terminating newline character.

There are four types of types of frames: initial, partial, partial-final and initial-final; each frame
type differs by start marker and/or body contents.

Frame formats Initial frame requires to be followed by optional sequence of partial frames
and finally by partial-final frame. Body is always Base64 encoded, so the body size, here de-
scribed as MTU - 3, is able to actually carry N = (MTU - 3) / 4 * 3 bytes of raw data.

Body of initial frame is preceded by two byte total packet length, encoded in Big Endian, and
equals size of a raw body plus two bytes, size of CRC16; this means that actual body size allowed
into an initial frame is N - 2.
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If a body size is smaller than N - 4, than it is possible to carry entire body with preceding length
and following it CRC in a single frame, here called initial-final; for the description of initial-final
frame look below.

Initial frame format:

Content Size Description
0x06 0x09 2 bytes Frame start marker
<base64-i> no more than MTU - 3 bytes Base64 encoded body
0x0a 1 byte Frame termination

<base64-i> is Base64 encoded body of format:

Con-
tent

Size Description

total
length

2 bytes Big endian 16-bit value representing total length of body + 2 bytes for
CRC16; note that size of total length field is not added to total length
value.

body no more
than MTU
- 5

Raw body data fragment

Initial-final frame format is similar to initial frame format, but differs by <base64-i> definition.

<base64-i> of initial-final frame, is Base64 encoded data taking form:

Con-
tent

Size Description

total
length

2 bytes Big endian 16-bit value representing total length of body + 2 bytes for
CRC16; note that size of total length field is not added to total length
value.

body no more
than MTU
- 7

Raw body data fragment

crc16 2 bytes CRC16 of entire packet body, preceding length not included.

Partial frame is continuation after previous initial or other partial frame. Partial frame takes
form:

Content Size Description
0x04 0x14 2 bytes Frame start marker
<base64-i> no more than MTU - 3 bytes Base64 encoded body
0x0a 1 byte Frame termination

The <base64-i> of partial frame is Base64 encoding of data, taking form:

Content Size Description
body no more than MTU - 3 Raw body data fragment

The <base64-i> of partial-final frame is Base64 encoding of data, taking form:
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Con-
tent

Size Description

body no more than MTU - 3 Raw body data fragment
crc16 2 bytes CRC16 of entire packet body, preceding length not included.

CRC Details The CRC16 included in final type frames is calculated over only raw data and does
not include packet length. CRC16 polynomial is 0x1021 and initial value is 0.

API Reference

group mcumgr_transport_smp
MCUmgr transport SMP API.

Typedefs

typedef int (*smp_transport_out_fn)(struct net_buf *nb)
SMP transmit callback for transport.

The supplied net_buf is always consumed, regardless of return code.

Param nb
The net_buf to transmit.

Return
0 on success, mcumgr_err_t code on failure.

typedef uint16_t (*smp_transport_get_mtu_fn)(const struct net_buf *nb)
SMP MTU query callback for transport.

The supplied net_buf should contain a request received from the peer whose MTU
is being queried. This function takes a net_buf parameter because some transports
store connection-specific information in the net_buf user header (e.g., the BLE trans-
port stores the peer address).

Param nb
Contains a request from the relevant peer.

Return
The transport’s MTU; 0 if transmission is currently not possible.

typedef int (*smp_transport_ud_copy_fn)(struct net_buf *dst, const struct net_buf *src)
SMP copy user_data callback.

The supplied src net_buf should contain a user_data that cannot be copied using regu-
lar memcpy function (e.g., the BLE transport net_buf user_data stores the connection
reference that has to be incremented when is going to be used by another buffer).

Param dst
Source buffer user_data pointer.

Param src
Destination buffer user_data pointer.

Return
0 on success, mcumgr_err_t code on failure.
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typedef void (*smp_transport_ud_free_fn)(void *ud)
SMP free user_data callback.

This function frees net_buf user data, because some transports store connection-
specific information in the net_buf user data (e.g., the BLE transport stores the con-
nection reference that has to be decreased).

Param ud
Contains a user_data pointer to be freed.

typedef bool (*smp_transport_query_valid_check_fn)(struct net_buf *nb, void *arg)
Function for checking if queued data is still valid.

This function is used to check if queued SMP data is still valid e.g. on a remote device
disconnecting, this is triggered when smp_rx_remove_invalid() is called.

Param nb
net buf containing queued request.

Param arg
Argument provided when calling smp_rx_remove_invalid() function.

Return
false if data is no longer valid/should be freed, true otherwise.

Enums

enum smp_transport_type
SMP transport type for client registration.

Values:

enumerator SMP_SERIAL_TRANSPORT = 0
SMP serial.

enumerator SMP_BLUETOOTH_TRANSPORT
SMP bluetooth.

enumerator SMP_SHELL_TRANSPORT
SMP shell.

enumerator SMP_UDP_IPV4_TRANSPORT
SMP UDP IPv4.

enumerator SMP_UDP_IPV6_TRANSPORT
SMP UDP IPv6.

enumerator SMP_USER_DEFINED_TRANSPORT
SMP user defined type.

Functions
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int smp_transport_init(struct smp_transport *smpt)
Initializes a Zephyr SMP transport object.

Parameters
• smpt – The transport to construct.

Returns
0 If successful

Returns
Negative errno code if failure.

void smp_rx_remove_invalid(struct smp_transport *zst, void *arg)
Used to remove queued requests for an SMP transport that are no longer valid.

A smp_transport_query_valid_check_fn() function must be registered for this to func-
tion. If the smp_transport_query_valid_check_fn() function returns false during a call-
back, the queried command will classed as invalid and dropped.

Parameters
• zst – The transport to use.

• arg – Argument provided to callback smp_transport_query_valid_check_fn()
function.

void smp_rx_clear(struct smp_transport *zst)
Used to clear pending queued requests for an SMP transport.

Parameters
• zst – The transport to use.

void smp_client_transport_register(struct smp_client_transport_entry *entry)
Register a Zephyr SMP transport object for client.

Parameters
• entry – The transport to construct.

struct smp_transport *smp_client_transport_get(int smpt_type)
Discover a registered SMP transport client object.

Parameters
• smpt_type – Type of transport

Returns
Pointer to registered object. Unknown type return NULL.

struct smp_transport_api_t
#include <smp.h> Function pointers of SMP transport functions, if a handler is NULL
then it is not supported/implemented.

Public Members

smp_transport_out_fn output
Transport’s send function.

smp_transport_get_mtu_fn get_mtu
Transport’s get-MTU function.
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smp_transport_ud_copy_fn ud_copy
Transport buffer user_data copy function.

smp_transport_ud_free_fn ud_free
Transport buffer user_data free function.

smp_transport_query_valid_check_fn query_valid_check
Transport’s check function for if a query is valid.

struct smp_transport
#include <smp.h> SMP transport object for sending SMP responses.

struct smp_client_transport_entry
#include <smp.h> SMP Client transport structure.

Public Members

struct smp_transport *smpt
Transport structure pointer.

int smpt_type
Transport type.

4.5.7 Device Firmware Upgrade

Overview

The Device Firmware Upgrade subsystem provides the necessary frameworks to upgrade the
image of a Zephyr-based application at run time. It currently consists of two different modules:

• subsys/dfu/boot/: Interface code to bootloaders

• subsys/dfu/img_util/: Image management code

The DFU subsystem deals with image management, but not with the transport or management
protocols themselves required to send the image to the target device. For information on these
protocols and frameworks please refer to the Device Management section.

Flash Image The flash image API as part of the Device Firmware Upgrade (DFU) subsystem
provides an abstraction on top of Flash Stream to simplify writing firmware image chunks to
flash.

API Reference

group flash_img_api
Abstraction layer to write firmware images to flash.
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Functions

int flash_img_init_id(struct flash_img_context *ctx, uint8_t area_id)
Initialize context needed for writing the image to the flash.

Parameters
• ctx – context to be initialized

• area_id – flash area id of partition where the image should be written

Returns
0 on success, negative errno code on fail

int flash_img_init(struct flash_img_context *ctx)
Initialize context needed for writing the image to the flash.

Parameters
• ctx – context to be initialized

Returns
0 on success, negative errno code on fail

size_t flash_img_bytes_written(struct flash_img_context *ctx)
Read number of bytes of the image written to the flash.

Parameters
• ctx – context

Returns
Number of bytes written to the image flash.

int flash_img_buffered_write(struct flash_img_context *ctx, const uint8_t *data, size_t
len, bool flush)

Process input buffers to be written to the image slot 1.

flash memory in single blocks. Will store remainder between calls.

A final call to this function with flush set to true will write out the remaining block
buffer to flash. Since flash is written to in blocks, the contents of flash from the last
byte written up to the next multiple of CONFIG_IMG_BLOCK_BUF_SIZE is padded with
0xff.

Parameters
• ctx – context

• data – data to write

• len – Number of bytes to write

• flush – when true this forces any buffered data to be written to flash

Returns
0 on success, negative errno code on fail

int flash_img_check(struct flash_img_context *ctx, const struct flash_img_check *fic,
uint8_t area_id)

Verify flash memory length bytes integrity from a flash area.

The start point is indicated by an offset value.

The function is enabled via CONFIG_IMG_ENABLE_IMAGE_CHECK Kconfig options.

Parameters
• ctx – [in] context.
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• fic – [in] flash img check data.

• area_id – [in] flash area id of partition where the image should be veri-
fied.

Returns
0 on success, negative errno code on fail

struct flash_img_context
#include <flash_img.h>

struct flash_img_check
#include <flash_img.h> Structure for verify flash region integrity.

Match vector length is fixed and depends on size from hash algorithm used to verify
flash integrity. The current available algorithm is SHA-256.

Public Members

size_t clen
Match vector data.

MCUBoot API The MCUboot API is provided to get version information and boot status of ap-
plication images. It allows to select application image and boot type for the next boot.

API Reference

group mcuboot_api
MCUboot public API for MCUboot control of image boot process.

Defines

BOOT_SWAP_TYPE_NONE
Attempt to boot the contents of slot 0.

BOOT_SWAP_TYPE_TEST
Swap to slot 1.

Absent a confirm command, revert back on next boot.

BOOT_SWAP_TYPE_PERM
Swap to slot 1, and permanently switch to booting its contents.

BOOT_SWAP_TYPE_REVERT
Swap back to alternate slot.

A confirm changes this state to NONE.

BOOT_SWAP_TYPE_FAIL
Swap failed because image to be run is not valid.
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BOOT_IMG_VER_STRLEN_MAX

BOOT_UPGRADE_TEST
Boot upgrade request modes.

BOOT_UPGRADE_PERMANENT

Functions

int boot_read_bank_header(uint8_t area_id, struct mcuboot_img_header *header, size_t
header_size)

Read the MCUboot image header information from an image bank.

This attempts to parse the image header, From the start of the area_id image.

Parameters
• area_id – flash_area ID of image bank which stores the image.

• header – On success, the returned header information is available in this
structure.

• header_size – Size of the header structure passed by the caller. If this is
not large enough to contain all of the necessary information, an error is
returned.

Returns
Zero on success, a negative value on error.

bool boot_is_img_confirmed(void)
Check if the currently running image is confirmed as OK.

MCUboot can perform “test” upgrades. When these occur, a new firmware image is
installed and booted, but the old version will be reverted at the next reset unless the
new image explicitly marks itself OK.

This routine can be used to check if the currently running image has been marked as
OK.

See also

boot_write_img_confirmed()

Returns
True if the image is confirmed as OK, false otherwise.

int boot_write_img_confirmed(void)
Marks the currently running image as confirmed.

This routine attempts to mark the currently running firmware image as OK, which will
install it permanently, preventing MCUboot from reverting it for an older image at the
next reset.

This routine is safe to call if the current image has already been confirmed. It will
return a successful result in this case.

Returns
0 on success, negative errno code on fail.
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int boot_write_img_confirmed_multi(int image_index)
Marks the image with the given index in the primary slot as confirmed.

This routine attempts to mark the firmware image in the primary slot as OK, which
will install it permanently, preventing MCUboot from reverting it for an older image
at the next reset.

This routine is safe to call if the current image has already been confirmed. It will
return a successful result in this case.

Parameters
• image_index – Image pair index.

Returns
0 on success, negative errno code on fail.

int mcuboot_swap_type(void)
Determines the action, if any, that mcuboot will take on the next reboot.

Returns
a BOOT_SWAP_TYPE_[…] constant on success, negative errno code on fail.

int mcuboot_swap_type_multi(int image_index)
Determines the action, if any, that mcuboot will take on the next reboot.

Parameters
• image_index – Image pair index.

Returns
a BOOT_SWAP_TYPE_[…] constant on success, negative errno code on fail.

int boot_request_upgrade(int permanent)
Marks the image in slot 1 as pending.

On the next reboot, the system will perform a boot of the slot 1 image.

Parameters
• permanent – Whether the image should be used permanently or only

tested once: BOOT_UPGRADE_TEST=run image once, then confirm or re-
vert. BOOT_UPGRADE_PERMANENT=run image forever.

Returns
0 on success, negative errno code on fail.

int boot_request_upgrade_multi(int image_index, int permanent)
Marks the image with the given index in the secondary slot as pending.

On the next reboot, the system will perform a boot of the secondary slot image.

Parameters
• image_index – Image pair index.

• permanent – Whether the image should be used permanently or only
tested once: BOOT_UPGRADE_TEST=run image once, then confirm or re-
vert. BOOT_UPGRADE_PERMANENT=run image forever.

Returns
0 on success, negative errno code on fail.

int boot_erase_img_bank(uint8_t area_id)
Erase the image Bank.

Parameters
• area_id – flash_area ID of image bank to be erased.
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Returns
0 on success, negative errno code on fail.

ssize_t boot_get_area_trailer_status_offset(uint8_t area_id)
Get the offset of the status in the image bank.

Parameters
• area_id – flash_area ID of image bank to get the status offset

Returns
a positive offset on success, negative errno code on fail

ssize_t boot_get_trailer_status_offset(size_t area_size)
Get the offset of the status from an image bank size.

Parameters
• area_size – size of image bank

Returns
offset of the status. When negative the status will not fit the given size

struct mcuboot_img_sem_ver
#include <mcuboot.h> MCUboot image header representation for image version.

The header for an MCUboot firmware image contains an embedded version number,
in semantic versioning format. This structure represents the information it contains.

struct mcuboot_img_header_v1
#include <mcuboot.h> Model for the MCUboot image header as of version 1.

This represents the data present in the image header, in version 1 of the header format.

Some information present in the header but not currently relevant to applications is
omitted.

Public Members

uint32_t image_size
The size of the image, in bytes.

struct mcuboot_img_sem_ver sem_ver
The image version.

struct mcuboot_img_header
#include <mcuboot.h> Model for the MCUBoot image header.

This contains the decoded image header, along with the major version of MCUboot that
the header was built for.

(The MCUboot project guarantees that incompatible changes to the image header will
result in major version changes to the bootloader itself, and will be detectable in the
persistent representation of the header.)

Public Members
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uint32_t mcuboot_version
The version of MCUboot the header is built for.

The value 1 corresponds to MCUboot versions 1.x.y.

struct mcuboot_img_header_v1 v1
Header information for MCUboot version 1.

union mcuboot_img_header h
The header information.

It is only valid to access fields in the union member corresponding to the mcu-
boot_version field above.

Bootloaders

MCUboot Zephyr is directly compatible with the open source, cross-RTOS MCUboot boot loader.
It interfaces with MCUboot and is aware of the image format required by it, so that Device
Firmware Upgrade is available when MCUboot is the boot loader used with Zephyr. The source
code itself is hosted in the MCUboot GitHub Project page.

In order to use MCUboot with Zephyr you need to take the following into account:

1. You will need to define the flash partitions required by MCUboot; see Flash map for details.

2. You will have to specify your flash partition as the chosen code partition

/ {
chosen {

zephyr,code-partition = &slot0_partition;
};

};

3. Your application’s .conf file needs to enable the CONFIG_BOOTLOADER_MCUBOOT Kconfig op-
tion in order for Zephyr to be built in an MCUboot-compatible manner

4. You need to build and flash MCUboot itself on your device

5. You might need to take precautions to avoid mass erasing the flash and also to flash the
Zephyr application image at the correct offset (right after the bootloader)

More detailed information regarding the use of MCUboot with Zephyr can be found in the MCU-
boot with Zephyr documentation page on the MCUboot website.

4.5.8 Over-the-Air Update

Overview

Over-the-Air (OTA) Update is a method for delivering firmware updates to remote devices us-
ing a network connection. Although the name implies a wireless connection, updates received
over a wired connection (such as Ethernet) are still commonly referred to as OTA updates. This
approach requires server infrastructure to host the firmware binary and implement a method
of signaling when an update is available. Security is a concern with OTA updates; firmware
binaries should be cryptographically signed and verified before upgrading.

TheDevice Firmware Upgrade section discusses upgrading Zephyr firmware using MCUboot. The
same method can be used as part of OTA. The binary is first downloaded into an unoccupied code
partition, usually named slot1_partition, then upgraded using the MCUboot process.
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Examples of OTA

Golioth Golioth is an IoT management platform that includes OTA updates. Devices are con-
figured to observe your available firmware revisions on the Golioth Cloud. When a new version
is available, the device downloads and flashes the binary. In this implementation, the connec-
tion between cloud and device is secured using TLS/DTLS, and the signed firmware binary is
confirmed by MCUboot before the upgrade occurs.

1. A working sample can be found on the Golioth Firmware SDK repository

2. The Golioth OTA documentation includes complete information about the versioning pro-
cess

Eclipse hawkBit™ Eclipse hawkBit™ is an update server framework that uses polling on a REST
api to detect firmware updates. When a new update is detected, the binary is downloaded and
installed. MCUboot can be used to verify the signature before upgrading the firmware.

There is a hawkbit-api sample included in the Zephyr mgmt-samples section.

UpdateHub UpdateHub is a platform for remotely updating embedded devices. Updates can
be manually triggered or monitored via polling. When a new update is detected, the binary is
downloaded and installed. MCUboot can be used to verify the signature before upgrading the
firmware.

There is an updatehub-fota sample included in the Zephyr mgmt-samples section.

SMP Server A Simple Management Protocol (SMP) server can be used to update firmware via
Bluetooth Low Energy (BLE) or UDP. MCUmgr is used to send a signed firmware binary to the
remote device where it is verified by MCUboot before the upgrade occurs.

There is an smp-svr sample included in the Zephyr mgmt-samples section.

Lightweight M2M (LWM2M) The Lightweight M2M (LWM2M) protocol includes support for
firmware update via CONFIG_LWM2M_FIRMWARE_UPDATE_OBJ_SUPPORT. Devices securely connect to
an LwM2M server using DTLS. A lwm2m-client sample is available but it does not demonstrate
the firmware update feature.

4.5.9 EC Host Command

Overview

The host command protocol defines the interface for a host, or application processor, to commu-
nicate with a target embedded controller (EC). The EC Host command subsystem implements the
target side of the protocol, generating responses to commands sent by the host. The host com-
mand protocol interface supports multiple versions, but this subsystem implementation only
support protocol version 3.

Architecture

The Host Command subsystem contains a few components:

• Backend

• General handler

• Command handler
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The backend is a layer between a peripheral driver and the general handler. It is responsible for
sending and receiving commands via chosen peripheral.

The general handler validates data from the backend e.g. check sizes, checksum, etc. If the
command is valid and the user has provided a handler for a received command id, the command
handler is called.

SHI (Serial Host Interface) is different to this because it is used only for communication with a
host. SHI does not have API itself, thus the backend and peripheral driver layers are combined
into one backend layer.
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Another case is SPI. Unfortunately, the current SPI API can’t be used to handle the host com-
mands communication. The main issues are unknown command size sent by the host (the SPI
transaction sends/receives specific number of bytes) and need to constant sending status byte
(the SPI module is enabled and disabled per transaction). It forces implementing the SPI driver
within a backend, as it is done for SHI. That means a SPI backend has to be implemented per chip
family. However, it can be changed in the future once the SPI API is extended to host command
needs. Please check the discussion.

That approach requires configuring the SPI dts node in a special way. The main compatible
string of a SPI node has changed to use the Host Command version of a SPI driver. The rest of
the properties should be configured as usual. Example of the SPI node for STM32:

&spi1 {
/* Change the compatible string to use the Host Command version of the
* STM32 SPI driver
*/
compatible = "st,stm32-spi-host-cmd";
status = "okay";

dmas = <&dma2 3 3 0x38440 0x03>,
<&dma2 0 3 0x38480 0x03>;

dma-names = "tx", "rx";
/* This field is used to point at our CS pin */
cs-gpios = <&gpioa 4 (GPIO_ACTIVE_LOW | GPIO_PULL_UP)>;

};
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The STM32 SPI host command backend driver supports the st,stm32h7-spi and st,
stm32-spi-fifo variant implementations. To enable these variants, append the corresponding
compatible string. For example, to enable FIFO support and support for the STM32H7 SoCs, mod-
ify the compatible string as shown.

&spi1 {
compatible = "st,stm32h7-spi", "st,stm32-spi-fifo", "st,stm32-spi-host-cmd";
...

};

The chip that runs Zephyr is a SPI slave and the cs-gpios property is used to point our CS pin. For
the SPI, it is required to set the backend chosen node zephyr,host-cmd-spi-backend.

The supported backend and peripheral drivers:

• Simulator

• SHI - ITE and NPCX

• eSPI - any eSPI slave driver that support CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD and CON-
FIG_ESPI_PERIPHERAL_CUSTOM_OPCODE

• UART - any UART driver that supports the asynchronous API

• SPI - STM32

Initialization

If the application configures one of the following backend chosen nodes and CON-
FIG_EC_HOST_CMD_INITIALIZE_AT_BOOT is set, then the corresponding backend initializes the
host command subsystem by calling ec_host_cmd_init():

• zephyr,host-cmd-espi-backend
• zephyr,host-cmd-shi-backend
• zephyr,host-cmd-uart-backend
• zephyr,host-cmd-spi-backend

If no backend chosen node is configured, the application must call the ec_host_cmd_init() func-
tion directly. This way of initialization is useful if a backend is chosen in runtime based on e.g.
GPIO state.

Buffers

The host command communication requires buffers for rx and tx. The buffers are be provided by
the general handler if CONFIG_EC_HOST_CMD_HANDLER_RX_BUFFER_SIZE > 0 for rx buffer and CON-
FIG_EC_HOST_CMD_HANDLER_TX_BUFFER_SIZE > 0 for the tx buffer. The shared buffers are useful
for applications that use multiple backends. Defining separate buffers by every backend would
increase the memory usage. However, some buffers can be defined by a peripheral driver e.g.
eSPI. These ones should be reused as much as possible.

Logging

The host command has an embedded logging system of the ongoing communication. The are a
few logging levels:

• LOG_INF is used to log a command id of a new command and not success responses. Repeats
of the same command are not logged

• LOG_DBG logs every command, even repeats
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• LOG_DBG + CONFIG_EC_HOST_CMD_LOG_DBG_BUFFERS logs every command and responses
with the data buffers

API Reference

group ec_host_cmd_interface
EC Host Command Interface.

Since
2.4

Version
0.1.0

Defines

EC_HOST_CMD_HANDLER(_id, _function, _version_mask, _request_type, _response_type)
Statically define and register a host command handler.

Helper macro to statically define and register a host command handler that has a
compile-time-fixed sizes for its both request and response structures.

Parameters
• _id – Id of host command to handle request for.

• _function – Name of handler function.

• _version_mask – The bitfield of all versions that the _function supports.
E.g. BIT(0) corresponds to version 0.

• _request_type – The datatype of the request parameters for _function.

• _response_type – The datatype of the response parameters for _function.

EC_HOST_CMD_HANDLER_UNBOUND(_id, _function, _version_mask)
Statically define and register a host command handler without sizes.

Helper macro to statically define and register a host command handler whose request
or response structure size is not known as compile time.

Parameters
• _id – Id of host command to handle request for.

• _function – Name of handler function.

• _version_mask – The bitfield of all versions that the _function supports.
E.g. BIT(0) corresponds to version 0.

Typedefs

typedef int (*ec_host_cmd_backend_api_init)(const struct ec_host_cmd_backend
*backend, struct ec_host_cmd_rx_ctx *rx_ctx, struct ec_host_cmd_tx_buf *tx)

Initialize a host command backend.

This routine initializes a host command backend. It includes initialization a de-
vice used to communication and setting up buffers. This function is called by the
ec_host_cmd_init function.
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Param backend
[in] Pointer to the backend structure for the driver instance.

Param rx_ctx
[inout] Pointer to the receive context object. These objects are used to re-
ceive data from the driver when the host sends data. The buf member can
be assigned by the backend.

Param tx
[inout] Pointer to the transmit buffer object. The buf and len_max mem-
bers can be assigned by the backend. These objects are used to send data
by the backend with the ec_host_cmd_backend_api_send function.

Retval 0
if successful

typedef int (*ec_host_cmd_backend_api_send)(const struct ec_host_cmd_backend
*backend)

Sends data to the host.

Sends data from tx buf that was passed via ec_host_cmd_backend_api_init function.

Param backend
Pointer to the backed to send data.

Retval 0
if successful.

typedef void (*ec_host_cmd_user_cb_t)(const struct ec_host_cmd_rx_ctx *rx_ctx, void
*user_data)

typedef enum ec_host_cmd_status (*ec_host_cmd_in_progress_cb_t)(void *user_data)

typedef enum ec_host_cmd_status (*ec_host_cmd_handler_cb)(struct
ec_host_cmd_handler_args *args)

Enums

enum ec_host_cmd_status
Host command response codes (16-bit).

Values:

enumerator EC_HOST_CMD_SUCCESS = 0
Host command was successful.

enumerator EC_HOST_CMD_INVALID_COMMAND = 1
The specified command id is not recognized or supported.

enumerator EC_HOST_CMD_ERROR = 2
Generic Error.

enumerator EC_HOST_CMD_INVALID_PARAM = 3
One of more of the input request parameters is invalid.
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enumerator EC_HOST_CMD_ACCESS_DENIED = 4
Host command is not permitted.

enumerator EC_HOST_CMD_INVALID_RESPONSE = 5
Response was invalid (e.g.

not version 3 of header).

enumerator EC_HOST_CMD_INVALID_VERSION = 6
Host command id version unsupported.

enumerator EC_HOST_CMD_INVALID_CHECKSUM = 7
Checksum did not match.

enumerator EC_HOST_CMD_IN_PROGRESS = 8
A host command is currently being processed.

enumerator EC_HOST_CMD_UNAVAILABLE = 9
Requested information is currently unavailable.

enumerator EC_HOST_CMD_TIMEOUT = 10
Timeout during processing.

enumerator EC_HOST_CMD_OVERFLOW = 11
Data or table overflow.

enumerator EC_HOST_CMD_INVALID_HEADER = 12
Header is invalid or unsupported (e.g.

not version 3 of header).

enumerator EC_HOST_CMD_REQUEST_TRUNCATED = 13
Did not receive all expected request data.

enumerator EC_HOST_CMD_RESPONSE_TOO_BIG = 14
Response was too big to send within one response packet.

enumerator EC_HOST_CMD_BUS_ERROR = 15
Error on underlying communication bus.

enumerator EC_HOST_CMD_BUSY = 16
System busy.

Should retry later.

enumerator EC_HOST_CMD_INVALID_HEADER_VERSION = 17
Header version invalid.

enumerator EC_HOST_CMD_INVALID_HEADER_CRC = 18
Header CRC invalid.
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enumerator EC_HOST_CMD_INVALID_DATA_CRC = 19
Data CRC invalid.

enumerator EC_HOST_CMD_DUP_UNAVAILABLE = 20
Can’t resend response.

enumerator EC_HOST_CMD_MAX = UINT16_MAX

enum ec_host_cmd_log_level
Values:

enumerator EC_HOST_CMD_DEBUG_OFF

enumerator EC_HOST_CMD_DEBUG_NORMAL

enumerator EC_HOST_CMD_DEBUG_EVERY

enumerator EC_HOST_CMD_DEBUG_PARAMS

enumerator EC_HOST_CMD_DEBUG_MODES

enum ec_host_cmd_state
Values:

enumerator EC_HOST_CMD_STATE_DISABLED = 0

enumerator EC_HOST_CMD_STATE_RECEIVING

enumerator EC_HOST_CMD_STATE_PROCESSING

enumerator EC_HOST_CMD_STATE_SENDING

Functions

struct ec_host_cmd_backend *ec_host_cmd_backend_get_espi(const struct device *dev)
Get the eSPI Host Command backend pointer.

Get the eSPI pointer backend and pass a pointer to eSPI device instance that will be
used for the Host Command communication.

Parameters
• dev – Pointer to eSPI device instance.

Return values
The – eSPI backend pointer.

struct ec_host_cmd_backend *ec_host_cmd_backend_get_shi_npcx(void)
Get the SHI NPCX Host Command backend pointer.

Return values
the – SHI NPCX backend pointer
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struct ec_host_cmd_backend *ec_host_cmd_backend_get_shi_ite(void)
Get the SHI ITE Host Command backend pointer.

Return values
the – SHI ITE backend pointer

struct ec_host_cmd_backend *ec_host_cmd_backend_get_uart(const struct device *dev)
Get the UART Host Command backend pointer.

Get the UART pointer backend and pass a pointer to UART device instance that will be
used for the Host Command communication.

Parameters
• dev – Pointer to UART device instance.

Return values
The – UART backend pointer.

struct ec_host_cmd_backend *ec_host_cmd_backend_get_spi(struct gpio_dt_spec *cs)
Get the SPI Host Command backend pointer.

Get the SPI pointer backend and pass a chip select pin that will be used for the Host
Command communication.

Parameters
• cs – Chip select pin..

Return values
The – SPI backend pointer.

int ec_host_cmd_init(struct ec_host_cmd_backend *backend)
Initialize the host command subsystem.

This routine initializes the host command subsystem. It includes initialization of
a backend and the handler. When the application configures the zephyr,host-
cmd-espi-backend/zephyr,host-cmd-shi-backend/ zephyr,host-cmd-uart-backend cho-
sen node and CONFIG_EC_HOST_CMD_INITIALIZE_AT_BOOT is set, the chosen back-
end automatically calls this routine at CONFIG_EC_HOST_CMD_INIT_PRIORITY . Ap-
plications that require a run-time selection of the backend must set CON-
FIG_EC_HOST_CMD_INITIALIZE_AT_BOOT to n and must explicitly call this routine.

Parameters
• backend – [in] Pointer to the backend structure to initialize.

Return values
0 – if successful

int ec_host_cmd_send_response(enum ec_host_cmd_status status, const struct
ec_host_cmd_handler_args *args)

Send the host command response.

This routine sends the host command response. It should be used to send
IN_PROGRESS status or if the host command handler doesn’t return e.g. reboot com-
mand.

Parameters
• status – [in] Host command status to be sent.

• args – [in] Pointer of a structure passed to the handler.

Return values
0 – if successful.
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void ec_host_cmd_rx_notify(void)
Signal a new host command.

Signal that a new host command has been received. The function should be called by
a backend after copying data to the rx buffer and setting the length.

void ec_host_cmd_set_user_cb(ec_host_cmd_user_cb_t cb, void *user_data)
Install a user callback for receiving a host command.

It allows installing a custom procedure needed by a user after receiving a command.

Parameters
• cb – [in] A callback to be installed.

• user_data – [in] User data to be passed to the callback.

const struct ec_host_cmd *ec_host_cmd_get_hc(void)
Get the main ec host command structure.

This routine returns a pointer to the main host command structure. It allows the ap-
plication code to get inside information for any reason e.g. the host command thread
id.

Return values
A – pointer to the main host command structure

FUNC_NORETURN void ec_host_cmd_task(void)
The thread function for Host Command subsystem.

This routine calls the Host Command thread entry function. If CON-
FIG_EC_HOST_CMD_DEDICATED_THREAD is not defined, a new thread is not created,
and this function has to be called by application code. It doesn’t return.

int ec_host_cmd_add_suppressed(uint16_t cmd_id)
Add a suppressed command.

Suppressed commands are not logged. Add a command to be suppressed.

Parameters
• cmd_id – [in] A command id to be suppressed.

Return values
0 – if successful, -EIO if exceeded max number of suppressed commands.

struct ec_host_cmd_rx_ctx
#include <backend.h> Context for host command backend and handler to pass rx data.

Public Members

uint8_t *buf
Buffer to hold received data.

The buffer is provided by the handler if CON-
FIG_EC_HOST_CMD_HANDLER_RX_BUFFER_SIZE > 0. Otherwise, the backend
should provide the buffer on its own and overwrites buf pointer and len_max in
the init function.

size_t len
Number of bytes written to buf by backend.
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size_t len_max
Maximum number of bytes to receive with one request packet.

struct ec_host_cmd_tx_buf
#include <backend.h> Context for host command backend and handler to pass tx data.

Public Members

void *buf
Data to write to the host The buffer is provided by the handler if CON-
FIG_EC_HOST_CMD_HANDLER_TX_BUFFER_SIZE > 0.

Otherwise, the backend should provide the buffer on its own and overwrites buf
pointer and len_max in the init function.

size_t len
Number of bytes to write from buf.

size_t len_max
Maximum number of bytes to send with one response packet.

struct ec_host_cmd_backend_api
#include <backend.h>

struct ec_host_cmd
#include <ec_host_cmd.h>

Public Members

struct k_sem rx_ready
The backend gives rx_ready (by calling the ec_host_cmd_send_receive function),
when data in rx_ctx are ready.

The handler takes rx_ready to read data in rx_ctx.

enum ec_host_cmd_status rx_status
Status of the rx data checked in the ec_host_cmd_send_received function.

ec_host_cmd_user_cb_t user_cb
User callback after receiving a command.

It is called by the ec_host_cmd_send_received function.

struct ec_host_cmd_handler_args
#include <ec_host_cmd.h> Arguments passed into every installed host command han-
dler.
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Public Members

void *reserved
Reserved for compatibility.

uint16_t command
Command identifier.

uint8_t version
The version of the host command that is being requested.

This will be a value that has been static registered as valid for the handler.

const void *input_buf
The incoming data that can be cast to the handlers request type.

uint16_t input_buf_size
The number of valid bytes that can be read from input_buf.

void *output_buf
The data written to this buffer will be send to the host.

uint16_t output_buf_max
Maximum number of bytes that can be written to the output_buf.

uint16_t output_buf_size
Number of bytes of output_buf to send to the host.

struct ec_host_cmd_handler
#include <ec_host_cmd.h> Structure use for statically registering host command han-
dlers.

Public Members

ec_host_cmd_handler_cb handler
Callback routine to process commands that match id.

uint16_t id
The numerical command id used as the lookup for commands.

uint16_t version_mask
The bitfield of all versions that the handler supports, where each bit value repre-
sents that the handler supports that version.

E.g. BIT(0) corresponds to version 0.

uint16_t min_rqt_size
The minimum input_buf_size enforced by the framework before passing to the han-
dler.
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uint16_t min_rsp_size
The minimum output_buf_size enforced by the framework before passing to the
handler.

struct ec_host_cmd_request_header
#include <ec_host_cmd.h> Header for requests from host to embedded controller.

Represent the over-the-wire header in LE format for host command requests. This
represent version 3 of the host command header. The requests are always sent from
host to embedded controller.

Public Members

uint8_t prtcl_ver
Should be 3.

The EC will return EC_HOST_CMD_INVALID_HEADER if it receives a header with a
version it doesn’t know how to parse.

uint8_t checksum
Checksum of response and data; sum of all bytes including checksum.

Should total to 0.

uint16_t cmd_id
Id of command that is being sent.

uint8_t cmd_ver
Version of the specific cmd_id being requested.

Valid versions start at 0.

uint8_t reserved
Unused byte in current protocol version; set to 0.

uint16_t data_len
Length of data which follows this header.

struct ec_host_cmd_response_header
#include <ec_host_cmd.h> Header for responses from embedded controller to host.

Represent the over-the-wire header in LE format for host command responses. This
represent version 3 of the host command header. Responses are always sent from
embedded controller to host.

Public Members

uint8_t prtcl_ver
Should be 3.
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uint8_t checksum
Checksum of response and data; sum of all bytes including checksum.

Should total to 0.

uint16_t result
A ec_host_cmd_status response code for specific command.

uint16_t data_len
Length of data which follows this header.

uint16_t reserved
Unused bytes in current protocol version; set to 0.

4.5.10 SMP Groups

Zephyr Management Group

Zephyr management group defines the following commands:

Command ID Command description
0 Erase storage

Erase storage command Erase storage command allows clearing the storage_partitionflash
partition on a device, generally this is used when switching to a new application build if the
application uses storage that should be cleared (application dependent).

Erase storage request Erase storage request header fields:

OP Group ID Command ID
2 63 0

The command sends sends empty CBOR map as data.

Erase storage response Read setting response header fields:

OP Group ID Command ID
3 63 0

The command sends an empty CBOR map as data if successful. In case of error the CBOR data
takes the form:

SMP version 2
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{
(str)"err" : {

(str)"group" : (uint)
(str)"rc" : (uint)

}
}

SMP version 1

{
(str)"rc" : (int)

}

where:

“err” ->
“group”

mcumgr_group_t group of the group-based error code. Only appears if an error is
returned when using SMP version 2.

“err” ->
“rc”

contains the index of the group-based error code. Only appears if non-zero (error
condition) when using SMP version 2.

“rc” mcumgr_err_t only appears if non-zero (error condition) when using SMP version
1 or for SMP errors when using SMP version 2.

4.6 Digital Signal Processing (DSP)

• Using zDSP

• Optimizing for your architecture

• API Reference

The DSP API provides an architecture agnostic way for signal processing. Currently, the API will
work on any architecture but will likely not be optimized. The status of the various architectures
can be found below:

Architecture Status
ARC Optimized
ARM Optimized
ARM64 Optimized
MIPS Unoptimized
NIOS2 Unoptimized
POSIX Unoptimized
RISCV Unoptimized
RISCV64 Unoptimized
SPARC Unoptimized
X86 Unoptimized
XTENSA Unoptimized

4.6.1 Using zDSP

zDSP provides various backend options which are selected automatically for the application. By
default, including the CMSIS module will enable all architectures to use the zDSP APIs. This can
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be done by setting:

CONFIG_CMSIS_DSP=y

If your application requires some additional customization, it’s possible to enable CON-
FIG_DSP_BACKEND_CUSTOM which means that the application is responsible for providing the im-
plementation of the zDSP library.

4.6.2 Optimizing for your architecture

If your architecture is showing as Unoptimized, it’s possible to add a new zDSP backend to better
support it. To do that, a new Kconfig option should be added to subsys/dsp/Kconfig along with
the required dependencies and the default set for DSP_BACKEND Kconfig choice.

Next, the implementation should be added at subsys/dsp/<backend>/ and linked in at subsys/
dsp/CMakeLists.txt. To add architecture-specific attributes, its corresponding Kconfig option
should be added to subsys/dsp/Kconfig and use them to update DSP_DATA and DSP_STATIC_DATA
in include/zephyr/dsp/dsp.h.

4.6.3 API Reference

group math_dsp
DSP Interface.

Since
3.3

Version
0.1.0

Typedefs

typedef int8_t q7_t
8-bit fractional data type in 1.7 format.

typedef int16_t q15_t
16-bit fractional data type in 1.15 format.

typedef int32_t q31_t
32-bit fractional data type in 1.31 format.

typedef int64_t q63_t
64-bit fractional data type in 1.63 format.

typedef __fp16 float16_t
16-bit floating point type definition.

typedef float float32_t
32-bit floating-point type definition.
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typedef double float64_t
64-bit floating-point type definition.

4.7 File Systems

Zephyr RTOS Virtual Filesystem Switch (VFS) allows applications to mount multiple file systems
at different mount points (e.g., /fatfs and /lfs). The mount point data structure contains all
the necessary information required to instantiate, mount, and operate on a file system. The
File system Switch decouples the applications from directly accessing an individual file system’s
specific API or internal functions by introducing file system registration mechanisms.

In Zephyr, any file system implementation or library can be plugged into or pulled out through a
file system registration API. Each file system implementation must have a globally unique integer
identifier; use FS_TYPE_EXTERNAL_BASE to avoid clashes with in-tree identifiers.

int fs_register(int type, const struct fs_file_system_t *fs);

int fs_unregister(int type, const struct fs_file_system_t *fs);

Zephyr RTOS supports multiple instances of a file system by making use of the mount point as
the disk volume name, which is used by the file system library while formatting or mounting a
disk.

A file system is declared as:

static struct fs_mount_t mp = {
.type = FS_FATFS,
.mnt_point = FATFS_MNTP,
.fs_data = &fat_fs,
};

where

• FS_FATFS is the file system type like FATFS or LittleFS.

• FATFS_MNTP is the mount point where the file system will be mounted.

• fat_fs is the file system data which will be used by fs_mount() API.

4.7.1 Samples

Samples for the VFS are mainly supplied in samples/subsys/fs, although various examples of
the VFS usage are provided as important functionalities in samples for different subsystems.
Here is the list of samples worth looking at:

• samples/subsys/fs/fat_fs is an example of FAT file system usage with SDHC media;

• samples/subsys/shell/fs is an example of Shell fs subsystem, using internal flash
partition

formatted to LittleFS;

• samples/subsys/usb/mass/ example of USB Mass Storage device that uses FAT FS
driver with RAM

or SPI connected FLASH, or LittleFS in flash, depending on the sample configuration.
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4.7.2 API Reference

Related code samples

File systemmanipulation
Use file system API with various filesystems and storage devices.

File system shell
Access a LittleFS file system partition in flash using the file system shell.

Format filesystem
Format different storage devices for different file systems.

LittleFS filesystem
Use file system API over LittleFS.

USB Mass Storage
Expose board’s RAM or FLASH as a USB disk using USB Mass Storage driver.

group file_system_api
File System APIs.

Since
1.5

Version
1.0.0

fs_open open and creation mode flags

FS_O_READ
Open for read flag.

FS_O_WRITE
Open for write flag.

FS_O_RDWR
Open for read-write flag combination.

FS_O_MODE_MASK
Bitmask for read and write flags.

FS_O_CREATE
Create file if it does not exist.

FS_O_APPEND
Open/create file for append.

FS_O_TRUNC
Truncate the file while opening.
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FS_O_FLAGS_MASK
Bitmask for open/create flags.

FS_O_MASK
Bitmask for open flags.

fs_seek whence parameter values

FS_SEEK_SET
Seek from the beginning of file.

FS_SEEK_CUR
Seek from a current position.

FS_SEEK_END
Seek from the end of file.

Defines

FS_MOUNT_FLAG_NO_FORMAT
Flag prevents formatting device if requested file system not found.

FS_MOUNT_FLAG_READ_ONLY
Flag makes mounted file system read-only.

FS_MOUNT_FLAG_AUTOMOUNT
Flag used in pre-defined mount structures that are to be mounted on startup.

This flag has no impact in user-defined mount structures.

FS_MOUNT_FLAG_USE_DISK_ACCESS
Flag requests file system driver to use Disk Access API.

When the flag is set to the fs_mount_t.flags prior to fs_mount call, a file system needs
to use the Disk Access API, otherwise mount callback for the driver should return -
ENOSUP; when the flag is not set the file system driver should use Flash API by default,
unless it only supports Disc Access API. When file system will use Disk Access API and
the flag is not set, the mount callback for the file system should set the flag on success.

FSTAB_ENTRY_DT_MOUNT_FLAGS(node_id)
Get the common mount flags for an fstab entry.

Parameters
• node_id – the node identifier for a child entry in a zephyr,fstab node.

Returns
a value suitable for initializing an fs_mount_t flags member.

FS_FSTAB_ENTRY(node_id)
The name under which a zephyr,fstab entry mount structure is defined.

Parameters
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• node_id – the node identifier for a child entry in a zephyr,fstab node.

FS_FSTAB_DECLARE_ENTRY(node_id)
Generate a declaration for the externally defined fstab entry.

This will evaluate to the name of a struct fs_mount_t object.

Parameters
• node_id – the node identifier for a child entry in a zephyr,fstab node.

Enums

enum fs_dir_entry_type
Enumeration for directory entry types.

Values:

enumerator FS_DIR_ENTRY_FILE = 0
Identifier for file entry.

enumerator FS_DIR_ENTRY_DIR
Identifier for directory entry.

Enumeration to uniquely identify file system types.

Zephyr supports in-tree file systems and external ones. Each requires a unique identi-
fier used to register the file system implementation and to associate a mount point with
the file system type. This anonymous enum defines global identifiers for the in-tree file
systems.

External file systems should be registered using unique identifiers starting at
FS_TYPE_EXTERNAL_BASE. It is the responsibility of applications that use external file
systems to ensure that these identifiers are unique if multiple file system implementa-
tions are used by the application.

Values:

enumerator FS_FATFS = 0
Identifier for in-tree FatFS file system.

enumerator FS_LITTLEFS
Identifier for in-tree LittleFS file system.

enumerator FS_EXT2
Identifier for in-tree Ext2 file system.

enumerator FS_TYPE_EXTERNAL_BASE
Base identifier for external file systems.

Functions
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static inline void fs_file_t_init(struct fs_file_t *zfp)
Initialize fs_file_t object.

Initializes the fs_file_t object; the function needs to be invoked on object before first
use with fs_open.

Parameters
• zfp – Pointer to file object

static inline void fs_dir_t_init(struct fs_dir_t *zdp)
Initialize fs_dir_t object.

Initializes the fs_dir_t object; the function needs to be invoked on object before first
use with fs_opendir.

Parameters
• zdp – Pointer to file object

int fs_open(struct fs_file_t *zfp, const char *file_name, fs_mode_t flags)
Open or create file.

Opens or possibly creates a file and associates a stream with it. Successfully opened
file, when no longer in use, should be closed with fs_close().

flags can be 0 or a binary combination of one or more of the following identifiers:

• FS_O_READ open for read

• FS_O_WRITE open for write

• FS_O_RDWR open for read/write (FS_O_READ | FS_O_WRITE)

• FS_O_CREATE create file if it does not exist

• FS_O_APPEND move to end of file before each write

• FS_O_TRUNC truncate the file

Warning

If flags are set to 0 the function will open file, if it exists and is accessible, but you
will have no read/write access to it.

Parameters
• zfp – Pointer to a file object

• file_name – The name of a file to open

• flags – The mode flags

Return values
• 0 – on success;

• -EBUSY – when zfp is already used;

• -EINVAL – when a bad file name is given;

• -EROFS – when opening read-only file for write, or attempting
to create a file on a system that has been mounted with the
FS_MOUNT_FLAG_READ_ONLY flag;

• -ENOENT – when the file does not exist at the path;

• -ENOTSUP – when not implemented by underlying file system driver;

• -EACCES – when trying to truncate a file without opening it for write.
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• <0 – an other negative errno code, depending on a file system back-end.

int fs_close(struct fs_file_t *zfp)
Close file.

Flushes the associated stream and closes the file.

Parameters
• zfp – Pointer to the file object

Return values
• 0 – on success;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – a negative errno code on error.

int fs_unlink(const char *path)
Unlink file.

Deletes the specified file or directory

Parameters
• path – Path to the file or directory to delete

Return values
• 0 – on success;

• -EINVAL – when a bad file name is given;

• -EROFS – if file is read-only, or when file system has been mounted with
the FS_MOUNT_FLAG_READ_ONLY flag;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – an other negative errno code on error.

int fs_rename(const char *from, const char *to)
Rename file or directory.

Performs a rename and / or move of the specified source path to the specified desti-
nation. The source path can refer to either a file or a directory. All intermediate di-
rectories in the destination path must already exist. If the source path refers to a file,
the destination path must contain a full filename path, rather than just the new par-
ent directory. If an object already exists at the specified destination path, this function
causes it to be unlinked prior to the rename (i.e., the destination gets clobbered).

Note

Current implementation does not allow moving files between mount points.

Parameters
• from – The source path

• to – The destination path

Return values
• 0 – on success;

• -EINVAL – when a bad file name is given, or when rename would cause
move between mount points;
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• -EROFS – if file is read-only, or when file system has been mounted with
the FS_MOUNT_FLAG_READ_ONLY flag;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – an other negative errno code on error.

ssize_t fs_read(struct fs_file_t *zfp, void *ptr, size_t size)
Read file.

Reads up to size bytes of data to ptr pointed buffer, returns number of bytes read.
A returned value may be lower than size if there were fewer bytes available than
requested.

Parameters
• zfp – Pointer to the file object

• ptr – Pointer to the data buffer

• size – Number of bytes to be read

Return values
• >=0 – a number of bytes read, on success;

• -EBADF – when invoked on zfp that represents unopened/closed file;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – a negative errno code on error.

ssize_t fs_write(struct fs_file_t *zfp, const void *ptr, size_t size)
Write file.

Attempts to write size number of bytes to the specified file. If a negative value is
returned from the function, the file pointer has not been advanced. If the function re-
turns a non-negative number that is lower than size, the global errno variable should
be checked for an error code, as the device may have no free space for data.

Parameters
• zfp – Pointer to the file object

• ptr – Pointer to the data buffer

• size – Number of bytes to be written

Return values
• >=0 – a number of bytes written, on success;

• -EBADF – when invoked on zfp that represents unopened/closed file;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – an other negative errno code on error.

int fs_seek(struct fs_file_t *zfp, off_t offset, int whence)
Seek file.

Moves the file position to a new location in the file. The offset is added to file position
based on the whence parameter.

Parameters
• zfp – Pointer to the file object

• offset – Relative location to move the file pointer to

• whence – Relative location from where offset is to be calculated.
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– FS_SEEK_SET for the beginning of the file;

– FS_SEEK_CUR for the current position;

– FS_SEEK_END for the end of the file.

Return values
• 0 – on success;

• -EBADF – when invoked on zfp that represents unopened/closed file;

• -ENOTSUP – if not supported by underlying file system driver;

• <0 – an other negative errno code on error.

off_t fs_tell(struct fs_file_t *zfp)
Get current file position.

Retrieves and returns the current position in the file stream.

The current revision does not validate the file object.

Parameters
• zfp – Pointer to the file object

Return values
• >= – 0 a current position in file;

• -EBADF – when invoked on zfp that represents unopened/closed file;

• -ENOTSUP – if not supported by underlying file system driver;

• <0 – an other negative errno code on error.

int fs_truncate(struct fs_file_t *zfp, off_t length)
Truncate or extend an open file to a given size.

Truncates the file to the new length if it is shorter than the current size of the file. Ex-
pands the file if the new length is greater than the current size of the file. The expanded
region would be filled with zeroes.

Note

In the case of expansion, if the volume got full during the expansion process, the
function will expand to the maximum possible length and return success. Caller
should check if the expanded size matches the requested length.

Parameters
• zfp – Pointer to the file object

• length – New size of the file in bytes

Return values
• 0 – on success;

• -EBADF – when invoked on zfp that represents unopened/closed file;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – an other negative errno code on error.
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int fs_sync(struct fs_file_t *zfp)
Flush cached write data buffers of an open file.

The function flushes the cache of an open file; it can be invoked to ensure data gets
written to the storage media immediately, e.g. to avoid data loss in case if power is
removed unexpectedly.

Note

Closing a file will cause caches to be flushed correctly so the function need not be
called when the file is being closed.

Parameters
• zfp – Pointer to the file object

Return values
• 0 – on success;

• -EBADF – when invoked on zfp that represents unopened/closed file;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – a negative errno code on error.

int fs_mkdir(const char *path)
Directory create.

Creates a new directory using specified path.

Parameters
• path – Path to the directory to create

Return values
• 0 – on success;

• -EEXIST – if entry of given name exists;

• -EROFS – if path is within read-only directory, or when file system has
been mounted with the FS_MOUNT_FLAG_READ_ONLY flag;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – an other negative errno code on error

int fs_opendir(struct fs_dir_t *zdp, const char *path)
Directory open.

Opens an existing directory specified by the path.

Parameters
• zdp – Pointer to the directory object

• path – Path to the directory to open

Return values
• 0 – on success;

• -EINVAL – when a bad directory path is given;

• -EBUSY – when zdp is already used;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – a negative errno code on error.
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int fs_readdir(struct fs_dir_t *zdp, struct fs_dirent *entry)
Directory read entry.

Reads directory entries of an open directory. In end-of-dir condition, the function will
return 0 and set the entry->name[0] to 0.

Note

: Most existing underlying file systems do not generate POSIX special directory en-
tries “.” or “..”. For consistency the abstraction layer will remove these from lower
layer results so higher layers see consistent results.

Parameters
• zdp – Pointer to the directory object

• entry – Pointer to zfs_dirent structure to read the entry into

Return values
• 0 – on success or end-of-dir;

• -ENOENT – when no such directory found;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – a negative errno code on error.

int fs_closedir(struct fs_dir_t *zdp)
Directory close.

Closes an open directory.

Parameters
• zdp – Pointer to the directory object

Return values
• 0 – on success;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – a negative errno code on error.

int fs_mount(struct fs_mount_t *mp)
Mount filesystem.

Perform steps needed for mounting a file system like calling the file system specific
mount function and adding the mount point to mounted file system list.

Note

Current implementation of ELM FAT driver allows only following mount points:
“/RAM:”,”/NAND:”,”/CF:”,”/SD:”,”/SD2:”,”/USB:”,”/USB2:”,”/USB3:” or mount points
that consist of single digit, e.g: “/0:”, “/1:” and so forth.

Parameters
• mp – Pointer to the fs_mount_t structure. Referenced object is not changed

if the mount operation failed. A reference is captured in the fs infras-
tructure if the mount operation succeeds, and the application must not
mutate the structure contents until fs_unmount is successfully invoked
on the same pointer.
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Return values
• 0 – on success;

• -ENOENT – when file system type has not been registered;

• -ENOTSUP – when not supported by underlying file system driver; when
FS_MOUNT_FLAG_USE_DISK_ACCESS is set but driver does not support it.

• -EROFS – if system requires formatting but FS_MOUNT_FLAG_READ_ONLYhas
been set;

• <0 – an other negative errno code on error.

int fs_unmount(struct fs_mount_t *mp)
Unmount filesystem.

Perform steps needed to unmount a file system like calling the file system specific un-
mount function and removing the mount point from mounted file system list.

Parameters
• mp – Pointer to the fs_mount_t structure

Return values
• 0 – on success;

• -EINVAL – if no system has been mounted at given mount point;

• -ENOTSUP – when not supported by underlying file system driver;

• <0 – an other negative errno code on error.

int fs_readmount(int *index, const char **name)
Get path of mount point at index.

This function iterates through the list of mount points and returns the directory name
of the mount point at the given index. On success index is incremented and name is
set to the mount directory name. If a mount point with the given index does not exist,
name will be set to NULL.

Parameters
• index – Pointer to mount point index

• name – Pointer to pointer to path name

Return values
• 0 – on success;

• -ENOENT – if there is no mount point with given index.

int fs_stat(const char *path, struct fs_dirent *entry)
File or directory status.

Checks the status of a file or directory specified by the path.

Note

The file on a storage device may not be updated until it is closed.

Parameters
• path – Path to the file or directory

• entry – Pointer to the zfs_dirent structure to fill if the file or directory
exists.
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Return values
• 0 – on success;

• -EINVAL – when a bad directory or file name is given;

• -ENOENT – when no such directory or file is found;

• -ENOTSUP – when not supported by underlying file system driver;

• <0 – negative errno code on error.

int fs_statvfs(const char *path, struct fs_statvfs *stat)
Retrieves statistics of the file system volume.

Returns the total and available space in the file system volume.

Parameters
• path – Path to the mounted directory

• stat – Pointer to the zfs_statvfs structure to receive the fs statistics.

Return values
• 0 – on success;

• -EINVAL – when a bad path to a directory, or a file, is given;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – an other negative errno code on error.

int fs_mkfs(int fs_type, uintptr_t dev_id, void *cfg, int flags)
Create fresh file system.

Parameters
• fs_type – Type of file system to create.

• dev_id – Id of storage device.

• cfg – Backend dependent init object. If NULL then default configuration
is used.

• flags – Additional flags for file system implementation.

Return values
• 0 – on success;

• <0 – negative errno code on error.

int fs_register(int type, const struct fs_file_system_t *fs)
Register a file system.

Register file system with virtual file system. Number of allowed file system types to be
registered is controlled with the CONFIG_FILE_SYSTEM_MAX_TYPES Kconfig option.

Parameters
• type – Type of file system (ex: FS_FATFS)

• fs – Pointer to File system

Return values
• 0 – on success;

• -EALREADY – when a file system of a given type has already been regis-
tered;
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• -ENOSCP – when there is no space left, in file system registry, to add this
file system type.

int fs_unregister(int type, const struct fs_file_system_t *fs)
Unregister a file system.

Unregister file system from virtual file system.

Parameters
• type – Type of file system (ex: FS_FATFS)

• fs – Pointer to File system

Return values
• 0 – on success;

• -EINVAL – when file system of a given type has not been registered.

struct fs_mount_t
#include <fs.h> File system mount info structure.

Public Members

sys_dnode_t node
Entry for the fs_mount_list list.

int type
File system type.

const char *mnt_point
Mount point directory name (ex: “/fatfs”)

void *fs_data
Pointer to file system specific data.

void *storage_dev
Pointer to backend storage device.

size_t mountp_len
Length of Mount point string.

const struct fs_file_system_t *fs
Pointer to File system interface of the mount point.

uint8_t flags
Mount flags.

struct fs_dirent
#include <fs.h> Structure to receive file or directory information.

Used in functions that read the directory entries to get file or directory information.
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Public Members

enum fs_dir_entry_type type
File/directory type (FS_DIR_ENTRY_FILE or FS_DIR_ENTRY_DIR)

char name[MAX_FILE_NAME + 1]
Name of file or directory.

size_t size
Size of file (0 if directory).

struct fs_statvfs
#include <fs.h> Structure to receive volume statistics.

Used to retrieve information about total and available space in the volume.

Public Members

unsigned long f_bsize
Optimal transfer block size.

unsigned long f_frsize
Allocation unit size.

unsigned long f_blocks
Size of FS in f_frsize units.

unsigned long f_bfree
Number of free blocks.

struct fs_file_t
#include <fs_interface.h> File object representing an open file.

The object needs to be initialized with fs_file_t_init().

Public Members

void *filep
Pointer to file object structure.

const struct fs_mount_t *mp
Pointer to mount point structure.

fs_mode_t flags
Open/create flags.

struct fs_dir_t
#include <fs_interface.h> Directory object representing an open directory.

The object needs to be initialized with fs_dir_t_init().
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Public Members

void *dirp
Pointer to directory object structure.

const struct fs_mount_t *mp
Pointer to mount point structure.

struct fs_file_system_t
#include <fs_sys.h> File System interface structure.

File operations

int (*open)(struct fs_file_t *filp, const char *fs_path, fs_mode_t flags)
Opens or creates a file, depending on flags given.

Param filp
File to open/create.

Param fs_path
Path to the file.

Param flags
Flags for opening/creating the file.

Return
0 on success, negative errno code on fail.

ssize_t (*read)(struct fs_file_t *filp, void *dest, size_t nbytes)
Reads nbytes number of bytes.

Param filp
File to read from.

Param dest
Destination buffer.

Param nbytes
Number of bytes to read.

Return
Number of bytes read on success, negative errno code on fail.

ssize_t (*write)(struct fs_file_t *filp, const void *src, size_t nbytes)
Writes nbytes number of bytes.

Param filp
File to write to.

Param src
Source buffer.

Param nbytes
Number of bytes to write.

Return
Number of bytes written on success, negative errno code on fail.

int (*lseek)(struct fs_file_t *filp, off_t off, int whence)
Moves the file position to a new location in the file.

Param filp
File to move.

Param off
Relative offset from the position specified by whence.
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Param whence
Position in the file. Possible values: SEEK_CUR, SEEK_SET, SEEK_END.

Return
New position in the file or negative errno code on fail.

off_t (*tell)(struct fs_file_t *filp)
Retrieves the current position in the file.

Param filp
File to get the current position from.

Return
Current position in the file or negative errno code on fail.

int (*truncate)(struct fs_file_t *filp, off_t length)
Truncates/expands the file to the new length.

Param filp
File to truncate/expand.

Param length
New length of the file.

Return
0 on success, negative errno code on fail.

int (*sync)(struct fs_file_t *filp)
Flushes the cache of an open file.

Param filp
File to flush.

Return
0 on success, negative errno code on fail.

int (*close)(struct fs_file_t *filp)
Flushes the associated stream and closes the file.

Param filp
File to close.

Return
0 on success, negative errno code on fail.

Directory operations

int (*opendir)(struct fs_dir_t *dirp, const char *fs_path)
Opens an existing directory specified by the path.

Param dirp
Directory to open.

Param fs_path
Path to the directory.

Return
0 on success, negative errno code on fail.

int (*readdir)(struct fs_dir_t *dirp, struct fs_dirent *entry)
Reads directory entries of an open directory.

Param dirp
Directory to read from.

Param entry
Next directory entry in the dirp directory.

Return
0 on success, negative errno code on fail.
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int (*closedir)(struct fs_dir_t *dirp)
Closes an open directory.

Param dirp
Directory to close.

Return
0 on success, negative errno code on fail.

File system level operations

int (*mount)(struct fs_mount_t *mountp)
Mounts a file system.

Parammountp
Mount point.

Return
0 on success, negative errno code on fail.

int (*unmount)(struct fs_mount_t *mountp)
Unmounts a file system.

Parammountp
Mount point.

Return
0 on success, negative errno code on fail.

int (*unlink)(struct fs_mount_t *mountp, const char *name)
Deletes the specified file or directory.

Parammountp
Mount point.

Param name
Path to the file or directory to delete.

Return
0 on success, negative errno code on fail.

int (*rename)(struct fs_mount_t *mountp, const char *from, const char *to)
Renames a file or directory.

Parammountp
Mount point.

Param from
Path to the file or directory to rename.

Param to
New name of the file or directory.

Return
0 on success, negative errno code on fail.

int (*mkdir)(struct fs_mount_t *mountp, const char *name)
Creates a new directory using specified path.

Parammountp
Mount point.

Param name
Path to the directory to create.

Return
0 on success, negative errno code on fail.
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int (*stat)(struct fs_mount_t *mountp, const char *path, struct fs_dirent *entry)
Checks the status of a file or directory specified by the path.

Parammountp
Mount point.

Param path
Path to the file or directory.

Param entry
Directory entry.

Return
0 on success, negative errno code on fail.

int (*statvfs)(struct fs_mount_t *mountp, const char *path, struct fs_statvfs *stat)
Returns the total and available space on the file system volume.

Parammountp
Mount point.

Param path
Path to the file or directory.

Param stat
File system statistics.

Return
0 on success, negative errno code on fail.

int (*mkfs)(uintptr_t dev_id, void *cfg, int flags)
Formats a device to specified file system type.

Available only if CONFIG_FILE_SYSTEM_MKFS is enabled.

Note

This operation destroys existing data on the target device.

Param dev_id
Device identifier.

Param cfg
File system configuration.

Param flags
Formatting flags.

Return
0 on success, negative errno code on fail.

4.8 Formatted Output

Applications as well as Zephyr itself requires infrastructure to format values for user consump-
tion. The standard C99 library *printf() functionality fulfills this need for streaming output
devices or memory buffers, but in an embedded system devices may not accept streamed data
and memory may not be available to store the formatted output.

Internal Zephyr API traditionally provided this both for printk() and for Zephyr’s internal min-
imal libc, but with separate internal interfaces. Logging, tracing, shell, and other applications
made use of either these APIs or standard libc routines based on build options.

The cbprintf() public APIs convert C99 format strings and arguments, providing output pro-
duced one character at a time through a callback mechanism, replacing the original inter-
nal functions and providing support for almost all C99 format specifications. Existing use of
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s*printf() C libraries in Zephyr can be converted to snprintfcb() to avoid pulling in libc im-
plementations.

Several Kconfig options control the set of features that are enabled, allowing some control over
features and memory usage:

• CONFIG_CBPRINTF_FULL_INTEGRAL or CONFIG_CBPRINTF_REDUCED_INTEGRAL
• CONFIG_CBPRINTF_FP_SUPPORT
• CONFIG_CBPRINTF_FP_A_SUPPORT
• CONFIG_CBPRINTF_FP_ALWAYS_A
• CONFIG_CBPRINTF_N_SPECIFIER

CONFIG_CBPRINTF_LIBC_SUBSTS can be used to provide functions that behave like standard libc
functions but use the selected cbprintf formatter rather than pulling in another formatter from
libc.

In addition CONFIG_CBPRINTF_NANO can be used to revert back to the very space-optimized but
limited formatter used for printk() before this capability was added.

4.8.1 Cbprintf Packaging

Typically, strings are formatted synchronously when a function from printf family is called.
However, there are cases when it is beneficial that formatting is deferred. In that case, a state
(format string and arguments) must be captured. Such state forms a self-contained package
which contains format string and arguments. Additionally, package may contain copies of
strings which are part of a format string (format string or any %s argument). Package primary
content resembles va_list stack frame thus standard formatting functions are used to process
a package. Since package contains data which is processed as va_list frame, strict alignment
must be maintained. Due to required padding, size of the package depends on alignment. When
package is copied, it should be copied to a memory block with the same alignment as origin.

Package can have following variants:

• Self-contained - non read-only strings appended to the package. String can be formatted
from such package as long as there is access to read-only string locations. Package may con-
tain information where read-only strings are located within the package. That information
can be used to convert packet to fully self-contained package.

• Fully self-contained - all strings are appended to the package. String can be formatted
from such package without any external data.

• Transient- only arguments are stored. Package contain information where pointers to non
read-only strings are located within the package. Optionally, it may contain read-only string
location information. String can be formatted from such package as long as non read-only
strings are still valid and read-only strings are accessible. Alternatively, package can be
converted to self-contained package or fully self-contained if information about read-
only string locations is present in the package.

Package can be created using two methods:

• runtime - using cbprintf_package() or cbvprintf_package(). This method scans format
string and based on detected format specifiers builds the package.

• static - types of arguments are detected at compile time by the preprocessor and package
is created as simple assignments to a provided memory. This method is significantly faster
than runtime (more than 15 times) but has following limitations: requires _Generic key-
word (C11 feature) to be supported by the compiler and cannot distinguish between %p
and %s if char pointer is used. It treats all (unsigned) char pointers as %s thus it will at-
tempt to append string to a package. It can be handled correctly during conversion from
transient package to self-contained package using CBPRINTF_PACKAGE_CONVERT_PTR_CHECK
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flag. However, it requires access to the format string and it is not always possible thus it is
recommended to cast char pointers used for %p to void *. There is a logging warning gen-
erated by cbprintf_package_convert() called with CBPRINTF_PACKAGE_CONVERT_PTR_CHECK
flag when char pointer is used with %p.

Several Kconfig options control behavior of the packaging:

• CONFIG_CBPRINTF_PACKAGE_LONGDOUBLE
• CONFIG_CBPRINTF_STATIC_PACKAGE_CHECK_ALIGNMENT

Cbprintf package conversion

It is possible to convert package to a variant which contains more information, e.g transient
package can be converted to self-contained. Conversion to fully self-contained package is pos-
sible if CBPRINTF_PACKAGE_ADD_RO_STR_POS flag was used when package was created.

cbprintf_package_copy() is used to calculate space needed for the new package and to copy and
convert a package.

Cbprintf package format

Format of the package contains paddings which are platform specific. Package consists of
header which contains size of package (excluding appended strings) and number of appended
strings. It is followed by the arguments which contains alignment paddings and resem-
bles va_list stack frame. It is followed by data associated with character pointer arguments
used by the string which are not appended to the string (but may be appended later by
cbprinf_package_convert()). Finally, package, optionally, contains appended strings. Each
string contains 1 byte header which contains index of the location where address argument is
stored. During packaging address is set to null and before string formatting it is updated to point
to the current string location within the package. Updating address argument must happen just
before string formatting since address changes whenever package is copied.

Header
sizeof(void *)

1 byte: Argument list size including header and fmt (in 32 bit
words)
1 byte: Number of strings appended to the package
1 byte: Number of read-only string argument locations
1 byte: Number of transient string argument locations
platform specific padding to sizeof(void *)

Arguments Pointer to fmt (or null if fmt is appended to the package)
(optional padding for platform specific alignment)
argument 0
(optional padding for platform specific alignment)
argument 1
…

String location informa-
tion (optional)

Indexes of words within the package where read-only strings
are located
Pairs of argument index and argument location index where
transient strings are located

Appended strings (op-
tional)

1 byte: Index within the package to the location of associated
argument
Null terminated string
…
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Warning

If CONFIG_MINIMAL_LIBC is selected in combination with CONFIG_CBPRINTF_NANO formatting
with C standard library functions like printf or snprintf is limited. Among other things the
%n specifier, most format flags, precision control, and floating point are not supported.

Limitations and recommendations

• C11 _Generic support is required by the compiler to use static (fast) packaging.

• It is recommended to cast any character pointer used with %p format specifier to other
pointer type (e.g. void *). If format string is not accessible then only static packaging is
possible and it will append all detected strings. Character pointer used for %pwill be consid-
ered as string pointer. Copying from unexpected location can have serious consequences
(e.g., memory fault or security violation).

4.8.2 API Reference

group cbprintf_apis

Defines

CBPRINTF_PACKAGE_ALIGNMENT
Required alignment of the buffer used for packaging.

CBPRINTF_MUST_RUNTIME_PACKAGE(flags, ...)
Determine if string must be packaged in run time.

Static packaging can be applied if size of the package can be determined at compile
time. In general, package size can be determined at compile time if there are no string
arguments which might be copied into package body if they are considered transient.

Note

By default any char pointers are considered to be pointing at transient
strings. This can be narrowed down to non const pointers by using
CBPRINTF_PACKAGE_CONST_CHAR_RO.

Parameters
• ... – String with arguments.

• flags – option flags. See Package flags.

Return values
• 1 – if string must be packaged in run time.

• 0 – string can be statically packaged.
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CBPRINTF_STATIC_PACKAGE(packaged, inlen, outlen, align_offset, flags, ...)
Statically package string.

Build string package from formatted string. It assumes that formatted string is in the
read only memory.

If _Generic is not supported then runtime packaging is performed.

Parameters
• packaged – pointer to where the packaged data can be stored. Pass a

null pointer to skip packaging but still calculate the total space required.
The data stored here is relocatable, that is it can be moved to another
contiguous block of memory. It must be aligned to the size of the longest
argument. It is recommended to use CBPRINTF_PACKAGE_ALIGNMENT
for alignment.

• inlen – set to the number of bytes available at packaged. If packaged is
NULL the value is ignored.

• outlen – variable updated to the number of bytes required to completely
store the packed information. If input buffer was too small it is set to
-ENOSPC.

• align_offset – input buffer alignment offset in
bytes. Where offset 0 means that buffer is aligned to
CBPRINTF_PACKAGE_ALIGNMENT. Xtensa requires that packaged is
aligned to CBPRINTF_PACKAGE_ALIGNMENT so it must be multiply of
CBPRINTF_PACKAGE_ALIGNMENT or 0.

• flags – option flags. See Package flags.

• ... – formatted string with arguments. Format string must be constant.

Typedefs

typedef int (*cbprintf_cb)()
Signature for a cbprintf callback function.

This function expects two parameters:

• c a character to output. The output behavior should be as if this was cast to an
unsigned char.

• ctx a pointer to an object that provides context for the output operation.

The declaration does not specify the parameter types. This allows a function like fputc
to be used without requiring all context pointers to be to a FILE object.

Return
the value of c cast to an unsigned char then back to int, or a negative error
code that will be returned from cbprintf().

typedef int (*cbprintf_cb_local)(int c, void *ctx)

typedef int (*cbprintf_convert_cb)(const void *buf, size_t len, void *ctx)
Signature for a cbprintf multibyte callback function.

return Amount of copied data or negative error code.
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Param buf
data.

Param len
data length.

Param ctx
a pointer to an object that provides context for the operation.

typedef int (*cbvprintf_external_formatter_func)(cbprintf_cb out, void *ctx, const char
*fmt, va_list ap)

Signature for a external formatter function identical to cbvprintf.

This function expects the following parameters:

Param out
the function used to emit each generated character.

Param ctx
a pointer to an object that provides context for the external formatter.

Param fmt
a standard ISO C format string with characters and conversion specifica-
tions.

Param ap
captured stack arguments corresponding to the conversion specifications
found within fmt.

Return
vprintf like return values: the number of characters printed, or a negative
error value returned from external formatter.

Functions

int cbprintf_package(void *packaged, size_t len, uint32_t flags, const char *format, ...)
Capture state required to output formatted data later.

Like cbprintf() but instead of processing the arguments and emitting the formatted re-
sults immediately all arguments are captured so this can be done in a different context,
e.g. when the output function can block.

In addition to the values extracted from arguments this will ensure that copies are
made of the necessary portions of any string parameters that are not confirmed to be
stored in read-only memory (hence assumed to be safe to refer to directly later).

Parameters
• packaged – pointer to where the packaged data can be stored. Pass a

null pointer to store nothing but still calculate the total space required.
The data stored here is relocatable, that is it can be moved to another
contiguous block of memory. However, under condition that alignment
is maintained. It must be aligned to at least the size of a pointer.

• len – this must be set to the number of bytes available at packaged if it
is not null. If packaged is null then it indicates hypothetical buffer align-
ment offset in bytes compared to CBPRINTF_PACKAGE_ALIGNMENT
alignment. Buffer alignment offset impacts returned size of
the package. Xtensa requires that buffer is always aligned
to CBPRINTF_PACKAGE_ALIGNMENT so it must be multiply of
CBPRINTF_PACKAGE_ALIGNMENT or 0 when packaged is null.

• flags – option flags. See Package flags.
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• format – a standard ISO C format string with characters and conversion
specifications.

• ... – arguments corresponding to the conversion specifications found
within format.

Return values
• nonegative – the number of bytes successfully stored at packaged. This

will not exceed len.

• -EINVAL – if format is not acceptable

• -EFAULT – if packaged alignment is not acceptable

• -ENOSPC – if packagedwas not null and the space required to store exceed
len.

int cbvprintf_package(void *packaged, size_t len, uint32_t flags, const char *format,
va_list ap)

Capture state required to output formatted data later.

Like cbprintf() but instead of processing the arguments and emitting the formatted re-
sults immediately all arguments are captured so this can be done in a different context,
e.g. when the output function can block.

In addition to the values extracted from arguments this will ensure that copies are
made of the necessary portions of any string parameters that are not confirmed to be
stored in read-only memory (hence assumed to be safe to refer to directly later).

Parameters
• packaged – pointer to where the packaged data can be stored. Pass a

null pointer to store nothing but still calculate the total space required.
The data stored here is relocatable, that is it can be moved to another
contiguous block of memory. The pointer must be aligned to a multiple
of the largest element in the argument list.

• len – this must be set to the number of bytes available at packaged. Ig-
nored if packaged is NULL.

• flags – option flags. See Package flags.

• format – a standard ISO C format string with characters and conversion
specifications.

• ap – captured stack arguments corresponding to the conversion specifi-
cations found within format.

Return values
• nonegative – the number of bytes successfully stored at packaged. This

will not exceed len.

• -EINVAL – if format is not acceptable

• -ENOSPC – if packagedwas not null and the space required to store exceed
len.

int cbprintf_package_convert(void *in_packaged, size_t in_len, cbprintf_convert_cb cb,
void *ctx, uint32_t flags, uint16_t *strl, size_t strl_len)

Convert a package.

Converting may include appending strings used in the package to the package
body. If input package was created with CBPRINTF_PACKAGE_ADD_RO_STR_POS or
CBPRINTF_PACKAGE_ADD_RW_STR_POS, it contains information where strings are lo-
cated within the package. This information can be used to copy strings during the
conversion.
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cb is called with portions of the output package. At the end of the conversion cb is
called with null buffer.

Parameters
• in_packaged – Input package.

• in_len – Input package length. If 0 package length will be retrieved from
the in_packaged

• cb – callback called with portions of the converted package. If null only
length of the output package is calculated.

• ctx – Context provided to the cb.

• flags – Flags. See Package convert flags.

• strl – [inout] if packaged is null, it is a pointer to the array where
strl_len first string lengths will is stored. If packaged is not null, it con-
tains lengths of first strl_len strings. It can be used to optimize copying
so that string length is calculated only once (at length calculation phase
when packaged is null.)

• strl_len – Number of elements in strl array.

Return values
• Positive – output package size.

• -ENOSPC – if packagedwas not null and the space required to store exceed
len.

static inline int cbprintf_package_copy(void *in_packaged, size_t in_len, void *packaged,
size_t len, uint32_t flags, uint16_t *strl, size_t
strl_len)

Copy package with optional appending of strings.

cbprintf_package_convert is used to convert and store converted package in the new
location.

Parameters
• in_packaged – Input package.

• in_len – Input package length. If 0 package length will be retrieved from
the in_packaged

• packaged – [out] Output package. If null only length of the output pack-
age is calculated.

• len – Available space in the location pointed by packaged. Not used when
packaged is null.

• flags – Flags. See Package convert flags.

• strl – [inout] if packaged is null, it is a pointer to the array where
strl_len first string lengths will is stored. If packaged is not null, it con-
tains lengths of first strl_len strings. It can be used to optimize copying
so that string length is calculated only once (at length calculation phase
when packaged is null.)

• strl_len – Number of elements in strl array.

Return values
• Positive – Output package size.

• -ENOSPC – if packagedwas not null and the space required to store exceed
len.
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static inline int cbprintf_fsc_package(void *in_packaged, size_t in_len, void *packaged,
size_t len)

Convert package to fully self-contained (fsc) package.

Package may not be self contain since strings by default are stored by address. Package
may be partially self-contained when transient (not read only) strings are appended to
the package. Such package can be decoded only when there is an access to read-only
strings.

Fully self-contained has (fsc) contains all strings used in the package. A package can be
converted to fsc package if it was create with CBPRINTF_PACKAGE_ADD_RO_STR_POS
flag. Such package will contain necessary data to find read only strings in the package
and copy them into the package body.

Parameters
• in_packaged – pointer to original package created with

CBPRINTF_PACKAGE_ADD_RO_STR_POS.

• in_len – in_packaged length.

• packaged – pointer to location where fully self-contained version of the
input package will be written. Pass a null pointer to calculate space re-
quired.

• len – must be set to the number of bytes available at packaged. Not used
if packaged is null.

Return values
• nonegative – the number of bytes successfully stored at packaged. This

will not exceed len. If packaged is null, calculated length.

• -ENOSPC – if packagedwas not null and the space required to store exceed
len.

• -EINVAL – if in_packaged is null.

int cbpprintf_external(cbprintf_cb out, cbvprintf_external_formatter_func formatter, void
*ctx, void *packaged)

Generate the output for a previously captured format operation using an external for-
matter.

Note

Memory indicated by packaged will be modified in a non-destructive way, meaning
that it could still be reused with this function again.

Parameters
• out – the function used to emit each generated character.

• formatter – external formatter function.

• ctx – a pointer to an object that provides context for the external format-
ter.

• packaged – the data required to generate the formatted output, as cap-
tured by cbprintf_package() or cbvprintf_package(). The alignment re-
quirement on this data is the same as when it was initially created.

Returns
printf like return values: the number of characters printed, or a negative
error value returned from external formatter.
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int cbprintf(cbprintf_cb out, void *ctx, const char *format, ...)
*printf-like output through a callback.

This is essentially printf() except the output is generated character-by-character using
the provided out function. This allows formatting text of unbounded length without
incurring the cost of a temporary buffer.

All formatting specifiers of C99 are recognized, and most are supported if the function-
ality is enabled.

Note

The functionality of this function is significantly reduced when CON-
FIG_CBPRINTF_NANO is selected.

Parameters
• out – the function used to emit each generated character.

• ctx – context provided when invoking out

• format – a standard ISO C format string with characters and conversion
specifications.

• ... – arguments corresponding to the conversion specifications found
within format.

Returns
the number of characters printed, or a negative error value returned from
invoking out.

static inline int cbvprintf(cbprintf_cb out, void *ctx, const char *format, va_list ap)
varargs-aware *printf-like output through a callback.

This is essentially vsprintf() except the output is generated character-by-character us-
ing the provided out function. This allows formatting text of unbounded length with-
out incurring the cost of a temporary buffer.

Note

This function is available only when CONFIG_CBPRINTF_LIBC_SUBSTS is selected.

Note

The functionality of this function is significantly reduced when CON-
FIG_CBPRINTF_NANO is selected.

Parameters
• out – the function used to emit each generated character.

• ctx – context provided when invoking out

• format – a standard ISO C format string with characters and conversion
specifications.

• ap – a reference to the values to be converted.
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Returns
the number of characters generated, or a negative error value returned
from invoking out.

static inline int cbvprintf_tagged_args(cbprintf_cb out, void *ctx, const char *format,
va_list ap)

varargs-aware *printf-like output through a callback with tagged arguments.

This is essentially vsprintf() except the output is generated character-by-character us-
ing the provided out function. This allows formatting text of unbounded length with-
out incurring the cost of a temporary buffer.

Note that the argument list ap are tagged.

Note

This function is available only when CONFIG_CBPRINTF_LIBC_SUBSTS is selected.

Note

The functionality of this function is significantly reduced when CON-
FIG_CBPRINTF_NANO is selected.

Parameters
• out – the function used to emit each generated character.

• ctx – context provided when invoking out

• format – a standard ISO C format string with characters and conversion
specifications.

• ap – a reference to the values to be converted.

Returns
the number of characters generated, or a negative error value returned
from invoking out.

static inline int cbpprintf(cbprintf_cb out, void *ctx, void *packaged)
Generate the output for a previously captured format operation.

Note

Memory indicated by packaged will be modified in a non-destructive way, meaning
that it could still be reused with this function again.

Parameters
• out – the function used to emit each generated character.

• ctx – context provided when invoking out

• packaged – the data required to generate the formatted output, as cap-
tured by cbprintf_package() or cbvprintf_package(). The alignment re-
quirement on this data is the same as when it was initially created.

Returns
the number of characters printed, or a negative error value returned from
invoking out.
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int fprintfcb(FILE *stream, const char *format, ...)
fprintf using Zephyrs cbprintf infrastructure.

return The number of characters printed.

Note

This function is available only when CONFIG_CBPRINTF_LIBC_SUBSTS is selected.

Note

The functionality of this function is significantly reduced when CON-
FIG_CBPRINTF_NANO is selected.

Parameters
• stream – the stream to which the output should be written.

• format – a standard ISO C format string with characters and conversion
specifications.

• ... – arguments corresponding to the conversion specifications found
within format.

int vfprintfcb(FILE *stream, const char *format, va_list ap)
vfprintf using Zephyrs cbprintf infrastructure.

Note

This function is available only when CONFIG_CBPRINTF_LIBC_SUBSTS is selected.

Note

The functionality of this function is significantly reduced when CON-
FIG_CBPRINTF_NANO is selected.

Parameters
• stream – the stream to which the output should be written.

• format – a standard ISO C format string with characters and conversion
specifications.

• ap – a reference to the values to be converted.

Returns
The number of characters printed.

int printfcb(const char *format, ...)
printf using Zephyrs cbprintf infrastructure.

Note

This function is available only when CONFIG_CBPRINTF_LIBC_SUBSTS is selected.
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Note

The functionality of this function is significantly reduced when CON-
FIG_CBPRINTF_NANO is selected.

Parameters
• format – a standard ISO C format string with characters and conversion

specifications.

• ... – arguments corresponding to the conversion specifications found
within format.

Returns
The number of characters printed.

int vprintfcb(const char *format, va_list ap)
vprintf using Zephyrs cbprintf infrastructure.

Note

This function is available only when CONFIG_CBPRINTF_LIBC_SUBSTS is selected.

Note

The functionality of this function is significantly reduced when CON-
FIG_CBPRINTF_NANO is selected.

Parameters
• format – a standard ISO C format string with characters and conversion

specifications.

• ap – a reference to the values to be converted.

Returns
The number of characters printed.

int snprintfcb(char *str, size_t size, const char *format, ...)
snprintf using Zephyrs cbprintf infrastructure.

Note

This function is available only when CONFIG_CBPRINTF_LIBC_SUBSTS is selected.

Note

The functionality of this function is significantly reduced when CON-
FIG_CBPRINTF_NANO is selected.

Parameters
• str – where the formatted content should be written
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• size – maximum number of chaacters for the formatted output, includ-
ing the terminating null byte.

• format – a standard ISO C format string with characters and conversion
specifications.

• ... – arguments corresponding to the conversion specifications found
within format.

Returns
The number of characters that would have been written to str, excluding
the terminating null byte. This is greater than the number actually written
if size is too small.

int vsnprintfcb(char *str, size_t size, const char *format, va_list ap)
vsnprintf using Zephyrs cbprintf infrastructure.

Note

This function is available only when CONFIG_CBPRINTF_LIBC_SUBSTS is selected.

Note

The functionality of this function is significantly reduced when CON-
FIG_CBPRINTF_NANO is selected.

Parameters
• str – where the formatted content should be written

• size – maximum number of chaacters for the formatted output, includ-
ing the terminating null byte.

• format – a standard ISO C format string with characters and conversion
specifications.

• ap – a reference to the values to be converted.

Returns
The number of characters that would have been written to str, excluding
the terminating null byte. This is greater than the number actually written
if size is too small.

4.9 Input

The input subsystem provides an API for dispatching input events from input devices to the
application.

4.9.1 Input Events

The subsystem is built around the input_event structure. An input event represents a change
in an individual event entity, for example the state of a single button, or a movement in a single
axis.

The input_event structure describes the specific event, and includes a synchronization bit to
indicate that the device reached a stable state, for example when the events corresponding to
multiple axes of a multi-axis device have been reported.
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4.9.2 Input Devices

An input device can report input events directly using input_report() or any related function;
for example buttons or other on-off input entities would use input_report_key().

Complex devices may use a combination of multiple events, and set the sync bit once the output
is stable.

The input_report* functions take a device pointer, which is used to indicate which device re-
ported the event and can be used by subscribers to only receive events from a specific device.
If there’s no actual device associated with the event, it can be set to NULL, in which case only
subscribers with no device filter will receive the event.

4.9.3 Application API

An application can register a callback using the INPUT_CALLBACK_DEFINE macro. If a device node
is specified, the callback is only invoked for events from the specific device, otherwise the call-
back will receive all the events in the system. This is the only type of filtering supported, any
more complex filtering logic has to be implemented in the callback itself.

The subsystem can operate synchronously or by using an event queue, depending on the CON-
FIG_INPUT_MODE option. If the input thread is used, all the events are added to a queue and
executed in a common input thread. If the thread is not used, the callback are invoked directly
in the input driver context.

The synchronous mode can be used in a simple application to keep a minimal footprint, or in a
complex application with an existing event model, where the callback is just a wrapper to pipe
back the event in a more complex application specific event system.

4.9.4 HID code mapping

A common use case for input devices is to use them to generate HID reports. For this purpose, the
input_to_hid_code() and input_to_hid_modifier() functions can be used to map input codes
to HID codes and modifiers.

4.9.5 Kscan Compatibility

Input devices generating X/Y/Touch events can be used in existing applications based on the
Keyboard Scan API by enabling both CONFIG_INPUT and CONFIG_KSCAN, defining a zephyr,
kscan-input node as a child node of the corresponding input device and pointing the zephyr,
keyboard-scan chosen node to the compatibility device node, for example:

chosen {
zephyr,keyboard-scan = &kscan_input;

};

ft5336@38 {
...
kscan_input: kscan-input {

compatible = "zephyr,kscan-input";
};

};

4.9.6 General Purpose Drivers

• adc-keys: for buttons connected to a resistor ladder.
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• analog-axis: for absolute position devices connected to an ADC input (thumbsticks, slid-
ers…).

• gpio-kbd-matrix: for GPIO-connected keyboard matrices.

• gpio-keys: for switches directly connected to a GPIO, implements button debouncing.

• gpio-qdec: for GPIO-connected quadrature encoders.

• input-keymap: maps row/col/touch events from a keyboard matrix to key events.

• zephyr,input-longpress: listens for key events, emits events for short and long press.

• zephyr,lvgl-button-input zephyr,lvgl-encoder-input zephyr,lvgl-keypad-input
zephyr,lvgl-pointer-input: listens for input events and translates those to various types
of LVGL input devices.

4.9.7 Detailed Driver Documentation

GPIO Keyboard Matrix

The gpio-kbd-matrix driver supports a large variety of keyboard matrix hardware configura-
tions and has numerous options to change its behavior. This is an overview of some common
setups and how they can be supported by the driver.

The conventional configuration for all of these is that the driver reads on the row GPIOs (inputs)
and selects on the columns GPIOs (output).

Base use case, no isolation diodes, interrupt capable GPIOs This is the common configu-
ration found on consumer keyboards with membrane switches and flexible circuit boards, no
isolation diodes, requires ghosting detection (which is enabled by default).

Fig. 1: A 3x3 matrix, no diodes

The system must support GPIO interrupts, and the interrupt can be enabled on all row GPIOs at
the same time.

kbd-matrix {
compatible = "gpio-kbd-matrix";
row-gpios = <&gpio0 0 (GPIO_PULL_UP | GPIO_ACTIVE_LOW)>,

<&gpio0 1 (GPIO_PULL_UP | GPIO_ACTIVE_LOW)>,
<&gpio0 2 (GPIO_PULL_UP | GPIO_ACTIVE_LOW)>;

col-gpios = <&gpio0 3 GPIO_ACTIVE_LOW>,
<&gpio0 4 GPIO_ACTIVE_LOW>,
<&gpio0 5 GPIO_ACTIVE_LOW>;

};
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In this configuration the matrix scanning library enters idle mode once all keys are released, and
the keyboard matrix thread only wakes up when a key has been pressed.

GPIOs for columns that are not currently selected are configured in high impedance mode. This
means that the row state may need some time to settle to avoid misreading the key state from
a column to the following one. The settle time can be tweaked by changing the settle-time-us
property.

Isolation diodes If the matrix has isolation diodes for every key, then it’s possible to:

• disable ghosting detection, allowing any key combination to be detected

• configuring the driver to drive unselected columns GPIO to inactive state rather than high
impedance, this allows to reduce the settle time (potentially down to 0), and use the more
efficient port wide GPIO read APIs (happens automatically if the GPIO pins are sequential)

Matrixes with diodes going from rows to columns must use pull-ups on rows and active low
columns.

Fig. 2: A 3x3 matrix with row to column isolation diodes.

kbd-matrix {
compatible = "gpio-kbd-matrix";
row-gpios = <&gpio0 0 (GPIO_PULL_UP | GPIO_ACTIVE_LOW)>,

<&gpio0 1 (GPIO_PULL_UP | GPIO_ACTIVE_LOW)>,
<&gpio0 2 (GPIO_PULL_UP | GPIO_ACTIVE_LOW)>;

col-gpios = <&gpio0 3 GPIO_ACTIVE_LOW>,
<&gpio0 4 GPIO_ACTIVE_LOW>,
<&gpio0 5 GPIO_ACTIVE_LOW>;

col-drive-inactive;
settle-time-us = <0>;
no-ghostkey-check;

};

Matrixes with diodes going from columns to rows must use pull-downs on rows and active high
columns.

kbd-matrix {
compatible = "gpio-kbd-matrix";
row-gpios = <&gpio0 0 (GPIO_PULL_DOWN | GPIO_ACTIVE_HIGH)>,

(continues on next page)
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Fig. 3: A 3x3 matrix with column to row isolation diodes.

(continued from previous page)
<&gpio0 1 (GPIO_PULL_DOWN | GPIO_ACTIVE_HIGH)>,
<&gpio0 2 (GPIO_PULL_DOWN | GPIO_ACTIVE_HIGH)>;

col-gpios = <&gpio0 3 GPIO_ACTIVE_HIGH>,
<&gpio0 4 GPIO_ACTIVE_HIGH>,
<&gpio0 5 GPIO_ACTIVE_HIGH>;

col-drive-inactive;
settle-time-us = <0>;
no-ghostkey-check;

};

GPIO with no interrupt support Some GPIO controllers have limitations on GPIO interrupts,
and may not support enabling interrupts on all row GPIOs at the same time.

In this case, the driver can be configured to not use interrupt at all, and instead idle by selecting
all columns and keep polling on the row GPIOs, which is a single GPIO API operation if the pins
are sequential.

This configuration can be enabled by setting the idle-mode property to poll:

kbd-matrix {
compatible = "gpio-kbd-matrix";
...
idle-mode = "poll";

};

GPIO multiplexer In more extreme cases, such as if the columns are using a multiplexer and
it’s impossible to select all of them at the same time, the driver can be configured to scan contin-
uously.

This can be done by setting idle-mode to scan and poll-timeout-ms to 0.

kbd-matrix {
compatible = "gpio-kbd-matrix";
...
poll-timeout-ms = <0>;
idle-mode = "scan";

};

878 Chapter 4. OS Services



Zephyr Project Documentation, Release 3.7.99

Row and column GPIO selection If the row GPIOs are sequential and on the same gpio con-
troller, the driver automatically switches API to read from the whole GPIO port rather than the
individual pins. This is particularly useful if the GPIOs are not memory mapped, for example
on an I2C or SPI port expander, as this significantly reduces the number of transactions on the
corresponding bus.

The same is true for column GPIOs, but only if the matrix is configured for col-drive-inactive,
so that is only usable for matrixes with isolation diodes.

16-bit row support The driver uses an 8-bit datatype to store the row state by default,
which limits the matrix row size to 8. This can be increased to 16 by enabling the CON-
FIG_INPUT_KBD_MATRIX_16_BIT_ROW option.

Actual key mask configuration If the key matrix is not complete, a map of the keys that are
actually populated can be specified using the actual-key-mask property. This allows the matrix
state to be filtered to remove keys that are not present before ghosting detection, potentially
allowing key combinations that would otherwise be blocked by it.

For example for a 3x3 matrix missing a key:

Fig. 4: A 3x3 matrix missing a key.

kbd-matrix {
compatible = "gpio-kbd-matrix";
...
actual-key-mask = <0x07 0x05 0x07>;

};

This would allow, for example, to detect pressing Sw1, SW2 and SW4 at the same time without
triggering anti ghosting.

The actual key mask can be changed at runtime by enabling CON-
FIG_INPUT_KBD_ACTUAL_KEY_MASK_DYNAMIC and the using the in-
put_kbd_matrix_actual_key_mask_set() API.

Keymap configuration Keyboard matrix devices report a series of x/y/touch events. These can
be mapped to normal key events using the input-keymap driver.

For example, the following would setup a keymap device that take the x/y/touch events as an input
and generate corresponding key events as an output:
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kbd {
...
keymap {

compatible = "input-keymap";
keymap = <

MATRIX_KEY(0, 0, INPUT_KEY_1)
MATRIX_KEY(0, 1, INPUT_KEY_2)
MATRIX_KEY(0, 2, INPUT_KEY_3)
MATRIX_KEY(1, 0, INPUT_KEY_4)
MATRIX_KEY(1, 1, INPUT_KEY_5)
MATRIX_KEY(1, 2, INPUT_KEY_6)
MATRIX_KEY(2, 0, INPUT_KEY_7)
MATRIX_KEY(2, 1, INPUT_KEY_8)
MATRIX_KEY(2, 2, INPUT_KEY_9)

>;
row-size = <3>;
col-size = <3>;

};
};

Keyboard matrix shell commands The shell command kbd_matrix_state_dump can be used
to test the functionality of any keyboard matrix driver implemented using the keyboard ma-
trix library. Once enabled it logs the state of the matrix every time it changes, and once dis-
abled it prints an or-mask of any key that has been detected, which can be used to set the
actual-key-mask property.

The command can be enabled using the CONFIG_INPUT_SHELL_KBD_MATRIX_STATE.

Example usage:

uart:~$ device list
devices:
- kbd-matrix (READY)
uart:~$ input kbd_matrix_state_dump kbd-matrix
Keyboard state logging enabled for kbd-matrix
[00:01:41.678,466] <inf> input: kbd-matrix state [01 -- -- --] (1)
[00:01:41.784,912] <inf> input: kbd-matrix state [-- -- -- --] (0)
...
press more buttons
...
uart:~$ input kbd_matrix_state_dump off
Keyboard state logging disabled
[00:01:47.967,651] <inf> input: kbd-matrix key-mask [07 05 07 --] (8)

Keyboard matrix library The GPIO keyboard matrix driver is based on a generic keyboard
matrix library, which implements the core functionalities such as scanning delays, debouncing,
idle mode etc. This can be reused to implement other keyboard matrix drivers, potentially ap-
plication specific.

group input_kbd_matrix
Keyboard Matrix API.

Defines

INPUT_KBD_MATRIX_COLUMN_DRIVE_NONE
Special drive_column argument for not driving any column.
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INPUT_KBD_MATRIX_COLUMN_DRIVE_ALL
Special drive_column argument for driving all the columns.

INPUT_KBD_MATRIX_SCAN_OCURRENCES
Number of tracked scan cycles.

PRIkbdrow

INPUT_KBD_ACTUAL_KEY_MASK_CONST

INPUT_KBD_MATRIX_ROW_BITS
Maximum number of rows.

INPUT_KBD_MATRIX_DATA_NAME(node_id, name)

INPUT_KBD_MATRIX_DT_DEFINE_ROW_COL(node_id, _row_size, _col_size)
Defines the common keyboard matrix support data from devicetree, specify row and
col count.

INPUT_KBD_MATRIX_DT_DEFINE(node_id)
Defines the common keyboard matrix support data from devicetree.

INPUT_KBD_MATRIX_DT_INST_DEFINE_ROW_COL(inst, row_size, col_size)
Defines the common keyboard matrix support data from devicetree instance, specify
row and col count.

Parameters
• inst – Instance.

• row_size – The matrix row count.

• col_size – The matrix column count.

INPUT_KBD_MATRIX_DT_INST_DEFINE(inst)
Defines the common keyboard matrix support data from devicetree instance.

Parameters
• inst – Instance.

INPUT_KBD_MATRIX_DT_COMMON_CONFIG_INIT_ROW_COL(node_id, _api, _row_size, _col_size)
Initialize common keyboard matrix config from devicetree, specify row and col count.

Parameters
• node_id – The devicetree node identifier.

• _api – Pointer to a input_kbd_matrix_api structure.

• _row_size – The matrix row count.

• _col_size – The matrix column count.

INPUT_KBD_MATRIX_DT_COMMON_CONFIG_INIT(node_id, api)
Initialize common keyboard matrix config from devicetree.

Parameters
• node_id – The devicetree node identifier.

• api – Pointer to a input_kbd_matrix_api structure.
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INPUT_KBD_MATRIX_DT_INST_COMMON_CONFIG_INIT_ROW_COL(inst, api, row_size, col_size)
Initialize common keyboard matrix config from devicetree instance, specify row and
col count.

Parameters
• inst – Instance.

• api – Pointer to a input_kbd_matrix_api structure.

• row_size – The matrix row count.

• col_size – The matrix column count.

INPUT_KBD_MATRIX_DT_INST_COMMON_CONFIG_INIT(inst, api)
Initialize common keyboard matrix config from devicetree instance.

Parameters
• inst – Instance.

• api – Pointer to a input_kbd_matrix_api structure.

INPUT_KBD_STRUCT_CHECK(config, data)
Validate the offset of the common data structures.

Parameters
• config – Name of the config structure.

• data – Name of the data structure.

Typedefs

typedef uint8_t kbd_row_t
Row entry data type.

Functions

int input_kbd_matrix_actual_key_mask_set(const struct device *dev, uint8_t row, uint8_t
col, bool enabled)

Enables or disables a specific row, column combination in the actual key mask.

This allows enabling or disabling specific row, column combination in the actual key
mask in runtime. It can be useful if some of the keys are not present in some con-
figuration, and the specific configuration is determined in runtime. Requires CON-
FIG_INPUT_KBD_ACTUAL_KEY_MASK_DYNAMIC to be enabled.

Parameters
• dev – Pointer to the keyboard matrix device.

• row – The matrix row to enable or disable.

• col – The matrix column to enable or disable.

• enabled – Whether the specified row, col has to be enabled or disabled.

Return values
• 0 – If the change is successful.

• -errno – Negative errno if row or col are out of range for the device.
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void input_kbd_matrix_poll_start(const struct device *dev)
Start scanning the keyboard matrix.

Starts the keyboard matrix scanning cycle, this should be called in reaction of a press
event, after the device has been put in detect mode.

Parameters
• dev – Keyboard matrix device instance.

void input_kbd_matrix_drive_column_hook(const struct device *dev, int col)
Drive column hook.

This can be implemented by the application to handle column selection
quirks. Called after the driver specific drive_column function. Requires CON-
FIG_INPUT_KBD_DRIVE_COLUMN_HOOK to be enabled.

Parameters
• dev – Keyboard matrix device instance.

• col – The column to drive, or INPUT_KBD_MATRIX_COLUMN_DRIVE_NONE
or INPUT_KBD_MATRIX_COLUMN_DRIVE_ALL.

int input_kbd_matrix_common_init(const struct device *dev)
Common function to initialize a keyboard matrix device at init time.

This function must be called at the end of the device init function.

Parameters
• dev – Keyboard matrix device instance.

Return values
• 0 – If initialized successfully.

• -errno – Negative errno in case of failure.

struct input_kbd_matrix_api
#include <input_kbd_matrix.h> Keyboard matrix internal APIs.

Public Members

void (*drive_column)(const struct device *dev, int col)
Request to drive a specific column.

Request to drive a specific matrix column, or none, or all.
Param dev

Pointer to the keyboard matrix device.
Param col

The column to drive, or INPUT_KBD_MATRIX_COLUMN_DRIVE_NONE or
INPUT_KBD_MATRIX_COLUMN_DRIVE_ALL.

kbd_row_t (*read_row)(const struct device *dev)
Read the matrix row.

Param dev
Pointer to the keyboard matrix device.
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void (*set_detect_mode)(const struct device *dev, bool enabled)
Request to put the matrix in detection mode.

Request to put the driver in detection mode, this is called after a request to drive
all the column and typically involves reenabling interrupts row pin changes.

Param dev
Pointer to the keyboard matrix device.

Param enable
Whether detection mode has to be enabled or disabled.

struct input_kbd_matrix_common_config
#include <input_kbd_matrix.h> Common keyboard matrix config.

This structure must be placed first in the driver’s config structure.

struct input_kbd_matrix_common_data
#include <input_kbd_matrix.h> Common keyboard matrix data.

This structure must be placed first in the driver’s data structure.

4.9.8 API Reference

Related code samples

LVGL basic sample
Display a ”Hello World” and react to user input using LVGL.

USB HID keyboard
Implement a basic HID keyboard device.

USB HID mouse
Implement a basic HID mouse device.

group input_interface
Input Interface.

Since
3.4

Version
0.1.0

Defines

INPUT_CALLBACK_DEFINE_NAMED(_dev, _callback, _user_data, name)
Register a callback structure for input events with a custom name.

Same as INPUT_CALLBACK_DEFINE but allows specifying a custom name for the call-
back structure. Useful if multiple callbacks are used for the same callback function.

INPUT_CALLBACK_DEFINE(_dev, _callback, _user_data)
Register a callback structure for input events.

The _dev field can be used to only invoke callback for events generated by a specific
device. Setting dev to NULL causes callback to be invoked for every event.
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Parameters
• _dev – device pointer or NULL.

• _callback – The callback function.

• _user_data – Pointer to user specified data.

Functions

int input_report(const struct device *dev, uint8_t type, uint16_t code, int32_t value, bool
sync, k_timeout_t timeout)

Report a new input event.

This causes all the callbacks for the specified device to be executed, either syn-
chronously or through the input thread if utilized.

Parameters
• dev – Device generating the event or NULL.

• type – Event type (see INPUT_EV_CODES).

• code – Event code (see INPUT_KEY_CODES, INPUT_BTN_CODES, IN-
PUT_ABS_CODES, INPUT_REL_CODES, INPUT_MSC_CODES).

• value – Event value.

• sync – Set the synchronization bit for the event.

• timeout – Timeout for reporting the event, ignored if CON-
FIG_INPUT_MODE_SYNCHRONOUS is used.

Return values
• 0 – if the message has been processed.

• negative – if CONFIG_INPUT_MODE_THREAD is enabled and the message
failed to be enqueued.

static inline int input_report_key(const struct device *dev, uint16_t code, int32_t value,
bool sync, k_timeout_t timeout)

Report a new INPUT_EV_KEY input event, note that value is converted to either 0 or 1.

See also

input_report() for more details.

static inline int input_report_rel(const struct device *dev, uint16_t code, int32_t value,
bool sync, k_timeout_t timeout)

Report a new INPUT_EV_REL input event.

See also

input_report() for more details.
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static inline int input_report_abs(const struct device *dev, uint16_t code, int32_t value,
bool sync, k_timeout_t timeout)

Report a new INPUT_EV_ABS input event.

See also

input_report() for more details.

bool input_queue_empty(void)
Returns true if the input queue is empty.

This can be used to batch input event processing until the whole queue has been emp-
tied. Always returns true if CONFIG_INPUT_MODE_SYNCHRONOUS is enabled.

int16_t input_to_hid_code(uint16_t input_code)
Convert an input code to HID code.

Takes an input code as input and returns the corresponding HID code as output. The
return value is -1 if the code is not found, if found it can safely be casted to a uint8_t
type.

Parameters
• input_code – Event code (see INPUT_KEY_CODES).

Return values
• the – HID code corresponding to the input code.

• -1 – if there’s no HID code for the specified input code.

uint8_t input_to_hid_modifier(uint16_t input_code)
Convert an input code to HID modifier.

Takes an input code as input and returns the corresponding HID modifier as output or
0.

Parameters
• input_code – Event code (see INPUT_KEY_CODES).

Return values
• the – HID modifier corresponding to the input code.

• 0 – if there’s no HID modifier for the specified input code.

struct input_event
#include <input.h> Input event structure.

This structure represents a single input event, for example a key or button press for a
single button, or an absolute or relative coordinate for a single axis.

Public Members

const struct device *dev
Device generating the event or NULL.
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uint8_t sync
Sync flag.

uint8_t type
Event type (see INPUT_EV_CODES).

uint16_t code
Event code (see INPUT_KEY_CODES, INPUT_BTN_CODES, INPUT_ABS_CODES, IN-
PUT_REL_CODES, INPUT_MSC_CODES).

int32_t value
Event value.

struct input_callback
#include <input.h> Input callback structure.

Public Members

const struct device *dev
device pointer or NULL.

void (*callback)(struct input_event *evt, void *user_data)
The callback function.

void *user_data
User data pointer.

4.9.9 Input Event Definitions

Related code samples

Input dump
Print all input events.

group input_events

Input event types.

INPUT_EV_KEY
Key event.

INPUT_EV_REL
Relative coordinate event.
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INPUT_EV_ABS
Absolute coordinate event.

INPUT_EV_MSC
Miscellaneous event.

INPUT_EV_DEVICE
Device specific input event.

INPUT_EV_VENDOR_START
Vendor specific event start.

INPUT_EV_VENDOR_STOP
Vendor specific event stop.

Input event KEY codes.

INPUT_KEY_RESERVED
Reserved, do not use.

INPUT_KEY_0
0 Key

INPUT_KEY_1
1 Key

INPUT_KEY_2
2 Key

INPUT_KEY_3
3 Key

INPUT_KEY_4
4 Key

INPUT_KEY_5
5 Key

INPUT_KEY_6
6 Key

INPUT_KEY_7
7 Key

INPUT_KEY_8
8 Key
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INPUT_KEY_9
9 Key

INPUT_KEY_A
A Key.

INPUT_KEY_APOSTROPHE
Apostrophe Key.

INPUT_KEY_B
B Key.

INPUT_KEY_BACK
Back Key.

INPUT_KEY_BACKSLASH
Backslash Key.

INPUT_KEY_BACKSPACE
Backspace Key.

INPUT_KEY_BLUETOOTH
Bluetooth Key.

INPUT_KEY_BRIGHTNESSDOWN
Brightness Up Key.

INPUT_KEY_BRIGHTNESSUP
Brightneess Down Key.

INPUT_KEY_C
C Key.

INPUT_KEY_CAPSLOCK
Caps Lock Key.

INPUT_KEY_COFFEE
Screen Saver Key.

INPUT_KEY_COMMA
Comma Key.

INPUT_KEY_COMPOSE
Compose Key.

INPUT_KEY_CONNECT
Connect Key.
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INPUT_KEY_D
D Key.

INPUT_KEY_DELETE
Delete Key.

INPUT_KEY_DOT
Dot Key.

INPUT_KEY_DOWN
Down Key.

INPUT_KEY_E
E Key.

INPUT_KEY_END
End Key.

INPUT_KEY_ENTER
Enter Key.

INPUT_KEY_EQUAL
Equal Key.

INPUT_KEY_ESC
Escape Key.

INPUT_KEY_F
F Key.

INPUT_KEY_F1
F1 Key.

INPUT_KEY_F10
F10 Key.

INPUT_KEY_F11
F11 Key.

INPUT_KEY_F12
F12 Key.

INPUT_KEY_F13
F13 Key.

INPUT_KEY_F14
F14 Key.
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INPUT_KEY_F15
F15 Key.

INPUT_KEY_F16
F16 Key.

INPUT_KEY_F17
F17 Key.

INPUT_KEY_F18
F18 Key.

INPUT_KEY_F19
F19 Key.

INPUT_KEY_F2
F2 Key.

INPUT_KEY_F20
F20 Key.

INPUT_KEY_F21
F21 Key.

INPUT_KEY_F22
F22 Key.

INPUT_KEY_F23
F23 Key.

INPUT_KEY_F24
F24 Key.

INPUT_KEY_F3
F3 Key.

INPUT_KEY_F4
F4 Key.

INPUT_KEY_F5
F5 Key.

INPUT_KEY_F6
F6 Key.

INPUT_KEY_F7
F7 Key.
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INPUT_KEY_F8
F8 Key.

INPUT_KEY_F9
F9 Key.

INPUT_KEY_FASTFORWARD
Fast Forward Key.

INPUT_KEY_FORWARD
Forward Key.

INPUT_KEY_G
G Key.

INPUT_KEY_GRAVE
Grave (backtick) Key.

INPUT_KEY_H
H Key.

INPUT_KEY_HOME
Home Key.

INPUT_KEY_I
I Key.

INPUT_KEY_INSERT
Insert Key.

INPUT_KEY_J
J Key.

INPUT_KEY_K
K Key.

INPUT_KEY_KP0
Keypad 0 Key.

INPUT_KEY_KP1
Keypad 1 Key.

INPUT_KEY_KP2
Keypad 2 Key.

INPUT_KEY_KP3
Keypad 3 Key.
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INPUT_KEY_KP4
Keypad 4 Key.

INPUT_KEY_KP5
Keypad 5 Key.

INPUT_KEY_KP6
Keypad 6 Key.

INPUT_KEY_KP7
Keypad 7 Key.

INPUT_KEY_KP8
Keypad 8 Key.

INPUT_KEY_KP9
Keypad 9 Key.

INPUT_KEY_KPASTERISK
Keypad Asterisk Key.

INPUT_KEY_KPCOMMA
Keypad Comma Key.

INPUT_KEY_KPDOT
Keypad Dot Key.

INPUT_KEY_KPENTER
Keypad Enter Key.

INPUT_KEY_KPEQUAL
Keypad Equal Key.

INPUT_KEY_KPMINUS
Keypad Minus Key.

INPUT_KEY_KPPLUS
Keypad Plus Key.

INPUT_KEY_KPPLUSMINUS
Keypad Plus Key.

INPUT_KEY_KPSLASH
Keypad Slash Key.

INPUT_KEY_L
L Key.
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INPUT_KEY_LEFT
Left Key.

INPUT_KEY_LEFTALT
Left Alt Key.

INPUT_KEY_LEFTBRACE
Left Brace Key.

INPUT_KEY_LEFTCTRL
Left Ctrl Key.

INPUT_KEY_LEFTMETA
Left Meta Key.

INPUT_KEY_LEFTSHIFT
Left Shift Key.

INPUT_KEY_M
M Key.

INPUT_KEY_MENU
Menu Key.

INPUT_KEY_MINUS
Minus Key.

INPUT_KEY_MUTE
Mute Key.

INPUT_KEY_N
N Key.

INPUT_KEY_NUMLOCK
Num Lock Key.

INPUT_KEY_O
O Key.

INPUT_KEY_P
P Key.

INPUT_KEY_PAGEDOWN
Page Down Key.

INPUT_KEY_PAGEUP
Page UpKey.
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INPUT_KEY_PAUSE
Pause Key.

INPUT_KEY_PLAY
Play Key.

INPUT_KEY_POWER
Power Key.

INPUT_KEY_PRINT
Print Key.

INPUT_KEY_Q
Q Key.

INPUT_KEY_R
R Key.

INPUT_KEY_RIGHT
Right Key.

INPUT_KEY_RIGHTALT
Right Alt Key.

INPUT_KEY_RIGHTBRACE
Right Brace Key.

INPUT_KEY_RIGHTCTRL
Right Ctrl Key.

INPUT_KEY_RIGHTMETA
Right Meta Key.

INPUT_KEY_RIGHTSHIFT
Right Shift Key.

INPUT_KEY_S
S Key.

INPUT_KEY_SCALE
Scale Key.

INPUT_KEY_SCROLLLOCK
Scroll Lock Key.

INPUT_KEY_SEMICOLON
Semicolon Key.
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INPUT_KEY_SLASH
Slash Key.

INPUT_KEY_SLEEP
System Sleep Key.

INPUT_KEY_SPACE
Space Key.

INPUT_KEY_SYSRQ
SysReq Key.

INPUT_KEY_T
T Key.

INPUT_KEY_TAB
Tab Key.

INPUT_KEY_U
U Key.

INPUT_KEY_UP
Up Key.

INPUT_KEY_UWB
Ultra-Wideband Key.

INPUT_KEY_V
V Key.

INPUT_KEY_VOLUMEDOWN
Volume Down Key.

INPUT_KEY_VOLUMEUP
Volume Up Key.

INPUT_KEY_W
W Key.

INPUT_KEY_WAKEUP
System Wake Up Key.

INPUT_KEY_WLAN
Wireless LAN Key.

INPUT_KEY_X
X Key.
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INPUT_KEY_Y
Y Key.

INPUT_KEY_Z
Z Key.

Input event BTN codes.

INPUT_BTN_0
0 button

INPUT_BTN_1
1 button

INPUT_BTN_2
2 button

INPUT_BTN_3
3 button

INPUT_BTN_4
4 button

INPUT_BTN_5
5 button

INPUT_BTN_6
6 button

INPUT_BTN_7
7 button

INPUT_BTN_8
8 button

INPUT_BTN_9
9 button

INPUT_BTN_A
A button.

INPUT_BTN_B
B button.

INPUT_BTN_BACK
Back button.
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INPUT_BTN_C
C button.

INPUT_BTN_DPAD_DOWN
Directional pad Down.

INPUT_BTN_DPAD_LEFT
Directional pad Left.

INPUT_BTN_DPAD_RIGHT
Directional pad Right.

INPUT_BTN_DPAD_UP
Directional pad Up.

INPUT_BTN_EAST
East button.

INPUT_BTN_EXTRA
Extra button.

INPUT_BTN_FORWARD
Forward button.

INPUT_BTN_GEAR_DOWN
Gear Up button.

INPUT_BTN_GEAR_UP
Gear Down button.

INPUT_BTN_LEFT
Left button.

INPUT_BTN_MIDDLE
Middle button.

INPUT_BTN_MODE
Mode button.

INPUT_BTN_NORTH
North button.

INPUT_BTN_RIGHT
Right button.

INPUT_BTN_SELECT
Select button.
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INPUT_BTN_SIDE
Side button.

INPUT_BTN_SOUTH
South button.

INPUT_BTN_START
Start button.

INPUT_BTN_TASK
Task button.

INPUT_BTN_THUMBL
Left thumbstick button.

INPUT_BTN_THUMBR
Right thumbstick button.

INPUT_BTN_TL
Left trigger (L1)

INPUT_BTN_TL2
Left trigger 2 (L2)

INPUT_BTN_TOUCH
Touchscreen touch.

INPUT_BTN_TR
Right trigger (R1)

INPUT_BTN_TR2
Right trigger 2 (R2)

INPUT_BTN_WEST
West button.

INPUT_BTN_X
X button.

INPUT_BTN_Y
Y button.

INPUT_BTN_Z
Z button.

Input event ABS codes.
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INPUT_ABS_BRAKE
Absolute brake position.

INPUT_ABS_GAS
Absolute gas position.

INPUT_ABS_MT_SLOT
Absolute multitouch slot identifier.

INPUT_ABS_RUDDER
Absolute rudder position.

INPUT_ABS_RX
Absolute rotation around X axis.

INPUT_ABS_RY
Absolute rotation around Y axis.

INPUT_ABS_RZ
Absolute rotation around Z axis.

INPUT_ABS_THROTTLE
Absolute throttle position.

INPUT_ABS_WHEEL
Absolute wheel position.

INPUT_ABS_X
Absolute X coordinate.

INPUT_ABS_Y
Absolute Y coordinate.

INPUT_ABS_Z
Absolute Z coordinate.

Input event REL codes.

INPUT_REL_DIAL
Relative dial coordinate.

INPUT_REL_HWHEEL
Relative horizontal wheel coordinate.

INPUT_REL_MISC
Relative misc coordinate.
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INPUT_REL_RX
Relative rotation around X axis.

INPUT_REL_RY
Relative rotation around Y axis.

INPUT_REL_RZ
Relative rotation around Z axis.

INPUT_REL_WHEEL
Relative wheel coordinate.

INPUT_REL_X
Relative X coordinate.

INPUT_REL_Y
Relative Y coordinate.

INPUT_REL_Z
Relative Z coordinate.

Input event MSC codes.

INPUT_MSC_SCAN
Scan code.

4.9.10 Analog Axis API Reference

group input_analog_axis
Analog axis API.

Typedefs

typedef void (*analog_axis_raw_data_t)(const struct device *dev, int channel, int16_t
raw_val)

Analog axis raw data callback.

Param dev
Analog axis device.

Param channel
Channel number.

Param raw_val
Raw value for the channel.
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Functions

void analog_axis_set_raw_data_cb(const struct device *dev, analog_axis_raw_data_t cb)
Set a raw data callback.

Set a callback to receive raw data for the specified analog axis device. This is meant to
be use in the application to acquire the data to use for calibration. Set cb to NULL to
disable the callback.

Parameters
• dev – Analog axis device.

• cb – An analog_axis_raw_data_t callback to use, NULL disable.

int analog_axis_num_axes(const struct device *dev)
Get the number of defined axes.

Return values
n – The number of defined axes for dev.

int analog_axis_calibration_get(const struct device *dev, int channel, struct
analog_axis_calibration *cal)

Get the axis calibration data.

Parameters
• dev – Analog axis device.

• channel – Channel number.

• cal – Pointer to an analog_axis_calibration structure that is going to get
set with the current calibration data.

Return values
• 0 – If successful.

• -EINVAL – If the specified channel is not valid.

int analog_axis_calibration_set(const struct device *dev, int channel, struct
analog_axis_calibration *cal)

Set the axis calibration data.

Parameters
• dev – Analog axis device.

• channel – Channel number.

• cal – Pointer to an analog_axis_calibration structure with the new cali-
bration data

Return values
• 0 – If successful.

• -EINVAL – If the specified channel is not valid.

int analog_axis_calibration_save(const struct device *dev)
Save the calibration data.

Save the calibration data permanently on the specifided device, requires the Settings
subsystem to be configured and initialized.

Parameters
• dev – Analog axis device.

Return values

902 Chapter 4. OS Services



Zephyr Project Documentation, Release 3.7.99

• 0 – If successful.

• -errno – In case of any other error.

struct analog_axis_calibration
#include <input_analog_axis.h> Analog axis calibration data structure.

Holds the calibration data for a single analog axis. Initial values are set from
the devicetree and can be changed by the applicatoin in runtime using ana-
log_axis_calibration_set and analog_axis_calibration_get.

Public Members

int16_t in_min
Input value that corresponds to the minimum output value.

int16_t in_max
Input value that corresponds to the maximum output value.

uint16_t in_deadzone
Input value center deadzone.

4.10 Interprocessor Communication (IPC)

4.10.1 IPC service

• Overview

• Simple data exchange

• Data exchange using the no-copy API

– Backends

– API Reference

• IPC service API

• IPC service backend API

The IPC service API provides an interface to exchange data between two domains or CPUs.

Overview

An IPC service communication channel consists of one instance and one or several endpoints
associated with the instance.

An instance is the external representation of a physical communication channel between two
domains or CPUs. The actual implementation and internal representation of the instance is pe-
culiar to each backend.

An individual instance is not used to send data between domains/CPUs. To send and receive the
data, the user must create (register) an endpoint in the instance. This allows for the connection
of the two domains of interest.
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It is possible to have zero or multiple endpoints for one single instance, possibly with different
priorities, and to use each to exchange data. Endpoint prioritization and multi-instance ability
highly depend on the backend used.

The endpoint is an entity the user must use to send and receive data between two domains (con-
nected by the instance). An endpoint is always associated to an instance.

The creation of the instances is left to the backend, usually at init time. The registration of the
endpoints is left to the user, usually at run time.

The API does not mandate a way for the backend to create instances but it is strongly recom-
mended to use the devicetree to retrieve the configuration parameters for an instance. Currently,
each backend defines its own DT-compatible configuration that is used to configure the interface
at boot time.

The following usage scenarios are supported:

• Simple data exchange.

• Data exchange using the no-copy API.

Simple data exchange

To send data between domains or CPUs, an endpoint must be registered onto an instance.

See the following example:

Note

Before registering an endpoint, the instance must be opened using the
ipc_service_open_instance() function.

#include <zephyr/ipc/ipc_service.h>

static void bound_cb(void *priv)
{

/* Endpoint bounded */
}

static void recv_cb(const void *data, size_t len, void *priv)
{

/* Data received */
}

static struct ipc_ept_cfg ept0_cfg = {
.name = "ept0",
.cb = {

.bound = bound_cb,

.received = recv_cb,
},

};

int main(void)
{

const struct device *inst0;
struct ipc_ept ept0;
int ret;

inst0 = DEVICE_DT_GET(DT_NODELABEL(ipc0));
ret = ipc_service_open_instance(inst0);
ret = ipc_service_register_endpoint(inst0, &ept0, &ept0_cfg);

(continues on next page)
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(continued from previous page)

/* Wait for endpoint bound (bound_cb called) */

unsigned char message[] = "hello world";
ret = ipc_service_send(&ept0, &message, sizeof(message));

}

Data exchange using the no-copy API

If the backend supports the no-copy API you can use it to directly write and read to and from
shared memory regions.

See the following example:

#include <zephyr/ipc/ipc_service.h>
#include <stdint.h>
#include <string.h>

static struct ipc_ept ept0;

static void bound_cb(void *priv)
{

/* Endpoint bounded */
}

static void recv_cb_nocopy(const void *data, size_t len, void *priv)
{

int ret;

ret = ipc_service_hold_rx_buffer(&ept0, (void *)data);
/* Process directly or put the buffer somewhere else and release. */
ret = ipc_service_release_rx_buffer(&ept0, (void *)data);

}

static struct ipc_ept_cfg ept0_cfg = {
.name = "ept0",
.cb = {

.bound = bound_cb,

.received = recv_cb,
},

};

int main(void)
{

const struct device *inst0;
int ret;

inst0 = DEVICE_DT_GET(DT_NODELABEL(ipc0));
ret = ipc_service_open_instance(inst0);
ret = ipc_service_register_endpoint(inst0, &ept0, &ept0_cfg);

/* Wait for endpoint bound (bound_cb called) */
void *data;
unsigned char message[] = "hello world";
uint32_t len = sizeof(message);

ret = ipc_service_get_tx_buffer(&ept0, &data, &len, K_FOREVER);

memcpy(data, message, len);
(continues on next page)
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(continued from previous page)

ret = ipc_service_send_nocopy(&ept0, data, sizeof(message));
}

Backends The requirements needed for implementing backends give flexibility to the IPC ser-
vice. These allow for the addition of dedicated backends having only a subsets of features for
specific use cases.

The backend must support at least the following:

• The init-time creation of instances.

• The run-time registration of an endpoint in an instance.

Additionally, the backend can also support the following:

• The run-time deregistration of an endpoint from the instance.

• The run-time closing of an instance.

• The no-copy API.

Each backend can have its own limitations and features that make the backend unique and ded-
icated to a specific use case. The IPC service API can be used with multiple backends simultane-
ously, combining the pros and cons of each backend.

ICMsgbackend The inter core messaging backend (ICMsg) is a lighter alternative to the heavier
RPMsg static vrings backend. It offers a minimal feature set in a small memory footprint. The
ICMsg backend is build on top of Single Producer Single Consumer Packet Buffer.

Overview The ICMsg backend uses shared memory and MBOX devices for exchanging data.
Shared memory is used to store the data, MBOX devices are used to signal that the data has been
written.

The backend supports the registration of a single endpoint on a single instance. If the applica-
tion requires more than one communication channel, you must define multiple instances, each
having its own dedicated endpoint.

Configuration The backend is configured via Kconfig and devicetree. When configuring the
backend, do the following:

• Define two memory regions and assign them to tx-region and rx-region of an instance.
Ensure that the memory regions used for data exchange are unique (not overlapping any
other region) and accessible by both domains (or CPUs).

• Define MBOX devices which are used to send the signal that informs the other domain (or
CPU) that data has been written. Ensure that the other domain (or CPU) is able to receive
the signal.

See the following configuration example for one of the instances:

reserved-memory {
tx: memory@20070000 {

reg = <0x20070000 0x0800>;
};

rx: memory@20078000 {
reg = <0x20078000 0x0800>;

};
(continues on next page)
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(continued from previous page)
};

ipc {
ipc0: ipc0 {

compatible = "zephyr,ipc-icmsg";
tx-region = <&tx>;
rx-region = <&rx>;
mboxes = <&mbox 0>, <&mbox 1>;
mbox-names = "tx", "rx";
status = "okay";

};
};

};

You must provide a similar configuration for the other side of the communication (domain or
CPU) but you must swap the MBOX channels and memory regions (tx-region and rx-region).

Bonding When the endpoint is registered, the following happens on each domain (or CPU)
connected through the IPC instance:

1. The domain (or CPU) writes a magic number to its tx-region of the shared memory. #.
It then sends a signal to the other domain or CPU, informing that the data has been writ-
ten. Sending the signal to the other domain or CPU is repeated with timeout specified by CON-
FIG_IPC_SERVICE_ICMSG_BOND_NOTIFY_REPEAT_TO_MS option. #. When the signal from the other
domain or CPU is received, the magic number is read from rx-region. If it is correct, the bond-
ing process is finished and the backend informs the application by calling ipc_service_cb.bound
callback.

Samples
• ipc-icmsg

ICMsg with dynamically allocated buffers backend This backend is built on top of the ICMsg
backend. Data transferred over this backend travels in dynamically allocated buffers on shared
memory. The ICMsg just sends references to the buffers. It also supports multiple endpoints.

This architecture allows for overcoming some common problems with other backends (mostly
related to multithread access and zero-copy). This backend provides an alternative with no sig-
nificant limitations.

Overview The shared memory is divided into two parts. One is reserved for the ICMsg and the
other contains equal-sized blocks. The number of blocks is configured in the devicetree.

The data sending process is following:

• The sender allocates one or more blocks. If there are not enough sequential blocks, it
waits using the timeout provided in the parameter that also includes K_FOREVER and
K_NO_WAIT.

• The allocated blocks are filled with data. For the zero-copy case, this is done by the caller,
otherwise, it is copied automatically. During this time other threads are not blocked in any
way as long as there are enough free blocks for them. They can allocate, send data and
receive data.

• A message containing the block index is sent over ICMsg to the receiver. The size of the
ICMsg queue is large enough to hold messages for all blocks, so it will never overflow.
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• The receiver can hold the data as long as desired. Again, other threads are not blocked as
long as there are enough free blocks for them.

• When data is no longer needed, the backend sends a release message over ICMsg.

• When the backend receives this message, it deallocates all blocks. It is done internally by
the backend and it is invisible to the caller.

Configuration The backend is configured using Kconfig and devicetree. When configuring the
backend, do the following:

• Define two memory regions and assign them to tx-region and rx-region of an instance.
Ensure that the memory regions used for data exchange are unique (not overlapping any
other region) and accessible by both domains (or CPUs).

• Define the number of allocable blocks for each region with tx-blocks and rx-blocks.

• Define MBOX devices for sending a signal that informs the other domain (or CPU) of the
written data. Ensure that the other domain (or CPU) can receive the signal.

See the following configuration example for one of the instances:

reserved-memory {
tx: memory@20070000 {

reg = <0x20070000 0x0800>;
};

rx: memory@20078000 {
reg = <0x20078000 0x0800>;

};
};

ipc {
ipc0: ipc0 {

compatible = "zephyr,ipc-icbmsg";
tx-region = <&tx>;
rx-region = <&rx>;
tx-blocks = <16>;
rx-blocks = <32>;
mboxes = <&mbox 0>, <&mbox 1>;
mbox-names = "tx", "rx";
status = "okay";

};
};

You must provide a similar configuration for the other side of the communication (domain or
CPU). Swap the MBOX channels, memory regions (tx-region and rx-region), and block count
(tx-blocks and rx-blocks).

Samples
• ipc_multi_endpoint_sample

API Reference

IPC service API

group ipc_service_api
IPC Service API.
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Functions

int ipc_service_open_instance(const struct device *instance)
Open an instance.

Function to be used to open an instance before being able to register a new endpoint
on it.

Parameters
• instance – [in] Instance to open.

Return values
• -EINVAL – when instance configuration is invalid.

• -EIO – when no backend is registered.

• -EALREADY – when the instance is already opened (or being opened).

• 0 – on success or when not implemented on the backend (not needed).

• other – errno codes depending on the implementation of the backend.

int ipc_service_close_instance(const struct device *instance)
Close an instance.

Function to be used to close an instance. All bounded endpoints must be deregistered
using ipc_service_deregister_endpoint before this is called.

Parameters
• instance – [in] Instance to close.

Return values
• -EINVAL – when instance configuration is invalid.

• -EIO – when no backend is registered.

• -EALREADY – when the instance is not already opened.

• -EBUSY – when an endpoint exists that hasn’t been deregistered

• 0 – on success or when not implemented on the backend (not needed).

• other – errno codes depending on the implementation of the backend.

int ipc_service_register_endpoint(const struct device *instance, struct ipc_ept *ept,
const struct ipc_ept_cfg *cfg)

Register IPC endpoint onto an instance.

Registers IPC endpoint onto an instance to enable communication with a remote de-
vice.

The same function registers endpoints for both host and remote devices.

Note

Keep the variable pointed by cfg alive when endpoint is in use.

Parameters
• instance – [in] Instance to register the endpoint onto.

• ept – [in] Endpoint object.

• cfg – [in] Endpoint configuration.
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Return values
• -EIO – when no backend is registered.

• -EINVAL – when instance, endpoint or configuration is invalid.

• -EBUSY – when the instance is busy.

• 0 – on success.

• other – errno codes depending on the implementation of the backend.

int ipc_service_deregister_endpoint(struct ipc_ept *ept)
Deregister an IPC endpoint from its instance.

Deregisters an IPC endpoint from its instance.

The same function deregisters endpoints for both host and remote devices.

Parameters
• ept – [in] Endpoint object.

Return values
• -EIO – when no backend is registered.

• -EINVAL – when instance, endpoint or configuration is invalid.

• -ENOENT – when the endpoint is not registered with the instance.

• -EBUSY – when the instance is busy.

• 0 – on success.

• other – errno codes depending on the implementation of the backend.

int ipc_service_send(struct ipc_ept *ept, const void *data, size_t len)
Send data using given IPC endpoint.

Parameters
• ept – [in] Registered endpoint by ipc_service_register_endpoint.

• data – [in] Pointer to the buffer to send.

• len – [in] Number of bytes to send.

Return values
• -EIO – when no backend is registered or send hook is missing from back-

end.

• -EINVAL – when instance or endpoint is invalid.

• -ENOENT – when the endpoint is not registered with the instance.

• -EBADMSG – when the data is invalid (i.e. invalid data format, invalid
length, …)

• -EBUSY – when the instance is busy.

• -ENOMEM – when no memory / buffers are available.

• bytes – number of bytes sent.

• other – errno codes depending on the implementation of the backend.

int ipc_service_get_tx_buffer_size(struct ipc_ept *ept)
Get the TX buffer size.

Get the maximal size of a buffer which can be obtained by ipc_service_get_tx_buffer

Parameters

910 Chapter 4. OS Services



Zephyr Project Documentation, Release 3.7.99

• ept – [in] Registered endpoint by ipc_service_register_endpoint.

Return values
• -EIO – when no backend is registered or send hook is missing from back-

end.

• -EINVAL – when instance or endpoint is invalid.

• -ENOENT – when the endpoint is not registered with the instance.

• -ENOTSUP – when the operation is not supported by backend.

• size – TX buffer size on success.

• other – errno codes depending on the implementation of the backend.

int ipc_service_get_tx_buffer(struct ipc_ept *ept, void **data, uint32_t *size,
k_timeout_t wait)

Get an empty TX buffer to be sent using ipc_service_send_nocopy.

This function can be called to get an empty TX buffer so that the application can directly
put its data into the sending buffer without copy from an application buffer.

It is the application responsibility to correctly fill the allocated TX buffer with data
and passing correct parameters to ipc_service_send_nocopy function to perform data
no-copy-send mechanism.

The size parameter can be used to request a buffer with a certain size:

• if the size can be accommodated the function returns no errors and the buffer is
allocated

• if the requested size is too big, the function returns -ENOMEM and the the buffer
is not allocated.

• if the requested size is ‘0’ the buffer is allocated with the maximum allowed size.

In all the cases on return the size parameter contains the maximum size for the re-
turned buffer.

When the function returns no errors, the buffer is intended as allocated
and it is released under two conditions: (1) when sending the buffer using
ipc_service_send_nocopy (and in this case the buffer is automatically released by
the backend), (2) when using ipc_service_drop_tx_buffer on a buffer not sent.

Parameters
• ept – [in] Registered endpoint by ipc_service_register_endpoint.

• data – [out] Pointer to the empty TX buffer.

• size – [inout] Pointer to store the requested TX buffer size. If the func-
tion returns -ENOMEM, this parameter returns the maximum allowed
size.

• wait – [in] Timeout waiting for an available TX buffer.

Return values
• -EIO – when no backend is registered or send hook is missing from back-

end.

• -EINVAL – when instance or endpoint is invalid.

• -ENOENT – when the endpoint is not registered with the instance.

• -ENOTSUP – when the operation or the timeout is not supported by back-
end.

• -ENOBUFS – when there are no TX buffers available.
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• -EALREADY – when a buffer was already claimed and not yet released.

• -ENOMEM – when the requested size is too big (and the size parameter con-
tains the maximum allowed size).

• 0 – on success.

• other – errno codes depending on the implementation of the backend.

int ipc_service_drop_tx_buffer(struct ipc_ept *ept, const void *data)
Drop and release a TX buffer.

Drop and release a TX buffer. It is possible to drop only TX buffers obtained by using
ipc_service_get_tx_buffer.

Parameters
• ept – [in] Registered endpoint by ipc_service_register_endpoint.

• data – [in] Pointer to the TX buffer.

Return values
• -EIO – when no backend is registered or send hook is missing from back-

end.

• -EINVAL – when instance or endpoint is invalid.

• -ENOENT – when the endpoint is not registered with the instance.

• -ENOTSUP – when this is not supported by backend.

• -EALREADY – when the buffer was already dropped.

• -ENXIO – when the buffer was not obtained using
ipc_service_get_tx_buffer

• 0 – on success.

• other – errno codes depending on the implementation of the backend.

int ipc_service_send_nocopy(struct ipc_ept *ept, const void *data, size_t len)
Send data in a TX buffer reserved by ipc_service_get_tx_buffer using the given IPC end-
point.

This is equivalent to ipc_service_send but in this case the TX buffer has been obtained
by using ipc_service_get_tx_buffer.

The application has to take the responsibility for getting the TX buffer using
ipc_service_get_tx_buffer and filling the TX buffer with the data.

After the ipc_service_send_nocopy function is issued the TX buffer is no more owned
by the sending task and must not be touched anymore unless the function fails and
returns an error.

If this function returns an error, ipc_service_drop_tx_buffer can be used to drop the TX
buffer.

Parameters
• ept – [in] Registered endpoint by ipc_service_register_endpoint.

• data – [in] Pointer to the buffer to send obtained by
ipc_service_get_tx_buffer.

• len – [in] Number of bytes to send.

Return values
• -EIO – when no backend is registered or send hook is missing from back-

end.

912 Chapter 4. OS Services



Zephyr Project Documentation, Release 3.7.99

• -EINVAL – when instance or endpoint is invalid.

• -ENOENT – when the endpoint is not registered with the instance.

• -EBADMSG – when the data is invalid (i.e. invalid data format, invalid
length, …)

• -EBUSY – when the instance is busy.

• bytes – number of bytes sent.

• other – errno codes depending on the implementation of the backend.

int ipc_service_hold_rx_buffer(struct ipc_ept *ept, void *data)
Holds the RX buffer for usage outside the receive callback.

Calling this function prevents the receive buffer from being released back to the pool
of shmem buffers. This function can be called in the receive callback when the user
does not want to copy the message out in the callback itself.

After the message is processed, the application must release the buffer using the
ipc_service_release_rx_buffer function.

Parameters
• ept – [in] Registered endpoint by ipc_service_register_endpoint.

• data – [in] Pointer to the RX buffer to hold.

Return values
• -EIO – when no backend is registered or release hook is missing from

backend.

• -EINVAL – when instance or endpoint is invalid.

• -ENOENT – when the endpoint is not registered with the instance.

• -EALREADY – when the buffer data has been hold already.

• -ENOTSUP – when this is not supported by backend.

• 0 – on success.

• other – errno codes depending on the implementation of the backend.

int ipc_service_release_rx_buffer(struct ipc_ept *ept, void *data)
Release the RX buffer for future reuse.

When supported by the backend, this function can be called after the received message
has been processed and the buffer can be marked as reusable again.

It is possible to release only RX buffers on which ipc_service_hold_rx_buffer was previ-
ously used.

Parameters
• ept – [in] Registered endpoint by ipc_service_register_endpoint.

• data – [in] Pointer to the RX buffer to release.

Return values
• -EIO – when no backend is registered or release hook is missing from

backend.

• -EINVAL – when instance or endpoint is invalid.

• -ENOENT – when the endpoint is not registered with the instance.

• -EALREADY – when the buffer data has been already released.

• -ENOTSUP – when this is not supported by backend.
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• -ENXIO – when the buffer was not hold before using
ipc_service_hold_rx_buffer

• 0 – on success.

• other – errno codes depending on the implementation of the backend.

struct ipc_service_cb
#include <ipc_service.h> Event callback structure.

It is registered during endpoint registration. This structure is part of the endpoint
configuration.

Public Members

void (*bound)(void *priv)
Bind was successful.

This callback is called when the endpoint binding is successful.
Param priv
[in] Private user data.

void (*received)(const void *data, size_t len, void *priv)
New packet arrived.

This callback is called when new data is received.

Note

When ipc_service_hold_rx_buffer is not used, the data buffer is to be considered
released and available again only when this callback returns.

Param data
[in] Pointer to data buffer.

Param len
[in] Length of data.

Param priv
[in] Private user data.

void (*error)(const char *message, void *priv)
An error occurred.

Parammessage
[in] Error message.

Param priv
[in] Private user data.

struct ipc_ept
#include <ipc_service.h> Endpoint instance.

Token is not important for user of the API. It is implemented in a specific backend.

Public Members
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const struct device *instance
Instance this endpoint belongs to.

void *token
Backend-specific token used to identify an endpoint in an instance.

struct ipc_ept_cfg
#include <ipc_service.h> Endpoint configuration structure.

Public Members

const char *name
Name of the endpoint.

int prio
Endpoint priority.

If the backend supports priorities.

struct ipc_service_cb cb
Event callback structure.

void *priv
Private user data.

IPC service backend API

group ipc_service_backend
IPC service backend.

struct ipc_service_backend
#include <ipc_service_backend.h> IPC backend configuration structure.

This structure is used for configuration backend during registration.

Public Members

int (*open_instance)(const struct device *instance)
Pointer to the function that will be used to open an instance.

Param instance
[in] Instance pointer.

Retval -EALREADY
when the instance is already opened.

Retval 0
on success

Retval other
errno codes depending on the implementation of the backend.
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int (*close_instance)(const struct device *instance)
Pointer to the function that will be used to close an instance.

Param instance
[in] Instance pointer.

Retval -EALREADY
when the instance is not already inited.

Retval 0
on success

Retval other
errno codes depending on the implementation of the backend.

int (*send)(const struct device *instance, void *token, const void *data, size_t len)
Pointer to the function that will be used to send data to the endpoint.

Param instance
[in] Instance pointer.

Param token
[in] Backend-specific token.

Param data
[in] Pointer to the buffer to send.

Param len
[in] Number of bytes to send.

Retval -EINVAL
when instance is invalid.

Retval -ENOENT
when the endpoint is not registered with the instance.

Retval -EBADMSG
when the message is invalid.

Retval -EBUSY
when the instance is busy or not ready.

Retval -ENOMEM
when no memory / buffers are available.

Retval bytes
number of bytes sent.

Retval other
errno codes depending on the implementation of the backend.

int (*register_endpoint)(const struct device *instance, void **token, const struct
ipc_ept_cfg *cfg)

Pointer to the function that will be used to register endpoints.
Param instance
[in] Instance to register the endpoint onto.

Param token
[out] Backend-specific token.

Param cfg
[in] Endpoint configuration.

Retval -EINVAL
when the endpoint configuration or instance is invalid.

Retval -EBUSY
when the instance is busy or not ready.

Retval 0
on success

Retval other
errno codes depending on the implementation of the backend.

int (*deregister_endpoint)(const struct device *instance, void *token)
Pointer to the function that will be used to deregister endpoints.
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Param instance
[in] Instance from which to deregister the endpoint.

Param token
[in] Backend-specific token.

Retval -EINVAL
when the endpoint configuration or instance is invalid.

Retval -ENOENT
when the endpoint is not registered with the instance.

Retval -EBUSY
when the instance is busy or not ready.

Retval 0
on success

Retval other
errno codes depending on the implementation of the backend.

int (*get_tx_buffer_size)(const struct device *instance, void *token)
Pointer to the function that will return the TX buffer size.

Param instance
[in] Instance pointer.

Param token
[in] Backend-specific token.

Retval -EINVAL
when instance is invalid.

Retval -ENOENT
when the endpoint is not registered with the instance.

Retval -ENOTSUP
when the operation is not supported.

Retval size
TX buffer size on success.

Retval other
errno codes depending on the implementation of the backend.

int (*get_tx_buffer)(const struct device *instance, void *token, void **data, uint32_t
*len, k_timeout_t wait)

Pointer to the function that will return an empty TX buffer.
Param instance
[in] Instance pointer.

Param token
[in] Backend-specific token.

Param data
[out] Pointer to the empty TX buffer.

Param len
[inout] Pointer to store the TX buffer size.

Param wait
[in] Timeout waiting for an available TX buffer.

Retval -EINVAL
when instance is invalid.

Retval -ENOENT
when the endpoint is not registered with the instance.

Retval -ENOTSUP
when the operation or the timeout is not supported.

Retval -ENOBUFS
when there are no TX buffers available.

Retval -EALREADY
when a buffer was already claimed and not yet released.

Retval -ENOMEM
when the requested size is too big (and the size parameter contains the

4.10. Interprocessor Communication (IPC) 917



Zephyr Project Documentation, Release 3.7.99

maximum allowed size).
Retval 0

on success
Retval other

errno codes depending on the implementation of the backend.

int (*drop_tx_buffer)(const struct device *instance, void *token, const void *data)
Pointer to the function that will drop a TX buffer.

Param instance
[in] Instance pointer.

Param token
[in] Backend-specific token.

Param data
[in] Pointer to the TX buffer.

Retval -EINVAL
when instance is invalid.

Retval -ENOENT
when the endpoint is not registered with the instance.

Retval -ENOTSUP
when this function is not supported.

Retval -EALREADY
when the buffer was already dropped.

Retval 0
on success

Retval other
errno codes depending on the implementation of the backend.

int (*send_nocopy)(const struct device *instance, void *token, const void *data, size_t
len)

Pointer to the function that will be used to send data to the endpoint when the TX
buffer has been obtained using ipc_service_get_tx_buffer.

Param instance
[in] Instance pointer.

Param token
[in] Backend-specific token.

Param data
[in] Pointer to the buffer to send.

Param len
[in] Number of bytes to send.

Retval -EINVAL
when instance is invalid.

Retval -ENOENT
when the endpoint is not registered with the instance.

Retval -EBADMSG
when the data is invalid (i.e. invalid data format, invalid length, …)

Retval -EBUSY
when the instance is busy or not ready.

Retval bytes
number of bytes sent.

Retval other
errno codes depending on the implementation of the backend.

int (*hold_rx_buffer)(const struct device *instance, void *token, void *data)
Pointer to the function that will hold the RX buffer.

Param instance
[in] Instance pointer.
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Param token
[in] Backend-specific token.

Param data
[in] Pointer to the RX buffer to hold.

Retval -EINVAL
when instance is invalid.

Retval -ENOENT
when the endpoint is not registered with the instance.

Retval -EALREADY
when the buffer data has been already hold.

Retval -ENOTSUP
when this function is not supported.

Retval 0
on success

Retval other
errno codes depending on the implementation of the backend.

int (*release_rx_buffer)(const struct device *instance, void *token, void *data)
Pointer to the function that will release the RX buffer.

Param instance
[in] Instance pointer.

Param token
[in] Backend-specific token.

Param data
[in] Pointer to the RX buffer to release.

Retval -EINVAL
when instance is invalid.

Retval -ENOENT
when the endpoint is not registered with the instance.

Retval -EALREADY
when the buffer data has been already released.

Retval -ENOTSUP
when this function is not supported.

Retval 0
on success

Retval other
errno codes depending on the implementation of the backend.

4.11 Linkable Loadable Extensions (LLEXT)

The LLEXT subsystem provides a toolbox for extending the functionality of an application at
runtime with linkable loadable code.

Extensions are precompiled executables in ELF format that can be verified, loaded, and linked
with the main Zephyr binary. Extensions can be manipulated and introspected to some degree,
as well as unloaded when no longer needed.

4.11.1 Configuration

The following Kconfig options are available for the LLEXT subsystem:
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Heap size

The LLEXT subsystem needs a static heap to be allocated for extension related data. The follow-
ing option controls this allocation.

CONFIG_LLEXT_HEAP_SIZE
Size of the LLEXT heap in kilobytes.

Note

Whenusermode is enabled, the heap size must be large enough to allow the extension sections
to be allocated with the alignment required by the architecture.

ELF object type

The LLEXT subsystem supports loading different types of extensions; the type can be set by
choosing among the following Kconfig options:

CONFIG_LLEXT_TYPE_ELF_OBJECT
Build and expect relocatable files as binary object type for the LLEXT subsystem. A
single compiler invocation is used to generate the object file.

CONFIG_LLEXT_TYPE_ELF_RELOCATABLE
Build and expect relocatable (partially linked) files as the binary object type for the
LLEXT subsystem. These object files are generated by the linker by combining multi-
ple object files into a single one.

CONFIG_LLEXT_TYPE_ELF_SHAREDLIB
Build and expect shared libraries as binary object type for the LLEXT subsystem. The
standard linking process is used to generate the shared library from multiple object
files.

Note

This is not currently supported on ARM architectures.

Minimize allocations

The LLEXT subsystem loading mechanism, by default, uses a seek/read abstraction and copies
all data into allocated memory; this is done to allow the extension to be loaded from any storage
medium. Sometimes, however, data is already in a buffer in RAM and copying it is not necessary.
The following option allows the LLEXT subsystem to optimize memory footprint in this case.

CONFIG_LLEXT_STORAGE_WRITABLE
Allow the extension to be loaded by directly referencing section data into the ELF
buffer. To be effective, this requires the use of an ELF loader that supports the peek
functionality, such as the llext_buf_loader.

Warning

The application must ensure that the buffer used to load the extension remains
allocated until the extension is unloaded.
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Note

This will directly modify the contents of the buffer during the link phase. Once the
extension is unloaded, the buffer must be reloaded before it can be used again in
a call to llext_load().

Note

This is currently required by the Xtensa architecture. Further information on this
topic is available on GitHub issue #75341.

Using SLID for symbol lookups

When an extension is loaded, the LLEXT subsystem must find the address of all the symbols
residing in the main application that the extension references. To this end, the main binary con-
tains a LLEXT-dedicated symbol table, filled with one symbol-name-to-address mapping entry
for each symbol exported by the main application to extensions. This table can then be searched
into by the LLEXT linker at extension load time. This process is pretty slow due to the nature of
string comparisons, and the size consumed by the table can become significant as the number
of exported symbols increases.

CONFIG_LLEXT_EXPORT_BUILTINS_BY_SLID
Perform an extra processing step on the Zephyr binary and on all extensions being
built, converting every string in the symbol tables to a pointer-sized hash called Sym-
bol Link Identifier (SLID), which is stored in the binary.

This speeds up the symbol lookup process by allowing usage of integer-based com-
parisons rather than string-based ones. Another benefit of SLID-based linking is that
storing symbol names in the binary is no longer necessary, which provides a signifi-
cant decrease in symbol table size.

Note

This option is not currently compatible with the LLEXT EDK.

Note

Using a different value for this option in the main binary and in extensions
is not supported. For example, if the main application is built with CON-
FIG_LLEXT_EXPORT_BUILTINS_BY_SLID=y, it is forbidden to load an extension that
was compiled with CONFIG_LLEXT_EXPORT_BUILTINS_BY_SLID=n.

EDK configuration

Options influencing the generation and behavior of the LLEXT EDK are described in LLEXT EDK
Kconfig options.
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4.11.2 Building extensions

The LLEXT subsystem allows for the creation of extensions that can be loaded into a running
Zephyr application. When building these extensions, it’s very often useful to have access to the
headers and compiler flags used by the main Zephyr application.

The easiest path to achieve this is to build the extension as part of the Zephyr application, us-
ing the native Zephyr CMake features. This will result in a single build providing both the main
Zephyr application and the extension(s), which will all automatically be built with the same pa-
rameters.

In some cases, involving the full Zephyr build system may not be feasible or convenient; maybe
the extension is built using a different compiler suite or as part of a different project altogether.
In this case, the extension developer needs to export the headers and compiler flags used by the
main Zephyr application. This can be done using the LLEXT Extension Development Kit.

Using the Zephyr CMake features

The Zephyr build system provides a set of features that can be used to build extensions as part
of the Zephyr application. This is the simplest way to build extensions, as it requires minimal
additions to an application build system.

Building the extension An extension can be defined in the app’s CMakeLists.txt by invoking
the add_llext_target function, providing the target name, the output and the source files. Usage
is similar to the standard add_custom_target CMake function:

add_llext_target(
<target_name>
OUTPUT <ext_file.llext>
SOURCES <src1> [<src2>...]

)

where:

• <target_name> is the name of the final CMake target that will result in the LLEXT binary
being created;

• <ext_file.llext> is the name of the output file that will contain the packaged extension;

• <src1> [<src2>...] is the list of source files that will be compiled to create the extension.

The exact steps of the extension building process depend on the currently selected ELF object
format.

The following custom properties of <target_name> are defined and can be retrieved using the
get_target_property() CMake function:

lib_target
Target name for the source compilation and/or link step.

lib_output
The binary file resulting from compilation and/or linking steps.

pkg_input
The file to be used as input for the packaging step.

pkg_output
The final extension file name.
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Tweaking the build process The following CMake functions can be used to modify the build
system behavior during the extension build process to a fine degree. Each of the below functions
takes the LLEXT target name as its first argument; it is otherwise functionally equivalent to the
common Zephyr target_* version.

• llext_compile_definitions
• llext_compile_features
• llext_compile_options
• llext_include_directories
• llext_link_options

Custom build steps The add_llext_command CMake function can be used to add custom build
steps that will be executed during the extension build process. The command will be run at the
specified build step and can refer to the properties of the target for build-specific details.

The function signature is:

add_llext_command(
TARGET <target_name>
[PRE_BUILD | POST_BUILD | POST_PKG]
COMMAND <command> [args...]

)

The different build steps are:

PRE_BUILD
Before the extension code is linked, if the architecture uses dynamic libraries. This
step can access lib_target and its own properties.

POST_BUILD
After the extension code is built, but before packaging it in an .llext file. This step is
expected to create a pkg_input file by reading the contents of lib_output.

POST_PKG
After the extension output file has been created. The command can operate on the
final llext file pkg_output.

Anything else after COMMAND will be passed to add_custom_command() as-is (including multiple
commands and other options).

LLEXT Extension Development Kit (EDK)

When building extensions as a standalone project, outside of the main Zephyr build system, it’s
important to have access to the same set of generated headers and compiler flags used by the
main Zephyr application, since they have a direct impact on how Zephyr headers are interpreted
and the extension is compiled in general.

This can be achieved by asking Zephyr to generate an Extension Development Kit (EDK) from the
build artifacts of the main Zephyr application, by running the following command which uses
the llext-edk target:

west build -t llext-edk

The generated EDK can be found in the build directory under the zephyr directory. It’s a tarball
that contains the headers and compile flags needed to build extensions. The extension devel-
oper can then include the headers and use the compile flags in their build system to build the
extension.

4.11. Linkable Loadable Extensions (LLEXT) 923



Zephyr Project Documentation, Release 3.7.99

Compile flags The EDK includes the convenience files cmake.cflags (for CMake-based
projects) and Makefile.cflags (for Make-based ones), which define a set of variables that con-
tain the compile flags needed by the project. The full list of flags needed to build an extension
is provided by LLEXT_CFLAGS. Also provided is a more granular set of flags that can be used in
support of different use cases, such as when building mocks for unit tests:

LLEXT_INCLUDE_CFLAGS
Compiler flags to add directories containing non-autogenerated headers to the com-
piler’s include search paths.

LLEXT_GENERATED_INCLUDE_CFLAGS
Compiler flags to add directories containing autogenerated headers to the compiler’s
include search paths.

LLEXT_ALL_INCLUDE_CFLAGS
Compiler flags to add all directories containing headers used in the build to the com-
piler’s include search paths. This is a combination of LLEXT_INCLUDE_CFLAGS and
LLEXT_GENERATED_INCLUDE_CFLAGS.

LLEXT_GENERATED_IMACROS_CFLAGS
Compiler flags for autogenerated headers that must be included in the build via
-imacros.

LLEXT_BASE_CFLAGS
Other compiler flags that control code generation for the target CPU. None of these
flags are included in the above lists.

LLEXT_CFLAGS
All flags required to build an extension. This is a combination
of LLEXT_ALL_INCLUDE_CFLAGS, LLEXT_GENERATED_IMACROS_CFLAGS and
LLEXT_BASE_CFLAGS.

LLEXT EDK Kconfig options The LLEXT EDK can be configured using the following Kconfig
options:

CONFIG_LLEXT_EDK_NAME
The name of the generated EDK tarball.

CONFIG_LLEXT_EDK_USERSPACE_ONLY
If set, the EDK will include headers that do not contain code to route syscalls to the kernel.
This is useful when building extensions that will run exclusively in user mode.

EDK Sample Refer to llext-edk for an example of how to use the LLEXT EDK.

4.11.3 Loading extensions

Once an extension is built and the ELF file is available, it can be loaded into the Zephyr appli-
cation using the LLEXT API, which provides a way to load the extension into memory, access its
symbols and call its functions.

Loading an extension

An extension may be loaded using any implementation of a llext_loader which has a set of func-
tion pointers that provide the necessary functionality to read the ELF data. A loader also provides
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some minimal context (memory) needed by the llext_load() function. An implementation over
a buffer containing an ELF in addressable memory in memory is available as llext_buf_loader.

The extensions are loaded with a call to the llext_load() function, passing in the extension
name and the configured loader. Once that completes successfully, the extension is loaded into
memory and is ready to be used.

Note

When User Mode is enabled, the extension will not be included in any user memory domain.
To allow access from user mode, the llext_add_domain() function must be called.

Accessing code and data

To interact with the newly loaded extension, the host application must use the llext_find_sym()
function to get the address of the exported symbol. The returned void * can then be cast to the
appropriate type and used.

A wrapper for calling a function with no arguments is provided in llext_call_fn().

Cleaning up after use

The llext_unload() function must be called to free the memory used by the extension once it is
no longer required. After this call completes, all pointers to symbols in the extension that were
obtained will be invalid.

4.11.4 Troubleshooting

This feature is being actively developed and as such it is possible that some issues may arise.
Since linking does modify the binary code, in case of errors the results are difficult to predict.
Some common issues may be:

• Results from llext_find_sym() point to an invalid address;

• Constants and variables defined in the extension do not have the expected values;

• Calling a function defined in an extension results in a hard fault, or memory in the main
application is corrupted after returning from it.

If any of this happens, the following tips may help understand the issue:

• Make sure CONFIG_LLEXT_LOG_LEVEL is set to DEBUG, then obtain a log of the llext_load()
invocation.

• If possible, disable memory protection (MMU/MPU) and see if this results in different be-
havior.

• Try to simplify the extension to the minimum possible code that reproduces the issue.

• Use a debugger to inspect the memory and registers to try to understand what is happening.

Note

When using GDB, the add_symbol_file command may be used to load the debugging in-
formation and symbols from the ELF file. Make sure to specify the proper offset (usually
the start of the .text section, reported as region 0 in the debug logs.)
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If the issue persists, please open an issue in the GitHub repository, including all the above infor-
mation.

4.11.5 API Reference

group llext_apis

Since
3.5

Version
0.1.0

Defines

LLEXT_LOAD_PARAM_DEFAULT
Default initializer for llext_load_param.

Enums

enum llext_mem
List of memory regions stored or referenced in the LLEXT subsystem.

This enum lists the different types of memory regions that are used by the LLEXT sub-
system. The names match common ELF file section names; but note that at load time
multiple ELF sections with similar flags may be merged together into a single memory
region.

Values:

enumerator LLEXT_MEM_TEXT
Executable code.

enumerator LLEXT_MEM_DATA
Initialized data.

enumerator LLEXT_MEM_RODATA
Read-only data.

enumerator LLEXT_MEM_BSS
Uninitialized data.

enumerator LLEXT_MEM_EXPORT
Exported symbol table.

enumerator LLEXT_MEM_SYMTAB
Symbol table.

enumerator LLEXT_MEM_STRTAB
Symbol name strings.
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enumerator LLEXT_MEM_SHSTRTAB
Section name strings.

enumerator LLEXT_MEM_COUNT
Number of regions managed by LLEXT.

Functions

struct llext *llext_by_name(const char *name)
Find an llext by name.

Parameters
• name – [in] String name of the llext

Returns
a pointer to the llext, or NULL if not found

int llext_iterate(int (*fn)(struct llext *ext, void *arg), void *arg)
Iterate over all loaded extensions.

Calls a provided callback function for each registered extension or until the callback
function returns a non-0 value.

Parameters
• fn – [in] callback function

• arg – [in] a private argument to be provided to the callback function

Return values
0 – if no extensions are registered

Returns
the value returned by the last callback invocation

int llext_load(struct llext_loader *loader, const char *name, struct llext **ext, struct
llext_load_param *ldr_parm)

Load and link an extension.

Loads relevant ELF data into memory and provides a structure to work with it.

Parameters
• loader – [in] An extension loader that provides input data and context

• name – [in] A string identifier for the extension

• ext – [out] Pointer to the newly allocated llext structure

• ldr_parm – [in] Optional advanced load parameters (may be NULL)

Return values
• -ENOMEM – Not enough memory

• -ENOEXEC – Invalid ELF stream

• -ENOTSUP – Unsupported ELF features

Returns
the previous extension use count on success, or a negative error code.

4.11. Linkable Loadable Extensions (LLEXT) 927



Zephyr Project Documentation, Release 3.7.99

int llext_unload(struct llext **ext)
Unload an extension.

Parameters
• ext – [in] Extension to unload

const void *llext_find_sym(const struct llext_symtable *sym_table, const char
*sym_name)

Find the address for an arbitrary symbol.

Searches for a symbol address, either in the list of symbols exported by the main
Zephyr binary or in an extension’s symbol table.

Parameters
• sym_table – [in] Symbol table to lookup symbol in, or NULL to search in

the main Zephyr symbol table

• sym_name – [in] Symbol name to find

Returns
the address of symbol in memory, or NULL if not found

int llext_call_fn(struct llext *ext, const char *sym_name)
Call a function by name.

Expects a symbol representing a void fn(void) style function exists and may be called.

Parameters
• ext – [in] Extension to call function in

• sym_name – [in] Function name (exported symbol) in the extension

Return values
• 0 – Success

• -ENOENT – Symbol name not found

int llext_add_domain(struct llext *ext, struct k_mem_domain *domain)
Add an extension to a memory domain.

Allows an extension to be executed in user mode threads when memory protection
hardware is enabled by adding memory partitions covering the extension’s memory
regions to a memory domain.

Parameters
• ext – [in] Extension to add to a domain

• domain – [in] Memory domain to add partitions to

Return values
-ENOSYS – CONFIG_USERSPACE is not enabled or supported

Returns
0 on success, or a negative error code.

int arch_elf_relocate(elf_rela_t *rel, uintptr_t loc, uintptr_t sym_base_addr, const char
*sym_name, uintptr_t load_bias)

Architecture specific opcode update function.

ELF files include sections describing a series of relocations, which are instructions on
how to rewrite opcodes given the actual placement of some symbolic data such as a
section, function, or object. These relocations are architecture specific and each archi-
tecture supporting LLEXT must implement this.

Parameters
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• rel – [in] Relocation data provided by ELF

• loc – [in] Address of opcode to rewrite

• sym_base_addr – [in] Address of symbol referenced by relocation

• sym_name – [in] Name of symbol referenced by relocation

• load_bias – [in] .text load address

Return values
• 0 – Success

• -ENOTSUP – Unsupported relocation

• -ENOEXEC – Invalid relocation

ssize_t llext_find_section(struct llext_loader *loader, const char *search_name)
Locates an ELF section in the file.

Searches for a section by name in the ELF file and returns its offset.

Parameters
• loader – Extension loader data and context

• search_name – Section name to search for

Returns
the section offset or a negative error code

void arch_elf_relocate_local(struct llext_loader *loader, struct llext *ext, const
elf_rela_t *rel, const elf_sym_t *sym, size_t got_offset)

Architecture specific function for updating addresses via relocation table.

Parameters
• loader – [in] Extension loader data and context

• ext – [in] Extension to call function in

• rel – [in] Relocation data provided by elf

• sym – [in] Corresponding symbol table entry

• got_offset – [in] Offset within a relocation table

struct llext
#include <llext.h> Structure describing a linkable loadable extension.

This structure holds the data for a loaded extension. It is created by the llext_load
function and destroyed by the llext_unload function.

Public Members

char name[16]
Name of the llext.

void *mem[LLEXT_MEM_COUNT]
Lookup table of memory regions.

bool mem_on_heap[LLEXT_MEM_COUNT]
Is the memory for this region allocated on heap?
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size_t mem_size[LLEXT_MEM_COUNT]
Size of each stored region.

size_t alloc_size
Total llext allocation size.

struct llext_symtable sym_tab
Table of all global symbols in the extension; used internally as part of the linking
process.

E.g. if the extension is built out of several files, if any symbols are referenced be-
tween files, this table will be used to link them.

struct llext_symtable exp_tab
Table of symbols exported by the llext via LL_EXTENSION_SYMBOL.

This can be used in the main Zephyr binary to find symbols in the extension.

unsigned int use_count
Extension use counter, prevents unloading while in use.

struct llext_load_param
#include <llext.h> Advanced llext_load parameters.

This structure contains advanced parameters for llext_load.

Public Members

bool relocate_local
Perform local relocation.

bool pre_located
Use the virtual symbol addresses from the ELF, not addresses within the memory
buffer, when calculating relocation targets.

group llext_symbols

Defines

EXPORT_SYMBOL(x)
Export a constant symbol to extensions.

Takes a symbol (function or object) by symbolic name and adds the name and address
of the symbol to a table of symbols that may be referenced by extensions.

Parameters
• x – Symbol to export to extensions

LL_EXTENSION_SYMBOL(x)
Exports a symbol from an extension to the base image.

This macro can be used in extensions to add a symbol (function or object) to the exten-
sion’s exported symbol table, so that it may be referenced by the base image.
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Parameters
• x – Extension symbol to export to the base image

struct llext_const_symbol
#include <symbol.h> Constant symbols are unchangeable named memory addresses.

Symbols may be named function or global objects that have been exported for linking.
These constant symbols are useful in the base image as they may be placed in ROM.

Note

When updating this structure, make sure to also update the
‘scripts/build/llext_prepare_exptab.py’ build script.

Public Members

const char *const name
Name of symbol.

const uintptr_t slid
Symbol Link Identifier.

union llext_const_symbol
At build time, we always write to ‘name’.

At runtime, which field is used depends on CON-
FIG_LLEXT_EXPORT_BUILTINS_BY_SLID.

const void *const addr
Address of symbol.

struct llext_symbol
#include <symbol.h> Symbols are named memory addresses.

Symbols may be named function or global objects that have been exported for linking.
These are mutable and should come from extensions where the location may need
updating depending on where memory is placed.

Public Members

const char *name
Name of symbol.

void *addr
Address of symbol.

struct llext_symtable
#include <symbol.h> A symbol table.

An array of symbols
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Public Members

size_t sym_cnt
Number of symbols in the table.

struct llext_symbol *syms
Array of symbols.

group llext_loader_apis

Defines

LLEXT_BUF_LOADER(_buf, _buf_len)
Initializer for an llext_buf_loader structure.

Parameters
• _buf – Buffer containing the ELF binary

• _buf_len – Buffer length in bytes

struct llext_buf_loader
#include <buf_loader.h> Implementation of llext_loader that reads from a memory
buffer.

Public Members

struct llext_loader loader
Extension loader.

struct llext_loader
#include <loader.h> Linkable loadable extension loader context.

This object is used to access the ELF file data and cache its contents while an extension
is being loaded by the LLEXT subsystem. Once the extension is loaded, this object is no
longer needed.

Public Members

int (*read)(struct llext_loader *ldr, void *out, size_t len)
Function to read (copy) from the loader.

Copies len bytes into buf from the current position of the loader.
Param ldr
[in] Loader

Param out
[in] Output location

Param len
[in] Length to copy into the output location

Return
0 on success, or a negative error code.
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int (*seek)(struct llext_loader *ldr, size_t pos)
Function to seek to a new absolute location in the stream.

Changes the location of the loader position to a new absolute given position.
Param ldr
[in] Loader

Param pos
[in] Position in stream to move loader

Return
0 on success, or a negative error code.

void *(*peek)(struct llext_loader *ldr, size_t pos)
Optional function to peek at an absolute location in the ELF.

Return a pointer to the buffer at specified offset.
Param ldr
[in] Loader

Param pos
[in] Position to obtain a pointer to

Return
a pointer into the buffer or NULL if not supported

Note

The LLEXT subsystem requires architecture-specific support. It is currently available only on
ARM and Xtensa cores.

4.12 Logging

• Global Kconfig Options

• Usage

– Logging in a module

– Logging in a module instance

– Controlling the logging

• Logging panic

• Printk

• Architecture

– Default Frontend

– Custom Frontend

– Logging strings

– Multi-domain support

– Logging backends

– Dictionary-based Logging

• Recommendations
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• Benchmark

• Stack usage

• API Reference

– Logger API

– Logger control

– Log message

– Logger backend interface

– Logger output formatting

The logging API provides a common interface to process messages issued by developers. Mes-
sages are passed through a frontend and are then processed by active backends. Custom fron-
tend and backends can be used if needed.

Summary of the logging features:

• Deferred logging reduces the time needed to log a message by shifting time consuming
operations to a known context instead of processing and sending the log message when
called.

• Multiple backends supported (up to 9 backends).

• Custom frontend support. It can work together with backends.

• Compile time filtering on module level.

• Run time filtering independent for each backend.

• Additional run time filtering on module instance level.

• Timestamping with user provided function. Timestamp can have 32 or 64 bits.

• Dedicated API for dumping data.

• Dedicated API for handling transient strings.

• Panic support - in panic mode logging switches to blocking, synchronous processing.

• Printk support - printk message can be redirected to the logging.

• Design ready for multi-domain/multi-processor system.

• Support for logging floating point variables and long long arguments.

• Built-in copying of transient strings used as arguments.

• Support for multi-domain logging.

Logging API is highly configurable at compile time as well as at run time. Using Kconfig options
(see Global Kconfig Options) logs can be gradually removed from compilation to reduce image
size and execution time when logs are not needed. During compilation logs can be filtered out
on module basis and severity level.

Logs can also be compiled in but filtered on run time using dedicate API. Run time filtering is
independent for each backend and each source of log messages. Source of log messages can be
a module or specific instance of the module.

There are four severity levels available in the system: error, warning, info and debug. For each
severity level the logging API (include/zephyr/logging/log.h) has set of dedicated macros. Logger
API also has macros for logging data.

For each level the following set of macros are available:

• LOG_X for standard printf-like messages, e.g. LOG_ERR.
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• LOG_HEXDUMP_X for dumping data, e.g. LOG_HEXDUMP_WRN.

• LOG_INST_X for standard printf-like message associated with the particular instance, e.g.
LOG_INST_INF.

• LOG_INST_HEXDUMP_X for dumping data associated with the particular instance, e.g.
LOG_INST_HEXDUMP_DBG

The warning level also exposes the following additional macro:

• LOG_WRN_ONCE for warnings where only the first occurrence is of interest.

There are two configuration categories: configurations per module and global configuration.
When logging is enabled globally, it works for modules. However, modules can disable logging
locally. Every module can specify its own logging level. The module must define the LOG_LEVEL
macro before using the API. Unless a global override is set, the module logging level will be
honored. The global override can only increase the logging level. It cannot be used to lower
module logging levels that were previously set higher. It is also possible to globally limit logs by
providing maximal severity level present in the system, where maximal means lowest severity
(e.g. if maximal level in the system is set to info, it means that errors, warnings and info levels
are present but debug messages are excluded).

Each module which is using the logging must specify its unique name and register itself to the
logging. If module consists of more than one file, registration is performed in one file but each
file must define a module name.

Logger’s default frontend is designed to be thread safe and minimizes time needed to log the
message. Time consuming operations like string formatting or access to the transport are not
performed by default when logging API is called. When logging API is called a message is cre-
ated and added to the list. Dedicated, configurable buffer for pool of log messages is used. There
are 2 types of messages: standard and hexdump. Each message contain source ID (module or
instance ID and domain ID which might be used for multiprocessor systems), timestamp and
severity level. Standard message contains pointer to the string and arguments. Hexdump mes-
sage contains copied data and string.

4.12.1 Global Kconfig Options

These options can be found in the following path subsys/logging/Kconfig.

CONFIG_LOG: Global switch, turns on/off the logging.

Mode of operations:

CONFIG_LOG_MODE_DEFERRED: Deferred mode.

CONFIG_LOG_MODE_IMMEDIATE: Immediate (synchronous) mode.

CONFIG_LOG_MODE_MINIMAL: Minimal footprint mode.

Filtering options:

CONFIG_LOG_RUNTIME_FILTERING: Enables runtime reconfiguration of the filtering.

CONFIG_LOG_DEFAULT_LEVEL: Default level, sets the logging level used by modules that are not
setting their own logging level.

CONFIG_LOG_OVERRIDE_LEVEL: It overrides module logging level when it is not set or set lower
than the override value.

CONFIG_LOG_MAX_LEVEL: Maximal (lowest severity) level which is compiled in.

Processing options:

CONFIG_LOG_MODE_OVERFLOW: When new message cannot be allocated, oldest one are discarded.
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CONFIG_LOG_BLOCK_IN_THREAD: If enabled and new log message cannot be allocated thread con-
text will block for up to CONFIG_LOG_BLOCK_IN_THREAD_TIMEOUT_MS or until log message is allo-
cated.

CONFIG_LOG_PRINTK: Redirect printk calls to the logging.

CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD: When the number of buffered log messages reaches
the threshold, the dedicated thread (see log_thread_set()) is woken up. If CON-
FIG_LOG_PROCESS_THREAD is enabled then this threshold is used by the internal thread.

CONFIG_LOG_PROCESS_THREAD: When enabled, logging thread is created which handles log pro-
cessing.

CONFIG_LOG_PROCESS_THREAD_STARTUP_DELAY_MS: Delay in milliseconds after which logging
thread is started.

CONFIG_LOG_BUFFER_SIZE: Number of bytes dedicated for the circular packet buffer.

CONFIG_LOG_FRONTEND: Direct logs to a custom frontend.

CONFIG_LOG_FRONTEND_ONLY: No backends are used when messages goes to frontend.

CONFIG_LOG_FRONTEND_OPT_API: Optional API optimized for the most common simple messages.

CONFIG_LOG_CUSTOM_HEADER: Injects an application provided header into log.h

CONFIG_LOG_TIMESTAMP_64BIT: 64 bit timestamp.

CONFIG_LOG_SIMPLE_MSG_OPTIMIZE: Optimizes simple log messages for size and performance.
Option available only for 32 bit architectures.

Formatting options:

CONFIG_LOG_FUNC_NAME_PREFIX_ERR: Prepend standard ERROR log messages with function name.
Hexdump messages are not prepended.

CONFIG_LOG_FUNC_NAME_PREFIX_WRN: Prepend standard WARNING log messages with function
name. Hexdump messages are not prepended.

CONFIG_LOG_FUNC_NAME_PREFIX_INF: Prepend standard INFO log messages with function name.
Hexdump messages are not prepended.

CONFIG_LOG_FUNC_NAME_PREFIX_DBG: Prepend standard DEBUG log messages with function
name. Hexdump messages are not prepended.

CONFIG_LOG_BACKEND_SHOW_COLOR: Enables coloring of errors (red) and warnings (yellow).

CONFIG_LOG_BACKEND_FORMAT_TIMESTAMP: If enabled timestamp is formatted to
hh:mm:ss:mmm,uuu. Otherwise is printed in raw format.

Backend options:

CONFIG_LOG_BACKEND_UART: Enabled built-in UART backend.

4.12.2 Usage

Logging in a module

In order to use logging in the module, a unique name of a module must be specified and module
must be registered using LOG_MODULE_REGISTER. Optionally, a compile time log level for the mod-
ule can be specified as the second parameter. Default log level (CONFIG_LOG_DEFAULT_LEVEL) is
used if custom log level is not provided.

#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(foo, CONFIG_FOO_LOG_LEVEL);
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If the module consists of multiple files, then LOG_MODULE_REGISTER() should appear in exactly
one of them. Each other file should use LOG_MODULE_DECLARE to declare its membership in the
module. Optionally, a compile time log level for the module can be specified as the second param-
eter. Default log level (CONFIG_LOG_DEFAULT_LEVEL) is used if custom log level is not provided.

#include <zephyr/logging/log.h>
/* In all files comprising the module but one */
LOG_MODULE_DECLARE(foo, CONFIG_FOO_LOG_LEVEL);

In order to use logging API in a function implemented in a header file LOG_MODULE_DECLARE
macro must be used in the function body before logging API is called. Optionally, a com-
pile time log level for the module can be specified as the second parameter. Default log level
(CONFIG_LOG_DEFAULT_LEVEL) is used if custom log level is not provided.

#include <zephyr/logging/log.h>

static inline void foo(void)
{

LOG_MODULE_DECLARE(foo, CONFIG_FOO_LOG_LEVEL);

LOG_INF("foo");
}

Dedicated Kconfig template (subsys/logging/Kconfig.template.log_config) can be used to create
local log level configuration.

Example below presents usage of the template. As a result CONFIG_FOO_LOG_LEVEL will be
generated:

module = FOO
module-str = foo
source "subsys/logging/Kconfig.template.log_config"

Logging in a module instance

In case of modules which are multi-instance and instances are widely used across the system
enabling logs will lead to flooding. The logger provides the tools which can be used to provide
filtering on instance level rather than module level. In that case logging can be enabled for
particular instance.

In order to use instance level filtering following steps must be performed:

• a pointer to specific logging structure is declared in instance structure.
LOG_INSTANCE_PTR_DECLARE is used for that.

#include <zephyr/logging/log_instance.h>

struct foo_object {
LOG_INSTANCE_PTR_DECLARE(log);
uint32_t id;

}

• module must provide macro for instantiation. In that macro, logging instance is registered
and log instance pointer is initialized in the object structure.

#define FOO_OBJECT_DEFINE(_name) \
LOG_INSTANCE_REGISTER(foo, _name, CONFIG_FOO_LOG_LEVEL) \
struct foo_object _name = { \

LOG_INSTANCE_PTR_INIT(log, foo, _name) \
}
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Note that when logging is disabled logging instance and pointer to that instance are not created.

In order to use the instance logging API in a source file, a compile-time log level must be set using
LOG_LEVEL_SET.

LOG_LEVEL_SET(CONFIG_FOO_LOG_LEVEL);

void foo_init(foo_object *f)
{

LOG_INST_INF(f->log, "Initialized.");
}

In order to use the instance logging API in a header file, a compile-time log level must be set using
LOG_LEVEL_SET.

static inline void foo_init(foo_object *f)
{

LOG_LEVEL_SET(CONFIG_FOO_LOG_LEVEL);

LOG_INST_INF(f->log, "Initialized.");
}

Controlling the logging

By default, logging processing in deferred mode is handled internally by the dedicated task which
starts automatically. However, it might not be available if multithreading is disabled. It can
also be disabled by unsetting CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD. In that case, logging can
be controlled using the API defined in include/zephyr/logging/log_ctrl.h. Logging must be ini-
tialized before it can be used. Optionally, the user can provide a function which returns the
timestamp value. If not provided, k_cycle_get or k_cycle_get_32 is used for timestamping.
The log_process() function is used to trigger processing of one log message (if pending), and
returns true if there are more messages pending. However, it is recommended to use macro
wrappers (LOG_INIT and LOG_PROCESS) which handle the case where logging is disabled.

The following snippet shows how logging can be processed in simple forever loop.

#include <zephyr/logging/log_ctrl.h>

int main(void)
{

LOG_INIT();
/* If multithreading is enabled provide thread id to the logging. */
log_thread_set(k_current_get());

while (1) {
if (LOG_PROCESS() == false) {

/* sleep */
}

}
}

If logs are processed from a thread (user or internal) then it is possible to enable a feature which
will wake up processing thread when certain amount of log messages are buffered (see CON-
FIG_LOG_PROCESS_TRIGGER_THRESHOLD).

4.12.3 Logging panic

In case of error condition system usually can no longer rely on scheduler or interrupts. In that
situation deferred log message processing is not an option. Logger controlling API provides a
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function for entering into panic mode (log_panic()) which should be called in such situation.

When log_panic() is called, _panic_ notification is sent to all active backends. Once all backends
are notified, all buffered messages are flushed. Since that moment all logs are processed in a
blocking way.

4.12.4 Printk

Typically, logging and printk() use the same output, which they compete for. This can lead to is-
sues if the output does not support preemption but it may also result in corrupted output because
logging data is interleaved with printk data. However, it is possible to redirect printk messages to
the logging subsystem by enabling CONFIG_LOG_PRINTK. In that case, printk entries are treated as
log messages with level 0 (they cannot be disabled). When enabled, logging manages the output
so there is no interleaving. However, in deferred mode the printk behaviour is changed since
the output is delayed until the logging thread processes the data. CONFIG_LOG_PRINTK is enabled
by default.

4.12.5 Architecture

Logging consists of 3 main parts:

• Frontend

• Core

• Backends

Log message is generated by a source of logging which can be a module or instance of a module.

Default Frontend

Default frontend is engaged when the logging API is called in a source of logging (e.g. LOG_INF)
and is responsible for filtering a message (compile and run time), allocating a buffer for the
message, creating the message and committing that message. Since the logging API can be called
in an interrupt, the frontend is optimized to log the message as fast as possible.

Log message A log message contains a message descriptor (source, domain and level), times-
tamp, formatted string details (see Cbprintf Packaging) and optional data. Log messages are
stored in a continuous block of memory. Memory is allocated from a circular packet buffer
(Multi Producer Single Consumer Packet Buffer), which has a few consequences:

• Each message is a self-contained, continuous block of memory thus it is suited for copying
the message (e.g. for offline processing).

• Messages must be sequentially freed. Backend processing is synchronous. Backend can
make a copy for deferred processing.

A log message has following format:
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Message Header 2 bits: MPSC packet buffer header
1 bit: Trace/Log message flag
3 bits: Domain ID
3 bits: Level
10 bits: Cbprintf Package Length
12 bits: Data length
1 bit: Reserved
pointer: Pointer to the source descriptor1

32 or 64 bits: Timestamp1

Optional padding2

Cbprintf

package
(optional)

Header

Arguments

Appended strings

Hexdump data (optional)
Alignment padding (optional)

Logmessage allocation It may happen that the frontend cannot allocate a message. This hap-
pens if the system is generating more log messages than it can process in certain time frame.
There are two strategies to handle that case:

• No overflow - the new log is dropped if space for a message cannot be allocated.

• Overflow - the oldest pending messages are freed, until the new message can be allocated.
Enabled by CONFIG_LOG_MODE_OVERFLOW. Note that it degrades performance thus it is recom-
mended to adjust buffer size and amount of enabled logs to limit dropping.

Run-time filtering If run-time filtering is enabled, then for each source of logging a filter struc-
ture in RAM is declared. Such filter is using 32 bits divided into ten 3 bit slots. Except slot 0, each
slot stores current filter for one backend in the system. Slot 0 (bits 0-2) is used to aggregate max-
imal filter setting for given source of logging. Aggregate slot determines if log message is created
for given entry since it indicates if there is at least one backend expecting that log entry. Backend
slots are examined when message is processed by the core to determine if message is accepted
by the given backend. Contrary to compile time filtering, binary footprint is increased because
logs are compiled in.

In the example below backend 1 is set to receive errors (slot 1) and backend 2 up to info level
(slot 2). Slots 3-9 are not used. Aggregated filter (slot 0) is set to info level and up to this level
message from that particular source will be buffered.

slot 0 slot 1 slot 2 slot 3 … slot 9
INF ERR INF OFF … OFF

Custom Frontend

Custom frontend is enabled using CONFIG_LOG_FRONTEND. Logs are directed to functions declared
in include/zephyr/logging/log_frontend.h. If option CONFIG_LOG_FRONTEND_ONLY is enabled then
log message is not created and no backend is handled. Otherwise, custom frontend can coexist
with backends.

1 Depending on the platform and the timestamp size fields may be swapped.
2 It may be required for cbprintf package alignment
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In some cases, logs need to be redirected at the macro level. For these cases, CON-
FIG_LOG_CUSTOM_HEADER can be used to inject an application provided header named
zephyr_custom_log.h at the end of include/zephyr/logging/log.h.

Logging strings

String arguments are handled by Cbprintf Packaging. See Limitations and recommendations for
limitations and recommendations.

Multi-domain support

More complex systems can consist of multiple domains where each domain is an independent
binary. Examples of domains are a core in a multicore SoC or one of the binaries (Secure or
Nonsecure) on an ARM TrustZone core.

Tracing and debugging on a multi-domain system is more complex and requires an efficient
logging system. Two approaches can be used to structure this logging system:

• Log inside each domain independently. This option is not always possible as it requires
that each domain has an available backend (for example, UART). This approach can also be
troublesome to use and not scalable, as logs are presented on independent outputs.

• Use a multi-domain logging system where log messages from each domain end up in one
root domain, where they are processed exactly as in a single domain case. In this approach,
log messages are passed between domains using a connection between domains created
from the backend on one side and linked to the other.

The Log link is an interface introduced in this multi-domain approach. The Log link is re-
sponsible for receiving any log message from another domain, creating a copy, and putting
that local log message copy (including remote data) into the message queue. This specific
log link implementation matches the complementary backend implementation to allow log
messages exchange and logger control like configuring filtering, getting log source names,
and so on.

There are three types of domains in a multi-domain system:

• The end domain has the logging core implementation and a cross-domain backend. It can
also have other backends in parallel.

• The relay domain has one or more links to other domains but does not have backends that
output logs to the user. It has a cross-domain backend either to another relay or to the root
domain.

• The root domain has one or multiple links and a backend that outputs logs to the user.

See the following image for an example of a multi-domain setup:

In this architecture, a link can handle multiple domains. For example, let’s consider an SoC with
two ARM Cortex-M33 cores with TrustZone: cores A and B (see the example illustrated above).
There are four domains in the system, as each core has both a Secure and a Nonsecure domain.
If core A nonsecure (A_NS) is the root domain, it has two links: one to core A secure (A_NS-A_S)
and one to core B nonsecure (A_NS-B_NS). B_NS domain has one link, to core B secure B_NS-B_S),
and a backend to A_NS.

Since in all instances there is a standard logging subsystem, it is always possible to have multi-
ple backends and simultaneously output messages to them. An example of this is shown in the
illustration above as a dotted UART backend on the B_NS domain.
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Fig. 5: Multi-domain example

Domain ID The source of each log message can be identified by the following fields in the
header: source_id and domain_id.

The value assigned to the domain_id is relative. Whenever a domain creates a log message, it
sets its domain_id to 0. When a message crosses the domain, domain_id changes as it is increased
by the link offset. The link offset is assigned during the initialization, where the logger core is
iterating over all the registered links and assigned offsets.

The first link has the offset set to 1. The following offset equals the previous link offset plus the
number of domains in the previous link.

The following example is shown below, where the assigned domain_ids are shown for each do-
main:

Let’s consider a log message created on the B_S domain:

1. Initially, it has its domain_id set to 0.

2. When the B_NS-B_S link receives the message, it increases the domain_id to 1 by adding the
B_NS-B_S offset.

3. The message is passed to A_NS.

4. When the A_NS-B_NS link receives the message, it adds the offset (2) to the domain_id. The
message ends up with the domain_id set to 3, which uniquely identifies the message origi-
nator.

Cross-domain log message In most cases, the address space of each domain is unique, and
one domain cannot access directly the data in another domain. For this reason, the backend
can partially process the message before it is passed to another domain. Partial processing can
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Fig. 6: Domain IDs assigning example

include converting a string package to a fully self-contained version (copying read-only strings to
the package body).

Each domain can have a different timestamp source in terms of frequency and offset. Logging
does not perform any timestamp conversion.

Runtime filtering In the single-domain case, each log source has a dedicated variable with
runtime filtering for each backend in the system. In the multi-domain case, the originator of the
log message is not aware of the number of backends in the root domain.

As such, to filter logs in multiple domains, each source requires a runtime filtering setting in each
domain on the way to the root domain. As the number of sources in other domains is not known
during the compilation, the runtime filtering of remote sources must use dynamically allocated
memory (one word per source). When a backend in the root domain changes the filtering of the
module from a remote domain, the local filter is updated. After the update, the aggregated filter
(the maximum from all the local backends) is checked and, if changed, the remote domain is
informed about this change. With this approach, the runtime filtering works identically in both
multi-domain and single-domain scenarios.

Message ordering Logging does not provide any mechanism for synchronizing timestamps
across multiple domains:

• If domains have different timestamp sources, messages will be processed in the order of
arrival to the buffer in the root domain.

• If domains have the same timestamp source or if there is an out-of-bound mechanism that
recalculates timestamps, there are 2 options:
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– Messages are processed as they arrive in the buffer in the root domain. Messages are
unordered but they can be sorted by the host as the timestamp indicates the time of
the message generation.

– Links have dedicated buffers. During processing, the head of each buffer is checked
and the oldest message is processed first.

With this approach, it is possible to maintain the order of the messages at the cost of a
suboptimal memory utilization (since the buffer is not shared) and increased process-
ing latency (see CONFIG_LOG_PROCESSING_LATENCY_US).

Logging backends

Logging backends are registered using LOG_BACKEND_DEFINE. The macro creates an instance in
the dedicated memory section. Backends can be dynamically enabled (log_backend_enable())
and disabled. When Run-time filtering is enabled, log_filter_set() can be used to dynamically
change filtering of a module logs for given backend. Module is identified by source ID and do-
main ID. Source ID can be retrieved if source name is known by iterating through all registered
sources.

Logging supports up to 9 concurrent backends. Log message is passed to the each backend
in processing phase. Additionally, backend is notified when logging enter panic mode with
log_backend_panic(). On that call backend should switch to synchronous, interrupt-less op-
eration or shut down itself if that is not supported. Occasionally, logging may inform backend
about number of dropped messages with log_backend_dropped(). Message processing API is
version specific.

log_backend_msg_process() is used for processing message. It is common for standard and hex-
dump messages because log message hold string with arguments and data. It is also common for
deferred and immediate logging.

Message formatting Logging provides set of function that can be used by the backend to for-
mat a message. Helper functions are available in include/zephyr/logging/log_output.h.

Example message formatted using log_output_msg_process().

[00:00:00.000,274] <info> sample_instance.inst1: logging message

Dictionary-based Logging

Dictionary-based logging, instead of human readable texts, outputs the log messages in binary
format. This binary format encodes arguments to formatted strings in their native storage for-
mats which can be more compact than their text equivalents. For statically defined strings (in-
cluding the format strings and any string arguments), references to the ELF file are encoded
instead of the whole strings. A dictionary created at build time contains the mappings between
these references and the actual strings. This allows the offline parser to obtain the strings from
the dictionary to parse the log messages. This binary format allows a more compact represen-
tation of log messages in certain scenarios. However, this requires the use of an offline parser
and is not as intuitive to use as text-based log messages.

Note that long double is not supported by Python’s structmodule. Therefore, log messages with
long double will not display the correct values.

Configuration Here are kconfig options related to dictionary-based logging:

• CONFIG_LOG_DICTIONARY_SUPPORT enables dictionary-based logging support. This should be
selected by the backends which require it.

944 Chapter 4. OS Services

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/zephyr/logging/log_output.h


Zephyr Project Documentation, Release 3.7.99

• The UART backend can be used for dictionary-based logging. These are additional config
for the UART backend:

– CONFIG_LOG_BACKEND_UART_OUTPUT_DICTIONARY_HEX tells the UART backend to output
hexadecimal characters for dictionary based logging. This is useful when the log data
needs to be captured manually via terminals and consoles.

– CONFIG_LOG_BACKEND_UART_OUTPUT_DICTIONARY_BIN tells the UART backend to output
binary data.

Usage When dictionary-based logging is enabled via enabling related logging backends, a JSON
database file, named log_dictionary.json, will be created in the build directory. This database
file contains information for the parser to correctly parse the log data. Note that this database
file only works with the same build, and cannot be used for any other builds.

To use the log parser:

./scripts/logging/dictionary/log_parser.py <build dir>/log_dictionary.json <log data file>

The parser takes two required arguments, where the first one is the full path to the JSON
database file, and the second part is the file containing log data. Add an optional argu-
ment --hex to the end if the log data file contains hexadecimal characters (e.g. when CON-
FIG_LOG_BACKEND_UART_OUTPUT_DICTIONARY_HEX=y). This tells the parser to convert the hexadec-
imal characters to binary before parsing.

Please refer to the logging-dictionary sample to learn more on how to use the log parser.

4.12.6 Recommendations

The are following recommendations:

• Enable CONFIG_LOG_SPEED to slightly speed up deferred logging at the cost of slight increase
in memory footprint.

• Compiler with C11 _Generic keyword support is recommended. Logging performance is
significantly degraded without it. See Cbprintf Packaging.

• It is recommended to cast pointer to const char * when it is used with %s format specifier
and it points to a constant string.

• It is recommended to cast pointer to char * when it is used with %s format specifier and it
points to a transient string.

• It is recommended to cast character pointer to non character pointer (e.g., void *) when it
is used with %p format specifier.

LOG_WRN("%s", str);
LOG_WRN("%p", (void *)str);

4.12.7 Benchmark

Benchmark numbers from tests/subsys/logging/log_benchmark performed on qemu_x86. It is a
rough comparison to give a general overview.
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Feature
Kernel logging 7us3/11us
User logging 13us
kernel logging with overwrite 10us3/15us
Logging transient string 42us
Logging transient string from user 50us
Memory utilization4 518
Memory footprint (test)5 2k
Memory footprint (application)6 3.5k
Message footprint7 473/32 bytes

Benchmark details

4.12.8 Stack usage

When logging is enabled it impacts stack usage of the context that uses logging API. If stack is
optimized it may lead to stack overflow. Stack usage depends on mode and optimization. It
also significantly varies between platforms. In general, when CONFIG_LOG_MODE_DEFERRED is used
stack usage is smaller since logging is limited to creating and storing log message. When CON-
FIG_LOG_MODE_IMMEDIATE is used then log message is processed by the backend which includes
string formatting. In case of that mode, stack usage will depend on which backends are used.

tests/subsys/logging/log_stack test is used to characterize stack usage depending on mode, opti-
mization and platform used. Test is using only the default backend.

Some of the platforms characterization for log message with two integer arguments listed be-
low:

Platform De-
ferred

Deferred (no optimiza-
tion)

Immedi-
ate

Immediate (no optimiza-
tion)

ARM Cortex-
M3

40 152 412 783

x86 12 224 388 796
riscv32 24 208 456 844
xtensa 72 336 504 944
x86_64 32 528 1088 1440

4.12.9 API Reference

Logger API

Related code samples

BLE logging backend
Send log messages over BLE using the BLE logging backend.

3 CONFIG_LOG_SPEED enabled.
4 Number of log messages with various number of arguments that fits in 2048 bytes dedicated for logging.
5 Logging subsystem memory footprint in tests/subsys/logging/log_benchmark where filtering and formatting features

are not used.
6 Logging subsystem memory footprint in samples/subsys/logging/logger.
7 Average size of a log message (excluding string) with 2 arguments on Cortex M3
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Dictionary-based logging
Output binary log data using the dictionary-based logging API.

Logging
Output log messages to the console using the logging subsystem.

group log_api
Logger API.

Defines

LOG_ERR(...)
Writes an ERROR level message to the log.

It’s meant to report severe errors, such as those from which it’s not possible to recover.

Parameters
• ... – A string optionally containing printk valid conversion specifier, fol-

lowed by as many values as specifiers.

LOG_WRN(...)
Writes a WARNING level message to the log.

It’s meant to register messages related to unusual situations that are not necessarily
errors.

Parameters
• ... – A string optionally containing printk valid conversion specifier, fol-

lowed by as many values as specifiers.

LOG_INF(...)
Writes an INFO level message to the log.

It’s meant to write generic user oriented messages.

Parameters
• ... – A string optionally containing printk valid conversion specifier, fol-

lowed by as many values as specifiers.

LOG_DBG(...)
Writes a DEBUG level message to the log.

It’s meant to write developer oriented information.

Parameters
• ... – A string optionally containing printk valid conversion specifier, fol-

lowed by as many values as specifiers.

LOG_WRN_ONCE(...)
Writes a WARNING level message to the log on the first execution only.

It’s meant for situations that warrant investigation but could clutter the logs if output
on every execution.

Parameters
• ... – A string optionally containing printk valid conversion specifier, fol-

lowed by as many values as specifiers.
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LOG_PRINTK(...)
Unconditionally print raw log message.

The result is same as if printk was used but it goes through logging infrastructure thus
utilizes logging mode, e.g. deferred mode.

Parameters
• ... – A string optionally containing printk valid conversion specifier, fol-

lowed by as many values as specifiers.

LOG_RAW(...)
Unconditionally print raw log message.

Provided string is printed as is without appending any characters (e.g., color or new-
line).

Parameters
• ... – A string optionally containing printk valid conversion specifier, fol-

lowed by as many values as specifiers.

LOG_INST_ERR(_log_inst, ...)
Writes an ERROR level message associated with the instance to the log.

Message is associated with specific instance of the module which has indepen-
dent filtering settings (if runtime filtering is enabled) and message prefix (<mod-
ule_name>.<instance_name>). It’s meant to report severe errors, such as those from
which it’s not possible to recover.

Parameters
• _log_inst – Pointer to the log structure associated with the instance.

• ... – A string optionally containing printk valid conversion specifier, fol-
lowed by as many values as specifiers.

LOG_INST_WRN(_log_inst, ...)
Writes a WARNING level message associated with the instance to the log.

Message is associated with specific instance of the module which has indepen-
dent filtering settings (if runtime filtering is enabled) and message prefix (<mod-
ule_name>.<instance_name>). It’s meant to register messages related to unusual sit-
uations that are not necessarily errors.

Parameters
• _log_inst – Pointer to the log structure associated with the instance.

• ... – A string optionally containing printk valid conversion specifier, fol-
lowed by as many values as specifiers.

LOG_INST_INF(_log_inst, ...)
Writes an INFO level message associated with the instance to the log.

Message is associated with specific instance of the module which has indepen-
dent filtering settings (if runtime filtering is enabled) and message prefix (<mod-
ule_name>.<instance_name>). It’s meant to write generic user oriented messages.

Parameters
• _log_inst – Pointer to the log structure associated with the instance.

• ... – A string optionally containing printk valid conversion specifier, fol-
lowed by as many values as specifiers.
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LOG_INST_DBG(_log_inst, ...)
Writes a DEBUG level message associated with the instance to the log.

Message is associated with specific instance of the module which has indepen-
dent filtering settings (if runtime filtering is enabled) and message prefix (<mod-
ule_name>.<instance_name>). It’s meant to write developer oriented information.

Parameters
• _log_inst – Pointer to the log structure associated with the instance.

• ... – A string optionally containing printk valid conversion specifier, fol-
lowed by as many values as specifiers.

LOG_HEXDUMP_ERR(_data, _length, _str)
Writes an ERROR level hexdump message to the log.

It’s meant to report severe errors, such as those from which it’s not possible to recover.

Parameters
• _data – Pointer to the data to be logged.

• _length – Length of data (in bytes).

• _str – Persistent, raw string.

LOG_HEXDUMP_WRN(_data, _length, _str)
Writes a WARNING level message to the log.

It’s meant to register messages related to unusual situations that are not necessarily
errors.

Parameters
• _data – Pointer to the data to be logged.

• _length – Length of data (in bytes).

• _str – Persistent, raw string.

LOG_HEXDUMP_INF(_data, _length, _str)
Writes an INFO level message to the log.

It’s meant to write generic user oriented messages.

Parameters
• _data – Pointer to the data to be logged.

• _length – Length of data (in bytes).

• _str – Persistent, raw string.

LOG_HEXDUMP_DBG(_data, _length, _str)
Writes a DEBUG level message to the log.

It’s meant to write developer oriented information.

Parameters
• _data – Pointer to the data to be logged.

• _length – Length of data (in bytes).

• _str – Persistent, raw string.
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LOG_INST_HEXDUMP_ERR(_log_inst, _data, _length, _str)
Writes an ERROR hexdump message associated with the instance to the log.

Message is associated with specific instance of the module which has indepen-
dent filtering settings (if runtime filtering is enabled) and message prefix (<mod-
ule_name>.<instance_name>). It’s meant to report severe errors, such as those from
which it’s not possible to recover.

Parameters
• _log_inst – Pointer to the log structure associated with the instance.

• _data – Pointer to the data to be logged.

• _length – Length of data (in bytes).

• _str – Persistent, raw string.

LOG_INST_HEXDUMP_WRN(_log_inst, _data, _length, _str)
Writes a WARNING level hexdump message associated with the instance to the log.

It’s meant to register messages related to unusual situations that are not necessarily
errors.

Parameters
• _log_inst – Pointer to the log structure associated with the instance.

• _data – Pointer to the data to be logged.

• _length – Length of data (in bytes).

• _str – Persistent, raw string.

LOG_INST_HEXDUMP_INF(_log_inst, _data, _length, _str)
Writes an INFO level hexdump message associated with the instance to the log.

It’s meant to write generic user oriented messages.

Parameters
• _log_inst – Pointer to the log structure associated with the instance.

• _data – Pointer to the data to be logged.

• _length – Length of data (in bytes).

• _str – Persistent, raw string.

LOG_INST_HEXDUMP_DBG(_log_inst, _data, _length, _str)
Writes a DEBUG level hexdump message associated with the instance to the log.

It’s meant to write developer oriented information.

Parameters
• _log_inst – Pointer to the log structure associated with the instance.

• _data – Pointer to the data to be logged.

• _length – Length of data (in bytes).

• _str – Persistent, raw string.

LOG_MODULE_REGISTER(...)
Create module-specific state and register the module with Logger.

This macro normally must be used after including <zephyr/logging/log.h> to complete
the initialization of the module.

Module registration can be skipped in two cases:
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• The module consists of more than one file, and another file invokes this macro.
(LOG_MODULE_DECLARE() should be used instead in all of the module’s other
files.)

• Instance logging is used and there is no need to create module entry. In that case
LOG_LEVEL_SET() should be used to set log level used within the file.

Macro accepts one or two parameters:

• module name

• optional log level. If not provided then default log level is used in the file.

Example usage:

• LOG_MODULE_REGISTER(foo, CONFIG_FOO_LOG_LEVEL)

• LOG_MODULE_REGISTER(foo)

See also

LOG_MODULE_DECLARE

Note

The module’s state is defined, and the module is registered, only if LOG_LEVEL
for the current source file is non-zero or it is not defined and CON-
FIG_LOG_DEFAULT_LEVEL is non-zero. In other cases, this macro has no effect.

LOG_MODULE_DECLARE(...)
Macro for declaring a log module (not registering it).

Modules which are split up over multiple files must have exactly one file use
LOG_MODULE_REGISTER() to create module-specific state and register the module
with the logger core.

The other files in the module should use this macro instead to declare that same state.
(Otherwise, LOG_INF() etc. will not be able to refer to module-specific state variables.)

Macro accepts one or two parameters:

• module name

• optional log level. If not provided then default log level is used in the file.

Example usage:

• LOG_MODULE_DECLARE(foo, CONFIG_FOO_LOG_LEVEL)

• LOG_MODULE_DECLARE(foo)

See also

LOG_MODULE_REGISTER
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Note

The module’s state is declared only if LOG_LEVEL for the current source file is non-
zero or it is not defined and CONFIG_LOG_DEFAULT_LEVEL is non-zero. In other
cases, this macro has no effect.

LOG_LEVEL_SET(level)
Macro for setting log level in the file or function where instance logging API is used.

Parameters
• level – Level used in file or in function.

Logger control

Related code samples

Logging
Output log messages to the console using the logging subsystem.

Remote syslog
Enable a remote syslog service that sends syslog messages to a remote server

group log_ctrl
Logger control API.

Since
1.13

Defines

LOG_CORE_INIT()

LOG_INIT()

LOG_PANIC()

LOG_PROCESS()

Typedefs

typedef log_timestamp_t (*log_timestamp_get_t)(void)

Functions

void log_core_init(void)
Function system initialization of the logger.

Function is called during start up to allow logging before user can explicitly initialize
the logger.
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void log_init(void)
Function for user initialization of the logger.

void log_thread_trigger(void)
Trigger the log processing thread to process logs immediately.

Note

Function has no effect when CONFIG_LOG_MODE_IMMEDIATE is set.

void log_thread_set(k_tid_t process_tid)
Function for providing thread which is processing logs.

See CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD.

Note

Function has asserts and has no effect when CONFIG_LOG_PROCESS_THREAD is set.

Parameters
• process_tid – Process thread id. Used to wake up the thread.

int log_set_timestamp_func(log_timestamp_get_t timestamp_getter, uint32_t freq)
Function for providing timestamp function.

Parameters
• timestamp_getter – Timestamp function.

• freq – Timestamping frequency.

Returns
0 on success or error.

void log_panic(void)
Switch the logger subsystem to the panic mode.

Returns immediately if the logger is already in the panic mode.

On panic the logger subsystem informs all backends about panic mode. Backends must
switch to blocking mode or halt. All pending logs are flushed after switching to panic
mode. In panic mode, all log messages must be processed in the context of the call.

bool log_process(void)
Process one pending log message.

Return values
• true – There are more messages pending to be processed.

• false – No messages pending.

uint32_t log_buffered_cnt(void)
Return number of buffered log messages.

Returns
Number of currently buffered log messages.

uint32_t log_src_cnt_get(uint32_t domain_id)
Get number of independent logger sources (modules and instances)

Parameters
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• domain_id – Domain ID.

Returns
Number of sources.

const char *log_source_name_get(uint32_t domain_id, uint32_t source_id)
Get name of the source (module or instance).

Parameters
• domain_id – Domain ID.

• source_id – Source ID.

Returns
Source name or NULL if invalid arguments.

static inline uint8_t log_domains_count(void)
Return number of domains present in the system.

There will be at least one local domain.

Returns
Number of domains.

const char *log_domain_name_get(uint32_t domain_id)
Get name of the domain.

Parameters
• domain_id – Domain ID.

Returns
Domain name.

int log_source_id_get(const char *name)
Function for finding source ID based on source name.

Parameters
• name – Source name

Returns
Source ID or negative number when source ID is not found.

uint32_t log_filter_get(struct log_backend const *const backend, uint32_t domain_id,
int16_t source_id, bool runtime)

Get source filter for the provided backend.

Parameters
• backend – Backend instance.

• domain_id – ID of the domain.

• source_id – Source (module or instance) ID.

• runtime – True for runtime filter or false for compiled in.

Returns
Severity level.

uint32_t log_filter_set(struct log_backend const *const backend, uint32_t domain_id,
int16_t source_id, uint32_t level)

Set filter on given source for the provided backend.

Parameters
• backend – Backend instance. NULL for all backends (and frontend).

• domain_id – ID of the domain.
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• source_id – Source (module or instance) ID.

• level – Severity level.

Returns
Actual level set which may be limited by compiled level. If filter was set for
all backends then maximal level that was set is returned.

uint32_t log_frontend_filter_get(int16_t source_id, bool runtime)
Get source filter for the frontend.

Parameters
• source_id – Source (module or instance) ID.

• runtime – True for runtime filter or false for compiled in.

Returns
Severity level.

uint32_t log_frontend_filter_set(int16_t source_id, uint32_t level)
Set filter on given source for the frontend.

Parameters
• source_id – Source (module or instance) ID.

• level – Severity level.

Returns
Actual level set which may be limited by compiled level.

void log_backend_enable(struct log_backend const *const backend, void *ctx, uint32_t
level)

Enable backend with initial maximum filtering level.

Parameters
• backend – Backend instance.

• ctx – User context.

• level – Severity level.

void log_backend_disable(struct log_backend const *const backend)
Disable backend.

Parameters
• backend – Backend instance.

const struct log_backend *log_backend_get_by_name(const char *backend_name)
Get backend by name.

Parameters
• backend_name – [in] Name of the backend as defined by the

LOG_BACKEND_DEFINE.

Return values
Pointer – to the backend instance if found, NULL if backend is not found.

const struct log_backend *log_format_set_all_active_backends(size_t log_type)
Sets logging format for all active backends.

Parameters
• log_type – Log format.

Return values
Pointer – to the last backend that failed, NULL for success.
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static inline bool log_data_pending(void)
Check if there is pending data to be processed by the logging subsystem.

Function can be used to determine if all logs have been flushed. Function returns false
when deferred mode is not enabled.

Return values
• true – There is pending data.

• false – No pending data to process.

int log_set_tag(const char *tag)
Configure tag used to prefix each message.

Parameters
• tag – Tag.

Return values
• 0 – on successful operation.

• -ENOTSUP – if feature is disabled.

• -ENOMEM – if string is longer than the buffer capacity. Tag will be trimmed.

int log_mem_get_usage(uint32_t *buf_size, uint32_t *usage)
Get current memory usage.

Parameters
• buf_size – [out] Capacity of the buffer used for storing log messages.

• usage – [out] Number of bytes currently containing pending log mes-
sages.

Return values
• -EINVAL – if logging mode does not use the buffer.

• 0 – successfully collected usage data.

int log_mem_get_max_usage(uint32_t *max)
Get maximum memory usage.

Requires CONFIG_LOG_MEM_UTILIZATION option.

Parameters
• max – [out] Maximum number of bytes used for pending log messages.

Return values
• -EINVAL – if logging mode does not use the buffer.

• -ENOTSUP – if instrumentation is not enabled. not been enabled.

• 0 – successfully collected usage data.

Log message

group log_msg
Log message API.

956 Chapter 4. OS Services



Zephyr Project Documentation, Release 3.7.99

Defines

LOG_MSG_GENERIC_HDR

LOG_MSG_SIMPLE_ARG_CNT_CHECK(...)

LOG_MSG_SIMPLE_ARG_TYPE_CHECK_0(fmt)

LOG_MSG_SIMPLE_ARG_TYPE_CHECK_1(fmt, arg)

LOG_MSG_SIMPLE_ARG_TYPE_CHECK_2(fmt, arg0, arg1)

LOG_MSG_SIMPLE_ARG_TYPE_CHECK(...)
brief Determine if string arguments types allow to use simplified message creation
mode.

Parameters
• ... – String with arguments.

LOG_MSG_SIMPLE_CHECK(...)
Check if message can be handled using simplified method.

Following conditions must be met:

• 32 bit platform

• Number of arguments from 0 to 2

• Type of an argument must be a numeric value that fits in 32 bit word.

Parameters
• ... – String with arguments.

Return values
• 1 – if message qualifies.

• 0 – if message does not qualify.

LOG_MSG_SIMPLE_FUNC(_source, _level, ...)
Call specific function to create a log message.

Macro picks matching function (based on number of arguments) and calls it. String
arguments are casted to uint32_t.

Parameters
• _source – Source.

• _level – Severity level.

• ... – String with arguments.

Functions

static inline uint32_t log_msg_get_total_wlen(const struct log_msg_desc desc)
Get total length (in 32 bit words) of a log message.

Parameters
• desc – Log message descriptor.

Returns
Length.
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static inline uint32_t log_msg_generic_get_wlen(const union mpsc_pbuf_generic *item)
Get length of the log item.

Parameters
• item – Item.

Returns
Length in 32 bit words.

static inline uint8_t log_msg_get_domain(struct log_msg *msg)
Get log message domain ID.

Parameters
• msg – Log message.

Returns
Domain ID

static inline uint8_t log_msg_get_level(struct log_msg *msg)
Get log message level.

Parameters
• msg – Log message.

Returns
Log level.

static inline const void *log_msg_get_source(struct log_msg *msg)
Get message source data.

Parameters
• msg – Log message.

Returns
Pointer to the source data.

int16_t log_msg_get_source_id(struct log_msg *msg)
Get log message source ID.

Parameters
• msg – Log message.

Returns
Source ID, or -1 if not available.

static inline log_timestamp_t log_msg_get_timestamp(struct log_msg *msg)
Get timestamp.

Parameters
• msg – Log message.

Returns
Timestamp.

static inline void *log_msg_get_tid(struct log_msg *msg)
Get Thread ID.

Parameters
• msg – Log message.

Returns
Thread ID.
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static inline uint8_t *log_msg_get_data(struct log_msg *msg, size_t *len)
Get data buffer.

Parameters
• msg – log message.

• len – location where data length is written.

Returns
pointer to the data buffer.

static inline uint8_t *log_msg_get_package(struct log_msg *msg, size_t *len)
Get string package.

Parameters
• msg – log message.

• len – location where string package length is written.

Returns
pointer to the package.

struct log_msg_desc
#include <log_msg.h>

union log_msg_source
#include <log_msg.h>

Public Members

const struct log_source_const_data *fixed

struct log_source_dynamic_data *dynamic

void *raw

struct log_msg_hdr
#include <log_msg.h>

struct log_msg
#include <log_msg.h>

struct log_msg_generic_hdr
#include <log_msg.h>

union log_msg_generic
#include <log_msg.h>

Public Members

union mpsc_pbuf_generic buf
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struct log_msg_generic_hdr generic

struct log_msg log

Logger backend interface

Related code samples

BLE logging backend
Send log messages over BLE using the BLE logging backend.

Remote syslog
Enable a remote syslog service that sends syslog messages to a remote server

group log_backend
Logger backend interface.

Defines

LOG_BACKEND_DEFINE(_name, _api, _autostart, ...)
Macro for creating a logger backend instance.

Parameters
• _name – Name of the backend instance.

• _api – Logger backend API.

• _autostart – If true backend is initialized and activated together with
the logger subsystem.

• ... – Optional context.

Enums

enum log_backend_evt
Backend events.

Values:

enumerator LOG_BACKEND_EVT_PROCESS_THREAD_DONE
Event when process thread finishes processing.

This event is emitted when the process thread finishes processing pending log mes-
sages.

Note

This is not emitted when there are no pending log messages being processed.
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Note

Deferred mode only.

enumerator LOG_BACKEND_EVT_MAX
Maximum number of backend events.

Functions

static inline void log_backend_init(const struct log_backend *const backend)
Initialize or initiate the logging backend.

If backend initialization takes longer time it could block logging thread if backend
is autostarted. That is because all backends are initialized in the context of the log-
ging thread. In that case, backend shall provide function for polling for readiness
(log_backend_is_ready).

Parameters
• backend – [in] Pointer to the backend instance.

static inline int log_backend_is_ready(const struct log_backend *const backend)
Poll for backend readiness.

If backend is ready immediately after initialization then backend may not provide this
function.

Parameters
• backend – [in] Pointer to the backend instance.

Return values
• 0 – if backend is ready.

• -EBUSY – if backend is not yet ready.

static inline void log_backend_msg_process(const struct log_backend *const backend,
union log_msg_generic *msg)

Process message.

Function is used in deferred and immediate mode. On return, message content is pro-
cessed by the backend and memory can be freed.

Parameters
• backend – [in] Pointer to the backend instance.

• msg – [in] Pointer to message with log entry.

static inline void log_backend_dropped(const struct log_backend *const backend, uint32_t
cnt)

Notify backend about dropped log messages.

Function is optional.

Parameters
• backend – [in] Pointer to the backend instance.

• cnt – [in] Number of dropped logs since last notification.
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static inline void log_backend_panic(const struct log_backend *const backend)
Reconfigure backend to panic mode.

Parameters
• backend – [in] Pointer to the backend instance.

static inline void log_backend_id_set(const struct log_backend *const backend, uint8_t
id)

Set backend id.

Note

It is used internally by the logger.

Parameters
• backend – Pointer to the backend instance.

• id – ID.

static inline uint8_t log_backend_id_get(const struct log_backend *const backend)
Get backend id.

Note

It is used internally by the logger.

Parameters
• backend – [in] Pointer to the backend instance.

Returns
Id.

static inline const struct log_backend *log_backend_get(uint32_t idx)
Get backend.

Parameters
• idx – [in] Pointer to the backend instance.

Returns
Pointer to the backend instance.

static inline int log_backend_count_get(void)
Get number of backends.

Returns
Number of backends.

static inline void log_backend_activate(const struct log_backend *const backend, void
*ctx)

Activate backend.

Parameters
• backend – [in] Pointer to the backend instance.

• ctx – [in] User context.
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static inline void log_backend_deactivate(const struct log_backend *const backend)
Deactivate backend.

Parameters
• backend – [in] Pointer to the backend instance.

static inline bool log_backend_is_active(const struct log_backend *const backend)
Check state of the backend.

Parameters
• backend – [in] Pointer to the backend instance.

Returns
True if backend is active, false otherwise.

static inline int log_backend_format_set(const struct log_backend *backend, uint32_t
log_type)

Set logging format.

Parameters
• backend – Pointer to the backend instance.

• log_type – Log format.

Return values
• -ENOTSUP – If the backend does not support changing format types.

• -EINVAL – If the input is invalid.

• 0 – for success.

static inline void log_backend_notify(const struct log_backend *const backend, enum
log_backend_evt event, union log_backend_evt_arg
*arg)

Notify a backend of an event.

Parameters
• backend – Pointer to the backend instance.

• event – Event to be notified.

• arg – Pointer to the argument(s).

union log_backend_evt_arg
#include <log_backend.h> Argument(s) for backend events.

Public Members

void *raw
Unspecified argument(s).

struct log_backend_api
#include <log_backend.h> Logger backend API.

struct log_backend_control_block
#include <log_backend.h> Logger backend control block.

4.12. Logging 963



Zephyr Project Documentation, Release 3.7.99

struct log_backend
#include <log_backend.h> Logger backend structure.

Logger output formatting

group log_output
Log output API.

Unnamed Group

void log_custom_output_msg_process(const struct log_output *log_output, struct log_msg
*msg, uint32_t flags)

Custom logging output formatting.

Process log messages from an external output function set with
log_custom_output_msg_set

Function is using provided context with the buffer and output function to process for-
matted string and output the data.

Parameters
• log_output – Pointer to the log output instance.

• msg – Log message.

• flags – Optional flags.

Defines

LOG_OUTPUT_TEXT
Supported backend logging format types for use with log_format_set() API to switch
log format at runtime.

LOG_OUTPUT_SYST

LOG_OUTPUT_DICT

LOG_OUTPUT_CUSTOM

LOG_OUTPUT_DEFINE(_name, _func, _buf, _size)
Create log_output instance.

Parameters
• _name – Instance name.

• _func – Function for processing output data.

• _buf – Pointer to the output buffer.

• _size – Size of the output buffer.
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Typedefs

typedef int (*log_output_func_t)(uint8_t *buf, size_t size, void *ctx)
Prototype of the function processing output data.

Note

If the log output function cannot process all of the data, it is its responsibility to
mark them as dropped or discarded by returning the corresponding number of
bytes dropped or discarded to the caller.

Param buf
The buffer data.

Param size
The buffer size.

Param ctx
User context.

Return
Number of bytes processed, dropped or discarded.

typedef void (*log_format_func_t)(const struct log_output *output, struct log_msg *msg,
uint32_t flags)

Typedef of the function pointer table “format_table”.

Param output
Pointer to log_output struct.

Parammsg
Pointer to log_msg struct.

Param flags
Flags used for text formatting options.

Return
Function pointer based on Kconfigs defined for backends.

Functions

log_format_func_t log_format_func_t_get(uint32_t log_type)
Declaration of the get routine for function pointer table format_table.

void log_output_msg_process(const struct log_output *log_output, struct log_msg *msg,
uint32_t flags)

Process log messages v2 to readable strings.

Function is using provided context with the buffer and output function to process for-
matted string and output the data.

Parameters
• log_output – Pointer to the log output instance.

• msg – Log message.

• flags – Optional flags. See Log output formatting flags..
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void log_output_process(const struct log_output *log_output, log_timestamp_t
timestamp, const char *domain, const char *source, k_tid_t tid,
uint8_t level, const uint8_t *package, const uint8_t *data, size_t
data_len, uint32_t flags)

Process input data to a readable string.

Parameters
• log_output – Pointer to the log output instance.

• timestamp – Timestamp.

• domain – Domain name string. Can be NULL.

• source – Source name string. Can be NULL.

• tid – Thread ID.

• level – Criticality level.

• package – Cbprintf package with a logging message string.

• data – Data passed to hexdump API. Can be NULL.

• data_len – Data length.

• flags – Formatting flags. See Log output formatting flags..

void log_output_msg_syst_process(const struct log_output *log_output, struct log_msg
*msg, uint32_t flags)

Process log messages v2 to SYS-T format.

Function is using provided context with the buffer and output function to process for-
matted string and output the data in sys-t log output format.

Parameters
• log_output – Pointer to the log output instance.

• msg – Log message.

• flags – Optional flags. See Log output formatting flags..

void log_output_dropped_process(const struct log_output *output, uint32_t cnt)
Process dropped messages indication.

Function prints error message indicating lost log messages.

Parameters
• output – Pointer to the log output instance.

• cnt – Number of dropped messages.

void log_output_flush(const struct log_output *output)
Flush output buffer.

Parameters
• output – Pointer to the log output instance.

static inline void log_output_ctx_set(const struct log_output *output, void *ctx)
Function for setting user context passed to the output function.

Parameters
• output – Pointer to the log output instance.

• ctx – User context.
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static inline void log_output_hostname_set(const struct log_output *output, const char
*hostname)

Function for setting hostname of this device.

Parameters
• output – Pointer to the log output instance.

• hostname – Hostname of this device

void log_output_timestamp_freq_set(uint32_t freq)
Set timestamp frequency.

Parameters
• freq – Frequency in Hz.

uint64_t log_output_timestamp_to_us(log_timestamp_t timestamp)
Convert timestamp of the message to us.

Parameters
• timestamp – Message timestamp

Returns
Timestamp value in us.

struct log_output_control_block
#include <log_output.h>

struct log_output
#include <log_output.h> Log_output instance structure.

4.13 Tracing

4.13.1 Overview

The tracing feature provides hooks that permits you to collect data from your application and
allows tools running on a host to visualize the inner-working of the kernel and various subsys-
tems.

Every system has application-specific events to trace out. Historically, that has implied:

1. Determining the application-specific payload,

2. Choosing suitable serialization-format,

3. Writing the on-target serialization code,

4. Deciding on and writing the I/O transport mechanics,

5. Writing the PC-side deserializer/parser,

6. Writing custom ad-hoc tools for filtering and presentation.

An application can use one of the existing formats or define a custom format by overriding the
macros declared in include/zephyr/tracing/tracing.h.

Different formats, transports and host tools are available and supported in Zephyr.

In fact, I/O varies greatly from system to system. Therefore, it is instructive to create a taxonomy
for I/O types when we must ensure the interface between payload/format (Top Layer) and the
transport mechanics (bottom Layer) is generic and efficient enough to model these. See the I/O
taxonomy section below.
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4.13.2 Serialization Formats

Common Trace Format (CTF) Support

Common Trace Format, CTF, is an open format and language to describe trace formats. This
enables tool reuse, of which line-textual (babeltrace) and graphical (TraceCompass) variants al-
ready exist.

CTF should look familiar to C programmers but adds stronger typing. See CTF - A Flexible, High-
performance Binary Trace Format.

CTF allows us to formally describe application specific payload and the serialization format,
which enables common infrastructure for host tools and parsers and tools for filtering and pre-
sentation.

AGeneric Interface In CTF, an event is serialized to a packet containing one or more fields. As
seen from I/O taxonomy section below, a bottom layer may:

• perform actions at transaction-start (e.g. mutex-lock),

• process each field in some way (e.g. sync-push emit, concat, enqueue to thread-bound
FIFO),

• perform actions at transaction-stop (e.g. mutex-release, emit of concat buffer).

CTF Top-Layer Example The CTF_EVENT macro will serialize each argument to a field:

/* Example for illustration */
static inline void ctf_top_foo(uint32_t thread_id, ctf_bounded_string_t name)
{
CTF_EVENT(
CTF_LITERAL(uint8_t, 42),
thread_id,
name,
"hello, I was emitted from function: ",
__func__ /* __func__ is standard since C99 */

);
}

How to serialize and emit fields as well as handling alignment, can be done internally and stati-
cally at compile-time in the bottom-layer.

The CTF top layer is enabled using the configuration option CONFIG_TRACING_CTF and can be used
with the different transport backends both in synchronous and asynchronous modes.

SEGGER SystemView Support

Zephyr provides built-in support for SEGGER SystemView that can be enabled in any application
for platforms that have the required hardware support.

The payload and format used with SystemView is custom to the application and relies on RTT as
a transport. Newer versions of SystemView support other transports, for example UART or using
snapshot mode (both still not supported in Zephyr).

To enable tracing support with SEGGER SystemView add the configuration option CON-
FIG_SEGGER_SYSTEMVIEW to your project configuration file and set it to y. For example, this
can be added to the synchronization sample to visualize fast switching between threads.
SystemView can also be used for post-mortem tracing, which can be enabled with CON-
FIG_SEGGER_SYSVIEW_POST_MORTEM_MODE. In this mode, a debugger can be attached after
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the system has crashed using west attach after which the latest data from the internal RAM
buffer can be loaded into SystemView:

CONFIG_STDOUT_CONSOLE=y
# enable to use thread names
CONFIG_THREAD_NAME=y
CONFIG_SEGGER_SYSTEMVIEW=y
CONFIG_USE_SEGGER_RTT=y
CONFIG_TRACING=y
# enable for post-mortem tracing
CONFIG_SEGGER_SYSVIEW_POST_MORTEM_MODE=n

Recent versions of SEGGER SystemView come with an API translation table for Zephyr which
is incomplete and does not match the current level of support available in Zephyr. To use the
latest Zephyr API description table, copy the file available in the tree to your local configuration
directory to override the builtin table:

# On Linux and MacOS
cp $ZEPHYR_BASE/subsys/tracing/sysview/SYSVIEW_Zephyr.txt ~/.config/SEGGER/

User-Defined Tracing

This tracing format allows the user to define functions to perform any work desired when a task
is switched in or out, when an interrupt is entered or exited, and when the cpu is idle.

Examples include: - simple toggling of GPIO for external scope tracing while minimizing extra
cpu load - generating/outputting trace data in a non-standard or proprietary format that can not
be supported by the other tracing systems

The following functions can be defined by the user:

void sys_trace_thread_create_user(struct k_thread *thread);
void sys_trace_thread_abort_user(struct k_thread *thread);
void sys_trace_thread_suspend_user(struct k_thread *thread);
void sys_trace_thread_resume_user(struct k_thread *thread);
void sys_trace_thread_name_set_user(struct k_thread *thread);
void sys_trace_thread_switched_in_user(struct k_thread *thread);
void sys_trace_thread_switched_out_user(struct k_thread *thread);

(continues on next page)
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(continued from previous page)
void sys_trace_thread_info_user(struct k_thread *thread);
void sys_trace_thread_sched_ready_user(struct k_thread *thread);
void sys_trace_thread_pend_user(struct k_thread *thread);
void sys_trace_thread_priority_set_user(struct k_thread *thread, int prio);
void sys_trace_isr_enter_user(int nested_interrupts);
void sys_trace_isr_exit_user(int nested_interrupts);
void sys_trace_idle_user();

Enable this format with the CONFIG_TRACING_USER option.

4.13.3 Transport Backends

The following backends are currently supported:

• UART

• USB

• File (Using the native port with POSIX architecture based targets)

• RTT (With SystemView)

• RAM (buffer to be retrieved by a debugger)

4.13.4 Using Tracing

The sample samples/subsys/tracing demonstrates tracing with different formats and backends.

To get started, the simplest way is to use the CTF format with the native_sim port, build the
sample as follows:

Using west:

west build -b native_sim samples/subsys/tracing -- -DCONF_FILE=prj_native_ctf.conf

Using CMake and ninja:

# Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=native_sim -DCONF_FILE=prj_native_ctf.conf samples/subsys/
↪→tracing

# Now run the build tool on the generated build system:
ninja -Cbuild

You can then run the resulting binary with the option -trace-file to generate the tracing data:

mkdir data
cp $ZEPHYR_BASE/subsys/tracing/ctf/tsdl/metadata data/
./build/zephyr/zephyr.exe -trace-file=data/channel0_0

The resulting CTF output can be visualized using babeltrace or TraceCompass by pointing the
tool to the data directory with the metadata and trace files.

Using RAM backend

For devices that do not have available I/O for tracing such as USB or UART but have
enough RAM to collect trace data, the ram backend can be enabled with configuration CON-
FIG_TRACING_BACKEND_RAM. Adjust CONFIG_RAM_TRACING_BUFFER_SIZE to be able to record enough
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traces for your needs. Then thanks to a runtime debugger such as gdb this buffer can be fetched
from the target to an host computer:

(gdb) dump binary memory data/channel0_0 <ram_tracing_start> <ram_tracing_end>

The resulting channel0_0 file have to be placed in a directory with the metadata file like the other
backend.

4.13.5 Visualisation Tools

TraceCompass

TraceCompass is an open source tool that visualizes CTF events such as thread scheduling and
interrupts, and is helpful to find unintended interactions and resource conflicts on complex sys-
tems.

See also the presentation by Ericsson, Advanced Trouble-shooting Of Real-time Systems.

4.13.6 Future LTTng Inspiration

Currently, the top-layer provided here is quite simple and bare-bones, and needlessly copied
from Zephyr’s Segger SystemView debug module.

For an OS like Zephyr, it would make sense to draw inspiration from Linux’s LTTng and change
the top-layer to serialize to the same format. Doing this would enable direct reuse of Trace-
Compass’ canned analyses for Linux. Alternatively, LTTng-analyses in TraceCompass could be
customized to Zephyr. It is ongoing work to enable TraceCompass visibility of Zephyr in a target-
agnostic and open source way.

I/O Taxonomy

• Atomic Push/Produce/Write/Enqueue:

– synchronous:
means data-transmission has completed with the return of the call.

– asynchronous:
means data-transmission is pending or ongoing with the return of the call. Usually,
interrupts/callbacks/signals or polling is used to determine completion.

– buffered:
means data-transmissions are copied and grouped together to form a larger ones.
Usually for amortizing overhead (burst dequeue) or jitter-mitigation (steady de-
queue).

Examples:
– sync unbuffered

E.g. PIO via GPIOs having steady stream, no extra FIFO memory needed. Low
jitter but may be less efficient (can’t amortize the overhead of writing).

– sync buffered
E.g. fwrite() or enqueuing into FIFO. Blockingly burst the FIFO when its
buffer-waterlevel exceeds threshold. Jitter due to bursts may lead to missed
deadlines.

– async unbuffered
E.g. DMA, or zero-copying in shared memory. Be careful of data hazards, race
conditions, etc!
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– async buffered
E.g. enqueuing into FIFO.

• Atomic Pull/Consume/Read/Dequeue:

– synchronous:
means data-reception has completed with the return of the call.

– asynchronous:
means data-reception is pending or ongoing with the return of the call. Usually,
interrupts/callbacks/signals or polling is used to determine completion.

– buffered:
means data is copied-in in larger chunks than request-size. Usually for amortizing
wait-time.

Examples:
– sync unbuffered

E.g. Blocking read-call, fread() or SPI-read, zero-copying in shared memory.

– sync buffered
E.g. Blocking read-call with caching applied. Makes sense if read pattern ex-
hibits spatial locality.

– async unbuffered
E.g. zero-copying in shared memory. Be careful of data hazards, race condi-
tions, etc!

– async buffered
E.g. aio_read() or DMA.

Unfortunately, I/O may not be atomic and may, therefore, require locking. Locking may not be
needed if multiple independent channels are available.

• The system has non-atomic write and one shared channel
E.g. UART. Locking required.

lock(); emit(a); emit(b); emit(c); release();
• The system has non-atomic write but many channels

E.g. Multi-UART. Lock-free if the bottom-layer maps each Zephyr thread+ISR to its own
channel, thus alleviating races as each thread is sequentially consistent with itself.

emit(a,thread_id); emit(b,thread_id); emit(c,thread_id);
• The system has atomic write but one shared channel

E.g. native_sim or board with DMA. May or may not need locking.

emit(a ## b ## c); /* Concat to buffer */
lock(); emit(a); emit(b); emit(c); release(); /* No extra mem */

• The system has atomic write and many channels
E.g. native_sim or board with multi-channel DMA. Lock-free.

emit(a ## b ## c, thread_id);

4.13.7 Object tracking

The kernel can also maintain lists of objects that can be used to track their usage. Currently, the
following lists can be enabled:

struct k_timer *_track_list_k_timer;
struct k_mem_slab *_track_list_k_mem_slab;
struct k_sem *_track_list_k_sem;

(continues on next page)
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(continued from previous page)
struct k_mutex *_track_list_k_mutex;
struct k_stack *_track_list_k_stack;
struct k_msgq *_track_list_k_msgq;
struct k_mbox *_track_list_k_mbox;
struct k_pipe *_track_list_k_pipe;
struct k_queue *_track_list_k_queue;
struct k_event *_track_list_k_event;

Those global variables are the head of each list - they can be traversed with the help of macro
SYS_PORT_TRACK_NEXT. For instance, to traverse all initialized mutexes, one can write:

struct k_mutex *cur = _track_list_k_mutex;
while (cur != NULL) {
/* Do something */

cur = SYS_PORT_TRACK_NEXT(cur);
}

To enable object tracking, enable CONFIG_TRACING_OBJECT_TRACKING. Note that each list can
be enabled or disabled via their tracing configuration. For example, to disable tracking of
semaphores, one can disable CONFIG_TRACING_SEMAPHORE.

Object tracking is behind tracing configuration as it currently leverages tracing infrastructure to
perform the tracking.

4.13.8 API

Common

group subsys_tracing_apis
Tracing APIs.

Defines

sys_trace_sys_init_enter(entry, level)
Called when entering an init function.

sys_trace_sys_init_exit(entry, level, result)
Called when exiting an init function.

Functions

void sys_trace_isr_enter(void)
Called when entering an ISR.

void sys_trace_isr_exit(void)
Called when exiting an ISR.

void sys_trace_isr_exit_to_scheduler(void)
Called when exiting an ISR and switching to scheduler.

void sys_trace_idle(void)
Called when the cpu enters the idle state.
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Threads

group subsys_tracing_apis_thread
Thread Tracing APIs.

Defines

sys_port_trace_k_thread_foreach_enter()
Called when entering a k_thread_foreach call.

sys_port_trace_k_thread_foreach_exit()
Called when exiting a k_thread_foreach call.

sys_port_trace_k_thread_foreach_unlocked_enter()
Called when entering a k_thread_foreach_unlocked.

sys_port_trace_k_thread_foreach_unlocked_exit()
Called when exiting a k_thread_foreach_unlocked.

sys_port_trace_k_thread_create(new_thread)
Trace creating a Thread.

Parameters
• new_thread – Thread object

sys_port_trace_k_thread_user_mode_enter()
Trace Thread entering user mode.

sys_port_trace_k_thread_join_enter(thread, timeout)
Called when entering a k_thread_join.

Parameters
• thread – Thread object

• timeout – Timeout period

sys_port_trace_k_thread_join_blocking(thread, timeout)
Called when k_thread_join blocks.

Parameters
• thread – Thread object

• timeout – Timeout period

sys_port_trace_k_thread_join_exit(thread, timeout, ret)
Called when exiting k_thread_join.

Parameters
• thread – Thread object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_thread_sleep_enter(timeout)
Called when entering k_thread_sleep.

Parameters
• timeout – Timeout period
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sys_port_trace_k_thread_sleep_exit(timeout, ret)
Called when exiting k_thread_sleep.

Parameters
• timeout – Timeout period

• ret – Return value

sys_port_trace_k_thread_msleep_enter(ms)
Called when entering k_thread_msleep.

Parameters
• ms – Duration in milliseconds

sys_port_trace_k_thread_msleep_exit(ms, ret)
Called when exiting k_thread_msleep.

Parameters
• ms – Duration in milliseconds

• ret – Return value

sys_port_trace_k_thread_usleep_enter(us)
Called when entering k_thread_usleep.

Parameters
• us – Duration in microseconds

sys_port_trace_k_thread_usleep_exit(us, ret)
Called when exiting k_thread_usleep.

Parameters
• us – Duration in microseconds

• ret – Return value

sys_port_trace_k_thread_busy_wait_enter(usec_to_wait)
Called when entering k_thread_busy_wait.

Parameters
• usec_to_wait – Duration in microseconds

sys_port_trace_k_thread_busy_wait_exit(usec_to_wait)
Called when exiting k_thread_busy_wait.

Parameters
• usec_to_wait – Duration in microseconds

sys_port_trace_k_thread_yield()
Called when a thread yields.

sys_port_trace_k_thread_wakeup(thread)
Called when a thread wakes up.

Parameters
• thread – Thread object

sys_port_trace_k_thread_start(thread)
Called when a thread is started.

Parameters
• thread – Thread object
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sys_port_trace_k_thread_abort(thread)
Called when a thread is being aborted.

Parameters
• thread – Thread object

sys_port_trace_k_thread_abort_enter(thread)
Called when a thread enters the k_thread_abort routine.

Parameters
• thread – Thread object

sys_port_trace_k_thread_abort_exit(thread)
Called when a thread exits the k_thread_abort routine.

Parameters
• thread – Thread object

sys_port_trace_k_thread_priority_set(thread)
Called when setting priority of a thread.

Parameters
• thread – Thread object

sys_port_trace_k_thread_suspend_enter(thread)
Called when a thread enters the k_thread_suspend function.

Parameters
• thread – Thread object

sys_port_trace_k_thread_suspend_exit(thread)
Called when a thread exits the k_thread_suspend function.

Parameters
• thread – Thread object

sys_port_trace_k_thread_resume_enter(thread)
Called when a thread enters the resume from suspension function.

Parameters
• thread – Thread object

sys_port_trace_k_thread_resume_exit(thread)
Called when a thread exits the resumed from suspension function.

Parameters
• thread – Thread object

sys_port_trace_k_thread_sched_lock()
Called when the thread scheduler is locked.

sys_port_trace_k_thread_sched_unlock()
Called when the thread scheduler is unlocked.

sys_port_trace_k_thread_name_set(thread, ret)
Called when a thread name is set.

Parameters
• thread – Thread object

• ret – Return value
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sys_port_trace_k_thread_switched_out()
Called before a thread has been selected to run.

sys_port_trace_k_thread_switched_in()
Called after a thread has been selected to run.

sys_port_trace_k_thread_ready(thread)
Called when a thread is ready to run.

Parameters
• thread – Thread object

sys_port_trace_k_thread_pend(thread)
Called when a thread is pending.

Parameters
• thread – Thread object

sys_port_trace_k_thread_info(thread)
Provide information about specific thread.

Parameters
• thread – Thread object

sys_port_trace_k_thread_sched_wakeup(thread)
Trace implicit thread wakeup invocation by the scheduler.

Parameters
• thread – Thread object

sys_port_trace_k_thread_sched_abort(thread)
Trace implicit thread abort invocation by the scheduler.

Parameters
• thread – Thread object

sys_port_trace_k_thread_sched_priority_set(thread, prio)
Trace implicit thread set priority invocation by the scheduler.

Parameters
• thread – Thread object

• prio – Thread priority

sys_port_trace_k_thread_sched_ready(thread)
Trace implicit thread ready invocation by the scheduler.

Parameters
• thread – Thread object

sys_port_trace_k_thread_sched_pend(thread)
Trace implicit thread pend invocation by the scheduler.

Parameters
• thread – Thread object

sys_port_trace_k_thread_sched_resume(thread)
Trace implicit thread resume invocation by the scheduler.

Parameters
• thread – Thread object
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sys_port_trace_k_thread_sched_suspend(thread)
Trace implicit thread suspend invocation by the scheduler.

Parameters
• thread – Thread object

Work Queues

group subsys_tracing_apis_work
Work Tracing APIs.

Defines

sys_port_trace_k_work_init(work)
Trace initialisation of a Work structure.

Parameters
• work – Work structure

sys_port_trace_k_work_submit_to_queue_enter(queue, work)
Trace submit work to work queue call entry.

Parameters
• queue – Work queue structure

• work – Work structure

sys_port_trace_k_work_submit_to_queue_exit(queue, work, ret)
Trace submit work to work queue call exit.

Parameters
• queue – Work queue structure

• work – Work structure

• ret – Return value

sys_port_trace_k_work_submit_enter(work)
Trace submit work to system work queue call entry.

Parameters
• work – Work structure

sys_port_trace_k_work_submit_exit(work, ret)
Trace submit work to system work queue call exit.

Parameters
• work – Work structure

• ret – Return value

sys_port_trace_k_work_flush_enter(work)
Trace flush work call entry.

Parameters
• work – Work structure
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sys_port_trace_k_work_flush_blocking(work, timeout)
Trace flush work call blocking.

Parameters
• work – Work structure

• timeout – Timeout period

sys_port_trace_k_work_flush_exit(work, ret)
Trace flush work call exit.

Parameters
• work – Work structure

• ret – Return value

sys_port_trace_k_work_cancel_enter(work)
Trace cancel work call entry.

Parameters
• work – Work structure

sys_port_trace_k_work_cancel_exit(work, ret)
Trace cancel work call exit.

Parameters
• work – Work structure

• ret – Return value

sys_port_trace_k_work_cancel_sync_enter(work, sync)
Trace cancel sync work call entry.

Parameters
• work – Work structure

• sync – Sync object

sys_port_trace_k_work_cancel_sync_blocking(work, sync)
Trace cancel sync work call blocking.

Parameters
• work – Work structure

• sync – Sync object

sys_port_trace_k_work_cancel_sync_exit(work, sync, ret)
Trace cancel sync work call exit.

Parameters
• work – Work structure

• sync – Sync object

• ret – Return value

Poll

group subsys_tracing_apis_poll
Poll Tracing APIs.
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Defines

sys_port_trace_k_poll_api_event_init(event)
Trace initialisation of a Poll Event.

Parameters
• event – Poll Event

sys_port_trace_k_poll_api_poll_enter(events)
Trace Polling call start.

Parameters
• events – Poll Events

sys_port_trace_k_poll_api_poll_exit(events, ret)
Trace Polling call outcome.

Parameters
• events – Poll Events

• ret – Return value

sys_port_trace_k_poll_api_signal_init(signal)
Trace initialisation of a Poll Signal.

Parameters
• signal – Poll Signal

sys_port_trace_k_poll_api_signal_reset(signal)
Trace resetting of Poll Signal.

Parameters
• signal – Poll Signal

sys_port_trace_k_poll_api_signal_check(signal)
Trace checking of Poll Signal.

Parameters
• signal – Poll Signal

sys_port_trace_k_poll_api_signal_raise(signal, ret)
Trace raising of Poll Signal.

Parameters
• signal – Poll Signal

• ret – Return value

Semaphore

group subsys_tracing_apis_sem
Semaphore Tracing APIs.
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Defines

sys_port_trace_k_sem_init(sem, ret)
Trace initialisation of a Semaphore.

Parameters
• sem – Semaphore object

• ret – Return value

sys_port_trace_k_sem_give_enter(sem)
Trace giving a Semaphore entry.

Parameters
• sem – Semaphore object

sys_port_trace_k_sem_give_exit(sem)
Trace giving a Semaphore exit.

Parameters
• sem – Semaphore object

sys_port_trace_k_sem_take_enter(sem, timeout)
Trace taking a Semaphore attempt start.

Parameters
• sem – Semaphore object

• timeout – Timeout period

sys_port_trace_k_sem_take_blocking(sem, timeout)
Trace taking a Semaphore attempt blocking.

Parameters
• sem – Semaphore object

• timeout – Timeout period

sys_port_trace_k_sem_take_exit(sem, timeout, ret)
Trace taking a Semaphore attempt outcome.

Parameters
• sem – Semaphore object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_sem_reset(sem)
Trace resetting a Semaphore.

Parameters
• sem – Semaphore object

Mutex

group subsys_tracing_apis_mutex
Mutex Tracing APIs.
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Defines

sys_port_trace_k_mutex_init(mutex, ret)
Trace initialization of Mutex.

Parameters
• mutex – Mutex object

• ret – Return value

sys_port_trace_k_mutex_lock_enter(mutex, timeout)
Trace Mutex lock attempt start.

Parameters
• mutex – Mutex object

• timeout – Timeout period

sys_port_trace_k_mutex_lock_blocking(mutex, timeout)
Trace Mutex lock attempt blocking.

Parameters
• mutex – Mutex object

• timeout – Timeout period

sys_port_trace_k_mutex_lock_exit(mutex, timeout, ret)
Trace Mutex lock attempt outcome.

Parameters
• mutex – Mutex object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_mutex_unlock_enter(mutex)
Trace Mutex unlock entry.

Parameters
• mutex – Mutex object

sys_port_trace_k_mutex_unlock_exit(mutex, ret)
Trace Mutex unlock exit.

Condition Variables

group subsys_tracing_apis_condvar
Conditional Variable Tracing APIs.

Defines

sys_port_trace_k_condvar_init(condvar, ret)
Trace initialization of Conditional Variable.

Parameters
• condvar – Conditional Variable object

• ret – Return value
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sys_port_trace_k_condvar_signal_enter(condvar)
Trace Conditional Variable signaling start.

Parameters
• condvar – Conditional Variable object

sys_port_trace_k_condvar_signal_blocking(condvar, timeout)
Trace Conditional Variable signaling blocking.

Parameters
• condvar – Conditional Variable object

• timeout – Timeout period

sys_port_trace_k_condvar_signal_exit(condvar, ret)
Trace Conditional Variable signaling outcome.

Parameters
• condvar – Conditional Variable object

• ret – Return value

sys_port_trace_k_condvar_broadcast_enter(condvar)
Trace Conditional Variable broadcast enter.

Parameters
• condvar – Conditional Variable object

sys_port_trace_k_condvar_broadcast_exit(condvar, ret)
Trace Conditional Variable broadcast exit.

Parameters
• condvar – Conditional Variable object

• ret – Return value

sys_port_trace_k_condvar_wait_enter(condvar)
Trace Conditional Variable wait enter.

Parameters
• condvar – Conditional Variable object

sys_port_trace_k_condvar_wait_exit(condvar, ret)
Trace Conditional Variable wait exit.

Parameters
• condvar – Conditional Variable object

• ret – Return value

Queues

group subsys_tracing_apis_queue
Queue Tracing APIs.
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Defines

sys_port_trace_k_queue_init(queue)
Trace initialization of Queue.

Parameters
• queue – Queue object

sys_port_trace_k_queue_cancel_wait(queue)
Trace Queue cancel wait.

Parameters
• queue – Queue object

sys_port_trace_k_queue_queue_insert_enter(queue, alloc)
Trace Queue insert attempt entry.

Parameters
• queue – Queue object

• alloc – Allocation flag

sys_port_trace_k_queue_queue_insert_blocking(queue, alloc, timeout)
Trace Queue insert attempt blocking.

Parameters
• queue – Queue object

• alloc – Allocation flag

• timeout – Timeout period

sys_port_trace_k_queue_queue_insert_exit(queue, alloc, ret)
Trace Queue insert attempt outcome.

Parameters
• queue – Queue object

• alloc – Allocation flag

• ret – Return value

sys_port_trace_k_queue_append_enter(queue)
Trace Queue append enter.

Parameters
• queue – Queue object

sys_port_trace_k_queue_append_exit(queue)
Trace Queue append exit.

Parameters
• queue – Queue object

sys_port_trace_k_queue_alloc_append_enter(queue)
Trace Queue alloc append enter.

Parameters
• queue – Queue object
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sys_port_trace_k_queue_alloc_append_exit(queue, ret)
Trace Queue alloc append exit.

Parameters
• queue – Queue object

• ret – Return value

sys_port_trace_k_queue_prepend_enter(queue)
Trace Queue prepend enter.

Parameters
• queue – Queue object

sys_port_trace_k_queue_prepend_exit(queue)
Trace Queue prepend exit.

Parameters
• queue – Queue object

sys_port_trace_k_queue_alloc_prepend_enter(queue)
Trace Queue alloc prepend enter.

Parameters
• queue – Queue object

sys_port_trace_k_queue_alloc_prepend_exit(queue, ret)
Trace Queue alloc prepend exit.

Parameters
• queue – Queue object

• ret – Return value

sys_port_trace_k_queue_insert_enter(queue)
Trace Queue insert attempt entry.

Parameters
• queue – Queue object

sys_port_trace_k_queue_insert_blocking(queue, timeout)
Trace Queue insert attempt blocking.

Parameters
• queue – Queue object

• timeout – Timeout period

sys_port_trace_k_queue_insert_exit(queue)
Trace Queue insert attempt exit.

Parameters
• queue – Queue object

sys_port_trace_k_queue_append_list_enter(queue)
Trace Queue append list enter.

Parameters
• queue – Queue object
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sys_port_trace_k_queue_append_list_exit(queue, ret)
Trace Queue append list exit.

Parameters
• queue – Queue object

• ret – Return value

sys_port_trace_k_queue_merge_slist_enter(queue)
Trace Queue merge slist enter.

Parameters
• queue – Queue object

sys_port_trace_k_queue_merge_slist_exit(queue, ret)
Trace Queue merge slist exit.

Parameters
• queue – Queue object

• ret – Return value

sys_port_trace_k_queue_get_enter(queue, timeout)
Trace Queue get attempt enter.

Parameters
• queue – Queue object

• timeout – Timeout period

sys_port_trace_k_queue_get_blocking(queue, timeout)
Trace Queue get attempt blockings.

Parameters
• queue – Queue object

• timeout – Timeout period

sys_port_trace_k_queue_get_exit(queue, timeout, ret)
Trace Queue get attempt outcome.

Parameters
• queue – Queue object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_queue_remove_enter(queue)
Trace Queue remove enter.

Parameters
• queue – Queue object

sys_port_trace_k_queue_remove_exit(queue, ret)
Trace Queue remove exit.

Parameters
• queue – Queue object

• ret – Return value
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sys_port_trace_k_queue_unique_append_enter(queue)
Trace Queue unique append enter.

Parameters
• queue – Queue object

sys_port_trace_k_queue_unique_append_exit(queue, ret)
Trace Queue unique append exit.

Parameters
• queue – Queue object

• ret – Return value

sys_port_trace_k_queue_peek_head(queue, ret)
Trace Queue peek head.

Parameters
• queue – Queue object

• ret – Return value

sys_port_trace_k_queue_peek_tail(queue, ret)
Trace Queue peek tail.

Parameters
• queue – Queue object

• ret – Return value

FIFO

group subsys_tracing_apis_fifo
FIFO Tracing APIs.

Defines

sys_port_trace_k_fifo_init_enter(fifo)
Trace initialization of FIFO Queue entry.

Parameters
• fifo – FIFO object

sys_port_trace_k_fifo_init_exit(fifo)
Trace initialization of FIFO Queue exit.

Parameters
• fifo – FIFO object

sys_port_trace_k_fifo_cancel_wait_enter(fifo)
Trace FIFO Queue cancel wait entry.

Parameters
• fifo – FIFO object
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sys_port_trace_k_fifo_cancel_wait_exit(fifo)
Trace FIFO Queue cancel wait exit.

Parameters
• fifo – FIFO object

sys_port_trace_k_fifo_put_enter(fifo, data)
Trace FIFO Queue put entry.

Parameters
• fifo – FIFO object

• data – Data item

sys_port_trace_k_fifo_put_exit(fifo, data)
Trace FIFO Queue put exit.

Parameters
• fifo – FIFO object

• data – Data item

sys_port_trace_k_fifo_alloc_put_enter(fifo, data)
Trace FIFO Queue alloc put entry.

Parameters
• fifo – FIFO object

• data – Data item

sys_port_trace_k_fifo_alloc_put_exit(fifo, data, ret)
Trace FIFO Queue alloc put exit.

Parameters
• fifo – FIFO object

• data – Data item

• ret – Return value

sys_port_trace_k_fifo_put_list_enter(fifo, head, tail)
Trace FIFO Queue put list entry.

Parameters
• fifo – FIFO object

• head – First ll-node

• tail – Last ll-node

sys_port_trace_k_fifo_put_list_exit(fifo, head, tail)
Trace FIFO Queue put list exit.

Parameters
• fifo – FIFO object

• head – First ll-node

• tail – Last ll-node

sys_port_trace_k_fifo_alloc_put_slist_enter(fifo, list)
Trace FIFO Queue put slist entry.

Parameters
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• fifo – FIFO object

• list – Syslist object

sys_port_trace_k_fifo_alloc_put_slist_exit(fifo, list)
Trace FIFO Queue put slist exit.

Parameters
• fifo – FIFO object

• list – Syslist object

sys_port_trace_k_fifo_get_enter(fifo, timeout)
Trace FIFO Queue get entry.

Parameters
• fifo – FIFO object

• timeout – Timeout period

sys_port_trace_k_fifo_get_exit(fifo, timeout, ret)
Trace FIFO Queue get exit.

Parameters
• fifo – FIFO object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_fifo_peek_head_enter(fifo)
Trace FIFO Queue peek head entry.

Parameters
• fifo – FIFO object

sys_port_trace_k_fifo_peek_head_exit(fifo, ret)
Trace FIFO Queue peek head exit.

Parameters
• fifo – FIFO object

• ret – Return value

sys_port_trace_k_fifo_peek_tail_enter(fifo)
Trace FIFO Queue peek tail entry.

Parameters
• fifo – FIFO object

sys_port_trace_k_fifo_peek_tail_exit(fifo, ret)
Trace FIFO Queue peek tail exit.

Parameters
• fifo – FIFO object

• ret – Return value

LIFO

group subsys_tracing_apis_lifo
LIFO Tracing APIs.
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Defines

sys_port_trace_k_lifo_init_enter(lifo)
Trace initialization of LIFO Queue entry.

Parameters
• lifo – LIFO object

sys_port_trace_k_lifo_init_exit(lifo)
Trace initialization of LIFO Queue exit.

Parameters
• lifo – LIFO object

sys_port_trace_k_lifo_put_enter(lifo, data)
Trace LIFO Queue put entry.

Parameters
• lifo – LIFO object

• data – Data item

sys_port_trace_k_lifo_put_exit(lifo, data)
Trace LIFO Queue put exit.

Parameters
• lifo – LIFO object

• data – Data item

sys_port_trace_k_lifo_alloc_put_enter(lifo, data)
Trace LIFO Queue alloc put entry.

Parameters
• lifo – LIFO object

• data – Data item

sys_port_trace_k_lifo_alloc_put_exit(lifo, data, ret)
Trace LIFO Queue alloc put exit.

Parameters
• lifo – LIFO object

• data – Data item

• ret – Return value

sys_port_trace_k_lifo_get_enter(lifo, timeout)
Trace LIFO Queue get entry.

Parameters
• lifo – LIFO object

• timeout – Timeout period

sys_port_trace_k_lifo_get_exit(lifo, timeout, ret)
Trace LIFO Queue get exit.

Parameters
• lifo – LIFO object

• timeout – Timeout period
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• ret – Return value

Stacks

group subsys_tracing_apis_stack
Stack Tracing APIs.

Defines

sys_port_trace_k_stack_init(stack)
Trace initialization of Stack.

Parameters
• stack – Stack object

sys_port_trace_k_stack_alloc_init_enter(stack)
Trace Stack alloc init attempt entry.

Parameters
• stack – Stack object

sys_port_trace_k_stack_alloc_init_exit(stack, ret)
Trace Stack alloc init outcome.

Parameters
• stack – Stack object

• ret – Return value

sys_port_trace_k_stack_cleanup_enter(stack)
Trace Stack cleanup attempt entry.

Parameters
• stack – Stack object

sys_port_trace_k_stack_cleanup_exit(stack, ret)
Trace Stack cleanup outcome.

Parameters
• stack – Stack object

• ret – Return value

sys_port_trace_k_stack_push_enter(stack)
Trace Stack push attempt entry.

Parameters
• stack – Stack object

sys_port_trace_k_stack_push_exit(stack, ret)
Trace Stack push attempt outcome.

Parameters
• stack – Stack object

• ret – Return value
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sys_port_trace_k_stack_pop_enter(stack, timeout)
Trace Stack pop attempt entry.

Parameters
• stack – Stack object

• timeout – Timeout period

sys_port_trace_k_stack_pop_blocking(stack, timeout)
Trace Stack pop attempt blocking.

Parameters
• stack – Stack object

• timeout – Timeout period

sys_port_trace_k_stack_pop_exit(stack, timeout, ret)
Trace Stack pop attempt outcome.

Parameters
• stack – Stack object

• timeout – Timeout period

• ret – Return value

Message Queues

group subsys_tracing_apis_msgq
Message Queue Tracing APIs.

Defines

sys_port_trace_k_msgq_init(msgq)
Trace initialization of Message Queue.

Parameters
• msgq – Message Queue object

sys_port_trace_k_msgq_alloc_init_enter(msgq)
Trace Message Queue alloc init attempt entry.

Parameters
• msgq – Message Queue object

sys_port_trace_k_msgq_alloc_init_exit(msgq, ret)
Trace Message Queue alloc init attempt outcome.

Parameters
• msgq – Message Queue object

• ret – Return value

sys_port_trace_k_msgq_cleanup_enter(msgq)
Trace Message Queue cleanup attempt entry.

Parameters
• msgq – Message Queue object
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sys_port_trace_k_msgq_cleanup_exit(msgq, ret)
Trace Message Queue cleanup attempt outcome.

Parameters
• msgq – Message Queue object

• ret – Return value

sys_port_trace_k_msgq_put_enter(msgq, timeout)
Trace Message Queue put attempt entry.

Parameters
• msgq – Message Queue object

• timeout – Timeout period

sys_port_trace_k_msgq_put_blocking(msgq, timeout)
Trace Message Queue put attempt blocking.

Parameters
• msgq – Message Queue object

• timeout – Timeout period

sys_port_trace_k_msgq_put_exit(msgq, timeout, ret)
Trace Message Queue put attempt outcome.

Parameters
• msgq – Message Queue object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_msgq_get_enter(msgq, timeout)
Trace Message Queue get attempt entry.

Parameters
• msgq – Message Queue object

• timeout – Timeout period

sys_port_trace_k_msgq_get_blocking(msgq, timeout)
Trace Message Queue get attempt blockings.

Parameters
• msgq – Message Queue object

• timeout – Timeout period

sys_port_trace_k_msgq_get_exit(msgq, timeout, ret)
Trace Message Queue get attempt outcome.

Parameters
• msgq – Message Queue object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_msgq_peek(msgq, ret)
Trace Message Queue peek.

Parameters
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• msgq – Message Queue object

• ret – Return value

sys_port_trace_k_msgq_purge(msgq)
Trace Message Queue purge.

Parameters
• msgq – Message Queue object

Mailbox

group subsys_tracing_apis_mbox
Mailbox Tracing APIs.

Defines

sys_port_trace_k_mbox_init(mbox)
Trace initialization of Mailbox.

Parameters
• mbox – Mailbox object

sys_port_trace_k_mbox_message_put_enter(mbox, timeout)
Trace Mailbox message put attempt entry.

Parameters
• mbox – Mailbox object

• timeout – Timeout period

sys_port_trace_k_mbox_message_put_blocking(mbox, timeout)
Trace Mailbox message put attempt blocking.

Parameters
• mbox – Mailbox object

• timeout – Timeout period

sys_port_trace_k_mbox_message_put_exit(mbox, timeout, ret)
Trace Mailbox message put attempt outcome.

Parameters
• mbox – Mailbox object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_mbox_put_enter(mbox, timeout)
Trace Mailbox put attempt entry.

Parameters
• mbox – Mailbox object

• timeout – Timeout period
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sys_port_trace_k_mbox_put_exit(mbox, timeout, ret)
Trace Mailbox put attempt blocking.

Parameters
• mbox – Mailbox object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_mbox_async_put_enter(mbox, sem)
Trace Mailbox async put entry.

Parameters
• mbox – Mailbox object

• sem – Semaphore object

sys_port_trace_k_mbox_async_put_exit(mbox, sem)
Trace Mailbox async put exit.

Parameters
• mbox – Mailbox object

• sem – Semaphore object

sys_port_trace_k_mbox_get_enter(mbox, timeout)
Trace Mailbox get attempt entry.

Parameters
• mbox – Mailbox entry

• timeout – Timeout period

sys_port_trace_k_mbox_get_blocking(mbox, timeout)
Trace Mailbox get attempt blocking.

Parameters
• mbox – Mailbox entry

• timeout – Timeout period

sys_port_trace_k_mbox_get_exit(mbox, timeout, ret)
Trace Mailbox get attempt outcome.

Parameters
• mbox – Mailbox entry

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_mbox_data_get(rx_msg)
Trace Mailbox data get.

rx_msg Receive Message object

Pipes

group subsys_tracing_apis_pipe
Pipe Tracing APIs.
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Defines

sys_port_trace_k_pipe_init(pipe)
Trace initialization of Pipe.

Parameters
• pipe – Pipe object

sys_port_trace_k_pipe_cleanup_enter(pipe)
Trace Pipe cleanup entry.

Parameters
• pipe – Pipe object

sys_port_trace_k_pipe_cleanup_exit(pipe, ret)
Trace Pipe cleanup exit.

Parameters
• pipe – Pipe object

• ret – Return value

sys_port_trace_k_pipe_alloc_init_enter(pipe)
Trace Pipe alloc init entry.

Parameters
• pipe – Pipe object

sys_port_trace_k_pipe_alloc_init_exit(pipe, ret)
Trace Pipe alloc init exit.

Parameters
• pipe – Pipe object

• ret – Return value

sys_port_trace_k_pipe_flush_enter(pipe)
Trace Pipe flush entry.

Parameters
• pipe – Pipe object

sys_port_trace_k_pipe_flush_exit(pipe)
Trace Pipe flush exit.

Parameters
• pipe – Pipe object

sys_port_trace_k_pipe_buffer_flush_enter(pipe)
Trace Pipe buffer flush entry.

Parameters
• pipe – Pipe object

sys_port_trace_k_pipe_buffer_flush_exit(pipe)
Trace Pipe buffer flush exit.

Parameters
• pipe – Pipe object
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sys_port_trace_k_pipe_put_enter(pipe, timeout)
Trace Pipe put attempt entry.

Parameters
• pipe – Pipe object

• timeout – Timeout period

sys_port_trace_k_pipe_put_blocking(pipe, timeout)
Trace Pipe put attempt blocking.

Parameters
• pipe – Pipe object

• timeout – Timeout period

sys_port_trace_k_pipe_put_exit(pipe, timeout, ret)
Trace Pipe put attempt outcome.

Parameters
• pipe – Pipe object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_pipe_get_enter(pipe, timeout)
Trace Pipe get attempt entry.

Parameters
• pipe – Pipe object

• timeout – Timeout period

sys_port_trace_k_pipe_get_blocking(pipe, timeout)
Trace Pipe get attempt blocking.

Parameters
• pipe – Pipe object

• timeout – Timeout period

sys_port_trace_k_pipe_get_exit(pipe, timeout, ret)
Trace Pipe get attempt outcome.

Parameters
• pipe – Pipe object

• timeout – Timeout period

• ret – Return value

Heaps

group subsys_tracing_apis_heap
Heap Tracing APIs.
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Defines

sys_port_trace_k_heap_init(h)
Trace initialization of Heap.

Parameters
• h – Heap object

sys_port_trace_k_heap_aligned_alloc_enter(h, timeout)
Trace Heap aligned alloc attempt entry.

Parameters
• h – Heap object

• timeout – Timeout period

sys_port_trace_k_heap_aligned_alloc_blocking(h, timeout)
Trace Heap align alloc attempt blocking.

Parameters
• h – Heap object

• timeout – Timeout period

sys_port_trace_k_heap_aligned_alloc_exit(h, timeout, ret)
Trace Heap align alloc attempt outcome.

Parameters
• h – Heap object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_heap_alloc_enter(h, timeout)
Trace Heap alloc enter.

Parameters
• h – Heap object

• timeout – Timeout period

sys_port_trace_k_heap_alloc_exit(h, timeout, ret)
Trace Heap alloc exit.

Parameters
• h – Heap object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_heap_free(h)
Trace Heap free.

Parameters
• h – Heap object

sys_port_trace_k_heap_realloc_enter(h, ptr, bytes, timeout)
Trace Heap realloc enter.

Parameters
• h – Heap object

998 Chapter 4. OS Services



Zephyr Project Documentation, Release 3.7.99

• ptr – Pointer to reallocate

• bytes – Bytes to reallocate

• timeout – Timeout period

sys_port_trace_k_heap_realloc_exit(h, ptr, bytes, timeout, ret)
Trace Heap realloc exit.

Parameters
• h – Heap object

• ptr – Pointer to reallocate

• bytes – Bytes to reallocate

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_heap_sys_k_aligned_alloc_enter(heap)
Trace System Heap aligned alloc enter.

Parameters
• heap – Heap object

sys_port_trace_k_heap_sys_k_aligned_alloc_exit(heap, ret)
Trace System Heap aligned alloc exit.

Parameters
• heap – Heap object

• ret – Return value

sys_port_trace_k_heap_sys_k_malloc_enter(heap)
Trace System Heap aligned alloc enter.

Parameters
• heap – Heap object

sys_port_trace_k_heap_sys_k_malloc_exit(heap, ret)
Trace System Heap aligned alloc exit.

Parameters
• heap – Heap object

• ret – Return value

sys_port_trace_k_heap_sys_k_free_enter(heap, heap_ref)
Trace System Heap free entry.

Parameters
• heap – Heap object

• heap_ref – Heap reference

sys_port_trace_k_heap_sys_k_free_exit(heap, heap_ref)
Trace System Heap free exit.

Parameters
• heap – Heap object

• heap_ref – Heap reference
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sys_port_trace_k_heap_sys_k_calloc_enter(heap)
Trace System heap calloc enter.

Parameters
• heap

sys_port_trace_k_heap_sys_k_calloc_exit(heap, ret)
Trace System heap calloc exit.

Parameters
• heap – Heap object

• ret – Return value

sys_port_trace_k_heap_sys_k_realloc_enter(heap, ptr)
Trace System heap realloc enter.

Parameters
• heap
• ptr

sys_port_trace_k_heap_sys_k_realloc_exit(heap, ptr, ret)
Trace System heap realloc exit.

Parameters
• heap – Heap object

• ptr – Memory pointer

• ret – Return value

Memory Slabs

group subsys_tracing_apis_mslab
Memory Slab Tracing APIs.

Defines

sys_port_trace_k_mem_slab_init(slab, rc)
Trace initialization of Memory Slab.

Parameters
• slab – Memory Slab object

• rc – Return value

sys_port_trace_k_mem_slab_alloc_enter(slab, timeout)
Trace Memory Slab alloc attempt entry.

Parameters
• slab – Memory Slab object

• timeout – Timeout period

1000 Chapter 4. OS Services



Zephyr Project Documentation, Release 3.7.99

sys_port_trace_k_mem_slab_alloc_blocking(slab, timeout)
Trace Memory Slab alloc attempt blocking.

Parameters
• slab – Memory Slab object

• timeout – Timeout period

sys_port_trace_k_mem_slab_alloc_exit(slab, timeout, ret)
Trace Memory Slab alloc attempt outcome.

Parameters
• slab – Memory Slab object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_mem_slab_free_enter(slab)
Trace Memory Slab free entry.

Parameters
• slab – Memory Slab object

sys_port_trace_k_mem_slab_free_exit(slab)
Trace Memory Slab free exit.

Parameters
• slab – Memory Slab object

Timers

group subsys_tracing_apis_timer
Timer Tracing APIs.

Defines

sys_port_trace_k_timer_init(timer)
Trace initialization of Timer.

Parameters
• timer – Timer object

sys_port_trace_k_timer_start(timer, duration, period)
Trace Timer start.

Parameters
• timer – Timer object

• duration – Timer duration

• period – Timer period

sys_port_trace_k_timer_stop(timer)
Trace Timer stop.

Parameters
• timer – Timer object
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sys_port_trace_k_timer_status_sync_enter(timer)
Trace Timer status sync entry.

Parameters
• timer – Timer object

sys_port_trace_k_timer_status_sync_blocking(timer, timeout)
Trace Timer Status sync blocking.

Parameters
• timer – Timer object

• timeout – Timeout period

sys_port_trace_k_timer_status_sync_exit(timer, result)
Trace Time Status sync outcome.

Parameters
• timer – Timer object

• result – Return value

Object tracking

group subsys_tracing_object_tracking
Object tracking.

Object tracking provides lists to kernel objects, so their existence and current status can be
tracked.

The following global variables are the heads of available lists:

• _track_list_k_timer

• _track_list_k_mem_slab

• _track_list_k_sem

• _track_list_k_mutex

• _track_list_k_stack

• _track_list_k_msgq

• _track_list_k_mbox

• _track_list_k_pipe

• _track_list_k_queue

• _track_list_k_event

Defines

SYS_PORT_TRACK_NEXT(list)
Gets node’s next element in a object tracking list.

Parameters
• list – Node to get next element from.
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Syscalls

group subsys_tracing_apis_syscall
Syscall Tracing APIs.

Defines

sys_port_trace_syscall_enter(id, name, ...)
Trace syscall entry.

Parameters
• id – Syscall ID (as defined in the generated syscall_list.h)

• name – Syscall name as a token (ex: k_thread_create)

• ... – Other parameters passed to the syscall

sys_port_trace_syscall_exit(id, name, ...)
Trace syscall exit.

Parameters
• id – Syscall ID (as defined in the generated syscall_list.h)

• name – Syscall name as a token (ex: k_thread_create)

• ... – Other parameters passed to the syscall, if the syscall has a return,
the return value is the last parameter in the list

4.14 Resource Management

There are various situations where it’s necessary to coordinate resource use at runtime among
multiple clients. These include power rails, clocks, other peripherals, and binary device power
management. The complexity of properly managing multiple consumers of a device in a multi-
threaded system, especially when transitions may be asynchronous, suggests that a shared im-
plementation is desirable.

Zephyr provides managers for several coordination policies. These managers are embedded into
services that use them for specific functions.

• On-Off Manager

4.14.1 On-Off Manager

An on-off manager supports an arbitrary number of clients of a service which has a binary state.
Example applications are power rails, clocks, and binary device power management.

The manager has the following properties:

• The stable states are off, on, and error. The service always begins in the off state. The service
may also be in a transition to a given state.
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• The core operations are request (add a dependency) and release (remove a dependency).
Supporting operations are reset (to clear an error state) and cancel (to reclaim client data
from an in-progress transition). The service manages the state based on calls to functions
that initiate these operations.

• The service transitions from off to on when first client request is received.

• The service transitions from on to off when last client release is received.

• Each service configuration provides functions that implement the transition from off to on,
from on to off, and optionally from an error state to off. Transitions must be invokable
from both thread and interrupt context.

• The request and reset operations are asynchronous using Asynchronous Notifications. Both
operations may be cancelled, but cancellation has no effect on the in-progress transition.

• Requests to turn on may be queued while a transition to off is in progress: when the service
has turned off successfully it will be immediately turned on again (where context allows)
and waiting clients notified when the start completes.

Requests are reference counted, but not tracked. That means clients are responsible for record-
ing whether their requests were accepted, and for initiating a release only if they have previously
successfully completed a request. Improper use of the API can cause an active client to be shut
out, and the manager does not maintain a record of specific clients that have been granted a
request.

Failures in executing a transition are recorded and inhibit further requests or releases until the
manager is reset. Pending requests are notified (and cancelled) when errors are discovered.

Transition operation completion notifications are provided through Asynchronous Notifications.

Clients and other components interested in tracking all service state changes, including when
a service begins turning off or enters an error state, can be informed of state transitions by
registering a monitor with onoff_monitor_register(). Notification of changes are provided before
issuing completion notifications associated with the new state.

Note

A generic API may be implemented by multiple drivers where the common case is asyn-
chronous. The on-off client structure may be an appropriate solution for the generic API.
Where drivers that can guarantee synchronous context-independent transitions a driver may
use onoff_sync_service and its supporting API rather than onoff_manager, with only a small
reduction in functionality (primarily no support for the monitor API).

group resource_mgmt_onoff_apis

Defines

ONOFF_FLAG_ERROR
Flag indicating an error state.

Error states are cleared using onoff_reset().

ONOFF_STATE_MASK
Mask used to isolate bits defining the service state.

Mask a value with this then test for ONOFF_FLAG_ERROR to determine whether
the machine has an unfixed error, or compare against ONOFF_STATE_ON,
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ONOFF_STATE_OFF, ONOFF_STATE_TO_ON, ONOFF_STATE_TO_OFF, or
ONOFF_STATE_RESETTING.

ONOFF_STATE_OFF
Value exposed by ONOFF_STATE_MASK when service is off.

ONOFF_STATE_ON
Value exposed by ONOFF_STATE_MASK when service is on.

ONOFF_STATE_ERROR
Value exposed by ONOFF_STATE_MASK when the service is in an error state (and not
in the process of resetting its state).

ONOFF_STATE_TO_ON
Value exposed by ONOFF_STATE_MASK when service is transitioning to on.

ONOFF_STATE_TO_OFF
Value exposed by ONOFF_STATE_MASK when service is transitioning to off.

ONOFF_STATE_RESETTING
Value exposed by ONOFF_STATE_MASK when service is in the process of resetting.

ONOFF_TRANSITIONS_INITIALIZER(_start, _stop, _reset)
Initializer for a onoff_transitions object.

Parameters
• _start – a function used to transition from off to on state.

• _stop – a function used to transition from on to off state.

• _reset – a function used to clear errors and force the service to an off
state. Can be null.

ONOFF_CLIENT_EXTENSION_POS
Identify region of sys_notify flags available for containing services.

Bits of the flags field of the sys_notify structure contained within the queued_operation
structure at and above this position may be used by extensions to the onoff_client struc-
ture.

These bits are intended for use by containing service implementations to record
client-specific information and are subject to other conditions of use specified on the
sys_notify API.

Typedefs

typedef void (*onoff_notify_fn)(struct onoff_manager *mgr, int res)
Signature used to notify an on-off manager that a transition has completed.

Functions of this type are passed to service-specific transition functions to be used
to report the completion of the operation. The functions may be invoked from any
context.

Parammgr
the manager for which transition was requested.

4.14. Resource Management 1005



Zephyr Project Documentation, Release 3.7.99

Param res
the result of the transition. This shall be non-negative on success, or a neg-
ative error code. If an error is indicated the service shall enter an error
state.

typedef void (*onoff_transition_fn)(struct onoff_manager *mgr, onoff_notify_fn notify)
Signature used by service implementations to effect a transition.

Service definitions use two required function pointers of this type to be notified that
a transition is required, and a third optional one to reset the service when it is in an
error state.

The start function will be called only from the off state.

The stop function will be called only from the on state.

The reset function (where supported) will be called only when onoff_has_error() re-
turns true.

Note

All transitions functions must be isr-ok.

Parammgr
the manager for which transition was requested.

Param notify
the function to be invoked when the transition has completed. If the transi-
tion is synchronous, notify shall be invoked by the implementation before
the transition function returns. Otherwise the implementation shall cap-
ture this parameter and invoke it when the transition completes.

typedef void (*onoff_client_callback)(struct onoff_manager *mgr, struct onoff_client *cli,
uint32_t state, int res)

Signature used to notify an on-off service client of the completion of an operation.

These functions may be invoked from any context including pre-kernel, ISR, or coop-
erative or pre-emptible threads. Compatible functions must be isr-ok and not sleep.

Parammgr
the manager for which the operation was initiated. This may be null if the
on-off service uses synchronous transitions.

Param cli
the client structure passed to the function that initiated the operation.

Param state
the state of the machine at the time of completion, restricted by
ONOFF_STATE_MASK. ONOFF_FLAG_ERROR must be checked indepen-
dently of whether res is negative as a machine error may indicate that all
future operations except onoff_reset() will fail.

Param res
the result of the operation. Expected values are service-specific, but the
value shall be non-negative if the operation succeeded, and negative if the
operation failed. If res is negative ONOFF_FLAG_ERROR will be set in state,
but if res is non-negative ONOFF_FLAG_ERROR may still be set in state.

typedef void (*onoff_monitor_callback)(struct onoff_manager *mgr, struct onoff_monitor
*mon, uint32_t state, int res)
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Signature used to notify a monitor of an onoff service of errors or completion of a state
transition.

This is similar to onoff_client_callback but provides information about all transitions,
not just ones associated with a specific client. Monitor callbacks are invoked before
any completion notifications associated with the state change are made.

These functions may be invoked from any context including pre-kernel, ISR, or coop-
erative or pre-emptible threads. Compatible functions must be isr-ok and not sleep.

The callback is permitted to unregister itself from the manager, but must not register
or unregister any other monitors.

Parammgr
the manager for which a transition has completed.

Parammon
the monitor instance through which this notification arrived.

Param state
the state of the machine at the time of completion, restricted by
ONOFF_STATE_MASK. All valid states may be observed.

Param res
the result of the operation. Expected values are service- and state-specific,
but the value shall be non-negative if the operation succeeded, and nega-
tive if the operation failed.

Functions

int onoff_manager_init(struct onoff_manager *mgr, const struct onoff_transitions
*transitions)

Initialize an on-off service to off state.

This function must be invoked exactly once per service instance, by the infrastructure
that provides the service, and before any other on-off service API is invoked on the
service.

This function should never be invoked by clients of an on-off service.

Parameters
• mgr – the manager definition object to be initialized.

• transitions – pointer to a structure providing transition functions. The
referenced object must persist as long as the manager can be referenced.

Return values
• 0 – on success

• -EINVAL – if start, stop, or flags are invalid

static inline bool onoff_has_error(const struct onoff_manager *mgr)
Test whether an on-off service has recorded an error.

This function can be used to determine whether the service has recorded an error.
Errors may be cleared by invoking onoff_reset().

This is an unlocked convenience function suitable for use only when it is known that
no other process might invoke an operation that transitions the service between an
error and non-error state.

Returns
true if and only if the service has an uncleared error.
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int onoff_request(struct onoff_manager *mgr, struct onoff_client *cli)
Request a reservation to use an on-off service.

The return value indicates the success or failure of an attempt to initiate an operation
to request the resource be made available. If initiation of the operation succeeds the
result of the request operation is provided through the configured client notification
method, possibly before this call returns.

Note that the call to this function may succeed in a case where the actual request fails.
Always check the operation completion result.

Parameters
• mgr – the manager that will be used.

• cli – a non-null pointer to client state providing instructions on syn-
chronous expectations and how to notify the client when the request
completes. Behavior is undefined if client passes a pointer object associ-
ated with an incomplete service operation.

Return values
• non-negative – the observed state of the machine at the time the request

was processed, if successful.

• -EIO – if service has recorded an error.

• -EINVAL – if the parameters are invalid.

• -EAGAIN – if the reference count would overflow.

int onoff_release(struct onoff_manager *mgr)
Release a reserved use of an on-off service.

This synchronously releases the caller’s previous request. If the last request is released
the manager will initiate a transition to off, which can be observed by registering an
onoff_monitor.

Note

Behavior is undefined if this is not paired with a preceding onoff_request() call that
completed successfully.

Parameters
• mgr – the manager for which a request was successful.

Return values
• non-negative – the observed state (ONOFF_STATE_ON) of the machine at

the time of the release, if the release succeeds.

• -EIO – if service has recorded an error.

• -ENOTSUP – if the machine is not in a state that permits release.

int onoff_cancel(struct onoff_manager *mgr, struct onoff_client *cli)
Attempt to cancel an in-progress client operation.

It may be that a client has initiated an operation but needs to shut down before the
operation has completed. For example, when a request was made and the need is no
longer present.

Cancelling is supported only for onoff_request() and onoff_reset() operations, and is a
synchronous operation. Be aware that any transition that was initiated on behalf of
the client will continue to progress to completion: it is only notification of transition
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completion that may be eliminated. If there are no active requests when a transition
to on completes the manager will initiate a transition to off.

Client notification does not occur for cancelled operations.

Parameters
• mgr – the manager for which an operation is to be cancelled.

• cli – a pointer to the same client state that was provided when the oper-
ation to be cancelled was issued.

Return values
• non-negative – the observed state of the machine at the time of the can-

cellation, if the cancellation succeeds. On successful cancellation owner-
ship of *cli reverts to the client.

• -EINVAL – if the parameters are invalid.

• -EALREADY – if cli was not a record of an uncompleted notification at the
time the cancellation was processed. This likely indicates that the oper-
ation and client notification had already completed.

static inline int onoff_cancel_or_release(struct onoff_manager *mgr, struct onoff_client
*cli)

Helper function to safely cancel a request.

Some applications may want to issue requests on an asynchronous event (such as con-
nection to a USB bus) and to release on a paired event (such as loss of connection to a
USB bus). Applications cannot precisely determine that an in-progress request is still
pending without using onoff_monitor and carefully avoiding race conditions.

This function is a helper that attempts to cancel the operation and issues a release if
cancellation fails because the request was completed. This synchronously ensures that
ownership of the client data reverts to the client so is available for a future request.

Parameters
• mgr – the manager for which an operation is to be cancelled.

• cli – a pointer to the same client state that was provided when
onoff_request() was invoked. Behavior is undefined if this is a pointer
to client data associated with an onoff_reset() request.

Return values
• ONOFF_STATE_TO_ON – if the cancellation occurred before the transition

completed.

• ONOFF_STATE_ON – if the cancellation occurred after the transition com-
pleted.

• -EINVAL – if the parameters are invalid.

• negative – other errors produced by onoff_release().

int onoff_reset(struct onoff_manager *mgr, struct onoff_client *cli)
Clear errors on an on-off service and reset it to its off state.

A service can only be reset when it is in an error state as indicated by onoff_has_error().

The return value indicates the success or failure of an attempt to initiate an operation
to reset the resource. If initiation of the operation succeeds the result of the reset op-
eration itself is provided through the configured client notification method, possibly
before this call returns. Multiple clients may request a reset; all are notified when it is
complete.
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Note that the call to this function may succeed in a case where the actual reset fails.
Always check the operation completion result.

Note

Due to the conditions on state transition all incomplete asynchronous operations
will have been informed of the error when it occurred. There need be no concern
about dangling requests left after a reset completes.

Parameters
• mgr – the manager to be reset.

• cli – pointer to client state, including instructions on how to notify the
client when reset completes. Behavior is undefined if cli references an
object associated with an incomplete service operation.

Return values
• non-negative – the observed state of the machine at the time of the reset,

if the reset succeeds.

• -ENOTSUP – if reset is not supported by the service.

• -EINVAL – if the parameters are invalid.

• -EALREADY – if the service does not have a recorded error.

int onoff_monitor_register(struct onoff_manager *mgr, struct onoff_monitor *mon)
Add a monitor of state changes for a manager.

Parameters
• mgr – the manager for which a state changes are to be monitored.

• mon – a linkable node providing a non-null callback to be invoked on state
changes.

Returns
non-negative on successful addition, or a negative error code.

int onoff_monitor_unregister(struct onoff_manager *mgr, struct onoff_monitor *mon)
Remove a monitor of state changes from a manager.

Parameters
• mgr – the manager for which a state changes are to be monitored.

• mon – a linkable node providing the callback to be invoked on state
changes.

Returns
non-negative on successful removal, or a negative error code.

int onoff_sync_lock(struct onoff_sync_service *srv, k_spinlock_key_t *keyp)
Lock a synchronous onoff service and provide its state.

Note

If an error state is returned it is the caller’s responsibility to decide whether to pre-
serve it (finalize with the same error state) or clear the error (finalize with a non-
error result).

Parameters
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• srv – pointer to the synchronous service state.

• keyp – pointer to where the lock key should be stored

Returns
negative if the service is in an error state, otherwise the number of active
requests at the time the lock was taken. The lock is held on return regard-
less of whether a negative state is returned.

int onoff_sync_finalize(struct onoff_sync_service *srv, k_spinlock_key_t key, struct
onoff_client *cli, int res, bool on)

Process the completion of a transition in a synchronous service and release lock.

This function updates the service state on the res and on parameters then releases the
lock. If cli is not null it finalizes the client notification using res.

If the service was in an error state when locked, and res is non-negative when final-
ized, the count is reset to zero before completing finalization.

Parameters
• srv – pointer to the synchronous service state

• key – the key returned by the preceding invocation of onoff_sync_lock().

• cli – pointer to the onoff client through which completion information
is returned. If a null pointer is passed only the state of the service is
updated. For compatibility with the behavior of callbacks used with the
manager API cli must be null when on is false (the manager does not
support callbacks when turning off devices).

• res – the result of the transition. A negative value places the service into
an error state. A non-negative value increments or decrements the ref-
erence count as specified by on.

• on – Only when res is non-negative, the service reference count will be
incremented ifon is true, and decremented if on is false.

Returns
negative if the service is left or put into an error state, otherwise the num-
ber of active requests at the time the lock was released.

struct onoff_transitions
#include <onoff.h> On-off service transition functions.

Public Members

onoff_transition_fn start
Function to invoke to transition the service to on.

onoff_transition_fn stop
Function to invoke to transition the service to off.

onoff_transition_fn reset
Function to force the service state to reset, where supported.

struct onoff_manager
#include <onoff.h> State associated with an on-off manager.
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No fields in this structure are intended for use by service providers or clients. The
state is to be initialized once, using onoff_manager_init(), when the service provider is
initialized. In case of error it may be reset through the onoff_reset() API.

Public Members

sys_slist_t clients
List of clients waiting for request or reset completion notifications.

sys_slist_t monitors
List of monitors to be notified of state changes including errors and transition com-
pletion.

const struct onoff_transitions *transitions
Transition functions.

struct k_spinlock lock
Mutex protection for other fields.

int last_res
The result of the last transition.

uint16_t flags
Flags identifying the service state.

uint16_t refs
Number of active clients for the service.

struct onoff_client
#include <onoff.h> State associated with a client of an on-off service.

Objects of this type are allocated by a client, which is responsible for zero-initializing
the node field and invoking the appropriate sys_notify init function to configure noti-
fication.

Control of the object content transfers to the service provider when a pointer to the
object is passed to any on-off manager function. While the service provider controls
the object the client must not change any object fields. Control reverts to the client
concurrent with release of the owned sys_notify structure, or when indicated by an
onoff_cancel() return value.

After control has reverted to the client the notify field must be reinitialized for the next
operation.

Public Members

struct sys_notify notify
Notification configuration.
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struct onoff_monitor
#include <onoff.h> Registration state for notifications of onoff service transitions.

Any given onoff_monitor structure can be associated with at most one onoff_manager
instance.

Public Members

sys_snode_t node
Links the client into the set of waiting service users.

This must be zero-initialized.

onoff_monitor_callback callback
Callback to be invoked on state change.

This must not be null.

struct onoff_sync_service
#include <onoff.h> State used when a driver uses the on-off service API for synchronous
operations.

This is useful when a subsystem API uses the on-off API to support asynchronous op-
erations but the transitions required by a particular driver are isr-ok and not sleep.
It serves as a substitute for onoff_manager, with locking and persisted state updates
supported by onoff_sync_lock() and onoff_sync_finalize().

Public Members

struct k_spinlock lock
Mutex protection for other fields.

int32_t count
Negative is error, non-negative is reference count.

4.15 Memory Attributes

It is possible in the devicetree to mark the memory regions with attributes by using the zephyr,
memory-attr property. This property and the related memory region can then be retrieved at
run-time by leveraging a provided helper library.

The set of general attributes that can be specified in the property are defined and explained in
include/zephyr/dt-bindings/memory-attr/memory-attr.h.

For example, to mark a memory region in the devicetree as non-volatile, cacheable, out-of-order:

mem: memory@10000000 {
compatible = "mmio-sram";
reg = <0x10000000 0x1000>;
zephyr,memory-attr = <( DT_MEM_NON_VOLATILE | DT_MEM_CACHEABLE | DT_MEM_OOO )>;

};
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Note

The zephyr,memory-attr usage does not result in any memory region actually created. When
it is needed to create an actual section out of the devicetree defined memory region, it is
possible to use the compatible zephyr,memory-region that will result (only when supported
by the architecture) in a new linker section and region.

The zephyr,memory-attr property can also be used to set architecture-specific and software-
specific custom attributes that can be interpreted at run time. This is leveraged, among other
things, to create MPU regions out of devicetree defined memory regions, for example:

mem: memory@10000000 {
compatible = "mmio-sram";
reg = <0x10000000 0x1000>;
zephyr,memory-region = "NOCACHE_REGION";
zephyr,memory-attr = <( DT_MEM_ARM(ATTR_MPU_RAM_NOCACHE) )>;

};

See include/zephyr/dt-bindings/memory-attr/memory-attr-arm.h and Arm Cortex-M Developer
Guide for more details about MPU usage.

The conventional and recommended way to deal and manage with memory regions marked
with attributes is by using the provided mem-attr helper library by enabling CONFIG_MEM_ATTR.
When this option is enabled the list of memory regions and their attributes are compiled in a
user-accessible array and a set of functions is made available that can be used to query, probe
and act on regions and attributes (see next section for more details).

Note

The zephyr,memory-attr property is only a descriptive property of the capabilities of the as-
sociated memory region, but it does not result in any actual setting for the memory to be set.
The user, code or subsystem willing to use this information to do some work (for example
creating an MPU region out of the property) must use either the provided mem-attr library or
the usual devicetree helpers to perform the required work / setting.

A test for the mem-attr library and its usage is provided in tests/subsys/mem_mgmt/mem_attr/.

4.15.1 Migration guide from zephyr,memory-region-mpu

When the zephyr,memory-attr property was introduced, the zephyr,memory-region-mpu prop-
erty was removed and deprecated.

The developers that are still using the deprecated property can move to the new one by renaming
the property and changing its value according to the following list:

"RAM" -> <( DT_ARM_MPU(ATTR_MPU_RAM) )>
"RAM_NOCACHE" -> <( DT_ARM_MPU(ATTR_MPU_RAM_NOCACHE) )>
"FLASH" -> <( DT_ARM_MPU(ATTR_MPU_FLASH) )>
"PPB" -> <( DT_ARM_MPU(ATTR_MPU_PPB) )>
"IO" -> <( DT_ARM_MPU(ATTR_MPU_IO) )>
"EXTMEM" -> <( DT_ARM_MPU(ATTR_MPU_EXTMEM) )>

4.15.2 Memory Attributes Heap Allocator

It is possible to leverage the memory attribute property zephyr,memory-attr to define and create
a set of memory heaps from which the user can allocate memory from with certain attributes /
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capabilities.

When the CONFIG_MEM_ATTR_HEAP is set, every region marked with one of the memory attributes
listed in include/zephyr/dt-bindings/memory-attr/memory-attr-sw.h is added to a pool of mem-
ory heaps used for dynamic allocation of memory buffers with certain attributes.

Here a non exhaustive list of possible attributes:

DT_MEM_SW_ALLOC_CACHE
DT_MEM_SW_ALLOC_NON_CACHE
DT_MEM_SW_ALLOC_DMA

For example we can define several memory regions with different attributes and use the appro-
priate attribute to indicate that it is possible to dynamically allocate memory from those regions:

mem_cacheable: memory@10000000 {
compatible = "mmio-sram";
reg = <0x10000000 0x1000>;
zephyr,memory-attr = <( DT_MEM_CACHEABLE | DT_MEM_SW_ALLOC_CACHE )>;

};

mem_non_cacheable: memory@20000000 {
compatible = "mmio-sram";
reg = <0x20000000 0x1000>;
zephyr,memory-attr = <( DT_MEM_NON_CACHEABLE | ATTR_SW_ALLOC_NON_CACHE )>;

};

mem_cacheable_big: memory@30000000 {
compatible = "mmio-sram";
reg = <0x30000000 0x10000>;
zephyr,memory-attr = <( DT_MEM_CACHEABLE | DT_MEM_OOO | DT_MEM_SW_ALLOC_CACHE )>;

};

mem_cacheable_dma: memory@40000000 {
compatible = "mmio-sram";
reg = <0x40000000 0x10000>;
zephyr,memory-attr = <( DT_MEM_CACHEABLE | DT_MEM_DMA |

DT_MEM_SW_ALLOC_CACHE | DT_MEM_SW_ALLOC_DMA )>;
};

The user can then dynamically carve memory out of those regions using the provided functions,
the library will take care of allocating memory from the correct heap depending on the provided
attribute and size:

// Init the pool
mem_attr_heap_pool_init();

// Allocate 0x100 bytes of cacheable memory from `mem_cacheable`
block = mem_attr_heap_alloc(DT_MEM_SW_ALLOC_CACHE, 0x100);

// Allocate 0x200 bytes of non-cacheable memory aligned to 32 bytes
// from `mem_non_cacheable`
block = mem_attr_heap_aligned_alloc(ATTR_SW_ALLOC_NON_CACHE, 0x100, 32);

// Allocate 0x100 bytes of cacheable and dma-able memory from `mem_cacheable_dma`
block = mem_attr_heap_alloc(DT_MEM_SW_ALLOC_CACHE | DT_MEM_SW_ALLOC_DMA, 0x100);

When several regions are marked with the same attributes, the memory is allocated:

1. From the regions where the zephyr,memory-attr property has the requested property (or
properties).

2. Among the regions as at point 1, from the smallest region if there is any unallocated space
left for the requested size
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3. If there is not enough space, from the next bigger region able to accommodate the requested
size

The following example shows the point 3:

// This memory is allocated from `mem_non_cacheable`
block = mem_attr_heap_alloc(DT_MEM_SW_ALLOC_NON_CACHE, 0x100);

// This memory is allocated from `mem_cacheable_big`
block = mem_attr_heap_alloc(DT_MEM_SW_ALLOC_CACHE, 0x5000);

Note

The framework is assuming that the memory regions used to create the heaps are usable by
the code and available at init time. The user must take of initializing and setting the memory
area before calling mem_attr_heap_pool_init().

That means that the region must be correctly configured in terms of MPU / MMU (if needed)
and that an actual heap can be created out of it, for example by leveraging the zephyr,
memory-region property to create a proper linker section to accommodate the heap.

4.15.3 API Reference

group memory_attr_interface
Memory-Attr Interface.

Defines

DT_MEMORY_ATTR_FOREACH_STATUS_OKAY_NODE(fn)
Invokes fn for every status okay node in the tree with property zephyr,memory-attr
The macro fn must take one parameter, which will be a node identifier with the
zephyr,memory-attr property. The macro is expanded once for each node in the tree
with status okay. The order that nodes are visited in is not specified.

Parameters
• fn – macro to invoke

Functions

size_t mem_attr_get_regions(const struct mem_attr_region_t **region)
Get the list of memory regions.

Get the list of enabled memory regions with their memory-attribute as gathered by DT.

Parameters
• region – Pointer to pointer to the list of memory regions.

Return values
Number – of memory regions returned in the parameter.
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int mem_attr_check_buf(void *addr, size_t size, uint32_t attr)
Check if a buffer has correct size and attributes.

This function is used to check if a given buffer with a given set of attributes fully match
a memory region in terms of size and attributes.

This is usually used to verify that a buffer has the expected attributes (for example the
buffer is cacheable / non-cacheable or belongs to RAM / FLASH, etc…) and it has been
correctly allocated.

The expected set of attributes for the buffer is and-matched against the full set of at-
tributes for the memory region it belongs to (bitmask). So the buffer is considered
matching when at least that set of attributes are valid for the memory region (but the
region can be marked also with other attributes besides the one passed as parameter).

Parameters
• addr – Virtual address of the user buffer.

• size – Size of the user buffer.

• attr – Expected / desired attribute for the buffer.

Return values
• 0 – if the buffer has the correct size and attribute.

• -ENOSYS – if the operation is not supported (for example if the MMU is
enabled).

• -ENOTSUP – if the wrong parameters were passed.

• -EINVAL – if the buffer has the wrong set of attributes.

• -ENOSPC – if the buffer is too big for the region it belongs to.

• -ENOBUFS – if the buffer is entirely allocated outside a memory region.

struct mem_attr_region_t
#include <mem_attr.h> memory-attr region structure.

This structure represents the data gathered from DT about a memory-region marked
with memory attributes.

Public Members

const char *dt_name
Memory node full name.

uintptr_t dt_addr
Memory region physical address.

size_t dt_size
Memory region size.

uint32_t dt_attr
Memory region attributes.

group memory_attr_heap
Memory heaps based on memory attributes.
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Functions

int mem_attr_heap_pool_init(void)
Init the memory pool.

This must be the first function to be called to initialize the memory pools from all the
memory regions with the a software attribute.

Return values
• 0 – on success.

• -EALREADY – if the pool was already initialized.

• -ENOMEM – too many regions already allocated.

void *mem_attr_heap_alloc(uint32_t attr, size_t bytes)
Allocate memory with a specified attribute and size.

Allocates a block of memory of the specified size in bytes and with a specified capability
/ attribute. The attribute is used to select the correct memory heap to allocate memory
from.

Parameters
• attr – capability / attribute requested for the memory block.

• bytes – requested size of the allocation in bytes.

Return values
• ptr – a valid pointer to the allocated memory.

• NULL – if no memory is available with that attribute and size.

void *mem_attr_heap_aligned_alloc(uint32_t attr, size_t align, size_t bytes)
Allocate aligned memory with a specified attribute, size and alignment.

Allocates a block of memory of the specified size in bytes and with a specified capability
/ attribute. Takes an additional parameter specifying a power of two alignment in
bytes.

Parameters
• attr – capability / attribute requested for the memory block.

• align – power of two alignment for the returned pointer in bytes.

• bytes – requested size of the allocation in bytes.

Return values
• ptr – a valid pointer to the allocated memory.

• NULL – if no memory is available with that attribute and size.

void mem_attr_heap_free(void *block)
Free the allocated memory.

Used to free the passed block of memory that must be the return value of a previously
call to mem_attr_heap_alloc or mem_attr_heap_aligned_alloc.

Parameters
• block – block to free, must be a pointer to a block allocated by
mem_attr_heap_alloc or mem_attr_heap_aligned_alloc.
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const struct mem_attr_region_t *mem_attr_heap_get_region(void *addr)
Get a specific memory region descriptor for a provided address.

Finds the memory region descriptor struct controlling the provided pointer.

Parameters
• addr – address to be found, must be a pointer to a block allocated by
mem_attr_heap_alloc or mem_attr_heap_aligned_alloc.

Return values
str – pointer to a memory region structure the address belongs to.

4.16 Modbus

Modbus is an industrial messaging protocol. The protocol is specified for different types of net-
works or buses. Zephyr OS implementation supports communication over serial line and may be
used with different physical interfaces, like RS485 or RS232. TCP support is not implemented di-
rectly, but there are helper functions to realize TCP support according to the application’s needs.

Modbus communication is based on client/server model. Only one client may be present on
the bus. Client can communicate with several server devices. Server devices themselves are
passive and must not send requests or unsolicited responses. Services requested by the client
are specified by function codes (FCxx), and can be found in the specification or documentation
of the API below.

Zephyr RTOS implementation supports both client and server roles.

More information about Modbus and Modbus RTU can be found on the website MODBUS Proto-
col Specifications.

4.16.1 Samples

• modbus-rtu-server and modbus-rtu-client samples give the possibility to try out RTU server
and RTU client implementation with an evaluation board.

• modbus-tcp-server sample is a simple Modbus TCP server.

• modbus-gateway sample shows how to build a TCP to serial line gateway with Zephyr OS.

4.16.2 API Reference

Related code samples

Modbus RTU client
Communicate with a Modbus RTU server.

Modbus RTU server
Implement a Modbus RTU server exposing Modbus commands to control LEDs.

Modbus TCP server
Implement a Modbus TCP server exposing Modbus commands to control LEDs.

Modbus TCP-to-serial gateway
Implement a gateway between an Ethernet TCP-IP network and a Modbus serial line.
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group modbus
MODBUS transport protocol API.

Modbus exception codes

MODBUS_EXC_NONE
No exception.

MODBUS_EXC_ILLEGAL_FC
Illegal function code.

MODBUS_EXC_ILLEGAL_DATA_ADDR
Illegal data address.

MODBUS_EXC_ILLEGAL_DATA_VAL
Illegal data value.

MODBUS_EXC_SERVER_DEVICE_FAILURE
Server device failure.

MODBUS_EXC_ACK
Acknowledge.

MODBUS_EXC_SERVER_DEVICE_BUSY
Server device busy.

MODBUS_EXC_MEM_PARITY_ERROR
Memory parity error.

MODBUS_EXC_GW_PATH_UNAVAILABLE
Gateway path unavailable.

MODBUS_EXC_GW_TARGET_FAILED_TO_RESP
Gateway target device failed to respond.

Defines

MODBUS_MBAP_LENGTH
Length of MBAP Header.

MODBUS_MBAP_AND_FC_LENGTH
Length of MBAP Header plus function code.

MODBUS_CUSTOM_FC_DEFINE(name, user_cb, user_fc, userdata)
INTERNAL_HIDDEN.

Helper macro for initializing custom function code structs
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Typedefs

typedef int (*modbus_raw_cb_t)(const int iface, const struct modbus_adu *adu, void
*user_data)

ADU raw callback function signature.

Param iface
Modbus RTU interface index

Param adu
Pointer to the RAW ADU struct to send

Param user_data
Pointer to the user data

Retval 0
If transfer was successful

typedef bool (*modbus_custom_cb_t)(const int iface, const struct modbus_adu *const
rx_adu, struct modbus_adu *const tx_adu, uint8_t *const excep_code, void *const
user_data)

Custom function code handler function signature.

Modbus allows user defined function codes which can be used to extend the base pro-
tocol. These callbacks can also be used to implement function codes currently not
supported by Zephyr’s Modbus subsystem.

If an error occurs during the handling of the request, the handler should signal this by
setting excep_code to a modbus exception code.

User data pointer can be used to pass state between subsequent calls to the handler.

Param iface
Modbus interface index

Param rx_adu
Pointer to the received ADU struct

Param tx_adu
Pointer to the outgoing ADU struct

Param excep_code
Pointer to possible exception code

Param user_data
Pointer to user data

Retval true
If response should be sent, false otherwise

Enums

enum modbus_mode
Modbus interface mode.

Values:

enumerator MODBUS_MODE_RTU
Modbus over serial line RTU mode.
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enumerator MODBUS_MODE_ASCII
Modbus over serial line ASCII mode.

enumerator MODBUS_MODE_RAW
Modbus raw ADU mode.

Functions

int modbus_read_coils(const int iface, const uint8_t unit_id, const uint16_t start_addr,
uint8_t *const coil_tbl, const uint16_t num_coils)

Coil read (FC01)

Sends a Modbus message to read the status of coils from a server.

Parameters
• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• start_addr – Coil starting address

• coil_tbl – Pointer to an array of bytes containing the value of the coils
read. The format is:

MSB LSB
B7 B6 B5 B4 B3 B2 B1 B0
-------------------------------------

coil_tbl[0] #8 #7 #1
coil_tbl[1] #16 #15 #9

:
:

Note that the array that will be receiving the coil values must be greater
than or equal to: (num_coils - 1) / 8 + 1

• num_coils – Quantity of coils to read

Return values
0 – If the function was successful

int modbus_read_dinputs(const int iface, const uint8_t unit_id, const uint16_t start_addr,
uint8_t *const di_tbl, const uint16_t num_di)

Read discrete inputs (FC02)

Sends a Modbus message to read the status of discrete inputs from a server.

Parameters
• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• start_addr – Discrete input starting address

• di_tbl – Pointer to an array that will receive the state of the discrete
inputs. The format of the array is as follows:

MSB LSB
B7 B6 B5 B4 B3 B2 B1 B0
-------------------------------------

di_tbl[0] #8 #7 #1
di_tbl[1] #16 #15 #9

(continues on next page)
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(continued from previous page)
:
:

Note that the array that will be receiving the discrete input values must
be greater than or equal to: (num_di - 1) / 8 + 1

• num_di – Quantity of discrete inputs to read

Return values
0 – If the function was successful

int modbus_read_holding_regs(const int iface, const uint8_t unit_id, const uint16_t
start_addr, uint16_t *const reg_buf, const uint16_t
num_regs)

Read holding registers (FC03)

Sends a Modbus message to read the value of holding registers from a server.

Parameters
• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• start_addr – Register starting address

• reg_buf – Is a pointer to an array that will receive the current values of
the holding registers from the server. The array pointed to by ‘reg_buf’
needs to be able to hold at least ‘num_regs’ entries.

• num_regs – Quantity of registers to read

Return values
0 – If the function was successful

int modbus_read_input_regs(const int iface, const uint8_t unit_id, const uint16_t
start_addr, uint16_t *const reg_buf, const uint16_t
num_regs)

Read input registers (FC04)

Sends a Modbus message to read the value of input registers from a server.

Parameters
• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• start_addr – Register starting address

• reg_buf – Is a pointer to an array that will receive the current value of
the holding registers from the server. The array pointed to by ‘reg_buf’
needs to be able to hold at least ‘num_regs’ entries.

• num_regs – Quantity of registers to read

Return values
0 – If the function was successful

int modbus_write_coil(const int iface, const uint8_t unit_id, const uint16_t coil_addr,
const bool coil_state)

Write single coil (FC05)

Sends a Modbus message to write the value of single coil to a server.

Parameters
• iface – Modbus interface index
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• unit_id – Modbus unit ID of the server

• coil_addr – Coils starting address

• coil_state – Is the desired state of the coil

Return values
0 – If the function was successful

int modbus_write_holding_reg(const int iface, const uint8_t unit_id, const uint16_t
start_addr, const uint16_t reg_val)

Write single holding register (FC06)

Sends a Modbus message to write the value of single holding register to a server unit.

Parameters
• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• start_addr – Coils starting address

• reg_val – Desired value of the holding register

Return values
0 – If the function was successful

int modbus_request_diagnostic(const int iface, const uint8_t unit_id, const uint16_t sfunc,
const uint16_t data, uint16_t *const data_out)

Read diagnostic (FC08)

Sends a Modbus message to perform a diagnostic function of a server unit.

Parameters
• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• sfunc – Diagnostic sub-function code

• data – Sub-function data

• data_out – Pointer to the data value

Return values
0 – If the function was successful

int modbus_write_coils(const int iface, const uint8_t unit_id, const uint16_t start_addr,
uint8_t *const coil_tbl, const uint16_t num_coils)

Write coils (FC15)

Sends a Modbus message to write to coils on a server unit.

Parameters
• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• start_addr – Coils starting address

• coil_tbl – Pointer to an array of bytes containing the value of the coils
to write. The format is:

MSB LSB
B7 B6 B5 B4 B3 B2 B1 B0
-------------------------------------

coil_tbl[0] #8 #7 #1
(continues on next page)
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(continued from previous page)
coil_tbl[1] #16 #15 #9

:
:

Note that the array that will be receiving the coil values must be greater
than or equal to: (num_coils - 1) / 8 + 1

• num_coils – Quantity of coils to write

Return values
0 – If the function was successful

int modbus_write_holding_regs(const int iface, const uint8_t unit_id, const uint16_t
start_addr, uint16_t *const reg_buf, const uint16_t
num_regs)

Write holding registers (FC16)

Sends a Modbus message to write to integer holding registers to a server unit.

Parameters
• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• start_addr – Register starting address

• reg_buf – Is a pointer to an array containing the value of the holding
registers to write. Note that the array containing the register values must
be greater than or equal to ‘num_regs’

• num_regs – Quantity of registers to write

Return values
0 – If the function was successful

int modbus_read_holding_regs_fp(const int iface, const uint8_t unit_id, const uint16_t
start_addr, float *const reg_buf, const uint16_t
num_regs)

Read floating-point holding registers (FC03)

Sends a Modbus message to read the value of floating-point holding registers from a
server unit.

Parameters
• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• start_addr – Register starting address

• reg_buf – Is a pointer to an array that will receive the current values of
the holding registers from the server. The array pointed to by ‘reg_buf’
needs to be able to hold at least ‘num_regs’ entries.

• num_regs – Quantity of registers to read

Return values
0 – If the function was successful

int modbus_write_holding_regs_fp(const int iface, const uint8_t unit_id, const uint16_t
start_addr, float *const reg_buf, const uint16_t
num_regs)

Write floating-point holding registers (FC16)

Sends a Modbus message to write to floating-point holding registers to a server unit.
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Parameters
• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• start_addr – Register starting address

• reg_buf – Is a pointer to an array containing the value of the holding
registers to write. Note that the array containing the register values must
be greater than or equal to ‘num_regs’

• num_regs – Quantity of registers to write

Return values
0 – If the function was successful

int modbus_iface_get_by_name(const char *iface_name)
Get Modbus interface index according to interface name.

If there is more than one interface, it can be used to clearly identify interfaces in the
application.

Parameters
• iface_name – Modbus interface name

Return values
Modbus – interface index or negative error value.

int modbus_init_server(const int iface, struct modbus_iface_param param)
Configure Modbus Interface as raw ADU server.

Parameters
• iface – Modbus RTU interface index

• param – Configuration parameter of the server interface

Return values
0 – If the function was successful

int modbus_init_client(const int iface, struct modbus_iface_param param)
Configure Modbus Interface as raw ADU client.

Parameters
• iface – Modbus RTU interface index

• param – Configuration parameter of the client interface

Return values
0 – If the function was successful

int modbus_disable(const uint8_t iface)
Disable Modbus Interface.

This function is called to disable Modbus interface.

Parameters
• iface – Modbus interface index

Return values
0 – If the function was successful

int modbus_raw_submit_rx(const int iface, const struct modbus_adu *adu)
Submit raw ADU.

Parameters
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• iface – Modbus RTU interface index

• adu – Pointer to the RAW ADU struct that is received

Return values
0 – If transfer was successful

void modbus_raw_put_header(const struct modbus_adu *adu, uint8_t *header)
Put MBAP header into a buffer.

Parameters
• adu – Pointer to the RAW ADU struct

• header – Pointer to the buffer in which MBAP header will be placed.

void modbus_raw_get_header(struct modbus_adu *adu, const uint8_t *header)
Get MBAP header from a buffer.

Parameters
• adu – Pointer to the RAW ADU struct

• header – Pointer to the buffer containing MBAP header

void modbus_raw_set_server_failure(struct modbus_adu *adu)
Set Server Device Failure exception.

This function modifies ADU passed by the pointer.

Parameters
• adu – Pointer to the RAW ADU struct

int modbus_raw_backend_txn(const int iface, struct modbus_adu *adu)
Use interface as backend to send and receive ADU.

This function overwrites ADU passed by the pointer and generates exception responses
if backend interface is misconfigured or target device is unreachable.

Parameters
• iface – Modbus client interface index

• adu – Pointer to the RAW ADU struct

Return values
0 – If transfer was successful

int modbus_register_user_fc(const int iface, struct modbus_custom_fc *custom_fc)
Register a user-defined function code handler.

The Modbus specification allows users to define standard function codes missing from
Zephyr’s Modbus implementation as well as add non-standard function codes in the
ranges 65 to 72 and 100 to 110 (decimal), as per specification.

This function registers a new handler at runtime for the given function code.

Parameters
• iface – Modbus client interface index

• custom_fc – User defined function code and callback pair

Return values
0 – on success

struct modbus_adu
#include <modbus.h> Frame struct used internally and for raw ADU support.
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Public Members

uint16_t trans_id
Transaction Identifier.

uint16_t proto_id
Protocol Identifier.

uint16_t length
Length of the data only (not the length of unit ID + PDU)

uint8_t unit_id
Unit Identifier.

uint8_t fc
Function Code.

uint8_t data[CONFIG_MODBUS_BUFFER_SIZE - 4]
Transaction Data.

uint16_t crc
RTU CRC.

struct modbus_user_callbacks
#include <modbus.h> Modbus Server User Callback structure.

Public Members

int (*coil_rd)(uint16_t addr, bool *state)
Coil read callback.

int (*coil_wr)(uint16_t addr, bool state)
Coil write callback.

int (*discrete_input_rd)(uint16_t addr, bool *state)
Discrete Input read callback.

int (*input_reg_rd)(uint16_t addr, uint16_t *reg)
Input Register read callback.

int (*input_reg_rd_fp)(uint16_t addr, float *reg)
Floating Point Input Register read callback.

int (*holding_reg_rd)(uint16_t addr, uint16_t *reg)
Holding Register read callback.

int (*holding_reg_wr)(uint16_t addr, uint16_t reg)
Holding Register write callback.
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int (*holding_reg_rd_fp)(uint16_t addr, float *reg)
Floating Point Holding Register read callback.

int (*holding_reg_wr_fp)(uint16_t addr, float reg)
Floating Point Holding Register write callback.

struct modbus_serial_param
#include <modbus.h> Modbus serial line parameter.

Public Members

uint32_t baud
Baudrate of the serial line.

enum uart_config_parity parity
parity UART’s parity setting: UART_CFG_PARITY_NONE, UART_CFG_PARITY_EVEN,
UART_CFG_PARITY_ODD

enum uart_config_stop_bits stop_bits_client
stop_bits_client UART’s stop bits setting if in client mode:
UART_CFG_STOP_BITS_0_5, UART_CFG_STOP_BITS_1, UART_CFG_STOP_BITS_1_5,
UART_CFG_STOP_BITS_2,

struct modbus_server_param
#include <modbus.h> Modbus server parameter.

Public Members

struct modbus_user_callbacks *user_cb
Pointer to the User Callback structure.

uint8_t unit_id
Modbus unit ID of the server.

struct modbus_raw_cb
#include <modbus.h>

struct modbus_iface_param
#include <modbus.h> User parameter structure to configure Modbus interface as client
or server.

Public Members

enum modbus_mode mode
Mode of the interface.
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uint32_t rx_timeout
Amount of time client will wait for a response from the server.

struct modbus_serial_param serial
Serial support parameter of the interface.

struct modbus_raw_cb rawcb
Pointer to raw ADU callback function.

4.17 Modemmodules

This service provides modules necessary to communicate with modems.

Modems are self-contained devices that implement the hardware and software necessary to per-
form RF (Radio-Frequency) communication, including GNSS, Cellular, WiFi etc.

The modem modules are inter-connected dynamically using data-in/data-out pipes making them
independently testable and highly flexible, ensuring stability and scalability.

4.17.1 Modem pipe

This module is used to abstract data-in/data-out communication over a variety of mechanisms,
like UART and CMUX DLCI channels, in a thread-safe manner.

A modem backend will internally contain an instance of a modem_pipe structure, alongside any
buffers and additional structures required to abstract away its underlying mechanism.

The modem backend will return a pointer to its internal modem_pipe structure when initialized,
which will be used to interact with the backend through the modem pipe API.

group modem_pipe
Modem Pipe.

Typedefs

typedef void (*modem_pipe_api_callback)(struct modem_pipe *pipe, enum
modem_pipe_event event, void *user_data)

Enums

enum modem_pipe_event
Modem pipe event.

Values:

enumerator MODEM_PIPE_EVENT_OPENED = 0

enumerator MODEM_PIPE_EVENT_RECEIVE_READY
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enumerator MODEM_PIPE_EVENT_TRANSMIT_IDLE

enumerator MODEM_PIPE_EVENT_CLOSED

Functions

int modem_pipe_open(struct modem_pipe *pipe, k_timeout_t timeout)
Open pipe.

Warning

Be cautious when using this synchronous version of the call. It may block the calling
thread, which in the case of the system workqueue can result in a deadlock until this
call times out waiting for the pipe to be open.

Parameters
• pipe – Pipe instance

• timeout – Timeout waiting for pipe to open

Return values
• 0 – if pipe was successfully opened or was already open

• -errno – code otherwise

int modem_pipe_open_async(struct modem_pipe *pipe)
Open pipe asynchronously.

Note

The MODEM_PIPE_EVENT_OPENED event is invoked immediately if pipe is already
opened.

Parameters
• pipe – Pipe instance

Return values
• 0 – if pipe open was called successfully or pipe was already open

• -errno – code otherwise

void modem_pipe_attach(struct modem_pipe *pipe, modem_pipe_api_callback callback,
void *user_data)

Attach pipe to callback.

Note

The MODEM_PIPE_EVENT_RECEIVE_READY event is invoked immediately if pipe
has pending data ready to receive.

Parameters
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• pipe – Pipe instance

• callback – Callback called when pipe event occurs

• user_data – Free to use user data passed with callback

int modem_pipe_transmit(struct modem_pipe *pipe, const uint8_t *buf, size_t size)
Transmit data through pipe.

Warning

This call must be non-blocking

Parameters
• pipe – Pipe to transmit through

• buf – Data to transmit

• size – Number of bytes to transmit

Return values
• Number – of bytes placed in pipe

• -EPERM – if pipe is closed

• -errno – code on error

int modem_pipe_receive(struct modem_pipe *pipe, uint8_t *buf, size_t size)
Receive data through pipe.

Warning

This call must be non-blocking

Parameters
• pipe – Pipe to receive from

• buf – Destination for received data; must not be already in use in a mo-
dem module.

• size – Capacity of destination for received data

Return values
• Number – of bytes received from pipe

• -EPERM – if pipe is closed

• -errno – code on error

void modem_pipe_release(struct modem_pipe *pipe)
Clear callback.

Parameters
• pipe – Pipe instance
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int modem_pipe_close(struct modem_pipe *pipe, k_timeout_t timeout)
Close pipe.

Warning

Be cautious when using this synchronous version of the call. It may block the calling
thread, which in the case of the system workqueue can result in a deadlock until this
call times out waiting for the pipe to be closed.

Parameters
• pipe – Pipe instance

• timeout – Timeout waiting for pipe to close

Return values
• 0 – if pipe open was called closed or pipe was already closed

• -errno – code otherwise

int modem_pipe_close_async(struct modem_pipe *pipe)
Close pipe asynchronously.

Note

The MODEM_PIPE_EVENT_CLOSED event is invoked immediately if pipe is already
closed.

Parameters
• pipe – Pipe instance

Return values
• 0 – if pipe close was called successfully or pipe was already closed

• -errno – code otherwise

4.17.2 Modem PPP

This module defines and binds a L2 PPP network interface, described in L2 Layer Management,
to a modem backend. The L2 PPP interface sends and receives network packets. These network
packets have to be wrapped in PPP frames before being transported via a modem backend. This
module performs said wrapping.

group modem_ppp
Modem PPP.

Defines

MODEM_PPP_DEFINE(_name, _init_iface, _prio, _mtu, _buf_size)
Define a modem PPP module and bind it to a network interface.

This macro defines the modem_ppp instance, initializes a PPP L2 network device in-
stance, and binds the modem_ppp instance to the PPP L2 instance.

Parameters
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• _name – Name of the statically defined modem_ppp instance

• _init_iface – Hook for the PPP L2 network interface init function

• _prio – Initialization priority of the PPP L2 net iface

• _mtu – Max size of net_pkt data sent and received on PPP L2 net iface

• _buf_size – Size of partial PPP frame transmit and receive buffers

Typedefs

typedef void (*modem_ppp_init_iface)(struct net_if *iface)
L2 network interface init callback.

Functions

int modem_ppp_attach(struct modem_ppp *ppp, struct modem_pipe *pipe)
Attach pipe to instance and connect.

Parameters
• ppp – Modem PPP instance

• pipe – Pipe to attach to modem PPP instance

struct net_if *modem_ppp_get_iface(struct modem_ppp *ppp)
Get network interface modem PPP instance is bound to.

Parameters
• ppp – Modem PPP instance

Returns
Pointer to network interface modem PPP instance is bound to

void modem_ppp_release(struct modem_ppp *ppp)
Release pipe from instance.

Parameters
• ppp – Modem PPP instance

4.17.3 Modem CMUX

This module is an implementation of CMUX following the 3GPP 27.010 specification. CMUX is
a multiplexing protocol, allowing for multiple bi-directional streams of data, called DLCI chan-
nels. The module attaches to a single modem backend, exposing multiple modem backends, each
representing a DLCI channel.

group modem_cmux
Modem CMUX.

Typedefs

typedef void (*modem_cmux_callback)(struct modem_cmux *cmux, enum
modem_cmux_event event, void *user_data)
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Enums

enum modem_cmux_event
Values:

enumerator MODEM_CMUX_EVENT_CONNECTED = 0

enumerator MODEM_CMUX_EVENT_DISCONNECTED

Functions

void modem_cmux_init(struct modem_cmux *cmux, const struct modem_cmux_config
*config)

Initialize CMUX instance.

Parameters
• cmux – CMUX instance

• config – Configuration to apply to CMUX instance

struct modem_pipe *modem_cmux_dlci_init(struct modem_cmux *cmux, struct
modem_cmux_dlci *dlci, const struct
modem_cmux_dlci_config *config)

Initialize DLCI instance and register it with CMUX instance.

Parameters
• cmux – CMUX instance which the DLCI will be registered to

• dlci – DLCI instance which will be registered and configured

• config – Configuration to apply to DLCI instance

int modem_cmux_attach(struct modem_cmux *cmux, struct modem_pipe *pipe)
Attach CMUX instance to pipe.

Parameters
• cmux – CMUX instance

• pipe – Pipe instance to attach CMUX instance to

int modem_cmux_connect(struct modem_cmux *cmux)
Connect CMUX instance.

This will send a CMUX connect request to target on the serial bus. If successful, DLCI
channels can be now be opened using modem_pipe_open()

Note

When connected, the bus pipe must not be used directly

Parameters
• cmux – CMUX instance
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int modem_cmux_connect_async(struct modem_cmux *cmux)
Connect CMUX instance asynchronously.

This will send a CMUX connect request to target on the serial bus. If successful, DLCI
channels can be now be opened using modem_pipe_open().

Note

When connected, the bus pipe must not be used directly

Parameters
• cmux – CMUX instance

int modem_cmux_disconnect(struct modem_cmux *cmux)
Close down and disconnect CMUX instance.

This will close all open DLCI channels, and close down the CMUX connection.

Note

The bus pipe must be released using modem_cmux_release() after disconnecting be-
fore being reused.

Parameters
• cmux – CMUX instance

int modem_cmux_disconnect_async(struct modem_cmux *cmux)
Close down and disconnect CMUX instance asynchronously.

This will close all open DLCI channels, and close down the CMUX connection.

Note

The bus pipe must be released using modem_cmux_release() after disconnecting be-
fore being reused.

Parameters
• cmux – CMUX instance

void modem_cmux_release(struct modem_cmux *cmux)
Release CMUX instance from pipe.

Releases the pipe and hard resets the CMUX instance internally. CMUX should be dis-
connected using modem_cmux_disconnect().

Note

The bus pipe can be used directly again after CMUX instance is released.

Parameters
• cmux – CMUX instance
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struct modem_cmux_config
#include <cmux.h> Contains CMUX instance configuration data.

Public Members

modem_cmux_callback callback
Invoked when event occurs.

void *user_data
Free to use pointer passed to event handler when invoked.

uint8_t *receive_buf
Receive buffer.

uint16_t receive_buf_size
Size of receive buffer in bytes [127, …].

uint8_t *transmit_buf
Transmit buffer.

uint16_t transmit_buf_size
Size of transmit buffer in bytes [149, …].

struct modem_cmux_dlci_config
#include <cmux.h> CMUX DLCI configuration.

Public Members

uint8_t dlci_address
DLCI channel address.

uint8_t *receive_buf
Receive buffer used by pipe.

uint16_t receive_buf_size
Size of receive buffer used by pipe [127, …].

4.17.4 Modem pipelink

This module is used to share modem pipes globally. This module aims to decouple the
creation and setup of modem pipes in device drivers from the users of said pipes. See
drivers/modem/modem_at_shell.c and drivers/modem/modem_cellular.c for examples of how to
use the modem pipelink between device driver and application.

group modem_pipelink
Modem pipelink.
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MODEM_PIPELINK_DT_INST macros

Device driver instance variants of MODEM_PIPELINK_DT macros

MODEM_PIPELINK_DT_INST_DECLARE(inst, name)

MODEM_PIPELINK_DT_INST_DEFINE(inst, name)

MODEM_PIPELINK_DT_INST_GET(inst, name)

Defines

MODEM_PIPELINK_DT_DECLARE(node_id, name)
Declare pipelink from devicetree node identifier and name.

Parameters
• node_id – Devicetree node identifier

• name – Pipelink name

MODEM_PIPELINK_DT_DEFINE(node_id, name)
Define pipelink from devicetree node identifier and name.

Parameters
• node_id – Devicetree node identifier

• name – Pipelink name

MODEM_PIPELINK_DT_GET(node_id, name)
Get pointer to pipelink from devicetree node identifier and name.

Parameters
• node_id – Devicetree node identifier

• name – Pipelink name

Typedefs

typedef void (*modem_pipelink_callback)(struct modem_pipelink *link, enum
modem_pipelink_event event, void *user_data)

Pipelink callback definition.

Param link
Modem pipelink instance

Param event
Modem pipelink event

Param user_data
User data passed to modem_pipelink_attach()

Enums
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enum modem_pipelink_event
Pipelink event.

Values:

enumerator MODEM_PIPELINK_EVENT_CONNECTED = 0
Modem pipe has been connected and can be opened.

enumerator MODEM_PIPELINK_EVENT_DISCONNECTED
Modem pipe has been disconnected and can’t be opened.

Functions

void modem_pipelink_attach(struct modem_pipelink *link, modem_pipelink_callback
callback, void *user_data)

Attach callback to pipelink.

Parameters
• link – Pipelink instance

• callback – Pipelink callback

• user_data – User data passed to pipelink callback

bool modem_pipelink_is_connected(struct modem_pipelink *link)
Check whether pipelink pipe is connected.

Parameters
• link – Pipelink instance

Return values
• true – if pipe is connected

• false – if pipe is not connected

struct modem_pipe *modem_pipelink_get_pipe(struct modem_pipelink *link)
Get pipe from pipelink.

Parameters
• link – Pipelink instance

Return values
• Pointer – to pipe if pipelink has been initialized

• NULL – if pipelink has not been initialized

void modem_pipelink_release(struct modem_pipelink *link)
Clear callback.

Parameters
• link – Pipelink instance
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4.18 Asynchronous Notifications

Zephyr APIs often include async functions where an operation is initiated and the application
needs to be informed when it completes, and whether it succeeded. Using k_poll() is often a
good method, but some application architectures may be more suited to a callback notification,
and operations like enabling clocks and power rails may need to be invoked before kernel func-
tions are available so a busy-wait for completion may be needed.

This API is intended to be embedded within specific subsystems such as On-Off Manager and
other APIs that support async transactions. The subsystem wrappers are responsible for extract-
ing operation-specific data from requests that include a notification element, and for invoking
callbacks with the parameters required by the API.

A limitation is that this API is not suitable for System Calls because:

• sys_notify is not a kernel object;

• copying the notification content from userspace will break use of CONTAINER_OF in the im-
plementing function;

• neither the spin-wait nor callback notification methods can be accepted from userspace
callers.

Where a notification is required for an asynchronous operation invoked from a user mode
thread the subsystem or driver should provide a syscall API that uses k_poll_signal for noti-
fication.

4.18.1 API Reference

group sys_notify_apis

Typedefs

typedef void (*sys_notify_generic_callback)()
Generic signature used to notify of result completion by callback.

Functions with this role may be invoked from any context including pre-kernel, ISR,
or cooperative or pre-emptible threads. Compatible functions must be isr-ok and not
sleep.

Parameters that should generally be passed to such functions include:

• a pointer to a specific client request structure, i.e. the one that contains the
sys_notify structure.

• the result of the operation, either as passed to sys_notify_finalize() or extracted af-
terwards using sys_notify_fetch_result(). Expected values are service-specific, but
the value shall be non-negative if the operation succeeded, and negative if the op-
eration failed.

Functions

static inline uint32_t sys_notify_get_method(const struct sys_notify *notify)
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int sys_notify_validate(struct sys_notify *notify)
Validate and initialize the notify structure.

This should be invoked at the start of any service-specific configuration validation. It
ensures that the basic asynchronous notification configuration is consistent, and clears
the result.

Note that this function does not validate extension bits (zeroed by async notify API init
functions like sys_notify_init_callback()). It may fail to recognize that an uninitialized
structure has been passed because only method bits of flags are tested against method
settings. To reduce the chance of accepting an uninitialized operation service valida-
tion of structures that contain an sys_notify instance should confirm that the extension
bits are set or cleared as expected.

Return values
• 0 – on successful validation and reinitialization

• -EINVAL – if the configuration is not valid.

sys_notify_generic_callback sys_notify_finalize(struct sys_notify *notify, int res)
Record and signal the operation completion.

Parameters
• notify – pointer to the notification state structure.

• res – the result of the operation. Expected values are service-specific, but
the value shall be non-negative if the operation succeeded, and negative
if the operation failed.

Returns
If the notification is to be done by callback this returns the generic version
of the function to be invoked. The caller must immediately invoke that
function with whatever arguments are expected by the callback. If notifi-
cation is by spin-wait or signal, the notification has been completed by the
point this function returns, and a null pointer is returned.

static inline int sys_notify_fetch_result(const struct sys_notify *notify, int *result)
Check for and read the result of an asynchronous operation.

Parameters
• notify – pointer to the object used to specify asynchronous function be-

havior and store completion information.

• result – pointer to storage for the result of the operation. The result is
stored only if the operation has completed.

Return values
• 0 – if the operation has completed.

• -EAGAIN – if the operation has not completed.

static inline void sys_notify_init_spinwait(struct sys_notify *notify)
Initialize a notify object for spin-wait notification.

Clients that use this initialization receive no asynchronous notification, and instead
must periodically check for completion using sys_notify_fetch_result().

On completion of the operation the client object must be reinitialized before it can be
re-used.

Parameters
• notify – pointer to the notification configuration object.
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static inline void sys_notify_init_signal(struct sys_notify *notify, struct k_poll_signal
*sigp)

Initialize a notify object for (k_poll) signal notification.

Clients that use this initialization will be notified of the completion of operations
through the provided signal.

On completion of the operation the client object must be reinitialized before it can be
re-used.

Note

This capability is available only when CONFIG_POLL is selected.

Parameters
• notify – pointer to the notification configuration object.

• sigp – pointer to the signal to use for notification. The value must not
be null. The signal must be reset before the client object is passed to the
on-off service API.

static inline void sys_notify_init_callback(struct sys_notify *notify,
sys_notify_generic_callback handler)

Initialize a notify object for callback notification.

Clients that use this initialization will be notified of the completion of operations
through the provided callback. Note that callbacks may be invoked from various con-
texts depending on the specific service; see sys_notify_generic_callback.

On completion of the operation the client object must be reinitialized before it can be
re-used.

Parameters
• notify – pointer to the notification configuration object.

• handler – a function pointer to use for notification.

static inline bool sys_notify_uses_callback(const struct sys_notify *notify)
Detect whether a particular notification uses a callback.

The generic handler does not capture the signature expected by the callback, and the
translation to a service-specific callback must be provided by the service. This check
allows abstracted services to reject callback notification requests when the service
doesn’t provide a translation function.

Returns
true if and only if a callback is to be used for notification.

struct sys_notify
#include <notify.h> State associated with notification for an asynchronous operation.

Objects of this type are allocated by a client, which must use an initialization function
(e.g. sys_notify_init_signal()) to configure them. Generally the structure is a member of
a service-specific client structure, such as onoff_client.

Control of the containing object transfers to the service provider when a pointer to
the object is passed to a service function that is documented to take control of the
object, such as onoff_service_request(). While the service provider controls the object
the client must not change any object fields. Control reverts to the client:

• if the call to the service API returns an error;
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• when operation completion is posted. This may occur before the call to the service
API returns.

Operation completion is technically posted when the flags field is updated so that
sys_notify_fetch_result() returns success. This will happen before the signal is posted
or callback is invoked. Note that although the manager will no longer reference the
sys_notify object past this point, the containing object may have state that will be refer-
enced within the callback. Where callbacks are used control of the containing object
does not revert to the client until the callback has been invoked. (Re-use within the
callback is explicitly permitted.)

After control has reverted to the client the notify object must be reinitialized for the
next operation.

The content of this structure is not public API to clients: all configuration
and inspection should be done with functions like sys_notify_init_callback() and
sys_notify_fetch_result(). However, services that use this structure may access certain
fields directly.

union method
#include <notify.h>

Public Members

struct k_poll_signal *signal

sys_notify_generic_callback callback

4.19 Power Management

Zephyr RTOS power management subsystem provides several means for a system integrator to
implement power management support that can take full advantage of the power saving features
of SOCs.

4.19.1 Overview

The interfaces and APIs provided by the power management subsystem are designed to be ar-
chitecture and SOC independent. This enables power management implementations to be easily
adapted to different SOCs and architectures.

The architecture and SOC independence is achieved by separating the core PM infrastructure
from implementations of the SOC specific components. Thus a coherent abstraction is presented
to the rest of the OS and the application layer.

The power management features are classified into the following categories.

• System Power Management

• Device Power Management
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4.19.2 System Power Management

Introduction

The kernel enters the idle state when it has nothing to schedule. Enabling CONFIG_PM allows
the kernel to call upon the power management subsystem to put an idle system into one of the
supported power states. The kernel requests an amount of time it would like to suspend, then
the PM subsystem decides the appropriate power state to transition to based on the configured
power management policy.

It is the application’s responsibility to set up a wake-up event. A wake-up event will typically be
an interrupt triggered by an SoC peripheral module. Examples include a SysTick, RTC, counter,
or GPIO. Keep in mind that depending on the SoC and the power mode in question, not all pe-
ripherals may be active, and therefore some wake-up sources may not be usable in all power
modes.

The following diagram describes system power management:

Power States The power management subsystem defines a set of states described by the power
consumption and context retention associated with each of them.

The set of power states is defined by pm_state. In general, lower power states (higher index in
the enum) will offer greater power savings and have higher wake latencies.

Power Management Policies The power management subsystem supports the following
power management policies:

• Residency based

• Application defined

The policy manager is the component of the power management subsystem responsible for de-
ciding which power state the system should transition to. The policy manager can only choose
between states that have been defined for the platform. Other constraints placed upon the de-
cision may include locks disallowing certain power states, or various kinds of minimum and
maximum latency values, depending on the policy.

More details on the states definition can be found in the zephyr,power-state binding documen-
tation.

Residency Under the residency policy, the system will enter the power state which offers the
highest power savings, with the constraint that the sum of the minimum residency value (see
zephyr,power-state) and the latency to exit the mode must be less than or equal to the system
idle time duration scheduled by the kernel.

Thus the core logic can be summarized with the following expression:

if (time_to_next_scheduled_event >= (state.min_residency_us + state.exit_latency)) {
return state

}

Application The application defines the power management policy by implementing the
pm_policy_next_state() function. In this policy, the application is free to decide which power
state the system should transition to based on the remaining time until the next scheduled time-
out.

An example of an application that defines its own policy can be found in
tests/subsys/pm/power_mgmt/.
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Fig. 7: System power management
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Policy and Power States The power management subsystem allows different Zephyr com-
ponents and applications to configure the policy manager to block the system from transi-
tioning into certain power states. This can be used by devices when executing tasks in back-
ground to prevent the system from going to a specific state where it would lose context. See
pm_policy_state_lock_get().

Examples Some helpful examples showing different power management features:

• samples/boards/stm32/power_mgmt/blinky/

• samples/boards/esp32/deep_sleep/

• samples/subsys/pm/device_pm/

• tests/subsys/pm/power_mgmt/

• tests/subsys/pm/power_mgmt_soc/

• tests/subsys/pm/power_states_api/

4.19.3 Device Power Management

Introduction

Device power management (PM) on Zephyr is a feature that enables devices to save energy when
they are not being used. This feature can be enabled by setting CONFIG_PM_DEVICE to y. When
this option is selected, device drivers implementing power management will be able to take ad-
vantage of the device power management subsystem.

Zephyr supports two methods of device power management:

• Device Runtime Power Management

• System-Managed Device Power Management

Device Runtime Power Management Device runtime power management involves coordi-
nated interaction between device drivers, subsystems, and applications. While device drivers
play a crucial role in directly controlling the power state of devices, the decision to suspend or
resume a device can also be influenced by higher layers of the software stack.

Each layer—device drivers, subsystems, and applications—can operate independently without
needing to know about the specifics of the other layers because the subsystem uses reference
count to check when it needs to suspend or resume a device.

• Device drivers are responsible for managing the power state of devices. They interact
directly with the hardware to put devices into low-power states (suspend) when they are
not in use, and bring them back (resume) when needed. Drivers should use the device
runtime power management APIs provided by Zephyr to control the power state of devices.

• Subsystems, such as sensors, file systems, and network, can also influence device power
management. Subsystems may have better knowledge about the overall system state and
workload, allowing them to make informed decisions about when to suspend or resume
devices. For example, a networking subsystem may decide to keep a network interface
powered on if it expects network activity in the near future.

• Applications running on Zephyr can impact device power management as well. An ap-
plication may have specific requirements regarding device usage and power consumption.
For example, an application that streams data over a network may need to keep the net-
work interface powered on continuously.
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Coordination between device drivers, subsystems, and applications is key to efficient device
power management. For example, a device driver may not know that a subsystem will perform
a series of sequential operations that require a device to remain powered on. In such cases, the
subsystem can use device runtime power management to ensure that the device remains in an
active state until the operations are complete.

When using this Device Runtime Power Management, the System Power Management subsystem
is able to change power states quickly because it does not need to spend time suspending and
resuming devices that are runtime enabled.

For more information, see Device Runtime Power Management.

System-Managed Device Power Management The system managed device power manage-
ment (PM) framework is a method where devices are suspended along with the system entering a
CPU (or SoC) power state. It can be enabled by setting CONFIG_PM_DEVICE_SYSTEM_MANAGED. When
using this method, device power management is mostly done inside pm_system_suspend().

If a decision to enter a CPU lower power state is made, the power management subsystem will
check if the selected low power state triggers device power management and then suspend de-
vices before changing state. The subsystem takes care of suspending devices following their
initialization order, ensuring that possible dependencies between them are satisfied. As soon as
the CPU wakes up from a sleep state, devices are resumed in the opposite order that they were
suspended.

The decision about suspending devices when entering a low power state is done based on the
state and if it has set the property zephyr,pm-device-disabled. Here is an example of a target
with two low power states with only one triggering device power management:

/* Node in a DTS file */
cpus {

power-states {
state0: state0 {

compatible = "zephyr,power-state";
power-state-name = "standby";
min-residency-us = <5000>;
exit-latency-us = <240>;
zephyr,pm-device-disabled;

};
state1: state1 {

compatible = "zephyr,power-state";
power-state-name = "suspend-to-ram";
min-residency-us = <8000>;
exit-latency-us = <360>;

};
};

};

Note

When using System Power Management, device transitions can be run from the idle thread.
As functions in this context cannot block, transitions that intend to use blocking APIs must
check whether they can do so with k_can_yield().

This method of device power management can be useful in the following scenarios:

• Systems with no device requiring any blocking operations when suspending and resuming.
This implementation is reasonably simpler than device runtime power management.

• For devices that can not make any power management decision and have to be always
active. For example a firmware using Zephyr that is controlled by an external entity (e.g

4.19. Power Management 1047



Zephyr Project Documentation, Release 3.7.99

Host CPU). In this scenario, some devices have to be always active and should be suspended
together with the SoC when requested by this external entity.

It is important to emphasize that this method has drawbacks (see above) and Device Runtime
Power Management is the preferred method for implementing device power management.

Note

When using this method of device power management, the CPU will not enter a low-power
state if a device cannot be suspended. For example, if a device returns an error such as -EBUSY
in response to the PM_DEVICE_ACTION_SUSPEND action, indicating it is in the middle of a trans-
action that cannot be interrupted. Another condition that prevents the CPU from entering
a low-power state is if the option CONFIG_PM_NEED_ALL_DEVICES_IDLE is set and a device is
marked as busy.

Note

Devices are suspended only when the last active core is entering a low power state and devices
are resumed by the first core that becomes active.

Device Power Management States

The power management subsystem defines device states in pm_device_state. This method is
used to track power states of a particular device. It is important to emphasize that, although the
state is tracked by the subsystem, it is the responsibility of each device driver to handle device
actions(pm_device_action) which change device state.

Each pm_device_action have a direct an unambiguous relationship with a pm_device_state.

PM_DEVICE_STATE_SUSPENDED

PM_DEVICE_STATE_ACTIVEPM_DEVICE_ACTION_RESUME

PM_DEVICE_STATE_OFFPM_DEVICE_ACTION_TURN_OFF

PM_DEVICE_STATE_SUSPENDING

PM_DEVICE_ACTION_SUSPEND
PM_DEVICE_ACTION_TURN_OFF

PM_DEVICE_ACTION_TURN_ON

Fig. 8: Device actions x states

As mentioned above, device drivers do not directly change between these states. This is entirely
done by the power management subsystem. Instead, drivers are responsible for implementing
any hardware-specific tasks needed to handle state changes.
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Device Model with Power Management Support

Drivers initialize devices using macros. See Device Driver Model for details on how these macros
are used. A driver which implements device power management support must provide these
macros with arguments that describe its power management implementation.

Use PM_DEVICE_DEFINE or PM_DEVICE_DT_DEFINE to define the power management resources re-
quired by a driver. These macros allocate the driver-specific state which is required by the power
management subsystem.

Drivers can use PM_DEVICE_GET or PM_DEVICE_DT_GET to get a pointer to this state. These pointers
should be passed to DEVICE_DEFINE or DEVICE_DT_DEFINE to initialize the power management
field in each device.

Here is some example code showing how to implement device power management support in a
device driver.

#define DT_DRV_COMPAT dummy_device

static int dummy_driver_pm_action(const struct device *dev,
enum pm_device_action action)

{
switch (action) {
case PM_DEVICE_ACTION_SUSPEND:

/* suspend the device */
...
break;

case PM_DEVICE_ACTION_RESUME:
/* resume the device */
...
break;

case PM_DEVICE_ACTION_TURN_ON:
/*
* powered on the device, used when the power
* domain this device belongs is resumed.
*/
...
break;

case PM_DEVICE_ACTION_TURN_OFF:
/*
* power off the device, used when the power
* domain this device belongs is suspended.
*/
...
break;

default:
return -ENOTSUP;

}

return 0;
}

PM_DEVICE_DT_INST_DEFINE(0, dummy_driver_pm_action);

DEVICE_DT_INST_DEFINE(0, &dummy_init,
PM_DEVICE_DT_INST_GET(0), NULL, NULL, POST_KERNEL,
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, NULL);

Shell Commands

Power management actions can be triggered from shell commands for testing purposes. To do
that, enable the CONFIG_PM_DEVICE_SHELL option and issue a pm command on a device from the
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shell, for example:

uart:~$ device list
- buttons (active)
uart:~$ pm suspend buttons
uart:~$ device list
devices:
- buttons (suspended)

To print the power management state of a device, enable CONFIG_DEVICE_SHELL and use the de-
vice list command, for example:

uart:~$ device list
devices:
- i2c@40003000 (active)
- buttons (active, usage=1)
- leds (READY)

In this case, ledsdoes not support PM, i2c supports PM with manual suspend and resume actions
and it’s currently active, buttons supports runtime PM and it’s currently active with one user.

Busy Status Indication

When the system is idle and the SoC is going to sleep, the power management subsystem can
suspend devices, as described in System-Managed Device Power Management. This can cause
device hardware to lose some states. Suspending a device which is in the middle of a hardware
transaction, such as writing to a flash memory, may lead to undefined behavior or inconsistent
states. This API guards such transactions by indicating to the kernel that the device is in the
middle of an operation and should not be suspended.

When pm_device_busy_set() is called, the device is marked as busy and the system will not do
power management on it. After the device is no longer doing an operation and can be suspended,
it should call pm_device_busy_clear().

Device Power Management X System Power Management

When managing power in embedded systems, it’s crucial to understand the interplay between
device power state and the overall system power state. Some devices may have dependencies
on the system power state. For example, certain low-power states of the SoC might not supply
power to peripheral devices, leading to problems if the device is in the middle of an operation.
Proper coordination is essential to maintain system stability and data integrity.

To avoid this sort of problem, devices must get and release lock power states that cause power
loss during an operation.

Zephyr provides a mechanism for devices to declare which power states cause power loss
and an API that automatically get and put lock on them. This feature is enabled setting CON-
FIG_PM_POLICY_DEVICE_CONSTRAINTS to y.

Once this feature is enabled, devices must declare in devicetree which states cause power loss.
In the following example, device test_dev says that power states state1 and state2 cause power
loss.

power-states {
state0: state0 {

compatible = "zephyr,power-state";
power-state-name = "suspend-to-idle";
min-residency-us = <10000>;
exit-latency-us = <100>;

(continues on next page)
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(continued from previous page)
};

state1: state1 {
compatible = "zephyr,power-state";
power-state-name = "standby";
min-residency-us = <20000>;
exit-latency-us = <200>;

};

state2: state2 {
compatible = "zephyr,power-state";
power-state-name = "suspend-to-ram";
min-residency-us = <50000>;
exit-latency-us = <500>;

};

state3: state3 {
compatible = "zephyr,power-state";
power-state-name = "suspend-to-ram";
status = "disabled";

};
};

test_dev: test_dev {
compatible = "test-device-pm";
status = "okay";
zephyr,disabling-power-states = <&state1 &state2>;

};

After that devices can lock these state calling pm_policy_device_power_lock_get() and release
with pm_policy_device_power_lock_put(). For example:

static void timer_expire_cb(struct k_timer *timer)
{

struct test_driver_data *data = k_timer_user_data_get(timer);

data->ongoing = false;
k_timer_stop(timer);
pm_policy_device_power_lock_put(data->self);

}

void test_driver_async_operation(const struct device *dev)
{

struct test_driver_data *data = dev->data;

data->ongoing = true;
pm_policy_device_power_lock_get(dev);

/** Lets set a timer big enough to ensure that any deep
* sleep state would be suitable but constraints will
* make only state0 (suspend-to-idle) will be used.
*/

k_timer_start(&data->timer, K_MSEC(500), K_NO_WAIT);
}

Wakeup capability

Some devices are capable of waking the system up from a sleep state. When a device has
such capability, applications can enable or disable this feature on a device dynamically using
pm_device_wakeup_enable().
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This property can be set on device declaring the property wakeup-source in the device node in
devicetree. For example, this devicetree fragment sets the gpio0 device as a “wakeup” source:

gpio0: gpio@40022000 {
compatible = "ti,cc13xx-cc26xx-gpio";
reg = <0x40022000 0x400>;
interrupts = <0 0>;
status = "disabled";
label = "GPIO_0";
gpio-controller;
wakeup-source;
#gpio-cells = <2>;

};

By default, “wakeup” capable devices do not have this functionality enabled dur-
ing the device initialization. Applications can enable this functionality later calling
pm_device_wakeup_enable().

Note

This property is only used by the system power management to identify devices that should
not be suspended. It is responsibility of driver or the application to do any additional config-
uration required by the device to support it.

Examples

Some helpful examples showing device power management features:

• samples/subsys/pm/device_pm/

• tests/subsys/pm/power_mgmt/

• tests/subsys/pm/device_wakeup_api/

• tests/subsys/pm/device_driver_init/

4.19.4 Device Runtime Power Management

Introduction

The device runtime power management (PM) framework is an active power management mech-
anism which reduces the overall system power consumption by suspending the devices which
are idle or not used independently of the system state. It can be enabled by setting CON-
FIG_PM_DEVICE_RUNTIME. In this model the device driver is responsible to indicate when it needs
the device and when it does not. This information is used to determine when to suspend or
resume a device based on usage count.

When device runtime power management is enabled on a device, its state will be initially set
to a PM_DEVICE_STATE_SUSPENDED indicating it is not used. On the first device request, it will
be resumed and so put into the PM_DEVICE_STATE_ACTIVE state. The device will remain in this
state until it is no longer used. At this point, the device will be suspended until the next device
request. If the suspension is performed synchronously the device will be immediately put into
the PM_DEVICE_STATE_SUSPENDED state, whereas if it is performed asynchronously, it will be put
into the PM_DEVICE_STATE_SUSPENDING state first and then into the PM_DEVICE_STATE_SUSPENDED
state when the action is run.

For devices on a power domain (via the devicetree ‘power-domain’ property), device runtime
power management automatically attempts to request and release the dependent domain in
response to pm_device_runtime_get() and pm_device_runtime_put() calls on the child device.
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For the previous to automatically control the power domain state, device runtime PM must be
enabled on the power domain device (either through the zephyr,pm-device-runtime-auto device-
tree property or pm_device_runtime_enable()).

PM_DEVICE_STATE_SUSPENDED

PM_DEVICE_STATE_ACTIVE

PM_DEVICE_STATE_SUSPENDING

Fig. 9: Device states and transitions

The device runtime power management framework has been designed to minimize devices
power consumption with minimal application work. Device drivers are responsible for indicat-
ing when they need the device to be operational and when they do not. Therefore, applications
can not manually suspend or resume a device. An application can, however, decide when to
disable or enable runtime power management for a device. This can be useful, for example, if
an application wants a particular device to be always active.

Design principles

When runtime PM is enabled on a device it will no longer be resumed or suspended during sys-
tem power transitions. Instead, the device is fully responsible to indicate when it needs a device
and when it does not. The device runtime PM API uses reference counting to keep track of de-
vice’s usage. This allows the API to determine when a device needs to be resumed or suspended.
The API uses the get and put terminology to indicate when a device is needed or not, respectively.
This mechanism plays a key role when we account for device dependencies. For example, if a bus
device is used by multiple sensors, we can keep the bus active until the last sensor has finished
using it.

Note

As of today, the device runtime power management API does not manage device dependen-
cies. This effectively means that, if a device depends on other devices to operate (e.g. a sensor
may depend on a bus device), the bus will be resumed and suspended on every transaction. In
general, it is more efficient to keep parent devices active when their children are used, since
the children may perform multiple transactions in a short period of time. Until this feature
is added, devices can manually get or put their dependencies.
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The pm_device_runtime_get() function can be used by a device driver to indicate it needs the
device to be active or operational. This function will increase device usage count and resume
the device if necessary. Similarly, the pm_device_runtime_put() function can be used to indicate
that the device is no longer needed. This function will decrease the device usage count and
suspend the device if necessary. It is worth to note that in both cases, the operation is carried
out synchronously. The sequence diagram shown below illustrates how a device can use this API
and the expected sequence of events.

Application

Application

Device

Device

PM Subsystem

PM Subsystem

operation(dev)

pm_device_runtime_get(dev)

Increase usage

alt [usage == 1]

PM_DEVICE_ACTION_RESUME

Operation

pm_device_runtime_put(dev)

Decrease usage

alt [usage == 0]

PM_DEVICE_ACTION_SUSPEND

Fig. 10: Synchronous operation on a single device

The synchronous model is as simple as it gets. However, it may introduce unnecessary de-
lays since the application will not get the operation result until the device is suspended (in
case device is no longer used). It will likely not be a problem if the operation is fast, e.g.
a register toggle. However, the situation will not be the same if suspension involves send-
ing packets through a slow bus. For this reason the device drivers can also make use of the
pm_device_runtime_put_async() function. This function will schedule the suspend operation,
again, if device is no longer used. The suspension will then be carried out when the system work
queue gets the chance to run. The sequence diagram shown below illustrates this scenario.

Implementation guidelines

In a first place, a device driver needs to implement the PM action callback used by the PM sub-
system to suspend or resume devices.
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Application

Application

Device

Device

PM Subsystem

PM Subsystem

System Workqueue

System Workqueue

operation(dev)

pm_device_runtime_get(dev)

Increase usage

alt [usage == 1]

PM_DEVICE_ACTION_RESUME

Operation

pm_device_runtime_put_async(dev)

Decrease usage

alt [usage == 0]

Schedule suspend

alt [Scheduled suspend]

PM_DEVICE_ACTION_SUSPEND

Fig. 11: Asynchronous operation on a single device
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static int mydev_pm_action(const struct device *dev,
enum pm_device_action *action)

{
switch (action) {
case PM_DEVICE_ACTION_SUSPEND:

/* suspend the device */
...
break;

case PM_DEVICE_ACTION_RESUME:
/* resume the device */
...
break;

default:
return -ENOTSUP;

}

return 0;
}

The PM action callback calls are serialized by the PM subsystem, therefore, no special synchro-
nization is required.

To enable device runtime power management on a device, the driver needs to call
pm_device_runtime_enable() at initialization time. Note that this function will suspend the de-
vice if its state is PM_DEVICE_STATE_ACTIVE. In case the device is physically suspended, the init
function should call pm_device_init_suspended() before calling pm_device_runtime_enable().

/* device driver initialization function */
static int mydev_init(const struct device *dev)
{

int ret;
...

/* OPTIONAL: mark device as suspended if it is physically suspended */
pm_device_init_suspended(dev);

/* enable device runtime power management */
ret = pm_device_runtime_enable(dev);
if ((ret < 0) && (ret != -ENOSYS)) {

return ret;
}

}

Device runtime power management can also be automatically enabled on a device instance by
adding the zephyr,pm-device-runtime-auto flag onto the corresponding devicetree node. If en-
abled, pm_device_runtime_enable() is called immediately after the init function of the device
runs and returns successfully.

foo {
/* ... */
zephyr,pm-device-runtime-auto;

};

Assuming an example device driver that implements an operation API call, the get and put op-
erations could be carried out as follows:

static int mydev_operation(const struct device *dev)
{

int ret;

/* "get" device (increases usage count, resumes device if suspended) */
ret = pm_device_runtime_get(dev);

(continues on next page)
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if (ret < 0) {

return ret;
}

/* do something with the device */
...

/* "put" device (decreases usage count, suspends device if no more users) */
return pm_device_runtime_put(dev);

}

In case the suspend operation is slow, the device driver can use the asynchronous API:

static int mydev_operation(const struct device *dev)
{

int ret;

/* "get" device (increases usage count, resumes device if suspended) */
ret = pm_device_runtime_get(dev);
if (ret < 0) {

return ret;
}

/* do something with the device */
...

/* "put" device (decreases usage count, schedule suspend if no more users) */
return pm_device_runtime_put_async(dev, K_NO_WAIT);

}

Examples

Some helpful examples showing device runtime power management features:

• tests/subsys/pm/device_runtime_api/

• tests/subsys/pm/device_power_domains/

• tests/subsys/pm/power_domain/

4.19.5 Power Domain

Introduction

The Zephyr power domain abstraction is designed to support groupings of devices powered by
a common source to be notified of power source state changes in a generic fashion. Application
code that is using device A does not need to know that device B is on the same power domain
and should also be configured into a low power state.

Power domains are optional on Zephyr, to enable this feature the option CON-
FIG_PM_DEVICE_POWER_DOMAIN has to be set.

When a power domain turns itself on or off, it is the responsibility of the power do-
main to notify all devices using it through their power management callback called with
PM_DEVICE_ACTION_TURN_ON or PM_DEVICE_ACTION_TURN_OFF respectively. This work flow is il-
lustrated in the diagram below.
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gpio0

pm_device_get()

gpio_domain

pm_device_get()

gpio1

action_cb(PM_DEVICE_ACTION_TURN_ON) action_cb(PM_DEVICE_ACTION_TURN_ON)

Fig. 12: Power domain work flow

Internal Power Domains Most of the devices in an SoC have independent power control that
can be turned on or off to reduce power consumption. But there is a significant amount of static
current leakage that can’t be controlled only using device power management. To solve this
problem, SoCs normally are divided into several regions grouping devices that are generally
used together, so that an unused region can be completely powered off to eliminate this leakage.
These regions are called “power domains”, can be present in a hierarchy and can be nested.

External Power Domains Devices external to a SoC can be powered from sources other than
the main power source of the SoC. These external sources are typically a switch, a regulator, or
a dedicated power IC. Multiple devices can be powered from the same source, and this grouping
of devices is typically called a “power domain”.

Placing devices on power domains can be done for a variety of reasons, including to enable
devices with high power consumption in low power mode to be completely turned off when not
in use.

Implementation guidelines

In a first place, a device that acts as a power domain needs to declare compatible with
power-domain. Taking Power domain work flow as example, the following code defines a domain
called gpio_domain.

gpio_domain: gpio_domain@4 {
compatible = "power-domain";
...

};

A power domain needs to implement the PM action callback used by the PM subsystem to turn
devices on and off.

static int mydomain_pm_action(const struct device *dev,
enum pm_device_action *action)

{
switch (action) {
case PM_DEVICE_ACTION_RESUME:

/* resume the domain */
...
/* notify children domain is now powered */
pm_device_children_action_run(dev, PM_DEVICE_ACTION_TURN_ON, NULL);
break;

case PM_DEVICE_ACTION_SUSPEND:
(continues on next page)
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(continued from previous page)
/* notify children domain is going down */
pm_device_children_action_run(dev, PM_DEVICE_ACTION_TURN_OFF, NULL);
/* suspend the domain */
...
break;

case PM_DEVICE_ACTION_TURN_ON:
/* turn on the domain (e.g. setup control pins to disabled) */
...
break;

case PM_DEVICE_ACTION_TURN_OFF:
/* turn off the domain (e.g. reset control pins to default state) */
...
break;

default:
return -ENOTSUP;

}

return 0;
}

Devices belonging to this device can be declared referring it in the power-domainnode’s property.
The example below declares devices gpio0 and gpio1 belonging to domain gpio_domain`.

&gpio0 {
compatible = "zephyr,gpio-emul";
gpio-controller;
power-domain = <&gpio_domain>;

};

&gpio1 {
compatible = "zephyr,gpio-emul";
gpio-controller;
power-domain = <&gpio_domain>;

};

All devices under a domain will be notified when the domain changes state. These notifications
are sent as actions in the device PM action callback and can be used by them to do any additional
work required. They can safely be ignored though.

static int mydev_pm_action(const struct device *dev,
enum pm_device_action *action)

{
switch (action) {
case PM_DEVICE_ACTION_SUSPEND:

/* suspend the device */
...
break;

case PM_DEVICE_ACTION_RESUME:
/* resume the device */
...
break;

case PM_DEVICE_ACTION_TURN_ON:
/* configure the device into low power mode */
...
break;

case PM_DEVICE_ACTION_TURN_OFF:
/* prepare the device for power down */
...
break;

default:
return -ENOTSUP;

(continues on next page)
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}

return 0;
}

Note

It is responsibility of driver or the application to set the domain as “wakeup” source if a device
depending on it is used as “wakeup” source.

Examples

Some helpful examples showing power domain features:

• tests/subsys/pm/device_power_domains/

• tests/subsys/pm/power_domain/

4.19.6 Power Management APIs

System PM APIs

group subsys_pm_sys
System Power Management API.

Since
1.2

Functions

bool pm_state_force(uint8_t cpu, const struct pm_state_info *info)
Force usage of given power state.

This function overrides decision made by PM policy forcing usage of given power state
upon next entry of the idle thread.

Note

This function can only run in thread context

Parameters
• cpu – CPU index.

• info – Power state which should be used in the ongoing suspend opera-
tion.

void pm_notifier_register(struct pm_notifier *notifier)
Register a power management notifier.

Register the given notifier from the power management notification list.
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Parameters
• notifier – pm_notifier object to be registered.

int pm_notifier_unregister(struct pm_notifier *notifier)
Unregister a power management notifier.

Remove the given notifier from the power management notification list. After that this
object callbacks will not be called.

Parameters
• notifier – pm_notifier object to be unregistered.

Returns
0 if the notifier was successfully removed, a negative value otherwise.

const struct pm_state_info *pm_state_next_get(uint8_t cpu)
Gets the next power state that will be used.

This function returns the next power state that will be used by the SoC.

Parameters
• cpu – CPU index.

Returns
next pm_state_info that will be used

void pm_system_resume(void)
Notify exit from kernel sleep.

This function would notify exit from kernel idling if a corresponding
pm_system_suspend() notification was handled and did not return PM_STATE_ACTIVE.

This function should be called from the ISR context of the event that caused the exit
from kernel idling.

This is required for cpu power states that would require interrupts to be enabled while
entering low power states. e.g. C1 in x86. In those cases, the ISR would be invoked
immediately after the event wakes up the CPU, before code following the CPU wait,
gets a chance to execute. This can be ignored if no operation needs to be done at the
wake event notification.

struct pm_notifier
#include <pm.h> Power management notifier struct.

This struct contains callbacks that are called when the target enters and exits power
states.

As currently implemented the entry callback is invoked when transitioning from
PM_STATE_ACTIVE to another state, and the exit callback is invoked when transition-
ing from a non-active state to PM_STATE_ACTIVE. This behavior may change in the
future.

Note

These callbacks can be called from the ISR of the event that caused the kernel exit
from idling.
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Note

It is not allowed to call pm_notifier_unregister or pm_notifier_register from these
callbacks because they are called with the spin locked in those functions.

Public Members

void (*state_entry)(enum pm_state state)
Application defined function for doing any target specific operations for power
state entry.

void (*state_exit)(enum pm_state state)
Application defined function for doing any target specific operations for power
state exit.

States

group subsys_pm_states
System Power Management States.

Defines

PM_STATE_INFO_DT_INIT(node_id)
Initializer for struct pm_state_info given a DT node identifier with zephyr,power-state
compatible.

Parameters
• node_id – A node identifier with compatible zephyr,power-state

PM_STATE_DT_INIT(node_id)
Initializer for enum pm_state given a DT node identifier with zephyr,power-state com-
patible.

Parameters
• node_id – A node identifier with compatible zephyr,power-state

DT_NUM_CPU_POWER_STATES(node_id)
Obtain number of CPU power states supported and enabled by the given CPU node
identifier.

Parameters
• node_id – A CPU node identifier.

Returns
Number of supported and enabled CPU power states.

PM_STATE_INFO_LIST_FROM_DT_CPU(node_id)
Initialize an array of struct pm_state_info with information from all the states present
and enabled in the given CPU node identifier.

Example devicetree fragment:
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cpus {
...
cpu0: cpu@0 {

device_type = "cpu";
...
cpu-power-states = <&state0 &state1>;

};

power-states {
state0: state0 {

compatible = "zephyr,power-state";
power-state-name = "suspend-to-idle";
min-residency-us = <10000>;
exit-latency-us = <100>;

};

state1: state1 {
compatible = "zephyr,power-state";
power-state-name = "suspend-to-ram";
min-residency-us = <50000>;
exit-latency-us = <500>;
zephyr,pm-device-disabled;

};
};

};

Example usage:

const struct pm_state_info states[] =
PM_STATE_INFO_LIST_FROM_DT_CPU(DT_NODELABEL(cpu0));

Parameters
• node_id – A CPU node identifier.

PM_STATE_LIST_FROM_DT_CPU(node_id)
Initialize an array of struct pm_state with information from all the states present and
enabled in the given CPU node identifier.

Example devicetree fragment:

cpus {
...
cpu0: cpu@0 {

device_type = "cpu";
...
cpu-power-states = <&state0 &state1>;

};

power-states {
state0: state0 {

compatible = "zephyr,power-state";
power-state-name = "suspend-to-idle";
min-residency-us = <10000>;
exit-latency-us = <100>;

};

state1: state1 {
compatible = "zephyr,power-state";
power-state-name = "suspend-to-ram";
min-residency-us = <50000>;
exit-latency-us = <500>;

(continues on next page)

4.19. Power Management 1063



Zephyr Project Documentation, Release 3.7.99

(continued from previous page)
};

};
};

Example usage:

const enum pm_state states[] = PM_STATE_LIST_FROM_DT_CPU(DT_NODELABEL(cpu0));

Parameters
• node_id – A CPU node identifier.

Enums

enum pm_state
Power management state.

Values:

enumerator PM_STATE_ACTIVE
Runtime active state.

The system is fully powered and active.

Note

This state is correlated with ACPI G0/S0 state

enumerator PM_STATE_RUNTIME_IDLE
Runtime idle state.

Runtime idle is a system sleep state in which all of the cores enter deepest possible
idle state and wait for interrupts, no requirements for the devices, leaving them at
the states where they are.

Note

This state is correlated with ACPI S0ix state

enumerator PM_STATE_SUSPEND_TO_IDLE
Suspend to idle state.

The system goes through a normal platform suspend where it puts all of the cores
in deepest possible idle state and may puts peripherals into low-power states. No
operating state is lost (ie. the cpu core does not lose execution context), so the
system can go back to where it left off easily enough.

Note

This state is correlated with ACPI S1 state

1064 Chapter 4. OS Services



Zephyr Project Documentation, Release 3.7.99

enumerator PM_STATE_STANDBY
Standby state.

In addition to putting peripherals into low-power states all non-boot CPUs are pow-
ered off. It should allow more energy to be saved relative to suspend to idle, but
the resume latency will generally be greater than for that state. But it should be
the same state with suspend to idle state on uniprocessor system.

Note

This state is correlated with ACPI S2 state

enumerator PM_STATE_SUSPEND_TO_RAM
Suspend to ram state.

This state offers significant energy savings by powering off as much of the system
as possible, where memory should be placed into the self-refresh mode to retain
its contents. The state of devices and CPUs is saved and held in memory, and it may
require some boot- strapping code in ROM to resume the system from it.

Note

This state is correlated with ACPI S3 state

enumerator PM_STATE_SUSPEND_TO_DISK
Suspend to disk state.

This state offers significant energy savings by powering off as much of the system
as possible, including the memory. The contents of memory are written to disk or
other non-volatile storage, and on resume it’s read back into memory with the help
of boot-strapping code, restores the system to the same point of execution where
it went to suspend to disk.

Note

This state is correlated with ACPI S4 state

enumerator PM_STATE_SOFT_OFF
Soft off state.

This state consumes a minimal amount of power and requires a large latency in
order to return to runtime active state. The contents of system(CPU and memory)
will not be preserved, so the system will be restarted as if from initial power-up
and kernel boot.

Note

This state is correlated with ACPI G2/S5 state

enumerator PM_STATE_COUNT
Number of power management states (internal use)
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Functions

uint8_t pm_state_cpu_get_all(uint8_t cpu, const struct pm_state_info **states)
Obtain information about all supported states by a CPU.

Parameters
• cpu – CPU index.

• states – Where to store the list of supported states.

Returns
Number of supported states.

struct pm_state_info
#include <state.h> Information about a power management state.

Public Members

uint8_t substate_id
Some platforms have multiple states that map to one Zephyr power state.

This property allows the platform distinguish them. e.g:

power-states {
state0: state0 {

compatible = "zephyr,power-state";
power-state-name = "suspend-to-idle";
substate-id = <1>;
min-residency-us = <10000>;
exit-latency-us = <100>;

};
state1: state1 {

compatible = "zephyr,power-state";
power-state-name = "suspend-to-idle";
substate-id = <2>;
min-residency-us = <20000>;
exit-latency-us = <200>;
zephyr,pm-device-disabled;

};
};

bool pm_device_disabled
Whether or not this state triggers device power management.

When this property is false the power management subsystem will suspend de-
vices before entering this state and will properly resume them when leaving it.

uint32_t min_residency_us
Minimum residency duration in microseconds.

It is the minimum time for a given idle state to be worthwhile energywise.

Note

0 means that this property is not available for this state.
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uint32_t exit_latency_us
Worst case latency in microseconds required to exit the idle state.

Note

0 means that this property is not available for this state.

struct pm_state_constraint
#include <state.h> Power state information needed to lock a power state.

Public Members

enum pm_state state
Power management state.

See also

pm_state

uint8_t substate_id
Power management sub-state.

See also

pm_state

Policy

group subsys_pm_sys_policy
System Power Management Policy API.

Defines

PM_ALL_SUBSTATES
Special value for ‘all substates’.

Typedefs

typedef void (*pm_policy_latency_changed_cb_t)(int32_t latency)
Callback to notify when maximum latency changes.
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Param latency
New maximum latency. Positive value represents latency in microseconds.
SYS_FOREVER_US value lifts the latency constraint. Other values are for-
bidden.

Functions

void pm_policy_state_lock_get(enum pm_state state, uint8_t substate_id)
Increase a power state lock counter.

A power state will not be allowed on the first call of pm_policy_state_lock_get(). Sub-
sequent calls will just increase a reference count, thus meaning this API can be safely
used concurrently. A state will be allowed again after pm_policy_state_lock_put() is
called as many times as pm_policy_state_lock_get().

Note that the PM_STATE_ACTIVE state is always allowed, so calling this API with
PM_STATE_ACTIVE will have no effect.

See also

pm_policy_state_lock_put()

Parameters
• state – Power state.

• substate_id – Power substate ID. Use PM_ALL_SUBSTATES to affect all
the substates in the given power state.

void pm_policy_state_lock_put(enum pm_state state, uint8_t substate_id)
Decrease a power state lock counter.

See also

pm_policy_state_lock_get()

Parameters
• state – Power state.

• substate_id – Power substate ID. Use PM_ALL_SUBSTATES to affect all
the substates in the given power state.

bool pm_policy_state_lock_is_active(enum pm_state state, uint8_t substate_id)
Check if a power state lock is active (not allowed).

Parameters
• state – Power state.

• substate_id – Power substate ID. Use PM_ALL_SUBSTATES to affect all
the substates in the given power state.

Return values
• true – if power state lock is active.
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• false – if power state lock is not active.

void pm_policy_latency_request_add(struct pm_policy_latency_request *req, uint32_t
value_us)

Add a new latency requirement.

The system will not enter any power state that would make the system to exceed the
given latency value.

Parameters
• req – Latency request.

• value_us – Maximum allowed latency in microseconds.

void pm_policy_latency_request_update(struct pm_policy_latency_request *req, uint32_t
value_us)

Update a latency requirement.

Parameters
• req – Latency request.

• value_us – New maximum allowed latency in microseconds.

void pm_policy_latency_request_remove(struct pm_policy_latency_request *req)
Remove a latency requirement.

Parameters
• req – Latency request.

void pm_policy_latency_changed_subscribe(struct pm_policy_latency_subscription *req,
pm_policy_latency_changed_cb_t cb)

Subscribe to maximum latency changes.

Parameters
• req – Subscription request.

• cb – Callback function (NULL to disable).

void pm_policy_latency_changed_unsubscribe(struct pm_policy_latency_subscription
*req)

Unsubscribe to maximum latency changes.

Parameters
• req – Subscription request.

void pm_policy_event_register(struct pm_policy_event *evt, uint32_t time_us)
Register an event.

Events in the power-management policy context are defined as any source that will
wake up the system at a known time in the future. By registering such event, the policy
manager will be able to decide whether certain power states are worth entering or not.

See also

pm_policy_event_unregister
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Note

It is mandatory to unregister events once they have happened by using
pm_policy_event_unregister(). Not doing so is an API contract violation, because the
system would continue to consider them as valid events in the far future, that is,
after the cycle counter rollover.

Parameters
• evt – Event.

• time_us – When the event will occur, in microseconds from now.

void pm_policy_event_update(struct pm_policy_event *evt, uint32_t time_us)
Update an event.

See also

pm_policy_event_register

Parameters
• evt – Event.

• time_us – When the event will occur, in microseconds from now.

void pm_policy_event_unregister(struct pm_policy_event *evt)
Unregister an event.

See also

pm_policy_event_register

Parameters
• evt – Event.

void pm_policy_device_power_lock_get(const struct device *dev)
Increase power state locks.

Set power state locks in all power states that disable power in the given device.

See also

pm_policy_device_power_lock_put()

See also

pm_policy_state_lock_get()
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Parameters
• dev – Device reference.

void pm_policy_device_power_lock_put(const struct device *dev)
Decrease power state locks.

Remove power state locks in all power states that disable power in the given device.

See also

pm_policy_device_power_lock_get()

See also

pm_policy_state_lock_put()

Parameters
• dev – Device reference.

struct pm_policy_latency_subscription
#include <policy.h> Latency change subscription.

Note

All fields in this structure are meant for private usage.

struct pm_policy_latency_request
#include <policy.h> Latency request.

Note

All fields in this structure are meant for private usage.

struct pm_policy_event
#include <policy.h> Event.

Note

All fields in this structure are meant for private usage.

Hooks

group subsys_pm_sys_hooks
System Power Management Hooks.

4.19. Power Management 1071



Zephyr Project Documentation, Release 3.7.99

Functions

void pm_state_set(enum pm_state state, uint8_t substate_id)
Put processor into a power state.

This function implements the SoC specific details necessary to put the processor into
available power states.

Parameters
• state – Power state.

• substate_id – Power substate id.

void pm_state_exit_post_ops(enum pm_state state, uint8_t substate_id)
Do any SoC or architecture specific post ops after sleep state exits.

This function is a place holder to do any operations that may be needed to be done
after sleep state exits. Currently it enables interrupts after resuming from sleep state.
In future, the enabling of interrupts may be moved into the kernel.

Parameters
• state – Power state.

• substate_id – Power substate id.

Device PM APIs

group subsys_pm_device
Device Power Management API.

Defines

PM_DEVICE_ISR_SAFE
Flag indicating that runtime PM API for the device can be called from any context.

If PM_DEVICE_ISR_SAFE flag is used for device definition, it indicates that PM actions
are synchronous and can be executed from any context. This approach can be used for
cases where suspending and resuming is short as it is executed in the critical section.
This mode requires less resources (~80 byte less RAM) and allows to use device runtime
PM from any context (including interrupts).

PM_DEVICE_DEFINE(dev_id, pm_action_cb, ...)
Define device PM resources for the given device name.

See also

PM_DEVICE_DT_DEFINE, PM_DEVICE_DT_INST_DEFINE

Note

This macro is a no-op if CONFIG_PM_DEVICE is not enabled.
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Parameters
• dev_id – Device id.

• pm_action_cb – PM control callback.

• ... – Optional flag to indicate that ISR safe. Use PM_DEVICE_ISR_SAFE
or 0.

PM_DEVICE_DT_DEFINE(node_id, pm_action_cb, ...)
Define device PM resources for the given node identifier.

See also

PM_DEVICE_DT_INST_DEFINE, PM_DEVICE_DEFINE

Note

This macro is a no-op if CONFIG_PM_DEVICE is not enabled.

Parameters
• node_id – Node identifier.

• pm_action_cb – PM control callback.

• ... – Optional flag to indicate that device is isr_ok. Use
PM_DEVICE_ISR_SAFE or 0.

PM_DEVICE_DT_INST_DEFINE(idx, pm_action_cb, ...)
Define device PM resources for the given instance.

See also

PM_DEVICE_DT_DEFINE, PM_DEVICE_DEFINE

Note

This macro is a no-op if CONFIG_PM_DEVICE is not enabled.

Parameters
• idx – Instance index.

• pm_action_cb – PM control callback.

• ... – Optional flag to indicate that device is isr_ok. Use
PM_DEVICE_ISR_SAFE or 0.

PM_DEVICE_GET(dev_id)
Obtain a reference to the device PM resources for the given device.

Parameters
• dev_id – Device id.
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Returns
Reference to the device PM resources (NULL if device CONFIG_PM_DEVICE is
disabled).

PM_DEVICE_DT_GET(node_id)
Obtain a reference to the device PM resources for the given node.

Parameters
• node_id – Node identifier.

Returns
Reference to the device PM resources (NULL if device CONFIG_PM_DEVICE is
disabled).

PM_DEVICE_DT_INST_GET(idx)
Obtain a reference to the device PM resources for the given instance.

Parameters
• idx – Instance index.

Returns
Reference to the device PM resources (NULL if device CONFIG_PM_DEVICE is
disabled).

Typedefs

typedef int (*pm_device_action_cb_t)(const struct device *dev, enum pm_device_action
action)

Device PM action callback.

Param dev
Device instance.

Param action
Requested action.

Retval 0
If successful.

Retval -ENOTSUP
If the requested action is not supported.

Retval Errno
Other negative errno on failure.

typedef bool (*pm_device_action_failed_cb_t)(const struct device *dev, int err)
Device PM action failed callback.

Param dev
Device that failed the action.

Param err
Return code of action failure.

Return
True to continue iteration, false to halt iteration.

Enums
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enum pm_device_state
Device power states.

Values:

enumerator PM_DEVICE_STATE_ACTIVE
Device is in active or regular state.

enumerator PM_DEVICE_STATE_SUSPENDED
Device is suspended.

Note

Device context may be lost.

enumerator PM_DEVICE_STATE_SUSPENDING
Device is being suspended.

enumerator PM_DEVICE_STATE_OFF
Device is turned off (power removed).

Note

Device context is lost.

enum pm_device_action
Device PM actions.

Values:

enumerator PM_DEVICE_ACTION_SUSPEND
Suspend.

enumerator PM_DEVICE_ACTION_RESUME
Resume.

enumerator PM_DEVICE_ACTION_TURN_OFF
Turn off.

Note

Action triggered only by a power domain.

enumerator PM_DEVICE_ACTION_TURN_ON
Turn on.
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Note

Action triggered only by a power domain.

Functions

const char *pm_device_state_str(enum pm_device_state state)
Get name of device PM state.

Parameters
• state – State id which name should be returned

int pm_device_action_run(const struct device *dev, enum pm_device_action action)
Run a pm action on a device.

This function calls the device PM control callback so that the device does the necessary
operations to execute the given action.

Parameters
• dev – Device instance.

• action – Device pm action.

Return values
• 0 – If successful.

• -ENOTSUP – If requested state is not supported.

• -EALREADY – If device is already at the requested state.

• -EBUSY – If device is changing its state.

• -ENOSYS – If device does not support PM.

• -EPERM – If device has power state locked.

• Errno – Other negative errno on failure.

void pm_device_children_action_run(const struct device *dev, enum pm_device_action
action, pm_device_action_failed_cb_t failure_cb)

Run a pm action on all children of a device.

This function calls all child devices PM control callback so that the device does the
necessary operations to execute the given action.

Parameters
• dev – Device instance.

• action – Device pm action.

• failure_cb – Function to call if a child fails the action, can be NULL.

int pm_device_state_get(const struct device *dev, enum pm_device_state *state)
Obtain the power state of a device.

Parameters
• dev – Device instance.

• state – Pointer where device power state will be stored.

Return values
• 0 – If successful.
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• -ENOSYS – If device does not implement power management.

static inline void pm_device_init_suspended(const struct device *dev)
Initialize a device state to PM_DEVICE_STATE_SUSPENDED.

By default device state is initialized to PM_DEVICE_STATE_ACTIVE. However in order
to save power some drivers may choose to only initialize the device to the suspended
state, or actively put the device into the suspended state. This function can therefore be
used to notify the PM subsystem that the device is in PM_DEVICE_STATE_SUSPENDED
instead of the default.

Parameters
• dev – Device instance.

static inline void pm_device_init_off(const struct device *dev)
Initialize a device state to PM_DEVICE_STATE_OFF.

By default device state is initialized to PM_DEVICE_STATE_ACTIVE. In general, this
makes sense because the device initialization function will resume and configure a
device, leaving it operational. However, when power domains are enabled, the device
may be connected to a switchable power source, in which case it won’t be powered at
boot. This function can therefore be used to notify the PM subsystem that the device
is in PM_DEVICE_STATE_OFF instead of the default.

Parameters
• dev – Device instance.

void pm_device_busy_set(const struct device *dev)
Mark a device as busy.

Devices marked as busy will not be suspended when the system goes into low-power
states. This can be useful if, for example, the device is in the middle of a transaction.

See also

pm_device_busy_clear()

Parameters
• dev – Device instance.

void pm_device_busy_clear(const struct device *dev)
Clear a device busy status.

See also

pm_device_busy_set()

Parameters
• dev – Device instance.

bool pm_device_is_any_busy(void)
Check if any device is busy.

Return values
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• false – If no device is busy

• true – If one or more devices are busy

bool pm_device_is_busy(const struct device *dev)
Check if a device is busy.

Parameters
• dev – Device instance.

Return values
• false – If the device is not busy

• true – If the device is busy

bool pm_device_wakeup_enable(const struct device *dev, bool enable)
Enable or disable a device as a wake up source.

A device marked as a wake up source will not be suspended when the system goes into
low-power modes, thus allowing to use it as a wake up source for the system.

Parameters
• dev – Device instance.

• enable – true to enable or false to disable

Return values
• true – If the wakeup source was successfully enabled.

• false – If the wakeup source was not successfully enabled.

bool pm_device_wakeup_is_enabled(const struct device *dev)
Check if a device is enabled as a wake up source.

Parameters
• dev – Device instance.

Return values
• true – if the wakeup source is enabled.

• false – if the wakeup source is not enabled.

bool pm_device_wakeup_is_capable(const struct device *dev)
Check if a device is wake up capable.

Parameters
• dev – Device instance.

Return values
• true – If the device is wake up capable.

• false – If the device is not wake up capable.

bool pm_device_on_power_domain(const struct device *dev)
Check if the device is on a switchable power domain.

Parameters
• dev – Device instance.

Return values
• true – If device is on a switchable power domain.

• false – If device is not on a switchable power domain.
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int pm_device_power_domain_add(const struct device *dev, const struct device *domain)
Add a device to a power domain.

This function adds a device to a given power domain.

Parameters
• dev – Device to be added to the power domain.

• domain – Power domain.

Return values
• 0 – If successful.

• -EALREADY – If device is already part of the power domain.

• -ENOSYS – If the application was built without power domain support.

• -ENOSPC – If there is no space available in the power domain to add the
device.

int pm_device_power_domain_remove(const struct device *dev, const struct device
*domain)

Remove a device from a power domain.

This function removes a device from a given power domain.

Parameters
• dev – Device to be removed from the power domain.

• domain – Power domain.

Return values
• 0 – If successful.

• -ENOSYS – If the application was built without power domain support.

• -ENOENT – If device is not in the given domain.

bool pm_device_is_powered(const struct device *dev)
Check if the device is currently powered.

Parameters
• dev – Device instance.

Return values
• true – If device is currently powered, or is assumed to be powered (i.e.

it does not support PM or is not under a PM domain)

• false – If device is not currently powered

int pm_device_driver_init(const struct device *dev, pm_device_action_cb_t action_cb)
Setup a device driver into the lowest valid power mode.

This helper function is intended to be called at the end of a driver init function to
automatically setup the device into the lowest power mode. It assumes that the device
has been configured as if it is in PM_DEVICE_STATE_OFF.

Parameters
• dev – Device instance.

• action_cb – Device PM control callback function.

Return values
• 0 – On success.
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• -errno – Error code from action_cb on failure.

struct pm_device_base
#include <device.h> Device PM info.

Structure holds fields which are common for two PM devices: generic and syn-
chronous.

Public Members

atomic_t flags
Device PM status flags.

enum pm_device_state state
Device power state.

pm_device_action_cb_t action_cb
Device PM action callback.

uint32_t usage
Device usage count.

struct pm_device
#include <device.h> Runtime PM info for device with generic PM.

Generic PM involves suspending and resuming operations which can be blocking, long
lasting or asynchronous. Runtime PM API is limited when used from interrupt context.

Public Members

struct pm_device_base base
Base info.

const struct device *dev
Pointer to the device.

struct k_sem lock
Lock to synchronize the get/put operations.

struct k_event event
Event var to listen to the sync request events.

struct k_work_delayable work
Work object for asynchronous calls.

struct pm_device_isr
#include <device.h> Runtime PM info for device with synchronous PM.

Synchronous PM can be used with devices which suspend and resume operations can
be performed in the critical section as they are short and non-blocking. Runtime PM
API can be used from any context in that case.
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Public Members

struct pm_device_base base
Base info.

struct k_spinlock lock
Lock to synchronize the synchronous get/put operations.

Device Runtime PM APIs

group subsys_pm_device_runtime
Device Runtime Power Management API.

Functions

int pm_device_runtime_auto_enable(const struct device *dev)
Automatically enable device runtime based on devicetree properties.

Note

Must not be called from application code. See the zephyr,pm-device-runtime-auto
property in pm.yaml and z_sys_init_run_level.

Parameters
• dev – Device instance.

Return values
• 0 – If the device runtime PM is enabled successfully or it has not been

requested for this device in devicetree.

• -errno – Other negative errno, result of enabled device runtime PM.

int pm_device_runtime_enable(const struct device *dev)
Enable device runtime PM.

This function will enable runtime PM on the given device. If the device is in
PM_DEVICE_STATE_ACTIVE state, the device will be suspended.

See also

pm_device_init_suspended()

Function properties (list may not be complete)
pre-kernel-ok

Parameters
• dev – Device instance.

Return values
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• 0 – If the device runtime PM is enabled successfully.

• -EBUSY – If device is busy.

• -ENOTSUP – If the device does not support PM.

• -errno – Other negative errno, result of suspending the device.

int pm_device_runtime_disable(const struct device *dev)
Disable device runtime PM.

If the device is currently suspended it will be resumed.

Function properties (list may not be complete)
pre-kernel-ok

Parameters
• dev – Device instance.

Return values
• 0 – If the device runtime PM is disabled successfully.

• -ENOTSUP – If the device does not support PM.

• -errno – Other negative errno, result of resuming the device.

int pm_device_runtime_get(const struct device *dev)
Resume a device based on usage count.

This function will resume the device if the device is suspended (usage count equal to
0). In case of a resume failure, usage count and device state will be left unchanged. In
all other cases, usage count will be incremented.

If the device is still being suspended as a result of calling
pm_device_runtime_put_async(), this function will wait for the operation to finish
to then resume the device.

Function properties (list may not be complete)
pre-kernel-ok

Note

It is safe to use this function in contexts where blocking is not allowed, e.g. ISR,
provided the device PM implementation does not block.

Parameters
• dev – Device instance.

Return values
• 0 – If it succeeds. In case device runtime PM is not enabled or not avail-

able this function will be a no-op and will also return 0.

• -EWOUDBLOCK – If call would block but it is not allowed (e.g. in ISR).

• -errno – Other negative errno, result of the PM action callback.
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int pm_device_runtime_put(const struct device *dev)
Suspend a device based on usage count.

This function will suspend the device if the device is no longer required (usage count
equal to 0). In case of suspend failure, usage count and device state will be left un-
changed. In all other cases, usage count will be decremented (down to 0).

See also

pm_device_runtime_put_async()

Function properties (list may not be complete)
pre-kernel-ok

Parameters
• dev – Device instance.

Return values
• 0 – If it succeeds. In case device runtime PM is not enabled or not avail-

able this function will be a no-op and will also return 0.

• -EALREADY – If device is already suspended (can only happen if get/put
calls are unbalanced).

• -errno – Other negative errno, result of the action callback.

int pm_device_runtime_put_async(const struct device *dev, k_timeout_t delay)
Suspend a device based on usage count (asynchronously).

This function will schedule the device suspension if the device is no longer required
(usage count equal to 0). In all other cases, usage count will be decremented (down to
0).

See also

pm_device_runtime_put()

Function properties (list may not be complete)
pre-kernel-ok , async , isr-ok

Note

Asynchronous operations are not supported when in pre-kernel mode. In this case,
the function will be blocking (equivalent to pm_device_runtime_put()).

Parameters
• dev – Device instance.

• delay – Minimum amount of time before triggering the action.

Return values
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• 0 – If it succeeds. In case device runtime PM is not enabled or not avail-
able this function will be a no-op and will also return 0.

• -EBUSY – If the device is busy.

• -EALREADY – If device is already suspended (can only happen if get/put
calls are unbalanced).

bool pm_device_runtime_is_enabled(const struct device *dev)
Check if device runtime is enabled for a given device.

See also

pm_device_runtime_enable()

Function properties (list may not be complete)
pre-kernel-ok

Parameters
• dev – Device instance.

Return values
• true – If device has device runtime PM enabled.

• false – If the device has device runtime PM disabled.

int pm_device_runtime_usage(const struct device *dev)
Return the current device usage counter.

Parameters
• dev – Device instance.

Return values
• -ENOTSUP – If the device is not using runtime PM.

• -ENOSYS – If the runtime PM is not enabled at all.

Returns
the current usage counter.

4.20 OS Abstraction

OS abstraction layers (OSAL) provide wrapper function APIs that encapsulate common system
functions offered by any operating system. These APIs make it easier and quicker to develop for,
and port code to multiple software and hardware platforms.

These sections describe the software and hardware abstraction layers supported by the Zephyr
RTOS.

4.20.1 POSIX
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Overview

The Portable Operating System Interface (POSIX) is a family of standards specified by the IEEE
Computer Society for maintaining compatibility between operating systems. Zephyr implements
a subset of the standard POSIX API specified by IEEE 1003.1-2017 (also known as POSIX-1.2017).

Hardware

BSP

Zephyr Kernel

POSIX PSE51

File System

POSIX PSE52

Networking

POSIX PSE53
Middleware

Application

Fig. 13: POSIX support in Zephyr

Note

This page does not document Zephyr’s POSIX architecture, which is used to run Zephyr as
a native application under the host operating system for prototyping, test, and diagnostic
purposes.

With the POSIX support available in Zephyr, an existing POSIX conformant application can be
ported to run on the Zephyr kernel, and therefore leverage Zephyr features and functionality.
Additionally, a library designed to be POSIX conformant can be ported to Zephyr kernel based
applications with no changes.

The POSIX API is an increasingly popular OSAL (operating system abstraction layer) for IoT and
embedded applications, as can be seen in Zephyr, AWS:FreeRTOS, TI-RTOS, and NuttX.

Benefits of POSIX support in Zephyr include:

• Offering a familiar API to non-embedded programmers, especially from Linux

• Enabling reuse (portability) of existing libraries based on POSIX APIs

• Providing an efficient API subset appropriate for small (MCU) embedded systems

POSIX Subprofiles While Zephyr supports running multiple threads (possibly in an SMP con-
figuration), as well as Virtual Memory and MMUs, Zephyr code and data normally share a com-
mon address space that is partitioned into separate Memory Domains. The Zephyr kernel exe-
cutable code and the application executable code are typically compiled into the same binary
artifact. From that perspective, Zephyr apps can be seen as running in the context of a single
process.

While multi-purpose operating systems (OS) offer full POSIX conformance, Real-Time Operating
Systems (RTOS) such as Zephyr typically serve a fixed-purpose, have limited hardware resources,
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and experience limited user interaction. In such systems, full POSIX conformance can be imprac-
tical and unnecessary.

For that reason, POSIX defined the following Application Environment Profiles (AEP) as part of
IEEE 1003.13-2003 (also known as POSIX.13-2003). Each AEP adds incrementally more features
over the required POSIX System Interfaces.

System
Interfaces

PSE51PSE52PSE53

Fig. 14: POSIX Application Environment Profiles (AEP)

• Minimal Realtime System Profile (PSE51)

• Realtime Controller System Profile (PSE52)

• Dedicated Realtime System Profile (PSE53)

• Multi-Purpose Realtime System (PSE54)

POSIX.13-2003 AEP were formalized in 2003 via “Units of Functionality” but the specification
is now inactive (for reference only). Nevertheless, the intent is still captured as part of POSIX-
1.2017 via Options and Option Groups.

For more information, please see IEEE 1003.1-2017, Section E, Subprofiling Considerations.

POSIX Applications in Zephyr A POSIX app in Zephyr is built like any other app and therefore
requires the usual prj.conf, CMakeLists.txt, and source code. For example, the app below
leverages the nanosleep() and perror() POSIX functions.

Listing 1: prj.conf for a simple POSIX app in Zephyr
CONFIG_POSIX_API=y

Listing 2: A simple app that uses Zephyr’s POSIX API
#include <stddef.h>
#include <stdio.h>
#include <time.h>

void megasleep(size_t megaseconds)
(continues on next page)
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(continued from previous page)
{

struct timespec ts = {
.tv_sec = megaseconds * 1000000,
.tv_nsec = 0,

};

printf("See you in a while!\n");
if (nanosleep(&ts, NULL) == -1) {

perror("nanosleep");
}

}

int main()
{

megasleep(42);
return 0;

}

For more examples of POSIX applications, please see the POSIX sample applications.

Configuration Like most features in Zephyr, POSIX features are highly configurable but dis-
abled by default. Users must explicitly choose to enable POSIX options via Kconfig selection.

Subprofiles Enable one of the Kconfig options below to quickly configure a pre-defined POSIX
subprofile.

• CONFIG_POSIX_AEP_CHOICE_BASE (Base)

• CONFIG_POSIX_AEP_CHOICE_PSE51 (PSE51)

• CONFIG_POSIX_AEP_CHOICE_PSE52 (PSE52)

• CONFIG_POSIX_AEP_CHOICE_PSE53 (PSE53)

Additional POSIX Options and Option Groups may be enabled as needed via Kconfig (e.g. CON-
FIG_POSIX_C_LIB_EXT=y). Further fine-tuning may be accomplished via additional POSIX-related
Kconfig options.

Subprofiles, Options, and Option Groups should be considered the preferred way to configure
POSIX in Zephyr going forward.

Legacy Historically, Zephyr used CONFIG_POSIX_API to configure a set of POSIX features that
was overloaded and always increasing in size.

• CONFIG_POSIX_API
The option is now frozen, and can be considered equivalent to the following:

• CONFIG_POSIX_AEP_CHOICE_PSE51
• CONFIG_POSIX_FD_MGMT
• CONFIG_POSIX_MESSAGE_PASSING
• CONFIG_POSIX_NETWORKING

However, CONFIG_POSIX_API should be considered legacy and should not be used for new Zephyr
applications.
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POSIX Conformance

As per IEEE 1003.1-2017, this section details Zephyr’s POSIX conformance.

POSIX System Interfaces

Table 5: POSIX System Interfaces

Symbol Sup-
port

Remarks

_POSIX_CHOWN_RESTRICTED 0
_POSIX_NO_TRUNC 0
_POSIX_VDISABLE '\0'

Table 6: POSIX System Interfaces

Symbol Sup-
port

Remarks

_POSIX_VERSION 200809L
_POSIX_ASYNCHRONOUS_IO 200809LCONFIG_POSIX_ASYNCHRONOUS_IO†
_POSIX_BARRIERS 200809LCONFIG_POSIX_BARRIERS
_POSIX_CLOCK_SELECTION 200809LCONFIG_POSIX_CLOCK_SELECTION
_POSIX_MAPPED_FILES 200809LCONFIG_POSIX_MAPPED_FILES
_POSIX_MEMORY_PROTECTION 200809LCONFIG_POSIX_MEMORY_PROTECTION †
_POSIX_READER_WRITER_LOCKS 200809LCONFIG_POSIX_READER_WRITER_LOCKS
_POSIX_REALTIME_SIGNALS -1 CONFIG_POSIX_REALTIME_SIGNALS
_POSIX_SEMAPHORES 200809LCONFIG_POSIX_SEMAPHORES
_POSIX_SPIN_LOCKS 200809LCONFIG_POSIX_SPIN_LOCKS
_POSIX_THREAD_SAFE_FUNCTIONS -1 CONFIG_POSIX_THREAD_SAFE_FUNCTIONS
_POSIX_THREADS -1 CONFIG_POSIX_THREADS
_POSIX_TIMEOUTS 200809LCONFIG_POSIX_TIMEOUTS
_POSIX_TIMERS 200809LCONFIG_POSIX_TIMERS
_POSIX2_C_BIND 200809L

Table 7: POSIX System Interfaces (Unsupported)

Symbol Sup-
port

Remarks

_POSIX_JOB_CONTROL -1 †
_POSIX_REGEXP -1 †
_POSIX_SAVED_IDS -1 †
_POSIX_SHELL -1 †

Table 8: POSIX System Interfaces (Optional)

Symbol Sup-
port

Remarks

_POSIX_ADVISORY_INFO -1
_POSIX_CPUTIME 200809LCONFIG_POSIX_CPUTIME
_POSIX_FSYNC 200809LCONFIG_POSIX_FSYNC
_POSIX_IPV6 200809LCONFIG_POSIX_IPV6
_POSIX_MEMLOCK 200809LCONFIG_POSIX_MEMLOCK †
_POSIX_MEMLOCK_RANGE 200809LCONFIG_POSIX_MEMLOCK_RANGE

continues on next page
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Table 8 – continued from previous page
Symbol Sup-

port
Remarks

_POSIX_MESSAGE_PASSING 200809LCONFIG_POSIX_MESSAGE_PASSING
_POSIX_MONOTONIC_CLOCK 200809LCONFIG_POSIX_MONOTONIC_CLOCK
_POSIX_PRIORITIZED_IO -1
_POSIX_PRIORITY_SCHEDULING 200809LCONFIG_POSIX_PRIORITY_SCHEDULING
_POSIX_RAW_SOCKETS 200809LCONFIG_POSIX_RAW_SOCKETS
_POSIX_SHARED_MEMORY_OBJECTS 200809LCONFIG_POSIX_SHARED_MEMORY_OBJECTS
_POSIX_SPAWN -1 †
_POSIX_SPORADIC_SERVER -1 †
_POSIX_SYNCHRONIZED_IO 200809LCONFIG_POSIX_SYNCHRONIZED_IO
_POSIX_THREAD_ATTR_STACKADDR 200809LCONFIG_POSIX_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE 200809LCONFIG_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_CPUTIME 200809LCONFIG_POSIX_CPUTIME
_POSIX_THREAD_PRIO_INHERIT 200809LCONFIG_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT -1 CONFIG_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING 200809LCONFIG_POSIX_THREAD_PRIORITY_SCHEDULING
_POSIX_THREAD_PROCESS_SHARED -1
_POSIX_THREAD_SPORADIC_SERVER -1
_POSIX_TRACE -1
_POSIX_TRACE_EVENT_FILTER -1
_POSIX_TRACE_INHERIT -1
_POSIX_TRACE_LOG -1
_POSIX_TYPED_MEMORY_OBJECTS -1
_XOPEN_CRYPT -1
_XOPEN_REALTIME -1
_XOPEN_REALTIME_THREADS -1
_XOPEN_STREAMS 200809LCONFIG_XOPEN_STREAMS
_XOPEN_UNIX -1

POSIX Shell and Utilities Zephyr does not support a POSIX shell or utilities at this time.

Table 9: POSIX Shell and Utilities

Symbol Sup-
port

Remarks

_POSIX2_C_DEV -1 †
_POSIX2_CHAR_TERM -1 †
_POSIX2_FORT_DEV -1 †
_POSIX2_FORT_RUN -1 †
_POSIX2_LOCALEDEF -1 †
_POSIX2_PBS -1 †
_POSIX2_PBS_ACCOUNTING -1 †
_POSIX2_PBS_LOCATE -1 †
_POSIX2_PBS_MESSAGE -1 †
_POSIX2_PBS_TRACK -1 †
_POSIX2_SW_DEV -1 †
_POSIX2_UPE -1 †
_POSIX2_UNIX -1 †
_POSIX2_UUCP -1 †
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XSI Conformance

X/Open System Interfaces

Table 10: X/Open System Interfaces

Symbol Sup-
port

Remarks

_POSIX_FSYNC 200809LCONFIG_POSIX_FSYNC
_POSIX_THREAD_ATTR_STACKADDR 200809LCONFIG_POSIX_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE 200809LCONFIG_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_PROCESS_SHARED -1

Note

Some features may exhibit undefined behaviour as they fall beyond the scope of Zephyr’s
current design and capabilities. For example, multi-processing, ad-hoc memory-mapping,
multiple users, or regular expressions are features that are uncommon in low-footprint em-
bedded systems. Such undefined behaviour is denoted with the † (obelus) symbol. Additional
details here.

Note

Features listed in various POSIX Options or Option Groups may be provided in whole or in
part by a conformant C library implementation. This includes (but is not limited to) POSIX
Extensions to the ISO C Standard (CX).

POSIX Application Environment Profiles (AEP)

Although inactive, IEEE 1003.13-2003 defined a number of AEP that inspired the modern subpro-
filing options of IEEE 1003.1-2017. The single-purpose realtime system profiles are listed below,
for reference, in terms that agree with the current POSIX-1 standard. PSE54 is not considered at
this time.

System Interfaces The required POSIX System Interfaces are supported for each Application
Environment Profile.

Minimal Realtime System Profile (PSE51) The Minimal Realtime System Profile (PSE51) in-
cludes all of the System Interfaces along with several additional features.

Table 11: PSE51 System Interfaces

Symbol Sup-
port

Remarks

_POSIX_AEP_REALTIME_MINIMAL -1 CONFIG_POSIX_AEP_REALTIME_MINIMAL
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System
Interfaces

PSE51PSE52PSE53

Fig. 15: System Interfaces

System
Interfaces

PSE51PSE52PSE53

Fig. 16: Minimal Realtime System Profile (PSE51)
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Table 12: PSE51 Option Groups

Symbol Sup-
port

Remarks

POSIX_C_LANG_JUMP yes
POSIX_C_LANG_SUPPORT yes
POSIX_DEVICE_IO CONFIG_POSIX_DEVICE_IO
POSIX_SIGNALS CONFIG_POSIX_SIGNALS
POSIX_SINGLE_PROCESS yes CONFIG_POSIX_SINGLE_PROCESS
XSI_THREADS_EXT yes CONFIG_XSI_THREADS_EXT

Table 13: PSE51 Option Requirements

Symbol Sup-
port

Remarks

_POSIX_FSYNC 200809LCONFIG_POSIX_FSYNC
_POSIX_MEMLOCK 200809LCONFIG_POSIX_MEMLOCK †
_POSIX_MEMLOCK_RANGE 200809LCONFIG_POSIX_MEMLOCK_RANGE
_POSIX_MONOTONIC_CLOCK 200809LCONFIG_POSIX_MONOTONIC_CLOCK
_POSIX_SHARED_MEMORY_OBJECTS 200809LCONFIG_POSIX_SHARED_MEMORY_OBJECTS
_POSIX_SYNCHRONIZED_IO 200809LCONFIG_POSIX_SYNCHRONIZED_IO
_POSIX_THREAD_ATTR_STACKADDR 200809LCONFIG_POSIX_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE 200809LCONFIG_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_CPUTIME 200809LCONFIG_POSIX_CPUTIME
_POSIX_THREAD_PRIO_INHERIT 200809LCONFIG_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT -1 CONFIG_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING 200809LCONFIG_POSIX_THREAD_PRIORITY_SCHEDULING
_POSIX_THREAD_SPORADIC_SERVER -1

Realtime Controller System Profile (PSE52) The Realtime Controller System Profile (PSE52)
includes all features from PSE51 and the System Interfaces.

Table 14: PSE52 System Interfaces

Symbol Sup-
port

Remarks

_POSIX_AEP_REALTIME_CONTROLLER -1 CONFIG_POSIX_AEP_REALTIME_CONTROLLER

Table 15: PSE52 Option Groups

Symbol Sup-
port

Remarks

POSIX_C_LANG_MATH yes
POSIX_FD_MGMT CONFIG_POSIX_FD_MGMT
POSIX_FILE_SYSTEM CONFIG_POSIX_FILE_SYSTEM
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System
Interfaces

PSE51PSE52PSE53

Fig. 17: Realtime Controller System Profile (PSE52)

Table 16: PSE52 Option Requirements

Symbol Sup-
port

Remarks

_POSIX_MESSAGE_PASSING 200809LCONFIG_POSIX_MESSAGE_PASSING
_POSIX_TRACE -1
_POSIX_TRACE_EVENT_FILTER -1
_POSIX_TRACE_LOG -1

Dedicated Realtime System Profile (PSE53) The Dedicated Realtime System Profile (PSE53)
includes all features from PSE52, PSE51, and the System Interfaces.

Table 17: PSE53 System Interfaces

Symbol Sup-
port

Remarks

_POSIX_AEP_REALTIME_DEDICATED -1 CONFIG_POSIX_AEP_REALTIME_DEDICATED

Table 18: PSE53 Option Groups

Symbol Sup-
port

Remarks

POSIX_MULTI_PROCESS CONFIG_POSIX_MULTI_PROCESS†
POSIX_NETWORKING yes CONFIG_POSIX_NETWORKING
POSIX_PIPE
POSIX_SIGNAL_JUMP
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System
Interfaces

PSE51PSE52PSE53

Fig. 18: Dedicated Realtime System Profile (PSE53)

Table 19: PSE53 Option Requirements

Symbol Sup-
port

Remarks

_POSIX_CPUTIME 200809LCONFIG_POSIX_CPUTIME
_POSIX_PRIORITIZED_IO -1
_POSIX_PRIORITY_SCHEDULING -1
_POSIX_RAW_SOCKETS 200809LCONFIG_POSIX_RAW_SOCKETS
_POSIX_SPAWN -1 †
_POSIX_SPORADIC_SERVER -1 †

Implementation Details

In many ways, Zephyr provides support like any POSIX OS; API bindings are provided in the C
programming language, POSIX headers are available in the standard include path, when config-
ured.

Unlike other multi-purpose POSIX operating systems

• Zephyr is not “a POSIX OS”. The Zephyr kernel was not designed around the POSIX standard,
and POSIX support is an opt-in feature

• Zephyr apps are not linked separately, nor do they execute as subprocesses

• Zephyr, libraries, and application code are compiled and linked together, running similarly
to a single-process application, in a single (possibly virtual) address space

• Zephyr does not provide a POSIX shell, compiler, utilities, and is not self-hosting.

Note

Unlike the Linux kernel or FreeBSD, Zephyr does not maintain a static table of system call
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numbers for each supported architecture, but instead generates system calls dynamically at
build time. See System Calls for more information.

Design As a library, Zephyr’s POSIX API implementation makes an effort to be a thin abstraction
layer between the application, middleware, and the Zephyr kernel.

Some general design considerations:

• The POSIX interface and implementations should be part of Zephyr’s POSIX library, and not
elsewhere, unless required both by the POSIX API implementation and some other feature.
An example where the implementation should remain part of the POSIX implementation
is getopt(). Examples where the implementation should be part of separate libraries are
multithreading and networking.

• When the POSIX API and another Zephyr subsystem both rely on a feature, the implemen-
tation of that feature should be as a separate Zephyr library that can be used by both the
POSIX API and the other library or subsystem. This reduces the likelihood of dependency
cycles in code. When practical, that rule should expand to include macros. In the example
below, libposix depends on libzfoo for the implementation of some functionality “foo” in
Zephyr. If libzfoo also depends on libposix, then there is a dependency cycle. The cycle
can be removed via mutual dependency, libcommon.

libposix libzfoo

Fig. 19: Dependency cycle between POSIX and another Zephyr library

libposix

libzfoo

libcommon

Fig. 20: Mutual dependencies between POSIX and other Zephyr libraries

• POSIX API calls should be provided as regular callable C functions; if a Zephyr System Call
is needed as part of the implementation, the declaration and the implementation of that
system call should be hidden behind the POSIX API.

POSIX Option and Option Group Details

POSIX Option Groups

4.20. OS Abstraction 1095



Zephyr Project Documentation, Release 3.7.99

POSIX_BARRIERS Enable this option group with CONFIG_POSIX_BARRIERS.

Table 20: POSIX_BARRIERS

API Supported
pthread_barrier_destroy() yes
pthread_barrier_init() yes
pthread_barrier_wait() yes
pthread_barrierattr_destroy() yes
pthread_barrierattr_init() yes

POSIX_C_LANG_JUMP The POSIX_C_LANG_JUMPOption Group is included in the ISO C standard.

Note

When using Newlib, Picolibc, or other C libraries conforming to the ISO C Standard, the
POSIX_C_LANG_JUMP Option Group is considered supported.

Table 21: POSIX_C_LANG_JUMP

API Supported
setjmp() yes
longjmp() yes

POSIX_C_LANG_MATH The POSIX_C_LANG_MATH Option Group is included in the ISO C stan-
dard.

Note

When using Newlib, Picolibc, or other C libraries conforming to the ISO C Standard, the
POSIX_C_LANG_MATH Option Group is considered supported.

Please refer to Subprofiling Considerations for details on the POSIX_C_LANG_MATH Option Group.

POSIX_C_LANG_SUPPORT The POSIX_C_LANG_SUPPORT option group contains the general
ISO C Library.

Note

When using Newlib, Picolibc, or other C libraries conforming to the ISO C Standard, the entire
POSIX_C_LANG_SUPPORT Option Group is considered supported.

Please refer to Subprofiling Considerations for details on the POSIX_C_LANG_SUPPORT Option
Group.

For more information on developing Zephyr applications in the C programming language, please
refer to details.
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POSIX_C_LIB_EXT Enable this option group with CONFIG_POSIX_C_LIB_EXT.

Table 22: POSIX_C_LIB_EXT

API Supported
fnmatch() yes
getopt() yes
getsubopt()
optarg yes
opterr yes
optind yes
optopt yes
stpcpy()
stpncpy()
strcasecmp()
strdup()
strfmon()
strncasecmp() yes
strndup()
strnlen() yes

POSIX_CLOCK_SELECTION Enable this option group with CONFIG_POSIX_CLOCK_SELECTION.

Table 23: POSIX_CLOCK_SELECTION

API Supported
pthread_condattr_getclock() yes
pthread_condattr_setclock() yes
clock_nanosleep() yes

POSIX_DEVICE_IO Enable this option group with CONFIG_POSIX_DEVICE_IO.

Table 24: POSIX_DEVICE_IO

API Supported
FD_CLR() yes
FD_ISSET() yes
FD_SET() yes
FD_ZERO() yes
clearerr() yes
close() yes
fclose()
fdopen()
feof()
ferror()
fflush()
fgetc()
fgets()
fileno()
fopen()
fprintf() yes
fputc() yes
fputs() yes
fread()

continues on next page
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Table 24 – continued from previous page
API Supported
freopen()
fscanf()
fwrite() yes
getc()
getchar()
gets()
open() yes
perror() yes
poll() yes
printf() yes
pread()
pselect()
putc() yes
putchar() yes
puts() yes
pwrite()
read() yes
scanf()
select() yes
setbuf()
setvbuf()
stderr
stdin
stdout
ungetc()
vfprintf() yes
vfscanf()
vprintf() yes
vscanf()
write() yes

POSIX_FD_MGMT Enable this option group with CONFIG_POSIX_FD_MGMT.

Table 25: POSIX_FD_MGMT

API Supported
dup()
dup2()
fcntl()
fgetpos()
fseek()
fseeko()
fsetpos()
ftell()
ftello()
ftruncate() yes
lseek()
rewind()
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POSIX_FILE_LOCKING

Table 26: POSIX_FILE_LOCKING

API Supported
flockfile()
ftrylockfile()
funlockfile()
getc_unlocked()
getchar_unlocked()
putc_unlocked()
putchar_unlocked()

POSIX_FILE_SYSTEM Enable this option group with CONFIG_POSIX_FILE_SYSTEM.

Table 27: POSIX_FILE_SYSTEM

API Supported
access()
chdir()
closedir() yes
creat()
fchdir()
fpathconf()
fstat() yes
fstatvfs()
getcwd()
link()
mkdir() yes
mkstemp()
opendir() yes
pathconf()
readdir() yes
remove()
rename() yes
rewinddir()
rmdir()
stat() yes
statvfs()
tmpfile()
tmpnam()
truncate()
unlink() yes
utime()

POSIX_MAPPED_FILES Enable this option group with CONFIG_POSIX_MAPPED_FILES.

Table 28: POSIX_MAPPED_FILES

API Supported
mmap() yes
msync() yes
munmap() yes

4.20. OS Abstraction 1099



Zephyr Project Documentation, Release 3.7.99

POSIX_MEMORY_PROTECTION Enable this option group with CON-
FIG_POSIX_MEMORY_PROTECTION.

Table 29: POSIX_MEMORY_PROTECTION

API Supported
mprotect() yes †

POSIX_MULTI_PROCESS Enable this option group with CONFIG_POSIX_MULTI_PROCESS.

Table 30: POSIX_MULTI_PROCESS

API Supported
_Exit() yes
_exit() yes
assert() yes
atexit() †
clock()
execl() †
execle() †
execlp() †
execv() †
execve() †
execvp() †
exit() yes
fork() †
getpgrp() †
getpgid() †
getpid() yes †
getppid() †
getsid() †
setsid() †
sleep() yes
times()
wait() †
waitid() †
waitpid() †

POSIX_NETWORKING The function sockatmark() is not yet supported and is expected to fail
setting errno to ENOSYS †.

Enable this option group with CONFIG_POSIX_NETWORKING.

Table 31: POSIX_NETWORKING

API Supported
accept() yes
bind() yes
connect() yes
endhostent() yes
endnetent() yes
endprotoent() yes
endservent() yes
freeaddrinfo() yes

continues on next page
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Table 31 – continued from previous page
API Supported
gai_strerror() yes
getaddrinfo() yes
gethostent() yes
gethostname() yes
getnameinfo() yes
getnetbyaddr() yes
getnetbyname() yes
getnetent() yes
getpeername() yes
getprotobyname() yes
getprotobynumber() yes
getprotoent() yes
getservbyname() yes
getservbyport() yes
getservent() yes
getsockname() yes
getsockopt() yes
htonl() yes
htons() yes
if_freenameindex() yes
if_indextoname() yes
if_nameindex() yes
if_nametoindex() yes
inet_addr() yes
inet_ntoa() yes
inet_ntop() yes
inet_pton() yes
listen() yes
ntohl() yes
ntohs() yes
recv() yes
recvfrom() yes
recvmsg() yes
send() yes
sendmsg() yes
sendto() yes
sethostent() yes
setnetent() yes
setprotoent() yes
setservent() yes
setsockopt() yes
shutdown() yes
socket() yes
sockatmark() yes †
socketpair() yes

POSIX_PIPE

Table 32: POSIX_PIPE

API Supported
pipe()
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POSIX_REALTIME_SIGNALS Enable this option group with CONFIG_POSIX_REALTIME_SIGNALS.

Table 33: POSIX_REALTIME_SIGNALS

API Supported
sigqueue()
sigtimedwait()
sigwaitinfo()

POSIX_SEMAPHORES Enable this option group with CONFIG_POSIX_SEMAPHORES.

Table 34: POSIX_SEMAPHORES

API Supported
sem_close() yes
sem_destroy() yes
sem_getvalue() yes
sem_init() yes
sem_open() yes
sem_post() yes
sem_trywait() yes
sem_unlink() yes
sem_wait() yes

POSIX_SIGNAL_JUMP

Table 35: POSIX_SIGNAL_JUMP

API Supported
siglongjmp()
sigsetjmp()

POSIX_SIGNALS Signal services are a basic mechanism within POSIX-based systems and are
required for error and event handling.

Enable this option group with CONFIG_POSIX_SIGNALS.

1102 Chapter 4. OS Services



Zephyr Project Documentation, Release 3.7.99

Table 36: POSIX_SIGNALS

API Supported
abort() yes
alarm()
kill()
pause()
raise()
sigaction()
sigaddset() yes
sigdelset() yes
sigemptyset() yes
sigfillset() yes
sigismember() yes
signal()
sigpending()
sigprocmask() yes
sigsuspend()
sigwait()
strsignal() yes

POSIX_SINGLE_PROCESS The POSIX_SINGLE_PROCESS option group contains services for sin-
gle process applications.

Enable this option group with CONFIG_POSIX_SINGLE_PROCESS.

Table 37: POSIX_SINGLE_PROCESS

API Supported
confstr() yes
environ yes
errno yes
getenv() yes
setenv() yes
sysconf() yes
uname() yes
unsetenv() yes

POSIX_SPIN_LOCKS Enable this option group with CONFIG_POSIX_SPIN_LOCKS.

Table 38: POSIX_SPIN_LOCKS

API Supported
pthread_spin_destroy() yes
pthread_spin_init() yes
pthread_spin_lock() yes
pthread_spin_trylock() yes
pthread_spin_unlock() yes

POSIX_THREADS_BASE The basic assumption in this profile is that the system consists of a
single (implicit) process with multiple threads. Therefore, the standard requires all basic thread
services, except those related to multiple processes.

Enable this option group with CONFIG_POSIX_THREADS.
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Table 39: POSIX_THREADS_BASE

API Supported
pthread_atfork() yes
pthread_attr_destroy() yes
pthread_attr_getdetachstate() yes
pthread_attr_getschedparam() yes
pthread_attr_init() yes
pthread_attr_setdetachstate() yes
pthread_attr_setschedparam() yes
pthread_barrier_destroy() yes
pthread_barrier_init() yes
pthread_barrier_wait() yes
pthread_barrierattr_destroy() yes
pthread_barrierattr_getpshared() yes
pthread_barrierattr_init() yes
pthread_barrierattr_setpshared() yes
pthread_cancel() yes
pthread_cleanup_pop() yes
pthread_cleanup_push() yes
pthread_cond_broadcast() yes
pthread_cond_destroy() yes
pthread_cond_init() yes
pthread_cond_signal() yes
pthread_cond_timedwait() yes
pthread_cond_wait() yes
pthread_condattr_destroy() yes
pthread_condattr_init() yes
pthread_create() yes
pthread_detach() yes
pthread_equal() yes
pthread_exit() yes
pthread_getspecific() yes
pthread_join() yes
pthread_key_create() yes
pthread_key_delete() yes
pthread_kill()
pthread_mutex_destroy() yes
pthread_mutex_init() yes
pthread_mutex_lock() yes
pthread_mutex_trylock() yes
pthread_mutex_unlock() yes
pthread_mutexattr_destroy() yes
pthread_mutexattr_init() yes
pthread_once() yes
pthread_self() yes
pthread_setcancelstate() yes
pthread_setcanceltype() yes
pthread_setspecific() yes
pthread_sigmask() yes
pthread_testcancel() yes

POSIX_THREADS_EXT Enable this option group with CONFIG_POSIX_THREADS_EXT.
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Table 40: POSIX_THREADS_EXT

API Supported
pthread_attr_getguardsize() yes
pthread_attr_setguardsize() yes
pthread_mutexattr_gettype() yes
pthread_mutexattr_settype() yes

POSIX_TIMERS Enable this option group with CONFIG_POSIX_TIMERS.

Table 41: POSIX_TIMERS

API Supported
clock_getres() yes
clock_gettime() yes
clock_settime() yes
nanosleep() yes
timer_create() yes
timer_delete() yes
timer_gettime() yes
timer_getoverrun() yes
timer_settime() yes

XSI_SYSTEM_LOGGING Enable this option group with CONFIG_XSI_SYSTEM_LOGGING.

Table 42: XSI_SYSTEM_LOGGING

API Supported
closelog() yes
openlog() yes
setlogmask() yes
syslog() yes

XSI_THREADS_EXT The XSI_THREADS_EXT option group is required because it provides func-
tions to control a thread’s stack. This is considered useful for any real-time application.

Enable this option group with CONFIG_XSI_THREADS_EXT.

Table 43: XSI_THREADS_EXT

API Supported
pthread_attr_getstack() yes
pthread_attr_setstack() yes
pthread_getconcurrency() yes
pthread_setconcurrency() yes

POSIX Options

_POSIX_ASYNCHRONOUS_IO Functions part of the _POSIX_ASYNCHRONOUS_IO Option are not
implemented in Zephyr but are provided so that conformant applications can still link. These
functions will fail, setting errno to ENOSYS†.
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Enable this option with CONFIG_POSIX_ASYNCHRONOUS_IO.

Table 44: _POSIX_ASYNCHRONOUS_IO

API Supported
aio_cancel() yes †
aio_error() yes †
aio_fsync() yes †
aio_read() yes †
aio_return() yes †
aio_suspend() yes †
aio_write() yes †
lio_listio() yes †

_POSIX_CPUTIME Enable this option with CONFIG_POSIX_CPUTIME.

Table 45: _POSIX_CPUTIME

API Supported
CLOCK_PROCESS_CPUTIME_ID yes

_POSIX_FSYNC Enable this option with CONFIG_POSIX_FSYNC.

Table 46: _POSIX_FSYNC

API Supported
fsync() yes

_POSIX_IPV6 Internet Protocol Version 6 is supported.

For more information, please refer to Networking.

Enable this option with CONFIG_POSIX_IPV6.

_POSIX_MEMLOCK Zephyr’s Demand Paging API does not yet support pinning or unpinning
all virtual memory regions. The functions below are expected to fail and set errno to ENOSYS †.

Enable this option with CONFIG_POSIX_MEMLOCK.

Table 47: _POSIX_MEMLOCK

API Supported
mlockall() yes
munlockall() yes

_POSIX_MEMLOCK_RANGE Enable this option with CONFIG_POSIX_MEMLOCK_RANGE.

Table 48: _POSIX_MEMLOCK_RANGE

API Supported
mlock() yes
munlock() yes
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_POSIX_MESSAGE_PASSING Enable this option with CONFIG_POSIX_MESSAGE_PASSING.

Table 49: _POSIX_MESSAGE_PASSING

API Supported
mq_close() yes
mq_getattr() yes
mq_notify() yes
mq_open() yes
mq_receive() yes
mq_send() yes
mq_setattr() yes
mq_unlink() yes

_POSIX_MONOTONIC_CLOCK Enable this option with CONFIG_POSIX_MONOTONIC_CLOCK.

Table 50: _POSIX_MONOTONIC_CLOCK

API Supported
CLOCK_MONOTONIC yes

_POSIX_PRIORITY_SCHEDULING As processes are not yet supported in Zephyr, the functions
sched_rr_get_interval(), sched_setparam(), and sched_setscheduler() are expected to fail
setting errno to ENOSYS†.

Enable this option with CONFIG_POSIX_PRIORITY_SCHEDULING.

Table 51: _POSIX_PRIORITY_SCHEDULING

API Supported
sched_get_priority_max() yes
sched_get_priority_min() yes
sched_getparam() yes
sched_getscheduler() yes
sched_rr_get_interval() yes †
sched_setparam() yes †
sched_setscheduler() yes †
sched_yield() yes

_POSIX_RAW_SOCKETS Raw sockets are supported.

For more information, please refer to CONFIG_NET_SOCKETS_PACKET.

Enable this option with CONFIG_POSIX_RAW_SOCKETS.

_POSIX_READER_WRITER_LOCKS Enable this option with CON-
FIG_POSIX_READER_WRITER_LOCKS.
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Table 52: _POSIX_READER_WRITER_LOCKS

API Supported
pthread_rwlock_destroy() yes
pthread_rwlock_init() yes
pthread_rwlock_rdlock() yes
pthread_rwlock_tryrdlock() yes
pthread_rwlock_trywrlock() yes
pthread_rwlock_unlock() yes
pthread_rwlock_wrlock() yes
pthread_rwlockattr_destroy() yes
pthread_rwlockattr_getpshared() yes
pthread_rwlockattr_init() yes
pthread_rwlockattr_setpshared() yes

_POSIX_SHARED_MEMORY_OBJECTS Enable this option with CON-
FIG_POSIX_SHARED_MEMORY_OBJECTS.

Table 53: _POSIX_SHARED_MEMORY_OBJECTS

API Supported
mmap() yes
munmap() yes
shm_open() yes
shm_unlink() yes

_POSIX_SYNCHRONIZED_IO Enable this option with CONFIG_POSIX_SYNCHRONIZED_IO.

Table 54: _POSIX_SYNCHRONIZED_IO

API Supported
fdatasync() yes
fsync() yes
msync() yes

_POSIX_THREAD_ATTR_STACKADDR Enable this option with CON-
FIG_POSIX_THREAD_ATTR_STACKADDR.

Table 55: _POSIX_THREAD_ATTR_STACKADDR

API Supported
pthread_attr_getstackaddr() yes
pthread_attr_setstackaddr() yes

_POSIX_THREAD_ATTR_STACKSIZE Enable this option with CON-
FIG_POSIX_THREAD_ATTR_STACKSIZE.
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Table 56: _POSIX_THREAD_ATTR_STACKSIZE

API Supported
pthread_attr_getstacksize() yes
pthread_attr_setstacksize() yes

_POSIX_THREAD_CPUTIME Enable this option with CONFIG_POSIX_THREAD_CPUTIME.

Table 57: _POSIX_THREAD_CPUTIME

API Supported
CLOCK_THREAD_CPUTIME_ID yes
pthread_getcpuclockid() yes

_POSIX_THREAD_PRIO_INHERIT Enable this option with CON-
FIG_POSIX_THREAD_PRIO_INHERIT.

Table 58: _POSIX_THREAD_PRIO_INHERIT

API Supported
pthread_mutexattr_getprotocol() yes
pthread_mutexattr_setprotocol() yes

_POSIX_THREAD_PRIO_PROTECT Enable this option with CON-
FIG_POSIX_THREAD_PRIO_PROTECT.

Table 59: _POSIX_THREAD_PRIO_PROTECT

API Supported
pthread_mutex_getprioceiling()
pthread_mutex_setprioceiling()
pthread_mutexattr_getprioceiling()
pthread_mutexattr_getprotocol() yes
pthread_mutexattr_setprioceiling()
pthread_mutexattr_setprotocol() yes

_POSIX_THREAD_PRIORITY_SCHEDULING Enable this option with CON-
FIG_POSIX_THREAD_PRIORITY_SCHEDULING.

Table 60: _POSIX_THREAD_PRIORITY_SCHEDULING

API Supported
pthread_attr_getinheritsched() yes
pthread_attr_getschedpolicy() yes
pthread_attr_getscope() yes
pthread_attr_setinheritsched() yes
pthread_attr_setschedpolicy() yes
pthread_attr_setscope() yes
pthread_getschedparam() yes
pthread_setschedparam() yes
pthread_setschedprio() yes
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_POSIX_THREAD_SAFE_FUNCTIONS Enable this option with CON-
FIG_POSIX_THREAD_SAFE_FUNCTIONS.

Table 61: _POSIX_THREAD_SAFE_FUNCTIONS

API Supported
asctime_r()
ctime_r()
flockfile()
ftrylockfile()
funlockfile()
getc_unlocked()
getchar_unlocked()
getgrgid_r()
getgrnam_r()
getpwnam_r()
getpwuid_r()
gmtime_r() yes
localtime_r()
putc_unlocked()
putchar_unlocked()
rand_r() yes
readdir_r()
strerror_r() yes
strtok_r() yes

_POSIX_TIMEOUTS Enable this option with CONFIG_POSIX_TIMEOUTS.

Table 62: _POSIX_TIMEOUTS

API Supported
mq_timedreceive() yes
mq_timedsend() yes
pthread_mutex_timedlock() yes
pthread_rwlock_timedrdlock() yes
pthread_rwlock_timedwrlock() yes
sem_timedwait() yes
posix_trace_timedgetnext_event()

_XOPEN_STREAMS With the exception of ioctl(), functions in the _XOPEN_STREAMS option
group are not implemented in Zephyr but are provided so that conformant applications can still
link. Unimplemented functions in this option group will fail, setting errno to ENOSYS †.

Enable this option with CONFIG_XOPEN_STREAMS.
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Table 63: _XOPEN_STREAMS

API Supported
fattach() yes †
fdetach() yes †
getmsg() yes †
getpmsg() yes †
ioctl() yes
isastream() yes †
putmsg() yes †
putpmsg() yes †

Additional Configuration Options

Below is a non-exhaustive list of additional Configuration System (Kconfig) options relating to
Zephyr’s implementation of the POSIX API.

• CONFIG_DYNAMIC_THREAD
• CONFIG_DYNAMIC_THREAD_POOL_SIZE
• CONFIG_EVENTFD
• CONFIG_FDTABLE
• CONFIG_GETOPT_LONG
• CONFIG_MAX_PTHREAD_SPINLOCK_COUNT
• CONFIG_MQUEUE_NAMELEN_MAX
• CONFIG_POSIX_MQ_OPEN_MAX
• CONFIG_MSG_SIZE_MAX
• CONFIG_NET_SOCKETPAIR
• CONFIG_NET_SOCKETS
• CONFIG_NET_SOCKETS_POLL_MAX
• CONFIG_ZVFS_OPEN_MAX
• CONFIG_POSIX_API
• CONFIG_POSIX_OPEN_MAX
• CONFIG_POSIX_PTHREAD_ATTR_GUARDSIZE_BITS
• CONFIG_POSIX_PTHREAD_ATTR_GUARDSIZE_DEFAULT
• CONFIG_POSIX_PTHREAD_ATTR_STACKSIZE_BITS
• CONFIG_POSIX_RTSIG_MAX
• CONFIG_POSIX_SIGNAL_STRING_DESC
• CONFIG_POSIX_THREAD_KEYS_MAX
• CONFIG_POSIX_THREAD_THREADS_MAX
• CONFIG_POSIX_UNAME_NODENAME_LEN
• CONFIG_POSIX_UNAME_VERSION_LEN
• CONFIG_PTHREAD_CREATE_BARRIER
• CONFIG_PTHREAD_RECYCLER_DELAY_MS
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• CONFIG_POSIX_SEM_NAMELEN_MAX
• CONFIG_POSIX_SEM_NSEMS_MAX
• CONFIG_POSIX_SEM_VALUE_MAX
• CONFIG_TIMER_CREATE_WAIT
• CONFIG_THREAD_STACK_INFO
• CONFIG_ZVFS_EVENTFD_MAX

4.20.2 CMSIS RTOS v1

Cortex-M Software Interface Standard (CMSIS) RTOS is a vendor-independent hardware abstrac-
tion layer for the ARM Cortex-M processor series and defines generic tool interfaces. Though it
was originally defined for ARM Cortex-M microcontrollers alone, it could be easily extended to
other microcontrollers making it generic. For more information on CMSIS RTOS v1, please refer
http://www.keil.com/pack/doc/CMSIS/RTOS/html/index.html

4.20.3 CMSIS RTOS v2

Cortex-M Software Interface Standard (CMSIS) RTOS is a vendor-independent hardware abstrac-
tion layer for the ARM Cortex-M processor series and defines generic tool interfaces. Though it
was originally defined for ARM Cortex-M microcontrollers alone, it could be easily extended to
other microcontrollers making it generic. For more information on CMSIS RTOS v2, please refer
to the CMSIS-RTOS2 Documentation.

Features not supported in Zephyr implementation

Kernel
osKernelGetState, osKernelSuspend, osKernelResume, osKernelInitialize and osKernel-
Start are not supported.

Mutex
osMutexPrioInherit is supported by default and is not configurable, you cannot se-
lect/unselect this attribute.

osMutexRecursive is also supported by default. If this attribute is not set, an error is thrown
when the same thread tries to acquire it the second time.

osMutexRobust is not supported in Zephyr.

Return values not supported in the Zephyr implementation

osKernelUnlock, osKernelLock, osKernelRestoreLock
osError (Unspecified error) is not supported.

osSemaphoreDelete
osErrorResource (the semaphore specified by parameter semaphore_id is in an invalid
semaphore state) is not supported.

osMutexDelete
osErrorResource (mutex specified by parameter mutex_id is in an invalid mutex state) is
not supported.

osTimerDelete
osErrorResource (the timer specified by parameter timer_id is in an invalid timer state) is
not supported.
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osMessageQueueReset
osErrorResource (the message queue specified by parameter msgq_id is in an invalid mes-
sage queue state) is not supported.

osMessageQueueDelete
osErrorResource (the message queue specified by parameter msgq_id is in an invalid mes-
sage queue state) is not supported.

osMemoryPoolFree
osErrorResource (the memory pool specified by parameter mp_id is in an invalid memory
pool state) is not supported.

osMemoryPoolDelete
osErrorResource (the memory pool specified by parameter mp_id is in an invalid memory
pool state) is not supported.

osEventFlagsSet, osEventFlagsClear
osFlagsErrorUnknown (Unspecified error) and osFlagsErrorResource (Event flags object
specified by parameter ef_id is not ready to be used) are not supported.

osEventFlagsDelete
osErrorParameter (the value of the parameter ef_id is incorrect) is not supported.

osThreadFlagsSet
osFlagsErrorUnknown (Unspecified error) and osFlagsErrorResource (Thread specified by
parameter thread_id is not active to receive flags) are not supported.

osThreadFlagsClear
osFlagsErrorResource (Running thread is not active to receive flags) is not supported.

osDelayUntil
osParameter (the time cannot be handled) is not supported.

4.21 Power off

group sys_poweroff

Functions

FUNC_NORETURN void sys_poweroff(void)
Perform a system power off.

This function will perform an immediate power off of the system. It is the responsi-
bility of the caller to ensure that the system is in a safe state to be powered off. Any
required wake up sources must be enabled before calling this function.

CONFIG_POWEROFF needs to be enabled to use this API.

4.22 Shell

• Overview

• Backends

– Telnet
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– USB CDC ACM

– Bluetooth LE (NUS)

– Segget RTT

• Commands

– Commonly-used command groups

– Creating commands

– Dictionary commands

– Commands execution

– Built-in commands

• Tab Feature

• History Feature

• Wildcards Feature

• Meta Keys Feature

• Getopt Feature

• Obscured Input Feature

• Shell Logger Backend Feature

• RTT Backend Channel Selection

• Usage

• API Reference

4.22.1 Overview

This module allows you to create and handle a shell with a user-defined command set. You can
use it in examples where more than simple button or LED user interaction is required. This
module is a Unix-like shell with these features:

• Support for multiple instances.

• Advanced cooperation with the Logging.

• Support for static and dynamic commands.

• Support for dictionary commands.

• Smart command completion with the Tab key.

• Built-in commands: clear, shell, colors, echo, history and resize.

• Viewing recently executed commands using keys: ↑ ↓ or meta keys.

• Text edition using keys: ←, →, Backspace, Delete, End, Home, Insert.

• Support for ANSI escape codes: VT100 and ESC[n~ for cursor control and color printing.

• Support for editing multiline commands.

• Built-in handler to display help for the commands.

• Support for wildcards: * and ?.

• Support for meta keys.

• Support for getopt and getopt_long.
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• Kconfig configuration to optimize memory usage.

Note

Some of these features have a significant impact on RAM and flash usage, but many can be
disabled when not needed. To default to options which favor reduced RAM and flash require-
ments instead of features, you should enable CONFIG_SHELL_MINIMAL and selectively enable
just the features you want.

4.22.2 Backends

The module can be connected to any transport for command input and output. At this point, the
following transport layers are implemented:

• MQTT

• Segger RTT

• SMP

• Telnet

• UART

• USB

• Bluetooth LE (NUS)

• RPMSG

• DUMMY - not a physical transport layer.

Telnet

Enabling CONFIG_SHELL_BACKEND_TELNET will allow users to use telnet as a shell backend. Con-
necting to it can be done using PuTTY or any telnet client. For example:

telnet <ip address> <port>

By default the telnet client won’t handle telnet commands and configuration. Although com-
mand support can be enabled with CONFIG_SHELL_TELNET_SUPPORT_COMMAND. This will give the
telnet client access to a very limited set of supported commands but still can be turned on if
needed. One of the command options it supports is the ECHO option. This will allow the client
to be in character mode (character at a time), similar to a UART backend in that regard. This
will make the client send a character as soon as it is typed having the effect of increasing the
network traffic considerably. For that cost, it will enable the line editing, tab completion, and
history features of the shell.

USB CDC ACM

To configure Shell USB CDC ACM backend, simply add the snippet cdc-acm-console to your build:

west build -S cdc-acm-console [...]

Details on the configuration settings are captured in the following files:

• snippets/cdc-acm-console/cdc-acm-console.conf.

• snippets/cdc-acm-console/cdc-acm-console.overlay.
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Bluetooth LE (NUS)

To configure Bluetooth LE (NUS) backend, simply add the snippet nus-console to your build:

west build -S nus-console [...]

Details on the configuration settings are captured in the following files:

• snippets/nus-console/nus-console.conf.

• snippets/nus-console/nus-console.overlay.

Segget RTT

To configure Segger RTT backend, add the following configurations to your build:

• CONFIG_USE_SEGGER_RTT
• CONFIG_SHELL_BACKEND_RTT
• CONFIG_SHELL_BACKEND_SERIAL

Details on additional configuration settings are captured in: sam-
ples/subsys/shell/shell_module/prj_minimal_rtt.conf.

Connecting to Segger RTT via TCP (onmacOS, for example) On macOS JLinkRTTClient won’t
let you enter input. Instead, please use following procedure:

• Open up a first Terminal window and enter:

JLinkRTTLogger -Device NRF52840_XXAA -RTTChannel 1 -if SWD -Speed 4000 ~/rtt.log

(change device if required)

• Open up a second Terminal window and enter:

nc localhost 19021

• Now you should have a network connection to RTT that will let you enter input to the shell.

4.22.3 Commands

Shell commands are organized in a tree structure and grouped into the following types:

• Root command (level 0): Gathered and alphabetically sorted in a dedicated memory section.

• Static subcommand (level > 0): Number and syntax must be known during compile time.
Created in the software module.

• Dynamic subcommand (level > 0): Number and syntax does not need to be known during
compile time. Created in the software module.

Commonly-used command groups

The following list is a set of useful command groups and how to enable them:
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GPIO
• CONFIG_GPIO
• CONFIG_GPIO_SHELL

I2C
• CONFIG_I2C
• CONFIG_I2C_SHELL

Sensor
• CONFIG_SENSOR
• CONFIG_SENSOR_SHELL

Flash
• CONFIG_FLASH
• CONFIG_FLASH_SHELL

File-System
• CONFIG_FILE_SYSTEM
• CONFIG_FILE_SYSTEM_SHELL

Creating commands

Use the following macros for adding shell commands:

• SHELL_CMD_REGISTER - Create root command. All root commands must have different name.

• SHELL_COND_CMD_REGISTER - Conditionally (if compile time flag is set) create root command.
All root commands must have different name.

• SHELL_CMD_ARG_REGISTER - Create root command with arguments. All root commands must
have different name.

• SHELL_COND_CMD_ARG_REGISTER - Conditionally (if compile time flag is set) create root com-
mand with arguments. All root commands must have different name.

• SHELL_CMD - Initialize a command.

• SHELL_COND_CMD - Initialize a command if compile time flag is set.

• SHELL_EXPR_CMD - Initialize a command if compile time expression is non-zero.

• SHELL_CMD_ARG - Initialize a command with arguments.

• SHELL_COND_CMD_ARG - Initialize a command with arguments if compile time flag is set.

• SHELL_EXPR_CMD_ARG - Initialize a command with arguments if compile time expression is
non-zero.

• SHELL_STATIC_SUBCMD_SET_CREATE - Create a static subcommands array.

• SHELL_SUBCMD_DICT_SET_CREATE - Create a dictionary subcommands array.

• SHELL_DYNAMIC_CMD_CREATE - Create a dynamic subcommands array.

Commands can be created in any file in the system that includes include/zephyr/shell/shell.h. All
created commands are available for all shell instances.
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Static commands Example code demonstrating how to create a root command with static sub-
commands.

/* Creating subcommands (level 1 command) array for command "demo". */
SHELL_STATIC_SUBCMD_SET_CREATE(sub_demo,

SHELL_CMD(params, NULL, "Print params command.",
cmd_demo_params),

SHELL_CMD(ping, NULL, "Ping command.", cmd_demo_ping),
SHELL_SUBCMD_SET_END

);
/* Creating root (level 0) command "demo" */
SHELL_CMD_REGISTER(demo, &sub_demo, "Demo commands", NULL);

Example implementation can be found under following location: sam-
ples/subsys/shell/shell_module/src/main.c.

Dictionary commands

This is a special kind of static commands. Dictionary commands can be used every time you
want to use a pair: (string <-> corresponding data) in a command handler. The string is usually
a verbal description of a given data. The idea is to use the string as a command syntax that can
be prompted by the shell and corresponding data can be used to process the command.

Let’s use an example. Suppose you created a command to set an ADC gain. It is a perfect place
where a dictionary can be used. The dictionary would be a set of pairs: (string: gain_value, int:
value) where int value could be used with the ADC driver API.

Abstract code for this task would look like this:

static int gain_cmd_handler(const struct shell *sh,
size_t argc, char **argv, void *data)

{
int gain;

/* data is a value corresponding to called command syntax */
gain = (int)data;
adc_set_gain(gain);

shell_print(sh, "ADC gain set to: %s\n"
"Value send to ADC driver: %d",
argv[0],
gain);

return 0;
}

SHELL_SUBCMD_DICT_SET_CREATE(sub_gain, gain_cmd_handler,
(gain_1, 1, "gain 1"), (gain_2, 2, "gain 2"),

(continues on next page)
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(continued from previous page)
(gain_1_2, 3, "gain 1/2"), (gain_1_4, 4, "gain 1/4")

);
SHELL_CMD_REGISTER(gain, &sub_gain, "Set ADC gain", NULL);

This is how it would look like in the shell:

Dynamic commands Example code demonstrating how to create a root command with static
and dynamic subcommands. At the beginning dynamic command list is empty. New commands
can be added by typing:

dynamic add <new_dynamic_command>

Newly added commands can be prompted or autocompleted with the Tab key.

/* Buffer for 10 dynamic commands */
static char dynamic_cmd_buffer[10][50];

(continues on next page)
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(continued from previous page)
/* commands counter */
static uint8_t dynamic_cmd_cnt;

/* Function returning command dynamically created
* in dynamic_cmd_buffer.
*/

static void dynamic_cmd_get(size_t idx,
struct shell_static_entry *entry)

{
if (idx < dynamic_cmd_cnt) {

entry->syntax = dynamic_cmd_buffer[idx];
entry->handler = NULL;
entry->subcmd = NULL;
entry->help = "Show dynamic command name.";

} else {
/* if there are no more dynamic commands available
* syntax must be set to NULL.
*/

entry->syntax = NULL;
}

}

SHELL_DYNAMIC_CMD_CREATE(m_sub_dynamic_set, dynamic_cmd_get);
SHELL_STATIC_SUBCMD_SET_CREATE(m_sub_dynamic,

SHELL_CMD(add, NULL,"Add new command to dynamic_cmd_buffer and"
" sort them alphabetically.",
cmd_dynamic_add),

SHELL_CMD(execute, &m_sub_dynamic_set,
"Execute a command.", cmd_dynamic_execute),

SHELL_CMD(remove, &m_sub_dynamic_set,
"Remove a command from dynamic_cmd_buffer.",
cmd_dynamic_remove),

SHELL_CMD(show, NULL,
"Show all commands in dynamic_cmd_buffer.",
cmd_dynamic_show),

SHELL_SUBCMD_SET_END
);
SHELL_CMD_REGISTER(dynamic, &m_sub_dynamic,

"Demonstrate dynamic command usage.", cmd_dynamic);

Example implementation can be found under following location: sam-
ples/subsys/shell/shell_module/src/dynamic_cmd.c.

Commands execution

Each command or subcommand may have a handler. The shell executes the handler that is
found deepest in the command tree and further subcommands (without a handler) are passed
as arguments. Characters within parentheses are treated as one argument. If shell won’t find a
handler it will display an error message.

Commands can be also executed from a user application using any active backend and a function
shell_execute_cmd(), as shown in this example:

int main(void)
{

/* Below code will execute "clear" command on a DUMMY backend */
shell_execute_cmd(NULL, "clear");

/* Below code will execute "shell colors off" command on
(continues on next page)
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(continued from previous page)
* an UART backend
*/
shell_execute_cmd(shell_backend_uart_get_ptr(),

"shell colors off");
}

Enable the DUMMY backend by setting the Kconfig CONFIG_SHELL_BACKEND_DUMMY option.

Commands execution example Let’s assume a command structure as in the following figure,
where:

• root_cmd - root command without a handler

• cmd_xxx_h - command has a handler

• cmd_xxx - command does not have a handler

Example 1 Sequence: root_cmd cmd_1_h cmd_12_h cmd_121_h parameterwill execute command
cmd_121_h and parameter will be passed as an argument.

Example 2 Sequence: root_cmd cmd_2 cmd_22_h parameter1 parameter2will execute command
cmd_22_h and parameter1 parameter2 will be passed as an arguments.

Example 3 Sequence: root_cmd cmd_1_h parameter1 cmd_121_h parameter2 will execute com-
mand cmd_1_h and parameter1, cmd_121_h and parameter2 will be passed as an arguments.

Example 4 Sequence: root_cmd parameter cmd_121_h parameter2 will not execute any com-
mand.
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Command handler Simple command handler implementation:

static int cmd_handler(const struct shell *sh, size_t argc,
char **argv)

{
ARG_UNUSED(argc);
ARG_UNUSED(argv);

shell_fprintf(shell, SHELL_INFO, "Print info message\n");

shell_print(sh, "Print simple text.");

shell_warn(sh, "Print warning text.");

shell_error(sh, "Print error text.");

return 0;
}

Function shell_fprintf() or the shell print macros: shell_print, shell_info, shell_warn and
shell_error can be used from the command handler or from threads, but not from an interrupt
context. Instead, interrupt handlers should use Logging for printing.

Command help Every user-defined command or subcommand can have its own help de-
scription. The help for commands and subcommands can be created with respective macros:
SHELL_CMD_REGISTER, SHELL_CMD_ARG_REGISTER, SHELL_CMD, and SHELL_CMD_ARG.

Shell prints this help message when you call a command or subcommand with -h or --help
parameter.

Parent commands In the subcommand handler, you can access both the parameters passed to
commands or the parent commands, depending on how you index argv.

• When indexing argv with positive numbers, you can access the parameters.

• When indexing argv with negative numbers, you can access the parent commands.

• The subcommand to which the handler belongs has the argv index of 0.

static int cmd_handler(const struct shell *sh, size_t argc,
char **argv)

{
ARG_UNUSED(argc);

/* If it is a subcommand handler parent command syntax
* can be found using argv[-1].
*/
shell_print(sh, "This command has a parent command: %s",

argv[-1]);

/* Print this command syntax */
shell_print(sh, "This command syntax is: %s", argv[0]);

/* Print first argument */
shell_print(sh, "%s", argv[1]);

return 0;
}
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Built-in commands

These commands are activated by CONFIG_SHELL_CMDS set to y.

• clear - Clears the screen.

• history - Shows the recently entered commands.

• resize - Must be executed when terminal width is different than 80 characters or after each
change of terminal width. It ensures proper multiline text display and ←, →, End, Home keys
handling. Currently this command works only with UART flow control switched on. It can
be also called with a subcommand:

– default - Shell will send terminal width = 80 to the terminal and assume successful
delivery.

These command needs extra activation: CONFIG_SHELL_CMDS_RESIZE set to y.

• select - It can be used to set new root command. Exit to main command tree is with alt+r.
This command needs extra activation: CONFIG_SHELL_CMDS_SELECT set to y.

• shell - Root command with useful shell-related subcommands like:

– echo - Toggles shell echo.

– colors - Toggles colored syntax. This might be helpful in case of Bluetooth shell to limit
the amount of transferred bytes.

– stats - Shows shell statistics.

4.22.4 Tab Feature

The Tab button can be used to suggest commands or subcommands. This feature is enabled
by CONFIG_SHELL_TAB set to y. It can also be used for partial or complete auto-completion of
commands. This feature is activated by CONFIG_SHELL_TAB_AUTOCOMPLETION set to y. When user
starts writing a command and presses the Tab button then the shell will do one of 3 possible
things:

• Autocomplete the command.

• Prompts available commands and if possible partly completes the command.

• Will not do anything if there are no available or matching commands.

4.22.5 History Feature

This feature enables commands history in the shell. It is activated by: CONFIG_SHELL_HISTORY set
to y. History can be accessed using keys: ↑ ↓ or Ctrl+n and Ctrl+p if meta keys are active. Number
of commands that can be stored depends on size of CONFIG_SHELL_HISTORY_BUFFER parameter.
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4.22.6 Wildcards Feature

The shell module can handle wildcards. Wildcards are interpreted correctly when expanded
command and its subcommands do not have a handler. For example, if you want to set logging
level to err for the app and app_test modules you can execute the following command:

log enable err a*

This feature is activated by CONFIG_SHELL_WILDCARD set to y.

4.22.7 Meta Keys Feature

The shell module supports the following meta keys:

Table 64: Implemented meta keys

Meta keys Action
Ctrl+a Moves the cursor to the beginning of the line.
Ctrl+b Moves the cursor backward one character.
Ctrl+c Preserves the last command on the screen and starts a new command in a

new line.
Ctrl+d Deletes the character under the cursor.
Ctrl+e Moves the cursor to the end of the line.
Ctrl+f Moves the cursor forward one character.
Ctrl+k Deletes from the cursor to the end of the line.
Ctrl+l Clears the screen and leaves the currently typed command at the top of the

screen.
Ctrl+n Moves in history to next entry.
Ctrl+p Moves in history to previous entry.
Ctrl+u Clears the currently typed command.
Ctrl+w Removes the word or part of the word to the left of the cursor. Words sep-

arated by period instead of space are treated as one word.
Alt+b Moves the cursor backward one word.
Alt+f Moves the cursor forward one word.

This feature is activated by CONFIG_SHELL_METAKEYS set to y.
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4.22.8 Getopt Feature

Some shell users apart from subcommands might need to use options as well. the arguments
string, looking for supported options. Typically, this task is accomplished by the getopt family
functions.

For this purpose shell supports the getopt and getopt_long libraries available in the FreeBSD
project. This feature is activated by: CONFIG_POSIX_C_LIB_EXT set to y and CONFIG_GETOPT_LONG
set to y.

This feature can be used in thread safe as well as non thread safe manner. The former is full
compatible with regular getopt usage while the latter a bit differs.

An example non-thread safe usage:

char *cvalue = NULL;
while ((char c = getopt(argc, argv, "abhc:")) != -1) {

switch (c) {
case 'c':

cvalue = optarg;
break;

default:
break;

}
}

An example thread safe usage:

char *cvalue = NULL;
struct getopt_state *state;
while ((char c = getopt(argc, argv, "abhc:")) != -1) {

state = getopt_state_get();
switch (c) {
case 'c':

cvalue = state->optarg;
break;

default:
break;

}
}

Thread safe getopt functionality is activated by CONFIG_SHELL_GETOPT set to y.

4.22.9 Obscured Input Feature

With the obscured input feature, the shell can be used for implementing a login prompt or other
user interaction whereby the characters the user types should not be revealed on screen, such
as when entering a password.

Once the obscured input has been accepted, it is normally desired to return the shell to normal
operation. Such runtime control is possible with the shell_obscure_set function.

An example of login and logout commands using this feature is located
in samples/subsys/shell/shell_module/src/main.c and the config file sam-
ples/subsys/shell/shell_module/prj_login.conf.

This feature is activated upon startup by CONFIG_SHELL_START_OBSCURED set to y. With this
set either way, the option can still be controlled later at runtime. CONFIG_SHELL_CMDS_SELECT
is useful to prevent entry of any other command besides a login command, by means of
the shell_set_root_cmd function. Likewise, CONFIG_SHELL_PROMPT_UART allows you to set the
prompt upon startup, but it can be changed later with the shell_prompt_change function.
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4.22.10 Shell Logger Backend Feature

Shell instance can act as the Logging backend. Shell ensures that log messages are correctly
multiplexed with shell output. Log messages from logger thread are enqueued and processed
in the shell thread. Logger thread will block for configurable amount of time if queue is full,
blocking logger thread context for that time. Oldest log message is removed from the queue after
timeout and new message is enqueued. Use the shell stats show command to retrieve number
of log messages dropped by the shell instance. Log queue size and timeout are SHELL_DEFINE
arguments.

This feature is activated by: CONFIG_SHELL_LOG_BACKEND set to y.

Warning

Enqueuing timeout must be set carefully when multiple backends are used in the system.
The shell instance could have a slow transport or could block, for example, by a UART with
hardware flow control. If timeout is set too high, the logger thread could be blocked and
impact other logger backends.

Warning

As the shell is a complex logger backend, it can not output logs if the application crashes before
the shell thread is running. In this situation, you can enable one of the simple logging back-
ends instead, such as UART (CONFIG_LOG_BACKEND_UART) or RTT (CONFIG_LOG_BACKEND_RTT),
which are available earlier during system initialization.

4.22.11 RTT Backend Channel Selection

Instead of using the shell as a logger backend, RTT shell backend and RTT log backend can also be
used simultaneously, but over different channels. By separating them, the log can be captured or
monitored without shell output or the shell may be scripted without log interference. Enabling
both the Shell RTT backend and the Log RTT backend does not work by default, because both
default to channel 0. There are two options:

1. The Shell buffer can use an alternate channel, for example using CON-
FIG_SHELL_BACKEND_RTT_BUFFER set to 1. This allows monitoring the log using JLinkRTTViewer
while a script interfaces over channel 1.

2. The Log buffer can use an alternate channel, for example using CON-
FIG_LOG_BACKEND_RTT_BUFFER set to 1. This allows interactive use of the shell through
JLinkRTTViewer, while the log is written to file.

See shell backends for details on how to enable RTT as a Shell backend.

4.22.12 Usage

The following code shows a simple use case of this library:

int main(void)
{

}

static int cmd_demo_ping(const struct shell *sh, size_t argc,
char **argv)

(continues on next page)
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(continued from previous page)
{

ARG_UNUSED(argc);
ARG_UNUSED(argv);

shell_print(sh, "pong");
return 0;

}

static int cmd_demo_params(const struct shell *sh, size_t argc,
char **argv)

{
int cnt;

shell_print(sh, "argc = %d", argc);
for (cnt = 0; cnt < argc; cnt++) {

shell_print(sh, " argv[%d] = %s", cnt, argv[cnt]);
}
return 0;

}

/* Creating subcommands (level 1 command) array for command "demo". */
SHELL_STATIC_SUBCMD_SET_CREATE(sub_demo,

SHELL_CMD(params, NULL, "Print params command.",
cmd_demo_params),

SHELL_CMD(ping, NULL, "Ping command.", cmd_demo_ping),
SHELL_SUBCMD_SET_END

);
/* Creating root (level 0) command "demo" without a handler */
SHELL_CMD_REGISTER(demo, &sub_demo, "Demo commands", NULL);

/* Creating root (level 0) command "version" */
SHELL_CMD_REGISTER(version, NULL, "Show kernel version", cmd_version);

Users may use the Tab key to complete a command/subcommand or to see the available subcom-
mands for the currently entered command level. For example, when the cursor is positioned at
the beginning of the command line and the Tab key is pressed, the user will see all root (level 0)
commands:

clear demo shell history log resize version

Note

To view the subcommands that are available for a specific command, you must first type a
space after this command and then hit Tab.

These commands are registered by various modules, for example:

• clear, shell, history, and resize are built-in commands which have been registered by
subsys/shell/shell.c

• demo and version have been registered in example code above by main.c

• log has been registered by subsys/logging/log_cmds.c

Then, if a user types a demo command and presses the Tab key, the shell will only print the sub-
commands registered for this command:

params ping
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4.22.13 API Reference

Related code samples

Custom Shell module
Register shell commands using the Shell API

Telnet console
Access Zephyr shell over telnet.

group shell_api
Shell API.

Since
1.14

Version
1.0.0

Defines

SHELL_CMD_ARG_REGISTER(syntax, subcmd, help, handler, mandatory, optional)
Macro for defining and adding a root command (level 0) with required number of
arguments.

Note

Each root command shall have unique syntax. If a command will be called with
wrong number of arguments shell will print an error message and command han-
dler will not be called.

Parameters
• syntax – [in] Command syntax (for example: history).

• subcmd – [in] Pointer to a subcommands array.

• help – [in] Pointer to a command help string.

• handler – [in] Pointer to a function handler.

• mandatory – [in] Number of mandatory arguments including command
name.

• optional – [in] Number of optional arguments.

SHELL_COND_CMD_ARG_REGISTER(flag, syntax, subcmd, help, handler, mandatory, optional)
Macro for defining and adding a conditional root command (level 0) with required
number of arguments.

Macro can be used to create a command which can be conditionally present. It is and
alternative to #ifdefs around command registration and command handler. If com-
mand is disabled handler and subcommands are removed from the application.
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See also

SHELL_CMD_ARG_REGISTER for details.

Parameters
• flag – [in] Compile time flag. Command is present only if flag exists and

equals 1.

• syntax – [in] Command syntax (for example: history).

• subcmd – [in] Pointer to a subcommands array.

• help – [in] Pointer to a command help string.

• handler – [in] Pointer to a function handler.

• mandatory – [in] Number of mandatory arguments including command
name.

• optional – [in] Number of optional arguments.

SHELL_CMD_REGISTER(syntax, subcmd, help, handler)
Macro for defining and adding a root command (level 0) with arguments.

Note

All root commands must have different name.

Parameters
• syntax – [in] Command syntax (for example: history).

• subcmd – [in] Pointer to a subcommands array.

• help – [in] Pointer to a command help string.

• handler – [in] Pointer to a function handler.

SHELL_COND_CMD_REGISTER(flag, syntax, subcmd, help, handler)
Macro for defining and adding a conditional root command (level 0) with arguments.

See also

SHELL_COND_CMD_ARG_REGISTER.

Parameters
• flag – [in] Compile time flag. Command is present only if flag exists and

equals 1.

• syntax – [in] Command syntax (for example: history).

• subcmd – [in] Pointer to a subcommands array.

• help – [in] Pointer to a command help string.

• handler – [in] Pointer to a function handler.
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SHELL_STATIC_SUBCMD_SET_CREATE(name, ...)
Macro for creating a subcommand set.

It must be used outside of any function body.

Example usage:

SHELL_STATIC_SUBCMD_SET_CREATE(
foo,
SHELL_CMD(abc, ...),
SHELL_CMD(def, ...),
SHELL_SUBCMD_SET_END

)

Parameters
• name – [in] Name of the subcommand set.

• ... – [in] List of commands created with SHELL_CMD_ARG or or
SHELL_CMD

SHELL_SUBCMD_SET_CREATE(_name, _parent)
Create set of subcommands.

Commands to this set are added using SHELL_SUBCMD_ADD and
SHELL_SUBCMD_COND_ADD. Commands can be added from multiple files.

Parameters
• _name – [in] Name of the set. _name is used to refer the set in the parent

command.

• _parent – [in] Set of comma separated parent commands in parenthesis,
e.g. (foo_cmd) if subcommands are for the root command “foo_cmd”.

SHELL_SUBCMD_COND_ADD(_flag, _parent, _syntax, _subcmd, _help, _handler, _mand, _opt)
Conditionally add command to the set of subcommands.

Add command to the set created with SHELL_SUBCMD_SET_CREATE.

Note

The name of the section is formed as concatenation of number of parent commands,
names of all parent commands and own syntax. Number of parent commands is
added to ensure that section prefix is unique. Without it subcommands of (foo) and
(foo, cmd1) would mix.

Parameters
• _flag – [in] Compile time flag. Command is present only if flag exists

and equals 1.

• _parent – [in] Parent command sequence. Comma separated in paren-
thesis.

• _syntax – [in] Command syntax (for example: history).

• _subcmd – [in] Pointer to a subcommands array.

• _help – [in] Pointer to a command help string.

• _handler – [in] Pointer to a function handler.

• _mand – [in] Number of mandatory arguments including command
name.
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• _opt – [in] Number of optional arguments.

SHELL_SUBCMD_ADD(_parent, _syntax, _subcmd, _help, _handler, _mand, _opt)
Add command to the set of subcommands.

Add command to the set created with SHELL_SUBCMD_SET_CREATE.

Parameters
• _parent – [in] Parent command sequence. Comma separated in paren-

thesis.

• _syntax – [in] Command syntax (for example: history).

• _subcmd – [in] Pointer to a subcommands array.

• _help – [in] Pointer to a command help string.

• _handler – [in] Pointer to a function handler.

• _mand – [in] Number of mandatory arguments including command
name.

• _opt – [in] Number of optional arguments.

SHELL_SUBCMD_SET_END
Define ending subcommands set.

SHELL_DYNAMIC_CMD_CREATE(name, get)
Macro for creating a dynamic entry.

Parameters
• name – [in] Name of the dynamic entry.

• get – [in] Pointer to the function returning dynamic commands array

SHELL_CMD_ARG(syntax, subcmd, help, handler, mand, opt)
Initializes a shell command with arguments.

Note

If a command will be called with wrong number of arguments shell will print an
error message and command handler will not be called.

Parameters
• syntax – [in] Command syntax (for example: history).

• subcmd – [in] Pointer to a subcommands array.

• help – [in] Pointer to a command help string.

• handler – [in] Pointer to a function handler.

• mand – [in] Number of mandatory arguments including command name.

• opt – [in] Number of optional arguments.

SHELL_COND_CMD_ARG(flag, syntax, subcmd, help, handler, mand, opt)
Initializes a conditional shell command with arguments.
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See also

SHELL_CMD_ARG. Based on the flag, creates a valid entry or an empty command
which is ignored by the shell. It is an alternative to #ifdefs around command reg-
istration and command handler. However, empty structure is present in the flash
even if command is disabled (subcommands and handler are removed). Macro in-
ternally handles case if flag is not defined so flag must be provided without any
wrapper, e.g.: SHELL_COND_CMD_ARG(CONFIG_FOO, …)

Parameters
• flag – [in] Compile time flag. Command is present only if flag exists and

equals 1.

• syntax – [in] Command syntax (for example: history).

• subcmd – [in] Pointer to a subcommands array.

• help – [in] Pointer to a command help string.

• handler – [in] Pointer to a function handler.

• mand – [in] Number of mandatory arguments including command name.

• opt – [in] Number of optional arguments.

SHELL_EXPR_CMD_ARG(_expr, _syntax, _subcmd, _help, _handler, _mand, _opt)
Initializes a conditional shell command with arguments if expression gives non-zero
result at compile time.

See also

SHELL_CMD_ARG. Based on the expression, creates a valid entry or an
empty command which is ignored by the shell. It should be used in-
stead of SHELL_COND_CMD_ARG if condition is not a single configura-
tion flag, e.g.: SHELL_EXPR_CMD_ARG(IS_ENABLED(CONFIG_FOO) &&
IS_ENABLED(CONFIG_FOO_SETTING_1), …)

Parameters
• _expr – [in] Expression.

• _syntax – [in] Command syntax (for example: history).

• _subcmd – [in] Pointer to a subcommands array.

• _help – [in] Pointer to a command help string.

• _handler – [in] Pointer to a function handler.

• _mand – [in] Number of mandatory arguments including command
name.

• _opt – [in] Number of optional arguments.

SHELL_CMD(_syntax, _subcmd, _help, _handler)
Initializes a shell command.

Parameters
• _syntax – [in] Command syntax (for example: history).
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• _subcmd – [in] Pointer to a subcommands array.

• _help – [in] Pointer to a command help string.

• _handler – [in] Pointer to a function handler.

SHELL_COND_CMD(_flag, _syntax, _subcmd, _help, _handler)
Initializes a conditional shell command.

See also

SHELL_COND_CMD_ARG.

Parameters
• _flag – [in] Compile time flag. Command is present only if flag exists

and equals 1.

• _syntax – [in] Command syntax (for example: history).

• _subcmd – [in] Pointer to a subcommands array.

• _help – [in] Pointer to a command help string.

• _handler – [in] Pointer to a function handler.

SHELL_EXPR_CMD(_expr, _syntax, _subcmd, _help, _handler)
Initializes shell command if expression gives non-zero result at compile time.

See also

SHELL_EXPR_CMD_ARG.

Parameters
• _expr – [in] Compile time expression. Command is present only if ex-

pression is non-zero.

• _syntax – [in] Command syntax (for example: history).

• _subcmd – [in] Pointer to a subcommands array.

• _help – [in] Pointer to a command help string.

• _handler – [in] Pointer to a function handler.

SHELL_CMD_DICT_CREATE(_data, _handler)

SHELL_SUBCMD_DICT_SET_CREATE(_name, _handler, ...)
Initializes shell dictionary commands.

This is a special kind of static commands. Dictionary commands can be used every
time you want to use a pair: (string <-> corresponding data) in a command handler.
The string is usually a verbal description of a given data. The idea is to use the string
as a command syntax that can be prompted by the shell and corresponding data can
be used to process the command.

Example usage:
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static int my_handler(const struct shell *sh,
size_t argc, char **argv, void *data)

{
int val = (int)data;

shell_print(sh, "(syntax, value) : (%s, %d)", argv[0], val);
return 0;

}

SHELL_SUBCMD_DICT_SET_CREATE(sub_dict_cmds, my_handler,
(value_0, 0, "value 0"), (value_1, 1, "value 1"),
(value_2, 2, "value 2"), (value_3, 3, "value 3")

);
SHELL_CMD_REGISTER(dictionary, &sub_dict_cmds, NULL, NULL);

See also

shell_dict_cmd_handler

Parameters
• _name – [in] Name of the dictionary subcommand set

• _handler – [in]Command handler common for all dictionary commands.

• ... – [in] Dictionary triplets: (command_syntax, value, helper). Value
will be passed to the _handler as user data.

SHELL_DEFAULT_BACKEND_CONFIG_FLAGS

SHELL_DEFINE(_name, _prompt, _transport_iface, _log_queue_size, _log_timeout,
_shell_flag)

Macro for defining a shell instance.

Parameters
• _name – [in] Instance name.

• _prompt – [in] Shell default prompt string.

• _transport_iface – [in] Pointer to the transport interface.

• _log_queue_size – [in] Logger processing queue size.

• _log_timeout – [in] Logger thread timeout in milliseconds on full log
queue. If queue is full logger thread is blocked for given amount of time
before log message is dropped.

• _shell_flag – [in] Shell output newline sequence.

SHELL_NORMAL
Terminal default text color for shell_fprintf function.

SHELL_INFO
Green text color for shell_fprintf function.

SHELL_OPTION
Cyan text color for shell_fprintf function.
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SHELL_WARNING
Yellow text color for shell_fprintf function.

SHELL_ERROR
Red text color for shell_fprintf function.

shell_fprintf(sh, color, fmt, ...)

shell_info(_sh, _ft, ...)
Print info message to the shell.

See shell_fprintf.

Parameters
• _sh – [in] Pointer to the shell instance.

• _ft – [in] Format string.

• ... – [in] List of parameters to print.

shell_print(_sh, _ft, ...)
Print normal message to the shell.

See shell_fprintf.

Parameters
• _sh – [in] Pointer to the shell instance.

• _ft – [in] Format string.

• ... – [in] List of parameters to print.

shell_warn(_sh, _ft, ...)
Print warning message to the shell.

See shell_fprintf.

Parameters
• _sh – [in] Pointer to the shell instance.

• _ft – [in] Format string.

• ... – [in] List of parameters to print.

shell_error(_sh, _ft, ...)
Print error message to the shell.

See shell_fprintf.

Parameters
• _sh – [in] Pointer to the shell instance.

• _ft – [in] Format string.

• ... – [in] List of parameters to print.

SHELL_CMD_HELP_PRINTED
Command’s help has been printed.
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Typedefs

typedef void (*shell_dynamic_get)(size_t idx, struct shell_static_entry *entry)
Shell dynamic command descriptor.

Function shall fill the received shell_static_entry structure with requested (idx) dy-
namic subcommand data. If there is more than one dynamic subcommand available,
the function shall ensure that the returned commands: entry->syntax are sorted in
alphabetical order. If idx exceeds the available dynamic subcommands, the function
must write to entry->syntax NULL value. This will indicate to the shell module that
there are no more dynamic commands to read.

typedef bool (*shell_device_filter_t)(const struct device *dev)
Filter callback type, for use with shell_device_lookup_filter.

This is used as an argument of shell_device_lookup_filter to only return devices that
match a specific condition, implemented by the filter.

Param dev
pointer to a struct device.

Return
bool, true if the filter matches the device type.

typedef int (*shell_cmd_handler)(const struct shell *sh, size_t argc, char **argv)
Shell command handler prototype.

Param sh
Shell instance.

Param argc
Arguments count.

Param argv
Arguments.

Retval 0
Successful command execution.

Retval 1
Help printed and command not executed.

Retval -EINVAL
Argument validation failed.

Retval -ENOEXEC
Command not executed.

typedef int (*shell_dict_cmd_handler)(const struct shell *sh, size_t argc, char **argv, void
*data)

Shell dictionary command handler prototype.

Param sh
Shell instance.

Param argc
Arguments count.

Param argv
Arguments.

Param data
Pointer to the user data.
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Retval 0
Successful command execution.

Retval 1
Help printed and command not executed.

Retval -EINVAL
Argument validation failed.

Retval -ENOEXEC
Command not executed.

typedef void (*shell_transport_handler_t)(enum shell_transport_evt evt, void *context)

typedef void (*shell_uninit_cb_t)(const struct shell *sh, int res)

typedef void (*shell_bypass_cb_t)(const struct shell *sh, uint8_t *data, size_t len)
Bypass callback.

Param sh
Shell instance.

Param data
Raw data from transport.

Param len
Data length.

Enums

enum shell_receive_state
Values:

enumerator SHELL_RECEIVE_DEFAULT

enumerator SHELL_RECEIVE_ESC

enumerator SHELL_RECEIVE_ESC_SEQ

enumerator SHELL_RECEIVE_TILDE_EXP

enum shell_state
Values:

enumerator SHELL_STATE_UNINITIALIZED

enumerator SHELL_STATE_INITIALIZED

enumerator SHELL_STATE_ACTIVE

enumerator SHELL_STATE_PANIC_MODE_ACTIVE
Panic activated.
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enumerator SHELL_STATE_PANIC_MODE_INACTIVE
Panic requested, not supported.

enum shell_transport_evt
Shell transport event.

Values:

enumerator SHELL_TRANSPORT_EVT_RX_RDY

enumerator SHELL_TRANSPORT_EVT_TX_RDY

enum shell_signal
Values:

enumerator SHELL_SIGNAL_RXRDY

enumerator SHELL_SIGNAL_LOG_MSG

enumerator SHELL_SIGNAL_KILL

enumerator SHELL_SIGNAL_TXDONE

enumerator SHELL_SIGNALS

enum shell_flag
Flags for setting shell output newline sequence.

Values:

enumerator SHELL_FLAG_CRLF_DEFAULT = (1 « 0)
Do not map CR or LF.

enumerator SHELL_FLAG_OLF_CRLF = (1 « 1)
Map LF to CRLF on output.

Functions

const struct device *shell_device_lookup(size_t idx, const char *prefix)
Get by index a device that matches .

This can be used, for example, to identify I2C_1 as the second I2C device.

Devices that failed to initialize or do not have a non-empty name are excluded from
the candidates for a match.

Parameters
• idx – the device number starting from zero.

• prefix – optional name prefix used to restrict candidate devices. Index-
ing is done relative to devices with names that start with this text. Pass
null if no prefix match is required.
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const struct device *shell_device_filter(size_t idx, shell_device_filter_t filter)
Get a device by index and filter.

This can be used to return devices matching a specific type.

Devices that the filter returns false for, failed to initialize or do not have a non-empty
name are excluded from the candidates for a match.

Parameters
• idx – the device number starting from zero.

• filter – a pointer to a shell_device_filter_t function that returns true if
the device matches the filter.

int shell_init(const struct shell *sh, const void *transport_config, struct
shell_backend_config_flags cfg_flags, bool log_backend, uint32_t
init_log_level)

Function for initializing a transport layer and internal shell state.

Parameters
• sh – [in] Pointer to shell instance.

• transport_config – [in] Transport configuration during initialization.

• cfg_flags – [in] Initial backend configuration flags. Shell will copy this
data.

• log_backend – If true, the console will be used as logger backend.

• init_log_level – [in] Default severity level for the logger.

Returns
Standard error code.

void shell_uninit(const struct shell *sh, shell_uninit_cb_t cb)
Uninitializes the transport layer and the internal shell state.

Parameters
• sh – Pointer to shell instance.

• cb – Callback called when uninitialization is completed.

int shell_start(const struct shell *sh)
Function for starting shell processing.

Parameters
• sh – Pointer to the shell instance.

Returns
Standard error code.

int shell_stop(const struct shell *sh)
Function for stopping shell processing.

Parameters
• sh – Pointer to shell instance.

Returns
Standard error code.

void shell_fprintf_impl(const struct shell *sh, enum shell_vt100_color color, const char
*fmt, ...)
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printf-like function which sends formatted data stream to the shell.

This function can be used from the command handler or from threads, but not from
an interrupt context.

Parameters
• sh – [in] Pointer to the shell instance.

• color – [in] Printed text color.

• fmt – [in] Format string.

• ... – [in] List of parameters to print.

void shell_vfprintf(const struct shell *sh, enum shell_vt100_color color, const char *fmt,
va_list args)

vprintf-like function which sends formatted data stream to the shell.

This function can be used from the command handler or from threads, but not from
an interrupt context. It is similar to shell_fprintf() but takes a va_list instead of variable
arguments.

Parameters
• sh – [in] Pointer to the shell instance.

• color – [in] Printed text color.

• fmt – [in] Format string.

• args – [in] List of parameters to print.

void shell_hexdump_line(const struct shell *sh, unsigned int offset, const uint8_t *data,
size_t len)

Print a line of data in hexadecimal format.

Each line shows the offset, bytes and then ASCII representation.

For example:

00008010: 20 25 00 20 2f 48 00 08 80 05 00 20 af 46 00 | %. /H.. … .F. |

Parameters
• sh – [in] Pointer to the shell instance.

• offset – [in] Offset to show for this line.

• data – [in] Pointer to data.

• len – [in] Length of data.

void shell_hexdump(const struct shell *sh, const uint8_t *data, size_t len)
Print data in hexadecimal format.

Parameters
• sh – [in] Pointer to the shell instance.

• data – [in] Pointer to data.

• len – [in] Length of data.

void shell_info_impl(const struct shell *sh, const char *fmt, ...)

void shell_print_impl(const struct shell *sh, const char *fmt, ...)

void shell_warn_impl(const struct shell *sh, const char *fmt, ...)
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void shell_error_impl(const struct shell *sh, const char *fmt, ...)

void shell_process(const struct shell *sh)
Process function, which should be executed when data is ready in the transport inter-
face.

To be used if shell thread is disabled.

Parameters
• sh – [in] Pointer to the shell instance.

int shell_prompt_change(const struct shell *sh, const char *prompt)
Change displayed shell prompt.

Parameters
• sh – [in] Pointer to the shell instance.

• prompt – [in] New shell prompt.

Returns
0 Success.

Returns
-EINVAL Pointer to new prompt is not correct.

void shell_help(const struct shell *sh)
Prints the current command help.

Function will print a help string with: the currently entered command and subcom-
mands (if they exist).

Parameters
• sh – [in] Pointer to the shell instance.

int shell_execute_cmd(const struct shell *sh, const char *cmd)
Execute command.

Pass command line to shell to execute.

Note: This by no means makes any of the commands a stable interface, so this function
should only be used for debugging/diagnostic.

This function must not be called from shell command context!

Parameters
• sh – [in] Pointer to the shell instance. It can be NULL when the CON-
FIG_SHELL_BACKEND_DUMMY option is enabled.

• cmd – [in] Command to be executed.

Returns
Result of the execution

int shell_set_root_cmd(const char *cmd)
Set root command for all shell instances.

It allows setting from the code the root command. It is an equivalent of calling select
command with one of the root commands as the argument (e.g “select log”) except it
sets command for all shell instances.

Parameters
• cmd – String with one of the root commands or null pointer to reset.

Return values
• 0 – if root command is set.
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• -EINVAL – if invalid root command is provided.

void shell_set_bypass(const struct shell *sh, shell_bypass_cb_t bypass)
Set bypass callback.

Bypass callback is called whenever data is received. Shell is bypassed and data is
passed directly to the callback. Use null to disable bypass functionality.

Parameters
• sh – [in] Pointer to the shell instance.

• bypass – [in] Bypass callback or null to disable.

bool shell_ready(const struct shell *sh)
Get shell readiness to execute commands.

Parameters
• sh – [in] Pointer to the shell instance.

Return values
• true – Shell backend is ready to execute commands.

• false – Shell backend is not initialized or not started.

int shell_insert_mode_set(const struct shell *sh, bool val)
Allow application to control text insert mode.

Value is modified atomically and the previous value is returned.

Parameters
• sh – [in] Pointer to the shell instance.

• val – [in] Insert mode.

Return values
• 0 – or 1: previous value

• -EINVAL – if shell is NULL.

int shell_use_colors_set(const struct shell *sh, bool val)
Allow application to control whether terminal output uses colored syntax.

Value is modified atomically and the previous value is returned.

Parameters
• sh – [in] Pointer to the shell instance.

• val – [in] Color mode.

Return values
• 0 – or 1: previous value

• -EINVAL – if shell is NULL.

int shell_use_vt100_set(const struct shell *sh, bool val)
Allow application to control whether terminal is using vt100 commands.

Value is modified atomically and the previous value is returned.

Parameters
• sh – [in] Pointer to the shell instance.

• val – [in] vt100 mode.

Return values
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• 0 – or 1: previous value

• -EINVAL – if shell is NULL.

int shell_echo_set(const struct shell *sh, bool val)
Allow application to control whether user input is echoed back.

Value is modified atomically and the previous value is returned.

Parameters
• sh – [in] Pointer to the shell instance.

• val – [in] Echo mode.

Return values
• 0 – or 1: previous value

• -EINVAL – if shell is NULL.

int shell_obscure_set(const struct shell *sh, bool obscure)
Allow application to control whether user input is obscured with asterisks &#8212;
useful for implementing passwords.

Value is modified atomically and the previous value is returned.

Parameters
• sh – [in] Pointer to the shell instance.

• obscure – [in] Obscure mode.

Return values
• 0 – or 1: previous value.

• -EINVAL – if shell is NULL.

int shell_mode_delete_set(const struct shell *sh, bool val)
Allow application to control whether the delete key backspaces or deletes.

Value is modified atomically and the previous value is returned.

Parameters
• sh – [in] Pointer to the shell instance.

• val – [in] Delete mode.

Return values
• 0 – or 1: previous value

• -EINVAL – if shell is NULL.

int shell_get_return_value(const struct shell *sh)
Retrieve return value of most recently executed shell command.

Parameters
• sh – [in] Pointer to the shell instance

Return values
return – value of previous command

Variables

const struct log_backend_api log_backend_shell_api

4.22. Shell 1143



Zephyr Project Documentation, Release 3.7.99

union shell_cmd_entry
#include <shell.h> Shell command descriptor.

Public Members

shell_dynamic_get dynamic_get
Pointer to function returning dynamic commands.

const struct shell_static_entry *entry
Pointer to array of static commands.

struct shell_static_args
#include <shell.h>

Public Members

uint8_t mandatory
Number of mandatory arguments.

uint8_t optional
Number of optional arguments.

struct shell_static_entry
#include <shell.h>

Public Members

const char *syntax
Command syntax strings.

const char *help
Command help string.

const union shell_cmd_entry *subcmd
Pointer to subcommand.

shell_cmd_handler handler
Command handler.

struct shell_static_args args
Command arguments.

struct shell_transport_api
#include <shell.h> Unified shell transport interface.
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Public Members

int (*init)(const struct shell_transport *transport, const void *config,
shell_transport_handler_t evt_handler, void *context)

Function for initializing the shell transport interface.
Param transport
[in] Pointer to the transfer instance.

Param config
[in] Pointer to instance configuration.

Param evt_handler
[in] Event handler.

Param context
[in] Pointer to the context passed to event handler.

Return
Standard error code.

int (*uninit)(const struct shell_transport *transport)
Function for uninitializing the shell transport interface.

Param transport
[in] Pointer to the transfer instance.

Return
Standard error code.

int (*enable)(const struct shell_transport *transport, bool blocking_tx)
Function for enabling transport in given TX mode.

Function can be used to reconfigure TX to work in blocking mode.
Param transport

Pointer to the transfer instance.
Param blocking_tx

If true, the transport TX is enabled in blocking mode.
Return

NRF_SUCCESS on successful enabling, error otherwise (also if not sup-
ported).

int (*write)(const struct shell_transport *transport, const void *data, size_t length,
size_t *cnt)

Function for writing data to the transport interface.
Param transport
[in] Pointer to the transfer instance.

Param data
[in] Pointer to the source buffer.

Param length
[in] Source buffer length.

Param cnt
[out] Pointer to the sent bytes counter.

Return
Standard error code.

int (*read)(const struct shell_transport *transport, void *data, size_t length, size_t
*cnt)

Function for reading data from the transport interface.
Param transport
[in] Pointer to the transfer instance.

Param data
[in] Pointer to the destination buffer.
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Param length
[in] Destination buffer length.

Param cnt
[out] Pointer to the received bytes counter.

Return
Standard error code.

void (*update)(const struct shell_transport *transport)
Function called in shell thread loop.

Can be used for backend operations that require longer execution time
Param transport
[in] Pointer to the transfer instance.

struct shell_transport
#include <shell.h>

struct shell_stats
#include <shell.h> Shell statistics structure.

Public Members

atomic_t log_lost_cnt
Lost log counter.

struct shell_backend_config_flags
#include <shell.h>

Public Members

uint32_t insert_mode
Controls insert mode for text introduction.

uint32_t echo
Controls shell echo.

uint32_t obscure
If echo on, print asterisk instead.

uint32_t mode_delete
Operation mode of backspace key.

uint32_t use_colors
Controls colored syntax.

uint32_t use_vt100
Controls VT100 commands usage in shell.

struct shell_backend_ctx_flags
#include <shell.h>
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Public Members

uint32_t processing
Shell is executing process function.

uint32_t history_exit
Request to exit history mode.

uint32_t last_nl
Last received new line character.

uint32_t cmd_ctx
Shell is executing command.

uint32_t print_noinit
Print request from not initialized shell.

uint32_t sync_mode
Shell in synchronous mode.

uint32_t handle_log
Shell is handling logger backend.

union shell_backend_cfg
#include <shell.h>

Public Members

atomic_t value

struct shell_backend_config_flags flags

union shell_backend_ctx
#include <shell.h>

Public Members

uint32_t value

struct shell_backend_ctx_flags flags

struct shell_ctx
#include <shell.h> Shell instance context.
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Public Members

enum shell_state state
Internal module state.

enum shell_receive_state receive_state
Escape sequence indicator.

struct shell_static_entry active_cmd
Currently executed command.

const struct shell_static_entry *selected_cmd
New root command.

If NULL shell uses default root commands.

struct shell_vt100_ctx vt100_ctx
VT100 color and cursor position, terminal width.

shell_uninit_cb_t uninit_cb
Callback called from shell thread context when unitialization is completed just be-
fore aborting shell thread.

shell_bypass_cb_t bypass
When bypass is set, all incoming data is passed to the callback.

Logging level for a backend.

uint16_t cmd_buff_len
Command length.

uint16_t cmd_buff_pos
Command buffer cursor position.

uint16_t cmd_tmp_buff_len
Command length in tmp buffer.

char cmd_buff[0]
Command input buffer.

char temp_buff[0]
Command temporary buffer.

char printf_buff[0]
Printf buffer size.

struct k_poll_event events[SHELL_SIGNALS]
Events that should be used only internally by shell thread.

Event for SHELL_SIGNAL_TXDONE is initialized but unused.
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struct shell
#include <shell.h> Shell instance internals.

Public Members

const char *default_prompt
shell default prompt.

const struct shell_transport *iface
Transport interface.

struct shell_ctx *ctx
Internal context.

4.23 Serialization

Zephyr has support for several data serialization subsystems. These can be used to en-
code/decode structured data with a known format on-the-wire.

4.23.1 Nanopb

Nanopb is a C implementation of Google’s Protocol Buffers.

Requirements

Nanopb uses the protocol buffer compiler to generate source and header files, make sure the
protoc executable is installed and available.

Ubuntu

Use apt to install dependency:

sudo apt install protobuf-compiler

macOS

Use brew to install dependency:

brew install protobuf

Windows

Use choco to install dependency:

choco install protoc

Additionally, Nanopb is an optional module and needs to be added explicitly to the workspace:

west config manifest.project-filter -- +nanopb
west update
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Configuration

Make sure to include nanopb within your CMakeLists.txt file as follows:

list(APPEND CMAKE_MODULE_PATH ${ZEPHYR_BASE}/modules/nanopb)
include(nanopb)

Adding proto files can be done with the zephyr_nanopb_sources() CMake function which en-
sures the generated header and source files are created before building the specified target.

Nanopb has generator options that can be used to configure messages or fields. This allows to
set fixed sizes or skip fields entirely.

The internal CMake generator has an extension to configure *.options.in files automatically
with CMake variables.

See samples/modules/nanopb/src/simple.options.in and samples/modules/nanopb/CMakeLists.txt
for usage example.

4.24 Settings

The settings subsystem gives modules a way to store persistent per-device configuration and run-
time state. A variety of storage implementations are provided behind a common API using FCB,
NVS, or a file system. These different implementations give the application developer flexibility
to select an appropriate storage medium, and even change it later as needs change. This subsys-
tem is used by various Zephyr components and can be used simultaneously by user applications.

Settings items are stored as key-value pair strings. By convention, the keys can be organized
by the package and subtree defining the key, for example the key id/serial would define the
serial configuration element for the package id.

Convenience routines are provided for converting a key value to and from a string type.

For an example of the settings subsystem refer to settings sample.

Note

As of Zephyr release 2.1 the recommended backend for non-filesystem storage is NVS.

4.24.1 Handlers

Settings handlers for subtree implement a set of handler functions. These are registered using a
call to settings_register().

h_get
This gets called when asking for a settings element value by its name using set-
tings_runtime_get() from the runtime backend.

h_set
This gets called when the value is loaded from persisted storage with settings_load(), or
when using settings_runtime_set() from the runtime backend.

h_commit
This gets called after the settings have been loaded in full. Sometimes you don’t want an
individual setting value to take effect right away, for example if there are multiple settings
which are interdependent.
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h_export
This gets called to write all current settings. This happens when settings_save() tries to
save the settings or transfer to any user-implemented back-end.

4.24.2 Backends

Backends are meant to load and save data to/from setting handlers, and implement a set of han-
dler functions. These are registered using a call to settings_src_register() for backends that
can load data, and/or settings_dst_register() for backends that can save data. The current
implementation allows for multiple source backends but only a single destination backend.

csi_load
This gets called when loading values from persistent storage using settings_load().

csi_save
This gets called when saving a single setting to persistent storage using set-
tings_save_one().

csi_save_start
This gets called when starting a save of all current settings using settings_save().

csi_save_end
This gets called after having saved of all current settings using settings_save().

4.24.3 Zephyr Storage Backends

Zephyr has three storage backends: a Flash Circular Buffer (CONFIG_SETTINGS_FCB), a file in the
filesystem (CONFIG_SETTINGS_FILE), or non-volatile storage (CONFIG_SETTINGS_NVS).

You can declare multiple sources for settings; settings from all of these are restored when set-
tings_load() is called.

There can be only one target for writing settings; this is where data is stored when you call
settings_save(), or settings_save_one().

FCB read target is registered using settings_fcb_src(), and write target using set-
tings_fcb_dst(). As a side-effect, settings_fcb_src() initializes the FCB area, so it must
be called before calling settings_fcb_dst(). File read target is registered using set-
tings_file_src(), and write target by using settings_file_dst(). Non-volatile storage read
target is registered using settings_nvs_src(), and write target by using settings_nvs_dst().

4.24.4 Storage Location

The FCB and non-volatile storage (NVS) backends both look for a fixed partition with label “stor-
age” by default. A different partition can be selected by setting the zephyr,settings-partition
property of the chosen node in the devicetree.

The file path used by the file backend to store settings is selected via the option CON-
FIG_SETTINGS_FILE_PATH.

4.24.5 Loading data from persisted storage

A call to settings_load() uses an h_set implementation to load settings data from storage to
volatile memory. After all data is loaded, the h_commit handler is issued, signalling the applica-
tion that the settings were successfully retrieved.
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Technically FCB and file backends may store some history of the entities. This means that the
newest data entity is stored after any older existing data entities. Starting with Zephyr 2.1, the
back-end must filter out all old entities and call the callback with only the newest entity.

4.24.6 Storing data to persistent storage

A call to settings_save_one() uses a backend implementation to store settings data to the stor-
age medium. A call to settings_save() uses an h_export implementation to store different data
in one operation using settings_save_one(). A key need to be covered by a h_export only if it
is supposed to be stored by settings_save() call.

For both FCB and file back-end only storage requests with data which changes most actual key’s
value are stored, therefore there is no need to check whether a value changed by the application.
Such a storage mechanism implies that storage can contain multiple value assignments for a key
, while only the last is the current value for the key.

Garbage collection

When storage becomes full (FCB) or consumes too much space (file), the backend removes non-
recent key-value pairs records and unnecessary key-delete records.

4.24.7 Secure domain settings

Currently settings doesn’t provide scheme of being secure, and non-secure configuration stor-
age simultaneously for the same instance. It is recommended that secure domain uses its own
settings instance and it might provide data for non-secure domain using dedicated interface if
needed (case dependent).

4.24.8 Example: Device Configuration

This is a simple example, where the settings handler only implements h_set and h_export. h_set
is called when the value is restored from storage (or when set initially), and h_export is used to
write the value to storage thanks to storage_func(). The user can also implement some other
export functionality, for example, writing to the shell console).

#define DEFAULT_FOO_VAL_VALUE 1

static int8 foo_val = DEFAULT_FOO_VAL_VALUE;

static int foo_settings_set(const char *name, size_t len,
settings_read_cb read_cb, void *cb_arg)

{
const char *next;
int rc;

if (settings_name_steq(name, "bar", &next) && !next) {
if (len != sizeof(foo_val)) {

return -EINVAL;
}

rc = read_cb(cb_arg, &foo_val, sizeof(foo_val));
if (rc >= 0) {

/* key-value pair was properly read.
* rc contains value length.
*/

(continues on next page)
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(continued from previous page)
return 0;

}
/* read-out error */
return rc;

}

return -ENOENT;
}

static int foo_settings_export(int (*storage_func)(const char *name,
const void *value,
size_t val_len))

{
return storage_func("foo/bar", &foo_val, sizeof(foo_val));

}

struct settings_handler my_conf = {
.name = "foo",
.h_set = foo_settings_set,
.h_export = foo_settings_export

};

4.24.9 Example: Persist Runtime State

This is a simple example showing how to persist runtime state. In this example, only h_set is
defined, which is used when restoring value from persisted storage.

In this example, the main function increments foo_val, and then persists the latest number.
When the system restarts, the application calls settings_load() while initializing, and foo_val
will continue counting up from where it was before restart.

#include <zephyr/kernel.h>
#include <zephyr/sys/reboot.h>
#include <zephyr/settings/settings.h>
#include <zephyr/sys/printk.h>
#include <inttypes.h>

#define DEFAULT_FOO_VAL_VALUE 0

static uint8_t foo_val = DEFAULT_FOO_VAL_VALUE;

static int foo_settings_set(const char *name, size_t len,
settings_read_cb read_cb, void *cb_arg)

{
const char *next;
int rc;

if (settings_name_steq(name, "bar", &next) && !next) {
if (len != sizeof(foo_val)) {

return -EINVAL;
}

rc = read_cb(cb_arg, &foo_val, sizeof(foo_val));
if (rc >= 0) {

return 0;
}

return rc;
}

(continues on next page)
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(continued from previous page)

return -ENOENT;
}

struct settings_handler my_conf = {
.name = "foo",
.h_set = foo_settings_set

};

int main(void)
{

settings_subsys_init();
settings_register(&my_conf);
settings_load();

foo_val++;
settings_save_one("foo/bar", &foo_val, sizeof(foo_val));

printk("foo: %d\n", foo_val);

k_msleep(1000);
sys_reboot(SYS_REBOOT_COLD);

}

4.24.10 Example: Custom Backend Implementation

This is a simple example showing how to register a simple custom backend handler
(CONFIG_SETTINGS_CUSTOM).

static int settings_custom_load(struct settings_store *cs,
const struct settings_load_arg *arg)

{
//...

}

static int settings_custom_save(struct settings_store *cs, const char *name,
const char *value, size_t val_len)

{
//...

}

/* custom backend interface */
static struct settings_store_itf settings_custom_itf = {

.csi_load = settings_custom_load,

.csi_save = settings_custom_save,
};

/* custom backend node */
static struct settings_store settings_custom_store = {

.cs_itf = &settings_custom_itf
};

int settings_backend_init(void)
{

/* register custom backend */
settings_dst_register(&settings_custom_store);
settings_src_register(&settings_custom_store);
return 0;

(continues on next page)
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}

4.24.11 API Reference

The Settings subsystem APIs are provided by settings.h:

API for general settings usage

Related code samples

Settings API
Load and save configuration values using the settings API.

group settings

Since
1.12

Version
1.0.0

Defines

SETTINGS_MAX_DIR_DEPTH

SETTINGS_MAX_NAME_LEN

SETTINGS_MAX_VAL_LEN

SETTINGS_NAME_SEPARATOR

SETTINGS_NAME_END

SETTINGS_EXTRA_LEN

SETTINGS_STATIC_HANDLER_DEFINE(_hname, _tree, _get, _set, _commit, _export)
Define a static handler for settings items.

This creates a variable hname prepended by settings_handler.

Parameters
• _hname – handler name

• _tree – subtree name

• _get – get routine (can be NULL)

• _set – set routine (can be NULL)
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• _commit – commit routine (can be NULL)

• _export – export routine (can be NULL)

Typedefs

typedef ssize_t (*settings_read_cb)(void *cb_arg, void *data, size_t len)
Function used to read the data from the settings storage in h_set handler implementa-
tions.

Param cb_arg
[in] arguments for the read function. Appropriate cb_arg is transferred to
h_set handler implementation by the backend.

Param data
[out] the destination buffer

Param len
[in] length of read

Return
positive: Number of bytes read, 0: key-value pair is deleted. On error re-
turns -ERRNO code.

typedef int (*settings_load_direct_cb)(const char *key, size_t len, settings_read_cb
read_cb, void *cb_arg, void *param)

Callback function used for direct loading.

Used by settings_load_subtree_direct function.

Param key
[in] the name with skipped part that was used as name in handler regis-
tration

Param len
[in] the size of the data found in the backend.

Param read_cb
[in] function provided to read the data from the backend.

Param cb_arg
[inout] arguments for the read function provided by the backend.

Param param
[inout] parameter given to the settings_load_subtree_direct function.

Return
When nonzero value is returned, further subtree searching is stopped.

Functions

int settings_subsys_init(void)
Initialization of settings and backend.

Can be called at application startup. In case the backend is a FS Remember to call it
after the FS was mounted. For FCB backend it can be called without such a restriction.

Returns
0 on success, non-zero on failure.
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int settings_register(struct settings_handler *cf)
Register a handler for settings items stored in RAM.

Parameters
• cf – Structure containing registration info.

Returns
0 on success, non-zero on failure.

int settings_load(void)
Load serialized items from registered persistence sources.

Handlers for serialized item subtrees registered earlier will be called for encountered
values.

Returns
0 on success, non-zero on failure.

int settings_load_subtree(const char *subtree)
Load limited set of serialized items from registered persistence sources.

Handlers for serialized item subtrees registered earlier will be called for encountered
values that belong to the subtree.

Parameters
• subtree – [in] name of the subtree to be loaded.

Returns
0 on success, non-zero on failure.

int settings_load_subtree_direct(const char *subtree, settings_load_direct_cb cb, void
*param)

Load limited set of serialized items using given callback.

This function bypasses the normal data workflow in settings module. All the settings
values that are found are passed to the given callback.

Note

This function does not call commit function. It works as a blocking function, so it is
up to the user to call any kind of commit function when this operation ends.

Parameters
• subtree – [in] subtree name of the subtree to be loaded.

• cb – [in] pointer to the callback function.

• param – [inout] parameter to be passed when callback function is called.

Returns
0 on success, non-zero on failure.

int settings_save(void)
Save currently running serialized items.

All serialized items which are different from currently persisted values will be saved.

Returns
0 on success, non-zero on failure.
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int settings_save_subtree(const char *subtree)
Save limited set of currently running serialized items.

All serialized items that belong to subtree and which are different from currently per-
sisted values will be saved.

Parameters
• subtree – [in] name of the subtree to be loaded.

Returns
0 on success, non-zero on failure.

int settings_save_one(const char *name, const void *value, size_t val_len)
Write a single serialized value to persisted storage (if it has changed value).

Parameters
• name – Name/key of the settings item.

• value – Pointer to the value of the settings item. This value will be trans-
ferred to the settings_handler::h_export handler implementation.

• val_len – Length of the value.

Returns
0 on success, non-zero on failure.

int settings_delete(const char *name)
Delete a single serialized in persisted storage.

Deleting an existing key-value pair in the settings mean to set its value to NULL.

Parameters
• name – Name/key of the settings item.

Returns
0 on success, non-zero on failure.

int settings_commit(void)
Call commit for all settings handler.

This should apply all settings which has been set, but not applied yet.

Returns
0 on success, non-zero on failure.

int settings_commit_subtree(const char *subtree)
Call commit for settings handler that belong to subtree.

This should apply all settings which has been set, but not applied yet.

Parameters
• subtree – [in] name of the subtree to be committed.

Returns
0 on success, non-zero on failure.

struct settings_handler
#include <settings.h> Config handlers for subtree implement a set of handler functions.

These are registered using a call to settings_register.
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Public Members

const char *name
Name of subtree.

int (*h_get)(const char *key, char *val, int val_len_max)
Get values handler of settings items identified by keyword names.

Parameters:
• key[in] the name with skipped part that was used as name in handler registra-

tion
• val[out] buffer to receive value.
• val_len_max[in] size of that buffer.

Return: length of data read on success, negative on failure.

int (*h_set)(const char *key, size_t len, settings_read_cb read_cb, void *cb_arg)
Set value handler of settings items identified by keyword names.

Parameters:
• key[in] the name with skipped part that was used as name in handler registra-

tion
• len[in] the size of the data found in the backend.
• read_cb[in] function provided to read the data from the backend.
• cb_arg[in] arguments for the read function provided by the backend.

Return: 0 on success, non-zero on failure.

int (*h_commit)(void)
This handler gets called after settings has been loaded in full.

User might use it to apply setting to the application.

Return: 0 on success, non-zero on failure.

int (*h_export)(int (*export_func)(const char *name, const void *val, size_t val_len))
This gets called to dump all current settings items.

This happens when settings_save tries to save the settings. Parameters:
• export_func: the pointer to the internal function which appends a single key-

value pair to persisted settings. Don’t store duplicated value. The name is sub-
tree/key string, val is the string with value.

Return: 0 on success, non-zero on failure.

Remark

The User might limit a implementations of handler to serving only one keyword
at one call - what will impose limit to get/set values using full subtree/key name.

sys_snode_t node
Linked list node info for module internal usage.

struct settings_handler_static
#include <settings.h> Config handlers without the node element, used for static han-
dlers.
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These are registered using a call to SETTINGS_STATIC_HANDLER_DEFINE().

Public Members

const char *name
Name of subtree.

int (*h_get)(const char *key, char *val, int val_len_max)
Get values handler of settings items identified by keyword names.

Parameters:
• key[in] the name with skipped part that was used as name in handler registra-

tion
• val[out] buffer to receive value.
• val_len_max[in] size of that buffer.

Return: length of data read on success, negative on failure.

int (*h_set)(const char *key, size_t len, settings_read_cb read_cb, void *cb_arg)
Set value handler of settings items identified by keyword names.

Parameters:
• key[in] the name with skipped part that was used as name in handler registra-

tion
• len[in] the size of the data found in the backend.
• read_cb[in] function provided to read the data from the backend.
• cb_arg[in] arguments for the read function provided by the backend.

Return: 0 on success, non-zero on failure.

int (*h_commit)(void)
This handler gets called after settings has been loaded in full.

User might use it to apply setting to the application.

int (*h_export)(int (*export_func)(const char *name, const void *val, size_t val_len))
This gets called to dump all current settings items.

This happens when settings_save tries to save the settings. Parameters:
• export_func: the pointer to the internal function which appends a single key-

value pair to persisted settings. Don’t store duplicated value. The name is sub-
tree/key string, val is the string with value.

Return: 0 on success, non-zero on failure.

Remark

The User might limit a implementations of handler to serving only one keyword
at one call - what will impose limit to get/set values using full subtree/key name.

API for key-name processing
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Related code samples

Settings API
Load and save configuration values using the settings API.

group settings_name_proc
API for const name processing.

Functions

int settings_name_steq(const char *name, const char *key, const char **next)
Compares the start of name with a key.

Some examples: settings_name_steq(“bt/btmesh/iv”, “b”, &next) returns 1,
next=”t/btmesh/iv” settings_name_steq(“bt/btmesh/iv”, “bt”, &next) returns 1,
next=”btmesh/iv” settings_name_steq(“bt/btmesh/iv”, “bt/”, &next) returns 0,
next=NULL settings_name_steq(“bt/btmesh/iv”, “bta”, &next) returns 0, next=NULL

REMARK: This routine could be simplified if the settings_handler names would include
a separator at the end.

Parameters
• name – [in] in string format

• key – [in] comparison string

• next – [out] pointer to remaining of name, when the remaining part
starts with a separator the separator is removed from next

Returns
0: no match 1: match, next can be used to check if match is full

int settings_name_next(const char *name, const char **next)
determine the number of characters before the first separator

Parameters
• name – [in] in string format

• next – [out] pointer to remaining of name (excluding separator)

Returns
index of the first separator, in case no separator was found this is the size
of name

API for runtime settings manipulation

Related code samples

Settings API
Load and save configuration values using the settings API.

group settings_rt
API for runtime settings.
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Functions

int settings_runtime_set(const char *name, const void *data, size_t len)
Set a value with a specific key to a module handler.

Parameters
• name – Key in string format.

• data – Binary value.

• len – Value length in bytes.

Returns
0 on success, non-zero on failure.

int settings_runtime_get(const char *name, void *data, size_t len)
Get a value corresponding to a key from a module handler.

Parameters
• name – Key in string format.

• data – Returned binary value.

• len – requested value length in bytes.

Returns
length of data read on success, negative on failure.

int settings_runtime_commit(const char *name)
Apply settings in a module handler.

Parameters
• name – Key in string format.

Returns
0 on success, non-zero on failure.

API of backend interface

group settings_backend
settings

Functions

void settings_src_register(struct settings_store *cs)
Register a backend handler acting as source.

Parameters
• cs – Backend handler node containing handler information.

void settings_dst_register(struct settings_store *cs)
Register a backend handler acting as destination.

Parameters
• cs – Backend handler node containing handler information.
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struct settings_handler_ *settings_parse_and_lookup(const char *name, const char
**next)

Parses a key to an array of elements and locate corresponding module handler.

Parameters
• name – [in] in string format

• next – [out] remaining of name after matched handler

Returns
settings_handler_static on success, NULL on failure.

int settings_call_set_handler(const char *name, size_t len, settings_read_cb read_cb,
void *read_cb_arg, const struct settings_load_arg
*load_arg)

Calls settings handler.

Parameters
• name – [in] The name of the data found in the backend.

• len – [in] The size of the data found in the backend.

• read_cb – [in] Function provided to read the data from the backend.

• read_cb_arg – [inout] Arguments for the read function provided by the
backend.

• load_arg – [inout] Arguments for data loading.

Returns
0 or negative error code

struct settings_store
#include <settings.h> Backend handler node for storage handling.

Public Members

sys_snode_t cs_next
Linked list node info for internal usage.

const struct settings_store_itf *cs_itf
Backend handler structure.

struct settings_load_arg
#include <settings.h> Arguments for data loading.

Holds all parameters that changes the way data should be loaded from backend.

Public Members

const char *subtree
Name of the subtree to be loaded.

If NULL, all values would be loaded.
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settings_load_direct_cb cb
Pointer to the callback function.

If NULL then matching registered function would be used.

void *param
Parameter for callback function.

Parameter to be passed to the callback function.

struct settings_store_itf
#include <settings.h> Backend handler functions.

Sources are registered using a call to settings_src_register. Destinations are registered
using a call to settings_dst_register.

Public Members

int (*csi_load)(struct settings_store *cs, const struct settings_load_arg *arg)
Loads values from storage limited to subtree defined by subtree.

Parameters:
• cs - Corresponding backend handler node,
• arg - Structure that holds additional data for data loading.

Note

Backend is expected not to provide duplicates of the entities. It means that if
the backend does not contain any functionality to really delete old keys, it has
to filter out old entities and call load callback only on the final entity.

int (*csi_save_start)(struct settings_store *cs)
Handler called before an export operation.

Parameters:
• cs - Corresponding backend handler node

int (*csi_save)(struct settings_store *cs, const char *name, const char *value, size_t
val_len)

Save a single key-value pair to storage.

Parameters:
• cs - Corresponding backend handler node
• name - Key in string format
• value - Binary value
• val_len - Length of value in bytes.

int (*csi_save_end)(struct settings_store *cs)
Handler called after an export operation.

Parameters:
• cs - Corresponding backend handler node Get pointer to the storage instance

used by the backend.
Parameters:

• cs - Corresponding backend handler node
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4.25 State Machine Framework

4.25.1 Overview

The State Machine Framework (SMF) is an application agnostic framework that provides an easy
way for developers to integrate state machines into their application. The framework can be
added to any project by enabling the CONFIG_SMF option.

4.25.2 State Creation

A state is represented by three functions, where one function implements the Entry actions,
another function implements the Run actions, and the last function implements the Exit actions.
The prototype for these functions is as follows: void funct(void *obj), where the objparameter
is a user defined structure that has the state machine context, smf_ctx, as its first member. For
example:

struct user_object {
struct smf_ctx ctx;
/* All User Defined Data Follows */

};

The smf_ctx member must be first because the state machine framework’s functions casts the
user defined object to the smf_ctx type with the SMF_CTX macro.

For example instead of doing this (struct smf_ctx *)&user_obj, you could use
SMF_CTX(&user_obj).

By default, a state can have no ancestor states, resulting in a flat state machine. But to enable
the creation of a hierarchical state machine, the CONFIG_SMF_ANCESTOR_SUPPORT option must be
enabled.

By default, the hierarchical state machines do not support initial transitions to child states on
entering a superstate. To enable them the CONFIG_SMF_INITIAL_TRANSITION option must be en-
abled.

The following macro can be used for easy state creation:

• SMF_CREATE_STATE Create a state

4.25.3 State Machine Creation

A state machine is created by defining a table of states that’s indexed by an enum. For example,
the following creates three flat states:

enum demo_state { S0, S1, S2 };

const struct smf_state demo_states[] = {
[S0] = SMF_CREATE_STATE(s0_entry, s0_run, s0_exit, NULL, NULL),
[S1] = SMF_CREATE_STATE(s1_entry, s1_run, s1_exit, NULL, NULL),
[S2] = SMF_CREATE_STATE(s2_entry, s2_run, s2_exit, NULL, NULL)

};

And this example creates three hierarchical states:

enum demo_state { S0, S1, S2 };

const struct smf_state demo_states[] = {
[S0] = SMF_CREATE_STATE(s0_entry, s0_run, s0_exit, parent_s0, NULL),

(continues on next page)
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(continued from previous page)
[S1] = SMF_CREATE_STATE(s1_entry, s1_run, s1_exit, parent_s12, NULL),
[S2] = SMF_CREATE_STATE(s2_entry, s2_run, s2_exit, parent_s12, NULL)

};

This example creates three hierarchical states with an initial transition from parent state S0 to
child state S2:

enum demo_state { S0, S1, S2 };

/* Forward declaration of state table */
const struct smf_state demo_states[];

const struct smf_state demo_states[] = {
[S0] = SMF_CREATE_STATE(s0_entry, s0_run, s0_exit, NULL, demo_states[S2]),
[S1] = SMF_CREATE_STATE(s1_entry, s1_run, s1_exit, demo_states[S0], NULL),
[S2] = SMF_CREATE_STATE(s2_entry, s2_run, s2_exit, demo_states[S0], NULL)

};

To set the initial state, the smf_set_initial() function should be called.

To transition from one state to another, the smf_set_state() function is used.

Note

If CONFIG_SMF_INITIAL_TRANSITION is not set, smf_set_initial() and smf_set_state() func-
tion should not be passed a parent state as the parent state does not know which child state
to transition to. Transitioning to a parent state is OK if an initial transition to a child state is
defined. A well-formed HSM should have initial transitions defined for all parent states.

Note

While the state machine is running, smf_set_state() should only be called from the Entry
or Run function. Calling smf_set_state() from Exit functions will generate a warning in the
log and no transition will occur.

4.25.4 State Machine Execution

To run the state machine, the smf_run_state() function should be called in some application
dependent way. An application should cease calling smf_run_state if it returns a non-zero value.

4.25.5 Preventing Parent Run Actions

Calling smf_set_handled() prevents calling the run action of parent states. It is not required to
call smf_set_handled() if the state calls smf_set_state().

4.25.6 State Machine Termination

To terminate the state machine, the smf_set_terminate() function should be called. It can be
called from the entry, run, or exit actions. The function takes a non-zero user defined value that
will be returned by the smf_run_state() function.
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4.25.7 UML State Machines

SMF follows UML hierarchical state machine rules for transitions i.e., the entry and exit actions
of the least common ancestor are not executed on transition, unless said transition is a transition
to self.

The UML Specification for StateMachines may be found in chapter 14 of the UML specification
available here: https://www.omg.org/spec/UML/

SMF breaks from UML rules in:

1. Executing the actions associated with the transition within the context of the source state,
rather than after the exit actions are performed.

2. Only allowing external transitions to self, not to sub-states. A transition from a superstate
to a child state is treated as a local transition.

3. Prohibiting transitions using smf_set_state() in exit actions.

SMF also does not provide any pseudostates except the Initial Pseudostate. Terminate pseu-
dostates can be modelled by calling smf_set_terminate() from the entry action of a ‘terminate’
state. Orthogonal regions are modelled by calling smf_run_state() for each region.

4.25.8 State Machine Examples

Flat State Machine Example

This example turns the following state diagram into code using the SMF, where the initial state
is S0.

STATE_S0

STATE_S1

STATE_S2

Fig. 21: Flat state machine diagram

Code:
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#include <zephyr/smf.h>

/* Forward declaration of state table */
static const struct smf_state demo_states[];

/* List of demo states */
enum demo_state { S0, S1, S2 };

/* User defined object */
struct s_object {

/* This must be first */
struct smf_ctx ctx;

/* Other state specific data add here */
} s_obj;

/* State S0 */
static void s0_entry(void *o)
{

/* Do something */
}
static void s0_run(void *o)
{

smf_set_state(SMF_CTX(&s_obj), &demo_states[S1]);
}
static void s0_exit(void *o)
{

/* Do something */
}

/* State S1 */
static void s1_run(void *o)
{

smf_set_state(SMF_CTX(&s_obj), &demo_states[S2]);
}
static void s1_exit(void *o)
{

/* Do something */
}

/* State S2 */
static void s2_entry(void *o)
{

/* Do something */
}
static void s2_run(void *o)
{

smf_set_state(SMF_CTX(&s_obj), &demo_states[S0]);
}

/* Populate state table */
static const struct smf_state demo_states[] = {

[S0] = SMF_CREATE_STATE(s0_entry, s0_run, s0_exit, NULL, NULL),
/* State S1 does not have an entry action */
[S1] = SMF_CREATE_STATE(NULL, s1_run, s1_exit, NULL, NULL),
/* State S2 does not have an exit action */
[S2] = SMF_CREATE_STATE(s2_entry, s2_run, NULL, NULL, NULL),

};

int main(void)
{

int32_t ret;
(continues on next page)
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(continued from previous page)

/* Set initial state */
smf_set_initial(SMF_CTX(&s_obj), &demo_states[S0]);

/* Run the state machine */
while(1) {

/* State machine terminates if a non-zero value is returned */
ret = smf_run_state(SMF_CTX(&s_obj));
if (ret) {

/* handle return code and terminate state machine */
break;

}
k_msleep(1000);

}
}

Hierarchical State Machine Example

This example turns the following state diagram into code using the SMF, where S0 and S1 share
a parent state and S0 is the initial state.

PARENT

STATE_S0

STATE_S1

STATE_S2

Fig. 22: Hierarchical state machine diagram

Code:

#include <zephyr/smf.h>

/* Forward declaration of state table */
static const struct smf_state demo_states[];

(continues on next page)

4.25. State Machine Framework 1169



Zephyr Project Documentation, Release 3.7.99

(continued from previous page)
/* List of demo states */
enum demo_state { PARENT, S0, S1, S2 };

/* User defined object */
struct s_object {

/* This must be first */
struct smf_ctx ctx;

/* Other state specific data add here */
} s_obj;

/* Parent State */
static void parent_entry(void *o)
{

/* Do something */
}
static void parent_exit(void *o)
{

/* Do something */
}

/* State S0 */
static void s0_run(void *o)
{

smf_set_state(SMF_CTX(&s_obj), &demo_states[S1]);
}

/* State S1 */
static void s1_run(void *o)
{

smf_set_state(SMF_CTX(&s_obj), &demo_states[S2]);
}

/* State S2 */
static void s2_run(void *o)
{

smf_set_state(SMF_CTX(&s_obj), &demo_states[S0]);
}

/* Populate state table */
static const struct smf_state demo_states[] = {

/* Parent state does not have a run action */
[PARENT] = SMF_CREATE_STATE(parent_entry, NULL, parent_exit, NULL, NULL),
/* Child states do not have entry or exit actions */
[S0] = SMF_CREATE_STATE(NULL, s0_run, NULL, &demo_states[PARENT], NULL),
[S1] = SMF_CREATE_STATE(NULL, s1_run, NULL, &demo_states[PARENT], NULL),
/* State S2 do ot have entry or exit actions and no parent */
[S2] = SMF_CREATE_STATE(NULL, s2_run, NULL, NULL, NULL),

};

int main(void)
{

int32_t ret;

/* Set initial state */
smf_set_initial(SMF_CTX(&s_obj), &demo_states[S0]);

/* Run the state machine */
while(1) {

/* State machine terminates if a non-zero value is returned */
ret = smf_run_state(SMF_CTX(&s_obj));

(continues on next page)
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(continued from previous page)
if (ret) {

/* handle return code and terminate state machine */
break;

}
k_msleep(1000);

}
}

When designing hierarchical state machines, the following should be considered:
• Ancestor entry actions are executed before the sibling entry actions. For example, the

parent_entry function is called before the s0_entry function.

• Transitioning from one sibling to another with a shared ancestry does not re-execute
the ancestor’s entry action or execute the exit action. For example, the parent_entry
function is not called when transitioning from S0 to S1, nor is the parent_exit function
called.

• Ancestor exit actions are executed after the exit action of the current state. For exam-
ple, the s1_exit function is called before the parent_exit function is called.

• The parent_run function only executes if the child_run function does not call either
smf_set_state() or smf_set_handled().

Event Driven State Machine Example

Events are not explicitly part of the State Machine Framework but an event driven state machine
can be implemented using Zephyr Events.

STATE_S0

STATE_S1

BTN EVENTBTN EVENT

Fig. 23: Event driven state machine diagram

Code:

#include <zephyr/kernel.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/smf.h>

(continues on next page)
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(continued from previous page)
#define SW0_NODE DT_ALIAS(sw0)

/* List of events */
#define EVENT_BTN_PRESS BIT(0)

static const struct gpio_dt_spec button =
GPIO_DT_SPEC_GET_OR(SW0_NODE, gpios, {0});

static struct gpio_callback button_cb_data;

/* Forward declaration of state table */
static const struct smf_state demo_states[];

/* List of demo states */
enum demo_state { S0, S1 };

/* User defined object */
struct s_object {

/* This must be first */
struct smf_ctx ctx;

/* Events */
struct k_event smf_event;
int32_t events;

/* Other state specific data add here */
} s_obj;

/* State S0 */
static void s0_entry(void *o)
{

printk("STATE0\n");
}

static void s0_run(void *o)
{

struct s_object *s = (struct s_object *)o;

/* Change states on Button Press Event */
if (s->events & EVENT_BTN_PRESS) {

smf_set_state(SMF_CTX(&s_obj), &demo_states[S1]);
}

}

/* State S1 */
static void s1_entry(void *o)
{

printk("STATE1\n");
}

static void s1_run(void *o)
{

struct s_object *s = (struct s_object *)o;

/* Change states on Button Press Event */
if (s->events & EVENT_BTN_PRESS) {

smf_set_state(SMF_CTX(&s_obj), &demo_states[S0]);
}

}

/* Populate state table */
(continues on next page)
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static const struct smf_state demo_states[] = {

[S0] = SMF_CREATE_STATE(s0_entry, s0_run, NULL, NULL, NULL),
[S1] = SMF_CREATE_STATE(s1_entry, s1_run, NULL, NULL, NULL),

};

void button_pressed(const struct device *dev,
struct gpio_callback *cb, uint32_t pins)

{
/* Generate Button Press Event */
k_event_post(&s_obj.smf_event, EVENT_BTN_PRESS);

}

int main(void)
{

int ret;

if (!gpio_is_ready_dt(&button)) {
printk("Error: button device %s is not ready\n",

button.port->name);
return;

}

ret = gpio_pin_configure_dt(&button, GPIO_INPUT);
if (ret != 0) {

printk("Error %d: failed to configure %s pin %d\n",
ret, button.port->name, button.pin);

return;
}

ret = gpio_pin_interrupt_configure_dt(&button,
GPIO_INT_EDGE_TO_ACTIVE);

if (ret != 0) {
printk("Error %d: failed to configure interrupt on %s pin %d\n",

ret, button.port->name, button.pin);
return;

}

gpio_init_callback(&button_cb_data, button_pressed, BIT(button.pin));
gpio_add_callback(button.port, &button_cb_data);

/* Initialize the event */
k_event_init(&s_obj.smf_event);

/* Set initial state */
smf_set_initial(SMF_CTX(&s_obj), &demo_states[S0]);

/* Run the state machine */
while(1) {

/* Block until an event is detected */
s_obj.events = k_event_wait(&s_obj.smf_event,

EVENT_BTN_PRESS, true, K_FOREVER);

/* State machine terminates if a non-zero value is returned */
ret = smf_run_state(SMF_CTX(&s_obj));
if (ret) {

/* handle return code and terminate state machine */
break;

}
}

}
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State Machine Example With Initial Transitions And Transition To Self

tests/lib/smf/src/test_lib_self_transition_smf.c defines a state machine for testing the initial tran-
sitions and transitions to self in a parent state. The statechart for this test is below.

ROOT

PARENT_AB

PARENT_C

smf_set_initial()

STATE_A

STATE_B

STATE_C

STATE_D

Fig. 24: Test state machine for UML State Transitions

4.25.9 API Reference

Related code samples

Hierarchical State Machine Demo based on example from PSiCC2
Implement an event-driven hierarchical state machine using State Machine Framework
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(SMF).

group smf
State Machine Framework API.

Version
0.1.0

Defines

SMF_CREATE_STATE(_entry, _run, _exit, _parent, _initial)
Macro to create a hierarchical state with initial transitions.

Parameters
• _entry – State entry function or NULL

• _run – State run function or NULL

• _exit – State exit function or NULL

• _parent – State parent object or NULL

• _initial – State initial transition object or NULL

SMF_CTX(o)
Macro to cast user defined object to state machine context.

Parameters
• o – A pointer to the user defined object

Typedefs

typedef void (*state_execution)(void *obj)
Function pointer that implements a portion of a state.

Param obj
pointer user defined object

Functions

void smf_set_initial(struct smf_ctx *ctx, const struct smf_state *init_state)
Initializes the state machine and sets its initial state.

Parameters
• ctx – State machine context

• init_state – Initial state the state machine starts in.

void smf_set_state(struct smf_ctx *ctx, const struct smf_state *new_state)
Changes a state machines state.

This handles exiting the previous state and entering the target state. For HSMs the
entry and exit actions of the Least Common Ancestor will not be run.

Parameters
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• ctx – State machine context

• new_state – State to transition to (NULL is valid and exits all states)

void smf_set_terminate(struct smf_ctx *ctx, int32_t val)
Terminate a state machine.

Parameters
• ctx – State machine context

• val – Non-Zero termination value that’s returned by the smf_run_state
function.

void smf_set_handled(struct smf_ctx *ctx)
Tell the SMF to stop propagating the event to ancestors.

This allows HSMs to implement ‘programming by difference’ where substates can han-
dle events on their own or propagate up to a common handler.

Parameters
• ctx – State machine context

int32_t smf_run_state(struct smf_ctx *ctx)
Runs one iteration of a state machine (including any parent states)

Parameters
• ctx – State machine context

Returns
A non-zero value should terminate the state machine. This non-zero value
could represent a terminal state being reached or the detection of an error
that should result in the termination of the state machine.

struct smf_state
#include <smf.h> General state that can be used in multiple state machines.

Public Members

const state_execution entry
Optional method that will be run when this state is entered.

const state_execution run
Optional method that will be run repeatedly during state machine loop.

const state_execution exit
Optional method that will be run when this state exists.

struct smf_ctx
#include <smf.h> Defines the current context of the state machine.

Public Members

const struct smf_state *current
Current state the state machine is executing.
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const struct smf_state *previous
Previous state the state machine executed.

int32_t terminate_val
This value is set by the set_terminate function and should terminate the state ma-
chine when its set to a value other than zero when it’s returned by the run_state
function.

uint32_t internal
The state machine casts this to a “struct internal_ctx” and it’s used to track state
machine context.

4.26 Storage

4.26.1 Non-Volatile Storage (NVS)

Elements, represented as id-data pairs, are stored in flash using a FIFO-managed circular buffer.
The flash area is divided into sectors. Elements are appended to a sector until storage space in
the sector is exhausted. Then a new sector in the flash area is prepared for use (erased). Before
erasing the sector it is checked that identifier - data pairs exist in the sectors in use, if not the
id-data pair is copied.

The id is a 16-bit unsigned number. NVS ensures that for each used id there is at least one id-data
pair stored in flash at all time.

NVS allows storage of binary blobs, strings, integers, longs, and any combination of these.

Each element is stored in flash as metadata (8 byte) and data. The metadata is written in a table
starting from the end of a nvs sector, the data is written one after the other from the start of the
sector. The metadata consists of: id, data offset in sector, data length, part (unused), and a CRC.
This CRC is only calculated over the metadata and only ensures that a write has been completed.
The actual data of the element can be protected by a different (and optional) CRC-32. Use the
CONFIG_NVS_DATA_CRC configuration item to enable the data part CRC.

Note

The data CRC is checked only when the whole data of the element is read. The data CRC is not
checked for a partial read, as it is stored at the end of the element data area.

Note

Enabling the data CRC feature on a previously existing NVS content without data CRC will
make all existing data invalid.

A write of data to nvs always starts with writing the data, followed by a write of the metadata.
Data that is written in flash without metadata is ignored during initialization.

During initialization NVS will verify the data stored in flash, if it encounters an error it will ignore
any data with missing/incorrect metadata.

NVS checks the id-data pair before writing data to flash. If the id-data pair is unchanged no write
to flash is performed.
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To protect the flash area against frequent erases it is important that there is sufficient free space.
NVS has a protection mechanism to avoid getting in a endless loop of flash page erases when
there is limited free space. When such a loop is detected NVS returns that there is no more space
available.

For NVS the file system is declared as:

static struct nvs_fs fs = {
.flash_device = NVS_FLASH_DEVICE,
.sector_size = NVS_SECTOR_SIZE,
.sector_count = NVS_SECTOR_COUNT,
.offset = NVS_STORAGE_OFFSET,
};

where

• NVS_FLASH_DEVICE is a reference to the flash device that will be used. The device needs to
be operational.

• NVS_SECTOR_SIZE is the sector size, it has to be a multiple of the flash erase page size and a
power of 2.

• NVS_SECTOR_COUNT is the number of sectors, it is at least 2, one sector is always kept empty
to allow copying of existing data.

• NVS_STORAGE_OFFSET is the offset of the storage area in flash.

Flash wear

When writing data to flash a study of the flash wear is important. Flash has a limited life which
is determined by the number of times flash can be erased. Flash is erased one page at a time and
the pagesize is determined by the hardware. As an example a nRF51822 device has a pagesize
of 1024 bytes and each page can be erased about 20,000 times.

Calculating expected device lifetime Suppose we use a 4 bytes state variable that is changed
every minute and needs to be restored after reboot. NVS has been defined with a sector_size
equal to the pagesize (1024 bytes) and 2 sectors have been defined.

Each write of the state variable requires 12 bytes of flash storage: 8 bytes for the metadata and 4
bytes for the data. When storing the data the first sector will be full after 1024/12 = 85.33 minutes.
After another 85.33 minutes, the second sector is full. When this happens, because we’re using
only two sectors, the first sector will be used for storage and will be erased after 171 minutes of
system time. With the expected device life of 20,000 writes, with two sectors writing every 171
minutes, the device should last about 171 * 20,000 minutes, or about 6.5 years.

More generally then, with

• NS as the number of storage requests per minute,

• DS as the data size in bytes,

• SECTOR_SIZE in bytes, and

• PAGE_ERASES as the number of times the page can be erased,

the expected device life (in minutes) can be calculated as:

SECTOR_COUNT * SECTOR_SIZE * PAGE_ERASES / (NS * (DS+8)) minutes

From this formula it is also clear what to do in case the expected life is too short: increase SEC-
TOR_COUNT or SECTOR_SIZE.
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Flash write block size migration

It is possible that during a DFU process, the flash driver used by the NVS changes the supported
minimal write block size. The NVS in-flash image will stay compatible unless the physical ATE
size changes. Especially, migration between 1,2,4,8-bytes write block sizes is allowed.

Sample

A sample of how NVS can be used is supplied in samples/subsys/nvs.

Troubleshooting

MPU fault while using NVS, or -ETIMEDOUT error returned
NVS can use the internal flash of the SoC. While the MPU is enabled, the flash driver requires
MPU RWX access to flash memory, configured using CONFIG_MPU_ALLOW_FLASH_WRITE. If this
option is disabled, the NVS application will get an MPU fault if it references the internal
SoC flash and it’s the only thread running. In a multi-threaded application, another thread
might intercept the fault and the NVS API will return an -ETIMEDOUT error.

API Reference

The NVS subsystem APIs are provided by nvs.h:

group nvs_data_structures
Non-volatile Storage Data Structures.

struct nvs_fs
#include <nvs.h> Non-volatile Storage File system structure.

Public Members

off_t offset
File system offset in flash.

uint32_t ate_wra
Allocation table entry write address.

Addresses are stored as uint32_t:
• high 2 bytes correspond to the sector
• low 2 bytes are the offset in the sector

uint32_t data_wra
Data write address.

uint16_t sector_size
File system is split into sectors, each sector must be multiple of erase-block-size.

uint16_t sector_count
Number of sectors in the file system.
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bool ready
Flag indicating if the file system is initialized.

struct k_mutex nvs_lock
Mutex.

const struct device *flash_device
Flash device runtime structure.

const struct flash_parameters *flash_parameters
Flash memory parameters structure.

Related code samples

Non-Volatile Storage (NVS)
Store and retrieve data from flash using the NVS API.

group nvs_high_level_api
Non-volatile Storage APIs.

Functions

int nvs_mount(struct nvs_fs *fs)
Mount an NVS file system onto the flash device specified in fs.

Parameters
• fs – Pointer to file system

Return values
• 0 – Success

• -ERRNO – errno code if error

int nvs_clear(struct nvs_fs *fs)
Clear the NVS file system from flash.

Parameters
• fs – Pointer to file system

Return values
• 0 – Success

• -ERRNO – errno code if error

ssize_t nvs_write(struct nvs_fs *fs, uint16_t id, const void *data, size_t len)
Write an entry to the file system.

Note

When len parameter is equal to 0 then entry is effectively removed (it is equivalent
to calling of nvs_delete). Any calls to nvs_read for entries with data of length 0 will
return error.
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It is not possible to distinguish between deleted entry and entry with data of length
0.

Parameters
• fs – Pointer to file system

• id – Id of the entry to be written

• data – Pointer to the data to be written

• len – Number of bytes to be written

Returns
Number of bytes written. On success, it will be equal to the number of bytes
requested to be written. When a rewrite of the same data already stored is
attempted, nothing is written to flash, thus 0 is returned. On error, returns
negative value of errno.h defined error codes.

int nvs_delete(struct nvs_fs *fs, uint16_t id)
Delete an entry from the file system.

Parameters
• fs – Pointer to file system

• id – Id of the entry to be deleted

Return values
• 0 – Success

• -ERRNO – errno code if error

ssize_t nvs_read(struct nvs_fs *fs, uint16_t id, void *data, size_t len)
Read an entry from the file system.

Parameters
• fs – Pointer to file system

• id – Id of the entry to be read

• data – Pointer to data buffer

• len – Number of bytes to be read

Returns
Number of bytes read. On success, it will be equal to the number of bytes
requested to be read. When the return value is larger than the number
of bytes requested to read this indicates not all bytes were read, and more
data is available. On error, returns negative value of errno.h defined error
codes.

ssize_t nvs_read_hist(struct nvs_fs *fs, uint16_t id, void *data, size_t len, uint16_t cnt)
Read a history entry from the file system.

Parameters
• fs – Pointer to file system

• id – Id of the entry to be read

• data – Pointer to data buffer

• len – Number of bytes to be read

• cnt – History counter: 0: latest entry, 1: one before latest …
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Returns
Number of bytes read. On success, it will be equal to the number of bytes
requested to be read. When the return value is larger than the number
of bytes requested to read this indicates not all bytes were read, and more
data is available. On error, returns negative value of errno.h defined error
codes.

ssize_t nvs_calc_free_space(struct nvs_fs *fs)
Calculate the available free space in the file system.

Parameters
• fs – Pointer to file system

Returns
Number of bytes free. On success, it will be equal to the number of bytes
that can still be written to the file system. Calculating the free space is a
time consuming operation, especially on spi flash. On error, returns nega-
tive value of errno.h defined error codes.

size_t nvs_sector_max_data_size(struct nvs_fs *fs)
Tell how many contiguous free space remains in the currently active NVS sector.

Parameters
• fs – Pointer to the file system.

Returns
Number of free bytes.

int nvs_sector_use_next(struct nvs_fs *fs)
Close the currently active sector and switch to the next one.

Note

The garbage collector is called on the new sector.

Warning

This routine is made available for specific use cases. It breaks the aim of the NVS
to avoid any unnecessary flash erases. Using this routine extensively can result in
premature failure of the flash device.

Parameters
• fs – Pointer to the file system.

Returns
0 on success. On error, returns negative value of errno.h defined error
codes.

4.26.2 Disk Access

Overview

The disk access API provides access to storage devices.
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Initializing Disks

Since many disk devices (such as SD cards) are hotpluggable, the disk access API provides IOCTLs
to initialize and de-initialize the disk. They are as follows:

• DISK_IOCTL_CTRL_INIT: Initialize the disk. Must be called before additional I/O op-
erations can be run on the disk device. Equivalent to calling the legacy function
disk_access_init().

• DISK_IOCTL_CTRL_DEINIT: De-initialize the disk. Once this IOCTL is issued, the
DISK_IOCTL_CTRL_INIT must be issued before the disk can be used for addition I/O oper-
ations.

Init/deinit IOCTL calls are balanced, so a disk will not de-initialize until an equal number of deinit
IOCTLs have been issued as init IOCTLs.

It is also possible to force a disk de-initialization by passing a pointer to a boolean set to true as
a parameter to the DISK_IOCTL_CTRL_DEINIT IOCTL. This is an unsafe operation which each disk
driver may handle differently, but it will always return a value indicating success.

Note that de-initializing a disk is a low level operation- typically the de-initialization and initial-
ization calls should be left to the filesystem implementation, and the user application should not
need to manually de-initialize the disk and can instead call fs_unmount()

SD Card support

Zephyr has support for some SD card controllers and support for interfacing SD cards via SPI.
These drivers use disk driver interface and a file system can access the SD cards via disk access
API. Both standard and high-capacity SD cards are supported.

Note

FAT filesystems are not power safe so the filesystem may become corrupted if power is lost
or if the card is removed without unmounting the filesystem

SDMemory Card subsystem Zephyr supports SD memory cards via the disk driver API, or via
the SDMMC subsystem. This subsystem can be used transparently via the disk driver API, but
also supports direct block level access to cards. The SDMMC subsystem interacts with the sd host
controller api to communicate with attached SD cards.

SD Card support via SPI Example devicetree fragment below shows how to add SD card node
to spi1 interface. Example uses pin PA27 for chip select, and runs the SPI bus at 24 MHz once the
SD card has been initialized:

&spi1 {
status = "okay";
cs-gpios = <&porta 27 GPIO_ACTIVE_LOW>;

sdhc0: sdhc@0 {
compatible = "zephyr,sdhc-spi-slot";
reg = <0>;
status = "okay";
mmc {

compatible = "zephyr,sdmmc-disk";
status = "okay";

};
spi-max-frequency = <24000000>;

(continues on next page)
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(continued from previous page)
};

};

The SD card will be automatically detected and initialized by the filesystem driver when the
board boots.

To read and write files and directories, see the File Systems in include/zephyr/fs/fs.h such as
fs_open(), fs_read(), and fs_write().

eMMC Device Support

Zephyr also has support for eMMC devices using the Disk Access API. MMC in zephyr is imple-
mented using the SD subsystem because the MMC bus shares a lot of similarity with the SD bus.
MMC controllers also use the SDHC device driver API.

Emulated block device on flash partition support

Zephyr flashdisk driver makes it possible to use flash memory partition as a block device. The
flashdisk instances are defined in devicetree:

/ {
msc_disk0 {

compatible = "zephyr,flash-disk";
partition = <&storage_partition>;
disk-name = "NAND";
cache-size = <4096>;

};
};

The cache size specified in zephyr,flash-disk node should be equal to backing partition mini-
mum erasable block size.

NVMe disk support NVMe disks are also supported

NVMe NVMe is a standardized logical device interface on PCIe bus exposing storage devices.

NVMe controllers and disks are supported. Disks can be accessed via the Disk Access API they
expose and thus be used through the File System API.

Driver design The driver is sliced up in 3 main parts:

• NVMe controller: drivers/disk/nvme/nvme_controller.c

• NVMe commands: drivers/disk/nvme/nvme_cmd.c

• NVMe namespace: drivers/disk/nvme/nvme_namespace.c

Where the NVMe controller is the root of the device driver. This is the one that will get device
driver instances. Note that this is only what DTS describes: the NVMe controller, and none of
its namespaces (disks). The NVMe command is the generic logic used to communicate with the
controller and the namespaces it exposes. Finally the NVMe namespace is the dedicated part to
deal with an actual namespace which, in turn, enables applications accessing each ones through
the Disk Access API drivers/disk/nvme/nvme_disk.c.

If a controller exposes more than 1 namespace (disk), it will be possible to raise
the amount of built-in namespace support by tweaking the configuration option CON-
FIG_NVME_MAX_NAMESPACES (see below).
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Each exposed disk, via it’s related disk_info structure, will be distinguished by its name which
is inherited from it’s related namespace. As such, the disk name follows NVMe naming which
is nvme<k>n<n> where k is the controller number and n the namespame number. Most of the
time, if only one NVMe disk is plugged into the system, one will see ‘nvme0n0’ as an exposed
disk.

NVMe configuration

DTS Any board exposing an NVMe disk should provide a DTS overlay to enable its use within
Zephyr

#include <zephyr/dt-bindings/pcie/pcie.h>
/ {

pcie0 {
nvme0: nvme0 {

compatible = "nvme-controller";
vendor-id = <VENDOR_ID>;
device-id = <DEVICE_ID>;
status = "okay";

};
};

};

Where VENDOR_ID and DEVICE_ID are the ones from the exposed NVMe controller.

Options
• CONFIG_NVME

Note that NVME requires the target to support PCIe multi-vector MSI-X in order to function.

• CONFIG_NVME_MAX_NAMESPACES

Important note forusers NVMe specifications mandate the data buffer to be placed in a dword
(4 bytes) aligned address. While this is not a problem for advanced OS managing virtual memory
and dynamic allocations below the user processes, this can become an issue in Zephyr as soon
as buffer addresses map directly to physical memory.

At this stage then, it is up to the user to make sure the buffer address being provided to
disk_access_read() and disk_access_write() are dword aligned.

Disk Access API Configuration Options

Related configuration options:

• CONFIG_DISK_ACCESS

API Reference

Related code samples

File systemmanipulation
Use file system API with various filesystems and storage devices.
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group disk_access_interface
Disk Access APIs.

Functions

int disk_access_init(const char *pdrv)
perform any initialization

This call is made by the consumer before doing any IO calls so that the disk or the back-
ing device can do any initialization. Although still supported for legacy compatibility,
users should instead call disk_access_ioctl with the IOCTL DISK_IOCTL_CTRL_INIT.

Disk initialization is reference counted, so only the first successful call to initialize a
uninitialized (or previously de-initialized) disk will actually initialize the disk

Parameters
• pdrv – [in] Disk name

Returns
0 on success, negative errno code on fail

int disk_access_status(const char *pdrv)
Get the status of disk.

This call is used to get the status of the disk

Parameters
• pdrv – [in] Disk name

Returns
DISK_STATUS_OK or other DISK_STATUS_*s

int disk_access_read(const char *pdrv, uint8_t *data_buf, uint32_t start_sector, uint32_t
num_sector)

read data from disk

Function to read data from disk to a memory buffer.

Note: if he disk is of NVMe type, user will need to ensure data_buf pointer is 4-bytes
aligned.

Parameters
• pdrv – [in] Disk name

• data_buf – [in] Pointer to the memory buffer to put data.

• start_sector – [in] Start disk sector to read from

• num_sector – [in] Number of disk sectors to read

Returns
0 on success, negative errno code on fail

int disk_access_write(const char *pdrv, const uint8_t *data_buf, uint32_t start_sector,
uint32_t num_sector)

write data to disk

Function write data from memory buffer to disk.

Note: if he disk is of NVMe type, user will need to ensure data_buf pointer is 4-bytes
aligned.

Parameters
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• pdrv – [in] Disk name

• data_buf – [in] Pointer to the memory buffer

• start_sector – [in] Start disk sector to write to

• num_sector – [in] Number of disk sectors to write

Returns
0 on success, negative errno code on fail

int disk_access_ioctl(const char *pdrv, uint8_t cmd, void *buff)
Get/Configure disk parameters.

Function to get disk parameters and make any special device requests.

Parameters
• pdrv – [in] Disk name

• cmd – [in] DISK_IOCTL_* code describing the request

• buff – [in] Command data buffer

Returns
0 on success, negative errno code on fail

Disk Driver Configuration Options

Related driver configuration options:

• CONFIG_DISK_DRIVERS

Disk Driver Interface

group disk_driver_interface
Disk Driver Interface.

Since
1.6

Version
1.0.0

Defines

DISK_IOCTL_GET_SECTOR_COUNT
Possible Cmd Codes for disk_ioctl()

Get the number of sectors in the disk

DISK_IOCTL_GET_SECTOR_SIZE
Get the size of a disk SECTOR in bytes.

DISK_IOCTL_RESERVED
reserved.

It used to be DISK_IOCTL_GET_DISK_SIZE
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DISK_IOCTL_GET_ERASE_BLOCK_SZ
How many sectors constitute a FLASH Erase block.

DISK_IOCTL_CTRL_SYNC
Commit any cached read/writes to disk.

DISK_IOCTL_CTRL_INIT
Initialize the disk.

This IOCTL must be issued before the disk can be used for I/O. It is reference counted, so
only the first successful invocation of this macro on an uninitialized disk will initialize
the IO device

DISK_IOCTL_CTRL_DEINIT
Deinitialize the disk.

This IOCTL can be used to de-initialize the disk, enabling it to be removed from
the system if the disk is hot-pluggable. Disk usage is reference counted, so for a
given disk the DISK_IOCTL_CTRL_DEINIT IOCTL must be issued as many times as the
DISK_IOCTL_CTRL_INIT IOCTL was issued in order to de-initialize it.

This macro optionally accepts a pointer to a boolean as the buf parameter, which if true
indicates the disk should be forcibly stopped, ignoring all reference counts. The disk
driver must report success if a forced stop is requested, but this operation is inherently
unsafe.

DISK_STATUS_OK
Possible return bitmasks for disk_status()

Disk status okay

DISK_STATUS_UNINIT
Disk status uninitialized.

DISK_STATUS_NOMEDIA
Disk status no media.

DISK_STATUS_WR_PROTECT
Disk status write protected.

Functions

int disk_access_register(struct disk_info *disk)
Register disk.

Parameters
• disk – [in] Pointer to the disk info structure

Returns
0 on success, negative errno code on fail

int disk_access_unregister(struct disk_info *disk)
Unregister disk.

Parameters
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• disk – [in] Pointer to the disk info structure

Returns
0 on success, negative errno code on fail

struct disk_info
#include <disk.h> Disk info.

Public Members

sys_dnode_t node
Internally used list node.

const char *name
Disk name.

const struct disk_operations *ops
Disk operations.

const struct device *dev
Device associated to this disk.

uint16_t refcnt
Internally used disk reference count.

struct disk_operations
#include <disk.h> Disk operations.

4.26.3 Flash map

The <zephyr/storage/flash_map.h> API allows accessing information about device flash parti-
tions via flash_area structures.

Each flash_area describes a flash partition. The API provides access to a “flash map”, which
contains predefined flash areas accessible via globally unique ID numbers. The map is created
from “fixed-partition” compatible entries in DTS file. Users may also create flash_area objects
at runtime for application-specific purposes.

This documentation uses “flash area” when referencing single “fixed-partition” entities.

The flash_area contains a pointer to a device, which can be used to access the flash device
an area is placed on directly with the flash API. Each flash area is characterized by a device it is
placed on, offset from the beginning of the device and size on the device. An additional identifier
parameter is used by the flash_area_open() function to find flash area in flash map.

The flash_map.h API provides functions for operating on a flash_area. The main examples are
flash_area_read() and flash_area_write(). These functions are basically wrappers around
the flash API with additional offset and size checks, to limit flash operations to a predefined
area.

Most <zephyr/storage/flash_map.h> API functions require a flash_area object pointer charac-
terizing the flash area they will be working on. There are two possible methods to obtain such a
pointer:

• obtain it using flash_area_open;
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• defining a flash_area type object, which requires providing a valid device object pointer
with offset and size of the area within the flash device.

flash_area_open() uses numeric identifiers to search flash map for flash_area objects and re-
turns, if found, a pointer to an object representing area with given ID. The ID number for a flash
area can be obtained from a fixed-partition DTS node label using FIXED_PARTITION_ID(); these
labels are obtained from the devicetree as described below.

Relationship with Devicetree

The flash_map.h API uses data generated from the Devicetree API, in particular its Fixed flash
partitions. Zephyr additionally has some partitioning conventions used for Device Firmware Up-
grade via the MCUboot bootloader, as well as defining partitions usable by file systems or other
nonvolatile storage.

Here is an example devicetree fragment which uses fixed flash partitions for both MCUboot and
a storage partition. Some details were left out for clarity.

/ {
soc {

flashctrl: flash-controller@deadbeef {
flash0: flash@0 {

compatible = "soc-nv-flash";
reg = <0x0 0x100000>;

partitions {
compatible = "fixed-partitions";
#address-cells = <0x1>;
#size-cells = <0x1>;

boot_partition: partition@0 {
reg = <0x0 0x10000>;
read-only;

};
storage_partition: partition@1e000 {

reg = <0x1e000 0x2000>;
};
slot0_partition: partition@20000 {

reg = <0x20000 0x60000>;
};
slot1_partition: partition@80000 {

reg = <0x80000 0x60000>;
};
scratch_partition: partition@e0000 {

reg = <0xe0000 0x20000>;
};

};
};

};
};

};

Partition offset shall be expressed in relation to the flash memory beginning address, to which
the partition belongs to.

The boot_partition, slot0_partition, slot1_partition, and scratch_partition node labels
are defined for MCUboot, though not all MCUboot configurations require all of them to be de-
fined. See the MCUboot documentation for more details.

The storage_partition node is defined for use by a file system or other nonvolatile storage API.

Numeric flash area ID is obtained by passing DTS node label to FIXED_PARTITION_ID();
for example to obtain ID number for slot0_partition, user would invoke
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FIXED_PARTITION_ID(slot0_partition).

All FIXED_PARTITION_* macros take DTS node labels as partition identifiers.

Users do not have to obtain a flash_area object pointer using flash_map_open() to get infor-
mation on flash area size, offset or device, if such area is defined in DTS file. Knowing the
DTS node label of an area, users may use FIXED_PARTITION_OFFSET(), FIXED_PARTITION_SIZE()
or FIXED_PARTITION_DEVICE() respectively to obtain such information directly from DTS
node definition. For example to obtain offset of storage_partition it is enough to invoke
FIXED_PARTITION_OFFSET(storage_partition).

Below example shows how to obtain a flash_area object pointer using flash_area_open() and
DTS node label:

const struct flash_area *my_area;
int err = flash_area_open(FIXED_PARTITION_ID(slot0_partition), &my_area);

if (err != 0) {
handle_the_error(err);

} else {
flash_area_read(my_area, ...);

}

API Reference

Related code samples

LittleFS filesystem
Use file system API over LittleFS.

nRF SoC Internal Storage
Use the flash API to interact with the SoC flash.

group flash_area_api
Abstraction over flash partitions/areas and their drivers.

Since
1.11

Version
1.0.0

Defines

SOC_FLASH_0_ID
Provided for compatibility with MCUboot.

SPI_FLASH_0_ID
Provided for compatibility with MCUboot.

FIXED_PARTITION_EXISTS(label)
Returns non-0 value if fixed-partition of given DTS node label exists.

Parameters
• label – DTS node label
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Returns
non-0 if fixed-partition node exists and is enabled; 0 if node does not exist,
is not enabled or is not fixed-partition.

FIXED_PARTITION_ID(label)
Get flash area ID from fixed-partition DTS node label.

Parameters
• label – DTS node label of a partition

Returns
flash area ID

FIXED_PARTITION_OFFSET(label)
Get fixed-partition offset from DTS node label.

Parameters
• label – DTS node label of a partition

Returns
fixed-partition offset, as defined for the partition in DTS.

FIXED_PARTITION_NODE_OFFSET(node)
Get fixed-partition offset from DTS node.

Parameters
• node – DTS node of a partition

Returns
fixed-partition offset, as defined for the partition in DTS.

FIXED_PARTITION_SIZE(label)
Get fixed-partition size for DTS node label.

Parameters
• label – DTS node label

Returns
fixed-partition offset, as defined for the partition in DTS.

FIXED_PARTITION_NODE_SIZE(node)
Get fixed-partition size for DTS node.

Parameters
• node – DTS node of a partition

Returns
fixed-partition size, as defined for the partition in DTS.

FLASH_AREA_DEVICE(label)
Get device pointer for device the area/partition resides on.

Parameters
• label – DTS node label of a partition

Returns
const struct device type pointer

FIXED_PARTITION_DEVICE(label)
Get device pointer for device the area/partition resides on.

Parameters
• label – DTS node label of a partition
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Returns
Pointer to a device.

FIXED_PARTITION_NODE_DEVICE(node)
Get device pointer for device the area/partition resides on.

Parameters
• node – DTS node of a partition

Returns
Pointer to a device.

Typedefs

typedef void (*flash_area_cb_t)(const struct flash_area *fa, void *user_data)
Flash map iteration callback.

Param fa
flash area

Param user_data
User supplied data

Functions

int flash_area_open(uint8_t id, const struct flash_area **fa)
Retrieve partitions flash area from the flash_map.

Function Retrieves flash_area from flash_map for given partition.

Parameters
• id – [in] ID of the flash partition.

• fa – [out] Pointer which has to reference flash_area. If ID is unknown, it
will be NULL on output.

Returns
0 on success, -EACCES if the flash_map is not available , -ENOENT if ID is
unknown, -ENODEV if there is no driver attached to the area.

void flash_area_close(const struct flash_area *fa)
Close flash_area.

Reserved for future usage and external projects compatibility reason. Currently is
NOP.

Parameters
• fa – [in] Flash area to be closed.

int flash_area_read(const struct flash_area *fa, off_t off, void *dst, size_t len)
Read flash area data.

Read data from flash area. Area readout boundaries are asserted before read request.
API has the same limitation regard read-block alignment and size as wrapped flash
driver.

Parameters
• fa – [in] Flash area

• off – [in] Offset relative from beginning of flash area to read
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• dst – [out] Buffer to store read data

• len – [in] Number of bytes to read

Returns
0 on success, negative errno code on fail.

int flash_area_write(const struct flash_area *fa, off_t off, const void *src, size_t len)
Write data to flash area.

Write data to flash area. Area write boundaries are asserted before write request. API
has the same limitation regard write-block alignment and size as wrapped flash driver.

Parameters
• fa – [in] Flash area

• off – [in] Offset relative from beginning of flash area to write

• src – [in] Buffer with data to be written

• len – [in] Number of bytes to write

Returns
0 on success, negative errno code on fail.

int flash_area_erase(const struct flash_area *fa, off_t off, size_t len)
Erase flash area.

Erase given flash area range. Area boundaries are asserted before erase request. API
has the same limitation regard erase-block alignment and size as wrapped flash driver.

Parameters
• fa – [in] Flash area

• off – [in] Offset relative from beginning of flash area.

• len – [in] Number of bytes to be erase

Returns
0 on success, negative errno code on fail.

int flash_area_flatten(const struct flash_area *fa, off_t off, size_t len)
Erase flash area or fill with erase-value.

On program-erase devices this function behaves exactly like flash_area_erase. On RAM
non-volatile device it will call erase, if driver provides such callback, or will fill given
range with erase-value defined by driver. This function should be only used by code
that has not been written to directly support devices that do not require erase and rely
on device being erased prior to some operations. Note that emulated erase, on devices
that do not require, is done via write, which affects endurance of device.

See also

flash_area_erase()

See also

flash_flatten()

Parameters
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• fa – [in] Flash area

• off – [in] Offset relative from beginning of flash area.

• len – [in] Number of bytes to be erase

Returns
0 on success, negative errno code on fail.

uint32_t flash_area_align(const struct flash_area *fa)
Get write block size of the flash area.

Currently write block size might be treated as read block size, although most of drivers
supports unaligned readout.

Parameters
• fa – [in] Flash area

Returns
Alignment restriction for flash writes in [B].

int flash_area_get_sectors(int fa_id, uint32_t *count, struct flash_sector *sectors)
Retrieve info about sectors within the area.

Parameters
• fa_id – [in] Given flash area ID

• sectors – [out] buffer for sectors data

• count – [inout] On input Capacity of sectors, on output number of sec-
tors Retrieved.

Returns
0 on success, negative errno code on fail. Especially returns -ENOMEM if
There are too many flash pages on the flash_area to fit in the array.

void flash_area_foreach(flash_area_cb_t user_cb, void *user_data)
Iterate over flash map.

Parameters
• user_cb – User callback

• user_data – User supplied data

int flash_area_has_driver(const struct flash_area *fa)
Check whether given flash area has supporting flash driver in the system.

Parameters
• fa – [in] Flash area.

Returns
1 On success. -ENODEV if no driver match.

const struct device *flash_area_get_device(const struct flash_area *fa)
Get driver for given flash area.

Parameters
• fa – [in] Flash area.

Returns
device driver.
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uint8_t flash_area_erased_val(const struct flash_area *fa)
Get the value expected to be read when accessing any erased flash byte.

This API is compatible with the MCUBoot’s porting layer.

Parameters
• fa – Flash area.

Returns
Byte value of erase memory.

struct flash_area
#include <flash_map.h> Flash partition.

This structure represents a fixed-size partition on a flash device. Each partition con-
tains one or more flash sectors.

Public Members

uint8_t fa_id
ID number.

off_t fa_off
Start offset from the beginning of the flash device.

size_t fa_size
Total size.

const struct device *fa_dev
Backing flash device.

struct flash_sector
#include <flash_map.h> Structure for transfer flash sector boundaries.

This template is used for presentation of flash memory structure. It consumes much
less RAM than flash_area

Public Members

off_t fs_off
Sector offset from the beginning of the flash device.

size_t fs_size
Sector size in bytes.

4.26.4 Flash Circular Buffer (FCB)

Flash circular buffer provides an abstraction through which you can treat flash like a FIFO. You
append entries to the end, and read data from the beginning.
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Note

As of Zephyr release 2.1 the NVS storage API is recommended over FCB for use as a back-end
for the settings API.

Description

Entries in the flash contain the length of the entry, the data within the entry, and checksum over
the entry contents.

Storage of entries in flash is done in a FIFO fashion. When you request space for the next entry,
space is located at the end of the used area. When you start reading, the first entry served is the
oldest entry in flash.

Entries can be appended to the end of the area until storage space is exhausted. You have control
over what happens next; either erase oldest block of data, thereby freeing up some space, or stop
writing new data until existing data has been collected. FCB treats underlying storage as an array
of flash sectors; when it erases old data, it does this a sector at a time.

Entries in the flash are checksummed. That is how FCB detects whether writing entry to flash
completed ok. It will skip over entries which don’t have a valid checksum.

Usage

To add an entry to circular buffer:

• Call fcb_append() to get the location where data can be written. If this fails due to lack of
space, you can call fcb_rotate() to erase the oldest sector which will make the space. And
then call fcb_append() again.

• Use flash_area_write() to write entry contents.

• Call fcb_append_finish() when done. This completes the writing of the entry by calculat-
ing the checksum.

To read contents of the circular buffer:

• Call fcb_walk() with a pointer to your callback function.

• Within callback function copy in data from the entry using flash_area_read(). You can
tell when all data from within a sector has been read by monitoring the returned entry’s
area pointer. Then you can call fcb_rotate(), if you’re done with that data.

Alternatively:

• Call fcb_getnext() with 0 in entry offset to get the pointer to the oldest entry.

• Use flash_area_read() to read entry contents.

• Call fcb_getnext() with pointer to current entry to get the next one. And so on.

API Reference

The FCB subsystem APIs are provided by fcb.h:

Data structures

group fcb_data_structures
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Defines

FCB_MAX_LEN
Max length of element (16,383)

FCB_ENTRY_FA_DATA_OFF(entry)
Helper macro for calculating the data offset related to the fcb flash_area start offset.

Parameters
• entry – fcb entry structure

FCB_FLAGS_CRC_DISABLED
Flag to disable CRC for the fcb_entries in flash.

struct fcb_entry
#include <fcb.h> FCB entry info structure.

This data structure describes the element location in the flash.

You would use it to figure out what parameters to pass to flash_area_read() to read
element contents. Or to flash_area_write() when adding a new element. Entry location
is pointer to area (within fcb->f_sectors), and offset within that area.

Public Members

struct flash_sector *fe_sector
Pointer to info about sector where data are placed.

uint32_t fe_elem_off
Offset from the start of the sector to beginning of element.

uint32_t fe_data_off
Offset from the start of the sector to the start of element.

uint16_t fe_data_len
Size of data area in fcb entry.

struct fcb_entry_ctx
#include <fcb.h> Structure for transferring complete information about FCB entry lo-
cation within flash memory.

Public Members

struct fcb_entry loc
FCB entry info.

const struct flash_area *fap
Flash area where the entry is placed.
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struct fcb
#include <fcb.h> FCB instance structure.

The following data structure describes the FCB itself. First part should be filled in by
the user before calling fcb_init. The second part is used by FCB for its internal book-
keeping.

Public Members

uint32_t f_magic
Magic value, should not be 0xFFFFFFFF.

It is xored with inversion of f_erase_value and placed in the beginning of FCB flash
sector. FCB uses this when determining whether sector contains valid data or not.
Giving it value of 0xFFFFFFFF means leaving bytes of the filed in “erased” state.

uint8_t f_version
Current version number of the data.

uint8_t f_sector_cnt
Number of elements in sector array.

uint8_t f_scratch_cnt
Number of sectors to keep empty.

This can be used if you need to have scratch space for garbage collecting when FCB
fills up.

struct flash_sector *f_sectors
Array of sectors, must be contiguous.

struct k_mutex f_mtx
Locking for accessing the FCB data, internal state.

struct flash_sector *f_oldest
Pointer to flash sector containing the oldest data, internal state.

struct fcb_entry f_active
internal state

uint16_t f_active_id
Flash location where the newest data is, internal state.

uint8_t f_align
writes to flash have to aligned to this, internal state

const struct flash_area *fap
Flash area used by the fcb instance, internal state.

This can be transfer to FCB user
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uint8_t f_erase_value
The value flash takes when it is erased.

This is read from flash parameters and initialized upon call to fcb_init.

API functions

group fcb_api
Flash Circular Buffer APIs.

Typedefs

typedef int (*fcb_walk_cb)(struct fcb_entry_ctx *loc_ctx, void *arg)
FCB Walk callback function type.

Type of function which is expected to be called while walking over fcb entries thanks
to a fcb_walk call.

Entry data can be read using flash_area_read(), using loc_ctx fields as arguments. If cb
wants to stop the walk, it should return non-zero value.

Param loc_ctx
[in] entry location information (full context)

Param arg
[inout] callback context, transferred from fcb_walk.

Return
0 continue walking, non-zero stop walking.

Functions

int fcb_init(int f_area_id, struct fcb *fcbp)
Initialize FCB instance.

Parameters
• f_area_id – [in] ID of flash area where fcb storage resides.

• fcbp – [inout] FCB instance structure.

Returns
0 on success, non-zero on failure.

int fcb_append(struct fcb *fcbp, uint16_t len, struct fcb_entry *loc)
Appends an entry to circular buffer.

When writing the contents for the entry, use loc->fe_sector and loc->fe_data_off with
flash_area_write() to fcb flash_area. When you’re finished, call fcb_append_finish()with
loc as argument.

Parameters
• fcbp – [in] FCB instance structure.

• len – [in] Length of data which are expected to be written as the entry
payload.

• loc – [out] entry location information
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Returns
0 on success, non-zero on failure.

int fcb_append_finish(struct fcb *fcbp, struct fcb_entry *append_loc)
Finishes entry append operation.

Parameters
• fcbp – [in] FCB instance structure.

• append_loc – [in] entry location information

Returns
0 on success, non-zero on failure.

int fcb_walk(struct fcb *fcbp, struct flash_sector *sector, fcb_walk_cb cb, void *cb_arg)
Walk over all entries in the FCB sector.

Parameters
• sector – [in] fcb sector to be walked. If null, traverse entire storage.

• fcbp – [in] FCB instance structure.

• cb – [in] pointer to the function which gets called for every entry. If cb
wants to stop the walk, it should return non-zero value.

• cb_arg – [inout] callback context, transferred to the callback implemen-
tation.

Returns
0 on success, negative on failure (or transferred form callback return-
value), positive transferred form callback return-value

int fcb_getnext(struct fcb *fcbp, struct fcb_entry *loc)
Get next fcb entry location.

Function to obtain fcb entry location in relation to entry pointed by

loc. If loc->fe_sector is set and loc->fe_elem_off is not 0 function fetches next fcb entry
location. If loc->fe_sector is NULL function fetches the oldest entry location within FCB
storage. loc->fe_sector is set and loc->fe_elem_off is 0 function fetches the first entry
location in the fcb sector.

Parameters
• fcbp – [in] FCB instance structure.

• loc – [inout] entry location information

Returns
0 on success, non-zero on failure.

int fcb_rotate(struct fcb *fcbp)
Rotate fcb sectors.

Function erases the data from oldest sector. Upon that the next sector becomes the
oldest. Active sector is also switched if needed.

Parameters
• fcbp – [in] FCB instance structure.

int fcb_append_to_scratch(struct fcb *fcbp)
Start using the scratch block.

Take one of the scratch blocks into use. So a scratch sector becomes active sector to
which entries can be appended.

Parameters
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• fcbp – [in] FCB instance structure.

Returns
0 on success, non-zero on failure.

int fcb_free_sector_cnt(struct fcb *fcbp)
Get free sector count.

Parameters
• fcbp – [in] FCB instance structure.

Returns
Number of free sectors.

int fcb_is_empty(struct fcb *fcbp)
Check whether FCB has any data.

Parameters
• fcbp – [in] FCB instance structure.

Returns
Positive value if fcb is empty, otherwise 0.

int fcb_offset_last_n(struct fcb *fcbp, uint8_t entries, struct fcb_entry *last_n_entry)
Finds the fcb entry that gives back up to n entries at the end.

Parameters
• fcbp – [in] FCB instance structure.

• entries – [in] number of fcb entries the user wants to get

• last_n_entry – [out] last_n_entry the fcb_entry to be returned

Returns
0 on there are any fcbs available; -ENOENT otherwise

int fcb_clear(struct fcb *fcbp)
Clear fcb instance storage.

Parameters
• fcbp – [in] FCB instance structure.

Returns
0 on success; non-zero on failure

4.26.5 Stream Flash

The Stream Flash module takes contiguous fragments of a stream of data (e.g. from radio pack-
ets), aggregates them into a user-provided buffer, then when the buffer fills (or stream ends)
writes it to a raw flash partition. It supports providing the read-back buffer to the client to use
in validating the persisted stream content.

One typical use of a stream write operation is when receiving a new firmware image to be used
in a DFU operation.

There are several reasons why one might want to use buffered writes instead of writing the data
directly as it is made available. Some devices have hardware limitations which does not allow
flash writes to be performed in parallel with other operations, such as radio RX and TX. Also,
fewer write operations result in faster response times seen from the application.
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Persistent stream write progress

Some stream write operations, such as DFU operations, may run for a long time. When perform-
ing such long running operations it can be useful to be able to save the stream write progress
to persistent storage so that the operation can resume at the same point after an unexpected
interruption.

The Stream Flash module offers an API for loading, saving and clearing stream write
progress to persistent storage using the Settings module. The API can be enabled using CON-
FIG_STREAM_FLASH_PROGRESS.

API Reference

group stream_flash
Abstraction over stream writes to flash.

Since
2.3

Version
0.1.0

Typedefs

typedef int (*stream_flash_callback_t)(uint8_t *buf, size_t len, size_t offset)
Signature for callback invoked after flash write completes.

Functions of this type are invoked with a buffer containing data read back from the
flash after a flash write has completed. This enables verifying that the data has been
correctly stored (for instance by using a SHA function). The write buffer ‘buf’ provided
in stream_flash_init is used as a read buffer for this purpose.

Param buf
Pointer to the data read.

Param len
The length of the data read.

Param offset
The offset the data was read from.

Functions

int stream_flash_init(struct stream_flash_ctx *ctx, const struct device *fdev, uint8_t *buf,
size_t buf_len, size_t offset, size_t size, stream_flash_callback_t cb)

Initialize context needed for stream writes to flash.

Parameters
• ctx – context to be initialized

• fdev – Flash device to operate on

• buf – Write buffer

• buf_len – Length of write buffer. Can not be larger than the page size.
Must be multiple of the flash device write-block-size.
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• offset – Offset within flash device to start writing to

• size – Number of bytes available for performing buffered write. If this is
‘0’, the size will be set to the total size of the flash device minus the offset.

• cb – Callback to be invoked on completed flash write operations.

Returns
non-negative on success, negative errno code on fail

size_t stream_flash_bytes_written(struct stream_flash_ctx *ctx)
Read number of bytes written to the flash.

Note

api-tags: pre-kernel-ok isr-ok

Parameters
• ctx – context

Returns
Number of payload bytes written to flash.

int stream_flash_buffered_write(struct stream_flash_ctx *ctx, const uint8_t *data, size_t
len, bool flush)

Process input buffers to be written to flash device in single blocks.

Will store remainder between calls.

A write with the flush set to true has to be issued as the last write request for a given
context, as it concludes write of a stream, and flushes buffers to storage device.

Warning

There must not be any additional write requests issued for a flushed context, un-
less it is re-initialized, as such write attempts may result in the function failing and
returning error. Once context has been flushed, it can be re-initialized and re-used
for new stream flash session.

Parameters
• ctx – context

• data – data to write

• len – Number of bytes to write

• flush – when true this forces any buffered data to be written to flash

Returns
non-negative on success, negative errno code on fail

int stream_flash_erase_page(struct stream_flash_ctx *ctx, off_t off)
Erase the flash page to which a given offset belongs.

This function erases a flash page to which an offset belongs if this page is not the page
previously erased by the provided ctx (ctx->last_erased_page_start_offset).

Parameters
• ctx – context

• off – offset from the base address of the flash device
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Returns
non-negative on success, negative errno code on fail

int stream_flash_progress_load(struct stream_flash_ctx *ctx, const char *settings_key)
Load persistent stream write progress stored with key settings_key .

This function should be called directly after stream_flash_init to load previous stream
write progress before writing any data. If the loaded progress has fewer bytes written
than ctx then it will be ignored.

Parameters
• ctx – context

• settings_key – key to use with the settings module for loading the stream
write progress

Returns
non-negative on success, negative errno code on fail

int stream_flash_progress_save(struct stream_flash_ctx *ctx, const char *settings_key)
Save persistent stream write progress using key settings_key .

Parameters
• ctx – context

• settings_key – key to use with the settings module for storing the stream
write progress

Returns
non-negative on success, negative errno code on fail

int stream_flash_progress_clear(struct stream_flash_ctx *ctx, const char *settings_key)
Clear persistent stream write progress stored with key settings_key .

Parameters
• ctx – context

• settings_key – key previously used for storing the stream write progress

Returns
non-negative on success, negative errno code on fail

struct stream_flash_ctx
#include <stream_flash.h> Structure for stream flash context.

Users should treat these structures as opaque values and only interact with them
through the below API.

4.27 Sensing Subsystem

• Overview

• Configurability

• Main Features

• Major Flows

• Sensor Types And Instance
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• Sensor Instance Handler

• Sensor Sample Value

• Device Tree Configuration

• API Reference

4.27.1 Overview

Sensing Subsystem is a high level sensor framework inside the OS user space service layer. It is a
framework focused on sensor fusion, client arbitration, sampling, timing, scheduling and sensor
based power management.

Key concepts in Sensing Subsystem include physical sensor and virtual sensor objects, and a
scheduling framework over sensor object relationships. Physical sensors do not depend on
any other sensor objects for input, and will directly interact with existing zephyr sensor device
drivers. Virtual sensors rely on other sensor objects (physical or virtual) as report inputs.

The sensing subsystem relies on Zephyr sensor device APIs (existing version or update in future)
to leverage Zephyr’s large library of sensor device drivers (100+).

Use of the sensing subsystem is optional. Applications that only need to access simple sensors
devices can use the Zephyr Sensors API directly.

Since the sensing subsystem is separated from device driver layer or kernel space and could sup-
port various customizations and sensor algorithms in user space with virtual sensor concepts.
The existing sensor device driver can focus on low layer device side works, can keep simple as
much as possible, just provide device HW abstraction and operations etc. This is very good for
system stability.

The sensing subsystem is decoupled with any sensor expose/transfer protocols, the target is to
support various up-layer frameworks and Applications with different sensor expose/transfer
protocols, such as CHRE, HID sensors Applications, MQTT sensor Applications according differ-
ent products requirements. Or even support multiple Applications with different up-layer sensor
protocols at the same time with it’s multiple clients support design.

Sensing subsystem can help build a unified Zephyr sensing architecture for cross host OSes sup-
port and as well as IoT sensor solutions.

The diagram below illustrates how the Sensing Subsystem integrates with up-layer frameworks.
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4.27.2 Configurability

• Reusable and configurable standalone subsystem.

• Based on Zephyr existing low-level Sensor API (reuse 100+ existing sensor device drivers)

• Provide Zephyr high-level Sensing Subsystem API for Applications.

• Separate option CHRE Sensor PAL Implementation module to support CHRE.

• Decoupled with any host link protocols, it’s Zephyr Application’s role to handle different
protocols (MQTT, HID or Private, all configurable)

4.27.3 Main Features

• Scope
– Focus on framework for sensor fusion, multiple clients, arbitration, data sampling,

timing management and scheduling.

• Sensor Abstraction
– Physical sensor: interacts with Zephyr sensor device drivers, focus on data col-

lecting.

– Virtual sensor: relies on other sensor(s), physical or virtual, focus on data fu-
sion.

• Data Driven Model
– Polling mode: periodical sampling rate

– Interrupt mode: data ready, threshold interrupt etc.

• Scheduling
– single thread main loop for all sensor objects sampling and process.

• Buffer Mode for Batching

• Configurable Via Device Tree
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Below diagram shows the API position and scope:

Sensing Subsystem API is for Applications. Sensing Sensor API is for development sensors.

4.27.4 Major Flows

• Sensor Configuration Flow
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• Sensor Data Flow

4.27.5 Sensor Types And Instance

The Sensing Subsystem supports multiple instances of the same sensor type, there’re two meth-
ods for Applications to identify and open an unique sensor instance:

• Enumerate all sensor instances

sensing_get_sensors() returns all current board configuration supported sensor in-
stances’ information in a sensing_sensor_info pointer array .

Then Applications can use sensing_open_sensor() to open specific sensor instance for fu-
ture accessing, configuration and receive sensor data etc.
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This method is suitable for supporting some up-layer frameworks like CHRE, HIDwhich need
to dynamically enumerate the underlying platform’s sensor instances.

• Open the sensor instance by devicetree node directly

Applications can use sensing_open_sensor_by_dt() to open a sensor instance directly with
sensor devicetree node identifier.

For example:

sensing_open_sensor_by_dt(DEVICE_DT_GET(DT_NODELABEL(base_accel)), cb_list, handle);
sensing_open_sensor_by_dt(DEVICE_DT_GET(DT_CHOSEN(zephyr_sensing_base_accel)), cb_list,␣
↪→handle);

This method is useful and easy use for some simple Application which just want to access specific
sensor(s).

Sensor type follows the HID standard sensor types definition.

See include/zephyr/sensing/sensing_sensor_types.h

4.27.6 Sensor Instance Handler

Clients using a sensing_sensor_handle_t type handler to handle a opened sensor instance, and
all subsequent operations on this sensor instance need use this handler, such as set configura-
tions, read sensor sample data, etc.

For a sensor instance, could have two kinds of clients: Application clients and Sensor clients.

Application clients can use sensing_open_sensor() to open a sensor instance and get it’s han-
dler.

For Sensor clients, there is no open API for opening a reporter, because the client-report rela-
tionship is built at the sensor’s registration stage with devicetree.

The Sensing Subsystem will auto open and create handlers for client sensor to it’s reporter sen-
sors. Sensor clients can get it’s reporters’ handlers via sensing_sensor_get_reporters().
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Note

Sensors inside the Sensing Subsystem, the reporting relationship between them are all
auto generated by Sensing Subsystem according devicetree definitions, handlers between
client sensor and reporter sensors are auto created. Application(s) need to call sens-
ing_open_sensor() to explicitly open the sensor instance.

4.27.7 Sensor Sample Value

• Data Structure

Each sensor sample value defines as a common header + readings[] data struc-
ture, like sensing_sensor_value_3d_q31, sensing_sensor_value_q31, and sens-
ing_sensor_value_uint32.

The header definition sensing_sensor_value_header().

• Time Stamp

Time stamp unit in sensing subsystem is micro seconds.

The header defines a base_timestamp, and each element in the readings[] array defines
timestamp_delta.

The timestamp_delta is in relation to the previous readings (or the base_timestamp)

For example:

– timestamp of readings[0] is header.base_timestamp + readings[0].
timestamp_delta.

– timestamp of readings[1] is timestamp of readings[0] + readings[1].
timestamp_delta.

Since timestamp unit is micro seconds, the max timestamp_delta (uint32_t) is 4295 sec-
onds.

If a sensor has batched data where two consecutive readings differ by more than 4295 sec-
onds, the sensing subsystem runtime will split them across multiple instances of the read-
ings structure, and send multiple events.

This concept is referred from CHRE Sensor API.

• Data Format

Sensing Subsystem uses per sensor type defined data format structure, and support Q For-
mat defined in include/zephyr/dsp/types.h for zdsp lib support.

For example sensing_sensor_value_3d_q31 can be used by 3D
IMU sensors like SENSING_SENSOR_TYPE_MOTION_ACCELEROMETER_3D,
SENSING_SENSOR_TYPE_MOTION_UNCALIB_ACCELEROMETER_3D, and SENS-
ING_SENSOR_TYPE_MOTION_GYROMETER_3D.

sensing_sensor_value_uint32 can be used by SENSING_SENSOR_TYPE_LIGHT_AMBIENTLIGHT
sensor,

and sensing_sensor_value_q31 can be used by SENSING_SENSOR_TYPE_MOTION_HINGE_ANGLE
sensor

See include/zephyr/sensing/sensing_datatypes.h
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4.27.8 Device Tree Configuration

Sensing subsystem using device tree to configuration all sensor instances and their properties,
reporting relationships.

See the example samples/subsys/sensing/simple/boards/native_sim.overlay

4.27.9 API Reference

group sensing_sensor_types
Sensor Types Definition.

Sensor types definition followed HID standard. https://usb.org/sites/default/files/hutrr39b_
0.pdf

TODO: will add more types

Defines

SENSING_SENSOR_TYPE_LIGHT_AMBIENTLIGHT
sensor category light

SENSING_SENSOR_TYPE_MOTION_ACCELEROMETER_3D
sensor category motion

SENSING_SENSOR_TYPE_MOTION_GYROMETER_3D

SENSING_SENSOR_TYPE_MOTION_MOTION_DETECTOR

SENSING_SENSOR_TYPE_OTHER_CUSTOM
sensor category other

SENSING_SENSOR_TYPE_MOTION_UNCALIB_ACCELEROMETER_3D

SENSING_SENSOR_TYPE_MOTION_HINGE_ANGLE

SENSING_SENSOR_TYPE_ALL
Sensor type for all sensors.

This macro defines the sensor type for all sensors.

group sensing_datatypes
Data Types.

struct sensing_sensor_value_header
#include <sensing_datatypes.h> sensor value header

Each sensor value data structure should have this header

Here use ‘base_timestamp’ (uint64_t) and ‘timestamp_delta’ (uint32_t) to save memory
usage in batching mode.
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The ‘base_timestamp’ is for readings[0], the ‘timestamp_delta’ is relation to the pre-
vious ‘readings’. So, timestamp of readings[0] is header.base_timestamp + read-
ings[0].timestamp_delta. timestamp of readings[1] is timestamp of readings[0] + read-
ings[1].timestamp_delta.

Since timestamp unit is micro seconds, the max ‘timestamp_delta’ (uint32_t) is 4295
seconds.

If a sensor has batched data where two consecutive readings differ by more than 4295
seconds, the sensor subsystem core will split them across multiple instances of the
readings structure, and send multiple events.

This concept is borrowed from CHRE: https://cs.android.com/android/platform/
superproject/+/master:\ system/chre/chre_api/include/chre_api/chre/sensor_types.h

Public Members

uint64_t base_timestamp
Base timestamp of this data readings, unit is micro seconds.

uint16_t reading_count
Count of this data readings.

struct sensing_sensor_value_3d_q31
#include <sensing_datatypes.h> Sensor value data structure types based on common
data types.

Suitable for common sensors, such as IMU, Light sensors and orientation sensors.

Sensor value data structure for 3-axis sensors. struct sens-
ing_sensor_value_3d_q31 can be used by 3D IMU sensors like:
SENSING_SENSOR_TYPE_MOTION_ACCELEROMETER_3D, SENS-
ING_SENSOR_TYPE_MOTION_UNCALIB_ACCELEROMETER_3D, SENS-
ING_SENSOR_TYPE_MOTION_GYROMETER_3D, q31 version

Public Members

struct sensing_sensor_value_header header
Header of the sensor value data structure.

int8_t shift
The shift value for the q31_t v[3] reading.

uint32_t timestamp_delta
Timestamp delta of the reading.

Unit is micro seconds.

q31_t v[3]
3D vector of the reading represented as an array.

For SENSING_SENSOR_TYPE_MOTION_ACCELEROMETER_3D and SENS-
ING_SENSOR_TYPE_MOTION_UNCALIB_ACCELEROMETER_3D, the unit is Gs
(gravitational force). For SENSING_SENSOR_TYPE_MOTION_GYROMETER_3D, the
unit is degrees.
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q31_t x
X value of the 3D vector.

q31_t y
Y value of the 3D vector.

q31_t z
Z value of the 3D vector.

struct sensing_sensor_value_3d_q31 readings[1]
Array of readings.

struct sensing_sensor_value_uint32
#include <sensing_datatypes.h> Sensor value data structure for single 1-axis value.

struct sensing_sensor_value_uint32 can be used by SENS-
ING_SENSOR_TYPE_LIGHT_AMBIENTLIGHT sensor uint32_t version

Public Members

struct sensing_sensor_value_header header
Header of the sensor value data structure.

uint32_t timestamp_delta
Timestamp delta of the reading.

Unit is micro seconds.

uint32_t v
Value of the reading.

For SENSING_SENSOR_TYPE_LIGHT_AMBIENTLIGHT, the unit is luxs.

struct sensing_sensor_value_uint32 readings[1]
Array of readings.

struct sensing_sensor_value_q31
#include <sensing_datatypes.h> Sensor value data structure for single 1-axis value.

struct sensing_sensor_value_q31 can be used by SENS-
ING_SENSOR_TYPE_MOTION_HINGE_ANGLE sensor q31 version

Public Members

struct sensing_sensor_value_header header
Header of the sensor value data structure.

int8_t shift
The shift value for the q31_t v reading.
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uint32_t timestamp_delta
Timestamp delta of the reading.

Unit is micro seconds.

q31_t v
Value of the reading.

For SENSING_SENSOR_TYPE_MOTION_HINGE_ANGLE, the unit is degrees.

struct sensing_sensor_value_q31 readings[1]
Array of readings.

Related code samples

Sensing subsystem
Get high-level sensor data in defined intervals.

group sensing_api
Sensing Subsystem API.

Defines

SENSING_SENSOR_VERSION(_major, _minor, _hotfix, _build)
Macro to create a sensor version value.

SENSING_SENSOR_FLAG_REPORT_ON_EVENT
Sensor flag indicating if this sensor is on event reporting data.

Reporting sensor data when the sensor event occurs, such as a motion detect sensor
reporting a motion or motionless detected event.

SENSING_SENSOR_FLAG_REPORT_ON_CHANGE
Sensor flag indicating if this sensor is on change reporting data.

Reporting sensor data when the sensor data changes.

Exclusive with SENSING_SENSOR_FLAG_REPORT_ON_EVENT

SENSING_SENSITIVITY_INDEX_ALL
SENSING_SENSITIVITY_INDEX_ALL indicating sensitivity of each data field should be
set.

Typedefs

typedef void *sensing_sensor_handle_t
Define Sensing subsystem sensor handle.

typedef void (*sensing_data_event_t)(sensing_sensor_handle_t handle, const void *buf,
void *context)

Sensor data event receive callback.

4.27. Sensing Subsystem 1215



Zephyr Project Documentation, Release 3.7.99

Param handle
The sensor instance handle.

Param buf
The data buffer with sensor data.

Param context
User provided context pointer.

Enums

enum sensing_sensor_state
Sensing subsystem sensor state.

Values:

enumerator SENSING_SENSOR_STATE_READY = 0
The sensor is ready.

enumerator SENSING_SENSOR_STATE_OFFLINE = 1
The sensor is offline.

enum sensing_sensor_attribute
Sensing subsystem sensor config attribute.

Values:

enumerator SENSING_SENSOR_ATTRIBUTE_INTERVAL = 0
The interval attribute of a sensor configuration.

enumerator SENSING_SENSOR_ATTRIBUTE_SENSITIVITY = 1
The sensitivity attribute of a sensor configuration.

enumerator SENSING_SENSOR_ATTRIBUTE_LATENCY = 2
The latency attribute of a sensor configuration.

enumerator SENSING_SENSOR_ATTRIBUTE_MAX
The maximum number of attributes that a sensor configuration can have.

Functions

int sensing_get_sensors(int *num_sensors, const struct sensing_sensor_info **info)
Get all supported sensor instances’ information.

This API just returns read only information of sensor instances, pointer info will di-
rectly point to internal buffer, no need for caller to allocate buffer, no side effect to
sensor instances.

Parameters
• num_sensors – Get number of sensor instances.

• info – For receiving sensor instances’ information array pointer.

Returns
0 on success or negative error value on failure.
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int sensing_open_sensor(const struct sensing_sensor_info *info, struct
sensing_callback_list *cb_list, sensing_sensor_handle_t *handle)

Open sensor instance by sensing sensor info.

Application clients use it to open a sensor instance and get its handle. Support multiple
Application clients for open same sensor instance, in this case, the returned handle will
different for different clients. meanwhile, also register sensing callback list

Parameters
• info – The sensor info got from sensing_get_sensors

• cb_list – callback list to be registered to sensing, must have a static life-
time.

• handle – The opened instance handle, if failed will be set to NULL.

Returns
0 on success or negative error value on failure.

int sensing_open_sensor_by_dt(const struct device *dev, struct sensing_callback_list
*cb_list, sensing_sensor_handle_t *handle)

Open sensor instance by device.

Application clients use it to open a sensor instance and get its handle. Support multiple
Application clients for open same sensor instance, in this case, the returned handle will
different for different clients. meanwhile, also register sensing callback list.

Parameters
• dev – pointer device get from device tree.

• cb_list – callback list to be registered to sensing, must have a static life-
time.

• handle – The opened instance handle, if failed will be set to NULL.

Returns
0 on success or negative error value on failure.

int sensing_close_sensor(sensing_sensor_handle_t *handle)
Close sensor instance.

Parameters
• handle – The sensor instance handle need to close.

Returns
0 on success or negative error value on failure.

int sensing_set_config(sensing_sensor_handle_t handle, struct sensing_sensor_config
*configs, int count)

Set current config items to Sensing subsystem.

Parameters
• handle – The sensor instance handle.

• configs – The configs to be set according to config attribute.

• count – count of configs.

Returns
0 on success or negative error value on failure, not support etc.

int sensing_get_config(sensing_sensor_handle_t handle, struct sensing_sensor_config
*configs, int count)

Get current config items from Sensing subsystem.
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Parameters
• handle – The sensor instance handle.

• configs – The configs to be get according to config attribute.

• count – count of configs.

Returns
0 on success or negative error value on failure, not support etc.

const struct sensing_sensor_info *sensing_get_sensor_info(sensing_sensor_handle_t
handle)

Get sensor information from sensor instance handle.

Parameters
• handle – The sensor instance handle.

Returns
a const pointer to sensing_sensor_info on success or NULL on failure.

struct sensing_sensor_version
#include <sensing.h> Sensor Version.

Public Members

uint32_t value
The version represented as a 32-bit value.

uint8_t major
The major version number.

uint8_t minor
The minor version number.

uint8_t hotfix
The hotfix version number.

uint8_t build
The build version number.

struct sensing_sensor_info
#include <sensing.h> Sensor basic constant information.

Public Members

const char *name
Name of the sensor instance.

const char *friendly_name
Friendly name of the sensor instance.
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const char *vendor
Vendor name of the sensor instance.

const char *model
Model name of the sensor instance.

const int32_t type
Sensor type.

const uint32_t minimal_interval
Minimal report interval in micro seconds.

struct sensing_callback_list
#include <sensing.h> Sensing subsystem event callback list.

Public Members

sensing_data_event_t on_data_event
Callback function for a sensor data event.

void *context
Associated context with on_data_event.

struct sensing_sensor_config
#include <sensing.h> Sensing subsystem sensor configure, including interval, sensitiv-
ity, latency.

Public Members

enum sensing_sensor_attribute attri
Attribute of the sensor configuration.

int8_t data_field
SENSING_SENSITIVITY_INDEX_ALL

Data field of the sensor configuration.

uint32_t interval
Interval between two sensor samples in microseconds (us).

uint32_t sensitivity
Sensitivity threshold for reporting new data.

A new sensor sample is reported only if the difference between it and the previous
sample exceeds this sensitivity value.
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uint64_t latency
Maximum duration for batching sensor samples before reporting in microseconds
(us).

This defines how long sensor samples can be accumulated before they must be
reported.

group sensing_sensor
Sensing Sensor API.

Defines

SENSING_SENSORS_DT_DEFINE(node, reg_ptr, cb_list_ptr, init_fn, pm_device, data_ptr,
cfg_ptr, level, prio, api_ptr, ...)

Like SENSOR_DEVICE_DT_DEFINE() with sensing specifics.

Defines a sensor which implements the sensor API. May define an element in the sens-
ing sensor iterable section used to enumerate all sensing sensors.

Parameters
• node – The devicetree node identifier.

• reg_ptr – Pointer to the device’s sensing_sensor_register_info.

• cb_list_ptr – Pointer to sensing callback list.

• init_fn – Name of the init function of the driver.

• pm_device – PM device resources reference (NULL if device does not use
PM).

• data_ptr – Pointer to the device’s private data.

• cfg_ptr – The address to the structure containing the configuration in-
formation for this instance of the driver.

• level – The initialization level. See SYS_INIT() for details.

• prio – Priority within the selected initialization level. See SYS_INIT() for
details.

• api_ptr – Provides an initial pointer to the API function struct used by
the driver. Can be NULL.

SENSING_SENSORS_DT_INST_DEFINE(inst, ...)
Like SENSING_SENSORS_DT_DEFINE() for an instance of a DT_DRV_COMPAT compati-
ble.

Parameters
• inst – instance number. This is replaced by DT_DRV_COMPAT(inst) in the

call to SENSING_SENSORS_DT_DEFINE().

• ... – other parameters as expected by SENSING_SENSORS_DT_DEFINE().

Functions

int sensing_sensor_get_reporters(const struct device *dev, int type,
sensing_sensor_handle_t *reporter_handles, int
max_handles)

Get reporter handles of a given sensor instance by sensor type.
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Parameters
• dev – The sensor instance device structure.

• type – The given type, SENSING_SENSOR_TYPE_ALL to get reporters with
all types.

• max_handles – The max count of the reporter_handles array input. Can
get real count number via sensing_sensor_get_reporters_count

• reporter_handles – Input handles array for receiving found reporter
sensor instances

Returns
number of reporters found, 0 returned if not found.

int sensing_sensor_get_reporters_count(const struct device *dev, int type)
Get reporters count of a given sensor instance by sensor type.

Parameters
• dev – The sensor instance device structure.

• type – The sensor type for checking, SENSING_SENSOR_TYPE_ALL

Returns
Count of reporters by type, 0 returned if no reporters by type.

int sensing_sensor_get_state(const struct device *dev, enum sensing_sensor_state
*state)

Get this sensor’s state.

Parameters
• dev – The sensor instance device structure.

• state – Returned sensor state value

Returns
0 on success or negative error value on failure.

struct sensing_sensor_register_info
#include <sensing_sensor.h> Sensor registration information.

Public Members

uint16_t flags
Sensor flags.

uint16_t sample_size
Sample size in bytes for a single sample of the registered sensor.

sensing runtime need this information for internal buffer allocation.

uint8_t sensitivity_count
The number of sensor sensitivities.

struct sensing_sensor_version version
Sensor version.

Version can be used to identify different versions of sensor implementation.
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4.28 Task Watchdog

4.28.1 Overview

Many microcontrollers feature a hardware watchdog timer peripheral. Its purpose is to trigger
an action (usually a system reset) in case of severe software malfunctions. Once initialized, the
watchdog timer has to be restarted (“fed”) in regular intervals to prevent it from timing out. If
the software got stuck and does not manage to feed the watchdog anymore, the corrective action
is triggered to bring the system back to normal operation.

In real-time operating systems with multiple tasks running in parallel, a single watchdog in-
stance may not be sufficient anymore, as it can be used for only one task. This software watch-
dog based on kernel timers provides a method to supervise multiple threads or tasks (called
watchdog channels).

An existing hardware watchdog can be used as an optional fallback if the task watchdog itself or
the scheduler has a malfunction.

The task watchdog uses a kernel timer as its backend. If configured properly, the timer ISR is
never actually called during normal operation, as the timer is continuously updated in the feed
calls.

It’s currently not possible to have multiple instances of task watchdogs. Instead, the task watch-
dog API can be accessed globally to add or delete new channels without passing around a context
or device pointer in the firmware.

The maximum number of channels is predefined via Kconfig and should be adjusted to match
exactly the number of channels required by the application.

4.28.2 Configuration Options

Related configuration options can be found under subsys/task_wdt/Kconfig.

• CONFIG_TASK_WDT
• CONFIG_TASK_WDT_CHANNELS
• CONFIG_TASK_WDT_HW_FALLBACK
• CONFIG_TASK_WDT_MIN_TIMEOUT
• CONFIG_TASK_WDT_HW_FALLBACK_DELAY

4.28.3 API Reference

Related code samples

Task watchdog
Monitor a thread using a task watchdog.

group task_wdt_api
Task Watchdog APIs.

Since
2.5
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Version
0.8.0

Typedefs

typedef void (*task_wdt_callback_t)(int channel_id, void *user_data)
Task watchdog callback.

Functions

int task_wdt_init(const struct device *hw_wdt)
Initialize task watchdog.

This function sets up necessary kernel timers and the hardware watchdog (if desired
as fallback). It has to be called before task_wdt_add() and task_wdt_feed().

Parameters
• hw_wdt – Pointer to the hardware watchdog device used as fallback. Pass

NULL if no hardware watchdog fallback is desired.

Return values
• 0 – If successful.

• -ENOTSUP – If assigning a hardware watchdog is not supported.

• -Errno – Negative errno if the fallback hw_wdt is used and the install
timeout API fails. See wdt_install_timeout() API for possible return val-
ues.

int task_wdt_add(uint32_t reload_period, task_wdt_callback_t callback, void *user_data)
Install new timeout.

Adds a new timeout to the list of task watchdog channels.

Parameters
• reload_period – Period in milliseconds used to reset the timeout

• callback – Function to be called when watchdog timer expired. Pass
NULL to use system reset handler.

• user_data – User data to associate with the watchdog channel.

Return values
• channel_id – If successful, a non-negative value indicating the index of

the channel to which the timeout was assigned. This ID is supposed to be
used as the parameter in calls to task_wdt_feed().

• -EINVAL – If the reload_period is invalid.

• -ENOMEM – If no more timeouts can be installed.

int task_wdt_delete(int channel_id)
Delete task watchdog channel.

Deletes the specified channel from the list of task watchdog channels. The channel is
now available again for other tasks via task_wdt_add() function.

Parameters
• channel_id – Index of the channel as returned by task_wdt_add().
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Return values
• 0 – If successful.

• -EINVAL – If there is no installed timeout for supplied channel.

int task_wdt_feed(int channel_id)
Feed specified watchdog channel.

This function loops through all installed task watchdogs and updates the internal ker-
nel timer used as for the software watchdog with the next due timeout.

Parameters
• channel_id – Index of the fed channel as returned by task_wdt_add().

Return values
• 0 – If successful.

• -EINVAL – If there is no installed timeout for supplied channel.

4.29 Trusted Firmware-M

4.29.1 Trusted Firmware-M Overview

Trusted Firmware-M (TF-M) is a reference implementation of the Platform Security Architecture
(PSA) IoT Security Framework. It defines and implements an architecture and a set of software
components that aim to address some of the main security concerns in IoT products.

Zephyr RTOS has been PSA Certified since Zephyr 2.0.0 with TF-M 1.0, and is currently integrated
with TF-M 2.1.0.

What Does TF-M Offer?

Through a set of secure services and by design, TF-M provides:

• Isolation of secure and non-secure resources

• Embedded-appropriate crypto

• Management of device secrets (keys, etc.)

• Firmware verification (and encryption)

• Protected off-chip data storage and retrieval

• Proof of device identity (device attestation)

• Audit logging

Build System Integration

When using TF-M with a supported platform, TF-M will be automatically built and link in the
background as part of the standard Zephyr build process. This build process makes a number of
assumptions about how TF-M is being used, and has certain implications about what the Zephyr
application image can and can not do:

• The secure processing environment (secure boot and TF-M) starts first

• Resource allocation for Zephyr relies on choices made in the secure image.
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Architecture Overview

A TF-M application will, generally, have the following three parts, from most to least trusted,
left-to-right, with code execution happening in the same order (secure boot > secure image > ns
image).

While the secure bootloader is optional, it is enabled by default, and secure boot is an important
part of providing a secure solution:

+-------------------------------------+ +--------------+
| Secure Processing Environment (SPE) | | NSPE |
| +----------++---------------------+ | | +----------+ |
| | || | | | | | |
| | bl2.bin || tfm_s_signed.bin | | | |zephyr.bin| |
| | || | | <- PSA -> | | | |
| | Secure || Trusted Firmware-M | | APIs | | Zephyr | |
| | Boot || (Secure Image) | | | |(NS Image)| |
| | || | | | | | |
| +----------++---------------------+ | | +----------+ |
+-------------------------------------+ +--------------+

Communication between the (Zephyr) Non-Secure Processing Environment (NSPE) and the (TF-
M) Secure Processing Environment image happens based on a set of PSA APIs, and normally
makes use of an IPC mechanism that is included as part of the TF-M build, and implemented in
Zephyr (see modules/trusted-firmware-m/interface).

Root of Trust (RoT) Architecture TF-M is based upon aRoot of Trust (RoT) architecture. This
allows for hierarchies of trust from most, to less, to least trusted, providing a sound foundation
upon which to build or access trusted services and resources.

The benefit of this approach is that less trusted components are prevented from accessing or
compromising more critical parts of the system, and error conditions in less trusted environ-
ments won’t corrupt more trusted, isolated resources.

The following RoT hierarchy is defined for TF-M, from most to least trusted:

• PSA Root of Trust (PRoT), which consists of:

– PSA Immutable Root of Trust: secure boot

– PSA Updateable Root of Trust: most trusted secure services

• Application Root of Trust (ARoT): isolated secure services

The PSA Immutable Root of Trust is the most trusted piece of code in the system, to which sub-
sequent Roots of Trust are anchored. In TF-M, this is the secure boot image, which verifies that
the secure and non-secure images are valid, have not been tampered with, and come from a reli-
able source. The secure bootloader also verifies new images during the firmware update process,
thanks to the public signing key(s) built into it. As the name implies, this image is immutable.

The PSA Updateable Root of Trust implements the most trusted secure services and compo-
nents in TF-M, such as the Secure Partition Manager (SPM), and shared secure services like PSA
Crypto, Internal Trusted Storage (ITS), etc. Services in the PSA Updateable Root of Trust have
access to other resources in the same Root of Trust.

The Application Root of Trust is a reduced-privilege area in the secure processing environ-
ment which, depending on the isolation level chosen when building TF-M, has limited access to
the PRoT, or even other ARoT services at the highest isolation levels. Some standard services
exist in the ARoT, such as Protected Storage (PS), and generally custom secure services that you
implement should be placed in the ARoT, unless a compelling reason is present to place them in
the PRoT.

These divisions are distinct from the untrusted code, which runs in the non-secure environ-
ment, and has the least privilege in the system. This is the Zephyr application image in this case.
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Isolation Levels At present, there are three distinct isolation levels defined in TF-M, with
increasingly rigid boundaries between regions. The isolation level used will depend on your
security requirements, and the system resources available to you.

• Isolation Level 1 is the lowest isolation level, and the only major boundary is between
the secure and non-secure processing environment, usually by means of Arm TrustZone
on Armv8-M processors. There is no distinction here between the PSA Updateable Root of
Trust (PRoT) and the Application Root of Trust (ARoT). They execute at the same privilege
level. This isolation level will lead to the smallest combined application images.

• Isolation Level 2 builds upon level one by introducing a distinction between the PSA Up-
dateable Root of Trust and the Application Root of Trust, where ARoT services have limited
access to PRoT services, and can only communicate with them through public APIs exposed
by the PRoT services. ARoT services, however, are not strictly isolated from one another.

• Isolation Level 3 is the highest isolation level, and builds upon level 2 by isolating ARoT
services from each other, so that each ARoT is essentially silo’ed from other services. This
provides the highest level of isolation, but also comes at the cost of additional overhead and
code duplication between services.

The current isolation level can be checked via CONFIG_TFM_ISOLATION_LEVEL.

Secure Boot The default secure bootloader in TF-M is based on MCUBoot, and is referred to
as BL2 in TF-M (for the second-stage bootloader, potentially after a HW-based bootloader on the
secure MCU, etc.).

All images in TF-M are hashed and signed, with the hash and signature verified by MCUBoot
during the firmware update process.

Some key features of MCUBoot as used in TF-M are:

• Public signing key(s) are baked into the bootloader

• S and NS images can be signed using different keys

• Firmware images can optionally be encrypted

• Client software is responsible for writing a new image to the secondary slot

• By default, uses static flash layout of two identically-sized memory regions

• Optional security counter for rollback protection

When dealing with (optionally) encrypted images:

• Only the payload is encrypted (header, TLVs are plain text)

• Hashing and signing are applied over the un-encrypted data

• Uses AES-CTR-128 or AES-CTR-256 for encryption

• Encryption key randomized every encryption cycle (via imgtool)

• The AES-CTR key is included in the image and can be encrypted using:

– RSA-OAEP
– AES-KW (128 or 256 bits depending on the AES-CTR key length)

– ECIES-P256
– ECIES-X25519

Key config properties to control secure boot in Zephyr are:

• CONFIG_TFM_BL2 toggles the bootloader (default = y).

• CONFIG_TFM_KEY_FILE_S overrides the secure signing key.

• CONFIG_TFM_KEY_FILE_NS overrides the non-secure signing key.
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Secure Processing Environment Once the secure bootloader has finished executing, a TF-M
based secure image will begin execution in the secure processing environment. This is where
our device will be initially configured, and any secure services will be initialised.

Note that the starting state of our device is controlled by the secure firmware, meaning that when
the non-secure Zephyr application starts, peripherals may not be in the HW-default reset state. In
case of doubts, be sure to consult the board support packages in TF-M, available in the platform/
ext/target/ folder of the TF-M module (which is in modules/tee/tf-m/trusted-firmware-m/
within a default Zephyr west workspace.)

Secure Services As of TF-M 1.8.0, the following secure services are generally available (al-
though vendor support may vary):

• Crypto

• Firmware Update (FWU)

• Initial Attestation

• Platform

• Secure Storage, which has two parts:

– Internal Trusted Storage (ITS)

– Protected Storage (PS)

A template also exists for creating your own custom services.

For full details on these services, and their exposed APIs, please consult the TF-M Documentation.

Key Management and Derivation Key and secret management is a critical part of any secure
device. You need to ensure that key material is available to regions that require it, but not to
anything else, and that it is stored securely in a way that makes it difficult to tamper with or
maliciously access.

The Internal Trusted Storage service in TF-M is used by the PSA Crypto service (which itself
makes use of mbedtls) to store keys, and ensure that private keys are only ever accessible to the
secure processing environment. Crypto operations that make use of key material, such as when
signing payloads or when decrypting sensitive data, all take place via key handles. At no point
should the key material ever be exposed to the NS environment.

One exception is that private keys can be provisioned into the secure processing environment
as a one-way operation, such as during a factory provisioning process, but even this should be
avoided where possible, and a request should be made to the SPE (via the PSA Crypto service) to
generate a new private key itself, and the public key for that can be requested during provision-
ing and logged in the factory. This ensures the private key material is never exposed, or even
known during the provisioning phase.

TF-M also makes extensive use of the Hardware Unique Key (HUK), which every TF-M device
must provide. This device-unique key is used by the Protected Storage service, for example, to
encrypt information stored in external memory. For example, this ensures that the contents of
flash memory can’t be decrypted if they are removed and placed on a new device, since each
device has its own unique HUK used while encrypting the memory contents the first time.

HUKs provide an additional advantage for developers, in that they can be used to derive new
keys, and the derived keys don’t need to be stored since they can be regenerated from the HUK
at startup, using an additional salt/seed value (depending on the key derivation algorithm used).
This removes the storage issue and a frequent attack vector. The HUK itself it usually highly
protected in secure devices, and inaccessible directly by users.

TFM_CRYPTO_ALG_HUK_DERIVATION identifies the default key derivation algorithm used if a soft-
ware implementation is used. The current default algorithm is HKDF (RFC 5869) with a SHA-256
hash. Other hardware implementations may be available on some platforms.
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Non-Secure Processing Environment Zephyr is used for the NSPE, using a board that is sup-
ported by TF-M where the CONFIG_BUILD_WITH_TFM flag has been enabled.

Generally, you simply need to select the *_ns variant of a valid target (for example
mps2_an521_ns), which will configure your Zephyr application to run in the NSPE, correctly build
and link it with the TF-M secure images, sign the secure and non-secure images, and merge the
three binaries into a single tfm_merged.hex file. The west flash command will flash tfm_merged.
hex by default in this configuration.

At present, Zephyr can not be configured to be used as the secure processing environment.

4.29.2 TF-M Requirements

The following are some of the boards that can be used with TF-M:

Board NSPE board name
mps2_an521_board mps2_an521_ns (qemu supported)
mps3_an547_board mps3_an547_ns (qemu supported)
bl5340_dvk bl5340_dvk/nrf5340/cpuapp/ns
lpcxpresso55s69 lpcxpresso55s69_ns
nrf9160dk_nrf9160 nrf9160dk/nrf9160/ns
nrf5340dk_nrf5340 nrf5340dk/nrf5340/cpuapp/ns
b_u585i_iot02a_board b_u585i_iot02a/stm32u585xx/ns
nucleo_l552ze_q_board nucleo_l552ze_q/stm32l552xx/ns
stm32l562e_dk_board stm32l562e_dk/stm32l562xx/ns
v2m_musca_b1_board v2m_musca_b1_ns
v2m_musca_s1_board v2m_musca_s1_ns

You can run west boards -n _ns$ to search for non-secure variants of different board
targets. To make sure TF-M is supported for a board in its output, check that CON-
FIG_TRUSTED_EXECUTION_NONSECURE is set to y in that board’s default configuration.

Software Requirements

The following Python modules are required when building TF-M binaries:

• cryptography

• pyasn1

• pyyaml

• cbor>=1.0.0

• imgtool>=1.9.0

• jinja2

• click

You can install them via:

$ pip3 install --user cryptography pyasn1 pyyaml cbor>=1.0.0 imgtool>=1.9.0␣
↪→jinja2 click

They are used by TF-M’s signing utility to prepare firmware images for validation by the boot-
loader.

Part of the process of generating binaries for QEMU and merging signed secure and non-secure
binaries on certain platforms also requires the use of the srec_cat utility.
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This can be installed on Linux via:

$ sudo apt-get install srecord

And on OS X via:

$ brew install srecord

For Windows-based systems, please make sure you have a copy of the utility available on your
system path. See, for example: SRecord for Windows

4.29.3 TF-M Build System

When building a valid _ns board target, TF-M will be built in the background, and linked with
the Zephyr non-secure application. No knowledge of TF-M’s build system is required in most
cases, and the following will build a TF-M and Zephyr image pair, and run it in qemu with no
additional steps required:

$ west build -p auto -b mps2_an521_ns samples/tfm_integration/psa_protected_
↪→storage/ -t run

The outputs and certain key steps in this build process are described here, however, since you
will need to understand and interact with the outputs, and deal with signing the secure and
non-secure images before deploying them.

Images Created by the TF-M Build

The TF-M build system creates the following executable files:

• tfm_s - TF-M secure firmware

• tfm_ns - TF-M non-secure app (only used by regression tests).

• bl2 - TF-M MCUboot, if enabled

For each of these, it creates .bin, .hex, .elf, and .axf files.

The TF-M build system also creates signed variants of tfm_s and tfm_ns, and a file which com-
bines them:

• tfm_s_signed

• tfm_ns_signed

• tfm_s_ns_signed

For each of these, only .bin files are created.

The TF-M non-secure app is discarded in favor of Zephyr non-secure app except when running
the TF-M regression test suite.

The Zephyr build system usually signs both tfm_s and the Zephyr non-secure app itself. See
below for details.

The ‘tfm’ target contains properties for all these paths. For example, the following will resolve
to <path>/tfm_s.hex:

$<TARGET_PROPERTY:tfm,TFM_S_HEX_FILE>

See the top level CMakeLists.txt file in the tfm module for an overview of all the properties.
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Signing Images

When CONFIG_TFM_BL2 is set to y, TF-M uses a secure bootloader (BL2) and firmware images must
be signed with a private key. The firmware image is validated by the bootloader during updates
using the corresponding public key, which is stored inside the secure bootloader firmware image.

By default, <tfm-dir>/bl2/ext/mcuboot/root-rsa-3072.pem is used to sign secure images, and
<tfm-dir>/bl2/ext/mcuboot/root-rsa-3072_1.pem is used to sign non-secure images. These
default .pem keys can (and should) be overridden using the CONFIG_TFM_KEY_FILE_S and CON-
FIG_TFM_KEY_FILE_NS config flags.

To satisfy PSA Certified Level 1 requirements, You MUST replace the default .pem file with a
new key pair!
To generate a new public/private key pair, run the following commands:

$ imgtool keygen -k root-rsa-3072_s.pem -t rsa-3072
$ imgtool keygen -k root-rsa-3072_ns.pem -t rsa-3072

You can then place the new .pem files in an alternate location, such as your Zephyr applica-
tion folder, and reference them in the prj.conf file via the CONFIG_TFM_KEY_FILE_S and CON-
FIG_TFM_KEY_FILE_NS config flags.

Warning

Be sure to keep your private key file in a safe, reliable location! If you lose this key
file, you will be unable to sign any future firmware images, and it will no longer be
possible to update your devices in the field!

After the built-in signing script has run, it creates a tfm_merged.hex file that contains all three
binaries: bl2, tfm_s, and the zephyr app. This hex file can then be flashed to your development
board or run in QEMU.

Custom CMake arguments When building a Zephyr application with TF-M it might be neces-
sary to control the CMake arguments passed to the TF-M build.

Zephyr TF-M build offers several Kconfig options for controlling the build, but doesn’t cover
every CMake argument supported by the TF-M build system.

The TFM_CMAKE_OPTIONS property on the zephyr_property_target can be used to pass custom
CMake arguments to the TF-M build system.

To pass the CMake argument -DFOO=bar to the TF-M build system, place the following CMake
snippet in your CMakeLists.txt file.

set_property(TARGET zephyr_property_target
APPEND PROPERTY TFM_CMAKE_OPTIONS
-DFOO=bar

)

Note

The TFM_CMAKE_OPTIONS is a list so it is possible to append multiple options. Also CMake gen-
erator expressions are supported, such as $<1:-DFOO=bar>

Since TFM_CMAKE_OPTIONS is a list argument it will be expanded before it is passed to the TF-M
build system. Options that have list arguments must therefore be properly escaped to avoid
being expanded as a list.
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set_property(TARGET zephyr_property_target
APPEND PROPERTY TFM_CMAKE_OPTIONS
-DFOO="bar\\\;baz"

)

Footprint and Memory Usage

The build system offers targets to view and analyse RAM and ROM usage in generated images.
The tools run on the final images and give information about size of symbols and code being used
in both RAM and ROM. For more information on these tools look here: Footprint and Memory
Usage

Use the tfm_ram_report to get the RAM report for TF-M secure firmware (tfm_s).

Using west:

west build -b mps2_an521_ns samples/hello_world
west build -t tfm_ram_report

Using CMake and ninja:

# Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=mps2_an521_ns samples/hello_world

# Now run the build tool on the generated build system:
ninja -Cbuild tfm_ram_report

Use the tfm_rom_report to get the ROM report for TF-M secure firmware (tfm_s).

Using west:

west build -b mps2_an521_ns samples/hello_world
west build -t tfm_rom_report

Using CMake and ninja:

# Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=mps2_an521_ns samples/hello_world

# Now run the build tool on the generated build system:
ninja -Cbuild tfm_rom_report

Use the bl2_ram_report to get the RAM report for TF-M MCUboot, if enabled.

Using west:

west build -b mps2_an521_ns samples/hello_world
west build -t bl2_ram_report

Using CMake and ninja:

# Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=mps2_an521_ns samples/hello_world

# Now run the build tool on the generated build system:
ninja -Cbuild bl2_ram_report

Use the bl2_rom_report to get the ROM report for TF-M MCUboot, if enabled.

Using west:
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west build -b mps2_an521_ns samples/hello_world
west build -t bl2_rom_report

Using CMake and ninja:

# Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=mps2_an521_ns samples/hello_world

# Now run the build tool on the generated build system:
ninja -Cbuild bl2_rom_report

4.29.4 Trusted Firmware-M Integration

The Trusted Firmware-M (TF-M) section contains information about the integration between TF-
M and Zephyr RTOS. Use this information to help understand how to integrate TF-M with Zephyr
for Cortex-M platforms and make use of its secure run-time services in Zephyr applications.

Board Definitions

TF-M will be built for the secure processing environment along with Zephyr if the CON-
FIG_BUILD_WITH_TFM flag is set to y.

Generally, this value should never be set at the application level, however, and all config flags
required for TF-M should be set in a board variant with the _ns suffix.

This board variant must define an appropriate flash, SRAM and peripheral configuration
that takes into account the initialisation process in the secure processing environment. CON-
FIG_TFM_BOARD must also be set via modules/trusted-firmware-m/Kconfig.tfm to the board name
that TF-M expects for this target, so that it knows which target to build for the secure processing
environment.

Example: mps2_an521_ns The mps2_an521 target is a dual-core Arm Cortex-M33 evaluation
board that, when using the default board variant, would generate a secure Zephyr binary.

The optional mps2_an521_ns target, however, sets these additional kconfig flags that indicate that
Zephyr should be built as a non-secure image, linked with TF-M as an external project, and op-
tionally the secure bootloader:

• CONFIG_TRUSTED_EXECUTION_NONSECURE y
• CONFIG_ARM_TRUSTZONE_M y

Comparing the mps2_an521.dts and mps2_an521_ns.dts files, we can see that the _ns version
defines offsets in flash and SRAM memory, which leave the required space for TF-M and the
secure bootloader:

reserved-memory {
#address-cells = <1>;
#size-cells = <1>;
ranges;

/* The memory regions defined below must match what the TF-M
* project has defined for that board - a single image boot is
* assumed. Please see the memory layout in:
* https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/platform/

↪→ext/target/mps2/an521/partition/flash_layout.h
*/

(continues on next page)
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(continued from previous page)
code: memory@100000 {

reg = <0x00100000 DT_SIZE_K(512)>;
};

ram: memory@28100000 {
reg = <0x28100000 DT_SIZE_M(1)>;

};
};

This reserves 1 MB of code memory and 1 MB of RAM for secure boot and TF-M, such that our
non-secure Zephyr application code will start at 0x10000, with RAM at 0x28100000. 512 KB code
memory is available for the NS zephyr image, along with 1 MB of RAM.

This matches the flash memory layout we see in flash_layout.h in TF-M:

* 0x0000_0000 BL2 - MCUBoot (0.5 MB)
* 0x0008_0000 Secure image primary slot (0.5 MB)
* 0x0010_0000 Non-secure image primary slot (0.5 MB)
* 0x0018_0000 Secure image secondary slot (0.5 MB)
* 0x0020_0000 Non-secure image secondary slot (0.5 MB)
* 0x0028_0000 Scratch area (0.5 MB)
* 0x0030_0000 Protected Storage Area (20 KB)
* 0x0030_5000 Internal Trusted Storage Area (16 KB)
* 0x0030_9000 NV counters area (4 KB)
* 0x0030_A000 Unused (984 KB)

mps2/an521 will be passed in to Tf-M as the board target, specified via CONFIG_TFM_BOARD.

4.29.5 Test Suites

TF-M includes two sets of test suites:

• tf-m-tests - Standard TF-M specific regression tests

• psa-arch-tests - Test suites for specific PSA APIs (secure storage, etc.)

These test suites can be run from Zephyr via an appropriate sample application in the sam-
ples/tfm_integration folder.

TF-M Regression Tests

The regression test suite can be run via the tfm_regression_test sample.

This sample tests various services and communication mechanisms across the NS/S boundary via
the PSA APIs. They provide a useful sanity check for proper integration between the NS RTOS
(Zephyr in this case) and the secure application (TF-M).

PSA Arch Tests

The PSA Arch Test suite, available via tfm_psa_test, contains a number of test suites that can be
used to validate that PSA API specifications are being followed by the secure application, TF-M
being an implementation of the Platform Security Architecture (PSA).

Only one of these suites can be run at a time, with the available test suites described via CON-
FIG_TFM_PSA_TEST_* KConfig flags:
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Purpose

The output of these test suites is required to obtain PSA Certification for your specific board,
RTOS (Zephyr here), and PSA implementation (TF-M in this case).

They also provide a useful test case to validate any PRs that make meaningful changes to TF-M,
such as enabling a new TF-M board target, or making changes to the core TF-M module(s). They
should generally be run as a coherence check before publishing a new PR for new board support,
etc.

4.30 Virtualization

4.30.1 Inter-VM Shared Memory

• Overview

• Support

• ivshmem-v2

• API Reference

Overview

As Zephyr is enabled to run as a guest OS on Qemu and ACRN it might be necessary to make VMs
aware of each other, or aware of the host. This is made possible by exposing a shared memory
among parties via a feature called ivshmem, which stands for inter-VM Shared Memory.

The two types are supported: a plain shared memory (ivshmem-plain) or a shared memory with
the ability for a VM to generate an interruption on another, and thus to be interrupted as well
itself (ivshmem-doorbell).

Please refer to the official Qemu ivshmem documentation for more information.

Support

Zephyr supports both versions: plain and doorbell. Ivshmem driver can be built by enabling
CONFIG_IVSHMEM. By default, this will expose the plain version. CONFIG_IVSHMEM_DOORBELL needs
to be enabled to get the doorbell version.

Because the doorbell version uses MSI-X vectors to support notification vectors, the CON-
FIG_IVSHMEM_MSI_X_VECTORS has to be tweaked to the number of vectors that will be needed.

Note that a tiny shell module can be exposed to test the ivshmem feature by enabling CON-
FIG_IVSHMEM_SHELL.

ivshmem-v2

Zephyr also supports ivshmem-v2:

https://github.com/siemens/jailhouse/blob/master/Documentation/ivshmem-v2-specification.
md
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This is primarily used for IPC in the Jailhouse hypervisor (e.g. eth-ivshmem). It is also possible
to use ivshmem-v2 without Jailhouse by building the Siemens fork of QEMU, and modifying the
QEMU launch flags:

https://github.com/siemens/qemu/tree/wip/ivshmem2

API Reference

Related code samples

IVSHMEM doorbell
Use Inter-VM Shared Memory to exchange messages between two processes running on
different operating systems.

Inter-VM Shared Memory (ivshmem) Ethernet
Communicate with another ”cell” in the Jailhouse hypervisor using IVSHMEM Ethernet.

group ivshmem
Inter-VM Shared Memory (ivshmem) reference API.

Defines

IVSHMEM_V2_PROTO_UNDEFINED

IVSHMEM_V2_PROTO_NET

Typedefs

typedef size_t (*ivshmem_get_mem_f)(const struct device *dev, uintptr_t *memmap)

typedef uint32_t (*ivshmem_get_id_f)(const struct device *dev)

typedef uint16_t (*ivshmem_get_vectors_f)(const struct device *dev)

typedef int (*ivshmem_int_peer_f)(const struct device *dev, uint32_t peer_id, uint16_t
vector)

typedef int (*ivshmem_register_handler_f)(const struct device *dev, struct k_poll_signal
*signal, uint16_t vector)

Functions

size_t ivshmem_get_mem(const struct device *dev, uintptr_t *memmap)
Get the inter-VM shared memory.

Note: This API is not supported for ivshmem-v2, as the R/W and R/O areas may not be
mapped contiguously. For ivshmem-v2, use the ivshmem_get_rw_mem_section, ivsh-
mem_get_output_mem_section and ivshmem_get_state APIs to access the shared mem-
ory.
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Parameters
• dev – Pointer to the device structure for the driver instance

• memmap – A pointer to fill in with the memory address

Returns
the size of the memory mapped, or 0

uint32_t ivshmem_get_id(const struct device *dev)
Get our VM ID.

Parameters
• dev – Pointer to the device structure for the driver instance

Returns
our VM ID or 0 if we are not running on doorbell version

uint16_t ivshmem_get_vectors(const struct device *dev)
Get the number of interrupt vectors we can use.

Parameters
• dev – Pointer to the device structure for the driver instance

Returns
the number of available interrupt vectors

int ivshmem_int_peer(const struct device *dev, uint32_t peer_id, uint16_t vector)
Interrupt another VM.

Parameters
• dev – Pointer to the device structure for the driver instance

• peer_id – The VM ID to interrupt

• vector – The interrupt vector to use

Returns
0 on success, a negative errno otherwise

int ivshmem_register_handler(const struct device *dev, struct k_poll_signal *signal,
uint16_t vector)

Register a vector notification (interrupt) handler.

Note: The returned status, if positive, to a raised signal is the vector that generated
the signal. This lets the possibility to the user to have one signal for all vectors, or one
per-vector.

Parameters
• dev – Pointer to the device structure for the driver instance

• signal – A pointer to a valid and ready to be signaled struct k_poll_signal.
Or NULL to unregister any handler registered for the given vector.

• vector – The interrupt vector to get notification from

Returns
0 on success, a negative errno otherwise

struct ivshmem_driver_api
#include <ivshmem.h>
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4.31 Retention System

The retention system provides an API which allows applications to read and write data from
and to memory areas or devices that retain the data while the device is powered. This allows
for sharing information between different applications or within a single application without
losing state information when a device reboots. The stored data should not persist in the event
of a power failure (or during some low-power modes on some devices) nor should it be stored
to a non-volatile storage like Flash, EEPROM API, or battery-backed RAM.

The retention system builds on top of the retained data driver, and adds additional software-
level features to it for ensuring the validity of data. Optionally, a magic header can be used
to check if the front of the retained data memory section contains this specific value, and an
optional checksum (1, 2, or 4-bytes in size) of the stored data can be appended to the end of the
data. Additionally, the retention system API allows partitioning of the retained data sections into
multiple distinct areas. For example, a 64-byte retained data area could be split up into 4 bytes
for a boot mode, 16 bytes for a timestamp, 44 bytes for a last log message. All of these sections can
be accessed or updated independently. The prefix and checksum can be set per-instance using
devicetree.

4.31.1 Devicetree setup

To use the retention system, a retained data driver must be setup for the board you are using,
there is a zephyr driver which can be used which will use some RAM as non-init for this purpose.
The retention system is then initialised as a child node of this device 1 or more times - note that
the memory region will need to be decremented to account for this reserved portion of RAM. See
the following example (examples in this guide are based on the nrf52840dk_nrf52840 board and
memory layout):

/ {
sram@2003FC00 {

compatible = "zephyr,memory-region", "mmio-sram";
reg = <0x2003FC00 DT_SIZE_K(1)>;
zephyr,memory-region = "RetainedMem";
status = "okay";

retainedmem {
compatible = "zephyr,retained-ram";
status = "okay";
#address-cells = <1>;
#size-cells = <1>;

/* This creates a 256-byte partition */
retention0: retention@0 {

compatible = "zephyr,retention";
status = "okay";

/* The total size of this area is 256
* bytes which includes the prefix and
* checksum, this means that the usable
* data storage area is 256 - 3 = 253
* bytes
*/
reg = <0x0 0x100>;

/* This is the prefix which must appear
* at the front of the data
*/
prefix = [08 04];

(continues on next page)
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(continued from previous page)
/* This uses a 1-byte checksum */
checksum = <1>;

};

/* This creates a 768-byte partition */
retention1: retention@100 {

compatible = "zephyr,retention";
status = "okay";

/* Start position must be after the end
* of the previous partition. The total
* size of this area is 768 bytes which
* includes the prefix and checksum,
* this means that the usable data
* storage area is 768 - 6 = 762 bytes
*/
reg = <0x100 0x300>;

/* This is the prefix which must appear
* at the front of the data
*/
prefix = [00 11 55 88 fa bc];

/* If omitted, there will be no
* checksum
*/

};
};

};
};

/* Reduce SRAM0 usage by 1KB to account for non-init area */
&sram0 {

reg = <0x20000000 DT_SIZE_K(255)>;
};

The retention areas can then be accessed using the data retention API (once enabled with CON-
FIG_RETENTION, which requires that CONFIG_RETAINED_MEM be enabled) by getting the device by
using:

#include <zephyr/device.h>
#include <zephyr/retention/retention.h>

const struct device *retention1 = DEVICE_DT_GET(DT_NODELABEL(retention1));
const struct device *retention2 = DEVICE_DT_GET(DT_NODELABEL(retention2));

When the write function is called, the magic header and checksum (if enabled) will be set on the
area, and it will be marked as valid from that point onwards.

4.31.2 Mutex protection

Mutex protection of retention areas is enabled by default when applications are compiled
with multithreading support. This means that different threads can safely call the retention
functions without clashing with other concurrent thread function usage, but means that re-
tention functions cannot be used from ISRs. It is possible to disable mutex protection glob-
ally on all retention areas by enabling CONFIG_RETENTION_MUTEX_FORCE_DISABLE - users are
then responsible for ensuring that the function calls do not conflict with each other. Note
that to use this, retention driver mutex support must also be disabled by enabling CON-
FIG_RETAINED_MEM_MUTEX_FORCE_DISABLE.
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4.31.3 Boot mode

An addition to the retention subsystem is a boot mode interface, this can be used to dynamically
change the state of an application or run a different application with a minimal set of functions
when a device is rebooted (an example is to have a buttonless way of entering mcuboot’s serial
recovery feature from the main application).

To use the boot mode feature, a data retention entry must exist in the device tree, which is dedi-
cated for use as the boot mode selection (the user area data size only needs to be a single byte),
and this area be assigned to the chosen node of zephyr,boot-mode. See the following example:

/ {
sram@2003FFFF {

compatible = "zephyr,memory-region", "mmio-sram";
reg = <0x2003FFFF 0x1>;
zephyr,memory-region = "RetainedMem";
status = "okay";

retainedmem {
compatible = "zephyr,retained-ram";
status = "okay";
#address-cells = <1>;
#size-cells = <1>;

retention0: retention@0 {
compatible = "zephyr,retention";
status = "okay";
reg = <0x0 0x1>;

};
};

};

chosen {
zephyr,boot-mode = &retention0;

};
};

/* Reduce SRAM0 usage by 1 byte to account for non-init area */
&sram0 {

reg = <0x20000000 0x3FFFF>;
};

The boot mode interface can be enabled with CONFIG_RETENTION_BOOT_MODE and then accessed
by using the boot mode functions. If using mcuboot with serial recovery, it can be built with
CONFIG_MCUBOOT_SERIAL and CONFIG_BOOT_SERIAL_BOOT_MODE enabled which will allow reboot-
ing directly into the serial recovery mode by using:

#include <zephyr/retention/bootmode.h>
#include <zephyr/sys/reboot.h>

bootmode_set(BOOT_MODE_TYPE_BOOTLOADER);
sys_reboot(0);

4.31.4 Retention systemmodules

Modules can expand the functionality of the retention system by using it as a transport (e.g.
between a bootloader and application).
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Bootloader Information

The bootloader information (abbreviated to blinfo) subsystem is an extension of the Retention
System which allows for reading shared data from a bootloader and allowing applications to
query it. It has an optional feature of organising the information retrieved from the bootloader
and storing it in the Settings with the blinfo/ prefix.

Devicetree setup To use the bootloader information subsystem, a retention area needs
to be created which has a retained data section as its parent, generally non-init RAM is
used for this purpose. See the following example (examples in this guide are based on the
nrf52840dk_nrf52840 board and memory layout):

/ {
sram@2003F000 {

compatible = "zephyr,memory-region", "mmio-sram";
reg = <0x2003F000 DT_SIZE_K(1)>;
zephyr,memory-region = "RetainedMem";
status = "okay";

retainedmem {
compatible = "zephyr,retained-ram";
status = "okay";
#address-cells = <1>;
#size-cells = <1>;

boot_info0: boot_info@0 {
compatible = "zephyr,retention";
status = "okay";
reg = <0x0 0x100>;

};
};

};

chosen {
zephyr,bootloader-info = &boot_info0;

};
};

/* Reduce SRAM0 usage by 1KB to account for non-init area */
&sram0 {

reg = <0x20000000 DT_SIZE_K(255)>;
};

Note that this configuration needs to be applied on both the bootloader (MCUboot) and applica-
tion to be usable. It can be combined with other retention system APIs such as the Boot mode

MCUboot setup Once the above devicetree configuration is applied, MCUboot needs to be con-
figured to store the shared data in this area, the following Kconfigs need to be set for this:

• CONFIG_RETAINED_MEM - Enables retained memory driver

• CONFIG_RETENTION - Enables retention system

• CONFIG_BOOT_SHARE_DATA - Enables shared data

• CONFIG_BOOT_SHARE_DATA_BOOTINFO - Enables boot information shared data type

• CONFIG_BOOT_SHARE_BACKEND_RETENTION - Stores shared data using retention/blinfo subsys-
tem
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Application setup The application must enable the following base Kconfig options for the boot-
loader information subsystem to function:

• CONFIG_RETAINED_MEM
• CONFIG_RETENTION
• CONFIG_RETENTION_BOOTLOADER_INFO
• CONFIG_RETENTION_BOOTLOADER_INFO_TYPE_MCUBOOT

The following include is needed to use the bootloader information subsystem:

#include <zephyr/retention/blinfo.h>

By default, only the lookup function is provided: blinfo_lookup(), the application can call
this to query the information from the bootloader. This function is enabled by default with
CONFIG_RETENTION_BOOTLOADER_INFO_OUTPUT_FUNCTION, however, applications can optionally
choose to use the settings storage feature instead. In this mode, the bootloader information can
be queries by using settings keys, the following Kconfig options need to be enabled for this mode:

• CONFIG_SETTINGS
• CONFIG_SETTINGS_RUNTIME
• CONFIG_RETENTION_BOOTLOADER_INFO_OUTPUT_SETTINGS

This allows the information to be queried via the settings_runtime_get() function with the
following keys:

• blinfo/mode The mode that MCUboot is configured for (enum mcuboot_mode value)

• blinfo/signature_type The signature type MCUboot is configured for (enum mcu-
boot_signature_type value)

• blinfo/recovery The recovery type enabled in MCUboot (enum mcuboot_recovery_mode
value)

• blinfo/running_slot The running slot, useful for direct-XIP mode to know which slot to
use for an update

• blinfo/bootloader_version Version of the bootloader (struct image_version object)

• blinfo/max_application_size Maximum size of an application (in bytes) that can be
loaded

In addition to the previous include, the following includes are required for this mode:

#include <bootutil/boot_status.h>
#include <bootutil/image.h>
#include <zephyr/mcuboot_version.h>
#include <zephyr/settings/settings.h>

API Reference

Bootloader information API

group bootloader_info_interface
Bootloader info interface.

Since
3.5
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Version
0.1.0

Functions

int blinfo_lookup(uint16_t key, char *val, int val_len_max)
Returns bootinfo information.

Parameters
• key – The information to return (for MCUboot: minor TLV).

• val – Where the return information will be placed.

• val_len_max – The maximum size of the provided buffer.

Return values
• >= – 0 If successful (contains length of read value)

• -EOVERFLOW – If the data is too large to fit the supplied buffer.

• -EIO – If the requested key was not found.

• -errno – Error code.

4.31.5 API Reference

Retention system API

group retention_api
Retention API.

Since
3.4

Version
0.1.0

Typedefs

typedef ssize_t (*retention_size_api)(const struct device *dev)

typedef int (*retention_is_valid_api)(const struct device *dev)

typedef int (*retention_read_api)(const struct device *dev, off_t offset, uint8_t *buffer,
size_t size)

typedef int (*retention_write_api)(const struct device *dev, off_t offset, const uint8_t
*buffer, size_t size)

typedef int (*retention_clear_api)(const struct device *dev)
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Functions

ssize_t retention_size(const struct device *dev)
Returns the size of the retention area.

Parameters
• dev – Retention device to use.

Return values
Positive – value indicating size in bytes on success, else negative errno
code.

int retention_is_valid(const struct device *dev)
Checks if the underlying data in the retention area is valid or not.

Parameters
• dev – Retention device to use.

Return values
• 1 – If successful and data is valid.

• 0 – If data is not valid.

• -ENOTSUP – If there is no header/checksum configured for the retention
area.

• -errno – Error code code.

int retention_read(const struct device *dev, off_t offset, uint8_t *buffer, size_t size)
Reads data from the retention area.

Parameters
• dev – Retention device to use.

• offset – Offset to read data from.

• buffer – Buffer to store read data in.

• size – Size of data to read.

Return values
• 0 – If successful.

• -errno – Error code code.

int retention_write(const struct device *dev, off_t offset, const uint8_t *buffer, size_t size)
Writes data to the retention area (underlying data does not need to be cleared prior to
writing), once function returns with a success code, the data will be classed as valid if
queried using retention_is_valid().

Parameters
• dev – Retention device to use.

• offset – Offset to write data to.

• buffer – Data to write.

• size – Size of data to be written.

Return values
0 – on success else negative errno code.
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int retention_clear(const struct device *dev)
Clears all data in the retention area (sets it to 0)

Parameters
• dev – Retention device to use.

Return values
0 – on success else negative errno code.

struct retention_api
#include <retention.h>

Boot mode interface

group boot_mode_interface
Boot mode interface.

Enums

enum BOOT_MODE_TYPES
Values:

enumerator BOOT_MODE_TYPE_NORMAL = 0x00
Default (normal) boot, to user application.

enumerator BOOT_MODE_TYPE_BOOTLOADER
Bootloader boot mode (e.g.

serial recovery for MCUboot)

Functions

int bootmode_check(uint8_t boot_mode)
Checks if the boot mode of the device is set to a specific value.

Parameters
• boot_mode – Expected boot mode to check.

Return values
• 1 – If successful and boot mode matches.

• 0 – If boot mode does not match.

• -errno – Error code code.

int bootmode_set(uint8_t boot_mode)
Sets boot mode of device.

Parameters
• boot_mode – Boot mode value to set.

Return values
• 0 – If successful.
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• -errno – Error code code.

int bootmode_clear(void)
Clear boot mode value (sets to 0) - which corresponds to BOOT_MODE_TYPE_NORMAL.

Return values
• 0 – If successful.

• -errno – Error code code.

4.32 Real Time I/O (RTIO)

• Problem

• Inspiration, introducing io_uring

• Submission Queue

• Completion Queue

• Executor

• IO Device

• Cancellation

• Memory pools

• When to Use

• API Reference

RTIO provides a framework for doing asynchronous operation chains with event driven I/O. This
section covers the RTIO API, queues, executor, iodev, and common usage patterns with peripheral
devices.
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RTIO takes a lot of inspiration from Linux’s io_uring in its operations and API as that API matches
up well with hardware transfer queues and descriptions such as DMA transfer lists.

4.32.1 Problem

An application wishing to do complex DMA or interrupt driven operations today in Zephyr re-
quires direct knowledge of the hardware and how it works. There is no understanding in the
DMA API of other Zephyr devices and how they relate.

This means doing complex audio, video, or sensor streaming requires direct hardware knowl-
edge or leaky abstractions over DMA controllers. Neither is ideal.

To enable asynchronous operations, especially with DMA, a description of what to do rather than
direct operations through C and callbacks is needed. Enabling DMA features such as channels
with priority, and sequences of transfers requires more than a simple list of descriptions.

Using DMA and/or interrupt driven I/O shouldn’t dictate whether or not the call is blocking or
not.

4.32.2 Inspiration, introducing io_uring

It’s better not to reinvent the wheel (or ring in this case) and io_uring as an API from the Linux
kernel provides a winning model. In io_uring there are two lock-free ring buffers acting as
queues shared between the kernel and a userland application. One queue for submission entries
which may be chained and flushed to create concurrent sequential requests. A second queue for
completion queue events. Only a single syscall is actually required to execute many operations,
the io_uring_submit call. This call may block the caller when a number of operations to wait on
is given.

This model maps well to DMA and interrupt driven transfers. A request to do a sequence of
operations in an asynchronous way directly relates to the way hardware typically works with
interrupt driven state machines potentially involving multiple peripheral IPs like bus and DMA
controllers.

4.32.3 Submission Queue

The submission queue (sq), is the description of the operations to perform in concurrent chains.

For example imagine a typical SPI transfer where you wish to write a register address to then
read from. So the sequence of operations might be…

1. Chip Select

2. Clock Enable

3. Write register address into SPI transmit register

4. Read from the SPI receive register into a buffer

5. Disable clock

6. Disable Chip Select

If anything in this chain of operations fails give up. Some of those operations can be embodied in
a device abstraction that understands a read or write implicitly means setup the clock and chip
select. The transactional nature of the request also needs to be embodied in some manner. Of
the operations above perhaps the read could be done using DMA as its large enough make sense.
That requires an understanding of how to setup the device’s particular DMA to do so.
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The above sequence of operations is embodied in RTIO as chain of submission queue entries
(sqe). Chaining is done by setting a bitflag in an sqe to signify the next sqe must wait on the
current one.

Because the chip select and clocking is common to a particular SPI controller and device on the
bus it is embodied in what RTIO calls an iodev.

Multiple operations against the same iodev are done in the order provided as soon as possible. If
two operation chains have varying points using the same device its possible one chain will have
to wait for another to complete.

4.32.4 Completion Queue

In order to know when a sqe has completed there is a completion queue (cq) with completion
queue events (cqe). A sqe once completed results in a cqe being pushed into the cq. The ordering
of cqe may not be the same order of sqe. A chain of sqe will however ensure ordering and failure
cascading.

Other potential schemes are possible but a completion queue is a well trod idea with io_uring
and other similar operating system APIs.

4.32.5 Executor

The RTIO executor is a low overhead concurrent I/O task scheduler. It ensures certain request
flags provide the expected behavior. It takes a list of submissions working through them in order.
Various flags allow for changing the behavior of how submissions are worked through. Flags
to form in order chains of submissions, transactional sets of submissions, or create multi-shot
(continuously producing) requests are all possible!

4.32.6 IO Device

Turning submission queue entries (sqe) into completion queue events (cqe) is the job of objects
implementing the iodev (IO device) API. This API accepts requests in the form of the iodev submit
API call. It is the io devices job to work through its internal queue of submissions and convert
them into completions. In effect every io device can be viewed as an independent, event driven
actor like object, that accepts a never ending queue of I/O like requests. How the iodev does this
work is up to the author of the iodev, perhaps the entire queue of operations can be converted
to a set of DMA transfer descriptors, meaning the hardware does almost all of the real work.

4.32.7 Cancellation

Canceling an already queued operation is possible but not guaranteed. If the SQE has not yet
started, it’s likely that a call to rtio_sqe_cancel() will remove the SQE and never run it. If,
however, the SQE already started running, the cancel request will be ignored.

4.32.8 Memory pools

In some cases requests to read may not know how much data will be produced. Alternatively,
a reader might be handling data from multiple io devices where the frequency of the data is
unpredictable. In these cases it may be wasteful to bind memory to in flight read requests. In-
stead with memory pools the memory to read into is left to the iodev to allocate from a memory
pool associated with the RTIO context that the read was associated with. To create such an RTIO
context the RTIO_DEFINE_WITH_MEMPOOL can be used. It allows creating an RTIO context with a
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dedicated pool of “memory blocks” which can be consumed by the iodev. Below is a snippet
setting up the RTIO context with a memory pool. The memory pool has 128 blocks, each block
has the size of 16 bytes, and the data is 4 byte aligned.

#include <zephyr/rtio/rtio.h>

#define SQ_SIZE 4
#define CQ_SIZE 4
#define MEM_BLK_COUNT 128
#define MEM_BLK_SIZE 16
#define MEM_BLK_ALIGN 4

RTIO_DEFINE_WITH_MEMPOOL(rtio_context,
SQ_SIZE, CQ_SIZE, MEM_BLK_COUNT, MEM_BLK_SIZE, MEM_BLK_ALIGN);

When a read is needed, the caller simply needs to replace the call rtio_sqe_prep_read() (which
takes a pointer to a buffer and a length) with a call to rtio_sqe_prep_read_with_pool(). The
iodev requires only a small change which works with both pre-allocated data buffers as well
as the mempool. When the read is ready, instead of getting the buffers directly from the
rtio_iodev_sqe, the iodev should get the buffer and count by calling rtio_sqe_rx_buf() like
so:

uint8_t *buf;
uint32_t buf_len;
int rc = rtio_sqe_rx_buff(iodev_sqe, MIN_BUF_LEN, DESIRED_BUF_LEN, &buf, &buf_len);

if (rc != 0) {
LOG_ERR("Failed to get buffer of at least %u bytes", MIN_BUF_LEN);
return;

}

Finally, the consumer will be able to access the allocated buffer via
rtio_cqe_get_mempool_buffer().

uint8_t *buf;
uint32_t buf_len;
int rc = rtio_cqe_get_mempool_buffer(&rtio_context, &cqe, &buf, &buf_len);

if (rc != 0) {
LOG_ERR("Failed to get mempool buffer");
return rc;

}

/* Release the cqe events (note that the buffer is not released yet */
rtio_cqe_release_all(&rtio_context);

/* Do something with the memory */

/* Release the mempool buffer */
rtio_release_buffer(&rtio_context, buf);

4.32.9 When to Use

RTIO is useful in cases where concurrent or batch like I/O flows are useful.

From the driver/hardware perspective the API enables batching of I/O requests, potentially in
an optimal way. Many requests to the same SPI peripheral for example might be translated to
hardware command queues or DMA transfer descriptors entirely. Meaning the hardware can
potentially do more than ever.
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There is a small cost to each RTIO context and iodev. This cost could be weighed against using a
thread for each concurrent I/O operation or custom queues and threads per peripheral. RTIO is
much lower cost than that.

4.32.10 API Reference

group rtio
RTIO.

Since
3.2

Version
0.1.0

Defines

RTIO_IODEV_I2C_STOP
Equivalent to the I2C_MSG_STOP flag.

RTIO_IODEV_I2C_RESTART
Equivalent to the I2C_MSG_RESTART flag.

RTIO_IODEV_I2C_10_BITS
Equivalent to the I2C_MSG_ADDR_10_BITS.

RTIO_OP_NOP
An operation that does nothing and will complete immediately.

RTIO_OP_RX
An operation that receives (reads)

RTIO_OP_TX
An operation that transmits (writes)

RTIO_OP_TINY_TX
An operation that transmits tiny writes by copying the data to write.

RTIO_OP_CALLBACK
An operation that calls a given function (callback)

RTIO_OP_TXRX
An operation that transceives (reads and writes simultaneously)

RTIO_OP_I2C_RECOVER
An operation to recover I2C buses.
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RTIO_OP_I2C_CONFIGURE
An operation to configure I2C buses.

RTIO_IODEV_DEFINE(name, iodev_api, iodev_data)
Statically define and initialize an RTIO IODev.

Parameters
• name – Name of the iodev

• iodev_api – Pointer to struct rtio_iodev_api

• iodev_data – Data pointer

RTIO_BMEM
Allocate to bss if available.

If CONFIG_USERSPACE is selected, allocate to the rtio_partition bss. Maps to:
K_APP_BMEM(rtio_partition) static

If CONFIG_USERSPACE is disabled, allocate as plain static: static

RTIO_DMEM
Allocate as initialized memory if available.

If CONFIG_USERSPACE is selected, allocate to the rtio_partition init. Maps to:
K_APP_DMEM(rtio_partition) static

If CONFIG_USERSPACE is disabled, allocate as plain static: static

RTIO_DEFINE(name, sq_sz, cq_sz)
Statically define and initialize an RTIO context.

Parameters
• name – Name of the RTIO

• sq_sz – Size of the submission queue entry pool

• cq_sz – Size of the completion queue entry pool

RTIO_DEFINE_WITH_MEMPOOL(name, sq_sz, cq_sz, num_blks, blk_size, balign)
Statically define and initialize an RTIO context.

Parameters
• name – Name of the RTIO

• sq_sz – Size of the submission queue, must be power of 2

• cq_sz – Size of the completion queue, must be power of 2

• num_blks – Number of blocks in the memory pool

• blk_size – The number of bytes in each block

• balign – The block alignment

Typedefs

typedef void (*rtio_callback_t)(struct rtio *r, const struct rtio_sqe *sqe, void *arg0)
Callback signature for RTIO_OP_CALLBACK.

Param r
RTIO context being used with the callback
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Param sqe
Submission for the callback op

Param arg0
Argument option as part of the sqe

Functions

static inline size_t rtio_mempool_block_size(const struct rtio *r)
Get the mempool block size of the RTIO context.

Parameters
• r – [in] The RTIO context

Returns
The size of each block in the context’s mempool

Returns
0 if the context doesn’t have a mempool

static inline void rtio_sqe_prep_nop(struct rtio_sqe *sqe, const struct rtio_iodev *iodev,
void *userdata)

Prepare a nop (no op) submission.

static inline void rtio_sqe_prep_read(struct rtio_sqe *sqe, const struct rtio_iodev *iodev,
int8_t prio, uint8_t *buf, uint32_t len, void
*userdata)

Prepare a read op submission.

static inline void rtio_sqe_prep_read_with_pool(struct rtio_sqe *sqe, const struct
rtio_iodev *iodev, int8_t prio, void
*userdata)

Prepare a read op submission with context’s mempool.

See also

rtio_sqe_prep_read()

static inline void rtio_sqe_prep_read_multishot(struct rtio_sqe *sqe, const struct
rtio_iodev *iodev, int8_t prio, void
*userdata)

static inline void rtio_sqe_prep_write(struct rtio_sqe *sqe, const struct rtio_iodev *iodev,
int8_t prio, uint8_t *buf, uint32_t len, void
*userdata)

Prepare a write op submission.

static inline void rtio_sqe_prep_tiny_write(struct rtio_sqe *sqe, const struct rtio_iodev
*iodev, int8_t prio, const uint8_t
*tiny_write_data, uint8_t tiny_write_len,
void *userdata)

Prepare a tiny write op submission.

Unlike the normal write operation where the source buffer must outlive the call the
tiny write data in this case is copied to the sqe. It must be tiny to fit within the specified
size of a rtio_sqe.
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This is useful in many scenarios with RTL logic where a write of the register to subse-
quently read must be done.

static inline void rtio_sqe_prep_callback(struct rtio_sqe *sqe, rtio_callback_t callback,
void *arg0, void *userdata)

Prepare a callback op submission.

A somewhat special operation in that it may only be done in kernel mode.

Used where general purpose logic is required in a queue of io operations to do trans-
forms or logic.

static inline void rtio_sqe_prep_transceive(struct rtio_sqe *sqe, const struct rtio_iodev
*iodev, int8_t prio, uint8_t *tx_buf, uint8_t
*rx_buf, uint32_t buf_len, void *userdata)

Prepare a transceive op submission.

static inline struct rtio_iodev_sqe *rtio_sqe_pool_alloc(struct rtio_sqe_pool *pool)

static inline void rtio_sqe_pool_free(struct rtio_sqe_pool *pool, struct rtio_iodev_sqe
*iodev_sqe)

static inline struct rtio_cqe *rtio_cqe_pool_alloc(struct rtio_cqe_pool *pool)

static inline void rtio_cqe_pool_free(struct rtio_cqe_pool *pool, struct rtio_cqe *cqe)

static inline int rtio_block_pool_alloc(struct rtio *r, size_t min_sz, size_t max_sz, uint8_t
**buf, uint32_t *buf_len)

static inline void rtio_block_pool_free(struct rtio *r, void *buf, uint32_t buf_len)

static inline uint32_t rtio_sqe_acquirable(struct rtio *r)
Count of acquirable submission queue events.

Parameters
• r – RTIO context

Returns
Count of acquirable submission queue events

static inline struct rtio_iodev_sqe *rtio_txn_next(const struct rtio_iodev_sqe *iodev_sqe)
Get the next sqe in the transaction.

Parameters
• iodev_sqe – Submission queue entry

Return values
• NULL – if current sqe is last in transaction

• struct – rtio_sqe * if available

static inline struct rtio_iodev_sqe *rtio_chain_next(const struct rtio_iodev_sqe
*iodev_sqe)

Get the next sqe in the chain.

Parameters
• iodev_sqe – Submission queue entry

Return values
• NULL – if current sqe is last in chain

• struct – rtio_sqe * if available
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static inline struct rtio_iodev_sqe *rtio_iodev_sqe_next(const struct rtio_iodev_sqe
*iodev_sqe)

Get the next sqe in the chain or transaction.

Parameters
• iodev_sqe – Submission queue entry

Return values
• NULL – if current sqe is last in chain

• struct – rtio_iodev_sqe * if available

static inline struct rtio_sqe *rtio_sqe_acquire(struct rtio *r)
Acquire a single submission queue event if available.

Parameters
• r – RTIO context

Return values
• sqe – A valid submission queue event acquired from the submission

queue

• NULL – No subsmission queue event available

static inline void rtio_sqe_drop_all(struct rtio *r)
Drop all previously acquired sqe.

Parameters
• r – RTIO context

static inline struct rtio_cqe *rtio_cqe_acquire(struct rtio *r)
Acquire a complete queue event if available.

static inline void rtio_cqe_produce(struct rtio *r, struct rtio_cqe *cqe)
Produce a complete queue event if available.

static inline struct rtio_cqe *rtio_cqe_consume(struct rtio *r)
Consume a single completion queue event if available.

If a completion queue event is returned rtio_cq_release(r) must be called at some point
to release the cqe spot for the cqe producer.

Parameters
• r – RTIO context

Return values
• cqe – A valid completion queue event consumed from the completion

queue

• NULL – No completion queue event available

static inline struct rtio_cqe *rtio_cqe_consume_block(struct rtio *r)
Wait for and consume a single completion queue event.

If a completion queue event is returned rtio_cq_release(r) must be called at some point
to release the cqe spot for the cqe producer.

Parameters
• r – RTIO context

Return values
cqe – A valid completion queue event consumed from the completion
queue
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static inline void rtio_cqe_release(struct rtio *r, struct rtio_cqe *cqe)
Release consumed completion queue event.

Parameters
• r – RTIO context

• cqe – Completion queue entry

static inline uint32_t rtio_cqe_compute_flags(struct rtio_iodev_sqe *iodev_sqe)
Compute the CQE flags from the rtio_iodev_sqe entry.

Parameters
• iodev_sqe – The SQE entry in question.

Returns
The value that should be set for the CQE’s flags field.

int rtio_cqe_get_mempool_buffer(const struct rtio *r, struct rtio_cqe *cqe, uint8_t **buff,
uint32_t *buff_len)

Retrieve the mempool buffer that was allocated for the CQE.

If the RTIO context contains a memory pool, and the SQE was created by calling
rtio_sqe_read_with_pool(), this function can be used to retrieve the memory asso-
ciated with the read. Once processing is done, it should be released by calling
rtio_release_buffer().

Parameters
• r – [in] RTIO context

• cqe – [in] The CQE handling the event.

• buff – [out] Pointer to the mempool buffer

• buff_len – [out] Length of the allocated buffer

Returns
0 on success

Returns
-EINVAL if the buffer wasn’t allocated for this cqe

Returns
-ENOTSUP if memory blocks are disabled

void rtio_executor_submit(struct rtio *r)

void rtio_executor_ok(struct rtio_iodev_sqe *iodev_sqe, int result)

void rtio_executor_err(struct rtio_iodev_sqe *iodev_sqe, int result)

static inline void rtio_iodev_sqe_ok(struct rtio_iodev_sqe *iodev_sqe, int result)
Inform the executor of a submission completion with success.

This may start the next asynchronous request if one is available.

Parameters
• iodev_sqe – IODev Submission that has succeeded

• result – Result of the request

static inline void rtio_iodev_sqe_err(struct rtio_iodev_sqe *iodev_sqe, int result)
Inform the executor of a submissions completion with error.

This SHALL fail the remaining submissions in the chain.

Parameters
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• iodev_sqe – Submission that has failed

• result – Result of the request

static inline void rtio_cqe_submit(struct rtio *r, int result, void *userdata, uint32_t flags)
Submit a completion queue event with a given result and userdata.

Called by the executor to produce a completion queue event, no inherent locking is
performed and this is not safe to do from multiple callers.

Parameters
• r – RTIO context

• result – Integer result code (could be -errno)

• userdata – Userdata to pass along to completion

• flags – Flags to use for the CEQ see RTIO_CQE_FLAG_*

static inline int rtio_sqe_rx_buf(const struct rtio_iodev_sqe *iodev_sqe, uint32_t
min_buf_len, uint32_t max_buf_len, uint8_t **buf,
uint32_t *buf_len)

Get the buffer associate with the RX submission.

Parameters
• iodev_sqe – [in] The submission to probe

• min_buf_len – [in] The minimum number of bytes needed for the oper-
ation

• max_buf_len – [in] The maximum number of bytes needed for the oper-
ation

• buf – [out] Where to store the pointer to the buffer

• buf_len – [out] Where to store the size of the buffer

Returns
0 if buf and buf_len were successfully filled

Returns
-ENOMEM Not enough memory for min_buf_len

void rtio_release_buffer(struct rtio *r, void *buff, uint32_t buff_len)
Release memory that was allocated by the RTIO’s memory pool.

If the RTIO context was created by a call to RTIO_DEFINE_WITH_MEMPOOL(), then
the cqe data might contain a buffer that’s owned by the RTIO context. In those cases
(if the read request was configured via rtio_sqe_read_with_pool()) the buffer must be
returned back to the pool.

Call this function when processing is complete. This function will validate that the
memory actually belongs to the RTIO context and will ignore invalid arguments.

Parameters
• r – RTIO context

• buff – Pointer to the buffer to be released.

• buff_len – Number of bytes to free (will be rounded up to nearest mem-
ory block).

static inline void rtio_access_grant(struct rtio *r, struct k_thread *t)
Grant access to an RTIO context to a user thread.
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int rtio_sqe_cancel(struct rtio_sqe *sqe)
Attempt to cancel an SQE.

If possible (not currently executing), cancel an SQE and generate a failure with -
ECANCELED result.

Parameters
• sqe – [in] The SQE to cancel

Returns
0 if the SQE was flagged for cancellation

Returns
<0 on error

int rtio_sqe_copy_in_get_handles(struct rtio *r, const struct rtio_sqe *sqes, struct
rtio_sqe **handle, size_t sqe_count)

Copy an array of SQEs into the queue and get resulting handles back.

Copies one or more SQEs into the RTIO context and optionally returns their generated
SQE handles. Handles can be used to cancel events via the rtio_sqe_cancel() call.

Parameters
• r – [in] RTIO context

• sqes – [in] Pointer to an array of SQEs

• handle – [out] Optional pointer to rtio_sqe pointer to store the handle of
the first generated SQE. Use NULL to ignore.

• sqe_count – [in] Count of sqes in array

Return values
• 0 – success

• -ENOMEM – not enough room in the queue

static inline int rtio_sqe_copy_in(struct rtio *r, const struct rtio_sqe *sqes, size_t
sqe_count)

Copy an array of SQEs into the queue.

Useful if a batch of submissions is stored in ROM or RTIO is used from user mode where
a copy must be made.

Partial copying is not done as chained SQEs need to be submitted as a whole set.

Parameters
• r – RTIO context

• sqes – Pointer to an array of SQEs

• sqe_count – Count of sqes in array

Return values
• 0 – success

• -ENOMEM – not enough room in the queue

int rtio_cqe_copy_out(struct rtio *r, struct rtio_cqe *cqes, size_t cqe_count, k_timeout_t
timeout)

Copy an array of CQEs from the queue.

Copies from the RTIO context and its queue completion queue events, waiting for the
given time period to gather the number of completions requested.

Parameters
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• r – RTIO context

• cqes – Pointer to an array of SQEs

• cqe_count – Count of sqes in array

• timeout – Timeout to wait for each completion event. Total wait time is
potentially timeout*cqe_count at maximum.

Return values
copy_count – Count of copied CQEs (0 to cqe_count)

int rtio_submit(struct rtio *r, uint32_t wait_count)
Submit I/O requests to the underlying executor.

Submits the queue of submission queue events to the executor. The executor will do
the work of managing tasks representing each submission chain, freeing submission
queue events when done, and producing completion queue events as submissions are
completed.

Parameters
• r – RTIO context

• wait_count – Number of submissions to wait for completion of.

Return values
0 – On success

Variables

struct k_mem_partition rtio_partition
The memory partition associated with all RTIO context information.

struct rtio_sqe
#include <rtio.h> A submission queue event.

Public Members

uint8_t op
Op code.

uint8_t prio
Op priority.

uint16_t flags
Op Flags.

uint16_t iodev_flags
Op iodev flags.

const struct rtio_iodev *iodev
Device to operation on.

4.32. Real Time I/O (RTIO) 1257



Zephyr Project Documentation, Release 3.7.99

void *userdata
User provided data which is returned upon operation completion.

Could be a pointer or integer.

If unique identification of completions is desired this should be unique as well.

uint32_t buf_len
Length of buffer.

uint8_t *buf
Buffer to use.

uint8_t tiny_buf_len
Length of tiny buffer.

uint8_t tiny_buf[7]
Tiny buffer.

void *arg0
Last argument given to callback.

uint32_t i2c_config
OP_I2C_CONFIGURE.

struct rtio_cqe
#include <rtio.h> A completion queue event.

Public Members

int32_t result
Result from operation.

void *userdata
Associated userdata with operation.

uint32_t flags
Flags associated with the operation.

struct rtio_sqe_pool
#include <rtio.h>

struct rtio_cqe_pool
#include <rtio.h>

struct rtio
#include <rtio.h> An RTIO context containing what can be viewed as a pair of queues.

A queue for submissions (available and in queue to be produced) as well as a queue of
completions (available and ready to be consumed).
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The rtio executor along with any objects implementing the rtio_iodev interface are the
consumers of submissions and producers of completions.

No work is started until rtio_submit() is called.

struct rtio_iodev_sqe
#include <rtio.h> Compute the mempool block index for a given pointer.

IO device submission queue entry

May be cast safely to and from a rtio_sqe as they occupy the same memory provided
by the pool

Param r
[in] RTIO context

Param ptr
[in] Memory pointer in the mempool

Return
Index of the mempool block associated with the pointer. Or UINT16_MAX
if invalid.

struct rtio_iodev_api
#include <rtio.h> API that an RTIO IO device should implement.

Public Members

void (*submit)(struct rtio_iodev_sqe *iodev_sqe)
Submit to the iodev an entry to work on.

This call should be short in duration and most likely either enqueue or kick off an
entry with the hardware.

Param iodev_sqe
Submission queue entry

struct rtio_iodev
#include <rtio.h> An IO device with a function table for submitting requests.

4.33 Zephyr bus (zbus)

The Zephyr bus - zbus is a lightweight and flexible software bus enabling a simple way for threads
to talk to one another in a many-to-many way.

• Concepts

– Virtual Distributed Event Dispatcher

– Limitations

• Usage

– Publishing to a channel

– Reading from a channel
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– Notifying a channel

– Declaring channels and observers

– Iterating over channels and observers

– Advanced channel control

• Samples

• Suggested Uses

• Configuration Options

• API Reference

4.33.1 Concepts

Threads can send messages to one or more observers using zbus. It makes the many-to-many
communication possible. The bus implements message-passing and publish/subscribe com-
munication paradigms that enable threads to communicate synchronously or asynchronously
through shared memory.

The communication through zbus is channel-based. Threads (or callbacks) use channels to ex-
change messages. Additionally, besides other actions, threads can publish and observe channels.
When a thread publishes a message on a channel, the bus will make the message available to all
the published channel’s observers. Based on the observer’s type, it can access the message di-
rectly, receive a copy of it, or even receive only a reference of the published channel.

The figure below shows an example of a typical application using zbus in which the application
logic (hardware independent) talks to other threads via software bus. Note that the threads are
decoupled from each other because they only use zbus channels and do not need to know each
other to talk.

Fig. 25: A typical zbus application architecture.

The bus comprises:

• Set of channels that consists of the control metadata information, and the message itself;

• Virtual Distributed Event Dispatcher (VDED), the bus logic responsible for sending notifica-
tions/messages to the observers. The VDED logic runs inside the publishing action in the
same thread context, giving the bus an idea of a distributed execution. When a thread
publishes to a channel, it also propagates the notifications to the observers;

• Threads (subscribers and message subscribers) and callbacks (listeners) publishing, read-
ing, and receiving notifications from the bus.
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Fig. 26: ZBus anatomy.

The bus makes the publish, read, claim, finish, notify, and subscribe actions available over chan-
nels. Publishing, reading, claiming, and finishing are available in all RTOS thread contexts, in-
cluding ISRs. The publish and read operations are simple and fast; the procedure is channel
locking followed by a memory copy to and from a shared memory region and then a channel
unlocking. Another essential aspect of zbus is the observers. There are three types of observers:

Fig. 27: ZBus observers.

• Listeners, a callback that the event dispatcher executes every time an observed channel is
published or notified;

• Subscriber, a thread-based observer that relies internally on a message queue where the
event dispatcher puts a changed channel’s reference every time an observed channel is
published or notified. Note this kind of observer does not receive the message itself. It
should read the message from the channel after receiving the notification;

• Message subscribers, a thread-based observer that relies internally on a FIFO where the
event dispatcher puts a copy of the message every time an observed channel is published
or notified.

Channel observation structures define the relationship between a channel and its observers.
For every observation, a pair channel/observer. Developers can statically allocate observation
using the ZBUS_CHAN_DEFINE or ZBUS_CHAN_ADD_OBS. There are also runtime observers, enabling
developers to create runtime observations. It is possible to disable an observer entirely or ob-
servations individually. The event dispatcher will ignore disabled observers and observations.

The above figure illustrates some states, from (a) to (d), for channels from C1 to C5, Subscriber
1, and the observations. The last two are in orange to indicate they are dynamically allocated
(runtime observation). (a) shows that the observer and all observations are enabled. (b) shows
the observer is disabled, so the event dispatcher will ignore it. (c) shows the observer enabled.
However, there is one static observervation disabled. The event dispatcher will only stop sending
notifications from channel C3. In (d), the event dispatcher will stop sending notifications from
channels C3 and C5 to Subscriber 1.

Suppose a usual sensor-based solution is in the figure below for illustration purposes. When
triggered, the timer publishes to the Trigger channel. As the sensor thread subscribed to the
Trigger channel, it receives the sensor data. Notice the VDED executes the Blink because it also
listens to the Trigger channel. When the sensor data is ready, the sensor thread publishes it to
the Sensor data channel. The core thread receives the message as a Sensor data channel mes-
sage subscriber, processes the sensor data, and stores it in an internal sample buffer. It repeats
until the sample buffer is full; when it happens, the core thread aggregates the sample buffer
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Fig. 28: ZBus observation mask.

information, prepares a package, and publishes that to the Payload channel. The Lora thread
receives that because it is a Payload channel message subscriber and sends the payload to the
cloud. When it completes the transmission, the Lora thread publishes to the Transmission done
channel. The VDED executes the Blink again since it listens to the Transmission done channel.

Fig. 29: ZBus sensor-based application.

This way of implementing the solution makes the application more flexible, enabling us to
change things independently. For example, we want to change the trigger from a timer to a
button press. We can do that, and the change does not affect other parts of the system. Likewise,
we would like to change the communication interface from LoRa to Bluetooth; we only need to
change the LoRa thread. No other change is required in order to make that work. Thus, the de-
veloper would do that for every block of the image. Based on that, there is a sign zbus promotes
decoupling in the system architecture.

Another important aspect of using zbus is the reuse of system modules. If a code portion with
well-defined behaviors (we call that module) only uses zbus channels and not hardware inter-
faces, it can easily be reused in other solutions. The new solution must implement the interfaces
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(set of channels) the module needs to work. That indicates zbus could improve the module reuse.

The last important note is the zbus solution reach. We can count on many ways of using zbus
to enable the developer to be as free as possible to create what they need. For example, mes-
sages can be dynamic or static allocated; notifications can be synchronous or asynchronous; the
developer can control the channel in so many different ways claiming the channel, developers
can add their metadata information to a channel by using the user-data field, the discretionary
use of a validator enables the systems to be accurate over message format, and so on. Those
characteristics increase the solutions that can be done with zbus and make it a good fit as an
open-source community tool.

Virtual Distributed Event Dispatcher

The VDED execution always happens in the publisher’s context. It can be a thread or an ISR. Be
careful with publications inside ISR because the scheduler won’t preempt the VDED. Use that
wisely. The basic description of the execution is as follows:

• The channel lock is acquired;

• The channel receives the new message via direct copy (by a raw memcpy());

• The event dispatcher logic executes the listeners, sends a copy of the message to the mes-
sage subscribers, and pushes the channel’s reference to the subscribers’ notification mes-
sage queue in the same sequence they appear on the channel observers’ list. The listen-
ers can perform non-copy quick access to the constant message reference directly (via the
zbus_chan_const_msg() function) since the channel is still locked;

• At last, the publishing function unlocks the channel.

To illustrate the VDED execution, consider the example illustrated below. We have four threads
in ascending priority S1, MS2, MS1, and T1 (the highest priority); two listeners, L1 and L2; and
channel A. Supposing L1, L2, MS1, MS2, and S1 observer channel A.

Fig. 30: ZBus VDED execution example scenario.

The following code implements channel A. Note the struct a_msg is illustrative only.

ZBUS_CHAN_DEFINE(a_chan, /* Name */
struct a_msg, /* Message type */

NULL, /* Validator */
NULL, /* User Data */
ZBUS_OBSERVERS(L1, L2, MS1, MS2, S1), /* observers */
ZBUS_MSG_INIT(0) /* Initial value {0} */

);

In the figure below, the letters indicate some action related to the VDED execution. The X-axis
represents the time, and the Y-axis represents the priority of threads. Channel A’s message, rep-
resented by a voice balloon, is only one memory portion (shared memory). It appears several
times only as an illustration of the message at that point in time.
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Fig. 31: ZBus VDED execution detail for priority T1 > MS1 > MS2 > S1.

The figure above illustrates the actions performed during the VDED execution when T1 publishes
to channel A. Thus, the table below describes the activities (represented by a letter) of the VDED
execution. The scenario considers the following priorities: T1 > MS1 > MS2 > S1. T1 has the
highest priority.

Table 65: VDED execution steps in detail for priority T1 > MS1
> MS2 > S1.

Ac-
tions

Description

a T1 starts and, at some point, publishes to channel A.
b The publishing (VDED) process starts. The VDED locks the channel A.
c The VDED copies the T1 message to the channel A message.
d, e The VDED executes L1 and L2 in the respective sequence. Inside the listeners, usually,

there is a call to the zbus_chan_const_msg() function, which provides a direct constant
reference to channel A’s message. It is quick, and no copy is needed here.

f, g The VDED copies the message and sends that to MS1 and MS2 sequentially. Notice the
threads get ready to execute right after receiving the notification. However, they go to
a pending state because they have less priority than T1.

h The VDED pushes the notification message to the queue of S1. Notice the thread gets
ready to execute right after receiving the notification. However, it goes to a pending
state because it cannot access the channel since it is still locked.

i VDED finishes the publishing by unlocking channel A. The MS1 leaves the pending state
and starts executing.

j MS1 finishes execution. The MS2 leaves the pending state and starts executing.
k MS2 finishes execution. The S1 leaves the pending state and starts executing.
l, m,
n

The S1 leaves the pending state since channel A is not locked. It gets in the CPU again
and starts executing. As it did receive a notification from channel A, it performed a
channel read (as simple as lock, memory copy, unlock), continues its execution and
goes out of the CPU.

o S1 finishes its workload.

The figure below illustrates the actions performed during the VDED execution when T1 publishes
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to channel A. The scenario considers the following priorities: T1 < MS1 < MS2 < S1.

Fig. 32: ZBus VDED execution detail for priority T1 < MS1 < MS2 < S1.

Thus, the table below describes the activities (represented by a letter) of the VDED execution.

Table 66: VDED execution steps in detail for priority T1 < MS1
< MS2 < S1.

Ac-
tions

Description

a T1 starts and, at some point, publishes to channel A.
b The publishing (VDED) process starts. The VDED locks the channel A.
c The VDED copies the T1 message to the channel A message.
d, e The VDED executes L1 and L2 in the respective sequence. Inside the listeners, usually,

there is a call to the zbus_chan_const_msg() function, which provides a direct constant
reference to channel A’s message. It is quick, and no copy is needed here.

f The VDED copies the message and sends that to MS1. MS1 preempts T1 and starts work-
ing. After that, the T1 regain MCU.

g The VDED copies the message and sends that to MS2. MS2 preempts T1 and starts work-
ing. After that, the T1 regain MCU.

h The VDED pushes the notification message to the queue of S1.
i VDED finishes the publishing by unlocking channel A.
j, k,
l

The S1 leaves the pending state since channel A is not locked. It gets in the CPU again
and starts executing. As it did receive a notification from channel A, it performs a
channel read (as simple as lock, memory copy, unlock), continues its execution, and
goes out the CPU.

HLP priority boost ZBus implements the Highest Locker Protocol that relies on the observers’
thread priority to determine a temporary publisher priority. The protocol considers the chan-
nel’s Highest Observer Priority (HOP); even if the observer is not waiting for a message on the
channel, it is considered in the calculation. The VDED will elevate the publisher’s priority based
on the HOP to ensure small latency and as few preemptions as possible.
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Note

The priority boost is enabled by default. To deactivate it, you must set the CON-
FIG_ZBUS_PRIORITY_BOOST configuration.

Warning

ZBus priority boost does not consider runtime observers on the HOP calculations.

The figure below illustrates the actions performed during the VDED execution when T1 publishes
to channel A. The scenario considers the priority boost feature and the following priorities: T1
< MS1 < MS2 < S1.

Fig. 33: ZBus VDED execution detail with priority boost enabled and for priority T1 < MS1 < MS2
< S1.

To properly use the priority boost, attaching the observer to a thread is necessary. When the
subscriber is attached to a thread, it assumes its priority, and the priority boost algorithm will
consider the observer’s priority. The following code illustrates the thread-attaching function.

ZBUS_SUBSCRIBER_DEFINE(s1, 4);
void s1_thread(void *ptr1, void *ptr2, void *ptr3)
{

ARG_UNUSED(ptr1);
ARG_UNUSED(ptr2);
ARG_UNUSED(ptr3);

const struct zbus_channel *chan;

zbus_obs_attach_to_thread(&s1);

while (1) {
zbus_sub_wait(&s1, &chan, K_FOREVER);

(continues on next page)
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(continued from previous page)
/* Subscriber implementation */

}
}
K_THREAD_DEFINE(s1_id, CONFIG_MAIN_STACK_SIZE, s1_thread, NULL, NULL, NULL, 2, 0, 0);

On the above code, the zbus_obs_attach_to_thread() will set the s1 observer with priority two
as the thread has that priority. It is possible to reverse that by detaching the observer using
the zbus_obs_detach_from_thread(). Only enabled observers and observations will be consid-
ered on the channel HOP calculation. Masking a specific observation of a channel will affect the
channel HOP.

In summary, the benefits of the feature are:

• The HLP is more effective for zbus than the mutexes priority inheritance;

• No bounded priority inversion will happen among the publisher and the observers;

• No other threads (that are not involved in the communication) with priority between T1
and S1 can preempt T1, avoiding unbounded priority inversion;

• Message subscribers will wait for the VDED to finish the message delivery process. So the
VDED execution will be faster and more consistent;

• The HLP priority is dynamic and can change in execution;

• ZBus operations can be used inside ISRs;

• The priority boosting feature can be turned off, and plain semaphores can be used as the
channel lock mechanism;

• The Highest Locker Protocol’s major disadvantage, the Inheritance-related Priority Inver-
sion, is acceptable in the zbus scenario since it will ensure a small bus latency.

Limitations

Based on the fact that developers can use zbus to solve many different problems, some challenges
arise. ZBus will not solve every problem, so it is necessary to analyze the situation to be sure zbus
is applicable. For instance, based on the zbus benchmark, it would not be well suited to a high-
speed stream of bytes between threads. The Pipe kernel object solves this kind of need.

Delivery guarantees ZBus always delivers the messages to the listeners and message sub-
scribers. However, there are no message delivery guarantees for subscribers because zbus only
sends the notification, but the message reading depends on the subscriber’s implementation. It
is possible to increase the delivery rate by following design tips:

• Keep the listeners quick-as-possible (deal with them as ISRs). If some processing is needed,
consider submitting a work item to a work-queue;

• Try to give producers a high priority to avoid losses;

• Leave spare CPU for observers to consume data produced;

• Consider using message queues or pipes for intensive byte transfers.

Warning

ZBus uses include/zephyr/net/buf.h (network buffers) to exchange data
with message subscribers. Thus, choose carefully the configurations CON-
FIG_ZBUS_MSG_SUBSCRIBER_NET_BUF_POOL_SIZE and CONFIG_HEAP_MEM_POOL_SIZE. They
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are crucial to a proper VDED execution (delivery guarantee) considering message sub-
scribers. If you want to keep an isolated pool for a specific set of channels, you can use
CONFIG_ZBUS_MSG_SUBSCRIBER_NET_BUF_POOL_ISOLATION with a dedicated pool. Look at the
zbus-msg-subscriber to see the isolation in action.

Warning

Subscribers will receive only the reference of the changing channel. A data loss may be per-
ceived if the channel is published twice before the subscriber reads it. The second publication
overwrites the value from the first. Thus, the subscriber will receive two notifications, but
only the last data is there.

Message delivery sequence The message delivery will follow the precedence:

1. Observers defined in a channel using the ZBUS_CHAN_DEFINE (following the definition se-
quence);

2. Observers defined using the ZBUS_CHAN_ADD_OBS based on the sequence priority (parameter
of the macro);

3. The latest is the runtime observers in the addition sequence using the
zbus_chan_add_obs().

Note

The VDED will ignore all disabled observers or observations.

4.33.2 Usage

ZBus operation depends on channels and observers. Therefore, it is necessary to determine its
message and observers list during the channel definition. A message is a regular C struct; the
observer can be a subscriber (asynchronous), a message subscriber (asynchronous), or a listener
(synchronous).

The following code defines and initializes a regular channel and its dependencies. This channel
exchanges accelerometer data, for example.

struct acc_msg {
int x;
int y;
int z;

};

ZBUS_CHAN_DEFINE(acc_chan, /* Name */
struct acc_msg, /* Message type */

NULL, /* Validator */
NULL, /* User Data */
ZBUS_OBSERVERS(my_listener, my_subscriber,

my_msg_subscriber), /* observers */
ZBUS_MSG_INIT(.x = 0, .y = 0, .z = 0) /* Initial value */

);

void listener_callback_example(const struct zbus_channel *chan)
{

(continues on next page)
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(continued from previous page)
const struct acc_msg *acc;
if (&acc_chan == chan) {

acc = zbus_chan_const_msg(chan); // Direct message access
LOG_DBG("From listener -> Acc x=%d, y=%d, z=%d", acc->x, acc->y, acc->z);

}
}

ZBUS_LISTENER_DEFINE(my_listener, listener_callback_example);

ZBUS_LISTENER_DEFINE(my_listener2, listener_callback_example);

ZBUS_CHAN_ADD_OBS(acc_chan, my_listener2, 3);

ZBUS_SUBSCRIBER_DEFINE(my_subscriber, 4);
void subscriber_task(void)
{

const struct zbus_channel *chan;

while (!zbus_sub_wait(&my_subscriber, &chan, K_FOREVER)) {
struct acc_msg acc = {0};

if (&acc_chan == chan) {
// Indirect message access
zbus_chan_read(&acc_chan, &acc, K_NO_WAIT);
LOG_DBG("From subscriber -> Acc x=%d, y=%d, z=%d", acc.x, acc.y,␣

↪→acc.z);
}

}
}
K_THREAD_DEFINE(subscriber_task_id, 512, subscriber_task, NULL, NULL, NULL, 3, 0, 0);

ZBUS_MSG_SUBSCRIBER_DEFINE(my_msg_subscriber);
static void msg_subscriber_task(void *ptr1, void *ptr2, void *ptr3)
{

ARG_UNUSED(ptr1);
ARG_UNUSED(ptr2);
ARG_UNUSED(ptr3);
const struct zbus_channel *chan;

struct acc_msg acc = {0};

while (!zbus_sub_wait_msg(&my_msg_subscriber, &chan, &acc, K_FOREVER)) {
if (&acc_chan == chan) {

LOG_INF("From msg subscriber -> Acc x=%d, y=%d, z=%d", acc.x, acc.y,
↪→ acc.z);

}
}

}
K_THREAD_DEFINE(msg_subscriber_task_id, 1024, msg_subscriber_task, NULL, NULL, NULL, 3, 0,␣
↪→0);

It is possible to add static observers to a channel using the ZBUS_CHAN_ADD_OBS. We call that a
post-definition static observer. The command enables us to indicate an initialization priority
that affects the observers’ initialization order. The sequence priority param only affects the post-
definition static observers. There is no possibility to overwrite the message delivery sequence
of the static observers.

Note

It is unnecessary to claim/lock a channel before accessing the message inside the listener since
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the event dispatcher calls listeners with the notifying channel already locked. Subscribers,
however, must claim/lock that or use regular read operations to access the message after being
notified.

Channels can have a validator function that enables a channel to accept only valid messages.
Publish attempts invalidated by hard channels will return immediately with an error code. This
allows original creators of a channel to exert some authority over other developers/publishers
who may want to piggy-back on their channels. The following code defines and initializes a hard
channel and its dependencies. Only valid messages can be published to a hard channel. It is
possible because a validator function was passed to the channel’s definition. In this example,
only messages with move equal to 0, -1, and 1 are valid. Publish function will discard all other
values to move.

struct control_msg {
int move;

};

bool control_validator(const void* msg, size_t msg_size) {
const struct control_msg* cm = msg;
bool is_valid = (cm->move == -1) || (cm->move == 0) || (cm->move == 1);
return is_valid;

}

static int message_count = 0;

ZBUS_CHAN_DEFINE(control_chan, /* Name */
struct control_msg, /* Message type */

control_validator, /* Validator */
&message_count, /* User data */
ZBUS_OBSERVERS_EMPTY, /* observers */
ZBUS_MSG_INIT(.move = 0) /* Initial value */

);

The following sections describe in detail how to use zbus features.

Publishing to a channel

Messages are published to a channel in zbus by calling zbus_chan_pub(). For example, the fol-
lowing code builds on the examples above and publishes to channel acc_chan. The code is trying
to publish the message acc1 to channel acc_chan, and it will wait up to one second for the mes-
sage to be published. Otherwise, the operation fails. As can be inferred from the code sample,
it’s OK to use stack allocated messages since VDED copies the data internally.

struct acc_msg acc1 = {.x = 1, .y = 1, .z = 1};
zbus_chan_pub(&acc_chan, &acc1, K_SECONDS(1));

Warning

Only use this function inside an ISR with a K_NO_WAIT timeout.

Reading from a channel

Messages are read from a channel in zbus by calling zbus_chan_read(). So, for example, the
following code tries to read the channel acc_chan, which will wait up to 500 milliseconds to read
the message. Otherwise, the operation fails.
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struct acc_msg acc = {0};
zbus_chan_read(&acc_chan, &acc, K_MSEC(500));

Warning

Only use this function inside an ISR with a K_NO_WAIT timeout.

Warning

Choose the timeout of zbus_chan_read() after receiving a notification from zbus_sub_wait()
carefully because the channel will always be unavailable during the VDED execution. Using
K_NO_WAIT for reading is highly likely to return a timeout error if there are more than one sub-
scriber. For example, consider the VDED illustration again and notice how S1 read attempts
would definitely fail with K_NO_WAIT. For more details, check the Virtual Distributed Event
Dispatcher section.

Notifying a channel

It is possible to force zbus to notify a channel’s observers by calling zbus_chan_notify(). For ex-
ample, the following code builds on the examples above and forces a notification for the channel
acc_chan. Note this can send events with no message, which does not require any data exchange.
See the code example under Claim and finish a channel where this may become useful.

zbus_chan_notify(&acc_chan, K_NO_WAIT);

Warning

Only use this function inside an ISR with a K_NO_WAIT timeout.

Declaring channels and observers

For accessing channels or observers from files other than its defining files, it is necessary to
declare them by calling ZBUS_CHAN_DECLARE and ZBUS_OBS_DECLARE. In other words, zbus channel
definitions and declarations with the same channel names in different files would point to the
same (global) channel. Thus, developers should be careful about existing channels, and naming
new channels or linking will fail. It is possible to declare more than one channel or observer
on the same call. The following code builds on the examples above and displays the defined
channels and observers.

ZBUS_OBS_DECLARE(my_listener, my_subscriber);
ZBUS_CHAN_DECLARE(acc_chan, version_chan);

Iterating over channels and observers

ZBus subsystem also implements Iterable Sections for channels and observers,
for which there are supporting APIs like zbus_iterate_over_channels(),
zbus_iterate_over_channels_with_user_data(), zbus_iterate_over_observers() and
zbus_iterate_over_observers_with_user_data(). This feature enables developers to call
a procedure over all declared channels, where the procedure parameter is a zbus_channel.
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The execution sequence is in the alphabetical name order of the channels (see Iterable Sections
documentation for details). ZBus also implements this feature for zbus_observer.

static bool print_channel_data_iterator(const struct zbus_channel *chan, void *user_data)
{

int *count = user_data;

LOG_INF("%d - Channel %s:", *count, zbus_chan_name(chan));
LOG_INF(" Message size: %d", zbus_chan_msg_size(chan));
LOG_INF(" Observers:");

++(*count);

struct zbus_channel_observation *observation;

for (int16_t i = *chan->observers_start_idx, limit = *chan->observers_end_idx; i <␣
↪→limit;

++i) {
STRUCT_SECTION_GET(zbus_channel_observation, i, &observation);

LOG_INF(" - %s", observation->obs->name);
}

struct zbus_observer_node *obs_nd, *tmp;

SYS_SLIST_FOR_EACH_CONTAINER_SAFE(chan->observers, obs_nd, tmp, node) {
LOG_INF(" - %s", obs_nd->obs->name);

}

return true;
}

static bool print_observer_data_iterator(const struct zbus_observer *obs, void *user_data)
{

int *count = user_data;

LOG_INF("%d - %s %s", *count, obs->queue ? "Subscriber" : "Listener", zbus_obs_
↪→name(obs));

++(*count);

return true;
}

int main(void)
{

int count = 0;

LOG_INF("Channel list:");

zbus_iterate_over_channels_with_user_data(print_channel_data_iterator, &count);

count = 0;

LOG_INF("Observers list:");

zbus_iterate_over_observers_with_user_data(print_observer_data_iterator, &count);

return 0;
}

The code will log the following output:
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D: Channel list:
D: 0 - Channel acc_chan:
D: Message size: 12
D: Observers:
D: - my_listener
D: - my_subscriber
D: 1 - Channel version_chan:
D: Message size: 4
D: Observers:
D: Observers list:
D: 0 - Listener my_listener
D: 1 - Subscriber my_subscriber

Advanced channel control

ZBus was designed to be as flexible and extensible as possible. Thus, there are some features
designed to provide some control and extensibility to the bus.

Listeners message access For performance purposes, listeners can access the receiving chan-
nel message directly since they already have the channel locked for it. To access the channel’s
message, the listener should use the zbus_chan_const_msg() because the channel passed as an
argument to the listener function is a constant pointer to the channel. The const pointer return
type tells developers not to modify the message.

void listener_callback_example(const struct zbus_channel *chan)
{

const struct acc_msg *acc;
if (&acc_chan == chan) {

acc = zbus_chan_const_msg(chan); // Use this
// instead of zbus_chan_read(chan, &acc, K_MSEC(200))
// or zbus_chan_msg(chan)

LOG_DBG("From listener -> Acc x=%d, y=%d, z=%d", acc->x, acc->y, acc->z);
}

}

User Data It is possible to pass custom data into the channel’s user_data for various purposes,
such as writing channel metadata. That can be achieved by passing a pointer to the channel
definition macro’s user_data field, which will then be accessible by others. Note that user_data
is individual for each channel. Also, note that user_data access is not thread-safe. For thread-
safe access to user_data, see the next section.

Claim and finish a channel To take more control over channels, two functions were added
zbus_chan_claim() and zbus_chan_finish(). With these functions, it is possible to access the
channel’s metadata safely. When a channel is claimed, no actions are available to that channel.
After finishing the channel, all the actions are available again.

Warning

Never change the fields of the channel struct directly. It may cause zbus behavior inconsis-
tencies and scheduling issues.
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Warning

Only use this function inside an ISR with a K_NO_WAIT timeout.

The following code builds on the examples above and claims the acc_chan to set the user_data to
the channel. Suppose we would like to count how many times the channels exchange messages.
We defined the user_data to have the 32 bits integer. This code could be added to the listener
code described above.

if (!zbus_chan_claim(&acc_chan, K_MSEC(200))) {
int *message_counting = (int *) zbus_chan_user_data(&acc_chan);
*message_counting += 1;
zbus_chan_finish(&acc_chan);

}

The following code has the exact behavior of the code in Publishing to a channel.

if (!zbus_chan_claim(&acc_chan, K_MSEC(200))) {
struct acc_msg *acc1 = (struct acc_msg *) zbus_chan_msg(&acc_chan);
acc1.x = 1;
acc1.y = 1;
acc1.z = 1;
zbus_chan_finish(&acc_chan);
zbus_chan_notify(&acc_chan, K_SECONDS(1));

}

The following code has the exact behavior of the code in Reading from a channel.

if (!zbus_chan_claim(&acc_chan, K_MSEC(200))) {
const struct acc_msg *acc1 = (const struct acc_msg *) zbus_chan_const_msg(&acc_

↪→chan);
// access the acc_msg fields directly.
zbus_chan_finish(&acc_chan);

}

Runtime observer registration It is possible to add observers to channels in runtime. This
feature uses the heap to allocate the nodes dynamically. The heap size limits the number
of dynamic observers zbus can create. Therefore, set the CONFIG_ZBUS_RUNTIME_OBSERVERS to
enable the feature. It is possible to adjust the heap size by changing the configuration CON-
FIG_HEAP_MEM_POOL_SIZE. The following example illustrates the runtime registration usage.

ZBUS_LISTENER_DEFINE(my_listener, callback);
// ...
void thread_entry(void) {

// ...
/* Adding the observer to channel chan1 */
zbus_chan_add_obs(&chan1, &my_listener, K_NO_WAIT);
/* Removing the observer from channel chan1 */
zbus_chan_rm_obs(&chan1, &my_listener, K_NO_WAIT);

4.33.3 Samples

For a complete overview of zbus usage, take a look at the samples. There are the following
samples available:

• zbus-hello-world illustrates the code used above in action;
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• zbus-work-queue shows how to define and use different kinds of observers. Note there is
an example of using a work queue instead of executing the listener as an execution option;

• zbus-msg-subscriber illustrates how to use message subscribers;

• zbus-dyn-channel demonstrates how to use dynamically allocated exchanging data in zbus;

• zbus-uart-bridge shows an example of sending the operation of the channel to a host via
serial;

• zbus-remote-mock illustrates how to implement an external mock (on the host) to send and
receive messages to and from the bus;

• zbus-priority-boost illustrates zbus priority boost feature with a priority inversion scenario;

• zbus-runtime-obs-registration illustrates a way of using the runtime observer registration
feature;

• zbus-confirmed-channel implements a way of implement confirmed channel only with sub-
scribers;

• zbus-benchmark implements a benchmark with different combinations of inputs.

4.33.4 Suggested Uses

Use zbus to transfer data (messages) between threads in one-to-one, one-to-many, and many-
to-many synchronously or asynchronously. Choosing the proper observer type is crucial. Use
subscribers for scenarios that can tolerate message losses and duplications; when they cannot,
use message subscribers (if you need a thread) or listeners (if you need to be lean and fast).
In addition to the listener, another asynchronous message processing mechanism (like message
queues) may be necessary to retain the pending message until it gets processed.

Note

ZBus can be used to transfer streams from the producer to the consumer. However, this can
increase zbus’ communication latency. So maybe consider a Pipe a good alternative for this
communication topology.

4.33.5 Configuration Options

For enabling zbus, it is necessary to enable the CONFIG_ZBUS option.

Related configuration options:

• CONFIG_ZBUS_PRIORITY_BOOST zbus Highest Locker Protocol implementation;

• CONFIG_ZBUS_CHANNELS_SYS_INIT_PRIORITY determine the SYS_INIT priority used by zbus
to organize the channels observations by channel;

• CONFIG_ZBUS_CHANNEL_NAME enables the name of channels to be available inside the chan-
nels metadata. The log uses this information to show the channels’ names;

• CONFIG_ZBUS_OBSERVER_NAME enables the name of observers to be available inside the chan-
nels metadata;

• CONFIG_ZBUS_MSG_SUBSCRIBER enables the message subscriber observer type;

• CONFIG_ZBUS_MSG_SUBSCRIBER_BUF_ALLOC_DYNAMIC uses the heap to allocate message
buffers;

• CONFIG_ZBUS_MSG_SUBSCRIBER_BUF_ALLOC_STATIC uses the stack to allocate message
buffers;
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• CONFIG_ZBUS_MSG_SUBSCRIBER_NET_BUF_POOL_SIZE the available number of message
buffers to be used simultaneously;

• CONFIG_ZBUS_MSG_SUBSCRIBER_NET_BUF_POOL_ISOLATION enables the developer to isolate a
pool for the message subscriber for a set of channels;

• CONFIG_ZBUS_MSG_SUBSCRIBER_NET_BUF_STATIC_DATA_SIZE the biggest message of zbus
channels to be transported into a message buffer;

• CONFIG_ZBUS_RUNTIME_OBSERVERS enables the runtime observer registration.

4.33.6 API Reference

Related code samples

Benchmarking
Measure the time for sending 256KB from a producer to N consumers.

Confirmed channel
Use confirmed zbus channels to ensure all subscribers consume a message.

Dynamic channel
Use zbus channels with dynamically allocated messages.

Message subscriber
Use zbus message subscribers to listen to messages published to channels.

Remote mock sample
Publish to a zbus instance using UART as a bridge.

Runtime observer registration
Use zbus’ runtime observer registration to filter data generated by a producer.

UART bridge
Redirect channel events to the host over UART.

Work queue
Use a work queue to process zbus messages in various ways.

zbus Hello World
Make three threads talk to each other using zbus.

zbus Priority Boost
Illustrates zbus priority boost feature with a priority inversion scenario.

group zbus_apis
Zbus API.

Defines

ZBUS_CHAN_ADD_OBS_WITH_MASK(_chan, _obs, _masked, _prio)
Add a static channel observervation.

This macro initializes a channel observation by receiving the channel and the observer.

Parameters
• _chan – Channel instance.

• _obs – Observer instance.

• _masked – Observation state.
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• _prio – Observer notification sequence priority.

ZBUS_CHAN_ADD_OBS(_chan, _obs, _prio)
Add a static channel observervation.

This macro initializes a channel observation by receiving the channel and the observer.

Parameters
• _chan – Channel instance.

• _obs – Observer instance.

• _prio – Observer notification sequence priority.

ZBUS_OBS_DECLARE(...)
This macro list the observers to be used in a file.

Internally, it declares the observers with the extern statement. Note it is only necessary
when the observers are declared outside the file.

ZBUS_CHAN_DECLARE(...)
This macro list the channels to be used in a file.

Internally, it declares the channels with the extern statement. Note it is only necessary
when the channels are declared outside the file.

ZBUS_OBSERVERS_EMPTY
This macro indicates the channel has no observers.

ZBUS_OBSERVERS(...)
This macro indicates the channel has listed observers.

Note the sequence of observer notification will follow the same as listed.

ZBUS_CHAN_DEFINE(_name, _type, _validator, _user_data, _observers, _init_val)
Zbus channel definition.

This macro defines a channel.

See also

struct zbus_channel

Parameters
• _name – The channel’s name.

• _type – The Message type. It must be a struct or union.

• _validator – The validator function.

• _user_data – A pointer to the user data.

• _observers – The observers list. The sequence indicates the priority of
the observer. The first the highest priority.

• _init_val – The message initialization.

ZBUS_MSG_INIT(_val, ...)
Initialize a message.

This macro initializes a message by passing the values to initialize the message struct
or union.
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Parameters
• _val – [in] Variadic with the initial values. ZBUS_INIT(0) means {0}, as

ZBUS_INIT(.a=10, .b=30) means {.a=10, .b=30}.

ZBUS_SUBSCRIBER_DEFINE_WITH_ENABLE(_name, _queue_size, _enable)
Define and initialize a subscriber.

This macro defines an observer of subscriber type. It defines a message queue where
the subscriber will receive the notification asynchronously, and initialize the struct
zbus_observer defining the subscriber.

Parameters
• _name – [in] The subscriber’s name.

• _queue_size – [in] The notification queue’s size.

• _enable – [in] The subscriber initial enable state.

ZBUS_SUBSCRIBER_DEFINE(_name, _queue_size)
Define and initialize a subscriber.

This macro defines an observer of subscriber type. It defines a message queue where
the subscriber will receive the notification asynchronously, and initialize the struct
zbus_observer defining the subscriber. The subscribers are defined in the enabled
state with this macro.

Parameters
• _name – [in] The subscriber’s name.

• _queue_size – [in] The notification queue’s size.

ZBUS_LISTENER_DEFINE_WITH_ENABLE(_name, _cb, _enable)
Define and initialize a listener.

This macro defines an observer of listener type. This macro establishes the call-
back where the listener will be notified synchronously, and initialize the struct
zbus_observer defining the listener.

Parameters
• _name – [in] The listener’s name.

• _cb – [in] The callback function.

• _enable – [in] The listener initial enable state.

ZBUS_LISTENER_DEFINE(_name, _cb)
Define and initialize a listener.

This macro defines an observer of listener type. This macro establishes the call-
back where the listener will be notified synchronously and initialize the struct
zbus_observer defining the listener. The listeners are defined in the enabled state
with this macro.

Parameters
• _name – [in] The listener’s name.

• _cb – [in] The callback function.

ZBUS_MSG_SUBSCRIBER_DEFINE_WITH_ENABLE(_name, _enable)
Define and initialize a message subscriber.

This macro defines an observer of ZBUS_OBSERVER_SUBSCRIBER_TYPE type. It de-
fines a FIFO where the subscriber will receive the message asynchronously and ini-
tialize the zbus_observer defining the subscriber.
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Parameters
• _name – [in] The subscriber’s name.

• _enable – [in] The subscriber’s initial state.

ZBUS_MSG_SUBSCRIBER_DEFINE(_name)
Define and initialize an enabled message subscriber.

This macro defines an observer of message subscriber type. It defines a FIFO where the
subscriber will receive the message asynchronously and initialize the zbus_observer
defining the subscriber. The message subscribers are defined in the enabled state with
this macro.

Parameters
• _name – [in] The subscriber’s name.

Enums

enum zbus_observer_type
Type used to represent an observer type.

A observer can be a listener or a subscriber.

Values:

enumerator ZBUS_OBSERVER_LISTENER_TYPE

enumerator ZBUS_OBSERVER_SUBSCRIBER_TYPE

enumerator ZBUS_OBSERVER_MSG_SUBSCRIBER_TYPE

Functions

int zbus_chan_pub(const struct zbus_channel *chan, const void *msg, k_timeout_t timeout)
Publish to a channel.

This routine publishes a message to a channel.

Parameters
• chan – The channel’s reference.

• msg – Reference to the message where the publish function copies the
channel’s message data from.

• timeout – Waiting period to publish the channel, or one of the special
values K_NO_WAIT and K_FOREVER.

Return values
• 0 – Channel published.

• -ENOMSG – The message is invalid based on the validator function or some
of the observers could not receive the notification.

• -EBUSY – The channel is busy.

• -EAGAIN – Waiting period timed out.
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• -EFAULT – A parameter is incorrect, the notification could not be sent to
one or more observer, or the function context is invalid (inside an ISR).
The function only returns this value when the CONFIG_ZBUS_ASSERT_MOCK
is enabled.

int zbus_chan_read(const struct zbus_channel *chan, void *msg, k_timeout_t timeout)
Read a channel.

This routine reads a message from a channel.

Parameters
• chan – [in] The channel’s reference.

• msg – [out] Reference to the message where the read function copies the
channel’s message data to.

• timeout – [in] Waiting period to read the channel, or one of the special
values K_NO_WAIT and K_FOREVER.

Return values
• 0 – Channel read.

• -EBUSY – The channel is busy.

• -EAGAIN – Waiting period timed out.

• -EFAULT – A parameter is incorrect, or the function context is invalid
(inside an ISR). The function only returns this value when the CON-
FIG_ZBUS_ASSERT_MOCK is enabled.

int zbus_chan_claim(const struct zbus_channel *chan, k_timeout_t timeout)
Claim a channel.

This routine claims a channel. During the claiming period the channel is blocked for
publishing, reading, notifying or claiming again. Finishing is the only available action.

Warning

After calling this routine, the channel cannot be used by other thread until the
zbus_chan_finish routine is performed.

Warning

This routine should only be called once before a zbus_chan_finish.

Parameters
• chan – [in] The channel’s reference.

• timeout – [in] Waiting period to claim the channel, or one of the special
values K_NO_WAIT and K_FOREVER.

Return values
• 0 – Channel claimed.

• -EBUSY – The channel is busy.

• -EAGAIN – Waiting period timed out.

• -EFAULT – A parameter is incorrect, or the function context is invalid
(inside an ISR). The function only returns this value when the CON-
FIG_ZBUS_ASSERT_MOCK is enabled.
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int zbus_chan_finish(const struct zbus_channel *chan)
Finish a channel claim.

This routine finishes a channel claim. After calling this routine with success, the chan-
nel will be able to be used by other thread.

Warning

This routine must only be used after a zbus_chan_claim.

Parameters
• chan – The channel’s reference.

Return values
• 0 – Channel finished.

• -EFAULT – A parameter is incorrect, or the function context is invalid
(inside an ISR). The function only returns this value when the CON-
FIG_ZBUS_ASSERT_MOCK is enabled.

int zbus_chan_notify(const struct zbus_channel *chan, k_timeout_t timeout)
Force a channel notification.

This routine forces the event dispatcher to notify the channel’s observers even if the
message has no changes. Note this function could be useful after claiming/finishing
actions.

Parameters
• chan – The channel’s reference.

• timeout – Waiting period to notify the channel, or one of the special val-
ues K_NO_WAIT and K_FOREVER.

Return values
• 0 – Channel notified.

• -EBUSY – The channel’s semaphore returned without waiting.

• -EAGAIN – Timeout to take the channel’s semaphore.

• -ENOMEM – There is not more buffer on the messgage buffers pool.

• -EFAULT – A parameter is incorrect, the notification could not be sent to
one or more observer, or the function context is invalid (inside an ISR).
The function only returns this value when the CONFIG_ZBUS_ASSERT_MOCK
is enabled.

static inline const char *zbus_chan_name(const struct zbus_channel *chan)
Get the channel’s name.

This routine returns the channel’s name reference.

Parameters
• chan – The channel’s reference.

Returns
Channel’s name reference.
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static inline void *zbus_chan_msg(const struct zbus_channel *chan)
Get the reference for a channel message directly.

This routine returns the reference of a channel message.

Warning

This function must only be used directly for already locked channels. This can be
done inside a listener for the receiving channel or after claim a channel.

Parameters
• chan – The channel’s reference.

Returns
Channel’s message reference.

static inline const void *zbus_chan_const_msg(const struct zbus_channel *chan)
Get a constant reference for a channel message directly.

This routine returns a constant reference of a channel message. This should be used
inside listeners to access the message directly. In this way zbus prevents the listener
of changing the notifying channel’s message during the notification process.

Warning

This function must only be used directly for already locked channels. This can be
done inside a listener for the receiving channel or after claim a channel.

Parameters
• chan – The channel’s constant reference.

Returns
A constant channel’s message reference.

static inline uint16_t zbus_chan_msg_size(const struct zbus_channel *chan)
Get the channel’s message size.

This routine returns the channel’s message size.

Parameters
• chan – The channel’s reference.

Returns
Channel’s message size.

static inline void *zbus_chan_user_data(const struct zbus_channel *chan)
Get the channel’s user data.

This routine returns the channel’s user data.

Parameters
• chan – The channel’s reference.

Returns
Channel’s user data.

1282 Chapter 4. OS Services



Zephyr Project Documentation, Release 3.7.99

static inline void zbus_chan_set_msg_sub_pool(const struct zbus_channel *chan, struct
net_buf_pool *pool)

Set the channel’s msg subscriber net_buf pool.

Parameters
• chan – The channel’s reference.

• pool – The reference to the net_buf memory pool.

int zbus_chan_add_obs(const struct zbus_channel *chan, const struct zbus_observer *obs,
k_timeout_t timeout)

Add an observer to a channel.

This routine adds an observer to the channel.

Parameters
• chan – The channel’s reference.

• obs – The observer’s reference to be added.

• timeout – Waiting period to add an observer, or one of the special values
K_NO_WAIT and K_FOREVER.

Return values
• 0 – Observer added to the channel.

• -EALREADY – The observer is already present in the channel’s runtime
observers list.

• -ENOMEM – Returned without waiting.

• -EAGAIN – Waiting period timed out.

• -EINVAL – Some parameter is invalid.

int zbus_chan_rm_obs(const struct zbus_channel *chan, const struct zbus_observer *obs,
k_timeout_t timeout)

Remove an observer from a channel.

This routine removes an observer to the channel.

Parameters
• chan – The channel’s reference.

• obs – The observer’s reference to be removed.

• timeout – Waiting period to remove an observer, or one of the special
values K_NO_WAIT and K_FOREVER.

Return values
• 0 – Observer removed to the channel.

• -EINVAL – Invalid data supplied.

• -EBUSY – Returned without waiting.

• -EAGAIN – Waiting period timed out.

• -ENODATA – no observer found in channel’s runtime observer list.

• -ENOMEM – Returned without waiting.

int zbus_obs_set_enable(struct zbus_observer *obs, bool enabled)
Change the observer state.

This routine changes the observer state. A channel when disabled will not receive
notifications from the event dispatcher.
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Parameters
• obs – [in] The observer’s reference.

• enabled – [in] State to be. When false the observer stops to receive noti-
fications.

Return values
• 0 – Observer set enable.

• -EFAULT – A parameter is incorrect, or the function context is invalid
(inside an ISR). The function only returns this value when the CON-
FIG_ZBUS_ASSERT_MOCK is enabled.

static inline int zbus_obs_is_enabled(struct zbus_observer *obs, bool *enable)
Get the observer state.

This routine retrieves the observer state.

Parameters
• obs – [in] The observer’s reference.

• enable – [out] The boolean output’s reference.

Returns
Observer state.

int zbus_obs_set_chan_notification_mask(const struct zbus_observer *obs, const struct
zbus_channel *chan, bool masked)

Mask notifications from a channel to an observer.

The observer can mask notifications from a specific observing channel by calling this
function.

Parameters
• obs – The observer’s reference to be added.

• chan – The channel’s reference.

• masked – The mask state. When the mask is true, the observer will not
receive notifications from the channel.

Return values
• 0 – Channel notifications masked to the observer.

• -ESRCH – No observation found for the related pair chan/obs.

• -EINVAL – Some parameter is invalid.

int zbus_obs_is_chan_notification_masked(const struct zbus_observer *obs, const struct
zbus_channel *chan, bool *masked)

Get the notifications masking state from a channel to an observer.

Parameters
• obs – The observer’s reference to be added.

• chan – The channel’s reference.

• masked – [out] The mask state. When the mask is true, the observer will
not receive notifications from the channel.

Return values
• 0 – Retrieved the masked state.

• -ESRCH – No observation found for the related pair chan/obs.
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• -EINVAL – Some parameter is invalid.

static inline const char *zbus_obs_name(const struct zbus_observer *obs)
Get the observer’s name.

This routine returns the observer’s name reference.

Parameters
• obs – The observer’s reference.

Returns
The observer’s name reference.

int zbus_obs_attach_to_thread(const struct zbus_observer *obs)
Set the observer thread priority by attaching it to a thread.

Parameters
• obs – [in] The observer’s reference.

Return values
• 0 – Observer detached from the thread.

• -EFAULT – A parameter is incorrect, or the function context is invalid
(inside an ISR). The function only returns this value when the CON-
FIG_ZBUS_ASSERT_MOCK is enabled.

int zbus_obs_detach_from_thread(const struct zbus_observer *obs)
Clear the observer thread priority by detaching it from a thread.

Parameters
• obs – [in] The observer’s reference.

Return values
• 0 – Observer detached from the thread.

• -EFAULT – A parameter is incorrect, or the function context is invalid
(inside an ISR). The function only returns this value when the CON-
FIG_ZBUS_ASSERT_MOCK is enabled.

int zbus_sub_wait(const struct zbus_observer *sub, const struct zbus_channel **chan,
k_timeout_t timeout)

Wait for a channel notification.

This routine makes the subscriber to wait a notification. The notification comes as a
channel reference.

Parameters
• sub – [in] The subscriber’s reference.

• chan – [out] The notification channel’s reference.

• timeout – [in] Waiting period for a notification arrival, or one of the spe-
cial values K_NO_WAIT and K_FOREVER.

Return values
• 0 – Notification received.

• -ENOMSG – Returned without waiting.

• -EAGAIN – Waiting period timed out.

• -EINVAL – The observer is not a subscriber.
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• -EFAULT – A parameter is incorrect, or the function context is invalid
(inside an ISR). The function only returns this value when the CON-
FIG_ZBUS_ASSERT_MOCK is enabled.

int zbus_sub_wait_msg(const struct zbus_observer *sub, const struct zbus_channel **chan,
void *msg, k_timeout_t timeout)

Wait for a channel message.

This routine makes the subscriber wait for the new message in case of channel publi-
cation.

Parameters
• sub – [in] The subscriber’s reference.

• chan – [out] The notification channel’s reference.

• msg – [out] A reference to a copy of the published message.

• timeout – [in] Waiting period for a notification arrival, or one of the spe-
cial values, K_NO_WAIT and K_FOREVER.

Return values
• 0 – Message received.

• -EINVAL – The observer is not a subscriber.

• -ENOMSG – Could not retrieve the net_buf from the subscriber FIFO.

• -EILSEQ – Received an invalid channel reference.

• -EFAULT – A parameter is incorrect, or the function context is invalid
(inside an ISR). The function only returns this value when the CON-
FIG_ZBUS_ASSERT_MOCK is enabled.

bool zbus_iterate_over_channels(bool (*iterator_func)(const struct zbus_channel
*chan))

Iterate over channels.

Enables the developer to iterate over the channels giving to this function an itera-
tor_func which is called for each channel. If the iterator_func returns false all the
iteration stops.

Parameters
• iterator_func – [in] The function that will be execute on each iteration.

Return values
• true – Iterator executed for all channels.

• false – Iterator could not be executed. Some iterate returned false.

bool zbus_iterate_over_channels_with_user_data(bool (*iterator_func)(const struct
zbus_channel *chan, void
*user_data), void *user_data)

Iterate over channels with user data.

Enables the developer to iterate over the channels giving to this function an itera-
tor_func which is called for each channel. If the iterator_func returns false all the
iteration stops.

Parameters
• iterator_func – [in] The function that will be execute on each iteration.

• user_data – [in] The user data that can be passed in the function.

Return values
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• true – Iterator executed for all channels.

• false – Iterator could not be executed. Some iterate returned false.

bool zbus_iterate_over_observers(bool (*iterator_func)(const struct zbus_observer
*obs))

Iterate over observers.

Enables the developer to iterate over the observers giving to this function an itera-
tor_func which is called for each observer. If the iterator_func returns false all the
iteration stops.

Parameters
• iterator_func – [in] The function that will be execute on each iteration.

Return values
• true – Iterator executed for all channels.

• false – Iterator could not be executed. Some iterate returned false.

bool zbus_iterate_over_observers_with_user_data(bool (*iterator_func)(const struct
zbus_observer *obs, void
*user_data), void *user_data)

Iterate over observers with user data.

Enables the developer to iterate over the observers giving to this function an itera-
tor_func which is called for each observer. If the iterator_func returns false all the
iteration stops.

Parameters
• iterator_func – [in] The function that will be execute on each iteration.

• user_data – [in] The user data that can be passed in the function.

Return values
• true – Iterator executed for all channels.

• false – Iterator could not be executed. Some iterate returned false.

struct zbus_channel_data
#include <zbus.h> Type used to represent a channel mutable data.

Every channel has a zbus_channel_data structure associated.

Public Members

int16_t observers_start_idx
Static channel observer list start index.

Considering the ITERABLE SECTIONS allocation order.

int16_t observers_end_idx
Static channel observer list end index.

Considering the ITERABLE SECTIONS allocation order.

struct k_sem sem
Access control semaphore.

Points to the semaphore used to avoid race conditions for accessing the channel.
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sys_slist_t observers
Channel observer list.

Represents the channel’s observers list, it can be empty or have listeners and sub-
scribers mixed in any sequence. It can be changed in runtime.

struct net_buf_pool *msg_subscriber_pool
Net buf pool for message subscribers.

It can be either the global or a separated one.

struct zbus_channel
#include <zbus.h> Type used to represent a channel.

Every channel has a zbus_channel structure associated used to control the channel
access and usage.

Public Members

const char *const name
Channel name.

void *const message
Message reference.

Represents the message’s reference that points to the actual shared memory re-
gion.

const size_t message_size
Message size.

Represents the channel’s message size.

void *const user_data
User data available to extend zbus features.

The channel must be claimed before using this field.

bool (*const validator)(const void *msg, size_t msg_size)
Message validator.

Stores the reference to the function to check the message validity before actually
performing the publishing. No invalid messages can be published. Every message
is valid when this field is empty.

struct zbus_channel_data *const data
Mutable channel data struct.

struct zbus_observer_data
#include <zbus.h>
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Public Members

bool enabled
Enabled flag.

Indicates if observer is receiving notification.

struct zbus_observer
#include <zbus.h> Type used to represent an observer.

Every observer has an representation structure containing the relevant information.
An observer is a code portion interested in some channel. The observer can be noti-
fied synchronously or asynchronously and it is called listener and subscriber respec-
tively. The observer can be enabled or disabled during runtime by change the enabled
boolean field of the structure. The listeners have a callback function that is executed
by the bus with the index of the changed channel as argument when the notification
is sent. The subscribers have a message queue where the bus enqueues the index of
the changed channel when a notification is sent.

See also

zbus_obs_set_enable function to properly change the observer’s enabled field.

Public Members

const char *const name
Observer name.

enum zbus_observer_type type
Type indication.

struct zbus_observer_data *const data
Mutable observer data struct.

struct k_msgq *const queue
Observer message queue.

It turns the observer into a subscriber.

void (*const callback)(const struct zbus_channel *chan)
Observer callback function.

It turns the observer into a listener.

struct k_fifo *const message_fifo
Observer message FIFO.

It turns the observer into a message subscriber. It only exists if the CON-
FIG_ZBUS_MSG_SUBSCRIBER is enabled.
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4.34 Miscellaneous

4.34.1 Checksum APIs

CRC

group crc

Enums

enum crc_type
CRC algorithm enumeration.

These values should be used with the CRC dispatch function.

Values:

enumerator CRC4
Use crc4.

enumerator CRC4_TI
Use crc4_ti.

enumerator CRC7_BE
Use crc7_be.

enumerator CRC8
Use crc8.

enumerator CRC8_CCITT
Use crc8_ccitt.

enumerator CRC16
Use crc16.

enumerator CRC16_ANSI
Use crc16_ansi.

enumerator CRC16_CCITT
Use crc16_ccitt.

enumerator CRC16_ITU_T
Use crc16_itu_t.

enumerator CRC24_PGP
Use crc24_pgp.

enumerator CRC32_C
Use crc32_c.
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enumerator CRC32_IEEE
Use crc32_ieee.

Functions

uint16_t crc16(uint16_t poly, uint16_t seed, const uint8_t *src, size_t len)
Generic function for computing a CRC-16 without input or output reflection.

Compute CRC-16 by passing in the address of the input, the input length and polynomial
used in addition to the initial value. This is O(n*8) where n is the length of the buffer
provided. No reflection is performed.

Note

If you are planning to use a CRC based on poly 0x1012 the functions crc16_itu_t() is
faster and thus recommended over this one.

Parameters
• poly – The polynomial to use omitting the leading x^16 coefficient

• seed – Initial value for the CRC computation

• src – Input bytes for the computation

• len – Length of the input in bytes

Returns
The computed CRC16 value (without any XOR applied to it)

uint16_t crc16_reflect(uint16_t poly, uint16_t seed, const uint8_t *src, size_t len)
Generic function for computing a CRC-16 with input and output reflection.

Compute CRC-16 by passing in the address of the input, the input length and polynomial
used in addition to the initial value. This is O(n*8) where n is the length of the buffer
provided. Both input and output are reflected.

The following checksums can, among others, be calculated by this function, depending
on the value provided for the initial seed and the value the final calculated CRC is
XORed with:

• CRC-16/ANSI, CRC-16/MODBUS, CRC-16/USB, CRC-16/IBM https://reveng.
sourceforge.io/crc-catalogue/16.htm#crc.cat.crc-16-modbus poly: 0x8005 (0xA001)
initial seed: 0xffff, xor output: 0x0000

Note

If you are planning to use a CRC based on poly 0x1012 the function crc16_ccitt() is
faster and thus recommended over this one.

Parameters
• poly – The polynomial to use omitting the leading x^16 coefficient. Im-

portant: please reflect the poly. For example, use 0xA001 instead of
0x8005 for CRC-16-MODBUS.
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• seed – Initial value for the CRC computation

• src – Input bytes for the computation

• len – Length of the input in bytes

Returns
The computed CRC16 value (without any XOR applied to it)

uint8_t crc8(const uint8_t *src, size_t len, uint8_t polynomial, uint8_t initial_value, bool
reversed)

Generic function for computing CRC 8.

Compute CRC 8 by passing in the address of the input, the input length and polynomial
used in addition to the initial value.

Parameters
• src – Input bytes for the computation

• len – Length of the input in bytes

• polynomial – The polynomial to use omitting the leading x^8 coefficient

• initial_value – Initial value for the CRC computation

• reversed – Should we use reflected/reversed values or not

Returns
The computed CRC8 value

uint16_t crc16_ccitt(uint16_t seed, const uint8_t *src, size_t len)
Compute the checksum of a buffer with polynomial 0x1021, reflecting input and out-
put.

This function is able to calculate any CRC that uses 0x1021 as it polynomial and requires
reflecting both the input and the output. It is a fast variant that runs in O(n) time, where
n is the length of the input buffer.

The following checksums can, among others, be calculated by this function, depending
on the value provided for the initial seed and the value the final calculated CRC is
XORed with:

• CRC-16/CCITT, CRC-16/CCITT-TRUE, CRC-16/KERMIT https://reveng.sourceforge.io/
crc-catalogue/16.htm#crc.cat.crc-16-kermit initial seed: 0x0000, xor output:
0x0000

• CRC-16/X-25, CRC-16/IBM-SDLC, CRC-16/ISO-HDLC https://reveng.sourceforge.io/
crc-catalogue/16.htm#crc.cat.crc-16-ibm-sdlc initial seed: 0xffff, xor output: 0xffff

See ITU-T Recommendation V.41 (November 1988).

Note

To calculate the CRC across non-contiguous blocks use the return value from block
N-1 as the seed for block N.

Parameters
• seed – Value to seed the CRC with

• src – Input bytes for the computation

• len – Length of the input in bytes
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Returns
The computed CRC16 value (without any XOR applied to it)

uint16_t crc16_itu_t(uint16_t seed, const uint8_t *src, size_t len)
Compute the checksum of a buffer with polynomial 0x1021, no reflection of input or
output.

This function is able to calculate any CRC that uses 0x1021 as it polynomial and requires
no reflection on both the input and the output. It is a fast variant that runs in O(n) time,
where n is the length of the input buffer.

The following checksums can, among others, be calculated by this function, depending
on the value provided for the initial seed and the value the final calculated CRC is
XORed with:

• CRC-16/XMODEM, CRC-16/ACORN, CRC-16/LTE https://reveng.sourceforge.io/
crc-catalogue/16.htm#crc.cat.crc-16-xmodem initial seed: 0x0000, xor output:
0x0000

• CRC16/CCITT-FALSE, CRC-16/IBM-3740, CRC-16/AUTOSAR https://reveng.
sourceforge.io/crc-catalogue/16.htm#crc.cat.crc-16-ibm-3740 initial seed: 0xffff,
xor output: 0x0000

• CRC-16/GSM https://reveng.sourceforge.io/crc-catalogue/16.htm#crc.cat.
crc-16-gsm initial seed: 0x0000, xor output: 0xffff

See ITU-T Recommendation V.41 (November 1988) (MSB first).

Note

To calculate the CRC across non-contiguous blocks use the return value from block
N-1 as the seed for block N.

Parameters
• seed – Value to seed the CRC with

• src – Input bytes for the computation

• len – Length of the input in bytes

Returns
The computed CRC16 value (without any XOR applied to it)

static inline uint16_t crc16_ansi(const uint8_t *src, size_t len)
Compute the ANSI (or Modbus) variant of CRC-16.

The ANSI variant of CRC-16 uses 0x8005 (0xA001 reflected) as its polynomial with the
initial * value set to 0xffff.

Parameters
• src – Input bytes for the computation

• len – Length of the input in bytes

Returns
The computed CRC16 value
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uint32_t crc32_ieee(const uint8_t *data, size_t len)
Generate IEEE conform CRC32 checksum.

Parameters
• data – Pointer to data on which the CRC should be calculated.

• len – Data length.

Returns
CRC32 value.

uint32_t crc32_ieee_update(uint32_t crc, const uint8_t *data, size_t len)
Update an IEEE conforming CRC32 checksum.

Parameters
• crc – CRC32 checksum that needs to be updated.

• data – Pointer to data on which the CRC should be calculated.

• len – Data length.

Returns
CRC32 value.

uint32_t crc32_c(uint32_t crc, const uint8_t *data, size_t len, bool first_pkt, bool last_pkt)
Calculate CRC32C (Castagnoli) checksum.

Parameters
• crc – CRC32C checksum that needs to be updated.

• data – Pointer to data on which the CRC should be calculated.

• len – Data length.

• first_pkt – Whether this is the first packet in the stream.

• last_pkt – Whether this is the last packet in the stream.

Returns
CRC32 value.

uint8_t crc8_ccitt(uint8_t initial_value, const void *buf, size_t len)
Compute CCITT variant of CRC 8.

Normal CCITT variant of CRC 8 is using 0x07.

Parameters
• initial_value – Initial value for the CRC computation

• buf – Input bytes for the computation

• len – Length of the input in bytes

Returns
The computed CRC8 value

uint8_t crc7_be(uint8_t seed, const uint8_t *src, size_t len)
Compute the CRC-7 checksum of a buffer.

See JESD84-A441. Used by the MMC protocol. Uses 0x09 as the polynomial with no
reflection. The CRC is left justified, so bit 7 of the result is bit 6 of the CRC.

Parameters
• seed – Value to seed the CRC with

• src – Input bytes for the computation
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• len – Length of the input in bytes

Returns
The computed CRC7 value

uint8_t crc4_ti(uint8_t seed, const uint8_t *src, size_t len)
Compute the CRC-4 checksum of a buffer.

Used by the TMAG5170 sensor. Uses 0x03 as the polynomial with no reflection. 4 most
significant bits of the CRC result will be set to zero.

Parameters
• seed – Value to seed the CRC with

• src – Input bytes for the computation

• len – Length of the input in bytes

Returns
The computed CRC4 value

uint8_t crc4(const uint8_t *src, size_t len, uint8_t polynomial, uint8_t initial_value, bool
reversed)

Generic function for computing CRC 4.

Compute CRC 4 by passing in the address of the input, the input length and polynomial
used in addition to the initial value. The input buffer must be aligned to a whole byte.
It is guaranteed that 4 most significant bits of the result will be set to zero.

Parameters
• src – Input bytes for the computation

• len – Length of the input in bytes

• polynomial – The polynomial to use omitting the leading x^4 coefficient

• initial_value – Initial value for the CRC computation

• reversed – Should we use reflected/reversed values or not

Returns
The computed CRC4 value

uint32_t crc24_pgp(const uint8_t *data, size_t len)
Generate an OpenPGP CRC-24 checksum as defined in RFC 4880 section 6.1.

Parameters
• data – A pointer to the data on which the CRC will be calculated.

• len – Data length in bytes.

Returns
The CRC-24 value.

uint32_t crc24_pgp_update(uint32_t crc, const uint8_t *data, size_t len)
Update an OpenPGP CRC-24 checksum.

Parameters
• crc – The CRC-24 checksum that needs to be updated. The full 32-bit value

of the CRC needs to be used between calls, do not mask the value to keep
only the last 24 bits.

• data – A pointer to the data on which the CRC will be calculated.

• len – Data length in bytes.
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Returns
The CRC-24 value. When the last buffer of data has been processed, mask
the value with CRC24_FINAL_VALUE_MASK to keep only the meaningful 24
bits of the CRC result.

static inline uint32_t crc_by_type(enum crc_type type, const uint8_t *src, size_t len,
uint32_t seed, uint32_t poly, bool reflect, bool first, bool
last)

Compute a CRC checksum, in a generic way.

This is a dispatch function that calls the individual CRC routine determined by type.

For 7, 8, 16 and 24-bit CRCs, the relevant seed and poly values should be passed in via
the least-significant byte(s).

Similarly, for 7, 8, 16 and 24-bit CRCs, the relevant result is stored in the least-significant
byte(s) of the returned value.

Parameters
• type – CRC algorithm to use.

• src – Input bytes for the computation

• len – Length of the input in bytes

• seed – Value to seed the CRC with

• poly – The polynomial to use omitting the leading coefficient

• reflect – Should we use reflected/reversed values or not

• first – Whether this is the first packet in the stream.

• last – Whether this is the last packet in the stream.

Returns
uint32_t the computed CRC value

4.34.2 Structured Data APIs

JSON

Related code samples

AWS IoT Core MQTT
Connect to AWS IoT Core and publish messages using MQTT.

group json

Defines

JSON_OBJ_DESCR_PRIM(struct_, field_name_, type_)
Helper macro to declare a descriptor for supported primitive values.

Here’s an example of use:
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struct foo {
int32_t some_int;

};

struct json_obj_descr foo[] = {
JSON_OBJ_DESCR_PRIM(struct foo, some_int, JSON_TOK_NUMBER),

};

Parameters
• struct_ – Struct packing the values

• field_name_ – Field name in the struct

• type_ – Token type for JSON value corresponding to a primitive type.
Must be one of: JSON_TOK_STRING for strings, JSON_TOK_NUMBER for
numbers, JSON_TOK_TRUE (or JSON_TOK_FALSE) for booleans.

JSON_OBJ_DESCR_OBJECT(struct_, field_name_, sub_descr_)
Helper macro to declare a descriptor for an object value.

Here’s an example of use:

struct nested {
int32_t foo;
struct {

int32_t baz;
} bar;

};

struct json_obj_descr nested_bar[] = {
{ ... declare bar.baz descriptor ... },

};
struct json_obj_descr nested[] = {

{ ... declare foo descriptor ... },
JSON_OBJ_DESCR_OBJECT(struct nested, bar, nested_bar),

};

Parameters
• struct_ – Struct packing the values

• field_name_ – Field name in the struct

• sub_descr_ – Array of json_obj_descr describing the subobject

JSON_OBJ_DESCR_ARRAY(struct_, field_name_, max_len_, len_field_, elem_type_)
Helper macro to declare a descriptor for an array of primitives.

Here’s an example of use:

struct example {
int32_t foo[10];
size_t foo_len;

};

struct json_obj_descr array[] = {
JSON_OBJ_DESCR_ARRAY(struct example, foo, 10, foo_len,

JSON_TOK_NUMBER)
};

4.34. Miscellaneous 1297



Zephyr Project Documentation, Release 3.7.99

Parameters
• struct_ – Struct packing the values

• field_name_ – Field name in the struct

• max_len_ – Maximum number of elements in array

• len_field_ – Field name in the struct for the number of elements in the
array

• elem_type_ – Element type, must be a primitive type

JSON_OBJ_DESCR_OBJ_ARRAY(struct_, field_name_, max_len_, len_field_, elem_descr_,
elem_descr_len_)

Helper macro to declare a descriptor for an array of objects.

Here’s an example of use:

struct person_height {
const char *name;
int32_t height;

};

struct people_heights {
struct person_height heights[10];
size_t heights_len;

};

struct json_obj_descr person_height_descr[] = {
JSON_OBJ_DESCR_PRIM(struct person_height, name, JSON_TOK_STRING),
JSON_OBJ_DESCR_PRIM(struct person_height, height, JSON_TOK_NUMBER),

};

struct json_obj_descr array[] = {
JSON_OBJ_DESCR_OBJ_ARRAY(struct people_heights, heights, 10,

heights_len, person_height_descr,
ARRAY_SIZE(person_height_descr)),

};

Parameters
• struct_ – Struct packing the values

• field_name_ – Field name in the struct containing the array

• max_len_ – Maximum number of elements in the array

• len_field_ – Field name in the struct for the number of elements in the
array

• elem_descr_ – Element descriptor, pointer to a descriptor array

• elem_descr_len_ – Number of elements in elem_descr_

JSON_OBJ_DESCR_ARRAY_ARRAY(struct_, field_name_, max_len_, len_field_, elem_descr_,
elem_descr_len_)

Helper macro to declare a descriptor for an array of array.

Here’s an example of use:
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struct person_height {
const char *name;
int32_t height;

};

struct person_heights_array {
struct person_height heights;

}

struct people_heights {
struct person_height_array heights[10];
size_t heights_len;

};

struct json_obj_descr person_height_descr[] = {
JSON_OBJ_DESCR_PRIM(struct person_height, name, JSON_TOK_STRING),
JSON_OBJ_DESCR_PRIM(struct person_height, height, JSON_TOK_NUMBER),

};

struct json_obj_descr person_height_array_descr[] = {
JSON_OBJ_DESCR_OBJECT(struct person_heights_array,

heights, person_height_descr),
};

struct json_obj_descr array_array[] = {
JSON_OBJ_DESCR_ARRAY_ARRAY(struct people_heights, heights, 10,

heights_len, person_height_array_descr,
ARRAY_SIZE(person_height_array_descr)),

};

Parameters
• struct_ – Struct packing the values

• field_name_ – Field name in the struct containing the array

• max_len_ – Maximum number of elements in the array

• len_field_ – Field name in the struct for the number of elements in the
array

• elem_descr_ – Element descriptor, pointer to a descriptor array

• elem_descr_len_ – Number of elements in elem_descr_

JSON_OBJ_DESCR_ARRAY_ARRAY_NAMED(struct_, json_field_name_, struct_field_name_,
max_len_, len_field_, elem_descr_, elem_descr_len_)

Variant of JSON_OBJ_DESCR_ARRAY_ARRAY that can be used when the structure and
JSON field names differ.

This is useful when the JSON field is not a valid C identifier.

See also

JSON_OBJ_DESCR_ARRAY_ARRAY

Parameters
• struct_ – Struct packing the values

• json_field_name_ – String, field name in JSON strings
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• struct_field_name_ – Field name in the struct containing the array

• max_len_ – Maximum number of elements in the array

• len_field_ – Field name in the struct for the number of elements in the
array

• elem_descr_ – Element descriptor, pointer to a descriptor array

• elem_descr_len_ – Number of elements in elem_descr_

JSON_OBJ_DESCR_PRIM_NAMED(struct_, json_field_name_, struct_field_name_, type_)
Variant of JSON_OBJ_DESCR_PRIM that can be used when the structure and JSON field
names differ.

This is useful when the JSON field is not a valid C identifier.

See also

JSON_OBJ_DESCR_PRIM

Parameters
• struct_ – Struct packing the values.

• json_field_name_ – String, field name in JSON strings

• struct_field_name_ – Field name in the struct

• type_ – Token type for JSON value corresponding to a primitive type.

JSON_OBJ_DESCR_OBJECT_NAMED(struct_, json_field_name_, struct_field_name_, sub_descr_)
Variant of JSON_OBJ_DESCR_OBJECT that can be used when the structure and JSON
field names differ.

This is useful when the JSON field is not a valid C identifier.

See also

JSON_OBJ_DESCR_OBJECT

Parameters
• struct_ – Struct packing the values

• json_field_name_ – String, field name in JSON strings

• struct_field_name_ – Field name in the struct

• sub_descr_ – Array of json_obj_descr describing the subobject

JSON_OBJ_DESCR_ARRAY_NAMED(struct_, json_field_name_, struct_field_name_, max_len_,
len_field_, elem_type_)

Variant of JSON_OBJ_DESCR_ARRAY that can be used when the structure and JSON field
names differ.

This is useful when the JSON field is not a valid C identifier.

1300 Chapter 4. OS Services



Zephyr Project Documentation, Release 3.7.99

See also

JSON_OBJ_DESCR_ARRAY

Parameters
• struct_ – Struct packing the values

• json_field_name_ – String, field name in JSON strings

• struct_field_name_ – Field name in the struct

• max_len_ – Maximum number of elements in array

• len_field_ – Field name in the struct for the number of elements in the
array

• elem_type_ – Element type, must be a primitive type

JSON_OBJ_DESCR_OBJ_ARRAY_NAMED(struct_, json_field_name_, struct_field_name_,
max_len_, len_field_, elem_descr_, elem_descr_len_)

Variant of JSON_OBJ_DESCR_OBJ_ARRAY that can be used when the structure and JSON
field names differ.

This is useful when the JSON field is not a valid C identifier.

Here’s an example of use:

struct person_height {
const char *name;
int32_t height;

};

struct people_heights {
struct person_height heights[10];
size_t heights_len;

};

struct json_obj_descr person_height_descr[] = {
JSON_OBJ_DESCR_PRIM(struct person_height, name, JSON_TOK_STRING),
JSON_OBJ_DESCR_PRIM(struct person_height, height, JSON_TOK_NUMBER),

};

struct json_obj_descr array[] = {
JSON_OBJ_DESCR_OBJ_ARRAY_NAMED(struct people_heights,

"people-heights", heights,
10, heights_len,
person_height_descr,
ARRAY_SIZE(person_height_descr)),

};

Parameters
• struct_ – Struct packing the values

• json_field_name_ – String, field name of the array in JSON strings

• struct_field_name_ – Field name in the struct containing the array

• max_len_ – Maximum number of elements in the array

• len_field_ – Field name in the struct for the number of elements in the
array
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• elem_descr_ – Element descriptor, pointer to a descriptor array

• elem_descr_len_ – Number of elements in elem_descr_

Typedefs

typedef int (*json_append_bytes_t)(const char *bytes, size_t len, void *data)
Function pointer type to append bytes to a buffer while encoding JSON data.

Param bytes
Contents to write to the output

Param len
Number of bytes to append to output

Param data
User-provided pointer

Return
This callback function should return a negative number on error (which
will be propagated to the return value of json_obj_encode()), or 0 on success.

Enums

enum json_tokens
Values:

enumerator JSON_TOK_NONE = ’_’

enumerator JSON_TOK_OBJECT_START = ’{’

enumerator JSON_TOK_OBJECT_END = ’}’

enumerator JSON_TOK_ARRAY_START = ’[’

enumerator JSON_TOK_ARRAY_END = ’]’

enumerator JSON_TOK_STRING = ’”’

enumerator JSON_TOK_COLON = ’:’

enumerator JSON_TOK_COMMA = ’,’

enumerator JSON_TOK_NUMBER = ’0’

enumerator JSON_TOK_FLOAT = ’1’

enumerator JSON_TOK_OPAQUE = ’2’

enumerator JSON_TOK_OBJ_ARRAY = ’3’
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enumerator JSON_TOK_ENCODED_OBJ = ’4’

enumerator JSON_TOK_TRUE = ’t’

enumerator JSON_TOK_FALSE = ’f’

enumerator JSON_TOK_NULL = ’n’

enumerator JSON_TOK_ERROR = ’!’

enumerator JSON_TOK_EOF = ’\0’

Functions

int64_t json_obj_parse(char *json, size_t len, const struct json_obj_descr *descr, size_t
descr_len, void *val)

Parses the JSON-encoded object pointed to by json, with size len, according to the de-
scriptor pointed to by descr.

Values are stored in a struct pointed to by val. Set up the descriptor like this:

struct s { int32_t foo; char *bar; } struct json_obj_descr de-
scr[] = { JSON_OBJ_DESCR_PRIM(struct s, foo, JSON_TOK_NUMBER),
JSON_OBJ_DESCR_PRIM(struct s, bar, JSON_TOK_STRING), };

Since this parser is designed for machine-to-machine communications, some liberties
were taken to simplify the design: (1) strings are not unescaped (but only valid escape
sequences are accepted); (2) no UTF-8 validation is performed; and (3) only integer
numbers are supported (no strtod() in the minimal libc).

Parameters
• json – Pointer to JSON-encoded value to be parsed

• len – Length of JSON-encoded value

• descr – Pointer to the descriptor array

• descr_len – Number of elements in the descriptor array. Must be less
than 63 due to implementation detail reasons (if more fields are neces-
sary, use two descriptors)

• val – Pointer to the struct to hold the decoded values

Returns
< 0 if error, bitmap of decoded fields on success (bit 0 is set if first field in
the descriptor has been properly decoded, etc).

int json_arr_parse(char *json, size_t len, const struct json_obj_descr *descr, void *val)
Parses the JSON-encoded array pointed to by json, with size len, according to the de-
scriptor pointed to by descr.

Values are stored in a struct pointed to by val. Set up the descriptor like this:

struct s { int32_t foo; char *bar; } struct json_obj_descr de-
scr[] = { JSON_OBJ_DESCR_PRIM(struct s, foo, JSON_TOK_NUMBER),
JSON_OBJ_DESCR_PRIM(struct s, bar, JSON_TOK_STRING), }; struct a { struct s baz[10];
size_t count; } struct json_obj_descr array[] = { JSON_OBJ_DESCR_OBJ_ARRAY(struct a,
baz, 10, count,descr, ARRAY_SIZE(descr)), };
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Since this parser is designed for machine-to-machine communications, some liberties
were taken to simplify the design: (1) strings are not unescaped (but only valid escape
sequences are accepted); (2) no UTF-8 validation is performed; and (3) only integer
numbers are supported (no strtod() in the minimal libc).

Parameters
• json – Pointer to JSON-encoded array to be parsed

• len – Length of JSON-encoded array

• descr – Pointer to the descriptor array

• val – Pointer to the struct to hold the decoded values

Returns
0 if array has been successfully parsed. A negative value indicates an error
(as defined on errno.h).

int json_arr_separate_object_parse_init(struct json_obj *json, char *payload, size_t
len)

Initialize single-object array parsing.

JSON-encoded array data is going to be parsed one object at a time. Data is provided
by payload with the size of len bytes.

Function validate that Json Array start is detected and initialize json object for Json
object parsing separately.

Parameters
• json – Provide storage for parser states. To be used when parsing the

array.

• payload – Pointer to JSON-encoded array to be parsed

• len – Length of JSON-encoded array

Returns
0 if array start is detected and initialization is successful or negative error
code in case of failure.

int json_arr_separate_parse_object(struct json_obj *json, const struct json_obj_descr
*descr, size_t descr_len, void *val)

Parse a single object from array.

Parses the JSON-encoded object pointed to by json object array, with size len, according
to the descriptor pointed to by descr.

Parameters
• json – Pointer to JSON-object message state

• descr – Pointer to the descriptor array

• descr_len – Number of elements in the descriptor array. Must be less
than 31.

• val – Pointer to the struct to hold the decoded values

Returns
< 0 if error, 0 for end of message, bitmap of decoded fields on success (bit 0
is set if first field in the descriptor has been properly decoded, etc).

ssize_t json_escape(char *str, size_t *len, size_t buf_size)
Escapes the string so it can be used to encode JSON objects.

Parameters
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• str – The string to escape; the escape string is stored the buffer pointed
to by this parameter

• len – Points to a size_t containing the size before and after the escaping
process

• buf_size – The size of buffer str points to

Returns
0 if string has been escaped properly, or -ENOMEM if there was not enough
space to escape the buffer

size_t json_calc_escaped_len(const char *str, size_t len)
Calculates the JSON-escaped string length.

Parameters
• str – The string to analyze

• len – String size

Returns
The length str would have if it were escaped

ssize_t json_calc_encoded_len(const struct json_obj_descr *descr, size_t descr_len, const
void *val)

Calculates the string length to fully encode an object.

Parameters
• descr – Pointer to the descriptor array

• descr_len – Number of elements in the descriptor array

• val – Struct holding the values

Returns
Number of bytes necessary to encode the values if >0, an error code is re-
turned.

ssize_t json_calc_encoded_arr_len(const struct json_obj_descr *descr, const void *val)
Calculates the string length to fully encode an array.

Parameters
• descr – Pointer to the descriptor array

• val – Struct holding the values

Returns
Number of bytes necessary to encode the values if >0, an error code is re-
turned.

int json_obj_encode_buf(const struct json_obj_descr *descr, size_t descr_len, const void
*val, char *buffer, size_t buf_size)

Encodes an object in a contiguous memory location.

Parameters
• descr – Pointer to the descriptor array

• descr_len – Number of elements in the descriptor array

• val – Struct holding the values

• buffer – Buffer to store the JSON data

• buf_size – Size of buffer, in bytes, with space for the terminating NUL
character
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Returns
0 if object has been successfully encoded. A negative value indicates an
error (as defined on errno.h).

int json_arr_encode_buf(const struct json_obj_descr *descr, const void *val, char *buffer,
size_t buf_size)

Encodes an array in a contiguous memory location.

Parameters
• descr – Pointer to the descriptor array

• val – Struct holding the values

• buffer – Buffer to store the JSON data

• buf_size – Size of buffer, in bytes, with space for the terminating NUL
character

Returns
0 if object has been successfully encoded. A negative value indicates an
error (as defined on errno.h).

int json_obj_encode(const struct json_obj_descr *descr, size_t descr_len, const void *val,
json_append_bytes_t append_bytes, void *data)

Encodes an object using an arbitrary writer function.

Parameters
• descr – Pointer to the descriptor array

• descr_len – Number of elements in the descriptor array

• val – Struct holding the values

• append_bytes – Function to append bytes to the output

• data – Data pointer to be passed to the append_bytes callback function.

Returns
0 if object has been successfully encoded. A negative value indicates an
error.

int json_arr_encode(const struct json_obj_descr *descr, const void *val,
json_append_bytes_t append_bytes, void *data)

Encodes an array using an arbitrary writer function.

Parameters
• descr – Pointer to the descriptor array

• val – Struct holding the values

• append_bytes – Function to append bytes to the output

• data – Data pointer to be passed to the append_bytes callback function.

Returns
0 if object has been successfully encoded. A negative value indicates an
error.

struct json_token
#include <json.h>

struct json_lexer
#include <json.h>
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struct json_obj
#include <json.h>

struct json_obj_token
#include <json.h>

struct json_obj_descr
#include <json.h>

JWT

JSON Web Tokens (JWT) are an open, industry standard [RFC 7519](https://tools.ietf.org/html/
rfc7519) method for representing claims securely between two parties. Although JWT is fairly
flexible, this API is limited to creating the simplistic tokens needed to authenticate with the
Google Core IoT infrastructure.

group jwt
JSON Web Token (JWT)

Functions

int jwt_init_builder(struct jwt_builder *builder, char *buffer, size_t buffer_size)
Initialize the JWT builder.

Initialize the given JWT builder for the creation of a fresh token. The buffer size should
at least be as long as JWT_BUILDER_MAX_SIZE returns.

Parameters
• builder – The builder to initialize.

• buffer – The buffer to write the token to.

• buffer_size – The size of this buffer. The token will be NULL terminated,
which needs to be allowed for in this size.

Return values
• 0 – Success

• -ENOSPC – Buffer is insufficient to initialize

int jwt_add_payload(struct jwt_builder *builder, int32_t exp, int32_t iat, const char *aud)
add JWT primary payload.

int jwt_sign(struct jwt_builder *builder, const char *der_key, size_t der_key_len)
Sign the JWT token.

static inline size_t jwt_payload_len(struct jwt_builder *builder)

struct jwt_builder
#include <jwt.h> JWT data tracking.

JSON Web Tokens contain several sections, each encoded in base-64. This structure
tracks the token as it is being built, including limits on the amount of available space.
It should be initialized with jwt_init().
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Public Members

char *base
The base of the buffer we are writing to.

char *buf
The place in this buffer where we are currently writing.

size_t len
The length remaining to write.

bool overflowed
Flag that is set if we try to write past the end of the buffer.

If set, the token is not valid.
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Chapter 5

Build and Configuration Systems

5.1 Build System (CMake)

CMake is used to build your application together with the Zephyr kernel. A CMake build is done
in two stages. The first stage is called configuration. During configuration, the CMakeLists.txt
build scripts are executed. After configuration is finished, CMake has an internal model of the
Zephyr build, and can generate build scripts that are native to the host platform.

CMake supports generating scripts for several build systems, but only Ninja and Make are tested
and supported by Zephyr. After configuration, you begin the build stage by executing the gen-
erated build scripts. These build scripts can recompile the application without involving CMake
following most code changes. However, after certain changes, the configuration step must be
executed again before building. The build scripts can detect some of these situations and recon-
figure automatically, but there are cases when this must be done manually.

Zephyr uses CMake’s concept of a ‘target’ to organize the build. A target can be an executable, a
library, or a generated file. For application developers, the library target is the most important to
understand. All source code that goes into a Zephyr build does so by being included in a library
target, even application code.

Library targets have source code, that is added through CMakeLists.txt build scripts like this:

target_sources(app PRIVATE src/main.c)

In the above CMakeLists.txt, an existing library target named app is configured to include the
source file src/main.c. The PRIVATE keyword indicates that we are modifying the internals of
how the library is being built. Using the keyword PUBLIC would modify how other libraries that
link with app are built. In this case, using PUBLIC would cause libraries that link with app to also
include the source file src/main.c, behavior that we surely do not want. The PUBLIC keyword
could however be useful when modifying the include paths of a target library.

5.1.1 Build and Configuration Phases

The Zephyr build process can be divided into two main phases: a configuration phase (driven
by CMake) and a build phase (driven by Make or Ninja).

Configuration Phase

The configuration phase begins when the user invokes CMake to generate a build system, speci-
fying a source application directory and a board target.
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C preprocessor

*.dts/*.dtsi files

Bindings (YAML files)

Kconfig files
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CMake begins by processing the CMakeLists.txt file in the application directory, which refers to
the CMakeLists.txt file in the Zephyr top-level directory, which in turn refers to CMakeLists.txt
files throughout the build tree (directly and indirectly). Its primary output is a set of Makefiles
or Ninja files to drive the build process, but the CMake scripts also do some processing of their
own, which is explained here.

Note that paths beginning with build/ below refer to the build directory you create when run-
ning CMake.

Devicetree
*.dts (devicetree source) and *.dtsi (devicetree source include) files are collected from the
target’s architecture, SoC, board, and application directories.

*.dtsifiles are included by *.dtsfiles via the C preprocessor (often abbreviated cpp, which
should not be confused with C++). The C preprocessor is also used to merge in any de-
vicetree *.overlay files, and to expand macros in *.dts, *.dtsi, and *.overlay files. The
preprocessor output is placed in build/zephyr/zephyr.dts.pre.

The preprocessed devicetree sources are parsed by gen_defines.py to generate a build/
zephyr/include/generated/zephyr/devicetree_generated.h header with preprocessor
macros.

Source code should access preprocessor macros generated from devicetree by including
the devicetree.h header, which includes devicetree_generated.h.

gen_defines.py also writes the final devicetree to build/zephyr/zephyr.dts in the build
directory. This file’s contents may be useful for debugging.

If the devicetree compiler dtc is installed, it is run on build/zephyr/zephyr.dts to catch
any extra warnings and errors generated by this tool. The output from dtc is unused oth-
erwise, and this step is skipped if dtc is not installed.

The above is just a brief overview. For more information on devicetree, see Devicetree
Guide.

Kconfig
Kconfig files define available configuration options for the target architecture, SoC, board,
and application, as well as dependencies between options.

Kconfig configurations are stored in configuration files. The initial configuration is gener-
ated by merging configuration fragments from the board and application (e.g. prj.conf).

The output from Kconfig is an autoconf.h header with preprocessor assignments, and a
.config file that acts both as a saved configuration and as configuration output (used by
CMake). The definitions in autoconf.h are automatically exposed at compile time, so there
is no need to include this header.

Information from devicetree is available to Kconfig, through the functions defined in kcon-
figfunctions.py.

See the Kconfig section of the manual for more information.

Build Phase

The build phase begins when the user invokes make or ninja. Its ultimate output is a complete
Zephyr application in a format suitable for loading/flashing on the desired target board (zephyr.
elf, zephyr.hex, etc.) The build phase can be broken down, conceptually, into four stages: the
pre-build, first-pass binary, final binary, and post-processing.

Pre-build Pre-build occurs before any source files are compiled, because during this phase
header files used by the source files are generated.

5.1. Build System (CMake) 1311

https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/dts/gen_defines.py
https://github.com/zephyrproject-rtos/zephyr/blob/main/include/zephyr/devicetree.h
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/kconfigfunctions.py
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/kconfigfunctions.py


Zephyr Project Documentation, Release 3.7.99

Offset generation
Access to high-level data structures and members is sometimes required when the defini-
tions of those structures is not immediately accessible (e.g., assembly language). The gen-
eration of offsets.h (by gen_offset_header.py) facilitates this.

System call boilerplate
The gen_syscall.py and parse_syscalls.py scripts work together to bind potential system call
functions with their implementations.

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer] [Not supported by viewer] [Not supported by viewer]

[Not supported by viewer] [Not supported by viewer]

[Not supported by viewer] [Not supported by viewer][Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

Intermediate binaries Compilation proper begins with the first intermediate binary. Source
files (C and assembly) are collected from various subsystems (which ones is decided during the
configuration phase), and compiled into archives (with reference to header files in the tree, as
well as those generated during the configuration phase and the pre-build stage(s)).

kernel/*.c
arch/x86/*.c...Makefile...

Build Stage II - Generation and Compilation

Other sources

Headers (*.h)...

kernel/*.c.objarch/x86/*.c.obj... Other *.obj files

libkernel.aarch__x86__core.a Other archives

GNU ar... GNU ar... GNU ar...

GNU cc... GNU cc... GNU cc...*.h *.h

scripts/build/gen_app_partitions.py

app_smem_unaligned...

Viewer does not support full SVG 1.1

The exact number of intermediate binaries is decided during the configuration phase.
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If memory protection is enabled, then:

Partition grouping
The gen_app_partitions.py script scans all the generated archives and outputs linker scripts
to ensure that application partitions are properly grouped and aligned for the target’s mem-
ory protection hardware.

Then cpp is used to combine linker script fragments from the target’s architecture/SoC, the kernel
tree, optionally the partition output if memory protection is enabled, and any other fragments
selected during the configuration process, into a linker.cmd file. The compiled archives are then
linked with ld as specified in the linker.cmd.

Unfixed size binary
The unfixed size intermediate binary is produced when User Mode is enabled or Devicetree
is in use. It produces a binary where sizes are not fixed and thus it may be used by post-
process steps that will impact the size of the final binary.

Makefile...

Build Stage III - Intermediate binary

linker.cmd

libkernel.aarch__x86__core.a Other archives

GNU ld zephyr_pre0.elfLinker scripts (*.ld)... GNU cpp

app_smem_unaligned linker file...

Viewer does not support full SVG 1.1

Fixed size binary
The fixed size intermediate binary is produced when User Mode is enabled or when gener-
ated IRQ tables are used, CONFIG_GEN_ISR_TABLES It produces a binary where sizes are fixed
and thus the size must not change between the intermediate binary and the final binary.

Makefile...

Build Stage IV - Intermediate binary

linker.cmd

libkernel.aarch__x86__core.a Other archives

GNU ld zephyr_pre1.elfLinker scripts (*.ld)... GNU cpp

app_smem_aligned...

GNU cc%3CmxGraphM...dev_handles.c dev_handles.obj

Viewer does not support full SVG 1.1

Intermediate binaries post-processing The binaries from the previous stage are incomplete,
with empty and/or placeholder sections that must be filled in by, essentially, reflection.

To complete the build procedure the following scripts are executed on the intermediate binaries
to produce the missing pieces needed for the final binary.

When User Mode is enabled:

Partition alignment
The gen_app_partitions.py script scans the unfixed size binary and generates an app shared
memory aligned linker script snippet where the partitions are sorted in descending order.

Makefile...

App partition grouping

zephyr_pre0.elf scripts/build/gen_app_partitions.py app_smem_aligned.ld

Viewer does not support full SVG 1.1
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When Devicetree is used:

Device dependencies
The gen_device_deps.py script scans the unfixed size binary to determine relationships be-
tween devices that were recorded from devicetree data, and replaces the encoded relation-
ships with values that are optimized to locate the devices actually present in the application.

Makefile...

Device handles

zephyr_pre0.elf scripts/build/gen_device_deps.py dev_handles.c

Viewer does not support full SVG 1.1

When CONFIG_GEN_ISR_TABLES is enabled:
The gen_isr_tables.py script scans the fixed size binary and creates an isr_tables.c source
file with a hardware vector table and/or software IRQ table.

Makefile...

Interrupt tables

zephyr_pre1.elf arch/common/gen_isr_tables.py isr_tables.c

Viewer does not support full SVG 1.1

When User Mode is enabled:

Kernel object hashing
The gen_kobject_list.py scans the ELFDWARF debug data to find the address of the all kernel
objects. This list is passed to gperf, which generates a perfect hash function and table of
those addresses, then that output is optimized by process_gperf.py, using known properties
of our special case.

Makefile...

Kernel object hash

zephyr_pre1.elf scripts/build/gen_kobject_list.py...

kobject_hash.gperf

otype-to-str.h...

GNU gperf kobject_hash_preprocessed.c

scripts/build/process_gperf.py... kobject_hash.c

GNU cc... kobject_hash.c.obj

kobject_hash_renamed.oGNU objdump

Viewer does not support full SVG 1.1

When no intermediate binary post-processing is required then the first intermediate binary will
be directly used as the final binary.

Final binary The binary from the previous stage is incomplete, with empty and/or placeholder
sections that must be filled in by, essentially, reflection.

The link from the previous stage is repeated, this time with the missing pieces populated.
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Makefile...

Build Stage V - Final binary

linker.cmd

libkernel.aarch__x86__core.a Other archives

GNU ld zephyr.elfLinker scripts (*.ld)... GNU cpp

app_smem_aligned...

GNU cc%3CmxGraphM...dev_handles.c dev_handles.obj

GNU cc%3CmxGraphM...isr_tables.c isr_tables.obj

kobject_hash_renamed.o

zephyr.map

Viewer does not support full SVG 1.1

Post processing Finally, if necessary, the completed kernel is converted from ELF to the for-
mat expected by the loader and/or flash tool required by the target. This is accomplished in a
straightforward manner with objdump.

Makefile...

Build Stage VI – Post-Processing

GNU objdumpzephyr.elf

zephyr.elf GNU objdump

zephyr.bin

zephyr.hex

Viewer does not support full SVG 1.1

5.1.2 Supporting Scripts and Tools

The following is a detailed description of the scripts used during the build process.

scripts/build/gen_syscalls.py

Script to generate system call invocation macros

This script parses the system call metadata JSON file emitted by parse_syscalls.py to create sev-
eral files:

• A file containing weak aliases of any potentially unimplemented system calls, as well as the
system call dispatch table, which maps system call type IDs to their handler functions.

• A header file defining the system call type IDs, as well as function prototypes for all system
call handler functions.

• A directory containing header files. Each header corresponds to a header that was iden-
tified as containing system call declarations. These generated headers contain the inline
invocation functions for each system call in that header.

scripts/build/gen_device_deps.py

Translate generic handles into ones optimized for the application.
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Immutable device data includes information about dependencies, e.g. that a particular sensor
is controlled through a specific I2C bus and that it signals event on a pin on a specific GPIO
controller. This information is encoded in the first-pass binary using identifiers derived from
the devicetree. This script extracts those identifiers and replaces them with ones optimized for
use with the devices actually present.

For example the sensor might have a first-pass handle defined by its devicetree ordinal 52, with
the I2C driver having ordinal 24 and the GPIO controller ordinal 14. The runtime ordinal is
the index of the corresponding device in the static devicetree array, which might be 6, 5, and 3,
respectively.

The output is a C source file that provides alternative definitions for the array contents refer-
enced from the immutable device objects. In the final link these definitions supersede the ones
in the driver-specific object file.

scripts/build/gen_kobject_list.py

Script to generate gperf tables of kernel object metadata

User mode threads making system calls reference kernel objects by memory address, as the ker-
nel/driver APIs in Zephyr are the same for both user and supervisor contexts. It is necessary for
the kernel to be able to validate accesses to kernel objects to make the following assertions:

• That the memory address points to a kernel object

• The kernel object is of the expected type for the API being invoked

• The kernel object is of the expected initialization state

• The calling thread has sufficient permissions on the object

For more details see the Kernel Objects section in the documentation.

The zephyr build generates an intermediate ELF binary, zephyr_prebuilt.elf, which this script
scans looking for kernel objects by examining the DWARF debug information to look for in-
stances of data structures that are considered kernel objects. For device drivers, the API struct
pointer populated at build time is also examined to disambiguate between various device driver
instances since they are all ‘struct device’.

This script can generate five different output files:

• A gperf script to generate the hash table mapping kernel object memory addresses to kernel
object metadata, used to track permissions, object type, initialization state, and any object-
specific data.

• A header file containing generated macros for validating driver instances inside the system
call handlers for the driver subsystem APIs.

• A code fragment included by kernel.h with one enum constant for each kernel object type
and each driver instance.

• The inner cases of a switch/case C statement, included by kernel/userspace.c, mapping the
kernel object types and driver instances to their human-readable representation in the
otype_to_str() function.

• The inner cases of a switch/case C statement, included by kernel/userspace.c, mapping ker-
nel object types to their sizes. This is used for allocating instances of them at runtime (CON-
FIG_DYNAMIC_OBJECTS) in the obj_size_get() function.

scripts/build/gen_offset_header.py

This script scans a specified object file and generates a header file that defined macros for the off-
sets of various found structure members (particularly symbols ending with _OFFSET or _SIZEOF),
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primarily intended for use in assembly code.

scripts/build/parse_syscalls.py

Script to scan Zephyr include directories and emit system call and subsystem metadata

System calls require a great deal of boilerplate code in order to implement completely. This
script is the first step in the build system’s process of auto-generating this code by doing a text
scan of directories containing C or header files, and building up a database of system calls and
their function call prototypes. This information is emitted to a generated JSON file for further
processing.

This script also scans for struct definitions such as __subsystem and __net_socket, emitting a JSON
dictionary mapping tags to all the struct declarations found that were tagged with them.

If the output JSON file already exists, its contents are checked against what information this
script would have outputted; if the result is that the file would be unchanged, it is not modified
to prevent unnecessary incremental builds.

arch/x86/gen_idt.py

Generate Interrupt Descriptor Table for x86 CPUs.

This script generates the interrupt descriptor table (IDT) for x86. Please consult the IA Architec-
ture SW Developer Manual, volume 3, for more details on this data structure.

This script accepts as input the zephyr_prebuilt.elf binary, which is a link of the Zephyr ker-
nel without various build-time generated data structures (such as the IDT) inserted into it. This
kernel image has been properly padded such that inserting these data structures will not dis-
turb the memory addresses of other symbols. From the kernel binary we read a special section
“intList” which contains the desired interrupt routing configuration for the kernel, populated by
instances of the IRQ_CONNECT() macro.

This script outputs three binary tables:

1. The interrupt descriptor table itself.

2. A bitfield indicating which vectors in the IDT are free for installation of dynamic interrupts
at runtime.

3. An array which maps configured IRQ lines to their associated vector entries in the IDT, used
to program the APIC at runtime.

arch/x86/gen_gdt.py

Generate a Global Descriptor Table (GDT) for x86 CPUs.

For additional detail on GDT and x86 memory management, please consult the IA Architecture
SW Developer Manual, vol. 3.

This script accepts as input the zephyr_prebuilt.elf binary, which is a link of the Zephyr kernel
without various build-time generated data structures (such as the GDT) inserted into it. This
kernel image has been properly padded such that inserting these data structures will not disturb
the memory addresses of other symbols.

The input kernel ELF binary is used to obtain the following information:

• Memory addresses of the Main and Double Fault TSS structures so GDT descriptors can be
created for them

• Memory addresses of where the GDT lives in memory, so that this address can be populated
in the GDT pseudo descriptor
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• whether userspace or HW stack protection are enabled in Kconfig

The output is a GDT whose contents depend on the kernel configuration. With no memory protec-
tion features enabled, we generate flat 32-bit code and data segments. If hardware- based stack
overflow protection or userspace is enabled, we additionally create descriptors for the main
and double- fault IA tasks, needed for userspace privilege elevation and double-fault handling.
If userspace is enabled, we also create flat code/data segments for ring 3 execution.

scripts/build/gen_relocate_app.py

This script will relocate .text, .rodata, .data and .bss sections from required files and places it in
the required memory region. This memory region and file are given to this python script in the
form of a string.

Example of such a string would be:

SRAM2:COPY:/home/xyz/zephyr/samples/hello_world/src/main.c,\
SRAM1:COPY:/home/xyz/zephyr/samples/hello_world/src/main2.c, \
FLASH2:NOCOPY:/home/xyz/zephyr/samples/hello_world/src/main3.c

One can also specify the program header for a given memory region:

SRAM2\ :phdr0:COPY:/home/xyz/zephyr/samples/hello_world/src/main.c

To invoke this script:

python3 gen_relocate_app.py -i input_string -o generated_linker -c generated_code

Configuration that needs to be sent to the python script.

• If the memory is like SRAM1/SRAM2/CCD/AON then place full object in the sections

• If the memory type is appended with _DATA / _TEXT/ _RODATA/ _BSS only the selected mem-
ory is placed in the required memory region. Others are ignored.

• COPY/NOCOPY defines whether the script should generate the relocation code in
code_relocation.c or not

• NOKEEP will suppress the default behavior of marking every relocated symbol with KEEP()
in the generated linker script.

Multiple regions can be appended together like SRAM2_DATA_BSS this will place data and bss
inside SRAM2.

scripts/build/process_gperf.py

gperf C file post-processor

We use gperf to build up a perfect hashtable of pointer values. The way gperf does this is to
create a table ‘wordlist’ indexed by a string representation of a pointer address, and then doing
memcmp() on a string passed in for comparison

We are exclusively working with 4-byte pointer values. This script adjusts the generated code so
that we work with pointers directly and not strings. This saves a considerable amount of space.

scripts/build/gen_app_partitions.py

Script to generate a linker script organizing application memory partitions

Applications may declare build-time memory domain partitions with
K_APPMEM_PARTITION_DEFINE, and assign globals to them using K_APP_DMEM or
K_APP_BMEM macros. For each of these partitions, we need to route all their data into
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appropriately-sized memory areas which meet the size/alignment constraints of the memory
protection hardware.

This linker script is created very early in the build process, before the build attempts to link
the kernel binary, as the linker script this tool generates is a necessary pre-condition for kernel
linking. We extract the set of memory partitions to generate by looking for variables which have
been assigned to input sections that follow a defined naming convention. We also allow entire
libraries to be pulled in to assign their globals to a particular memory partition via command
line directives.

This script takes as inputs:

• The base directory to look for compiled objects

• key/value pairs mapping static library files to what partitions their globals should end up
in.

The output is a linker script fragment containing the definition of the app shared memory sec-
tion, which is further divided, for each partition found, into data and BSS for each partition.

scripts/build/check_init_priorities.py

Checks the initialization priorities

This script parses a Zephyr executable file, creates a list of known devices and their effective
initialization priorities and compares that with the device dependencies inferred from the de-
vicetree hierarchy.

This can be used to detect devices that are initialized in the incorrect order, but also devices that
are initialized at the same priority but depends on each other, which can potentially break if the
linking order is changed.

Optionally, it can also produce a human readable list of the initialization calls for the various init
levels.

5.2 Devicetree

A devicetree is a hierarchical data structure primarily used to describe hardware. Zephyr uses
devicetree in two main ways:

• to describe hardware to the Device Driver Model

• to provide that hardware’s initial configuration

This page links to a high level guide on devicetree as well as reference material.

5.2.1 Devicetree Guide

The pages in this section are a high-level guide to using devicetree for Zephyr development.

Introduction to devicetree

Tip

This is a conceptual overview of devicetree and how Zephyr uses it. For step-by-step guides
and examples, see Devicetree HOWTOs.
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The following pages introduce general devicetree concepts and how they apply to Zephyr.

Scope and purpose A devicetree is primarily a hierarchical data structure that describes hard-
ware. The Devicetree specification defines its source and binary representations.

Zephyr uses devicetree to describe:

• the hardware available on its boards

• that hardware’s initial configuration

As such, devicetree is both a hardware description language and a configuration language for
Zephyr. See Devicetree versus Kconfig for some comparisons between devicetree and Zephyr’s
other main configuration language, Kconfig.

There are two types of devicetree input files: devicetree sources and devicetree bindings. The
sources contain the devicetree itself. The bindings describe its contents, including data types.
The build system uses devicetree sources and bindings to produce a generated C header. The
generated header’s contents are abstracted by the devicetree.h API, which you can use to get
information from your devicetree.

Here is a simplified view of the process:

Fig. 1: Devicetree build flow

All Zephyr and application source code files can include and use devicetree.h. This includes
device drivers, applications, tests, the kernel, etc.

The API itself is based on C macros. The macro names all start with DT_. In general, if you see
a macro that starts with DT_ in a Zephyr source file, it’s probably a devicetree.h macro. The
generated C header contains macros that start with DT_ as well; you might see those in compiler
error messages. You always can tell a generated- from a non-generated macro: generated macros
have some lowercased letters, while the devicetree.h macro names have all capital letters.

Syntax and structure As the name indicates, a devicetree is a tree. The human-readable text
format for this tree is called DTS (for devicetree source), and is defined in the Devicetree speci-
fication.

This page’s purpose is to introduce devicetree in a more gradual way than the specification. How-
ever, you may still need to refer to the specification to understand some detailed cases.

Contents

• Example

• Nodes

• Properties
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• Devicetrees reflect hardware

• Properties in practice

• Unit addresses

• Important properties

• Writing property values

• Aliases and chosen nodes

Example Here is an example DTS file:

/dts-v1/;

/ {
a-node {

subnode_nodelabel: a-sub-node {
foo = <3>;

};
};

};

The /dts-v1/; line means the file’s contents are in version 1 of the DTS syntax, which has re-
placed a now-obsolete “version 0”.

Nodes Like any tree data structure, a devicetree has a hierarchy of nodes. The above tree has
three nodes:

1. A root node: /
2. A node named a-node, which is a child of the root node

3. A node named a-sub-node, which is a child of a-node
Nodes can be assigned node labels, which are unique shorthands that refer to the labeled node.
Above, a-sub-nodehas the node label subnode_nodelabel. A node can have zero, one, or multiple
node labels. You can use node labels to refer to the node elsewhere in the devicetree.

Devicetree nodes have paths identifying their locations in the tree. Like Unix file system paths,
devicetree paths are strings separated by slashes (/), and the root node’s path is a single slash:
/. Otherwise, each node’s path is formed by concatenating the node’s ancestors’ names with the
node’s own name, separated by slashes. For example, the full path to a-sub-node is /a-node/
a-sub-node.

Properties Devicetree nodes can also have properties. Properties are name/value pairs. Prop-
erty values can be any sequence of bytes. In some cases, the values are an array of what are
called cells. A cell is just a 32-bit unsigned integer.

Node a-sub-node has a property named foo, whose value is a cell with value 3. The size and type
of foo‘s value are implied by the enclosing angle brackets (< and >) in the DTS.

See Writing property values below for more example property values.

Devicetrees reflect hardware In practice, devicetree nodes usually correspond to some hard-
ware, and the node hierarchy reflects the hardware’s physical layout. For example, let’s consider
a board with three I2C peripherals connected to an I2C bus controller on an SoC, like this:

5.2. Devicetree 1321



Zephyr Project Documentation, Release 3.7.99

Nodes corresponding to the I2C bus controller and each I2C peripheral would be present in the
devicetree. Reflecting the hardware layout, the I2C peripheral nodes would be children of the
bus controller node. Similar conventions exist for representing other types of hardware.

The DTS would look something like this:

/dts-v1/;

/ {
soc {

i2c-bus-controller {
i2c-peripheral-1 {
};
i2c-peripheral-2 {
};
i2c-peripheral-3 {
};

};
};

};

Properties in practice In practice, properties usually describe or configure the hardware the
node represents. For example, an I2C peripheral’s node has a property whose value is the pe-
ripheral’s address on the bus.

Here’s a tree representing the same example, but with real-world node names and properties
you might see when working with I2C devices.

This is the corresponding DTS:

/dts-v1/;

/ {
soc {

i2c@40003000 {
compatible = "nordic,nrf-twim";
reg = <0x40003000 0x1000>;

apds9960@39 {
compatible = "avago,apds9960";

(continues on next page)

1322 Chapter 5. Build and Configuration Systems



Zephyr Project Documentation, Release 3.7.99

Fig. 2: I2C devicetree example with real-world names and properties. Node names are at the top
of each node with a gray background. Properties are shown as “name=value” lines.

(continued from previous page)
reg = <0x39>;

};
ti_hdc@43 {

compatible = "ti,hdc", "ti,hdc1010";
reg = <0x43>;

};
mma8652fc@1d {

compatible = "nxp,fxos8700", "nxp,mma8652fc";
reg = <0x1d>;

};
};

};
};

Unit addresses In addition to showing more real-world names and properties, the above ex-
ample introduces a new devicetree concept: unit addresses. Unit addresses are the parts of node
names after an “at” sign (@), like 40003000 in i2c@40003000, or 39 in apds9960@39. Unit addresses
are optional: the soc node does not have one.

In devicetree, unit addresses give a node’s address in the address space of its parent node. Here
are some example unit addresses for different types of hardware.

Memory-mapped peripherals
The peripheral’s register map base address. For example, the node named i2c@40003000
represents an I2C controller whose register map base address is 0x40003000.

I2C peripherals
The peripheral’s address on the I2C bus. For example, the child node apds9960@39 of the
I2C controller in the previous section has I2C address 0x39.
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SPI peripherals
An index representing the peripheral’s chip select line number. (If there is no chip select
line, 0 is used.)

Memory
The physical start address. For example, a node named memory@2000000 represents RAM
starting at physical address 0x2000000.

Memory-mapped flash
Like RAM, the physical start address. For example, a node named flash@8000000 represents
a flash device whose physical start address is 0x8000000.

Fixed flash partitions
This applies when the devicetree is used to store a flash partition table. The unit address is
the partition’s start offset within the flash memory. For example, take this flash device and
its partitions:

flash@8000000 {
/* ... */
partitions {

partition@0 { /* ... */ };
partition@20000 { /* ... */ };
/* ... */

};
};

The node named partition@0 has offset 0 from the start of its flash device, so its base
address is 0x8000000. Similarly, the base address of the node named partition@20000 is
0x8020000.

Important properties The devicetree specification defines several standard properties. Some
of the most important ones are:

compatible
The name of the hardware device the node represents.

The recommended format is "vendor,device", like "avago,apds9960", or a sequence of
these, like "ti,hdc", "ti,hdc1010". The vendor part is an abbreviated name of the ven-
dor. The file dts/bindings/vendor-prefixes.txt contains a list of commonly accepted vendor
names. The device part is usually taken from the datasheet.

It is also sometimes a value like gpio-keys, mmio-sram, or fixed-clockwhen the hardware’s
behavior is generic.

The build system uses the compatible property to find the right bindings for the node. De-
vice drivers use devicetree.h to find nodes with relevant compatibles, in order to deter-
mine the available hardware to manage.

The compatible property can have multiple values. Additional values are useful when the
device is a specific instance of a more general family, to allow the system to match from
most- to least-specific device drivers.

Within Zephyr’s bindings syntax, this property has type string-array.

reg
Information used to address the device. The value is specific to the device (i.e. is different
depending on the compatible property).

The reg property is a sequence of (address, length) pairs. Each pair is called a “register
block”. Values are conventionally written in hex.

Here are some common patterns:
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• Devices accessed via memory-mapped I/O registers (like i2c@40003000): address is
usually the base address of the I/O register space, and length is the number of bytes
occupied by the registers.

• I2C devices (like apds9960@39 and its siblings): address is a slave address on the I2C
bus. There is no length value.

• SPI devices: address is a chip select line number; there is no length.

You may notice some similarities between the reg property and common unit addresses
described above. This is not a coincidence. The reg property can be seen as a more detailed
view of the addressable resources within a device than its unit address.

status
A string which describes whether the node is enabled.

The devicetree specification allows this property to have values "okay", "disabled", "re-
served", "fail", and "fail-sss". Only the values "okay" and "disabled" are currently
relevant to Zephyr; use of other values currently results in undefined behavior.

A node is considered enabled if its status property is either "okay" or not defined (i.e. does
not exist in the devicetree source). Nodes with status "disabled" are explicitly disabled.
(For backwards compatibility, the value "ok" is treated the same as "okay", but this usage
is deprecated.) Devicetree nodes which correspond to physical devices must be enabled for
the corresponding struct device in the Zephyr driver model to be allocated and initialized.

interrupts
Information about interrupts generated by the device, encoded as an array of one or more
interrupt specifiers. Each interrupt specifier has some number of cells. See section 2.4, Inter-
rupts and Interrupt Mapping, in the Devicetree Specification release v0.3 for more details.

Zephyr’s devicetree bindings language lets you give a name to each cell in an interrupt
specifier.

Note

Earlier versions of Zephyr made frequent use of the label property, which is distinct from
the standard node label. Use of the label property in new devicetree bindings, as well as use
of the DT_LABEL macro in new code, are actively discouraged. Label properties continue to
persist for historical reasons in some existing bindings and overlays, but should not be used
in new bindings or device implementations.

Writing property values This section describes how to write property values in DTS format.
The property types in the table below are described in detail in Devicetree bindings.

Some specifics are skipped in the interest of keeping things simple; if you’re curious about details,
see the devicetree specification.
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Prop-
erty
type

How to write Example

string Double quoted a-string = "hello, world!";
int between angle brackets (< and >) an-int = <1>;
boolean for true, with no value (for false, use /

delete-property/)
my-true-boolean;

array between angle brackets (< and >), sepa-
rated by spaces

foo = <0xdeadbeef 1234 0>;

uint8-
array

in hexadecimal without leading 0x, be-
tween square brackets ([ and ]).

a-byte-array = [00 01 ab];

string-
array

separated by commas a-string-array = "string one",
"string two", "string three";

phan-
dle

between angle brackets (< and >) a-phandle = <&mynode>;

phan-
dles

between angle brackets (< and >), sepa-
rated by spaces

some-phandles = <&mynode0 &mynode1
&mynode2>;

phandle-
array

between angle brackets (< and >), sepa-
rated by spaces

a-phandle-array = <&mynode0 1 2>,
<&mynode1 3 4>;

Additional notes on the above:

• The values in the phandle, phandles, and phandle-array types are described further in
Phandles

• Boolean properties are true if present. They should not have a value. A boolean property
is only false if it is completely missing in the DTS.

• The foo property value above has three cells with values 0xdeadbeef, 1234, and 0, in that
order. Note that hexadecimal and decimal numbers are allowed and can be intermixed.
Since Zephyr transforms DTS to C sources, it is not necessary to specify the endianness of
an individual cell here.

• 64-bit integers are written as two 32-bit cells in big-endian order. The value
0xaaaa0000bbbb1111 would be written <0xaaaa0000 0xbbbb1111>.

• The a-byte-array property value is the three bytes 0x00, 0x01, and 0xab, in that order.

• Parentheses, arithmetic operators, and bitwise operators are allowed. The bar property
contains a single cell with value 64:

bar = <(2 * (1 << 5))>;

Note that the entire expression must be parenthesized.

• Property values refer to other nodes in the devicetree by their phandles. You can write a
phandle using &foo, where foo is a node label. Here is an example devicetree fragment:

foo: device@0 { };
device@1 {

sibling = <&foo 1 2>;
};

The sibling property of node device@1 contains three cells, in this order:

1. The device@0 node’s phandle, which is written here as &foo since the device@0 node
has a node label foo

2. The value 1

3. The value 2
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In the devicetree, a phandle value is a cell – which again is just a 32-bit unsigned int. How-
ever, the Zephyr devicetree API generally exposes these values as node identifiers. Node
identifiers are covered in more detail in Devicetree access from C/C++.

• Array and similar type property values can be split into several <> blocks, like this:

foo = <1 2>, <3 4>; // Okay for 'type: array'
foo = <&label1 &label2>, <&label3 &label4>; // Okay for 'type: phandles'
foo = <&label1 1 2>, <&label2 3 4>; // Okay for 'type: phandle-array'

This is recommended for readability when possible if the value can be logically grouped
into blocks of sub-values.

Aliases and chosen nodes There are two additional ways beyond node labels to refer to a par-
ticular node without specifying its entire path: by alias, or by chosen node.

Here is an example devicetree which uses both:

/dts-v1/;

/ {
chosen {

zephyr,console = &uart0;
};

aliases {
my-uart = &uart0;

};

soc {
uart0: serial@12340000 {

...
};

};
};

The /aliases and /chosen nodes do not refer to an actual hardware device. Their purpose is to
specify other nodes in the devicetree.

Above, my-uart is an alias for the node with path /soc/serial@12340000. Using its node label
uart0, the same node is set as the value of the chosen zephyr,console node.

Zephyr sample applications sometimes use aliases to allow overriding the particular hardware
device used by the application in a generic way. For example, blinky uses this to abstract the LED
to blink via the led0 alias.

The /chosen node’s properties are used to configure system- or subsystem-wide values. See Cho-
sen nodes for more information.

Input and output files This section describes the input and output files shown in the figure in
Scope and purpose in more detail.

Input files There are four types of devicetree input files:

• sources (.dts)

• includes (.dtsi)

• overlays (.overlay)

• bindings (.yaml)

The devicetree files inside the zephyr directory look like this:
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FILE_1.overlay...Devi...

In...
<BOARD>.dts

BINDING_1.yaml...Devi...

Devicetree scri...

Intermediate output in bu...

Gene... Generated C headers

zephyr.dts.pre

zephyr.dts
Final merged devicetree i...

dtc (optional, just...

Viewer does not support full SVG 1.1

Fig. 3: Devicetree input (green) and output (yellow) files
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boards/<ARCH>/<BOARD>/<BOARD>.dts
dts/common/skeleton.dtsi
dts/<ARCH>/.../<SOC>.dtsi
dts/bindings/.../binding.yaml

Generally speaking, every supported board has a BOARD.dts file describing its hardware. For
example, the reel_board has boards/phytec/reel_board/reel_board.dts.

BOARD.dts includes one or more .dtsi files. These .dtsi files describe the CPU or system-on-chip
Zephyr runs on, perhaps by including other .dtsi files. They can also describe other common
hardware features shared by multiple boards. In addition to these includes, BOARD.dts also de-
scribes the board’s specific hardware.

The dts/common directory contains skeleton.dtsi, a minimal include file for defining a complete
devicetree. Architecture-specific subdirectories (dts/<ARCH>) contain .dtsifiles for CPUs or SoCs
which extend skeleton.dtsi.

The C preprocessor is run on all devicetree files to expand macro references, and includes
are generally done with #include <filename> directives, even though DTS has a /include/
"<filename>" syntax.

BOARD.dts can be extended or modified using overlays. Overlays are also DTS files; the .overlay
extension is just a convention which makes their purpose clear. Overlays adapt the base device-
tree for different purposes:

• Zephyr applications can use overlays to enable a peripheral that is disabled by default, se-
lect a sensor on the board for an application specific purpose, etc. Along with Configuration
System (Kconfig), this makes it possible to reconfigure the kernel and device drivers without
modifying source code.

• Overlays are also used when defining Shields.

The build system automatically picks up .overlay files stored in certain locations. It is also pos-
sible to explicitly list the overlays to include, via the DTC_OVERLAY_FILE CMake variable. See Set
devicetree overlays for details.

The build system combines BOARD.dts and any .overlay files by concatenating them, with the
overlays put last. This relies on DTS syntax which allows merging overlapping definitions of
nodes in the devicetree. See Example: FRDM-K64F and Hexiwear K64 for an example of how
this works (in the context of .dtsi files, but the principle is the same for overlays). Putting the
contents of the .overlay files last allows them to override BOARD.dts.

Devicetree bindings (which are YAML files) are essentially glue. They describe the contents of
devicetree sources, includes, and overlays in a way that allows the build system to generate C
macros usable by device drivers and applications. The dts/bindings directory contains bind-
ings.

Scripts and tools The following libraries and scripts, located in scripts/dts/, create output files
from input files. Their sources have extensive documentation.

dtlib.py
A low-level DTS parsing library.

edtlib.py
A library layered on top of dtlib that uses bindings to interpret properties and give a higher-
level view of the devicetree. Uses dtlib to do the DTS parsing.

gen_defines.py
A script that uses edtlib to generate C preprocessor macros from the devicetree and bind-
ings.

In addition to these, the standard dtc (devicetree compiler) tool is run on the final devicetree
if it is installed on your system. This is just to catch errors or warnings. The output is unused.
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Boards may need to pass dtc additional flags, e.g. for warning suppression. Board directories
can contain a file named pre_dt_board.cmake which configures these extra flags, like this:

list(APPEND EXTRA_DTC_FLAGS "-Wno-simple_bus_reg")

Output files These are created in your application’s build directory.

Warning

Don’t include the header files directly. Devicetree access from C/C++ explains what to do in-
stead.

<build>/zephyr/zephyr.dts.pre
The preprocessed DTS source. This is an intermediate output file, which is input to
gen_defines.py and used to create zephyr.dts and devicetree_generated.h.

<build>/zephyr/include/generated/zephyr/devicetree_generated.h
The generated macros and additional comments describing the devicetree. Included by
devicetree.h.

<build>/zephyr/zephyr.dts
The final merged devicetree. This file is output by gen_defines.py. It is useful for debug-
ging any issues. If the devicetree compiler dtc is installed, it is also run on this file, to catch
any additional warnings or errors.

Design goals

Zephyr’s use of devicetree has evolved significantly over time, and further changes are expected.
The following are the general design goals, along with specific examples about how they impact
Zephyr’s source code, and areas where more work remains to be done.

Single source for hardware information Zephyr’s built-in device drivers and sample appli-
cations shall obtain configurable hardware descriptions from devicetree.

Examples
• New device drivers shall use devicetree APIs to determine which devices to create.

• In-tree sample applications shall use aliases to determine which of multiple possible
generic devices of a given type will be used in the current build. For example, the blinky
sample uses this to determine the LED to blink.

• Boot-time pin muxing and pin control for new SoCs shall be accomplished via a devicetree-
based pinctrl driver

Example remaining work
• Zephyr’s Test Runner (Twister) currently use board.yaml files to determine the hardware

supported by a board. This should be obtained from devicetree instead.

• Legacy device drivers currently use Kconfig to determine which instances of a particular
compatible are enabled. This can and should be done with devicetree overlays instead.

• Board-level documentation still contains tables of hardware support which are generated
and maintained by hand. This can and should be obtained from the board level devicetree
instead.
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• Runtime determination of struct device relationships should be done using information
obtained from devicetree, e.g. for device power management.

Source compatibility with other operating systems Zephyr’s devicetree tooling is based on
a generic layer which is interoperable with other devicetree users, such as the Linux kernel.

Zephyr’s binding language semantics can support Zephyr-specific attributes, but shall not ex-
press Zephyr-specific relationships.

Examples
• Zephyr’s devicetree source parser, dtlib.py, is source-compatible with other tools like dtc in

both directions: dtlib.py can parse dtc output, and dtc can parse dtlib.py output.

• Zephyr’s “extended dtlib” library, edtlib.py, shall not include Zephyr-specific features. Its
purpose is to provide a higher-level view of the devicetree for common elements like inter-
rupts and buses.

Only the high-level gen_defines.py script, which is built on top of edtlib.py, contains
Zephyr-specific knowledge and features.

Example remaining work
• Zephyr has a custom Devicetree bindings language syntax. While Linux’s dtschema does

not yet meet Zephyr’s needs, we should try to follow what it is capable of representing in
Zephyr’s own bindings.

• Due to inflexibility in the bindings language, Zephyr cannot support the full set of bindings
supported by Linux.

• Devicetree source sharing between Zephyr and Linux is not done.

Devicetree bindings

A devicetree on its own is only half the story for describing hardware, as it is a relatively un-
structured format. Devicetree bindings provide the other half.

A devicetree binding declares requirements on the contents of nodes, and provides semantic
information about the contents of valid nodes. Zephyr devicetree bindings are YAML files in a
custom format (Zephyr does not use the dt-schema tools used by the Linux kernel).

These pages introduce bindings, describe what they do, note where they are found, and explain
their data format.

Note

See the Bindings index for reference information on bindings built in to Zephyr.

Note

For a detailed syntax reference, see Devicetree bindings syntax.

Introduction to Devicetree Bindings Devicetree nodes are matched to bindings using their
compatible properties.
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During the Configuration Phase, the build system tries to match each node in the devicetree to a
binding file. When this succeeds, the build system uses the information in the binding file both
when validating the node’s contents and when generating macros for the node.

A simple example Here is an example devicetree node:

/* Node in a DTS file */
bar-device {

compatible = "foo-company,bar-device";
num-foos = <3>;

};

Here is a minimal binding file which matches the node:

# A YAML binding matching the node

compatible: "foo-company,bar-device"

properties:
num-foos:
type: int
required: true

The build system matches the bar-device node to its YAML binding because the node’s compat-
ible property matches the binding’s compatible: line.

What thebuild systemdoeswithbindings The build system uses bindings both to validate de-
vicetree nodes and to convert the devicetree’s contents into the generated devicetree_generated.h
header file.

For example, the build system would use the above binding to check that the required num-foos
property is present in the bar-device node, and that its value, <3>, has the correct type.

The build system will then generate a macro for the bar-device node’s num-foos property, which
will expand to the integer literal 3. This macro lets you get the value of the property in C code
using the API which is discussed later in this guide in Devicetree access from C/C++.

For another example, the following node would cause a build error, because it has no num-foos
property, and this property is marked required in the binding:

bad-node {
compatible = "foo-company,bar-device";

};

Other ways nodes are matched to bindings If a node has more than one string in its compat-
ible property, the build system looks for compatible bindings in the listed order and uses the
first match.

Take this node as an example:

baz-device {
compatible = "foo-company,baz-device", "generic-baz-device";

};

The baz-device node would get matched to a binding with a compatible:
"generic-baz-device" line if the build system can’t find a binding with a compatible:
"foo-company,baz-device" line.

Nodes without compatible properties can be matched to bindings associated with their parent
nodes. These are called “child bindings”. If a node describes hardware on a bus, like I2C or SPI,

1332 Chapter 5. Build and Configuration Systems



Zephyr Project Documentation, Release 3.7.99

then the bus type is also taken into account when matching nodes to bindings. (See On-bus for
details).

See The /zephyr,user node for information about a special node that doesn’t require any binding.

Where bindings are located Binding file names usually match their compatible: lines. For
example, the above example binding would be named foo-company,bar-device.yaml by con-
vention.

The build system looks for bindings in dts/bindings subdirectories of the following places:

• the zephyr repository

• your application source directory

• your board directory

• any shield directories

• any directories manually included in the DTS_ROOT CMake variable

• any module that defines a dts_root in its Build settings

The build system will consider any YAML file in any of these, including in any subdirectories,
when matching nodes to bindings. A file is considered YAML if its name ends with .yaml or .yml.

Warning

The binding files must be located somewhere inside the dts/bindings subdirectory of the
above places.

For example, if my-app is your application directory, then you must place application-specific
bindings inside my-app/dts/bindings. So my-app/dts/bindings/serial/my-company,
my-serial-port.yaml would be found, but my-app/my-company,my-serial-port.yaml would
be ignored.

Devicetree bindings syntax This page documents the syntax of Zephyr’s bindings format.
Zephyr bindings files are YAML files. A simple example was given in the introduction page.

Contents

• Top level keys

• Description

• Compatible

• Properties

– Property entry syntax

– Example property definitions

– required

– type

– deprecated

– default

– enum
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– const

– specifier-space

• Child-binding

• Bus

• On-bus

• Specifier cell names (*-cells)

• Include

• Nexus nodes and maps

Top level keys The top level of a bindings file maps keys to values. The top-level keys look like
this:

# A high level description of the device the binding applies to:
description: |

This is the Vendomatic company's foo-device.

Descriptions which span multiple lines (like this) are OK,
and are encouraged for complex bindings.

See https://yaml-multiline.info/ for formatting help.

# You can include definitions from other bindings using this syntax:
include: other.yaml

# Used to match nodes to this binding:
compatible: "manufacturer,foo-device"

properties:
# Requirements for and descriptions of the properties that this
# binding's nodes need to satisfy go here.

child-binding:
# You can constrain the children of the nodes matching this binding
# using this key.

# If the node describes bus hardware, like an SPI bus controller
# on an SoC, use 'bus:' to say which one, like this:
bus: spi

# If the node instead appears as a device on a bus, like an external
# SPI memory chip, use 'on-bus:' to say what type of bus, like this.
# Like 'compatible', this key also influences the way nodes match
# bindings.
on-bus: spi

foo-cells:
# "Specifier" cell names for the 'foo' domain go here; example 'foo'
# values are 'gpio', 'pwm', and 'dma'. See below for more information.

These keys are explained in the following sections.

Description A free-form description of node hardware goes here. You can put links to
datasheets or example nodes or properties as well.
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Compatible This key is used to match nodes to this binding as described in Introduction to
Devicetree Bindings. It should look like this in a binding file:

# Note the comma-separated vendor prefix and device name
compatible: "manufacturer,device"

This devicetree node would match the above binding:

device {
compatible = "manufacturer,device";

};

Assuming no binding has compatible: "manufacturer,device-v2", it would also match this
node:

device-2 {
compatible = "manufacturer,device-v2", "manufacturer,device";

};

Each node’s compatible property is tried in order. The first matching binding is used. The on-bus:
key can be used to refine the search.

If more than one binding for a compatible is found, an error is raised.

The manufacturer prefix identifies the device vendor. See dts/bindings/vendor-prefixes.txt for a
list of accepted vendor prefixes. The device part is usually from the datasheet.

Some bindings apply to a generic class of devices which do not have a specific vendor. In these
cases, there is no vendor prefix. One example is the gpio-leds compatible which is commonly
used to describe board LEDs connected to GPIOs.

Properties The properties: key describes properties that nodes which match the binding con-
tain. For example, a binding for a UART peripheral might look something like this:

compatible: "manufacturer,serial"

properties:
reg:
type: array
description: UART peripheral MMIO register space
required: true

current-speed:
type: int
description: current baud rate
required: true

In this example, a node with compatible "manufacturer,serial" must contain a node named
current-speed. The property’s value must be a single integer. Similarly, the node must contain
a reg property.

The build system uses bindings to generate C macros for devicetree properties that appear in
DTS files. You can read more about how to get property values in source code from these macros
in Devicetree access from C/C++. Generally speaking, the build system only generates macros for
properties listed in the properties: key for the matching binding. Properties not mentioned in
the binding are generally ignored by the build system.

The one exception is that the build system will always generate macros for standard properties,
like reg, whose meaning is defined by the devicetree specification. This happens regardless of
whether the node has a matching binding or not.

Property entry syntax Property entries in properties: are written in this syntax:
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<property name>:
required: <true | false>
type: <string | int | boolean | array | uint8-array | string-array |

phandle | phandles | phandle-array | path | compound>
deprecated: <true | false>
default: <default>
description: <description of the property>
enum:
- <item1>
- <item2>
...
- <itemN>

const: <string | int | array | uint8-array | string-array>
specifier-space: <space-name>

Example property definitions Here are some more examples.

properties:
# Describes a property like 'current-speed = <115200>;'. We pretend that
# it's obligatory for the example node and set 'required: true'.
current-speed:

type: int
required: true
description: Initial baud rate for bar-device

# Describes an optional property like 'keys = "foo", "bar";'
keys:

type: string-array
description: Keys for bar-device

# Describes an optional property like 'maximum-speed = "full-speed";'
# the enum specifies known values that the string property may take
maximum-speed:

type: string
description: Configures USB controllers to work up to a specific speed.
enum:

- "low-speed"
- "full-speed"
- "high-speed"
- "super-speed"

# Describes an optional property like 'resolution = <16>;'
# the enum specifies known values that the int property may take
resolution:

type: int
enum:
- 8
- 16
- 24
- 32

# Describes a required property '#address-cells = <1>'; the const
# specifies that the value for the property is expected to be the value 1
"#address-cells":

type: int
required: true
const: 1

int-with-default:
type: int

(continues on next page)
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(continued from previous page)
default: 123
description: Value for int register, default is power-up configuration.

array-with-default:
type: array
default: [1, 2, 3] # Same as 'array-with-default = <1 2 3>'

string-with-default:
type: string
default: "foo"

string-array-with-default:
type: string-array
default: ["foo", "bar"] # Same as 'string-array-with-default = "foo", "bar"'

uint8-array-with-default:
type: uint8-array
default: [0x12, 0x34] # Same as 'uint8-array-with-default = [12 34]'

required Adding required: true to a property definition will fail the build if a node matches
the binding, but does not contain the property.

The default setting is required: false; that is, properties are optional by default. Using re-
quired: false is therefore redundant and strongly discouraged.

type The type of a property constrains its values. The following types are available. SeeWriting
property values for more details about writing values of each type in a DTS file. See Phandles for
more information about the phandle* type properties.

Type Description Example in DTS
string exactly one string status = "disabled";
int exactly one 32-bit value (cell) current-speed = <115200>;
boolean flags that don’t take a value when true, and

are absent if false
hw-flow-control;

array zero or more 32-bit values (cells) offsets = <0x100 0x200
0x300>;

uint8-array zero or more bytes, in hex (‘bytestring’ in the
Devicetree specification)

local-mac-address = [de ad
be ef 12 34];

string-array zero or more strings dma-names = "tx", "rx";
phandle exactly one phandle interrupt-parent = <&gic>;
phandles zero or more phandles pinctrl-0 =

<&usart2_tx_pd5 &us-
art2_rx_pd6>;

phandle-array a list of phandles and 32-bit cells (usually
specifiers)

dmas = <&dma0 2>, <&dma0
3>;

path a path to a node as a phandle path reference
or path string

zephyr,bt-c2h-uart =
&uart0; or foo = "/path/to/
some/node";

compound a catch-all for more complex types (no macros
will be generated)

foo = <&label>, [01 02];

deprecated A property with deprecated: true indicates to both the user and the tooling that
the property is meant to be phased out.
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The tooling will report a warning if the devicetree includes the property that is flagged as dep-
recated. (This warning is upgraded to an error in the Test Runner (Twister) for upstream pull
requests.)

The default setting is deprecated: false. Using deprecated: false is therefore redundant and
strongly discouraged.

default The optional default: setting gives a value that will be used if the property is missing
from the devicetree node.

For example, with this binding fragment:

properties:
foo:
type: int
default: 3

If property foo is missing in a matching node, then the output will be as if foo = <3>; had
appeared in the DTS (except YAML data types are used for the default value).

Note that combining default: with required: true will raise an error.

For rules related to default in upstream Zephyr bindings, see Rules for default values.

See Example property definitions for examples. Putting default: on any property type besides
those used in Example property definitions will raise an error.

enum The enum: line is followed by a list of values the property may contain. If a property
value in DTS is not in the enum: list in the binding, an error is raised. See Example property
definitions for examples.

const This specifies a constant value the property must take. It is mainly useful for constraining
the values of common properties for a particular piece of hardware.

Warning

It is an abuse of this feature to use it to name properties in unconventional ways.

For example, this feature is not meant for cases like naming a property my-pin, then assigning
it to the “gpio” specifier space using this feature. Properties which refer to GPIOs should use
conventional names, i.e. end in -gpios or -gpio.

specifier-space This property, if present, manually sets the specifier space associated with a
property with type phandle-array.

Normally, the specifier space is encoded implicitly in the property name. A property named foos
with type phandle-array implicitly has specifier space foo. As a special case, *-gpios properties
have specifier space “gpio”, so that foo-gpios will have specifier space “gpio” rather than “foo-
gpio”.

You can use specifier-space to manually provide a space if using this convention would result
in an awkward or unconventional name.

For example:
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compatible: ...
properties:
bar:
type: phandle-array
specifier-space: my-custom-space

Above, the bar property’s specifier space is set to “my-custom-space”.

You could then use the property in a devicetree like this:

controller1: custom-controller@1000 {
#my-custom-space-cells = <2>;

};

controller2: custom-controller@2000 {
#my-custom-space-cells = <1>;

};

my-node {
bar = <&controller1 10 20>, <&controller2 30>;

};

Generally speaking, you should reserve this feature for cases where the implicit specifier space
naming convention doesn’t work. One appropriate example is an mboxes property with specifier
space “mbox”, not “mboxe”. You can write this property as follows:

properties:
mboxes:
type: phandle-array
specifier-space: mbox

Child-binding child-binding can be used when a node has children that all share the same
properties. Each child gets the contents of child-binding as its binding, though an explicit com-
patible = ... on the child node takes precedence, if a binding is found for it.

Consider a binding for a PWM LED node like this one, where the child nodes are required to have
a pwms property:

pwmleds {
compatible = "pwm-leds";

red_pwm_led {
pwms = <&pwm3 4 15625000>;

};
green_pwm_led {

pwms = <&pwm3 0 15625000>;
};
/* ... */

};

The binding would look like this:

compatible: "pwm-leds"

child-binding:
description: LED that uses PWM

properties:
pwms:

type: phandle-array
required: true
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child-binding also works recursively. For example, this binding:

compatible: foo

child-binding:
child-binding:
properties:

my-property:
type: int
required: true

will apply to the grandchild node in this DTS:

parent {
compatible = "foo";
child {

grandchild {
my-property = <123>;

};
};

};

Bus If the node is a bus controller, use bus: in the binding to say what type of bus. For example,
a binding for a SPI peripheral on an SoC would look like this:

compatible: "manufacturer,spi-peripheral"
bus: spi
# ...

The presence of this key in the binding informs the build system that the children of any node
matching this binding appear on this type of bus.

This in turn influences the way on-bus: is used to match bindings for the child nodes.

For a single bus supporting multiple protocols, e.g. I3C and I2C, the bus: in the binding can have
a list as value:

compatible: "manufacturer,i3c-controller"
bus: [i3c, i2c]
# ...

On-bus If the node appears as a device on a bus, use on-bus: in the binding to say what type
of bus.

For example, a binding for an external SPI memory chip should include this line:

on-bus: spi

And a binding for an I2C based temperature sensor should include this line:

on-bus: i2c

When looking for a binding for a node, the build system checks if the binding for the parent node
contains bus: <bus type>. If it does, then only bindings with a matching on-bus: <bus type>
and bindings without an explicit on-bus are considered. Bindings with an explicit on-bus: <bus
type> are searched for first, before bindings without an explicit on-bus. The search repeats for
each item in the node’s compatible property, in order.

This feature allows the same device to have different bindings depending on what bus it appears
on. For example, consider a sensor device with compatible manufacturer,sensor which can be
used via either I2C or SPI.
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The sensor node may therefore appear in the devicetree as a child node of either an SPI or an
I2C controller, like this:

spi-bus@0 {
/* ... some compatible with 'bus: spi', etc. ... */

sensor@0 {
compatible = "manufacturer,sensor";
reg = <0>;
/* ... */

};
};

i2c-bus@0 {
/* ... some compatible with 'bus: i2c', etc. ... */

sensor@79 {
compatible = "manufacturer,sensor";
reg = <79>;
/* ... */

};
};

You can write two separate binding files which match these individual sensor nodes, even though
they have the same compatible:

# manufacturer,sensor-spi.yaml, which matches sensor@0 on the SPI bus:
compatible: "manufacturer,sensor"
on-bus: spi

# manufacturer,sensor-i2c.yaml, which matches sensor@79 on the I2C bus:
compatible: "manufacturer,sensor"
properties:
uses-clock-stretching:
type: boolean

on-bus: i2c

Only sensor@79 can have a use-clock-stretching property. The bus-sensitive logic ignores
manufacturer,sensor-i2c.yaml when searching for a binding for sensor@0.

Specifier cell names (*-cells) This section documents how to name the cells in a specifier
within a binding. These concepts are discussed in detail later in this guide in phandle-array
properties.

Consider a binding for a node whose phandle may appear in a phandle-array property, like the
PWM controllers pwm1 and pwm2 in this example:

pwm1: pwm@deadbeef {
compatible = "foo,pwm";
#pwm-cells = <2>;

};

pwm2: pwm@deadbeef {
compatible = "bar,pwm";
#pwm-cells = <1>;

};

my-node {
pwms = <&pwm1 1 2000>, <&pwm2 3000>;

};
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The bindings for compatible "foo,pwm" and "bar,pwm" must give a name to the cells that appear
in a PWM specifier using pwm-cells:, like this:

# foo,pwm.yaml
compatible: "foo,pwm"
...
pwm-cells:
- channel
- period

# bar,pwm.yaml
compatible: "bar,pwm"
...
pwm-cells:
- period

A *-names (e.g. pwm-names) property can appear on the node as well, giving a name to each entry.

This allows the cells in the specifiers to be accessed by name, e.g. using APIs like
DT_PWMS_CHANNEL_BY_NAME.

If the specifier is empty (e.g. #clock-cells = <0>), then *-cells can either be omitted (recom-
mended) or set to an empty array. Note that an empty array is specified as e.g. clock-cells: []
in YAML.

Include Bindings can include other files, which can be used to share common property defini-
tions between bindings. Use the include: key for this. Its value is either a string or a list.

In the simplest case, you can include another file by giving its name as a string, like this:

include: foo.yaml

If any file named foo.yaml is found (see Where bindings are located for the search process), it
will be included into this binding.

Included files are merged into bindings with a simple recursive dictionary merge. The build
system will check that the resulting merged binding is well-formed. It is allowed to include at
any level, including child-binding, like this:

# foo.yaml will be merged with content at this level
include: foo.yaml

child-binding:
# bar.yaml will be merged with content at this level
include: bar.yaml

It is an error if a key appears with a different value in a binding and in a file it includes, with
one exception: a binding can have required: true for a property definition for which the in-
cluded file has required: false. The required: true takes precedence, allowing bindings to
strengthen requirements from included files.

Note that weakening requirements by having required: false where the included file has
required: true is an error. This is meant to keep the organization clean.

The file base.yaml contains definitions for many common properties. When writing a new bind-
ing, it is a good idea to check if base.yaml already defines some of the needed properties, and
include it if it does.

Note that you can make a property defined in base.yaml obligatory like this, taking reg as an
example:

reg:
required: true
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This relies on the dictionary merge to fill in the other keys for reg, like type.

To include multiple files, you can use a list of strings:

include:
- foo.yaml
- bar.yaml

This includes the files foo.yaml and bar.yaml. (You can write this list in a single line of YAML as
include: [foo.yaml, bar.yaml].)

When including multiple files, any overlapping required keys on properties in the included files
are ORed together. This makes sure that a required: true is always respected.

In some cases, you may want to include some property definitions from a file, but not all of
them. In this case, include: should be a list, and you can filter out just the definitions you want
by putting a mapping in the list, like this:

include:
- name: foo.yaml
property-allowlist:

- i-want-this-one
- and-this-one

- name: bar.yaml
property-blocklist:

- do-not-include-this-one
- or-this-one

Each map element must have a name key which is the filename to include, and may have
property-allowlist and property-blocklist keys that filter which properties are included.

You cannot have a single map element with both property-allowlist and property-blocklist
keys. A map element with neither property-allowlist nor property-blocklist is valid; no
additional filtering is done.

You can freely intermix strings and mappings in a single include: list:

include:
- foo.yaml
- name: bar.yaml
property-blocklist:

- do-not-include-this-one
- or-this-one

Finally, you can filter from a child binding like this:

include:
- name: bar.yaml
child-binding:

property-allowlist:
- child-prop-to-allow

Nexus nodes and maps All phandle-array type properties support mapping through *-map
properties, e.g. gpio-map, as defined by the Devicetree specification.

This is used, for example, to define connector nodes for common breakout headers, such as
the arduino_header nodes that are conventionally defined in the devicetrees for boards with
Arduino compatible expansion headers.

Rules for upstream bindings This section includes general rules for writing bindings that you
want to submit to the upstream Zephyr Project. (You don’t need to follow these rules for bindings
you don’t intend to contribute to the Zephyr Project, but it’s a good idea.)
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Decisions made by the Zephyr devicetree maintainer override the contents of this section. If
that happens, though, please let them know so they can update this page, or you can send a
patch yourself.

Contents

• Always check for existing bindings

• General rules

– File names

– Recommendations are requirements

– Descriptions

– Naming conventions

• Rules for vendor prefixes

• Rules for default values

• The zephyr, prefix

Always check for existing bindings Zephyr aims for devicetree Source compatibility with
other operating systems. Therefore, if there is an existing binding for your device in an authori-
tative location, you should try to replicate its properties when writing a Zephyr binding, and you
must justify any Zephyr-specific divergences.

In particular, this rule applies if:

• There is an existing binding in the mainline Linux kernel. See Documentation/devicetree/
bindings in Linus’s tree for existing bindings and the Linux devicetree documentation for
more information.

• Your hardware vendor provides an official binding outside of the Linux kernel.

General rules

File names Bindings which match a compatible must have file names based on the compatible.

• For example, a binding for compatible vnd,foo must be named vnd,foo.yaml.

• If the binding is bus-specific, you can append the bus to the file name; for example, if the
binding YAML has on-bus: bar, you may name the file vnd,foo-bar.yaml.

Recommendations are requirements All recommendations in default are requirements
when submitting the binding.

In particular, if you use the default: feature, you must justify the value in the property’s de-
scription.

Descriptions There are only two acceptable ways to write property description: strings.

If your description is short, it’s fine to use this style:

description: my short string

If your description is long or spans multiple lines, you must use this style:
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description: |
My very long string
goes here.
Look at all these lines!

This | style prevents YAML parsers from removing the newlines in multi-line descriptions. This
in turn makes these long strings display properly in the Bindings index.

Naming conventions Do not use uppercase letters (A through Z) or underscores (_) in prop-
erty names. Use lowercase letters (a through z) instead of uppercase. Use dashes (-) instead of
underscores. (The one exception to this rule is if you are replicating a well-established binding
from somewhere like Linux.)

Rules for vendor prefixes The following general rules apply to vendor prefixes in compatible
properties.

• If your device is manufactured by a specific vendor, then its compatible should have a ven-
dor prefix.

If your binding describes hardware with a well known vendor from the list in
dts/bindings/vendor-prefixes.txt, you must use that vendor prefix.

• If your device is not manufactured by a specific hardware vendor, do not invent a vendor
prefix. Vendor prefixes are not mandatory parts of compatible properties, and compatibles
should not include them unless they refer to an actual vendor. There are some exceptions
to this rule, but the practice is strongly discouraged.

• Do not submit additions to Zephyr’s dts/bindings/vendor-prefixes.txt file unless you
also include users of the new prefix. This means at least a binding and a devicetree using
the vendor prefix, and should ideally include a device driver handling that compatible.

For custom bindings, you can add a custom dts/bindings/vendor-prefixes.txt file to any
directory in your DTS_ROOT. The devicetree tooling will respect these prefixes, and will not
generate warnings or errors if you use them in your own bindings or devicetrees.

• We sometimes synchronize Zephyr’s vendor-prefixes.txt file with the Linux kernel’s equiv-
alent file; this process is exempt from the previous rule.

• If your binding is describing an abstract class of hardware with Zephyr specific drivers
handling the nodes, it’s usually best to use zephyr as the vendor prefix. See Zephyr-specific
binding (zephyr) for examples.

Rules for default values In any case where default: is used in a devicetree binding, the
description: for that property must explain why the value was selected and any conditions
that would make it necessary to provide a different value. Additionally, if changing one prop-
erty would require changing another to create a consistent configuration, then those properties
should be made required.

There is no need to document the default value itself; this is already present in the Bindings index
output.

There is a risk in using default: when the value in the binding may be incorrect for a particular
board or hardware configuration. For example, defaulting the capacity of the connected power
cell in a charging IC binding is likely to be incorrect. For such properties it’s better to make the
property required: true, forcing the user to make an explicit choice.

Driver developers should use their best judgment as to whether a value can be safely defaulted.
Candidates for default values include:

• delays that would be different only under unusual conditions (such as intervening hard-
ware)
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• configuration for devices that have a standard initial configuration (such as a USB audio
headset)

• defaults which match the vendor-specified power-on reset value (as long as they are inde-
pendent from other properties)

Examples of how to write descriptions according to these rules:

properties:
cs-interval:
type: int
default: 0
description: |

Minimum interval between chip select deassertion and assertion.
The default corresponds to the reset value of the register field.

hold-time-ms:
type: int
default: 20
description: |

Amount of time to hold the power enable GPIO asserted before
initiating communication. The default was recommended in the
manufacturer datasheet, and would only change under very
cold temperatures.

Some examples of what not to do, and why:

properties:
# Description doesn't mention anything about the default
foo:
type: int
default: 1
description: number of foos

# Description mentions the default value instead of why it
# was chosen
bar:
type: int
default: 2
description: bar size; default is 2

# Explanation of the default value is in a comment instead
# of the description. This won't be shown in the bindings index.
baz:
type: int
# This is the recommended value chosen by the manufacturer.
default: 2
description: baz time in milliseconds

The zephyr, prefix You must add this prefix to property names in the following cases:

• Zephyr-specific extensions to bindings we share with upstream Linux. One example is
the zephyr,vref-mv ADC channel property which is common to ADC controllers defined
in dts/bindings/adc/adc-controller.yaml. This channel binding is partially shared with an
analogous Linux binding, and Zephyr-specific extensions are marked as such with the pre-
fix.

• Configuration values that are specific to a Zephyr device driver. One example is the zephyr,
lazy-load property in the ti,bq274xx binding. Though devicetree in general is a hard-
ware description and configuration language, it is Zephyr’s only mechanism for configur-
ing driver behavior for an individual struct device. Therefore, as a compromise, we do
allow some software configuration in Zephyr’s devicetree bindings, as long as they use this
prefix to show that they are Zephyr specific.
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You may use the zephyr, prefix when naming a devicetree compatible that is specific to Zephyr.
One example is zephyr,ipc-openamp-static-vrings. In this case, it’s permitted but not required
to add the zephyr, prefix to properties defined in the binding.

Devicetree access from C/C++

This guide describes Zephyr’s <zephyr/devicetree.h> API for reading the devicetree from C
source files. It assumes you’re familiar with the concepts in Introduction to devicetree and De-
vicetree bindings. See Devicetree Reference for reference material.

A note for Linux developers Linux developers familiar with devicetree should be warned
that the API described here differs significantly from how devicetree is used on Linux.

Instead of generating a C header with all the devicetree data which is then abstracted behind a
macro API, the Linux kernel would instead read the devicetree data structure in its binary form.
The binary representation is parsed at runtime, for example to load and initialize device drivers.

Zephyr does not work this way because the size of the devicetree binary and associated handling
code would be too large to fit comfortably on the relatively constrained devices Zephyr supports.

Node identifiers To get information about a particular devicetree node, you need a node iden-
tifier for it. This is a just a C macro that refers to the node.

These are the main ways to get a node identifier:

By path
Use DT_PATH() along with the node’s full path in the devicetree, starting from the root node.
This is mostly useful if you happen to know the exact node you’re looking for.

By node label
Use DT_NODELABEL() to get a node identifier from a node label. Node labels are often pro-
vided by SoC .dtsi files to give nodes names that match the SoC datasheet, like i2c1, spi2,
etc.

By alias
Use DT_ALIAS() to get a node identifier for a property of the special /aliases node. This is
sometimes done by applications (like blinky, which uses the led0 alias) that need to refer to
some device of a particular type (“the board’s user LED”) but don’t care which one is used.

By instance number
This is done primarily by device drivers, as instance numbers are a way to refer to individ-
ual nodes based on a matching compatible. Get these with DT_INST(), but be careful doing
so. See below.

By chosen node
Use DT_CHOSEN() to get a node identifier for /chosen node properties.

By parent/child
Use DT_PARENT() and DT_CHILD() to get a node identifier for a parent or child node, starting
from a node identifier you already have.

Two node identifiers which refer to the same node are identical and can be used interchangeably.

Here’s a DTS fragment for some imaginary hardware we’ll return to throughout this file for ex-
amples:

/dts-v1/;

/ {

(continues on next page)
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(continued from previous page)
aliases {

sensor-controller = &i2c1;
};

soc {
i2c1: i2c@40002000 {

compatible = "vnd,soc-i2c";
label = "I2C_1";
reg = <0x40002000 0x1000>;
status = "okay";
clock-frequency = < 100000 >;

};
};

};

Here are a few ways to get node identifiers for the i2c@40002000 node:

• DT_PATH(soc, i2c_40002000)
• DT_NODELABEL(i2c1)
• DT_ALIAS(sensor_controller)
• DT_INST(x, vnd_soc_i2c) for some unknown number x. See the DT_INST() documentation

for details.

Important

Non-alphanumeric characters like dash (-) and the at sign (@) in devicetree names are con-
verted to underscores (_). The names in a DTS are also converted to lowercase.

Node identifiers are not values There is no way to store one in a variable. You cannot write:

/* These will give you compiler errors: */

void *i2c_0 = DT_INST(0, vnd_soc_i2c);
unsigned int i2c_1 = DT_INST(1, vnd_soc_i2c);
long my_i2c = DT_NODELABEL(i2c1);

If you want something short to save typing, use C macros:

/* Use something like this instead: */

#define MY_I2C DT_NODELABEL(i2c1)

#define INST(i) DT_INST(i, vnd_soc_i2c)
#define I2C_0 INST(0)
#define I2C_1 INST(1)

Property access The right API to use to read property values depends on the node and prop-
erty.

• Checking properties and values

• Simple properties

• reg properties

• interrupts properties

• phandle properties
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Checking properties and values You can use DT_NODE_HAS_PROP() to check if a node has a
property. For the example devicetree above:

DT_NODE_HAS_PROP(DT_NODELABEL(i2c1), clock_frequency) /* expands to 1 */
DT_NODE_HAS_PROP(DT_NODELABEL(i2c1), not_a_property) /* expands to 0 */

Simple properties Use DT_PROP(node_id, property) to read basic integer, boolean, string,
numeric array, and string array properties.

For example, to read the clock-frequency property’s value in the above example:

DT_PROP(DT_PATH(soc, i2c_40002000), clock_frequency) /* This is 100000, */
DT_PROP(DT_NODELABEL(i2c1), clock_frequency) /* and so is this, */
DT_PROP(DT_ALIAS(sensor_controller), clock_frequency) /* and this. */

Important

The DTS property clock-frequency is spelled clock_frequency in C. That is, properties also
need special characters converted to underscores. Their names are also forced to lowercase.

Properties with string and boolean types work the exact same way. The DT_PROP() macro ex-
pands to a string literal in the case of strings, and the number 0 or 1 in the case of booleans. For
example:

#define I2C1 DT_NODELABEL(i2c1)

DT_PROP(I2C1, status) /* expands to the string literal "okay" */

Note

Don’t use DT_NODE_HAS_PROP() for boolean properties. Use DT_PROP() instead as shown
above. It will expand to either 0 or 1 depending on if the property is present or absent.

Properties with type array, uint8-array, and string-array work similarly, except DT_PROP()
expands to an array initializer in these cases. Here is an example devicetree fragment:

foo: foo@1234 {
a = <1000 2000 3000>; /* array */
b = [aa bb cc dd]; /* uint8-array */
c = "bar", "baz"; /* string-array */

};

Its properties can be accessed like this:

#define FOO DT_NODELABEL(foo)

int a[] = DT_PROP(FOO, a); /* {1000, 2000, 3000} */
unsigned char b[] = DT_PROP(FOO, b); /* {0xaa, 0xbb, 0xcc, 0xdd} */
char* c[] = DT_PROP(FOO, c); /* {"foo", "bar"} */

You can use DT_PROP_LEN() to get logical array lengths in number of elements.

size_t a_len = DT_PROP_LEN(FOO, a); /* 3 */
size_t b_len = DT_PROP_LEN(FOO, b); /* 4 */
size_t c_len = DT_PROP_LEN(FOO, c); /* 2 */

DT_PROP_LEN() cannot be used with the special reg or interrupts properties. These have alter-
native macros which are described next.
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reg properties See Important properties for an introduction to reg.

Given a node identifier node_id, DT_NUM_REGS(node_id) is the total number of register blocks in
the node’s reg property.

You cannot read register block addresses and lengths with DT_PROP(node, reg). Instead, if a
node only has one register block, use DT_REG_ADDR() or DT_REG_SIZE():

• DT_REG_ADDR(node_id): the given node’s register block address

• DT_REG_SIZE(node_id): its size

Use DT_REG_ADDR_BY_IDX() or DT_REG_SIZE_BY_IDX() instead if the node has multiple register
blocks:

• DT_REG_ADDR_BY_IDX(node_id, idx): address of register block at index idx
• DT_REG_SIZE_BY_IDX(node_id, idx): size of block at index idx

The idx argument to these must be an integer literal or a macro that expands to one without
requiring any arithmetic. In particular, idx cannot be a variable. This won’t work:

/* This will cause a compiler error. */

for (size_t i = 0; i < DT_NUM_REGS(node_id); i++) {
size_t addr = DT_REG_ADDR_BY_IDX(node_id, i);

}

interrupts properties See Important properties for a brief introduction to interrupts.

Given a node identifier node_id, DT_NUM_IRQS(node_id) is the total number of interrupt speci-
fiers in the node’s interrupts property.

The most general purpose API macro for accessing these is DT_IRQ_BY_IDX():

DT_IRQ_BY_IDX(node_id, idx, val)

Here, idx is the logical index into the interrupts array, i.e. it is the index of an individual in-
terrupt specifier in the property. The val argument is the name of a cell within the interrupt
specifier. To use this macro, check the bindings file for the node you are interested in to find the
val names.

Most Zephyr devicetree bindings have a cell named irq, which is the interrupt number. You can
use DT_IRQN() as a convenient way to get a processed view of this value.

Warning

Here, “processed” reflects Zephyr’s devicetree Scripts and tools, which change the irq number
in zephyr.dts to handle hardware constraints on some SoCs and in accordance with Zephyr’s
multilevel interrupt numbering.

This is currently not very well documented, and you’ll need to read the scripts’ source code
and existing drivers for more details if you are writing a device driver.

Note

See Phandles for a detailed guide to phandles.

phandle properties Property values can refer to other nodes using the &another-node phan-
dle syntax introduced in Writing property values. Properties which contain phandles have type
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phandle, phandles, or phandle-array in their bindings. We’ll call these “phandle properties” for
short.

You can convert a phandle to a node identifier using DT_PHANDLE(), DT_PHANDLE_BY_IDX(), or
DT_PHANDLE_BY_NAME(), depending on the type of property you are working with.

One common use case for phandle properties is referring to other hardware in the tree. In this
case, you usually want to convert the devicetree-level phandle to a Zephyr driver-level struct
device. See Get a struct device from a devicetree node for ways to do that.

Another common use case is accessing specifier values in a phandle array. The general pur-
pose APIs for this are DT_PHA_BY_IDX() and DT_PHA(). There are also hardware-specific short-
hands like DT_GPIO_CTLR_BY_IDX(), DT_GPIO_CTLR(), DT_GPIO_PIN_BY_IDX(), DT_GPIO_PIN(),
DT_GPIO_FLAGS_BY_IDX(), and DT_GPIO_FLAGS().

See DT_PHA_HAS_CELL_AT_IDX() and DT_PROP_HAS_IDX() for ways to check if a specifier value is
present in a phandle property.

Other APIs Here are pointers to some other available APIs.

• DT_CHOSEN(), DT_HAS_CHOSEN(): for properties of the special /chosen node

• DT_HAS_COMPAT_STATUS_OKAY(), DT_NODE_HAS_COMPAT(): global- and node-specific tests re-
lated to the compatible property

• DT_BUS(): get a node’s bus controller, if there is one

• DT_ENUM_IDX(): for properties whose values are among a fixed list of choices

• Fixed flash partitions: APIs for managing fixed flash partitions. Also see Flash map, which
wraps this in a more user-friendly API.

Device driver conveniences Special purpose macros are available for writing device drivers,
which usually rely on instance identifiers.

To use these, you must define DT_DRV_COMPAT to the compat value your driver implements support
for. This compat value is what you would pass to DT_INST().

If you do that, you can access the properties of individual instances of your compatible with less
typing, like this:

#include <zephyr/devicetree.h>

#define DT_DRV_COMPAT my_driver_compat

/* This is same thing as DT_INST(0, my_driver_compat): */
DT_DRV_INST(0)

/*
* This is the same thing as
* DT_PROP(DT_INST(0, my_driver_compat), clock_frequency)
*/

DT_INST_PROP(0, clock_frequency)

See Instance-based APIs for a generic API reference.

Hardware specific APIs Convenience macros built on top of the above APIs are also defined
to help readability for hardware specific code. See Hardware specific APIs for details.
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Generatedmacros While the zephyr/devicetree.h API is not generated, it does rely on a gen-
erated C header which is put into every application build directory: devicetree_generated.h. This
file contains macros with devicetree data.

These macros have tricky naming conventions which theDevicetreeAPI API abstracts away. They
should be considered an implementation detail, but it’s useful to understand them since they will
frequently be seen in compiler error messages.

This section contains an Augmented Backus-Naur Form grammar for these generated macros,
with examples and more details in comments. See RFC 7405 (which extends RFC 5234) for a
syntax specification.

; An RFC 7405 ABNF grammar for devicetree macros.
;
; This does *not* cover macros pulled out of DT via Kconfig,
; like CONFIG_SRAM_BASE_ADDRESS, etc. It only describes the
; ones that start with DT_ and are directly generated.

; --------------------------------------------------------------------
; dt-macro: the top level nonterminal for a devicetree macro
;
; A dt-macro starts with uppercase "DT_", and is one of:
;
; - a <node-macro>, generated for a particular node
; - some <other-macro>, a catch-all for other types of macros
dt-macro = node-macro / other-macro

; --------------------------------------------------------------------
; node-macro: a macro related to a node

; A macro about a property value
node-macro = property-macro
; A macro about the pinctrl properties in a node.
node-macro =/ pinctrl-macro
; A macro about the GPIO hog properties in a node.
node-macro =/ gpiohogs-macro
; EXISTS macro: node exists in the devicetree
node-macro =/ %s"DT_N" path-id %s"_EXISTS"
; Bus macros: the plain BUS is a way to access a node's bus controller.
; The additional dt-name suffix is added to match that node's bus type;
; the dt-name in this case is something like "spi" or "i2c".
node-macro =/ %s"DT_N" path-id %s"_BUS" ["_" dt-name]
; The reg property is special and has its own macros.
node-macro =/ %s"DT_N" path-id %s"_REG_NUM"
node-macro =/ %s"DT_N" path-id %s"_REG_IDX_" DIGIT "_EXISTS"
node-macro =/ %s"DT_N" path-id %s"_REG_IDX_" DIGIT

%s"_VAL_" ( %s"ADDRESS" / %s"SIZE")
node-macro =/ %s"DT_N" path-id %s"_REG_NAME_" dt-name

%s"_VAL_" ( %s"ADDRESS" / %s"SIZE")
node-macro =/ %s"DT_N" path-id %s"_REG_NAME_" dt-name "_EXISTS"
; The interrupts property is also special.
node-macro =/ %s"DT_N" path-id %s"_IRQ_NUM"
node-macro =/ %s"DT_N" path-id %s"_IRQ_LEVEL"
node-macro =/ %s"DT_N" path-id %s"_IRQ_IDX_" DIGIT "_EXISTS"
node-macro =/ %s"DT_N" path-id %s"_IRQ_IDX_" DIGIT

%s"_VAL_" dt-name [ %s"_EXISTS" ]
node-macro =/ %s"DT_N" path-id %s"_CONTROLLER"
node-macro =/ %s"DT_N" path-id %s"_IRQ_NAME_" dt-name

%s"_VAL_" dt-name [ %s"_EXISTS" ]
node-macro =/ %s"DT_N" path-id %s"_IRQ_NAME_" dt-name "_CONTROLLER"
; The ranges property is also special.
node-macro =/ %s"DT_N" path-id %s"_RANGES_NUM"
node-macro =/ %s"DT_N" path-id %s"_RANGES_IDX_" DIGIT "_EXISTS"

(continues on next page)
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node-macro =/ %s"DT_N" path-id %s"_RANGES_IDX_" DIGIT

%s"_VAL_" ( %s"CHILD_BUS_FLAGS" / %s"CHILD_BUS_ADDRESS" /
%s"PARENT_BUS_ADDRESS" / %s"LENGTH")

node-macro =/ %s"DT_N" path-id %s"_RANGES_IDX_" DIGIT
%s"_VAL_CHILD_BUS_FLAGS_EXISTS"

node-macro =/ %s"DT_N" path-id %s"_FOREACH_RANGE"
; Subnodes of the fixed-partitions compatible get macros which contain
; a unique ordinal value for each partition
node-macro =/ %s"DT_N" path-id %s"_PARTITION_ID" DIGIT
; Macros are generated for each of a node's compatibles;
; dt-name in this case is something like "vnd_device".
node-macro =/ %s"DT_N" path-id %s"_COMPAT_MATCHES_" dt-name
node-macro =/ %s"DT_N" path-id %s"_COMPAT_VENDOR_IDX_" DIGIT "_EXISTS"
node-macro =/ %s"DT_N" path-id %s"_COMPAT_VENDOR_IDX_" DIGIT
node-macro =/ %s"DT_N" path-id %s"_COMPAT_MODEL_IDX_" DIGIT "_EXISTS"
node-macro =/ %s"DT_N" path-id %s"_COMPAT_MODEL_IDX_" DIGIT
; Every non-root node gets one of these macros, which expands to the node
; identifier for that node's parent in the devicetree.
node-macro =/ %s"DT_N" path-id %s"_PARENT"
; These are used internally by DT_FOREACH_PROP_ELEM(_SEP)(_VARGS), which
; iterates over each property element.
node-macro =/ %s"DT_N" path-id %s"_P_" prop-id %s"_FOREACH_PROP_ELEM"
node-macro =/ %s"DT_N" path-id %s"_P_" prop-id %s"_FOREACH_PROP_ELEM_SEP"
node-macro =/ %s"DT_N" path-id %s"_P_" prop-id %s"_FOREACH_PROP_ELEM_VARGS"
node-macro =/ %s"DT_N" path-id %s"_P_" prop-id %s"_FOREACH_PROP_ELEM_SEP_VARGS"
; These are used by DT_CHILD_NUM and DT_CHILD_NUM_STATUS_OKAY macros
node-macro =/ %s"DT_N" path-id %s"_CHILD_NUM"
node-macro =/ %s"DT_N" path-id %s"_CHILD_NUM_STATUS_OKAY"
; These are used internally by DT_FOREACH_CHILD, which iterates over
; each child node.
node-macro =/ %s"DT_N" path-id %s"_FOREACH_CHILD"
node-macro =/ %s"DT_N" path-id %s"_FOREACH_CHILD_SEP"
node-macro =/ %s"DT_N" path-id %s"_FOREACH_CHILD_VARGS"
node-macro =/ %s"DT_N" path-id %s"_FOREACH_CHILD_SEP_VARGS"
; These are used internally by DT_FOREACH_CHILD_STATUS_OKAY, which iterates
; over each child node with status "okay".
node-macro =/ %s"DT_N" path-id %s"_FOREACH_CHILD_STATUS_OKAY"
node-macro =/ %s"DT_N" path-id %s"_FOREACH_CHILD_STATUS_OKAY_SEP"
node-macro =/ %s"DT_N" path-id %s"_FOREACH_CHILD_STATUS_OKAY_VARGS"
node-macro =/ %s"DT_N" path-id %s"_FOREACH_CHILD_STATUS_OKAY_SEP_VARGS"
; These are used internally by DT_FOREACH_NODELABEL and
; DT_FOREACH_NODELABEL_VARGS, which iterate over a node's node labels.
node-macro =/ %s"DT_N" path-id %s"_FOREACH_NODELABEL" [ %s"_VARGS" ]
; These are used internally by DT_NUM_NODELABELS
node-macro =/ %s"DT_N" path-id %s"_NODELABEL_NUM"
; The node's zero-based index in the list of it's parent's child nodes.
node-macro =/ %s"DT_N" path-id %s"_CHILD_IDX"
; The node's status macro; dt-name in this case is something like "okay"
; or "disabled".
node-macro =/ %s"DT_N" path-id %s"_STATUS_" dt-name
; The node's dependency ordinal. This is a non-negative integer
; value that is used to represent dependency information.
node-macro =/ %s"DT_N" path-id %s"_ORD"
; The node's path, as a string literal
node-macro =/ %s"DT_N" path-id %s"_PATH"
; The node's name@unit-addr, as a string literal
node-macro =/ %s"DT_N" path-id %s"_FULL_NAME"
; The dependency ordinals of a node's requirements (direct dependencies).
node-macro =/ %s"DT_N" path-id %s"_REQUIRES_ORDS"
; The dependency ordinals of a node supports (reverse direct dependencies).
node-macro =/ %s"DT_N" path-id %s"_SUPPORTS_ORDS"

(continues on next page)
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; --------------------------------------------------------------------
; pinctrl-macro: a macro related to the pinctrl properties in a node
;
; These are a bit of a special case because they kind of form an array,
; but the array indexes correspond to pinctrl-DIGIT properties in a node.
;
; So they're related to a node, but not just one property within the node.
;
; The following examples assume something like this:
;
; foo {
; pinctrl-0 = <&bar>;
; pinctrl-1 = <&baz>;
; pinctrl-names = "default", "sleep";
; };

; Total number of pinctrl-DIGIT properties in the node. May be zero.
;
; #define DT_N_<node path>_PINCTRL_NUM 2
pinctrl-macro = %s"DT_N" path-id %s"_PINCTRL_NUM"
; A given pinctrl-DIGIT property exists.
;
; #define DT_N_<node path>_PINCTRL_IDX_0_EXISTS 1
; #define DT_N_<node path>_PINCTRL_IDX_1_EXISTS 1
pinctrl-macro =/ %s"DT_N" path-id %s"_PINCTRL_IDX_" DIGIT %s"_EXISTS"
; A given pinctrl property name exists.
;
; #define DT_N_<node path>_PINCTRL_NAME_default_EXISTS 1
; #define DT_N_<node path>_PINCTRL_NAME_sleep_EXISTS 1
pinctrl-macro =/ %s"DT_N" path-id %s"_PINCTRL_NAME_" dt-name %s"_EXISTS"
; The corresponding index number of a named pinctrl property.
;
; #define DT_N_<node path>_PINCTRL_NAME_default_IDX 0
; #define DT_N_<node path>_PINCTRL_NAME_sleep_IDX 1
pinctrl-macro =/ %s"DT_N" path-id %s"_PINCTRL_NAME_" dt-name %s"_IDX"
; The node identifier for the phandle in a named pinctrl property.
;
; #define DT_N_<node path>_PINCTRL_NAME_default_IDX_0_PH <node id for 'bar'>
;
; There's no need for a separate macro for access by index: that's
; covered by property-macro. We only need this because the map from
; names to properties is implicit in the structure of the DT.
pinctrl-macro =/ %s"DT_N" path-id %s"_PINCTRL_NAME_" dt-name %s"_IDX_" DIGIT %s"_PH"

; --------------------------------------------------------------------
; gpiohogs-macro: a macro related to GPIO hog nodes
;
; The following examples assume something like this:
;
; gpio1: gpio@... {
; compatible = "vnd,gpio";
; #gpio-cells = <2>;
;
; node-1 {
; gpio-hog;
; gpios = <0x0 0x10>, <0x1 0x20>;
; output-high;
; };
;
; node-2 {

(continues on next page)
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; gpio-hog;
; gpios = <0x2 0x30>;
; output-low;
; };
; };
;
; Bindings fragment for the vnd,gpio compatible:
;
; gpio-cells:
; - pin
; - flags

; The node contains GPIO hogs.
;
; #define DT_N_<node-1 path>_GPIO_HOGS_EXISTS 1
; #define DT_N_<node-2 path>_GPIO_HOGS_EXISTS 1
gpioshogs-macro = %s"DT_N" path-id %s"_GPIO_HOGS_EXISTS"
; Number of hogged GPIOs in a node.
;
; #define DT_N_<node-1 path>_GPIO_HOGS_NUM 2
; #define DT_N_<node-2 path>_GPIO_HOGS_NUM 1
gpioshogs-macro =/ %s"DT_N" path-id %s"_GPIO_HOGS_NUM"
; A given logical GPIO hog array index exists.
;
; #define DT_N_<node-1 path>_GPIO_HOGS_IDX_0_EXISTS 1
; #define DT_N_<node-1 path>_GPIO_HOGS_IDX_1_EXISTS 1
; #define DT_N_<node-2 path>_GPIO_HOGS_IDX_0_EXISTS 1
gpiohogs-macro =/ %s"DT_N" path-id %s"_GPIO_HOGS_IDX_" DIGIT %s"_EXISTS"
; The node identifier for the phandle of a logical index in the GPIO hogs array.
; These macros are currently unused by Zephyr.
;
; #define DT_N_<node-1 path>_GPIO_HOGS_IDX_0_PH <node id for 'gpio1'>
; #define DT_N_<node-1 path>_GPIO_HOGS_IDX_1_PH <node id for 'gpio1'>
; #define DT_N_<node-2 path>_GPIO_HOGS_IDX_0_PH <node id for 'gpio1'>
gpiohogs-macro =/ %s"DT_N" path-id %s"_GPIO_HOGS_IDX_" DIGIT %s"_PH"
; The pin cell of a logical index in the GPIO hogs array exists.
;
; #define DT_N_<node-1 path>_GPIO_HOGS_IDX_0_VAL_pin_EXISTS 1
; #define DT_N_<node-1 path>_GPIO_HOGS_IDX_1_VAL_pin_EXISTS 1
; #define DT_N_<node-2 path>_GPIO_HOGS_IDX_0_VAL_pin_EXISTS 1
gpiohogs-macro =/ %s"DT_N" path-id %s"_GPIO_HOGS_IDX_" DIGIT %s"_VAL_pin_EXISTS"
; The value of the pin cell of a logical index in the GPIO hogs array.
;
; #define DT_N_<node-1 path>_GPIO_HOGS_IDX_0_VAL_pin 0
; #define DT_N_<node-1 path>_GPIO_HOGS_IDX_1_VAL_pin 1
; #define DT_N_<node-2 path>_GPIO_HOGS_IDX_0_VAL_pin 2
gpiohogs-macro =/ %s"DT_N" path-id %s"_GPIO_HOGS_IDX_" DIGIT %s"_VAL_pin"
; The flags cell of a logical index in the GPIO hogs array exists.
;
; #define DT_N_<node-1 path>_GPIO_HOGS_IDX_0_VAL_flags_EXISTS 1
; #define DT_N_<node-1 path>_GPIO_HOGS_IDX_1_VAL_flags_EXISTS 1
; #define DT_N_<node-2 path>_GPIO_HOGS_IDX_0_VAL_flags_EXISTS 1
gpiohogs-macro =/ %s"DT_N" path-id %s"_GPIO_HOGS_IDX_" DIGIT %s"_VAL_flags_EXISTS"
; The value of the flags cell of a logical index in the GPIO hogs array.
;
; #define DT_N_<node-1 path>_GPIO_HOGS_IDX_0_VAL_flags 0x10
; #define DT_N_<node-1 path>_GPIO_HOGS_IDX_1_VAL_flags 0x20
; #define DT_N_<node-2 path>_GPIO_HOGS_IDX_0_VAL_flags 0x30
gpiohogs-macro =/ %s"DT_N" path-id %s"_GPIO_HOGS_IDX_" DIGIT %s"_VAL_flags"

; --------------------------------------------------------------------
(continues on next page)
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; property-macro: a macro related to a node property
;
; These combine a node identifier with a "lowercase-and-underscores form"
; property name. The value expands to something related to the property's
; value.
;
; The optional prop-suf suffix is when there's some specialized
; subvalue that deserves its own macro, like the macros for an array
; property's individual elements
;
; The "plain vanilla" macro for a property's value, with no prop-suf,
; looks like this:
;
; DT_N_<node path>_P_<property name>
;
; Components:
;
; - path-id: node's devicetree path converted to a C token
; - prop-id: node's property name converted to a C token
; - prop-suf: an optional property-specific suffix
property-macro = %s"DT_N" path-id %s"_P_" prop-id [prop-suf]

; --------------------------------------------------------------------
; path-id: a node's path-based macro identifier
;
; This in "lowercase-and-underscores" form. I.e. it is
; the node's devicetree path converted to a C token by changing:
;
; - each slash (/) to _S_
; - all letters to lowercase
; - non-alphanumerics characters to underscores
;
; For example, the leaf node "bar-BAZ" in this devicetree:
;
; / {
; foo@123 {
; bar-BAZ {};
; };
; };
;
; has path-id "_S_foo_123_S_bar_baz".
path-id = 1*( %s"_S_" dt-name )

; ----------------------------------------------------------------------
; prop-id: a property identifier
;
; A property name converted to a C token by changing:
;
; - all letters to lowercase
; - non-alphanumeric characters to underscores
;
; Example node:
;
; chosen {
; zephyr,console = &uart1;
; WHY,AM_I_SHOUTING = "unclear";
; };
;
; The 'zephyr,console' property has prop-id 'zephyr_console'.
; 'WHY,AM_I_SHOUTING' has prop-id 'why_am_i_shouting'.
prop-id = dt-name

(continues on next page)
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; ----------------------------------------------------------------------
; prop-suf: a property-specific macro suffix
;
; Extra macros are generated for properties:
;
; - that are special to the specification ("reg", "interrupts", etc.)
; - with array types (uint8-array, phandle-array, etc.)
; - with "enum:" in their bindings
; - that have zephyr device API specific macros for phandle-arrays
; - related to phandle specifier names ("foo-names")
;
; Here are some examples:
;
; - _EXISTS: property, index or name existence flag
; - _SIZE: logical property length
; - _IDX_<i>: values of individual array elements
; - _IDX_<DIGIT>_VAL_<dt-name>: values of individual specifier
; cells within a phandle array
; - _ADDR_<i>: for reg properties, the i-th register block address
; - _LEN_<i>: for reg properties, the i-th register block length
;
; The different cases are not exhaustively documented here to avoid
; this file going stale. Please see devicetree.h if you need to know
; the details.
prop-suf = 1*( "_" gen-name ["_" dt-name] )

; --------------------------------------------------------------------
; other-macro: grab bag for everything that isn't a node-macro.

; See examples below.
other-macro = %s"DT_N_" alternate-id
; Total count of enabled instances of a compatible.
other-macro =/ %s"DT_N_INST_" dt-name %s"_NUM_OKAY"
; These are used internally by DT_FOREACH_NODE and
; DT_FOREACH_STATUS_OKAY_NODE respectively.
other-macro =/ %s"DT_FOREACH_HELPER"
other-macro =/ %s"DT_FOREACH_OKAY_HELPER"
; These are used internally by DT_FOREACH_STATUS_OKAY,
; which iterates over each enabled node of a compatible.
other-macro =/ %s"DT_FOREACH_OKAY_" dt-name
other-macro =/ %s"DT_FOREACH_OKAY_VARGS_" dt-name
; These are used internally by DT_INST_FOREACH_STATUS_OKAY,
; which iterates over each enabled instance of a compatible.
other-macro =/ %s"DT_FOREACH_OKAY_INST_" dt-name
other-macro =/ %s"DT_FOREACH_OKAY_INST_VARGS_" dt-name
; E.g.: #define DT_CHOSEN_zephyr_flash
other-macro =/ %s"DT_CHOSEN_" dt-name
; Declares that a compatible has at least one node on a bus.
; Example:
;
; #define DT_COMPAT_vnd_dev_BUS_spi 1
other-macro =/ %s"DT_COMPAT_" dt-name %s"_BUS_" dt-name
; Declares that a compatible has at least one status "okay" node.
; Example:
;
; #define DT_COMPAT_HAS_OKAY_vnd_dev 1
other-macro =/ %s"DT_COMPAT_HAS_OKAY_" dt-name
; Currently used to allow mapping a lowercase-and-underscores "label"
; property to a fixed-partitions node. See the flash map API docs
; for an example.

(continues on next page)
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other-macro =/ %s"DT_COMPAT_" dt-name %s"_LABEL_" dt-name

; --------------------------------------------------------------------
; alternate-id: another way to specify a node besides a path-id
;
; Example devicetree:
;
; / {
; aliases {
; dev = &dev_1;
; };
;
; soc {
; dev_1: device@123 {
; compatible = "vnd,device";
; };
; };
; };
;
; Node device@123 has these alternate-id values:
;
; - ALIAS_dev
; - NODELABEL_dev_1
; - INST_0_vnd_device
;
; The full alternate-id macros are:
;
; #define DT_N_INST_0_vnd_device DT_N_S_soc_S_device_123
; #define DT_N_ALIAS_dev DT_N_S_soc_S_device_123
; #define DT_N_NODELABEL_dev_1 DT_N_S_soc_S_device_123
;
; These mainly exist to allow pasting an alternate-id macro onto a
; "_P_<prop-id>" to access node properties given a node's alias, etc.
;
; Notice that "inst"-type IDs have a leading instance identifier,
; which is generated by the devicetree scripts. The other types of
; alternate-id begin immediately with names taken from the devicetree.
alternate-id = ( %s"ALIAS" / %s"NODELABEL" ) dt-name
alternate-id =/ %s"INST_" 1*DIGIT "_" dt-name

; --------------------------------------------------------------------
; miscellaneous helper definitions

; A dt-name is one or more:
; - lowercase ASCII letters (a-z)
; - numbers (0-9)
; - underscores ("_")
;
; They are the result of converting names or combinations of names
; from devicetree to a valid component of a C identifier by
; lowercasing letters (in practice, this is a no-op) and converting
; non-alphanumeric characters to underscores.
;
; You'll see these referred to as "lowercase-and-underscores" forms of
; various devicetree identifiers throughout the documentation.
dt-name = 1*( lower / DIGIT / "_" )

; gen-name is used as a stand-in for a component of a generated macro
; name which does not come from devicetree (dt-name covers that case).
;
; - uppercase ASCII letters (a-z)

(continues on next page)
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; - numbers (0-9)
; - underscores ("_")
gen-name = upper 1*( upper / DIGIT / "_" )

; "lowercase ASCII letter" turns out to be pretty annoying to specify
; in RFC-7405 syntax.
;
; This is just ASCII letters a (0x61) through z (0x7a).
lower = %x61-7A

; "uppercase ASCII letter" in RFC-7405 syntax
upper = %x41-5A

Phandles

The devicetree concept of a phandle is very similar to pointers in C. You can use phandles to refer
to nodes in devicetree similarly to the way you can use pointers to refer to structures in C.

Contents

• Getting phandles

• Using phandles

– One node: phandle type

– Zero or more nodes: phandles type

– Zero or more nodes with metadata: phandle-array type

• phandle-array properties

– High level description

– Example phandle-arrays: GPIOs

• Specifier spaces

– High level description

– Example specifier space: gpio

• Associating properties with specifier spaces

– High level description

– Special case: GPIO

– Manually specifying a space

• Naming the cells in a specifier

• See also

Getting phandles The usual way to get a phandle for a devicetree node is from one of its node
labels. For example, with this devicetree:

/ {
lbl_a: node-1 {};
lbl_b: lbl_c: node-2 {};

};
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You can write the phandle for:

• /node-1 as &lbl_a
• /node-2 as either &lbl_b or &lbl_c

Notice how the &nodelabel devicetree syntax is similar to the “address of” C syntax.

Note

“Type” in this section refers to one of the type names documented in Properties in the device-
tree bindings documentation.

Using phandles Here are the main ways you will use phandles.

One node: phandle type You can use phandles to refer to node-b from node-a, where node-b
is related to node-a in some way.

One common example is when node-a represents some hardware that generates an interrupt,
and node-b represents the interrupt controller that receives the asserted interrupt. In this case,
you could write:

node_b: node-b {
interrupt-controller;

};

node-a {
interrupt-parent = <&node_b>;

};

This uses the standard interrupt-parent property defined in the devicetree specification to cap-
ture the relationship between the two nodes.

These properties have type phandle.

Zero or more nodes: phandles type You can use phandles to make an array of references to
other nodes.

One common example occurs in pin control. Pin control properties like pinctrl-0, pinctrl-1
etc. may contain multiple phandles, each of which “points” to a node containing information
related to pin configuration for that hardware peripheral. Here’s an example of six phandles in
a single property:

pinctrl-0 = <&quadspi_clk_pe10 &quadspi_ncs_pe11
&quadspi_bk1_io0_pe12 &quadspi_bk1_io1_pe13
&quadspi_bk1_io2_pe14 &quadspi_bk1_io3_pe15>;

These properties have type phandles.

Zero or more nodes with metadata: phandle-array type You can use phandles to refer to
and configure one or more resources that are “owned” by some other node.

This is the most complex case. There are examples and more details in the next section.

These properties have type phandle-array.

phandle-array properties These properties are commonly used to specify a resource that is
owned by another node along with additional metadata about the resource.
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High level description Usually, properties with this type are written like phandle-array-prop
in this example:

node {
phandle-array-prop = <&foo 1 2>, <&bar 3>, <&baz 4 5>;

};

That is, the property’s value is written as a comma-separated sequence of “groups”, where each
“group” is written inside of angle brackets (< ... >). Each “group” starts with a phandle (&foo,
&bar, &baz). The values that follow the phandle in each “group” are called specifiers. There are
three specifiers in the above example:

1. 1 2
2. 3
3. 4 5

The phandle in each “group” is used to “point” to the hardware that controls the resource you
are interested in. The specifier describes the resource itself, along with any additional necessary
metadata.

The rest of this section describes a common example. Subsequent sections document more rules
about how to use phandle-array properties in practice.

Example phandle-arrays: GPIOs Perhaps the most common use case for phandle-array prop-
erties is specifying one or more GPIOs on your SoC that another chip on your board connects to.
For that reason, we’ll focus on that use case here. However, there are many other use cases
that are handled in devicetree with phandle-array properties.

For example, consider an external chip with an interrupt pin that is connected to a GPIO on your
SoC. You will typically need to provide that GPIO’s information (GPIO controller and pin number)
to the device driver for that chip. You usually also need to provide other metadata about the GPIO,
like whether it is active low or high, what kind of internal pull resistor within the SoC should be
enabled in order to communicate with the device, etc., to the driver.

In the devicetree, there will be a node that represents the GPIO controller that controls a group
of pins. This reflects the way GPIO IP blocks are usually developed in hardware. Therefore, there
is no single node in the devicetree that represents a GPIO pin, and you can’t use a single phandle
to represent it.

Instead, you would use a phandle-array property, like this:

my-external-ic {
irq-gpios = <&gpioX pin flags>;

};

In this example, irq-gpios is a phandle-array property with just one “group” in its value. &gpioX
is the phandle for the GPIO controller node that controls the pin. pin is the pin number (0, 1, 2, …).
flags is a bit mask describing pin metadata (for example (GPIO_ACTIVE_LOW | GPIO_PULL_UP));
see include/zephyr/dt-bindings/gpio/gpio.h for more details.

The device driver handling the my-external-icnode can then use the irq-gpiosproperty’s value
to set up interrupt handling for the chip as it is used on your board. This lets you configure the
device driver in devicetree, without changing the driver’s source code.

Such properties can contain multiple values as well:

my-other-external-ic {
handshake-gpios = <&gpioX pinX flagsX>, <&gpioY pinY flagsY>;

};

The above example specifies two pins:
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• pinX on the GPIO controller with phandle &gpioX, flags flagsX
• pinY on &gpioY, flags flagsY

You may be wondering how the “pin and flags” convention is established and enforced. To an-
swer this question, we’ll need to introduce a concept called specifier spaces before moving on to
some information about devicetree bindings.

Specifier spaces Specifier spaces are a way to allow nodes to describe how you should use them
in phandle-array properties.

We’ll start with an abstract, high level description of how specifier spaces work in DTS files,
before moving on to a concrete example and providing references to further reading for how
this all works in practice using DTS files and bindings files.

High level description As described above, a phandle-array property is a sequence of “groups”
of phandles followed by some number of cells:

node {
phandle-array-prop = <&foo 1 2>, <&bar 3>;

};

The cells that follow each phandle are called a specifier. In this example, there are two specifiers:

1. 1 2: two cells

2. 3: one cell

Every phandle-array property has an associated specifier space. This sounds complex, but it’s
really just a way to assign a meaning to the cells that follow each phandle in a hardware specific
way. Every specifier space has a unique name. There are a few “standard” names for commonly
used hardware, but you can create your own as well.

Devicetree nodes encode the number of cells that must appear in a specifier, by name, using
the #SPACE_NAME-cells property. For example, let’s assume that phandle-array-prop‘s specifier
space is named baz. Then we would need the foo and barnodes to have the following #baz-cells
properties:

foo: node@1000 {
#baz-cells = <2>;

};

bar: node@2000 {
#baz-cells = <1>;

};

Without the #baz-cells property, the devicetree tooling would not be able to validate the num-
ber of cells in each specifier in phandle-array-prop.

This flexibility allows you to write down an array of hardware resources in a single devicetree
property, even though the amount of metadata you need to describe each resource might be
different for different nodes.

A single node can also have different numbers of cells in different specifier spaces. For example,
we might have:

foo: node@1000 {
#baz-cells = <2>;
#bob-cells = <1>;

};

With that, if phandle-array-prop-2 has specifier space bob, we could write:
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node {
phandle-array-prop = <&foo 1 2>, <&bar 3>;
phandle-array-prop-2 = <&foo 4>;

};

This flexibility allows you to have a node that manages multiple different kinds of resources at
the same time. The node describes the amount of metadata needed to describe each kind of re-
source (how many cells are needed in each case) using different #SPACE_NAME-cells properties.

Example specifier space: gpio From the above example, you’re already familiar with how
one specifier space works: in the “gpio” space, specifiers almost always have two cells:

1. a pin number

2. a bit mask of flags related to the pin

Therefore, almost all GPIO controller nodes you will see in practice will look like this:

gpioX: gpio-controller@deadbeef {
gpio-controller;
#gpio-cells = <2>;

};

Associating properties with specifier spaces Above, we have described that:

• each phandle-array property has an associated specifier space

• specifier spaces are identified by name

• devicetree nodes use #SPECIFIER_NAME-cells properties to configure the number of cells
which must appear in a specifier

In this section, we explain how phandle-array properties get their specifier spaces.

High level description In general, a phandle-array property named foos implicitly has spec-
ifier space foo. For example:

properties:
dmas:
type: phandle-array

pwms:
type: phandle-array

The dmas property’s specifier space is “dma”. The pwm property’s specifier space is pwm.

Special case: GPIO *-gpios properties are special-cased so that e.g. foo-gpios resolves to
#gpio-cells rather than #foo-gpio-cells.

Manually specifying a space You can manually specify the specifier space for any
phandle-array property. See specifier-space.

Naming the cells in a specifier You should name the cells in each specifier space your hard-
ware supports when writing bindings. For details on how to do this, see Specifier cell names
(*-cells).

This allows C code to query information about and retrieve the values of cells in a specifier by
name using devicetree APIs like these:
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• DT_PHA_BY_IDX
• DT_PHA_BY_NAME

This feature and these macros are used internally by numerous hardware-specific APIs. Here
are a few examples:

• DT_GPIO_PIN_BY_IDX
• DT_PWMS_CHANNEL_BY_IDX
• DT_DMAS_CELL_BY_NAME
• DT_IO_CHANNELS_INPUT_BY_IDX
• DT_CLOCKS_CELL_BY_NAME

See also
• Writing property values: how to write phandles in devicetree properties

• Properties: how to write bindings for properties with phandle types (phandle, phandles,
phandle-array)

• specifier-space: how to manually specify a phandle-array property’s specifier space

The /zephyr,user node

Zephyr’s devicetree scripts handle the /zephyr,user node as a special case: you can put essen-
tially arbitrary properties inside it and retrieve their values without having to write a binding.
It is meant as a convenient container when only a few simple properties are needed.

Note

This node is meant for sample code and user applications. It should not be used in the up-
stream Zephyr source code for device drivers, subsystems, etc.

Simple values You can store numeric or array values in /zephyr,user if you want them to be
configurable at build time via devicetree.

For example, with this devicetree overlay:

/ {
zephyr,user {

boolean;
bytes = [81 82 83];
number = <23>;
numbers = <1>, <2>, <3>;
string = "text";
strings = "a", "b", "c";

};
};

You can get the above property values in C/C++ code like this:

#define ZEPHYR_USER_NODE DT_PATH(zephyr_user)

DT_PROP(ZEPHYR_USER_NODE, boolean) // 1
DT_PROP(ZEPHYR_USER_NODE, bytes) // {0x81, 0x82, 0x83}
DT_PROP(ZEPHYR_USER_NODE, number) // 23

(continues on next page)
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DT_PROP(ZEPHYR_USER_NODE, numbers) // {1, 2, 3}
DT_PROP(ZEPHYR_USER_NODE, string) // "text"
DT_PROP(ZEPHYR_USER_NODE, strings) // {"a", "b", "c"}

Devices You can store phandles in /zephyr,user if you want to be able to reconfigure which
devices your application uses in simple cases using devicetree overlays.

For example, with this devicetree overlay:

/ {
zephyr,user {

handle = <&gpio0>;
handles = <&gpio0>, <&gpio1>;

};
};

You can convert the phandles in the handle and handles properties to device pointers like this:

/*
* Same thing as:
*
* ... my_dev = DEVICE_DT_GET(DT_NODELABEL(gpio0));
*/

const struct device *my_device =
DEVICE_DT_GET(DT_PROP(ZEPHYR_USER_NODE, handle));

#define PHANDLE_TO_DEVICE(node_id, prop, idx) \
DEVICE_DT_GET(DT_PHANDLE_BY_IDX(node_id, prop, idx)),

/*
* Same thing as:
*
* ... *my_devices[] = {
* DEVICE_DT_GET(DT_NODELABEL(gpio0)),
* DEVICE_DT_GET(DT_NODELABEL(gpio1)),
* };
*/

const struct device *my_devices[] = {
DT_FOREACH_PROP_ELEM(ZEPHYR_USER_NODE, handles, PHANDLE_TO_DEVICE)

};

GPIOs The /zephyr,user node is a convenient place to store application-specific GPIOs that
you want to be able to reconfigure with a devicetree overlay.

For example, with this devicetree overlay:

#include <zephyr/dt-bindings/gpio/gpio.h>

/ {
zephyr,user {

signal-gpios = <&gpio0 1 GPIO_ACTIVE_HIGH>;
};

};

You can convert the pin defined in signal-gpios to a struct gpio_dt_spec in your source code,
then use it like this:
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#include <zephyr/drivers/gpio.h>

#define ZEPHYR_USER_NODE DT_PATH(zephyr_user)

const struct gpio_dt_spec signal =
GPIO_DT_SPEC_GET(ZEPHYR_USER_NODE, signal_gpios);

/* Configure the pin */
gpio_pin_configure_dt(&signal, GPIO_OUTPUT_INACTIVE);

/* Set the pin to its active level */
gpio_pin_set_dt(&signal, 1);

(See gpio_dt_spec, GPIO_DT_SPEC_GET, and gpio_pin_configure_dt() for details on these APIs.)

Devicetree HOWTOs

This page has step-by-step advice for getting things done with devicetree.

Tip

See Troubleshooting devicetree for troubleshooting advice.

Get your devicetree and generated header A board’s devicetree (BOARD.dts) pulls in com-
mon node definitions via #include preprocessor directives. This at least includes the SoC’s .
dtsi. One way to figure out the devicetree’s contents is by opening these files, e.g. by looking in
dts/<ARCH>/<vendor>/<soc>.dtsi, but this can be time consuming.

If you just want to see the “final” devicetree for your board, build an application and open the
zephyr.dts file in the build directory.

Tip

You can build hello_world to see the “base” devicetree for your board without any additional
changes from overlay files.

For example, using the qemu_cortex_m3 board to build hello_world:

# --cmake-only here just forces CMake to run, skipping the
# build process to save time.
west build -b qemu_cortex_m3 samples/hello_world --cmake-only

You can change qemu_cortex_m3 to match your board.

CMake prints the input and output file locations like this:

-- Found BOARD.dts: .../zephyr/boards/arm/qemu_cortex_m3/qemu_cortex_m3.dts
-- Generated zephyr.dts: .../zephyr/build/zephyr/zephyr.dts
-- Generated devicetree_generated.h: .../zephyr/build/zephyr/include/generated/zephyr/
↪→devicetree_generated.h

The zephyr.dts file is the final devicetree in DTS format.

The devicetree_generated.h file is the corresponding generated header.

See Input and output files for details about these files.
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Get a struct device from a devicetree node When writing Zephyr applications, you’ll often
want to get a driver-level struct device corresponding to a devicetree node.

For example, with this devicetree fragment, you might want the struct device for se-
rial@40002000:

/ {
soc {

serial0: serial@40002000 {
status = "okay";
current-speed = <115200>;
/* ... */

};
};

aliases {
my-serial = &serial0;

};

chosen {
zephyr,console = &serial0;

};
};

Start by making a node identifier for the device you are interested in. There are different ways
to do this; pick whichever one works best for your requirements. Here are some examples:

/* Option 1: by node label */
#define MY_SERIAL DT_NODELABEL(serial0)

/* Option 2: by alias */
#define MY_SERIAL DT_ALIAS(my_serial)

/* Option 3: by chosen node */
#define MY_SERIAL DT_CHOSEN(zephyr_console)

/* Option 4: by path */
#define MY_SERIAL DT_PATH(soc, serial_40002000)

Once you have a node identifier there are two ways to proceed. One way to get a device is to use
DEVICE_DT_GET():

const struct device *const uart_dev = DEVICE_DT_GET(MY_SERIAL);

if (!device_is_ready(uart_dev)) {
/* Not ready, do not use */
return -ENODEV;

}

There are variants of DEVICE_DT_GET() such as DEVICE_DT_GET_OR_NULL(), DEVICE_DT_GET_ONE()
or DEVICE_DT_GET_ANY(). This idiom fetches the device pointer at build-time, which means there
is no runtime penalty. This method is useful if you want to store the device pointer as configu-
ration data. But because the device may not be initialized, or may have failed to initialize, you
must verify that the device is ready to be used before passing it to any API functions. (This check
is done for you by device_get_binding().)

In some situations the device cannot be known at build-time, e.g., if it depends on user in-
put like in a shell application. In this case you can get the struct device by combining de-
vice_get_binding() with the device name:

const char *dev_name = /* TODO: insert device name from user */;
const struct device *uart_dev = device_get_binding(dev_name);
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You can then use uart_dev with Universal Asynchronous Receiver-Transmitter (UART) API func-
tions like uart_configure(). Similar code will work for other device types; just make sure you
use the correct API for the device.

If you’re having trouble, see Troubleshooting devicetree. The first thing to check is that the node
has status = "okay", like this:

#define MY_SERIAL DT_NODELABEL(my_serial)

#if DT_NODE_HAS_STATUS(MY_SERIAL, okay)
const struct device *const uart_dev = DEVICE_DT_GET(MY_SERIAL);
#else
#error "Node is disabled"
#endif

If you see the #error output, make sure to enable the node in your devicetree. In some situations
your code will compile but it will fail to link with a message similar to:

...undefined reference to `__device_dts_ord_N'
collect2: error: ld returned 1 exit status

This likely means there’s a Kconfig issue preventing the device driver from being built, resulting
in a reference that does not exist. If your code compiles successfully, the last thing to check is if
the device is ready, like this:

if (!device_is_ready(uart_dev)) {
printk("Device not ready\n");

}

If you find that the device is not ready, it likely means that the device’s initialization function
failed. Enabling logging or debugging driver code may help in such situations. Note that you can
also use device_get_binding() to obtain a reference at runtime. If it returns NULL it can either
mean that device’s driver failed to initialize or that it does not exist.

Find a devicetree binding Devicetree bindings are YAML files which declare what you can do
with the nodes they describe, so it’s critical to be able to find them for the nodes you are using.

If you don’t have them already, Get your devicetree and generated header. To find a node’s bind-
ing, open the generated header file, which starts with a list of nodes in a block comment:

/*
* [...]
* Nodes in dependency order (ordinal and path):
* 0 /
* 1 /aliases
* 2 /chosen
* 3 /flash@0
* 4 /memory@20000000
* (etc.)
* [...]
*/

Make note of the path to the node you want to find, like /flash@0. Search for the node’s output
in the file, which starts with something like this if the node has a matching binding:

/*
* Devicetree node:
* /flash@0
*
* Binding (compatible = soc-nv-flash):
* $ZEPHYR_BASE/dts/bindings/mtd/soc-nv-flash.yaml

(continues on next page)
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* [...]
*/

See Check for missing bindings for troubleshooting.

Set devicetree overlays Devicetree overlays are explained in Introduction to devicetree. The
CMake variable DTC_OVERLAY_FILE contains a space- or semicolon-separated list of overlay files
to use. If DTC_OVERLAY_FILE specifies multiple files, they are included in that order by the C
preprocessor. A file in a Zephyr module can be referred to by escaping the Zephyr module
dir variable like \${ZEPHYR_<module>_MODULE_DIR}/<path-to>/dts.overlay when setting the
DTC_OVERLAY_FILE variable.

You can set DTC_OVERLAY_FILE to contain exactly the files you want to use. Here is an example
using west build.

If you don’t set DTC_OVERLAY_FILE, the build system will follow these steps, looking for files in
your application configuration directory to use as devicetree overlays:

1. If the file socs/<SOC>_<BOARD_QUALIFIERS>.overlay exists, it will be used.

2. If the file boards/<BOARD>.overlay exists, it will be used in addition to the above.

3. If the current board hasmultiple revisions and boards/<BOARD>_<revision>.overlay exists,
it will be used in addition to the above.

4. If one or more files have been found in the previous steps, the build system stops looking
and just uses those files.

5. Otherwise, if <BOARD>.overlay exists, it will be used, and the build system will stop looking
for more files.

6. Otherwise, if app.overlay exists, it will be used.

Extra devicetree overlays may be provided using EXTRA_DTC_OVERLAY_FILE which will still allow
the build system to automatically use devicetree overlays described in the above steps.

The build system appends overlays specified in EXTRA_DTC_OVERLAY_FILE to the overlays in
DTC_OVERLAY_FILE when processing devicetree overlays. This means that changes made via EX-
TRA_DTC_OVERLAY_FILE have higher precedence than those made via DTC_OVERLAY_FILE.

All configuration files will be taken from the application’s configuration directory except for files
with an absolute path that are given with the DTC_OVERLAY_FILE or EXTRA_DTC_OVERLAY_FILE
argument.

See Application Configuration Directory on how the application configuration directory is de-
fined.

Using Shields will also add devicetree overlay files.

The DTC_OVERLAY_FILE value is stored in the CMake cache and used in successive builds.

The build system prints all the devicetree overlays it finds in the configuration phase, like this:

-- Found devicetree overlay: .../some/file.overlay

Use devicetree overlays See Set devicetree overlays for how to add an overlay to the build.

Overlays can override node property values in multiple ways. For example, if your BOARD.dts
contains this node:
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/ {
soc {

serial0: serial@40002000 {
status = "okay";
current-speed = <115200>;
/* ... */

};
};

};

These are equivalent ways to override the current-speed value in an overlay:

/* Option 1 */
&serial0 {

current-speed = <9600>;
};

/* Option 2 */
&{/soc/serial@40002000} {

current-speed = <9600>;
};

We’ll use the &serial0 style for the rest of these examples.

You can add aliases to your devicetree using overlays: an alias is just a property of the /aliases
node. For example:

/ {
aliases {

my-serial = &serial0;
};

};

Chosen nodes work the same way. For example:

/ {
chosen {

zephyr,console = &serial0;
};

};

To delete a property (in addition to deleting properties in general, this is how to set a boolean
property to false if it’s true in BOARD.dts):

&serial0 {
/delete-property/ some-unwanted-property;

};

You can add subnodes using overlays. For example, to configure a SPI or I2C child device on an
existing bus node, do something like this:

/* SPI device example */
&spi1 {

my_spi_device: temp-sensor@0 {
compatible = "...";
label = "TEMP_SENSOR_0";
/* reg is the chip select number, if needed;
* If present, it must match the node's unit address. */
reg = <0>;

/* Configure other SPI device properties as needed.
* Find your device's DT binding for details. */

(continues on next page)
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spi-max-frequency = <4000000>;

};
};

/* I2C device example */
&i2c2 {

my_i2c_device: touchscreen@76 {
compatible = "...";
label = "TOUCHSCREEN";
/* reg is the I2C device address.
* It must match the node's unit address. */
reg = <76>;

/* Configure other I2C device properties as needed.
* Find your device's DT binding for details. */

};
};

Other bus devices can be configured similarly:

• create the device as a subnode of the parent bus

• set its properties according to its binding

Assuming you have a suitable device driver associated with the my_spi_device and
my_i2c_device compatibles, you should now be able to enable the driver via Kconfig and get
the struct device for your newly added bus node, then use it with that driver API.

Write device drivers using devicetree APIs “Devicetree-aware” device drivers should create
a struct device for each status = "okay" devicetree node with a particular compatible (or
related set of compatibles) supported by the driver.

Writing a devicetree-aware driver begins by defining a devicetree binding for the devices sup-
ported by the driver. Use existing bindings from similar drivers as a starting point. A skeletal
binding to get started needs nothing more than this:

description: <Human-readable description of your binding>
compatible: "foo-company,bar-device"
include: base.yaml

See Find a devicetree binding for more advice on locating existing bindings.

After writing your binding, your driver C file can then use the devicetree API to find status =
"okay" nodes with the desired compatible, and instantiate a struct device for each one. There
are two options for instantiating each struct device: using instance numbers, and using node
labels.

In either case:

• Each struct device‘s name should be set to its devicetree node’s label property. This
allows the driver’s users to Get a struct device from a devicetree node in the usual way.

• Each device’s initial configuration should use values from devicetree properties whenever
practical. This allows users to configure the driver using devicetree overlays.

Examples for how to do this follow. They assume you’ve already implemented the device-specific
configuration and data structures and API functions, like this:

/* my_driver.c */
#include <zephyr/drivers/some_api.h>

/* Define data (RAM) and configuration (ROM) structures: */
(continues on next page)
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struct my_dev_data {

/* per-device values to store in RAM */
};
struct my_dev_cfg {

uint32_t freq; /* Just an example: initial clock frequency in Hz */
/* other configuration to store in ROM */

};

/* Implement driver API functions (drivers/some_api.h callbacks): */
static int my_driver_api_func1(const struct device *dev, uint32_t *foo) { /* ... */ }
static int my_driver_api_func2(const struct device *dev, uint64_t bar) { /* ... */ }
static struct some_api my_api_funcs = {

.func1 = my_driver_api_func1,

.func2 = my_driver_api_func2,
};

Option 1: create devices using instance numbers Use this option, which uses Instance-based
APIs, if possible. However, they only work when devicetree nodes for your driver’s compatible
are all equivalent, and you do not need to be able to distinguish between them.

To use instance-based APIs, begin by defining DT_DRV_COMPAT to the lowercase-and-underscores
version of the compatible that the device driver supports. For example, if your driver’s compati-
ble is "vnd,my-device" in devicetree, you would define DT_DRV_COMPAT to vnd_my_device in your
driver C file:

/*
* Put this near the top of the file. After the includes is a good place.
* (Note that you can therefore run "git grep DT_DRV_COMPAT drivers" in
* the zephyr Git repository to look for example drivers using this style).
*/

#define DT_DRV_COMPAT vnd_my_device

Important

As shown, the DT_DRV_COMPAT macro should have neither quotes nor special characters.
Remove quotes and convert special characters to underscores when creating DT_DRV_COMPAT
from the compatible property.

Finally, define an instantiation macro, which creates each struct device using instance num-
bers. Do this after defining my_api_funcs.

/*
* This instantiation macro is named "CREATE_MY_DEVICE".
* Its "inst" argument is an arbitrary instance number.
*
* Put this near the end of the file, e.g. after defining "my_api_funcs".
*/

#define CREATE_MY_DEVICE(inst) \
static struct my_dev_data my_data_##inst = { \

/* initialize RAM values as needed, e.g.: */ \
.freq = DT_INST_PROP(inst, clock_frequency), \

}; \
static const struct my_dev_cfg my_cfg_##inst = { \

/* initialize ROM values as needed. */ \
}; \
DEVICE_DT_INST_DEFINE(inst, \

my_dev_init_function, \
(continues on next page)
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(continued from previous page)
NULL, \
&my_data_##inst, \
&my_cfg_##inst, \
MY_DEV_INIT_LEVEL, MY_DEV_INIT_PRIORITY, \
&my_api_funcs);

Notice the use of APIs like DT_INST_PROP() and DEVICE_DT_INST_DEFINE() to access devicetree
node data. These APIs retrieve data from the devicetree for instance number inst of the node
with compatible determined by DT_DRV_COMPAT.

Finally, pass the instantiation macro to DT_INST_FOREACH_STATUS_OKAY():

/* Call the device creation macro for each instance: */
DT_INST_FOREACH_STATUS_OKAY(CREATE_MY_DEVICE)

DT_INST_FOREACH_STATUS_OKAY expands to code which calls CREATE_MY_DEVICE once for each en-
abled node with the compatible determined by DT_DRV_COMPAT. It does not append a semicolon to
the end of the expansion of CREATE_MY_DEVICE, so the macro’s expansion must end in a semicolon
or function definition to support multiple devices.

Option 2: create devices using node labels Some device drivers cannot use instance num-
bers. One example is an SoC peripheral driver which relies on vendor HAL APIs special-
ized for individual IP blocks to implement Zephyr driver callbacks. Cases like this should use
DT_NODELABEL() to refer to individual nodes in the devicetree representing the supported pe-
ripherals on the SoC. The devicetree.h Generic APIs can then be used to access node data.

For this to work, your SoC’s dtsi filemust define node labels like mydevice0, mydevice1, etc. appro-
priately for the IP blocks your driver supports. The resulting devicetree usually looks something
like this:

/ {
soc {

mydevice0: dev@0 {
compatible = "vnd,my-device";

};
mydevice1: dev@1 {

compatible = "vnd,my-device";
};

};
};

The driver can use the mydevice0 and mydevice1 node labels in the devicetree to operate on
specific device nodes:

/*
* This is a convenience macro for creating a node identifier for
* the relevant devices. An example use is MYDEV(0) to refer to
* the node with label "mydevice0".
*/

#define MYDEV(idx) DT_NODELABEL(mydevice ## idx)

/*
* Define your instantiation macro; "idx" is a number like 0 for mydevice0
* or 1 for mydevice1. It uses MYDEV() to create the node label from the
* index.
*/

#define CREATE_MY_DEVICE(idx) \
static struct my_dev_data my_data_##idx = { \

/* initialize RAM values as needed, e.g.: */ \
.freq = DT_PROP(MYDEV(idx), clock_frequency), \

(continues on next page)
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(continued from previous page)
}; \
static const struct my_dev_cfg my_cfg_##idx = { /* ... */ }; \
DEVICE_DT_DEFINE(MYDEV(idx), \

my_dev_init_function, \
NULL, \
&my_data_##idx, \
&my_cfg_##idx, \
MY_DEV_INIT_LEVEL, MY_DEV_INIT_PRIORITY, \
&my_api_funcs)

Notice the use of APIs like DT_PROP() and DEVICE_DT_DEFINE() to access devicetree node data.

Finally, manually detect each enabled devicetree node and use CREATE_MY_DEVICE to instantiate
each struct device:

#if DT_NODE_HAS_STATUS(DT_NODELABEL(mydevice0), okay)
CREATE_MY_DEVICE(0)
#endif

#if DT_NODE_HAS_STATUS(DT_NODELABEL(mydevice1), okay)
CREATE_MY_DEVICE(1)
#endif

Since this style does not use DT_INST_FOREACH_STATUS_OKAY(), the driver author is responsible
for calling CREATE_MY_DEVICE() for every possible node, e.g. using knowledge about the periph-
erals available on supported SoCs.

Device drivers that depend on other devices At times, one struct device depends on an-
other struct device and requires a pointer to it. For example, a sensor device might need a
pointer to its SPI bus controller device. Some advice:

• Write your devicetree binding in a way that permits use of Hardware specific APIs from
devicetree.h if possible.

• In particular, for bus devices, your driver’s binding should include a file like
dts/bindings/spi/spi-device.yaml which provides common definitions for devices address-
able via a specific bus. This enables use of APIs like DT_BUS() to obtain a node identifier
for the bus node. You can then Get a struct device from a devicetree node for the bus in the
usual way.

Search existing bindings and device drivers for examples.

Applications that depend on board-specific devices One way to allow application code to
run unmodified on multiple boards is by supporting a devicetree alias to specify the hardware
specific portions, as is done in the blinky sample. The application can then be configured in
BOARD.dts files or via devicetree overlays.

Troubleshooting devicetree

Here are some tips for fixing misbehaving devicetree related code.

See Devicetree HOWTOs for other “HOWTO” style information.

Important

Try this first, before doing anything else.
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Try again with a pristine build directory See Pristine Builds for examples, or just delete the
build directory completely and retry.

This is general advice which is especially applicable to debugging devicetree issues, because the
outputs are created during the CMake configuration phase, and are not always regenerated when
one of their inputs changes.

Make sure <devicetree.h> is included Unlike Kconfig symbols, the devicetree.h header must
be included explicitly.

Many Zephyr header files rely on information from devicetree, so including some other API may
transitively include devicetree.h, but that’s not guaranteed.

undefined reference to __device_dts_ord_<N> This usually happens on a line like this:

const struct device *dev = DEVICE_DT_GET(NODE_ID);

where NODE_ID is a valid node identifier, but no device driver has allocated a struct device for
this devicetree node. You thus get a linker error, because you’re asking for a pointer to a device
that isn’t defined.

To fix it, you need to make sure that:

1. The node is enabled: the node must have status = "okay";.

(Recall that a missing status property means the same thing as status = "okay";; see
Important properties for more information about status).

2. A device driver responsible for allocating the struct device is enabled. That is, the Kcon-
fig option which makes the build system compile the driver sources into your application
needs to be set to y.

(See Setting Kconfig configuration values for more information on setting Kconfig options.)

Below, <build> means your build directory.

Making sure the node is enabled:

To find the devicetree node you need to check, use the number <N> from the linker error. Look
for this number in the list of nodes at the top of <build>/zephyr/include/generated/zephyr/
devicetree_generated.h. For example, if <N> is 15, and your devicetree_generated.h file looks
like this, the node you are interested in is /soc/i2c@deadbeef:

/*
* Generated by gen_defines.py
*
* DTS input file:
* <build>/zephyr/zephyr.dts.pre
*
* Directories with bindings:
* $ZEPHYR_BASE/dts/bindings
*
* Node dependency ordering (ordinal and path):
* 0 /
* 1 /aliases
[...]
* 15 /soc/i2c@deadbeef

[...]

Now look for this node in <build>/zephyr/zephyr.dts, which is the final devicetree for your
application build. (See Get your devicetree and generated header for information and examples.)

If the node has status = "disabled"; in zephyr.dts, then you need to enable it by setting status
= "okay";, probably by using a devicetree overlay. For example, if zephyr.dts looks like this:
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i2c0: i2c@deadbeef {
status = "disabled";

};

Then you should put this into your devicetree overlay and Try again with a pristine build direc-
tory:

&i2c0 {
status = "okay";

};

Make sure that you see status = "okay"; in zephyr.dts after you rebuild.

Making sure the device driver is enabled:

The first step is to figure out which device driver is responsible for handling your devicetree node
and allocating devices for it. To do this, you need to start with the compatible property in your
devicetree node, and find the driver that allocates struct device instances for that compatible.

If you’re not familiar with how devices are allocated from devicetree nodes based on compatible
properties, the ZDS 2021 talk A deep dive into the Zephyr 2.5 device model may be a useful place
to start, along with the Device Driver Model pages. See Important properties and the Devicetree
specification for more information about compatible.

There is currently no documentation for what device drivers exist and which devicetree com-
patibles they are associated with. You will have to figure this out by reading the source code:

• Look in drivers for the appropriate subdirectory that corresponds to the API your device
implements

• Look inside that directory for relevant files until you figure out what the driver is, or realize
there is no such driver.

Often, but not always, you can find the driver by looking for a file that sets the DT_DRV_COMPAT
macro to match your node’s compatible property, except lowercased and with special characters
converted to underscores. For example, if your node’s compatible is vnd,foo-device, look for a
file with this line:

#define DT_DRV_COMPAT vnd_foo_device

Important

This does not always work since not all drivers use DT_DRV_COMPAT.

If you find a driver, you next need to make sure the Kconfig option that compiles it is enabled.
(If you don’t find a driver, and you are sure the compatible property is correct, then you need to
write a driver. Writing drivers is outside the scope of this documentation page.)

Continuing the above example, if your devicetree node looks like this now:

i2c0: i2c@deadbeef {
compatible = "nordic,nrf-twim";
status = "okay";

};

Then you would look inside of drivers/i2c for the driver file that handles the compatible nordic,
nrf-twim. In this case, that is drivers/i2c/i2c_nrfx_twim.c. Notice how even in cases where
DT_DRV_COMPAT is not set, you can use information like driver file names as clues.

Once you know the driver you want to enable, you need to make sure its Kconfig option is
set to y. You can figure out which Kconfig option is needed by looking for a line similar to
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this one in the CMakeLists.txt file in the drivers subdirectory. Continuing the above example,
drivers/i2c/CMakeLists.txt has a line that looks like this:

zephyr_library_sources_ifdef(CONFIG_NRFX_TWIM i2c_nrfx_twim.c)

This means that CONFIG_NRFX_TWIM must be set to y in <build>/zephyr/.config file.

If your driver’s Kconfig is not set to y, you need to figure out what you need to do to make that
happen. Often, this will happen automatically as soon as you enable the devicetree node. Oth-
erwise, it is sometimes as simple as adding a line like this to your application’s prj.conf file and
then making sure to Try again with a pristine build directory:

CONFIG_FOO=y

where CONFIG_FOO is the option that CMakeLists.txt uses to decide whether or not to compile
the driver.

However, there may be other problems in your way, such as unmet Kconfig dependencies that
you also have to enable before you can enable your driver.

Consult the Kconfig file that defines CONFIG_FOO (for your value of FOO) for more information.

Make sure you’re using the right names Remember that:

• In C/C++, devicetree names must be lowercased and special characters must be converted
to underscores. Zephyr’s generated devicetree header has DTS names converted in this way
into the C tokens used by the preprocessor-based <devicetree.h> API.

• In overlays, use devicetree node and property names the same way they would appear in
any DTS file. Zephyr overlays are just DTS fragments.

For example, if you’re trying to get the clock-frequency property of a node with path /soc/
i2c@12340000 in a C/C++ file:

/*
* foo.c: lowercase-and-underscores names
*/

/* Don't do this: */
#define MY_CLOCK_FREQ DT_PROP(DT_PATH(soc, i2c@1234000), clock-frequency)
/* ^ ^
* @ should be _ - should be _ */

/* Do this instead: */
#define MY_CLOCK_FREQ DT_PROP(DT_PATH(soc, i2c_1234000), clock_frequency)
/* ^ ^ */

And if you’re trying to set that property in a devicetree overlay:

/*
* foo.overlay: DTS names with special characters, etc.
*/

/* Don't do this; you'll get devicetree errors. */
&{/soc/i2c_12340000/} {

clock_frequency = <115200>;
};

/* Do this instead. Overlays are just DTS fragments. */
&{/soc/i2c@12340000/} {

clock-frequency = <115200>;
};

5.2. Devicetree 1377

https://github.com/zephyrproject-rtos/zephyr/blob/main/drivers/i2c/CMakeLists.txt


Zephyr Project Documentation, Release 3.7.99

Look at the preprocessor output To save preprocessor output files, enable the CON-
FIG_COMPILER_SAVE_TEMPS option. For example, to build hello_world with west with this option
set, use:

west build -b BOARD samples/hello_world -- -DCONFIG_COMPILER_SAVE_TEMPS=y

This will create a preprocessor output file named foo.c.i in the build directory for each source
file foo.c.

You can then search for the file in the build directory to see what your devicetree macros ex-
panded to. For example, on macOS and Linux, using find to find main.c.i:

$ find build -name main.c.i
build/CMakeFiles/app.dir/src/main.c.i

It’s usually easiest to run a style formatter on the results before opening them. For example, to
use clang-format to reformat the file in place:

clang-format -i build/CMakeFiles/app.dir/src/main.c.i

You can then open the file in your favorite editor to view the final C results after preprocessing.

Do not track macro expansion Compiler messages for devicetree errors can sometimes be
very long. This typically happens when the compiler prints a message for every step of a complex
macro expansion that has several intermediate expansion steps.

To prevent the compiler from doing this, you can disable the CON-
FIG_COMPILER_TRACK_MACRO_EXPANSION option. This typically reduces the output to one
message per error.

For example, to build hello_world with west and this option disabled, use:

west build -b BOARD samples/hello_world -- -DCONFIG_COMPILER_TRACK_MACRO_EXPANSION=n

Validate properties If you’re getting a compile error reading a node property, check your node
identifier and property. For example, if you get a build error on a line that looks like this:

int baud_rate = DT_PROP(DT_NODELABEL(my_serial), current_speed);

Try checking the node by adding this to the file and recompiling:

#if !DT_NODE_EXISTS(DT_NODELABEL(my_serial))
#error "whoops"
#endif

If you see the “whoops” error message when you rebuild, the node identifier isn’t referring to a
valid node. Get your devicetree and generated header and debug from there.

Some hints for what to check next if you don’t see the “whoops” error message:

• did you Make sure you’re using the right names?

• does the property exist?

• does the node have a matching binding?

• does the binding define the property?
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Check formissing bindings See Devicetree bindings for information about bindings, and Bind-
ings index for information on bindings built into Zephyr.

If the build fails to Find a devicetree binding for a node, then either the node’s compatible prop-
erty is not defined, or its value has no matching binding. If the property is set, check for typos
in its name. In a devicetree source file, compatible should look like "vnd,some-device" – Make
sure you’re using the right names.

If your binding file is not under zephyr/dts, you may need to set DTS_ROOT; see Where bindings
are located.

Errors with DT_INST_() APIs If you’re using an API like DT_INST_PROP(), you must define
DT_DRV_COMPAT to the lowercase-and-underscores version of the compatible you are interested
in. See Option 1: create devices using instance numbers.

Devicetree versus Kconfig

Along with devicetree, Zephyr also uses the Kconfig language to configure the source code.
Whether to use devicetree or Kconfig for a particular purpose can sometimes be confusing. This
section should help you decide which one to use.

In short:

• Use devicetree to describe hardware and its boot-time configuration. Examples include
peripherals on a board, boot-time clock frequencies, interrupt lines, etc.

• Use Kconfig to configure software support to build into the final image. Examples include
whether to add networking support, which drivers are needed by the application, etc.

In other words, devicetree mainly deals with hardware, and Kconfig with software.

For example, consider a board containing a SoC with 2 UART, or serial port, instances.

• The fact that the board has this UART hardware is described with two UART nodes in the
devicetree. These provide the UART type (via the compatible property) and certain settings
such as the address range of the hardware peripheral registers in memory (via the reg
property).

• Additionally, the UART boot-time configuration is also described with devicetree. This
could include configuration such as the RX IRQ line’s priority and the UART baud rate. These
may be modifiable at runtime, but their boot-time configuration is described in devicetree.

• Whether or not to include software support for UART in the build is controlled via Kconfig.
Applications which do not need to use the UARTs can remove the driver source code from
the build using Kconfig, even though the board’s devicetree still includes UART nodes.

As another example, consider a device with a 2.4GHz, multi-protocol radio supporting both the
Bluetooth Low Energy and 802.15.4 wireless technologies.

• Devicetree should be used to describe the presence of the radio hardware, what driver or
drivers it’s compatible with, etc.

• Boot-time configuration for the radio, such as TX power in dBm, should also be specified
using devicetree.

• Kconfig should determine which software features should be built for the radio, such as
selecting a BLE or 802.15.4 protocol stack.

As another example, Kconfig options that formerly enabled a particular instance of a driver (that
is itself enabled by Kconfig) have been removed. The devices are selected individually using
devicetree’s status keyword on the corresponding hardware instance.

There are exceptions to these rules:
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• Because Kconfig is unable to flexibly control some instance-specific driver configuration
parameters, such as the size of an internal buffer, these options may be defined in device-
tree. However, to make clear that they are specific to Zephyr drivers and not hardware
description or configuration these properties should be prefixed with zephyr,, e.g. zephyr,
random-mac-address in the common Ethernet devicetree properties.

• Devicetree’s chosen keyword, which allows the user to select a specific instance of a hard-
ware device to be used for a particular purpose. An example of this is selecting a particular
UART for use as the system’s console.

5.2.2 Devicetree Reference

These pages contain reference material for Zephyr’s devicetree APIs and built-in bindings.

For the platform-independent details, see the Devicetree specification.

Devicetree API

This is a reference page for the <zephyr/devicetree.h>API. The API is macro based. Use of these
macros has no impact on scheduling. They can be used from any calling context and at file scope.

Some of these – the ones beginning with DT_INST_ – require a special macro named
DT_DRV_COMPAT to be defined before they can be used; these are discussed individually below.
These macros are generally meant for use within device drivers, though they can be used outside
of drivers with appropriate care.

Contents

• Generic APIs

– Node identifiers and helpers

– Property access

– ranges property
– reg property
– interrupts property
– For-each macros

– Existence checks

– Inter-node dependencies

– Bus helpers

• Instance-based APIs

• Hardware specific APIs

– CAN

– Clocks

– DMA

– Fixed flash partitions

– GPIO

– IO channels

1380 Chapter 5. Build and Configuration Systems

https://www.devicetree.org/


Zephyr Project Documentation, Release 3.7.99

– MBOX

– Pinctrl (pin control)

– PWM

– Reset Controller

– SPI

• Chosen nodes

• Zephyr-specific chosen nodes

Generic APIs The APIs in this section can be used anywhere and do not require DT_DRV_COMPAT
to be defined.

Node identifiers and helpers A node identifier is a way to refer to a devicetree node at C pre-
processor time. While node identifiers are not C values, you can use them to access devicetree
data in C rvalue form using, for example, the Property access API.

The root node / has node identifier DT_ROOT. You can create node identifiers for other devicetree
nodes using DT_PATH(), DT_NODELABEL(), DT_ALIAS(), and DT_INST().

There are also DT_PARENT() and DT_CHILD() macros which can be used to create node identifiers
for a given node’s parent node or a particular child node, respectively.

The following macros create or operate on node identifiers.

Related code samples

GPIO with custom Devicetree binding
Use custom Devicetree binding to control a GPIO.

group devicetree-generic-id

Defines

DT_INVALID_NODE
Name for an invalid node identifier.

This supports cases where factored macros can be invoked from paths where device-
tree data may or may not be available. It is a preprocessor identifier that does not
match any valid devicetree node identifier.

DT_ROOT
Node identifier for the root node in the devicetree.

DT_PATH(...)
Get a node identifier for a devicetree path.

The arguments to this macro are the names of non-root nodes in the tree required to
reach the desired node, starting from the root. Non-alphanumeric characters in each
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name must be converted to underscores to form valid C tokens, and letters must be
lowercased.

Example devicetree fragment:

/ {
soc {

serial1: serial@40001000 {
status = "okay";
current-speed = <115200>;
...

};
};

};

You can use DT_PATH(soc, serial_40001000) to get a node identifier for the se-
rial@40001000 node. Node labels like serial1 cannot be used as DT_PATH() argu-
ments; use DT_NODELABEL() for those instead.

Example usage with DT_PROP() to get the current-speed property:

DT_PROP(DT_PATH(soc, serial_40001000), current_speed) // 115200

(The current-speed property is also in lowercase-and-underscores form when used
with this API.)

When determining arguments to DT_PATH():

• the first argument corresponds to a child node of the root (soc above)

• a second argument corresponds to a child of the first argument (serial_40001000
above, from the node name serial@40001000 after lowercasing and changing @ to
_)

• and so on for deeper nodes in the desired node’s path

Note

This macro returns a node identifier from path components. To get a path string
from a node identifier, use DT_NODE_PATH() instead.

Parameters
• ... – lowercase-and-underscores node names along the node’s path, with

each name given as a separate argument

Returns
node identifier for the node with that path

DT_NODELABEL(label)
Get a node identifier for a node label.

Convert non-alphanumeric characters in the node label to underscores to form valid C
tokens, and lowercase all letters. Note that node labels are not the same thing as label
properties.

Example devicetree fragment:

serial1: serial@40001000 {
label = "UART_0";
status = "okay";

(continues on next page)
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(continued from previous page)
current-speed = <115200>;
...

};

The only node label in this example is serial1.

The string UART_0 is not a node label; it’s the value of a property named label.

You can use DT_NODELABEL(serial1) to get a node identifier for the serial@40001000
node. Example usage with DT_PROP() to get the current-speed property:

DT_PROP(DT_NODELABEL(serial1), current_speed) // 115200

Another example devicetree fragment:

cpu@0 {
L2_0: l2-cache {

cache-level = <2>;
...

};
};

Example usage to get the cache-level property:

DT_PROP(DT_NODELABEL(l2_0), cache_level) // 2

Notice how L2_0 in the devicetree is lowercased to l2_0 in the DT_NODELABEL() argu-
ment.

Parameters
• label – lowercase-and-underscores node label name

Returns
node identifier for the node with that label

DT_ALIAS(alias)
Get a node identifier from /aliases.

This macro’s argument is a property of the /aliases node. It returns a node identi-
fier for the node which is aliased. Convert non-alphanumeric characters in the alias
property to underscores to form valid C tokens, and lowercase all letters.

Example devicetree fragment:

/ {
aliases {

my-serial = &serial1;
};

soc {
serial1: serial@40001000 {

status = "okay";
current-speed = <115200>;
...

};
};

};

You can useDT_ALIAS(my_serial) to get a node identifier for the serial@40001000node.
Notice how my-serial in the devicetree becomes my_serial in the DT_ALIAS() argu-
ment. Example usage with DT_PROP() to get the current-speed property:

5.2. Devicetree 1383



Zephyr Project Documentation, Release 3.7.99

DT_PROP(DT_ALIAS(my_serial), current_speed) // 115200

Parameters
• alias – lowercase-and-underscores alias name.

Returns
node identifier for the node with that alias

DT_INST(inst, compat)
Get a node identifier for an instance of a compatible.

All nodes with a particular compatible property value are assigned instance numbers,
which are zero-based indexes specific to that compatible. You can get a node identi-
fier for these nodes by passing DT_INST() an instance number, inst, along with the
lowercase-and-underscores version of the compatible, compat.

Instance numbers have the following properties:

• for each compatible, instance numbers start at 0 and are contiguous

• exactly one instance number is assigned for each node with a compatible, includ-
ing disabled nodes

• enabled nodes (status property is okay or missing) are assigned the instance num-
bers starting from 0, and disabled nodes have instance numbers which are greater
than those of any enabled node

No other guarantees are made. In particular:

• instance numbers in noway reflect any numbering scheme that might exist in SoC
documentation, node labels or unit addresses, or properties of the /aliases node
(use DT_NODELABEL() or DT_ALIAS() for those)

• there is no general guarantee that the same node will have the same instance
number between builds, even if you are building the same application again in
the same build directory

Example devicetree fragment:

serial1: serial@40001000 {
compatible = "vnd,soc-serial";
status = "disabled";
current-speed = <9600>;
...

};

serial2: serial@40002000 {
compatible = "vnd,soc-serial";
status = "okay";
current-speed = <57600>;
...

};

serial3: serial@40003000 {
compatible = "vnd,soc-serial";
current-speed = <115200>;
...

};
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Assuming no other nodes in the devicetree have compatible "vnd,soc-serial", that
compatible has nodes with instance numbers 0, 1, and 2.

The nodes serial@40002000 and serial@40003000 are both enabled, so their instance
numbers are 0 and 1, but no guarantees are made regarding which node has which
instance number.

Since serial@40001000 is the only disabled node, it has instance number 2, since dis-
abled nodes are assigned the largest instance numbers. Therefore:

// Could be 57600 or 115200. There is no way to be sure:
// either serial@40002000 or serial@40003000 could
// have instance number 0, so this could be the current-speed
// property of either of those nodes.
DT_PROP(DT_INST(0, vnd_soc_serial), current_speed)

// Could be 57600 or 115200, for the same reason.
// If the above expression expands to 57600, then
// this expands to 115200, and vice-versa.
DT_PROP(DT_INST(1, vnd_soc_serial), current_speed)

// 9600, because there is only one disabled node, and
// disabled nodes are "at the end" of the instance
// number "list".
DT_PROP(DT_INST(2, vnd_soc_serial), current_speed)

Notice how "vnd,soc-serial" in the devicetree becomes vnd_soc_serial (without
quotes) in the DT_INST() arguments. (As usual, current-speed in the devicetree be-
comes current_speed as well.)

Nodes whose compatible property has multiple values are assigned independent in-
stance numbers for each compatible.

Parameters
• inst – instance number for compatible compat
• compat – lowercase-and-underscores compatible, without quotes

Returns
node identifier for the node with that instance number and compatible

DT_PARENT(node_id)
Get a node identifier for a parent node.

Example devicetree fragment:

parent: parent-node {
child: child-node {

...
};

};

The following are equivalent ways to get the same node identifier:

DT_NODELABEL(parent)
DT_PARENT(DT_NODELABEL(child))

Parameters
• node_id – node identifier

Returns
a node identifier for the node’s parent
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DT_GPARENT(node_id)
Get a node identifier for a grandparent node.

Example devicetree fragment:

gparent: grandparent-node {
parent: parent-node {

child: child-node { ... }
};

};

The following are equivalent ways to get the same node identifier:

DT_GPARENT(DT_NODELABEL(child))
DT_PARENT(DT_PARENT(DT_NODELABEL(child))

Parameters
• node_id – node identifier

Returns
a node identifier for the node’s parent’s parent

DT_CHILD(node_id, child)
Get a node identifier for a child node.

Example devicetree fragment:

/ {
soc-label: soc {

serial1: serial@40001000 {
status = "okay";
current-speed = <115200>;
...

};
};

};

Example usage with DT_PROP() to get the status of the serial@40001000 node:

#define SOC_NODE DT_NODELABEL(soc_label)
DT_PROP(DT_CHILD(SOC_NODE, serial_40001000), status) // "okay"

Node labels like serial1 cannot be used as the child argument to this macro. Use
DT_NODELABEL() for that instead.

You can also use DT_FOREACH_CHILD() to iterate over node identifiers for all of a
node’s children.

Parameters
• node_id – node identifier

• child – lowercase-and-underscores child node name

Returns
node identifier for the node with the name referred to by ‘child’

DT_COMPAT_GET_ANY_STATUS_OKAY(compat)
Get a node identifier for a status okay node with a compatible.

Use this if you want to get an arbitrary enabled node with a given compatible, and
you do not care which one you get. If any enabled nodes with the given compatible
exist, a node identifier for one of them is returned. Otherwise, DT_INVALID_NODE is
returned.
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Example devicetree fragment:

node-a {
compatible = "vnd,device";
status = "okay";

};

node-b {
compatible = "vnd,device";
status = "okay";

};

node-c {
compatible = "vnd,device";
status = "disabled";

};

Example usage:

DT_COMPAT_GET_ANY_STATUS_OKAY(vnd_device)

This expands to a node identifier for either node-a or node-b. It will not expand to a
node identifier for node-c, because that node does not have status okay.

Parameters
• compat – lowercase-and-underscores compatible, without quotes

Returns
node identifier for a node with that compatible, or DT_INVALID_NODE

DT_NODE_PATH(node_id)
Get a devicetree node’s full path as a string literal.

This returns the path to a node from a node identifier. To get a node identifier from
path components instead, use DT_PATH().

Example devicetree fragment:

/ {
soc {

node: my-node@12345678 { ... };
};

};

Example usage:

DT_NODE_PATH(DT_NODELABEL(node)) // "/soc/my-node@12345678"
DT_NODE_PATH(DT_PATH(soc)) // "/soc"
DT_NODE_PATH(DT_ROOT) // "/"

Parameters
• node_id – node identifier

Returns
the node’s full path in the devicetree

DT_NODE_FULL_NAME(node_id)
Get a devicetree node’s name with unit-address as a string literal.

This returns the node name and unit-address from a node identifier.

Example devicetree fragment:
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/ {
soc {

node: my-node@12345678 { ... };
};

};

Example usage:

DT_NODE_FULL_NAME(DT_NODELABEL(node)) // "my-node@12345678"

Parameters
• node_id – node identifier

Returns
the node’s name with unit-address as a string in the devicetree

DT_NODE_CHILD_IDX(node_id)
Get a devicetree node’s index into its parent’s list of children.

Indexes are zero-based.

It is an error to use this macro with the root node.

Example devicetree fragment:

parent {
c1: child-1 {};
c2: child-2 {};

};

Example usage:

DT_NODE_CHILD_IDX(DT_NODELABEL(c1)) // 0
DT_NODE_CHILD_IDX(DT_NODELABEL(c2)) // 1

Parameters
• node_id – node identifier

Returns
the node’s index in its parent node’s list of children

DT_CHILD_NUM(node_id)
Get the number of child nodes of a given node.

Parameters
• node_id – a node identifier

Returns
Number of child nodes

DT_CHILD_NUM_STATUS_OKAY(node_id)
Get the number of child nodes of a given node which child nodes’ status are okay.

Parameters
• node_id – a node identifier

Returns
Number of child nodes which status are okay
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DT_SAME_NODE(node_id1, node_id2)
Do node_id1 and node_id2 refer to the same node?

Both node_id1 and node_id2 must be node identifiers for nodes that exist in the de-
vicetree (if unsure, you can check with DT_NODE_EXISTS()).

The expansion evaluates to 0 or 1, but may not be a literal integer 0 or 1.

Parameters
• node_id1 – first node identifier

• node_id2 – second node identifier

Returns
an expression that evaluates to 1 if the node identifiers refer to the same
node, and evaluates to 0 otherwise

DT_NODELABEL_STRING_ARRAY(node_id)
Get a devicetree node’s node labels as an array of strings.

Example devicetree fragment:

foo: bar: node@deadbeef {};

Example usage:

DT_NODELABEL_STRING_ARRAY(DT_NODELABEL(foo))

This expands to:

{ "foo", "bar", }

Parameters
• node_id – node identifier

Returns
an array initializer for an array of the node’s node labels as strings

Property access The following general-purpose macros can be used to access node properties.
There are special-purpose APIs for accessing the ranges property, reg property and interrupts
property.

Property values can be read using these macros even if the node is disabled, as long as it has a
matching binding.

group devicetree-generic-prop

Defines

DT_PROP(node_id, prop)
Get a devicetree property value.

For properties whose bindings have the following types, this macro expands to:

• string: a string literal

• boolean: 0 if the property is false, or 1 if it is true

• int: the property’s value as an integer literal
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• array, uint8-array, string-array: an initializer expression in braces, whose ele-
ments are integer or string literals (like {0, 1, 2}, {"hello", "world"}, etc.)

• phandle: a node identifier for the node with that phandle

A property’s type is usually defined by its binding. In some special cases, it has an as-
sumed type defined by the devicetree specification even when no binding is available:
compatible has type string-array, status has type string, and interrupt-controller
has type boolean.

For other properties or properties with unknown type due to a missing binding, be-
havior is undefined.

For usage examples, see DT_PATH(), DT_ALIAS(), DT_NODELABEL(), and DT_INST()
above.

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name

Returns
a representation of the property’s value

DT_PROP_LEN(node_id, prop)
Get a property’s logical length.

Here, “length” is a number of elements, which may differ from the property’s size in
bytes.

The return value depends on the property’s type:

• for types array, string-array, and uint8-array, this expands to the number of ele-
ments in the array

• for type phandles, this expands to the number of phandles

• for type phandle-array, this expands to the number of phandle and specifier blocks
in the property

• for type phandle, this expands to 1 (so that a phandle can be treated as a degenerate
case of phandles with length 1)

• for type string, this expands to 1 (so that a string can be treated as a degenerate
case of string-array with length 1)

These properties are handled as special cases:

• reg property: use DT_NUM_REGS(node_id) instead

• interrupts property: use DT_NUM_IRQS(node_id) instead

It is an error to use this macro with the ranges, dma-ranges, reg or interrupts prop-
erties.

For other properties, behavior is undefined.

Parameters
• node_id – node identifier

• prop – a lowercase-and-underscores property with a logical length

Returns
the property’s length
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DT_PROP_LEN_OR(node_id, prop, default_value)
Like DT_PROP_LEN(), but with a fallback to default_value.

If the property is defined (as determined by DT_NODE_HAS_PROP()), this expands to
DT_PROP_LEN(node_id, prop). The default_value parameter is not expanded in this
case.

Otherwise, this expands to default_value.

Parameters
• node_id – node identifier

• prop – a lowercase-and-underscores property with a logical length

• default_value – a fallback value to expand to

Returns
the property’s length or the given default value

DT_PROP_HAS_IDX(node_id, prop, idx)
Is index idx valid for an array type property?

If this returns 1, then DT_PROP_BY_IDX(node_id, prop, idx) or DT_PHA_BY_IDX(node_id,
prop, idx, …) are valid at index idx. If it returns 0, it is an error to use those macros
with that index.

These properties are handled as special cases:

• reg property: use DT_REG_HAS_IDX(node_id, idx) instead

• interrupts property: use DT_IRQ_HAS_IDX(node_id, idx) instead

It is an error to use this macro with the reg or interrupts properties.

Parameters
• node_id – node identifier

• prop – a lowercase-and-underscores property with a logical length

• idx – index to check

Returns
An expression which evaluates to 1 if idx is a valid index into the given
property, and 0 otherwise.

DT_PROP_HAS_NAME(node_id, prop, name)
Is name name available in a foo-names property?

This property is handled as special case:

• interrupts property: use DT_IRQ_HAS_NAME(node_id, idx) instead

It is an error to use this macro with the interrupts property.

Example devicetree fragment:

nx: node-x {
foos = <&bar xx yy>, <&baz xx zz>;
foo-names = "event", "error";
status = "okay";

};

Example usage:
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DT_PROP_HAS_NAME(DT_NODELABEL(nx), foos, event) // 1
DT_PROP_HAS_NAME(DT_NODELABEL(nx), foos, failure) // 0

Parameters
• node_id – node identifier

• prop – a lowercase-and-underscores prop-names type property

• name – a lowercase-and-underscores name to check

Returns
An expression which evaluates to 1 if “name” is an available name into the
given property, and 0 otherwise.

DT_PROP_BY_IDX(node_id, prop, idx)
Get the value at index idx in an array type property.

It might help to read the argument order as being similar to node->property[index].

The return value depends on the property’s type:

• for types array, string-array, uint8-array, and phandles, this expands to the idx-th
array element as an integer, string literal, integer, and node identifier respectively

• for type phandle, idx must be 0 and the expansion is a node identifier (this treats
phandle like a phandles of length 1)

• for type string, idx must be 0 and the expansion is the entire string (this treats
string like string-array of length 1)

These properties are handled as special cases:

• reg: use DT_REG_ADDR_BY_IDX() or DT_REG_SIZE_BY_IDX() instead

• interrupts: use DT_IRQ_BY_IDX()

• ranges: use DT_NUM_RANGES()

• dma-ranges: it is an error to use this property with DT_PROP_BY_IDX()

For properties of other types, behavior is undefined.

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name

• idx – the index to get

Returns
a representation of the idx-th element of the property

DT_PROP_OR(node_id, prop, default_value)
Like DT_PROP(), but with a fallback to default_value.

If the value exists, this expands to DT_PROP(node_id, prop). The default_value param-
eter is not expanded in this case.

Otherwise, this expands to default_value.

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name
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• default_value – a fallback value to expand to

Returns
the property’s value or default_value

DT_ENUM_IDX(node_id, prop)
Get a property value’s index into its enumeration values.

The return values start at zero.

Example devicetree fragment:

usb1: usb@12340000 {
maximum-speed = "full-speed";

};
usb2: usb@12341000 {

maximum-speed = "super-speed";
};

Example bindings fragment:

properties:
maximum-speed:
type: string
enum:

- "low-speed"
- "full-speed"
- "high-speed"
- "super-speed"

Example usage:

DT_ENUM_IDX(DT_NODELABEL(usb1), maximum_speed) // 1
DT_ENUM_IDX(DT_NODELABEL(usb2), maximum_speed) // 3

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name

Returns
zero-based index of the property’s value in its enum: list

DT_ENUM_IDX_OR(node_id, prop, default_idx_value)
Like DT_ENUM_IDX(), but with a fallback to a default enum index.

If the value exists, this expands to its zero based index value thanks to
DT_ENUM_IDX(node_id, prop).

Otherwise, this expands to provided default index enum value.

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name

• default_idx_value – a fallback index value to expand to

Returns
zero-based index of the property’s value in its enum if present, de-
fault_idx_value otherwise
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DT_ENUM_HAS_VALUE(node_id, prop, value)
Does a node enumeration property have a given value?

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name

• value – lowercase-and-underscores enumeration value

Returns
1 if the node property has the value value, 0 otherwise.

DT_STRING_TOKEN(node_id, prop)
Get a string property’s value as a token.

This removes “the quotes” from a string property’s value, converting any non-
alphanumeric characters to underscores. This can be useful, for example, when pro-
grammatically using the value to form a C variable or code.

DT_STRING_TOKEN() can only be used for properties with string type.

It is an error to use DT_STRING_TOKEN() in other circumstances.

Example devicetree fragment:

n1: node-1 {
prop = "foo";

};
n2: node-2 {

prop = "FOO";
}
n3: node-3 {

prop = "123 foo";
};

Example bindings fragment:

properties:
prop:
type: string

Example usage:

DT_STRING_TOKEN(DT_NODELABEL(n1), prop) // foo
DT_STRING_TOKEN(DT_NODELABEL(n2), prop) // FOO
DT_STRING_TOKEN(DT_NODELABEL(n3), prop) // 123_foo

Notice how:

• Unlike C identifiers, the property values may begin with a number. It’s the user’s
responsibility not to use such values as the name of a C identifier.

• The uppercased "FOO" in the DTS remains FOO as a token. It is not converted to foo.

• The whitespace in the DTS "123 foo" string is converted to 123_foo as a token.

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name
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Returns
the value of prop as a token, i.e. without any quotes and with special char-
acters converted to underscores

DT_STRING_TOKEN_OR(node_id, prop, default_value)
Like DT_STRING_TOKEN(), but with a fallback to default_value.

If the value exists, this expands to DT_STRING_TOKEN(node_id, prop). The de-
fault_value parameter is not expanded in this case.

Otherwise, this expands to default_value.

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name

• default_value – a fallback value to expand to

Returns
the property’s value as a token, or default_value

DT_STRING_UPPER_TOKEN(node_id, prop)
Like DT_STRING_TOKEN(), but uppercased.

This removes “the quotes” from a string property’s value, converting any non-
alphanumeric characters to underscores, and capitalizing the result. This can be use-
ful, for example, when programmatically using the value to form a C variable or code.

DT_STRING_UPPER_TOKEN() can only be used for properties with string type.

It is an error to use DT_STRING_UPPER_TOKEN() in other circumstances.

Example devicetree fragment:

n1: node-1 {
prop = "foo";

};
n2: node-2 {

prop = "123 foo";
};

Example bindings fragment:

properties:
prop:
type: string

Example usage:

DT_STRING_UPPER_TOKEN(DT_NODELABEL(n1), prop) // FOO
DT_STRING_UPPER_TOKEN(DT_NODELABEL(n2), prop) // 123_FOO

Notice how:

• Unlike C identifiers, the property values may begin with a number. It’s the user’s
responsibility not to use such values as the name of a C identifier.

• The lowercased "foo" in the DTS becomes FOO as a token, i.e. it is uppercased.

• The whitespace in the DTS "123 foo" string is converted to 123_FOO as a token, i.e.
it is uppercased and whitespace becomes an underscore.

Parameters
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• node_id – node identifier

• prop – lowercase-and-underscores property name

Returns
the value of prop as an uppercased token, i.e. without any quotes and with
special characters converted to underscores

DT_STRING_UPPER_TOKEN_OR(node_id, prop, default_value)
Like DT_STRING_UPPER_TOKEN(), but with a fallback to default_value.

If the value exists, this expands to DT_STRING_UPPER_TOKEN(node_id, prop). The de-
fault_value parameter is not expanded in this case.

Otherwise, this expands to default_value.

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name

• default_value – a fallback value to expand to

Returns
the property’s value as an uppercased token, or default_value

DT_STRING_UNQUOTED(node_id, prop)
Get a string property’s value as an unquoted sequence of tokens.

This removes “the quotes” from string-valued properties. That can be useful, for ex-
ample, when defining floating point values as a string in devicetree that you would
like to use to initialize a float or double variable in C.

DT_STRING_UNQUOTED() can only be used for properties with string type.

It is an error to use DT_STRING_UNQUOTED() in other circumstances.

Example devicetree fragment:

n1: node-1 {
prop = "12.7";

};
n2: node-2 {

prop = "0.5";
}
n3: node-3 {

prop = "A B C";
};

Example bindings fragment:

properties:
prop:
type: string

Example usage:

DT_STRING_UNQUOTED(DT_NODELABEL(n1), prop) // 12.7
DT_STRING_UNQUOTED(DT_NODELABEL(n2), prop) // 0.5
DT_STRING_UNQUOTED(DT_NODELABEL(n3), prop) // A B C

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name
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Returns
the property’s value as a sequence of tokens, with no quotes

DT_STRING_UNQUOTED_OR(node_id, prop, default_value)
Like DT_STRING_UNQUOTED(), but with a fallback to default_value.

If the value exists, this expands to DT_STRING_UNQUOTED(node_id, prop). The de-
fault_value parameter is not expanded in this case.

Otherwise, this expands to default_value.

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name

• default_value – a fallback value to expand to

Returns
the property’s value as a sequence of tokens, with no quotes, or de-
fault_value

DT_STRING_TOKEN_BY_IDX(node_id, prop, idx)
Get an element out of a string-array property as a token.

This removes “the quotes” from an element in the array, and converts non-
alphanumeric characters to underscores. That can be useful, for example, when pro-
grammatically using the value to form a C variable or code.

DT_STRING_TOKEN_BY_IDX() can only be used for properties with string-array type.

It is an error to use DT_STRING_TOKEN_BY_IDX() in other circumstances.

Example devicetree fragment:

n1: node-1 {
prop = "f1", "F2";

};
n2: node-2 {

prop = "123 foo", "456 FOO";
};

Example bindings fragment:

properties:
prop:
type: string-array

Example usage:

DT_STRING_TOKEN_BY_IDX(DT_NODELABEL(n1), prop, 0) // f1
DT_STRING_TOKEN_BY_IDX(DT_NODELABEL(n1), prop, 1) // F2
DT_STRING_TOKEN_BY_IDX(DT_NODELABEL(n2), prop, 0) // 123_foo
DT_STRING_TOKEN_BY_IDX(DT_NODELABEL(n2), prop, 1) // 456_FOO

For more information, see DT_STRING_TOKEN.

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name

• idx – the index to get

Returns
the element in prop at index idx as a token
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DT_STRING_UPPER_TOKEN_BY_IDX(node_id, prop, idx)
Like DT_STRING_TOKEN_BY_IDX(), but uppercased.

This removes “the quotes” and capitalizes an element in the array, and converts non-
alphanumeric characters to underscores. That can be useful, for example, when pro-
grammatically using the value to form a C variable or code.

DT_STRING_UPPER_TOKEN_BY_IDX() can only be used for properties with string-array
type.

It is an error to use DT_STRING_UPPER_TOKEN_BY_IDX() in other circumstances.

Example devicetree fragment:

n1: node-1 {
prop = "f1", "F2";

};
n2: node-2 {

prop = "123 foo", "456 FOO";
};

Example bindings fragment:

properties:
prop:
type: string-array

Example usage:

DT_STRING_UPPER_TOKEN_BY_IDX(DT_NODELABEL(n1), prop, 0) // F1
DT_STRING_UPPER_TOKEN_BY_IDX(DT_NODELABEL(n1), prop, 1) // F2
DT_STRING_UPPER_TOKEN_BY_IDX(DT_NODELABEL(n2), prop, 0) // 123_FOO
DT_STRING_UPPER_TOKEN_BY_IDX(DT_NODELABEL(n2), prop, 1) // 456_FOO

For more information, see DT_STRING_UPPER_TOKEN.

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name

• idx – the index to get

Returns
the element in prop at index idx as an uppercased token

DT_STRING_UNQUOTED_BY_IDX(node_id, prop, idx)
Get a string array item value as an unquoted sequence of tokens.

This removes “the quotes” from string-valued item. That can be useful, for example,
when defining floating point values as a string in devicetree that you would like to use
to initialize a float or double variable in C.

DT_STRING_UNQUOTED_BY_IDX() can only be used for properties with string-array
type.

It is an error to use DT_STRING_UNQUOTED_BY_IDX() in other circumstances.

Example devicetree fragment:

n1: node-1 {
prop = "12.7", "34.1";

};
n2: node-2 {

prop = "A B", "C D";
}
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Example bindings fragment:

properties:
prop:
type: string-array

Example usage:

DT_STRING_UNQUOTED_BY_IDX(DT_NODELABEL(n1), prop, 0) // 12.7
DT_STRING_UNQUOTED_BY_IDX(DT_NODELABEL(n1), prop, 1) // 34.1
DT_STRING_UNQUOTED_BY_IDX(DT_NODELABEL(n2), prop, 0) // A B
DT_STRING_UNQUOTED_BY_IDX(DT_NODELABEL(n2), prop, 1) // C D

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name

• idx – the index to get

Returns
the property’s value as a sequence of tokens, with no quotes

DT_PROP_BY_PHANDLE_IDX(node_id, phs, idx, prop)
Get a property value from a phandle in a property.

This is a shorthand for:

DT_PROP(DT_PHANDLE_BY_IDX(node_id, phs, idx), prop)

That is, prop is a property of the phandle’s node, not a property of node_id.

Example devicetree fragment:

n1: node-1 {
foo = <&n2 &n3>;

};

n2: node-2 {
bar = <42>;

};

n3: node-3 {
baz = <43>;

};

Example usage:

#define N1 DT_NODELABEL(n1)

DT_PROP_BY_PHANDLE_IDX(N1, foo, 0, bar) // 42
DT_PROP_BY_PHANDLE_IDX(N1, foo, 1, baz) // 43

Parameters
• node_id – node identifier

• phs – lowercase-and-underscores property with type phandle, phandles,
or phandle-array

• idx – logical index into phs, which must be zero if phs has type phandle
• prop – lowercase-and-underscores property of the phandle’s node
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Returns
the property’s value

DT_PROP_BY_PHANDLE_IDX_OR(node_id, phs, idx, prop, default_value)
Like DT_PROP_BY_PHANDLE_IDX(), but with a fallback to default_value.

If the value exists, this expands to DT_PROP_BY_PHANDLE_IDX(node_id, phs,idx, prop).
The default_value parameter is not expanded in this case.

Otherwise, this expands to default_value.

Parameters
• node_id – node identifier

• phs – lowercase-and-underscores property with type phandle, phandles,
or phandle-array

• idx – logical index into phs, which must be zero if phs has type phandle
• prop – lowercase-and-underscores property of the phandle’s node

• default_value – a fallback value to expand to

Returns
the property’s value

DT_PROP_BY_PHANDLE(node_id, ph, prop)
Get a property value from a phandle’s node.

This is equivalent to DT_PROP_BY_PHANDLE_IDX(node_id, ph, 0, prop).

Parameters
• node_id – node identifier

• ph – lowercase-and-underscores property of node_id with type phandle
• prop – lowercase-and-underscores property of the phandle’s node

Returns
the property’s value

DT_PHA_BY_IDX(node_id, pha, idx, cell)
Get a phandle-array specifier cell value at an index.

It might help to read the argument order as being similar to
node->phandle_array[index].cell. That is, the cell value is in the pha property
of node_id, inside the specifier at index idx.

Example devicetree fragment:

gpio0: gpio@abcd1234 {
#gpio-cells = <2>;

};

gpio1: gpio@1234abcd {
#gpio-cells = <2>;

};

led: led_0 {
gpios = <&gpio0 17 0x1>, <&gpio1 5 0x3>;

};

Bindings fragment for the gpio0 and gpio1 nodes:
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gpio-cells:
- pin
- flags

Above, gpios has two elements:

• index 0 has specifier <17 0x1>, so its pin cell is 17, and its flags cell is 0x1

• index 1 has specifier <5 0x3>, so pin is 5 and flags is 0x3

Example usage:

#define LED DT_NODELABEL(led)

DT_PHA_BY_IDX(LED, gpios, 0, pin) // 17
DT_PHA_BY_IDX(LED, gpios, 1, flags) // 0x3

Parameters
• node_id – node identifier

• pha – lowercase-and-underscores property with type phandle-array
• idx – logical index into pha
• cell – lowercase-and-underscores cell name within the specifier at pha

index idx
Returns

the cell’s value

DT_PHA_BY_IDX_OR(node_id, pha, idx, cell, default_value)
Like DT_PHA_BY_IDX(), but with a fallback to default_value.

If the value exists, this expands to DT_PHA_BY_IDX(node_id, pha,idx, cell). The de-
fault_value parameter is not expanded in this case.

Otherwise, this expands to default_value.

Parameters
• node_id – node identifier

• pha – lowercase-and-underscores property with type phandle-array
• idx – logical index into pha
• cell – lowercase-and-underscores cell name within the specifier at pha

index idx
• default_value – a fallback value to expand to

Returns
the cell’s value or default_value

DT_PHA(node_id, pha, cell)
Equivalent to DT_PHA_BY_IDX(node_id, pha, 0, cell)

Parameters
• node_id – node identifier

• pha – lowercase-and-underscores property with type phandle-array
• cell – lowercase-and-underscores cell name
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Returns
the cell’s value

DT_PHA_OR(node_id, pha, cell, default_value)
Like DT_PHA(), but with a fallback to default_value.

If the value exists, this expands to DT_PHA(node_id, pha, cell). The default_value pa-
rameter is not expanded in this case.

Otherwise, this expands to default_value.

Parameters
• node_id – node identifier

• pha – lowercase-and-underscores property with type phandle-array
• cell – lowercase-and-underscores cell name

• default_value – a fallback value to expand to

Returns
the cell’s value or default_value

DT_PHA_BY_NAME(node_id, pha, name, cell)
Get a value within a phandle-array specifier by name.

This is like DT_PHA_BY_IDX(), except it treats pha as a structure where each array ele-
ment has a name.

It might help to read the argument order as being similar to node->phandle_struct.
name.cell. That is, the cell value is in the pha property of node_id, treated as a data
structure where each array element has a name.

Example devicetree fragment:

n: node {
io-channels = <&adc1 10>, <&adc2 20>;
io-channel-names = "SENSOR", "BANDGAP";

};

Bindings fragment for the “adc1” and “adc2” nodes:

io-channel-cells:
- input

Example usage:

DT_PHA_BY_NAME(DT_NODELABEL(n), io_channels, sensor, input) // 10
DT_PHA_BY_NAME(DT_NODELABEL(n), io_channels, bandgap, input) // 20

Parameters
• node_id – node identifier

• pha – lowercase-and-underscores property with type phandle-array
• name – lowercase-and-underscores name of a specifier in pha
• cell – lowercase-and-underscores cell name in the named specifier

Returns
the cell’s value
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DT_PHA_BY_NAME_OR(node_id, pha, name, cell, default_value)
Like DT_PHA_BY_NAME(), but with a fallback to default_value.

If the value exists, this expands to DT_PHA_BY_NAME(node_id, pha,name, cell). The
default_value parameter is not expanded in this case.

Otherwise, this expands to default_value.

Parameters
• node_id – node identifier

• pha – lowercase-and-underscores property with type phandle-array
• name – lowercase-and-underscores name of a specifier in pha
• cell – lowercase-and-underscores cell name in the named specifier

• default_value – a fallback value to expand to

Returns
the cell’s value or default_value

DT_PHANDLE_BY_NAME(node_id, pha, name)
Get a phandle’s node identifier from a phandle array by name.

It might help to read the argument order as being similar to node->phandle_struct.
name.phandle. That is, the phandle array is treated as a structure with named ele-
ments. The return value is the node identifier for a phandle inside the structure.

Example devicetree fragment:

adc1: adc@abcd1234 {
foobar = "ADC_1";

};

adc2: adc@1234abcd {
foobar = "ADC_2";

};

n: node {
io-channels = <&adc1 10>, <&adc2 20>;
io-channel-names = "SENSOR", "BANDGAP";

};

Above, “io-channels” has two elements:

• the element named "SENSOR" has phandle &adc1
• the element named "BANDGAP" has phandle &adc2

Example usage:

#define NODE DT_NODELABEL(n)

DT_PROP(DT_PHANDLE_BY_NAME(NODE, io_channels, sensor), foobar) // "ADC_1"
DT_PROP(DT_PHANDLE_BY_NAME(NODE, io_channels, bandgap), foobar) // "ADC_2"

Notice how devicetree properties and names are lowercased, and non-alphanumeric
characters are converted to underscores.

Parameters
• node_id – node identifier

• pha – lowercase-and-underscores property with type phandle-array
• name – lowercase-and-underscores name of an element in pha
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Returns
a node identifier for the node with that phandle

DT_PHANDLE_BY_IDX(node_id, prop, idx)
Get a node identifier for a phandle in a property.

When a node’s value at a logical index contains a phandle, this macro returns a node
identifier for the node with that phandle.

Therefore, if prop has type phandle, idx must be zero. (A phandle type is treated as a
phandles with a fixed length of 1).

Example devicetree fragment:

n1: node-1 {
foo = <&n2 &n3>;

};

n2: node-2 { ... };
n3: node-3 { ... };

Above, foo has type phandles and has two elements:

• index 0 has phandle &n2, which is node-2’s phandle

• index 1 has phandle &n3, which is node-3’s phandle

Example usage:

#define N1 DT_NODELABEL(n1)

DT_PHANDLE_BY_IDX(N1, foo, 0) // node identifier for node-2
DT_PHANDLE_BY_IDX(N1, foo, 1) // node identifier for node-3

Behavior is analogous for phandle-arrays.

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name in node_id with type
phandle, phandles or phandle-array

• idx – index into prop
Returns

node identifier for the node with the phandle at that index

DT_PHANDLE(node_id, prop)
Get a node identifier for a phandle property’s value.

This is equivalent to DT_PHANDLE_BY_IDX(node_id, prop, 0). Its primary benefit is
readability when prop has type phandle.

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property of node_id with type phan-
dle

Returns
a node identifier for the node pointed to by “ph”
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ranges property Use these APIs instead of Property access to access the ranges property. Be-
cause this property’s semantics are defined by the devicetree specification, these macros can be
used even for nodes without matching bindings. However, they take on special semantics when
the node’s binding indicates it is a PCIe bus node, as defined in the PCI Bus Binding to: IEEE Std
1275-1994 Standard for Boot (Initialization Configuration) Firmware

group devicetree-ranges-prop

Defines

DT_NUM_RANGES(node_id)
Get the number of range blocks in the ranges property.

Use this instead of DT_PROP_LEN(node_id, ranges).

Example devicetree fragment:

pcie0: pcie@0 {
compatible = "pcie-controller";
reg = <0 1>;
#address-cells = <3>;
#size-cells = <2>;

ranges = <0x1000000 0 0 0 0x3eff0000 0 0x10000>,
<0x2000000 0 0x10000000 0 0x10000000 0 0x2eff0000>,
<0x3000000 0x80 0 0x80 0 0x80 0>;

};

other: other@1 {
reg = <1 1>;

ranges = <0x0 0x0 0x0 0x3eff0000 0x10000>,
<0x0 0x10000000 0x0 0x10000000 0x2eff0000>;

};

Example usage:

DT_NUM_RANGES(DT_NODELABEL(pcie0)) // 3
DT_NUM_RANGES(DT_NODELABEL(other)) // 2

Parameters
• node_id – node identifier

DT_RANGES_HAS_IDX(node_id, idx)
Is idx a valid range block index?

If this returns 1, then DT_RANGES_CHILD_BUS_ADDRESS_BY_IDX(node_id,
idx), DT_RANGES_PARENT_BUS_ADDRESS_BY_IDX(node_id, idx)
or DT_RANGES_LENGTH_BY_IDX(node_id, idx) are valid. For
DT_RANGES_CHILD_BUS_FLAGS_BY_IDX(node_id, idx) the return value of
DT_RANGES_HAS_CHILD_BUS_FLAGS_AT_IDX(node_id, idx) will indicate valid-
ity. If it returns 0, it is an error to use those macros with index idx, including
DT_RANGES_CHILD_BUS_FLAGS_BY_IDX(node_id, idx).

Example devicetree fragment:

pcie0: pcie@0 {
compatible = "pcie-controller";
reg = <0 1>;

(continues on next page)
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#address-cells = <3>;
#size-cells = <2>;

ranges = <0x1000000 0 0 0 0x3eff0000 0 0x10000>,
<0x2000000 0 0x10000000 0 0x10000000 0 0x2eff0000>,
<0x3000000 0x80 0 0x80 0 0x80 0>;

};

other: other@1 {
reg = <1 1>;

ranges = <0x0 0x0 0x0 0x3eff0000 0x10000>,
<0x0 0x10000000 0x0 0x10000000 0x2eff0000>;

};

Example usage:

DT_RANGES_HAS_IDX(DT_NODELABEL(pcie0), 0) // 1
DT_RANGES_HAS_IDX(DT_NODELABEL(pcie0), 1) // 1
DT_RANGES_HAS_IDX(DT_NODELABEL(pcie0), 2) // 1
DT_RANGES_HAS_IDX(DT_NODELABEL(pcie0), 3) // 0
DT_RANGES_HAS_IDX(DT_NODELABEL(other), 0) // 1
DT_RANGES_HAS_IDX(DT_NODELABEL(other), 1) // 1
DT_RANGES_HAS_IDX(DT_NODELABEL(other), 2) // 0
DT_RANGES_HAS_IDX(DT_NODELABEL(other), 3) // 0

Parameters
• node_id – node identifier

• idx – index to check

Returns
1 if idx is a valid register block index, 0 otherwise.

DT_RANGES_HAS_CHILD_BUS_FLAGS_AT_IDX(node_id, idx)
Does a ranges property have child bus flags at index?

If this returns 1, then DT_RANGES_CHILD_BUS_FLAGS_BY_IDX(node_id, idx) is valid. If
it returns 0, it is an error to use this macro with index idx. This macro only returns 1
for PCIe buses (i.e. nodes whose bindings specify they are “pcie” bus nodes.)

Example devicetree fragment:

parent {
#address-cells = <2>;

pcie0: pcie@0 {
compatible = "pcie-controller";
reg = <0 0 1>;
#address-cells = <3>;
#size-cells = <2>;

ranges = <0x1000000 0 0 0 0x3eff0000 0 0x10000>,
<0x2000000 0 0x10000000 0 0x10000000 0 0x2eff0000>,
<0x3000000 0x80 0 0x80 0 0x80 0>;

};

other: other@1 {
reg = <0 1 1>;

ranges = <0x0 0x0 0x0 0x3eff0000 0x10000>,
(continues on next page)
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<0x0 0x10000000 0x0 0x10000000 0x2eff0000>;

};
};

Example usage:

DT_RANGES_HAS_CHILD_BUS_FLAGS_AT_IDX(DT_NODELABEL(pcie0), 0) // 1
DT_RANGES_HAS_CHILD_BUS_FLAGS_AT_IDX(DT_NODELABEL(pcie0), 1) // 1
DT_RANGES_HAS_CHILD_BUS_FLAGS_AT_IDX(DT_NODELABEL(pcie0), 2) // 1
DT_RANGES_HAS_CHILD_BUS_FLAGS_AT_IDX(DT_NODELABEL(pcie0), 3) // 0
DT_RANGES_HAS_CHILD_BUS_FLAGS_AT_IDX(DT_NODELABEL(other), 0) // 0
DT_RANGES_HAS_CHILD_BUS_FLAGS_AT_IDX(DT_NODELABEL(other), 1) // 0
DT_RANGES_HAS_CHILD_BUS_FLAGS_AT_IDX(DT_NODELABEL(other), 2) // 0
DT_RANGES_HAS_CHILD_BUS_FLAGS_AT_IDX(DT_NODELABEL(other), 3) // 0

Parameters
• node_id – node identifier

• idx – logical index into the ranges array

Returns
1 if idx is a valid child bus flags index, 0 otherwise.

DT_RANGES_CHILD_BUS_FLAGS_BY_IDX(node_id, idx)
Get the ranges property child bus flags at index.

When the node is a PCIe bus, the Child Bus Address has an extra cell used to store some
flags, thus this cell is extracted from the Child Bus Address as Child Bus Flags field.

Example devicetree fragments:

parent {
#address-cells = <2>;

pcie0: pcie@0 {
compatible = "pcie-controller";
reg = <0 0 1>;
#address-cells = <3>;
#size-cells = <2>;

ranges = <0x1000000 0 0 0 0x3eff0000 0 0x10000>,
<0x2000000 0 0x10000000 0 0x10000000 0 0x2eff0000>,
<0x3000000 0x80 0 0x80 0 0x80 0>;

};
};

Example usage:

DT_RANGES_CHILD_BUS_FLAGS_BY_IDX(DT_NODELABEL(pcie0), 0) // 0x1000000
DT_RANGES_CHILD_BUS_FLAGS_BY_IDX(DT_NODELABEL(pcie0), 1) // 0x2000000
DT_RANGES_CHILD_BUS_FLAGS_BY_IDX(DT_NODELABEL(pcie0), 2) // 0x3000000

Parameters
• node_id – node identifier

• idx – logical index into the ranges array

Returns
range child bus flags field at idx
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DT_RANGES_CHILD_BUS_ADDRESS_BY_IDX(node_id, idx)
Get the ranges property child bus address at index.

When the node is a PCIe bus, the Child Bus Address has an extra cell used to store some
flags, thus this cell is removed from the Child Bus Address.

Example devicetree fragments:

parent {
#address-cells = <2>;

pcie0: pcie@0 {
compatible = "pcie-controller";
reg = <0 0 1>;
#address-cells = <3>;
#size-cells = <2>;

ranges = <0x1000000 0 0 0 0x3eff0000 0 0x10000>,
<0x2000000 0 0x10000000 0 0x10000000 0 0x2eff0000>,
<0x3000000 0x80 0 0x80 0 0x80 0>;

};

other: other@1 {
reg = <0 1 1>;

ranges = <0x0 0x0 0x0 0x3eff0000 0x10000>,
<0x0 0x10000000 0x0 0x10000000 0x2eff0000>;

};
};

Example usage:

DT_RANGES_CHILD_BUS_ADDRESS_BY_IDX(DT_NODELABEL(pcie0), 0) // 0
DT_RANGES_CHILD_BUS_ADDRESS_BY_IDX(DT_NODELABEL(pcie0), 1) // 0x10000000
DT_RANGES_CHILD_BUS_ADDRESS_BY_IDX(DT_NODELABEL(pcie0), 2) // 0x8000000000
DT_RANGES_CHILD_BUS_ADDRESS_BY_IDX(DT_NODELABEL(other), 0) // 0
DT_RANGES_CHILD_BUS_ADDRESS_BY_IDX(DT_NODELABEL(other), 1) // 0x10000000

Parameters
• node_id – node identifier

• idx – logical index into the ranges array

Returns
range child bus address field at idx

DT_RANGES_PARENT_BUS_ADDRESS_BY_IDX(node_id, idx)
Get the ranges property parent bus address at index.

Similarly to DT_RANGES_CHILD_BUS_ADDRESS_BY_IDX(), this properly accounts for
child bus flags cells when the node is a PCIe bus.

Example devicetree fragment:

parent {
#address-cells = <2>;

pcie0: pcie@0 {
compatible = "pcie-controller";
reg = <0 0 1>;
#address-cells = <3>;
#size-cells = <2>;

(continues on next page)

1408 Chapter 5. Build and Configuration Systems



Zephyr Project Documentation, Release 3.7.99

(continued from previous page)

ranges = <0x1000000 0 0 0 0x3eff0000 0 0x10000>,
<0x2000000 0 0x10000000 0 0x10000000 0 0x2eff0000>,
<0x3000000 0x80 0 0x80 0 0x80 0>;

};

other: other@1 {
reg = <0 1 1>;

ranges = <0x0 0x0 0x0 0x3eff0000 0x10000>,
<0x0 0x10000000 0x0 0x10000000 0x2eff0000>;

};
};

Example usage:

DT_RANGES_PARENT_BUS_ADDRESS_BY_IDX(DT_NODELABEL(pcie0), 0) // 0x3eff0000
DT_RANGES_PARENT_BUS_ADDRESS_BY_IDX(DT_NODELABEL(pcie0), 1) // 0x10000000
DT_RANGES_PARENT_BUS_ADDRESS_BY_IDX(DT_NODELABEL(pcie0), 2) // 0x8000000000
DT_RANGES_PARENT_BUS_ADDRESS_BY_IDX(DT_NODELABEL(other), 0) // 0x3eff0000
DT_RANGES_PARENT_BUS_ADDRESS_BY_IDX(DT_NODELABEL(other), 1) // 0x10000000

Parameters
• node_id – node identifier

• idx – logical index into the ranges array

Returns
range parent bus address field at idx

DT_RANGES_LENGTH_BY_IDX(node_id, idx)
Get the ranges property length at index.

Similarly to DT_RANGES_CHILD_BUS_ADDRESS_BY_IDX(), this properly accounts for
child bus flags cells when the node is a PCIe bus.

Example devicetree fragment:

parent {
#address-cells = <2>;

pcie0: pcie@0 {
compatible = "pcie-controller";
reg = <0 0 1>;
#address-cells = <3>;
#size-cells = <2>;

ranges = <0x1000000 0 0 0 0x3eff0000 0 0x10000>,
<0x2000000 0 0x10000000 0 0x10000000 0 0x2eff0000>,
<0x3000000 0x80 0 0x80 0 0x80 0>;

};

other: other@1 {
reg = <0 1 1>;

ranges = <0x0 0x0 0x0 0x3eff0000 0x10000>,
<0x0 0x10000000 0x0 0x10000000 0x2eff0000>;

};
};

Example usage:
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DT_RANGES_LENGTH_BY_IDX(DT_NODELABEL(pcie0), 0) // 0x10000
DT_RANGES_LENGTH_BY_IDX(DT_NODELABEL(pcie0), 1) // 0x2eff0000
DT_RANGES_LENGTH_BY_IDX(DT_NODELABEL(pcie0), 2) // 0x8000000000
DT_RANGES_LENGTH_BY_IDX(DT_NODELABEL(other), 0) // 0x10000
DT_RANGES_LENGTH_BY_IDX(DT_NODELABEL(other), 1) // 0x2eff0000

Parameters
• node_id – node identifier

• idx – logical index into the ranges array

Returns
range length field at idx

DT_FOREACH_RANGE(node_id, fn)
Invokes fn for each entry of node_id ranges property.

The macro fn must take two parameters, node_id which will be the node identifier of
the node with the ranges property and idx the index of the ranges block.

Example devicetree fragment:

n: node@0 {
reg = <0 0 1>;

ranges = <0x0 0x0 0x0 0x3eff0000 0x10000>,
<0x0 0x10000000 0x0 0x10000000 0x2eff0000>;

};

Example usage:

#define RANGE_LENGTH(node_id, idx) DT_RANGES_LENGTH_BY_IDX(node_id, idx),

const uint64_t *ranges_length[] = {
DT_FOREACH_RANGE(DT_NODELABEL(n), RANGE_LENGTH)

};

This expands to:

const char *ranges_length[] = {
0x10000, 0x2eff0000,

};

Parameters
• node_id – node identifier

• fn – macro to invoke

reg property Use these APIs instead of Property access to access the reg property. Because this
property’s semantics are defined by the devicetree specification, these macros can be used even
for nodes without matching bindings.

group devicetree-reg-prop

Defines
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DT_NUM_REGS(node_id)
Get the number of register blocks in the reg property.

Use this instead of DT_PROP_LEN(node_id, reg).

Parameters
• node_id – node identifier

Returns
Number of register blocks in the node’s “reg” property.

DT_REG_HAS_IDX(node_id, idx)
Is idx a valid register block index?

If this returns 1, then DT_REG_ADDR_BY_IDX(node_id, idx) or
DT_REG_SIZE_BY_IDX(node_id, idx) are valid. If it returns 0, it is an error to use
those macros with index idx.

Parameters
• node_id – node identifier

• idx – index to check

Returns
1 if idx is a valid register block index, 0 otherwise.

DT_REG_HAS_NAME(node_id, name)
Is name a valid register block name?

If this returns 1, then DT_REG_ADDR_BY_NAME(node_id, name) or
DT_REG_SIZE_BY_NAME(node_id, name) are valid. If it returns 0, it is an error to
use those macros with name name.

Parameters
• node_id – node identifier

• name – name to check

Returns
1 if name is a valid register block name, 0 otherwise.

DT_REG_ADDR_BY_IDX(node_id, idx)
Get the base address of the register block at index idx.

Parameters
• node_id – node identifier

• idx – index of the register whose address to return

Returns
address of the idx-th register block

DT_REG_SIZE_BY_IDX(node_id, idx)
Get the size of the register block at index idx.

This is the size of an individual register block, not the total number of register blocks
in the property; use DT_NUM_REGS() for that.

Parameters
• node_id – node identifier

• idx – index of the register whose size to return

Returns
size of the idx-th register block
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DT_REG_ADDR(node_id)
Get a node’s (only) register block address.

Equivalent to DT_REG_ADDR_BY_IDX(node_id, 0).

Parameters
• node_id – node identifier

Returns
node’s register block address

DT_REG_ADDR_U64(node_id)
64-bit version of DT_REG_ADDR()

This macro version adds the appropriate suffix for 64-bit unsigned integer literals.
Note that this macro is equivalent to DT_REG_ADDR() in linker/ASM context.

Parameters
• node_id – node identifier

Returns
node’s register block address

DT_REG_SIZE(node_id)
Get a node’s (only) register block size.

Equivalent to DT_REG_SIZE_BY_IDX(node_id, 0).

Parameters
• node_id – node identifier

Returns
node’s only register block’s size

DT_REG_ADDR_BY_NAME(node_id, name)
Get a register block’s base address by name.

Parameters
• node_id – node identifier

• name – lowercase-and-underscores register specifier name

Returns
address of the register block specified by name

DT_REG_ADDR_BY_NAME_OR(node_id, name, default_value)
Like DT_REG_ADDR_BY_NAME(), but with a fallback to default_value.

Parameters
• node_id – node identifier

• name – lowercase-and-underscores register specifier name

• default_value – a fallback value to expand to

Returns
address of the register block specified by name if present, default_value
otherwise

DT_REG_ADDR_BY_NAME_U64(node_id, name)
64-bit version of DT_REG_ADDR_BY_NAME()

This macro version adds the appropriate suffix for 64-bit unsigned integer literals.
Note that this macro is equivalent to DT_REG_ADDR_BY_NAME() in linker/ASM con-
text.
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Parameters
• node_id – node identifier

• name – lowercase-and-underscores register specifier name

Returns
address of the register block specified by name

DT_REG_SIZE_BY_NAME(node_id, name)
Get a register block’s size by name.

Parameters
• node_id – node identifier

• name – lowercase-and-underscores register specifier name

Returns
size of the register block specified by name

DT_REG_SIZE_BY_NAME_OR(node_id, name, default_value)
Like DT_REG_SIZE_BY_NAME(), but with a fallback to default_value.

Parameters
• node_id – node identifier

• name – lowercase-and-underscores register specifier name

• default_value – a fallback value to expand to

Returns
size of the register block specified by name if present, default_value oth-
erwise

interrupts property Use these APIs instead of Property access to access the interrupts prop-
erty.

Because this property’s semantics are defined by the devicetree specification, some of these
macros can be used even for nodes without matching bindings. This does not apply to macros
which take cell names as arguments.

group devicetree-interrupts-prop

Defines

DT_NUM_IRQS(node_id)
Get the number of interrupt sources for the node.

Use this instead of DT_PROP_LEN(node_id, interrupts).

Parameters
• node_id – node identifier

Returns
Number of interrupt specifiers in the node’s “interrupts” property.

DT_NUM_NODELABELS(node_id)
Get the number of node labels that a node has.

Example devicetree fragment:
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/ {
foo {};
bar: bar@1000 {};
baz: baz2: baz@2000 {};

};

Example usage:

DT_NUM_NODELABELS(DT_PATH(foo)) // 0
DT_NUM_NODELABELS(DT_NODELABEL(bar)) // 1
DT_NUM_NODELABELS(DT_NODELABEL(baz)) // 2

Parameters
• node_id – node identifier

Returns
number of node labels that the node has

DT_IRQ_LEVEL(node_id)
Get the interrupt level for the node.

Parameters
• node_id – node identifier

Returns
interrupt level

DT_IRQ_HAS_IDX(node_id, idx)
Is idx a valid interrupt index?

If this returns 1, then DT_IRQ_BY_IDX(node_id, idx) is valid. If it returns 0, it is an error
to use that macro with this index.

Parameters
• node_id – node identifier

• idx – index to check

Returns
1 if the idx is valid for the interrupt property 0 otherwise.

DT_IRQ_HAS_CELL_AT_IDX(node_id, idx, cell)
Does an interrupts property have a named cell specifier at an index? If this returns 1,
then DT_IRQ_BY_IDX(node_id, idx, cell) is valid.

If it returns 0, it is an error to use that macro.

Parameters
• node_id – node identifier

• idx – index to check

• cell – named cell value whose existence to check

Returns
1 if the named cell exists in the interrupt specifier at index idx 0 otherwise.

DT_IRQ_HAS_CELL(node_id, cell)
Equivalent to DT_IRQ_HAS_CELL_AT_IDX(node_id, 0, cell)

Parameters
• node_id – node identifier
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• cell – named cell value whose existence to check

Returns
1 if the named cell exists in the interrupt specifier at index 0 0 otherwise.

DT_IRQ_HAS_NAME(node_id, name)
Does an interrupts property have a named specifier value at an index? If this returns
1, then DT_IRQ_BY_NAME(node_id, name, cell) is valid.

If it returns 0, it is an error to use that macro.

Parameters
• node_id – node identifier

• name – lowercase-and-underscores interrupt specifier name

Returns
1 if “name” is a valid named specifier 0 otherwise.

DT_IRQ_BY_IDX(node_id, idx, cell)
Get a value within an interrupt specifier at an index.

It might help to read the argument order as being similar to “node-
>interrupts[index].cell”.

This can be used to get information about an individual interrupt when a device gen-
erates more than one.

Example devicetree fragment:

my-serial: serial@abcd1234 {
interrupts = < 33 0 >, < 34 1 >;

};

Assuming the node’s interrupt domain has “#interrupt-cells = <2>;” and the individual
cells in each interrupt specifier are named “irq” and “priority” by the node’s binding,
here are some examples:

#define SERIAL DT_NODELABEL(my_serial)

Example usage Value
------------- -----
DT_IRQ_BY_IDX(SERIAL, 0, irq) 33
DT_IRQ_BY_IDX(SERIAL, 0, priority) 0
DT_IRQ_BY_IDX(SERIAL, 1, irq, 34
DT_IRQ_BY_IDX(SERIAL, 1, priority) 1

Parameters
• node_id – node identifier

• idx – logical index into the interrupt specifier array

• cell – cell name specifier

Returns
the named value at the specifier given by the index

DT_IRQ_BY_NAME(node_id, name, cell)
Get a value within an interrupt specifier by name.

It might help to read the argument order as being similar to node->interrupts.name.
cell.

This can be used to get information about an individual interrupt when a device gen-
erates more than one, if the bindings give each interrupt specifier a name.
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Parameters
• node_id – node identifier

• name – lowercase-and-underscores interrupt specifier name

• cell – cell name specifier

Returns
the named value at the specifier given by the index

DT_IRQ(node_id, cell)
Get an interrupt specifier’s value Equivalent to DT_IRQ_BY_IDX(node_id, 0, cell).

Parameters
• node_id – node identifier

• cell – cell name specifier

Returns
the named value at that index

DT_IRQ_INTC_BY_IDX(node_id, idx)
Get an interrupt specifier’s interrupt controller by index.

gpio0: gpio0 {
interrupt-controller;
#interrupt-cells = <2>;

};

foo: foo {
interrupt-parent = <&gpio0>;
interrupts = <1 1>, <2 2>;

};

bar: bar {
interrupts-extended = <&gpio0 3 3>, <&pic0 4>;

};

pic0: pic0 {
interrupt-controller;
#interrupt-cells = <1>;

qux: qux {
interrupts = <5>, <6>;
interrupt-names = "int1", "int2";

};
};

Example usage:

DT_IRQ_INTC_BY_IDX(DT_NODELABEL(foo), 0) // &gpio0
DT_IRQ_INTC_BY_IDX(DT_NODELABEL(foo), 1) // &gpio0
DT_IRQ_INTC_BY_IDX(DT_NODELABEL(bar), 0) // &gpio0
DT_IRQ_INTC_BY_IDX(DT_NODELABEL(bar), 1) // &pic0
DT_IRQ_INTC_BY_IDX(DT_NODELABEL(qux), 0) // &pic0
DT_IRQ_INTC_BY_IDX(DT_NODELABEL(qux), 1) // &pic0

Parameters
• node_id – node identifier

• idx – interrupt specifier’s index

Returns
node_id of interrupt specifier’s interrupt controller
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DT_IRQ_INTC_BY_NAME(node_id, name)
Get an interrupt specifier’s interrupt controller by name.

gpio0: gpio0 {
interrupt-controller;
#interrupt-cells = <2>;

};

foo: foo {
interrupt-parent = <&gpio0>;
interrupts = <1 1>, <2 2>;
interrupt-names = "int1", "int2";

};

bar: bar {
interrupts-extended = <&gpio0 3 3>, <&pic0 4>;
interrupt-names = "int1", "int2";

};

pic0: pic0 {
interrupt-controller;
#interrupt-cells = <1>;

qux: qux {
interrupts = <5>, <6>;
interrupt-names = "int1", "int2";

};
};

Example usage:

DT_IRQ_INTC_BY_NAME(DT_NODELABEL(foo), int1) // &gpio0
DT_IRQ_INTC_BY_NAME(DT_NODELABEL(foo), int2) // &gpio0
DT_IRQ_INTC_BY_NAME(DT_NODELABEL(bar), int1) // &gpio0
DT_IRQ_INTC_BY_NAME(DT_NODELABEL(bar), int2) // &pic0
DT_IRQ_INTC_BY_NAME(DT_NODELABEL(qux), int1) // &pic0
DT_IRQ_INTC_BY_NAME(DT_NODELABEL(qux), int2) // &pic0

Parameters
• node_id – node identifier

• name – interrupt specifier’s name

Returns
node_id of interrupt specifier’s interrupt controller

DT_IRQ_INTC(node_id)
Get an interrupt specifier’s interrupt controller.

gpio0: gpio0 {
interrupt-controller;
#interrupt-cells = <2>;

};

foo: foo {
interrupt-parent = <&gpio0>;
interrupts = <1 1>;

};

bar: bar {
(continues on next page)

5.2. Devicetree 1417



Zephyr Project Documentation, Release 3.7.99

(continued from previous page)
interrupts-extended = <&gpio0 3 3>;

};

pic0: pic0 {
interrupt-controller;
#interrupt-cells = <1>;

qux: qux {
interrupts = <5>;

};
};

Example usage:

DT_IRQ_INTC(DT_NODELABEL(foo)) // &gpio0
DT_IRQ_INTC(DT_NODELABEL(bar)) // &gpio0
DT_IRQ_INTC(DT_NODELABEL(qux)) // &pic0

See also

DT_IRQ_INTC_BY_IDX()

Note

Equivalent to DT_IRQ_INTC_BY_IDX(node_id, 0)

Parameters
• node_id – node identifier

Returns
node_id of interrupt specifier’s interrupt controller

DT_IRQN_BY_IDX(node_id, idx)
Get the node’s Zephyr interrupt number at index If CONFIG_MULTI_LEVEL_INTERRUPTS
is enabled, the interrupt number at index will be multi-level encoded.

Parameters
• node_id – node identifier

• idx – logical index into the interrupt specifier array

Returns
the Zephyr interrupt number

DT_IRQN(node_id)
Get a node’s (only) irq number.

Equivalent to DT_IRQ(node_id, irq). This is provided as a convenience for the common
case where a node generates exactly one interrupt, and the IRQ number is in a cell
named irq.

Parameters
• node_id – node identifier

Returns
the interrupt number for the node’s only interrupt
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For-each macros There is currently only one “generic” for-each macro, DT_FOREACH_CHILD(),
which allows iterating over the children of a devicetree node.

There are special-purpose for-each macros, like DT_INST_FOREACH_STATUS_OKAY(), but these re-
quire DT_DRV_COMPAT to be defined before use.

group devicetree-generic-foreach

Defines

DT_FOREACH_NODE(fn)
Invokes fn for every node in the tree.

The macro fn must take one parameter, which will be a node identifier. The macro is
expanded once for each node in the tree. The order that nodes are visited in is not
specified.

Parameters
• fn – macro to invoke

DT_FOREACH_NODE_VARGS(fn, ...)
Invokes fn for every node in the tree with multiple arguments.

The macro fn takes multiple arguments. The first should be the node identifier for the
node. The remaining are passed-in by the caller.

The macro is expanded once for each node in the tree. The order that nodes are visited
in is not specified.

Parameters
• fn – macro to invoke

• ... – variable number of arguments to pass to fn
DT_FOREACH_STATUS_OKAY_NODE(fn)

Invokes fn for every status okay node in the tree.

The macro fn must take one parameter, which will be a node identifier. The macro is
expanded once for each node in the tree with status okay (as usual, a missing status
property is treated as status okay). The order that nodes are visited in is not specified.

Parameters
• fn – macro to invoke

DT_FOREACH_STATUS_OKAY_NODE_VARGS(fn, ...)
Invokes fn for every status okay node in the tree with multiple arguments.

The macro fn takes multiple arguments. The first should be the node identifier for the
node. The remaining are passed-in by the caller.

The macro is expanded once for each node in the tree with status okay (as usual, a
missing status property is treated as status okay). The order that nodes are visited in
is not specified.

Parameters
• fn – macro to invoke

• ... – variable number of arguments to pass to fn
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DT_FOREACH_CHILD(node_id, fn)
Invokes fn for each child of node_id.

The macro fn must take one parameter, which will be the node identifier of a child
node of node_id.

The children will be iterated over in the same order as they appear in the final device-
tree.

Example devicetree fragment:

n: node {
child-1 {

foobar = "foo";
};
child-2 {

foobar = "bar";
};

};

Example usage:

#define FOOBAR_AND_COMMA(node_id) DT_PROP(node_id, foobar),

const char *child_foobars[] = {
DT_FOREACH_CHILD(DT_NODELABEL(n), FOOBAR_AND_COMMA)

};

This expands to:

const char *child_foobars[] = {
"foo", "bar",

};

Parameters
• node_id – node identifier

• fn – macro to invoke

DT_FOREACH_CHILD_SEP(node_id, fn, sep)
Invokes fn for each child of node_id with a separator.

The macro fn must take one parameter, which will be the node identifier of a child
node of node_id.

Example devicetree fragment:

n: node {
child-1 {

...
};
child-2 {

...
};

};

Example usage:

const char *child_names[] = {
DT_FOREACH_CHILD_SEP(DT_NODELABEL(n), DT_NODE_FULL_NAME, (,))

};

This expands to:
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const char *child_names[] = {
"child-1", "child-2"

};

Parameters
• node_id – node identifier

• fn – macro to invoke

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this
is required to enable providing a comma as separator.

DT_FOREACH_CHILD_VARGS(node_id, fn, ...)
Invokes fn for each child of node_id with multiple arguments.

The macro fn takes multiple arguments. The first should be the node identifier for the
child node. The remaining are passed-in by the caller.

The children will be iterated over in the same order as they appear in the final device-
tree.

See also

DT_FOREACH_CHILD

Parameters
• node_id – node identifier

• fn – macro to invoke

• ... – variable number of arguments to pass to fn

DT_FOREACH_CHILD_SEP_VARGS(node_id, fn, sep, ...)
Invokes fn for each child of node_id with separator and multiple arguments.

The macro fn takes multiple arguments. The first should be the node identifier for the
child node. The remaining are passed-in by the caller.

See also

DT_FOREACH_CHILD_VARGS

Parameters
• node_id – node identifier

• fn – macro to invoke

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this
is required to enable providing a comma as separator.

• ... – variable number of arguments to pass to fn
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DT_FOREACH_CHILD_STATUS_OKAY(node_id, fn)
Call fn on the child nodes with status okay
The macro fn should take one argument, which is the node identifier for the child node.

As usual, both a missing status and an ok status are treated as okay.

The children will be iterated over in the same order as they appear in the final device-
tree.

Parameters
• node_id – node identifier

• fn – macro to invoke

DT_FOREACH_CHILD_STATUS_OKAY_SEP(node_id, fn, sep)
Call fn on the child nodes with status okay with separator.

The macro fn should take one argument, which is the node identifier for the child node.

As usual, both a missing status and an ok status are treated as okay.

See also

DT_FOREACH_CHILD_STATUS_OKAY

Parameters
• node_id – node identifier

• fn – macro to invoke

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this
is required to enable providing a comma as separator.

DT_FOREACH_CHILD_STATUS_OKAY_VARGS(node_id, fn, ...)
Call fn on the child nodes with status okay with multiple arguments.

The macro fn takes multiple arguments. The first should be the node identifier for the
child node. The remaining are passed-in by the caller.

As usual, both a missing status and an ok status are treated as okay.

The children will be iterated over in the same order as they appear in the final device-
tree.

See also

DT_FOREACH_CHILD_STATUS_OKAY

Parameters
• node_id – node identifier

• fn – macro to invoke

• ... – variable number of arguments to pass to fn
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DT_FOREACH_CHILD_STATUS_OKAY_SEP_VARGS(node_id, fn, sep, ...)
Call fn on the child nodes with status okay with separator and multiple arguments.

The macro fn takes multiple arguments. The first should be the node identifier for the
child node. The remaining are passed-in by the caller.

As usual, both a missing status and an ok status are treated as okay.

See also

DT_FOREACH_CHILD_SEP_STATUS_OKAY

Parameters
• node_id – node identifier

• fn – macro to invoke

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this
is required to enable providing a comma as separator.

• ... – variable number of arguments to pass to fn

DT_FOREACH_PROP_ELEM(node_id, prop, fn)
Invokes fn for each element in the value of property prop.

The macro fn must take three parameters: fn(node_id, prop, idx). node_id and prop
are the same as what is passed to DT_FOREACH_PROP_ELEM(), and idx is the current
index into the array. The idx values are integer literals starting from 0.

The prop argument must refer to a property that can be passed to DT_PROP_LEN().

Example devicetree fragment:

n: node {
my-ints = <1 2 3>;

};

Example usage:

#define TIMES_TWO(node_id, prop, idx) \
(2 * DT_PROP_BY_IDX(node_id, prop, idx)),

int array[] = {
DT_FOREACH_PROP_ELEM(DT_NODELABEL(n), my_ints, TIMES_TWO)

};

This expands to:

int array[] = {
(2 * 1), (2 * 2), (2 * 3),

};

In general, this macro expands to:

fn(node_id, prop, 0) fn(node_id, prop, 1) [...] fn(node_id, prop, n-1)

where n is the number of elements in prop, as it would be returned by
DT_PROP_LEN(node_id, prop).
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See also

DT_PROP_LEN

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name

• fn – macro to invoke

DT_FOREACH_PROP_ELEM_SEP(node_id, prop, fn, sep)
Invokes fn for each element in the value of property prop with separator.

Example devicetree fragment:

n: node {
my-gpios = <&gpioa 0 GPIO_ACTICE_HIGH>,

<&gpiob 1 GPIO_ACTIVE_HIGH>;
};

Example usage:

struct gpio_dt_spec specs[] = {
DT_FOREACH_PROP_ELEM_SEP(DT_NODELABEL(n), my_gpios,

GPIO_DT_SPEC_GET_BY_IDX, (,))
};

This expands as a first step to:

struct gpio_dt_spec specs[] = {
GPIO_DT_SPEC_GET_BY_IDX(DT_NODELABEL(n), my_gpios, 0),
GPIO_DT_SPEC_GET_BY_IDX(DT_NODELABEL(n), my_gpios, 1)

};

The prop parameter has the same restrictions as the same parameter given to
DT_FOREACH_PROP_ELEM().

See also

DT_FOREACH_PROP_ELEM

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name

• fn – macro to invoke

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this
is required to enable providing a comma as separator.

DT_FOREACH_PROP_ELEM_VARGS(node_id, prop, fn, ...)
Invokes fn for each element in the value of property prop with multiple arguments.

The macro fn must take multiple parameters: fn(node_id, prop, idx, ...). node_id
and prop are the same as what is passed to DT_FOREACH_PROP_ELEM(), and idx is the
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current index into the array. The idx values are integer literals starting from 0. The
remaining arguments are passed-in by the caller.

The prop parameter has the same restrictions as the same parameter given to
DT_FOREACH_PROP_ELEM().

See also

DT_FOREACH_PROP_ELEM

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name

• fn – macro to invoke

• ... – variable number of arguments to pass to fn

DT_FOREACH_PROP_ELEM_SEP_VARGS(node_id, prop, fn, sep, ...)
Invokes fn for each element in the value of property prop with multiple arguments
and a separator.

The prop parameter has the same restrictions as the same parameter given to
DT_FOREACH_PROP_ELEM().

See also

DT_FOREACH_PROP_ELEM_VARGS

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name

• fn – macro to invoke

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this
is required to enable providing a comma as separator.

• ... – variable number of arguments to pass to fn

DT_FOREACH_STATUS_OKAY(compat, fn)
Invokes fn for each status okay node of a compatible.

This macro expands to:

fn(node_id_1) fn(node_id_2) ... fn(node_id_n)

where each node_id_<i> is a node identifier for some node with compatible compat
and status okay. Whitespace is added between expansions as shown above.

Example devicetree fragment:
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/ {
a {

compatible = "foo";
status = "okay";

};
b {

compatible = "foo";
status = "disabled";

};
c {

compatible = "foo";
};

};

Example usage:

DT_FOREACH_STATUS_OKAY(foo, DT_NODE_PATH)

This expands to one of the following:

"/a" "/c"
"/c" "/a"

“One of the following” is because no guarantees are made about the order that node
identifiers are passed to fn in the expansion.

(The /c string literal is present because a missing status property is always treated as
if the status were set to okay.)

Note also that fn is responsible for adding commas, semicolons, or other terminators
as needed.

Parameters
• compat – lowercase-and-underscores devicetree compatible

• fn – Macro to call for each enabled node. Must accept a node_id as its
only parameter.

DT_FOREACH_STATUS_OKAY_VARGS(compat, fn, ...)
Invokes fn for each status okay node of a compatible with multiple arguments.

This is like DT_FOREACH_STATUS_OKAY() except you can also pass additional argu-
ments to fn.

Example devicetree fragment:

/ {
a {

compatible = "foo";
val = <3>;

};
b {

compatible = "foo";
val = <4>;

};
};

Example usage:

#define MY_FN(node_id, operator) DT_PROP(node_id, val) operator
x = DT_FOREACH_STATUS_OKAY_VARGS(foo, MY_FN, +) 0;

This expands to one of the following:
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x = 3 + 4 + 0;
x = 4 + 3 + 0;

i.e. it sets x to 7. As with DT_FOREACH_STATUS_OKAY(), there are no guarantees about
the order nodes appear in the expansion.

Parameters
• compat – lowercase-and-underscores devicetree compatible

• fn – Macro to call for each enabled node. Must accept a node_id as its
only parameter.

• ... – Additional arguments to pass to fn
DT_FOREACH_NODELABEL(node_id, fn)

Invokes fn for each node label of a given node.

The order of the node labels in this macro’s expansion matches the order in the final
devicetree, with duplicates removed.

Node labels are passed to fn as tokens. Note that devicetree node labels are always
valid C tokens (see “6.2 Labels” in Devicetree Specification v0.4 for details). The node
labels are passed as tokens to fn as-is, without any lowercasing or conversion of special
characters to underscores.

Example devicetree fragment:

foo: bar: FOO: node@deadbeef {};

Example usage:

int foo = 1;
int bar = 2;
int FOO = 3;

#define FN(nodelabel) + nodelabel
int sum = 0 DT_FOREACH_NODELABEL(DT_NODELABEL(foo), FN)

This expands to:

int sum = 0 + 1 + 2 + 3;

Parameters
• node_id – node identifier whose node labels to use

• fn – macro which will be passed each node label in order

DT_FOREACH_NODELABEL_VARGS(node_id, fn, ...)
Invokes fn for each node label of a given node with multiple arguments.

This is likeDT_FOREACH_NODELABEL() except you can also pass additional arguments
to fn.

Example devicetree fragment:

foo: bar: node@deadbeef {};

Example usage:

int foo = 0;
int bar = 1;

(continues on next page)
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(continued from previous page)
#define VAR_PLUS(nodelabel, to_add) int nodelabel ## _added = nodelabel + to_add;

DT_FOREACH_NODELABEL_VARGS(DT_NODELABEL(foo), VAR_PLUS, 1)

This expands to:

int foo = 0;
int bar = 1;
int foo_added = foo + 1;
int bar_added = bar + 1;

Parameters
• node_id – node identifier whose node labels to use

• fn – macro which will be passed each node label in order

• ... – additional arguments to pass to fn

Existence checks This section documents miscellaneous macros that can be used to test if a
node exists, how many nodes of a certain type exist, whether a node has certain properties, etc.
Some macros used for special purposes (such as DT_IRQ_HAS_IDX() and all macros which require
DT_DRV_COMPAT) are documented elsewhere on this page.

Related code samples

GPIO with custom Devicetree binding
Use custom Devicetree binding to control a GPIO.

group devicetree-generic-exist

Defines

DT_NODE_EXISTS(node_id)
Does a node identifier refer to a node?

Tests whether a node identifier refers to a node which exists, i.e. is defined in the
devicetree.

It doesn’t matter whether or not the node has a matching binding, or what the node’s
status value is. This is purely a check of whether the node exists at all.

Parameters
• node_id – a node identifier

Returns
1 if the node identifier refers to a node, 0 otherwise.

DT_NODE_HAS_STATUS(node_id, status)
Does a node identifier refer to a node with a status?

Example uses:

DT_NODE_HAS_STATUS(DT_PATH(soc, i2c_12340000), okay)
DT_NODE_HAS_STATUS(DT_PATH(soc, i2c_12340000), disabled)
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Tests whether a node identifier refers to a node which:

• exists in the devicetree, and

• has a status property matching the second argument (except that either a missing
status or an ok status in the devicetree is treated as if it were okay instead)

Parameters
• node_id – a node identifier

• status – a status as one of the tokens okay or disabled, not a string

Returns
1 if the node has the given status, 0 otherwise.

DT_HAS_COMPAT_STATUS_OKAY(compat)
Does the devicetree have a status okay node with a compatible?

Test for whether the devicetree has any nodes with status okay and the given compat-
ible. That is, this returns 1 if and only if there is at least one node_id for which both of
these expressions return 1:

DT_NODE_HAS_STATUS(node_id, okay)
DT_NODE_HAS_COMPAT(node_id, compat)

As usual, both a missing status and an ok status are treated as okay.

Parameters
• compat – lowercase-and-underscores compatible, without quotes

Returns
1 if both of the above conditions are met, 0 otherwise

DT_NUM_INST_STATUS_OKAY(compat)
Get the number of instances of a given compatible with status okay

Parameters
• compat – lowercase-and-underscores compatible, without quotes

Returns
Number of instances with status okay

DT_NODE_HAS_COMPAT(node_id, compat)
Does a devicetree node match a compatible?

Example devicetree fragment:

n: node {
compatible = "vnd,specific-device", "generic-device";

}

Example usages which evaluate to 1:

DT_NODE_HAS_COMPAT(DT_NODELABEL(n), vnd_specific_device)
DT_NODE_HAS_COMPAT(DT_NODELABEL(n), generic_device)

This macro only uses the value of the compatible property. Whether or not a particular
compatible has a matching binding has no effect on its value, nor does the node’s status.

Parameters
• node_id – node identifier
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• compat – lowercase-and-underscores compatible, without quotes

Returns
1 if the node’s compatible property contains compat, 0 otherwise.

DT_NODE_HAS_COMPAT_STATUS(node_id, compat, status)
Does a devicetree node have a compatible and status?

This is equivalent to:

(DT_NODE_HAS_COMPAT(node_id, compat) &&
DT_NODE_HAS_STATUS(node_id, status))

Parameters
• node_id – node identifier

• compat – lowercase-and-underscores compatible, without quotes

• status – okay or disabled as a token, not a string

DT_NODE_HAS_PROP(node_id, prop)
Does a devicetree node have a property?

Tests whether a devicetree node has a property defined.

This tests whether the property is defined at all, not whether a boolean property is true
or false. To get a boolean property’s truth value, use DT_PROP(node_id, prop) instead.

Parameters
• node_id – node identifier

• prop – lowercase-and-underscores property name

Returns
1 if the node has the property, 0 otherwise.

DT_PHA_HAS_CELL_AT_IDX(node_id, pha, idx, cell)
Does a phandle array have a named cell specifier at an index?

If this returns 1, then the phandle-array property pha has a cell named cell at index
idx, and therefore DT_PHA_BY_IDX(node_id,pha, idx, cell) is valid. If it returns 0, it’s an
error to use DT_PHA_BY_IDX() with the same arguments.

Parameters
• node_id – node identifier

• pha – lowercase-and-underscores property with type phandle-array
• idx – index to check within pha
• cell – lowercase-and-underscores cell name whose existence to check at

index idx
Returns

1 if the named cell exists in the specifier at index idx, 0 otherwise.

DT_PHA_HAS_CELL(node_id, pha, cell)
Equivalent to DT_PHA_HAS_CELL_AT_IDX(node_id, pha, 0, cell)

Parameters
• node_id – node identifier

• pha – lowercase-and-underscores property with type phandle-array
• cell – lowercase-and-underscores cell name whose existence to check at

index idx
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Returns
1 if the named cell exists in the specifier at index 0, 0 otherwise.

Inter-node dependencies The devicetree.h API has some support for tracking dependencies
between nodes. Dependency tracking relies on a binary “depends on” relation between device-
tree nodes, which is defined as the transitive closure of the following “directly depends on” re-
lation:

• every non-root node directly depends on its parent node

• a node directly depends on any nodes its properties refer to by phandle

• a node directly depends on its interrupt-parent if it has an interrupts property

• a parent node inherits all dependencies from its child nodes

A dependency ordering of a devicetree is a list of its nodes, where each node n appears earlier
in the list than any nodes that depend on n. A node’s dependency ordinal is then its zero-based
index in that list. Thus, for two distinct devicetree nodes n1 and n2 with dependency ordinals d1
and d2, we have:

• d1 != d2
• if n1 depends on n2, then d1 > d2
• d1 > d2 does not necessarily imply that n1 depends on n2

The Zephyr build system chooses a dependency ordering of the final devicetree and assigns a
dependency ordinal to each node. Dependency related information can be accessed using the
following macros. The exact dependency ordering chosen is an implementation detail, but cyclic
dependencies are detected and cause errors, so it’s safe to assume there are none when using
these macros.

There are instance number-based conveniences as well; see DT_INST_DEP_ORD() and subsequent
documentation.

group devicetree-dep-ord

Defines

DT_DEP_ORD(node_id)
Get a node’s dependency ordinal.

Parameters
• node_id – Node identifier

Returns
the node’s dependency ordinal as an integer literal

DT_DEP_ORD_STR_SORTABLE(node_id)
Get a node’s dependency ordinal in string sortable form.

Parameters
• node_id – Node identifier

Returns
the node’s dependency ordinal as a zero-padded integer literal

DT_REQUIRES_DEP_ORDS(node_id)
Get a list of dependency ordinals of a node’s direct dependencies.

There is a comma after each ordinal in the expansion, including the last one:
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DT_REQUIRES_DEP_ORDS(my_node) // required_ord_1, ..., required_ord_n,

The one case DT_REQUIRES_DEP_ORDS() expands to nothing is when given the root
node identifier DT_ROOT as argument. The root has no direct dependencies; every other
node at least depends on its parent.

Parameters
• node_id – Node identifier

Returns
a list of dependency ordinals, with each ordinal followed by a comma (,),
or an empty expansion

DT_SUPPORTS_DEP_ORDS(node_id)
Get a list of dependency ordinals of what depends directly on a node.

There is a comma after each ordinal in the expansion, including the last one:

DT_SUPPORTS_DEP_ORDS(my_node) // supported_ord_1, ..., supported_ord_n,

DT_SUPPORTS_DEP_ORDS() may expand to nothing. This happens when node_id
refers to a leaf node that nothing else depends on.

Parameters
• node_id – Node identifier

Returns
a list of dependency ordinals, with each ordinal followed by a comma (,),
or an empty expansion

DT_INST_DEP_ORD(inst)
Get a DT_DRV_COMPAT instance’s dependency ordinal.

Equivalent to DT_DEP_ORD(DT_DRV_INST(inst)).

Parameters
• inst – instance number

Returns
The instance’s dependency ordinal

DT_INST_REQUIRES_DEP_ORDS(inst)
Get a list of dependency ordinals of a DT_DRV_COMPAT instance’s direct dependencies.

Equivalent to DT_REQUIRES_DEP_ORDS(DT_DRV_INST(inst)).

Parameters
• inst – instance number

Returns
a list of dependency ordinals for the nodes the instance depends on directly

DT_INST_SUPPORTS_DEP_ORDS(inst)
Get a list of dependency ordinals of what depends directly on a DT_DRV_COMPAT in-
stance.

Equivalent to DT_SUPPORTS_DEP_ORDS(DT_DRV_INST(inst)).

Parameters
• inst – instance number

Returns
a list of node identifiers for the nodes that depend directly on the instance
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Bus helpers Zephyr’s devicetree bindings language supports a bus: key which allows bindings
to declare that nodes with a given compatible describe system buses. In this case, child nodes
are considered to be on a bus of the given type, and the following APIs may be used.

group devicetree-generic-bus

Defines

DT_BUS(node_id)
Node’s bus controller.

Get the node identifier of the node’s bus controller. This can be used with DT_PROP()
to get properties of the bus controller.

It is an error to use this with nodes which do not have bus controllers.

Example devicetree fragment:

i2c@deadbeef {
status = "okay";
clock-frequency = < 100000 >;

i2c_device: accelerometer@12 {
...

};
};

Example usage:

DT_PROP(DT_BUS(DT_NODELABEL(i2c_device)), clock_frequency) // 100000

Parameters
• node_id – node identifier

Returns
a node identifier for the node’s bus controller

DT_ON_BUS(node_id, bus)
Is a node on a bus of a given type?

Example devicetree overlay:

&i2c0 {
temp: temperature-sensor@76 {

compatible = "vnd,some-sensor";
reg = <0x76>;

};
};

Example usage, assuming i2c0 is an I2C bus controller node, and therefore temp is on
an I2C bus:

DT_ON_BUS(DT_NODELABEL(temp), i2c) // 1
DT_ON_BUS(DT_NODELABEL(temp), spi) // 0

Parameters
• node_id – node identifier

• bus – lowercase-and-underscores bus type as a C token (i.e. without
quotes)
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Returns
1 if the node is on a bus of the given type, 0 otherwise

Instance-based APIs These are recommended for use within device drivers. To use them, de-
fine DT_DRV_COMPAT to the lowercase-and-underscores compatible the device driver implements
support for. Here is an example devicetree fragment:

serial@40001000 {
compatible = "vnd,serial";
status = "okay";
current-speed = <115200>;

};

Example usage, assuming serial@40001000 is the only enabled node with compatible vnd,
serial:

#define DT_DRV_COMPAT vnd_serial
DT_DRV_INST(0) // node identifier for serial@40001000
DT_INST_PROP(0, current_speed) // 115200

Warning

Be careful making assumptions about instance numbers. See DT_INST() for the API guaran-
tees.

As shown above, the DT_INST_* APIs are conveniences for addressing nodes by instance num-
ber. They are almost all defined in terms of one of the Generic APIs. The equivalent generic
API can be found by removing INST_ from the macro name. For example, DT_INST_PROP(inst,
prop) is equivalent to DT_PROP(DT_DRV_INST(inst), prop). Similarly, DT_INST_REG_ADDR(inst)
is equivalent to DT_REG_ADDR(DT_DRV_INST(inst)), and so on. There are some exceptions:
DT_ANY_INST_ON_BUS_STATUS_OKAY() and DT_INST_FOREACH_STATUS_OKAY() are special-purpose
helpers without straightforward generic equivalents.

Since DT_DRV_INST() requires DT_DRV_COMPAT to be defined, it’s an error to use any of these with-
out that macro defined.

Note that there are also helpers available for specific hardware; these are documented in Hard-
ware specific APIs.

group devicetree-inst

Defines

DT_DRV_INST(inst)
Node identifier for an instance of a DT_DRV_COMPAT compatible.

Parameters
• inst – instance number

Returns
a node identifier for the node with DT_DRV_COMPAT compatible and instance
number inst

DT_INST_PARENT(inst)
Get a DT_DRV_COMPAT parent’s node identifier.
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See also

DT_PARENT

Parameters
• inst – instance number

Returns
a node identifier for the instance’s parent

DT_INST_GPARENT(inst)
Get a DT_DRV_COMPAT grandparent’s node identifier.

See also

DT_GPARENT

Parameters
• inst – instance number

Returns
a node identifier for the instance’s grandparent

DT_INST_CHILD(inst, child)
Get a node identifier for a child node of DT_DRV_INST(inst)

See also

DT_CHILD

Parameters
• inst – instance number

• child – lowercase-and-underscores child node name

Returns
node identifier for the node with the name referred to by ‘child’

DT_INST_CHILD_NUM(inst)
Get the number of child nodes of a given node.

This is equivalent to

See also

DT_CHILD_NUM(DT_DRV_INST(inst)).

Parameters
• inst – Devicetree instance number
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Returns
Number of child nodes

DT_INST_CHILD_NUM_STATUS_OKAY(inst)
Get the number of child nodes of a given node.

This is equivalent to

See also

DT_CHILD_NUM_STATUS_OKAY(DT_DRV_INST(inst)).

Parameters
• inst – Devicetree instance number

Returns
Number of child nodes which status are okay

DT_INST_NODELABEL_STRING_ARRAY(inst)
Get a string array of DT_DRV_INST(inst)’s node labels.

Equivalent to DT_NODELABEL_STRING_ARRAY(DT_DRV_INST(inst)).

Parameters
• inst – instance number

Returns
an array initializer for an array of the instance’s node labels as strings

DT_INST_NUM_NODELABELS(inst)
Get the number of node labels by instance number.

Equivalent to DT_NUM_NODELABELS(DT_DRV_INST(inst)).

Parameters
• inst – instance number

Returns
the number of node labels that the node with that instance number has

DT_INST_FOREACH_CHILD(inst, fn)
Call fn on all child nodes of DT_DRV_INST(inst).

The macro fn should take one argument, which is the node identifier for the child node.

The children will be iterated over in the same order as they appear in the final device-
tree.

See also

DT_FOREACH_CHILD

Parameters
• inst – instance number

• fn – macro to invoke on each child node identifier
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DT_INST_FOREACH_CHILD_SEP(inst, fn, sep)
Call fn on all child nodes of DT_DRV_INST(inst) with a separator.

The macro fn should take one argument, which is the node identifier for the child node.

See also

DT_FOREACH_CHILD_SEP

Parameters
• inst – instance number

• fn – macro to invoke on each child node identifier

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this
is required to enable providing a comma as separator.

DT_INST_FOREACH_CHILD_VARGS(inst, fn, ...)
Call fn on all child nodes of DT_DRV_INST(inst).

The macro fn takes multiple arguments. The first should be the node identifier for the
child node. The remaining are passed-in by the caller.

The children will be iterated over in the same order as they appear in the final device-
tree.

See also

DT_FOREACH_CHILD

Parameters
• inst – instance number

• fn – macro to invoke on each child node identifier

• ... – variable number of arguments to pass to fn

DT_INST_FOREACH_CHILD_SEP_VARGS(inst, fn, sep, ...)
Call fn on all child nodes of DT_DRV_INST(inst) with separator.

The macro fn takes multiple arguments. The first should be the node identifier for the
child node. The remaining are passed-in by the caller.

See also

DT_FOREACH_CHILD_SEP_VARGS

Parameters
• inst – instance number

• fn – macro to invoke on each child node identifier

5.2. Devicetree 1437



Zephyr Project Documentation, Release 3.7.99

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this
is required to enable providing a comma as separator.

• ... – variable number of arguments to pass to fn

DT_INST_FOREACH_CHILD_STATUS_OKAY(inst, fn)
Call fn on all child nodes of DT_DRV_INST(inst) with status okay.

The macro fn should take one argument, which is the node identifier for the child node.

See also

DT_FOREACH_CHILD_STATUS_OKAY

Parameters
• inst – instance number

• fn – macro to invoke on each child node identifier

DT_INST_FOREACH_CHILD_STATUS_OKAY_SEP(inst, fn, sep)
Call fn on all child nodes of DT_DRV_INST(inst) with status okay and with separator.

The macro fn should take one argument, which is the node identifier for the child node.

See also

DT_FOREACH_CHILD_STATUS_OKAY_SEP

Parameters
• inst – instance number

• fn – macro to invoke on each child node identifier

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this
is required to enable providing a comma as separator.

DT_INST_FOREACH_CHILD_STATUS_OKAY_VARGS(inst, fn, ...)
Call fn on all child nodes of DT_DRV_INST(inst) with status okay and multiple argu-
ments.

The macro fn takes multiple arguments. The first should be the node identifier for the
child node. The remaining are passed-in by the caller.

See also

DT_FOREACH_CHILD_STATUS_OKAY_VARGS

Parameters
• inst – instance number

• fn – macro to invoke on each child node identifier

• ... – variable number of arguments to pass to fn
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DT_INST_FOREACH_CHILD_STATUS_OKAY_SEP_VARGS(inst, fn, sep, ...)
Call fn on all child nodes of DT_DRV_INST(inst) with status okay and with separator
and multiple arguments.

The macro fn takes multiple arguments. The first should be the node identifier for the
child node. The remaining are passed-in by the caller.

See also

DT_FOREACH_CHILD_STATUS_OKAY_SEP_VARGS

Parameters
• inst – instance number

• fn – macro to invoke on each child node identifier

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this
is required to enable providing a comma as separator.

• ... – variable number of arguments to pass to fn

DT_INST_ENUM_IDX(inst, prop)
Get a DT_DRV_COMPAT value’s index into its enumeration values.

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

Returns
zero-based index of the property’s value in its enum: list

DT_INST_ENUM_IDX_OR(inst, prop, default_idx_value)
Like DT_INST_ENUM_IDX(), but with a fallback to a default enum index.

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

• default_idx_value – a fallback index value to expand to

Returns
zero-based index of the property’s value in its enum if present, de-
fault_idx_value otherwise

DT_INST_ENUM_HAS_VALUE(inst, prop, value)
Does a DT_DRV_COMPAT enumeration property have a given value?

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

• value – lowercase-and-underscores enumeration value

Returns
1 if the node property has the value value, 0 otherwise.
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DT_INST_PROP(inst, prop)
Get a DT_DRV_COMPAT instance property.

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

Returns
a representation of the property’s value

DT_INST_PROP_LEN(inst, prop)
Get a DT_DRV_COMPAT property length.

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

Returns
logical length of the property

DT_INST_PROP_HAS_IDX(inst, prop, idx)
Is index idx valid for an array type property on a DT_DRV_COMPAT instance?

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

• idx – index to check

Returns
1 if idx is a valid index into the given property, 0 otherwise.

DT_INST_PROP_HAS_NAME(inst, prop, name)
Is name name available in a foo-names property?

Parameters
• inst – instance number

• prop – a lowercase-and-underscores prop-names type property

• name – a lowercase-and-underscores name to check

Returns
An expression which evaluates to 1 if name is an available name into the
given property, and 0 otherwise.

DT_INST_PROP_BY_IDX(inst, prop, idx)
Get a DT_DRV_COMPAT element value in an array property.

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

• idx – the index to get

Returns
a representation of the idx-th element of the property

DT_INST_PROP_OR(inst, prop, default_value)
Like DT_INST_PROP(), but with a fallback to default_value.

Parameters
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• inst – instance number

• prop – lowercase-and-underscores property name

• default_value – a fallback value to expand to

Returns
DT_INST_PROP(inst, prop) or default_value

DT_INST_PROP_LEN_OR(inst, prop, default_value)
Like DT_INST_PROP_LEN(), but with a fallback to default_value.

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

• default_value – a fallback value to expand to

Returns
DT_INST_PROP_LEN(inst, prop) or default_value

DT_INST_STRING_TOKEN(inst, prop)
Get a DT_DRV_COMPAT instance’s string property’s value as a token.

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

Returns
the value of prop as a token, i.e. without any quotes and with special char-
acters converted to underscores

DT_INST_STRING_UPPER_TOKEN(inst, prop)
Like DT_INST_STRING_TOKEN(), but uppercased.

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

Returns
the value of prop as an uppercased token, i.e. without any quotes and with
special characters converted to underscores

DT_INST_STRING_UNQUOTED(inst, prop)
Get a DT_DRV_COMPAT instance’s string property’s value as an unquoted sequence of
tokens.

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

Returns
the value of prop as a sequence of tokens, with no quotes

DT_INST_STRING_TOKEN_BY_IDX(inst, prop, idx)
Get an element out of string-array property as a token.

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name
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• idx – the index to get

Returns
the element in prop at index idx as a token

DT_INST_STRING_UPPER_TOKEN_BY_IDX(inst, prop, idx)
Like DT_INST_STRING_TOKEN_BY_IDX(), but uppercased.

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

• idx – the index to get

Returns
the element in prop at index idx as an uppercased token

DT_INST_STRING_UNQUOTED_BY_IDX(inst, prop, idx)
Get an element out of string-array property as an unquoted sequence of tokens.

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

• idx – the index to get

Returns
the value of prop at index idx as a sequence of tokens, with no quotes

DT_INST_PROP_BY_PHANDLE(inst, ph, prop)
Get a DT_DRV_COMPAT instance’s property value from a phandle’s node.

Parameters
• inst – instance number

• ph – lowercase-and-underscores property of inst with type phandle
• prop – lowercase-and-underscores property of the phandle’s node

Returns
the value of prop as described in the DT_PROP() documentation

DT_INST_PROP_BY_PHANDLE_IDX(inst, phs, idx, prop)
Get a DT_DRV_COMPAT instance’s property value from a phandle in a property.

Parameters
• inst – instance number

• phs – lowercase-and-underscores property with type phandle, phandles,
or phandle-array

• idx – logical index into “phs”, which must be zero if “phs” has type phan-
dle

• prop – lowercase-and-underscores property of the phandle’s node

Returns
the value of prop as described in the DT_PROP() documentation

DT_INST_PHA_BY_IDX(inst, pha, idx, cell)
Get a DT_DRV_COMPAT instance’s phandle-array specifier value at an index.

Parameters
• inst – instance number
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• pha – lowercase-and-underscores property with type phandle-array
• idx – logical index into the property pha
• cell – binding’s cell name within the specifier at index idx

Returns
the value of the cell inside the specifier at index idx

DT_INST_PHA_BY_IDX_OR(inst, pha, idx, cell, default_value)
Like DT_INST_PHA_BY_IDX(), but with a fallback to default_value.

Parameters
• inst – instance number

• pha – lowercase-and-underscores property with type phandle-array
• idx – logical index into the property pha
• cell – binding’s cell name within the specifier at index idx
• default_value – a fallback value to expand to

Returns
DT_INST_PHA_BY_IDX(inst, pha, idx, cell) or default_value

DT_INST_PHA(inst, pha, cell)
Get a DT_DRV_COMPAT instance’s phandle-array specifier value Equivalent to
DT_INST_PHA_BY_IDX(inst, pha, 0, cell)

Parameters
• inst – instance number

• pha – lowercase-and-underscores property with type phandle-array
• cell – binding’s cell name for the specifier at pha index 0

Returns
the cell value

DT_INST_PHA_OR(inst, pha, cell, default_value)
Like DT_INST_PHA(), but with a fallback to default_value.

Parameters
• inst – instance number

• pha – lowercase-and-underscores property with type phandle-array
• cell – binding’s cell name for the specifier at pha index 0

• default_value – a fallback value to expand to

Returns
DT_INST_PHA(inst, pha, cell) or default_value

DT_INST_PHA_BY_NAME(inst, pha, name, cell)
Get a DT_DRV_COMPAT instance’s value within a phandle-array specifier by name.

Parameters
• inst – instance number

• pha – lowercase-and-underscores property with type phandle-array
• name – lowercase-and-underscores name of a specifier in pha
• cell – binding’s cell name for the named specifier

Returns
the cell value
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DT_INST_PHA_BY_NAME_OR(inst, pha, name, cell, default_value)
Like DT_INST_PHA_BY_NAME(), but with a fallback to default_value.

Parameters
• inst – instance number

• pha – lowercase-and-underscores property with type phandle-array
• name – lowercase-and-underscores name of a specifier in pha
• cell – binding’s cell name for the named specifier

• default_value – a fallback value to expand to

Returns
DT_INST_PHA_BY_NAME(inst, pha, name, cell) or default_value

DT_INST_PHANDLE_BY_NAME(inst, pha, name)
Get a DT_DRV_COMPAT instance’s phandle node identifier from a phandle array by name.

Parameters
• inst – instance number

• pha – lowercase-and-underscores property with type phandle-array
• name – lowercase-and-underscores name of an element in pha

Returns
node identifier for the phandle at the element named “name”

DT_INST_PHANDLE_BY_IDX(inst, prop, idx)
Get a DT_DRV_COMPAT instance’s node identifier for a phandle in a property.

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name in inst with type
phandle, phandles or phandle-array

• idx – index into prop
Returns

a node identifier for the phandle at index idx in prop
DT_INST_PHANDLE(inst, prop)

Get a DT_DRV_COMPAT instance’s node identifier for a phandle property’s value.

Parameters
• inst – instance number

• prop – lowercase-and-underscores property of inst with type phandle
Returns

a node identifier for the node pointed to by “ph”

DT_INST_REG_HAS_IDX(inst, idx)
is idx a valid register block index on a DT_DRV_COMPAT instance?

Parameters
• inst – instance number

• idx – index to check

Returns
1 if idx is a valid register block index, 0 otherwise.
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DT_INST_REG_HAS_NAME(inst, name)
is name a valid register block name on a DT_DRV_COMPAT instance?

Parameters
• inst – instance number

• name – name to check

Returns
1 if name is a valid register block name, 0 otherwise.

DT_INST_REG_ADDR_BY_IDX(inst, idx)
Get a DT_DRV_COMPAT instance’s idx-th register block’s address.

Parameters
• inst – instance number

• idx – index of the register whose address to return

Returns
address of the instance’s idx-th register block

DT_INST_REG_SIZE_BY_IDX(inst, idx)
Get a DT_DRV_COMPAT instance’s idx-th register block’s size.

Parameters
• inst – instance number

• idx – index of the register whose size to return

Returns
size of the instance’s idx-th register block

DT_INST_REG_ADDR_BY_NAME(inst, name)
Get a DT_DRV_COMPAT’s register block address by name.

Parameters
• inst – instance number

• name – lowercase-and-underscores register specifier name

Returns
address of the register block with the given name

DT_INST_REG_ADDR_BY_NAME_OR(inst, name, default_value)
Like DT_INST_REG_ADDR_BY_NAME(), but with a fallback to default_value.

Parameters
• inst – instance number

• name – lowercase-and-underscores register specifier name

• default_value – a fallback value to expand to

Returns
address of the register block specified by name if present, default_value
otherwise

DT_INST_REG_ADDR_BY_NAME_U64(inst, name)
64-bit version of DT_INST_REG_ADDR_BY_NAME()

This macro version adds the appropriate suffix for 64-bit unsigned integer literals.
Note that this macro is equivalent to DT_INST_REG_ADDR_BY_NAME() in linker/ASM
context.

Parameters
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• inst – instance number

• name – lowercase-and-underscores register specifier name

Returns
address of the register block with the given name

DT_INST_REG_SIZE_BY_NAME(inst, name)
Get a DT_DRV_COMPAT’s register block size by name.

Parameters
• inst – instance number

• name – lowercase-and-underscores register specifier name

Returns
size of the register block with the given name

DT_INST_REG_SIZE_BY_NAME_OR(inst, name, default_value)
Like DT_INST_REG_SIZE_BY_NAME(), but with a fallback to default_value.

Parameters
• inst – instance number

• name – lowercase-and-underscores register specifier name

• default_value – a fallback value to expand to

Returns
size of the register block specified by name if present, default_value oth-
erwise

DT_INST_REG_ADDR(inst)
Get a DT_DRV_COMPAT’s (only) register block address.

Parameters
• inst – instance number

Returns
instance’s register block address

DT_INST_REG_ADDR_U64(inst)
64-bit version of DT_INST_REG_ADDR()

This macro version adds the appropriate suffix for 64-bit unsigned integer literals.
Note that this macro is equivalent to DT_INST_REG_ADDR() in linker/ASM context.

Parameters
• inst – instance number

Returns
instance’s register block address

DT_INST_REG_SIZE(inst)
Get a DT_DRV_COMPAT’s (only) register block size.

Parameters
• inst – instance number

Returns
instance’s register block size
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DT_INST_IRQ_LEVEL(inst)
Get a DT_DRV_COMPAT interrupt level.

Parameters
• inst – instance number

Returns
interrupt level

DT_INST_IRQ_BY_IDX(inst, idx, cell)
Get a DT_DRV_COMPAT interrupt specifier value at an index.

Parameters
• inst – instance number

• idx – logical index into the interrupt specifier array

• cell – cell name specifier

Returns
the named value at the specifier given by the index

DT_INST_IRQ_INTC_BY_IDX(inst, idx)
Get a DT_DRV_COMPAT interrupt specifier’s interrupt controller by index.

Parameters
• inst – instance number

• idx – interrupt specifier’s index

Returns
node_id of interrupt specifier’s interrupt controller

DT_INST_IRQ_INTC_BY_NAME(inst, name)
Get a DT_DRV_COMPAT interrupt specifier’s interrupt controller by name.

Parameters
• inst – instance number

• name – interrupt specifier’s name

Returns
node_id of interrupt specifier’s interrupt controller

DT_INST_IRQ_INTC(inst)
Get a DT_DRV_COMPAT interrupt specifier’s interrupt controller.

See also

DT_INST_IRQ_INTC_BY_IDX()

Note

Equivalent to DT_INST_IRQ_INTC_BY_IDX(node_id, 0)

Parameters
• inst – instance number
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Returns
node_id of interrupt specifier’s interrupt controller

DT_INST_IRQ_BY_NAME(inst, name, cell)
Get a DT_DRV_COMPAT interrupt specifier value by name.

Parameters
• inst – instance number

• name – lowercase-and-underscores interrupt specifier name

• cell – cell name specifier

Returns
the named value at the specifier given by the index

DT_INST_IRQ(inst, cell)
Get a DT_DRV_COMPAT interrupt specifier’s value.

Parameters
• inst – instance number

• cell – cell name specifier

Returns
the named value at that index

DT_INST_IRQN(inst)
Get a DT_DRV_COMPAT’s (only) irq number.

Parameters
• inst – instance number

Returns
the interrupt number for the node’s only interrupt

DT_INST_IRQN_BY_IDX(inst, idx)
Get a DT_DRV_COMPAT’s irq number at index.

Parameters
• inst – instance number

• idx – logical index into the interrupt specifier array

Returns
the interrupt number for the node’s idx-th interrupt

DT_INST_BUS(inst)
Get a DT_DRV_COMPAT’s bus node identifier.

Parameters
• inst – instance number

Returns
node identifier for the instance’s bus node

DT_INST_ON_BUS(inst, bus)
Test if a DT_DRV_COMPAT’s bus type is a given type.

Parameters
• inst – instance number

• bus – a binding’s bus type as a C token, lowercased and without quotes
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Returns
1 if the given instance is on a bus of the given type, 0 otherwise

DT_INST_STRING_TOKEN_OR(inst, name, default_value)
Like DT_INST_STRING_TOKEN(), but with a fallback to default_value.

Parameters
• inst – instance number

• name – lowercase-and-underscores property name

• default_value – a fallback value to expand to

Returns
if prop exists, its value as a token, i.e. without any quotes and with special
characters converted to underscores. Otherwise default_value

DT_INST_STRING_UPPER_TOKEN_OR(inst, name, default_value)
Like DT_INST_STRING_UPPER_TOKEN(), but with a fallback to default_value.

Parameters
• inst – instance number

• name – lowercase-and-underscores property name

• default_value – a fallback value to expand to

Returns
the property’s value as an uppercased token, or default_value

DT_INST_STRING_UNQUOTED_OR(inst, name, default_value)
Like DT_INST_STRING_UNQUOTED(), but with a fallback to default_value.

Parameters
• inst – instance number

• name – lowercase-and-underscores property name

• default_value – a fallback value to expand to

Returns
the property’s value as a sequence of tokens, with no quotes, or de-
fault_value

DT_HAS_COMPAT_ON_BUS_STATUS_OKAY(compat, bus)

DT_ANY_INST_ON_BUS_STATUS_OKAY(bus)
Test if any DT_DRV_COMPAT node is on a bus of a given type and has status okay.

This is a special-purpose macro which can be useful when writing drivers for devices
which can appear on multiple buses. One example is a sensor device which may be
wired on an I2C or SPI bus.

Example devicetree overlay:

&i2c0 {
temp: temperature-sensor@76 {

compatible = "vnd,some-sensor";
reg = <0x76>;

};
};

Example usage, assuming i2c0 is an I2C bus controller node, and therefore temp is on
an I2C bus:
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#define DT_DRV_COMPAT vnd_some_sensor

DT_ANY_INST_ON_BUS_STATUS_OKAY(i2c) // 1

Parameters
• bus – a binding’s bus type as a C token, lowercased and without quotes

Returns
1 if any enabled node with that compatible is on that bus type, 0 otherwise

DT_ANY_INST_HAS_PROP_STATUS_OKAY(prop)
Check if any DT_DRV_COMPAT node with status okay has a given property.

Example devicetree overlay:

&i2c0 {
sensor0: sensor@0 {

compatible = "vnd,some-sensor";
status = "okay";
reg = <0>;
foo = <1>;
bar = <2>;

};

sensor1: sensor@1 {
compatible = "vnd,some-sensor";
status = "okay";
reg = <1>;
foo = <2>;

};

sensor2: sensor@2 {
compatible = "vnd,some-sensor";
status = "disabled";
reg = <2>;
baz = <1>;

};
};

Example usage:

#define DT_DRV_COMPAT vnd_some_sensor

DT_ANY_INST_HAS_PROP_STATUS_OKAY(foo) // 1
DT_ANY_INST_HAS_PROP_STATUS_OKAY(bar) // 1
DT_ANY_INST_HAS_PROP_STATUS_OKAY(baz) // 0

Parameters
• prop – lowercase-and-underscores property name

DT_INST_FOREACH_STATUS_OKAY(fn)
Call fn on all nodes with compatible DT_DRV_COMPAT and status okay
This macro calls fn(inst) on each inst number that refers to a node with status okay.
Whitespace is added between invocations.

Example devicetree fragment:
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a {
compatible = "vnd,device";
status = "okay";
foobar = "DEV_A";

};

b {
compatible = "vnd,device";
status = "okay";
foobar = "DEV_B";

};

c {
compatible = "vnd,device";
status = "disabled";
foobar = "DEV_C";

};

Example usage:

#define DT_DRV_COMPAT vnd_device
#define MY_FN(inst) DT_INST_PROP(inst, foobar),

DT_INST_FOREACH_STATUS_OKAY(MY_FN)

This expands to:

MY_FN(0) MY_FN(1)

and from there, to either this:

"DEV_A", "DEV_B",

or this:

"DEV_B", "DEV_A",

No guarantees are made about the order that a and b appear in the expansion.

Note that fn is responsible for adding commas, semicolons, or other separators or ter-
minators.

Device drivers should use this macro whenever possible to instantiate a struct device
for each enabled node in the devicetree of the driver’s compatible DT_DRV_COMPAT.

Parameters
• fn – Macro to call for each enabled node. Must accept an instance num-

ber as its only parameter.

DT_INST_FOREACH_STATUS_OKAY_VARGS(fn, ...)
Call fn on all nodes with compatible DT_DRV_COMPAT and status okay with multiple ar-
guments.

See also

DT_INST_FOREACH_STATUS_OKAY

Parameters
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• fn – Macro to call for each enabled node. Must accept an instance num-
ber as its only parameter.

• ... – variable number of arguments to pass to fn

DT_INST_FOREACH_NODELABEL(inst, fn)
Call fn on all node labels for a given DT_DRV_COMPAT instance.

Equivalent to DT_FOREACH_NODELABEL(DT_DRV_INST(inst), fn).

Parameters
• inst – instance number

• fn – macro which will be passed each node label for the node with that
instance number

DT_INST_FOREACH_NODELABEL_VARGS(inst, fn, ...)
Call fn on all node labels for a given DT_DRV_COMPAT instance with multiple arguments.

Equivalent to DT_FOREACH_NODELABEL_VARGS(DT_DRV_INST(inst), fn, …).

Parameters
• inst – instance number

• fn – macro which will be passed each node label for the node with that
instance number

• ... – additional arguments to pass to fn
DT_INST_FOREACH_PROP_ELEM(inst, prop, fn)

Invokes fn for each element of property prop for a DT_DRV_COMPAT instance.

Equivalent to DT_FOREACH_PROP_ELEM(DT_DRV_INST(inst), prop, fn).

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

• fn – macro to invoke

DT_INST_FOREACH_PROP_ELEM_SEP(inst, prop, fn, sep)
Invokes fn for each element of property prop for a DT_DRV_COMPAT instance with a sep-
arator.

Equivalent to DT_FOREACH_PROP_ELEM_SEP(DT_DRV_INST(inst), prop, fn, sep).

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

• fn – macro to invoke

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this
is required to enable providing a comma as separator.

DT_INST_FOREACH_PROP_ELEM_VARGS(inst, prop, fn, ...)
Invokes fn for each element of property prop for a DT_DRV_COMPAT instance with mul-
tiple arguments.

Equivalent to DT_FOREACH_PROP_ELEM_VARGS(DT_DRV_INST(inst), prop, fn,
VA_ARGS)
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See also

DT_INST_FOREACH_PROP_ELEM

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

• fn – macro to invoke

• ... – variable number of arguments to pass to fn

DT_INST_FOREACH_PROP_ELEM_SEP_VARGS(inst, prop, fn, sep, ...)
Invokes fn for each element of property prop for a DT_DRV_COMPAT instance with mul-
tiple arguments and a separator.

Equivalent to DT_FOREACH_PROP_ELEM_SEP_VARGS(DT_DRV_INST(inst), prop, fn,
sep, VA_ARGS)

See also

DT_INST_FOREACH_PROP_ELEM

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

• fn – macro to invoke

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this
is required to enable providing a comma as separator.

• ... – variable number of arguments to pass to fn

DT_INST_NODE_HAS_PROP(inst, prop)
Does a DT_DRV_COMPAT instance have a property?

Parameters
• inst – instance number

• prop – lowercase-and-underscores property name

Returns
1 if the instance has the property, 0 otherwise.

DT_INST_NODE_HAS_COMPAT(inst, compat)
Does a DT_DRV_COMPAT instance have the compatible?

Parameters
• inst – instance number

• compat – lowercase-and-underscores compatible, without quotes

Returns
1 if the instance matches the compatible, 0 otherwise.
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DT_INST_PHA_HAS_CELL_AT_IDX(inst, pha, idx, cell)
Does a phandle array have a named cell specifier at an index for a DT_DRV_COMPAT
instance?

Parameters
• inst – instance number

• pha – lowercase-and-underscores property with type phandle-array
• idx – index to check

• cell – named cell value whose existence to check

Returns
1 if the named cell exists in the specifier at index idx, 0 otherwise.

DT_INST_PHA_HAS_CELL(inst, pha, cell)
Does a phandle array have a named cell specifier at index 0 for a DT_DRV_COMPAT in-
stance?

Parameters
• inst – instance number

• pha – lowercase-and-underscores property with type phandle-array
• cell – named cell value whose existence to check

Returns
1 if the named cell exists in the specifier at index 0, 0 otherwise.

DT_INST_IRQ_HAS_IDX(inst, idx)
is index valid for interrupt property on a DT_DRV_COMPAT instance?

Parameters
• inst – instance number

• idx – logical index into the interrupt specifier array

Returns
1 if the idx is valid for the interrupt property 0 otherwise.

DT_INST_IRQ_HAS_CELL_AT_IDX(inst, idx, cell)
Does a DT_DRV_COMPAT instance have an interrupt named cell specifier?

Parameters
• inst – instance number

• idx – index to check

• cell – named cell value whose existence to check

Returns
1 if the named cell exists in the interrupt specifier at index idx 0 otherwise.

DT_INST_IRQ_HAS_CELL(inst, cell)
Does a DT_DRV_COMPAT instance have an interrupt value?

Parameters
• inst – instance number

• cell – named cell value whose existence to check

Returns
1 if the named cell exists in the interrupt specifier at index 0 0 otherwise.
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DT_INST_IRQ_HAS_NAME(inst, name)
Does a DT_DRV_COMPAT instance have an interrupt value?

Parameters
• inst – instance number

• name – lowercase-and-underscores interrupt specifier name

Returns
1 if name is a valid named specifier

Hardware specific APIs The following APIs can also be used by including <devicetree.h>; no
additional include is needed.

CAN These conveniences may be used for nodes which describe CAN controllers/transceivers,
and properties related to them.

group devicetree-can

Defines

DT_CAN_TRANSCEIVER_MIN_BITRATE(node_id, min)
Get the minimum transceiver bitrate for a CAN controller.

The bitrate will be limited to the minimum bitrate supported by the CAN controller. If
no CAN transceiver is present in the devicetree, the minimum bitrate will be that of
the CAN controller.

Example devicetree fragment:

transceiver0: can-phy0 {
compatible = "vnd,can-transceiver";
min-bitrate = <15000>;
max-bitrate = <1000000>;
#phy-cells = <0>;

};

can0: can@... {
compatible = "vnd,can-controller";
phys = <&transceiver0>;

};

can1: can@... {
compatible = "vnd,can-controller";

can-transceiver {
min-bitrate = <25000>;
max-bitrate = <2000000>;

};
};

can2: can@... {
compatible = "vnd,can-controller";

can-transceiver {
max-bitrate = <2000000>;

};
};
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Example usage:

DT_CAN_TRANSCEIVER_MIN_BITRATE(DT_NODELABEL(can0), 10000) // 15000
DT_CAN_TRANSCEIVER_MIN_BITRATE(DT_NODELABEL(can1), 0) // 250000
DT_CAN_TRANSCEIVER_MIN_BITRATE(DT_NODELABEL(can1), 50000) // 500000
DT_CAN_TRANSCEIVER_MIN_BITRATE(DT_NODELABEL(can2), 0) // 0

Parameters
• node_id – node identifier

• min – minimum bitrate supported by the CAN controller

Returns
the minimum bitrate supported by the CAN controller/transceiver combi-
nation

DT_CAN_TRANSCEIVER_MAX_BITRATE(node_id, max)
Get the maximum transceiver bitrate for a CAN controller.

The bitrate will be limited to the maximum bitrate supported by the CAN controller. If
no CAN transceiver is present in the devicetree, the maximum bitrate will be that of
the CAN controller.

Example devicetree fragment:

transceiver0: can-phy0 {
compatible = "vnd,can-transceiver";
max-bitrate = <1000000>;
#phy-cells = <0>;

};

can0: can@... {
compatible = "vnd,can-controller";
phys = <&transceiver0>;

};

can1: can@... {
compatible = "vnd,can-controller";

can-transceiver {
max-bitrate = <2000000>;

};
};

Example usage:

DT_CAN_TRANSCEIVER_MAX_BITRATE(DT_NODELABEL(can0), 5000000) // 1000000
DT_CAN_TRANSCEIVER_MAX_BITRATE(DT_NODELABEL(can1), 5000000) // 2000000
DT_CAN_TRANSCEIVER_MAX_BITRATE(DT_NODELABEL(can1), 1000000) // 1000000

Parameters
• node_id – node identifier

• max – maximum bitrate supported by the CAN controller

Returns
the maximum bitrate supported by the CAN controller/transceiver combi-
nation
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DT_INST_CAN_TRANSCEIVER_MIN_BITRATE(inst, min)
Get the minimum transceiver bitrate for a DT_DRV_COMPAT CAN controller.

See also

DT_CAN_TRANSCEIVER_MIN_BITRATE()

Parameters
• inst – DT_DRV_COMPAT instance number

• min – minimum bitrate supported by the CAN controller

Returns
the minimum bitrate supported by the CAN controller/transceiver combi-
nation

DT_INST_CAN_TRANSCEIVER_MAX_BITRATE(inst, max)
Get the maximum transceiver bitrate for a DT_DRV_COMPAT CAN controller.

See also

DT_CAN_TRANSCEIVER_MAX_BITRATE()

Parameters
• inst – DT_DRV_COMPAT instance number

• max – maximum bitrate supported by the CAN controller

Returns
the maximum bitrate supported by the CAN controller/transceiver combi-
nation

Clocks These conveniences may be used for nodes which describe clock sources, and proper-
ties related to them.

group devicetree-clocks

Defines

DT_CLOCKS_HAS_IDX(node_id, idx)
Test if a node has a clocks phandle-array property at a given index.

This expands to 1 if the given index is valid clocks property phandle-array index. Oth-
erwise, it expands to 0.

Example devicetree fragment:

n1: node-1 {
clocks = <...>, <...>;

};

(continues on next page)
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(continued from previous page)
n2: node-2 {

clocks = <...>;
};

Example usage:

DT_CLOCKS_HAS_IDX(DT_NODELABEL(n1), 0) // 1
DT_CLOCKS_HAS_IDX(DT_NODELABEL(n1), 1) // 1
DT_CLOCKS_HAS_IDX(DT_NODELABEL(n1), 2) // 0
DT_CLOCKS_HAS_IDX(DT_NODELABEL(n2), 1) // 0

Parameters
• node_id – node identifier; may or may not have any clocks property

• idx – index of a clocks property phandle-array whose existence to check

Returns
1 if the index exists, 0 otherwise

DT_CLOCKS_HAS_NAME(node_id, name)
Test if a node has a clock-names array property holds a given name.

This expands to 1 if the name is available as clocks-name array property cell. Other-
wise, it expands to 0.

Example devicetree fragment:

n1: node-1 {
clocks = <...>, <...>;
clock-names = "alpha", "beta";

};

n2: node-2 {
clocks = <...>;
clock-names = "alpha";

};

Example usage:

DT_CLOCKS_HAS_NAME(DT_NODELABEL(n1), alpha) // 1
DT_CLOCKS_HAS_NAME(DT_NODELABEL(n1), beta) // 1
DT_CLOCKS_HAS_NAME(DT_NODELABEL(n2), beta) // 0

Parameters
• node_id – node identifier; may or may not have any clock-names prop-

erty.

• name – lowercase-and-underscores clock-names cell value name to check

Returns
1 if the clock name exists, 0 otherwise

DT_NUM_CLOCKS(node_id)
Get the number of elements in a clocks property.

Example devicetree fragment:

n1: node-1 {
clocks = <&foo>, <&bar>;

};
(continues on next page)
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(continued from previous page)

n2: node-2 {
clocks = <&foo>;

};

Example usage:

DT_NUM_CLOCKS(DT_NODELABEL(n1)) // 2
DT_NUM_CLOCKS(DT_NODELABEL(n2)) // 1

Parameters
• node_id – node identifier with a clocks property

Returns
number of elements in the property

DT_CLOCKS_CTLR_BY_IDX(node_id, idx)
Get the node identifier for the controller phandle from a “clocks” phandle-array prop-
erty at an index.

Example devicetree fragment:

clk1: clock-controller@... { ... };

clk2: clock-controller@... { ... };

n: node {
clocks = <&clk1 10 20>, <&clk2 30 40>;

};

Example usage:

DT_CLOCKS_CTLR_BY_IDX(DT_NODELABEL(n), 0)) // DT_NODELABEL(clk1)
DT_CLOCKS_CTLR_BY_IDX(DT_NODELABEL(n), 1)) // DT_NODELABEL(clk2)

See also

DT_PHANDLE_BY_IDX()

Parameters
• node_id – node identifier

• idx – logical index into “clocks”

Returns
the node identifier for the clock controller referenced at index “idx”

DT_CLOCKS_CTLR(node_id)
Equivalent to DT_CLOCKS_CTLR_BY_IDX(node_id, 0)

See also

DT_CLOCKS_CTLR_BY_IDX()

Parameters
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• node_id – node identifier

Returns
a node identifier for the clocks controller at index 0 in “clocks”

DT_CLOCKS_CTLR_BY_NAME(node_id, name)
Get the node identifier for the controller phandle from a clocks phandle-array property
by name.

Example devicetree fragment:

clk1: clock-controller@... { ... };

clk2: clock-controller@... { ... };

n: node {
clocks = <&clk1 10 20>, <&clk2 30 40>;
clock-names = "alpha", "beta";

};

Example usage:

DT_CLOCKS_CTLR_BY_NAME(DT_NODELABEL(n), beta) // DT_NODELABEL(clk2)

See also

DT_PHANDLE_BY_NAME()

Parameters
• node_id – node identifier

• name – lowercase-and-underscores name of a clocks element as defined
by the node’s clock-names property

Returns
the node identifier for the clock controller referenced by name

DT_CLOCKS_CELL_BY_IDX(node_id, idx, cell)
Get a clock specifier’s cell value at an index.

Example devicetree fragment:

clk1: clock-controller@... {
compatible = "vnd,clock";
#clock-cells = < 2 >;

};

n: node {
clocks = < &clk1 10 20 >, < &clk1 30 40 >;

};

Bindings fragment for the vnd,clock compatible:

clock-cells:
- bus
- bits

Example usage:

DT_CLOCKS_CELL_BY_IDX(DT_NODELABEL(n), 0, bus) // 10
DT_CLOCKS_CELL_BY_IDX(DT_NODELABEL(n), 1, bits) // 40
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See also

DT_PHA_BY_IDX()

Parameters
• node_id – node identifier for a node with a clocks property

• idx – logical index into clocks property

• cell – lowercase-and-underscores cell name

Returns
the cell value at index “idx”

DT_CLOCKS_CELL_BY_NAME(node_id, name, cell)
Get a clock specifier’s cell value by name.

Example devicetree fragment:

clk1: clock-controller@... {
compatible = "vnd,clock";
#clock-cells = < 2 >;

};

n: node {
clocks = < &clk1 10 20 >, < &clk1 30 40 >;
clock-names = "alpha", "beta";

};

Bindings fragment for the vnd,clock compatible:

clock-cells:
- bus
- bits

Example usage:

DT_CLOCKS_CELL_BY_NAME(DT_NODELABEL(n), alpha, bus) // 10
DT_CLOCKS_CELL_BY_NAME(DT_NODELABEL(n), beta, bits) // 40

See also

DT_PHA_BY_NAME()

Parameters
• node_id – node identifier for a node with a clocks property

• name – lowercase-and-underscores name of a clocks element as defined
by the node’s clock-names property

• cell – lowercase-and-underscores cell name

Returns
the cell value in the specifier at the named element

DT_CLOCKS_CELL(node_id, cell)
Equivalent to DT_CLOCKS_CELL_BY_IDX(node_id, 0, cell)
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See also

DT_CLOCKS_CELL_BY_IDX()

Parameters
• node_id – node identifier for a node with a clocks property

• cell – lowercase-and-underscores cell name

Returns
the cell value at index 0

DT_INST_CLOCKS_HAS_IDX(inst, idx)
Equivalent to DT_CLOCKS_HAS_IDX(DT_DRV_INST(inst), idx)

Parameters
• inst – DT_DRV_COMPAT instance number; may or may not have any

clocks property

• idx – index of a clocks property phandle-array whose existence to check

Returns
1 if the index exists, 0 otherwise

DT_INST_CLOCKS_HAS_NAME(inst, name)
Equivalent to DT_CLOCK_HAS_NAME(DT_DRV_INST(inst), name)

Parameters
• inst – DT_DRV_COMPAT instance number; may or may not have any

clock-names property.

• name – lowercase-and-underscores clock-names cell value name to check

Returns
1 if the clock name exists, 0 otherwise

DT_INST_NUM_CLOCKS(inst)
Equivalent to DT_NUM_CLOCKS(DT_DRV_INST(inst))

Parameters
• inst – instance number

Returns
number of elements in the clocks property

DT_INST_CLOCKS_CTLR_BY_IDX(inst, idx)
Get the node identifier for the controller phandle from a “clocks” phandle-array prop-
erty at an index.

See also

DT_CLOCKS_CTLR_BY_IDX()

Parameters
• inst – instance number

• idx – logical index into “clocks”
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Returns
the node identifier for the clock controller referenced at index “idx”

DT_INST_CLOCKS_CTLR(inst)
Equivalent to DT_INST_CLOCKS_CTLR_BY_IDX(inst, 0)

See also

DT_CLOCKS_CTLR()

Parameters
• inst – instance number

Returns
a node identifier for the clocks controller at index 0 in “clocks”

DT_INST_CLOCKS_CTLR_BY_NAME(inst, name)
Get the node identifier for the controller phandle from a clocks phandle-array property
by name.

See also

DT_CLOCKS_CTLR_BY_NAME()

Parameters
• inst – instance number

• name – lowercase-and-underscores name of a clocks element as defined
by the node’s clock-names property

Returns
the node identifier for the clock controller referenced by the named ele-
ment

DT_INST_CLOCKS_CELL_BY_IDX(inst, idx, cell)
Get a DT_DRV_COMPAT instance’s clock specifier’s cell value at an index.

See also

DT_CLOCKS_CELL_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• idx – logical index into clocks property

• cell – lowercase-and-underscores cell name

Returns
the cell value at index “idx”
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DT_INST_CLOCKS_CELL_BY_NAME(inst, name, cell)
Get a DT_DRV_COMPAT instance’s clock specifier’s cell value by name.

See also

DT_CLOCKS_CELL_BY_NAME()

Parameters
• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a clocks element as defined
by the node’s clock-names property

• cell – lowercase-and-underscores cell name

Returns
the cell value in the specifier at the named element

DT_INST_CLOCKS_CELL(inst, cell)
Equivalent to DT_INST_CLOCKS_CELL_BY_IDX(inst, 0, cell)

Parameters
• inst – DT_DRV_COMPAT instance number

• cell – lowercase-and-underscores cell name

Returns
the value of the cell inside the specifier at index 0

DMA These conveniences may be used for nodes which describe direct memory access con-
trollers or channels, and properties related to them.

group devicetree-dmas

Defines

DT_DMAS_CTLR_BY_IDX(node_id, idx)
Get the node identifier for the DMA controller from a dmas property at an index.

Example devicetree fragment:

dma1: dma@... { ... };

dma2: dma@... { ... };

n: node {
dmas = <&dma1 1 2 0x400 0x3>,

<&dma2 6 3 0x404 0x5>;
};

Example usage:

DT_DMAS_CTLR_BY_IDX(DT_NODELABEL(n), 0) // DT_NODELABEL(dma1)
DT_DMAS_CTLR_BY_IDX(DT_NODELABEL(n), 1) // DT_NODELABEL(dma2)
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See also

DT_PROP_BY_PHANDLE_IDX()

Parameters
• node_id – node identifier for a node with a dmas property

• idx – logical index into dmas property

Returns
the node identifier for the DMA controller referenced at index “idx”

DT_DMAS_CTLR_BY_NAME(node_id, name)
Get the node identifier for the DMA controller from a dmas property by name.

Example devicetree fragment:

dma1: dma@... { ... };

dma2: dma@... { ... };

n: node {
dmas = <&dma1 1 2 0x400 0x3>,

<&dma2 6 3 0x404 0x5>;
dma-names = "tx", "rx";

};

Example usage:

DT_DMAS_CTLR_BY_NAME(DT_NODELABEL(n), tx) // DT_NODELABEL(dma1)
DT_DMAS_CTLR_BY_NAME(DT_NODELABEL(n), rx) // DT_NODELABEL(dma2)

See also

DT_PHANDLE_BY_NAME()

Parameters
• node_id – node identifier for a node with a dmas property

• name – lowercase-and-underscores name of a dmas element as defined
by the node’s dma-names property

Returns
the node identifier for the DMA controller in the named element

DT_DMAS_CTLR(node_id)
Equivalent to DT_DMAS_CTLR_BY_IDX(node_id, 0)

See also

DT_DMAS_CTLR_BY_IDX()

Parameters
• node_id – node identifier for a node with a dmas property
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Returns
the node identifier for the DMA controller at index 0 in the node’s “dmas”
property

DT_INST_DMAS_CTLR_BY_IDX(inst, idx)
Get the node identifier for the DMA controller from a DT_DRV_COMPAT instance’s
dmas property at an index.

See also

DT_DMAS_CTLR_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• idx – logical index into dmas property

Returns
the node identifier for the DMA controller referenced at index “idx”

DT_INST_DMAS_CTLR_BY_NAME(inst, name)
Get the node identifier for the DMA controller from a DT_DRV_COMPAT instance’s
dmas property by name.

See also

DT_DMAS_CTLR_BY_NAME()

Parameters
• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a dmas element as defined
by the node’s dma-names property

Returns
the node identifier for the DMA controller in the named element

DT_INST_DMAS_CTLR(inst)
Equivalent to DT_INST_DMAS_CTLR_BY_IDX(inst, 0)

See also

DT_DMAS_CTLR_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

Returns
the node identifier for the DMA controller at index 0 in the instance’s
“dmas” property
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DT_DMAS_CELL_BY_IDX(node_id, idx, cell)
Get a DMA specifier’s cell value at an index.

Example devicetree fragment:

dma1: dma@... {
compatible = "vnd,dma";
#dma-cells = <2>;

};

dma2: dma@... {
compatible = "vnd,dma";
#dma-cells = <2>;

};

n: node {
dmas = <&dma1 1 0x400>,

<&dma2 6 0x404>;
};

Bindings fragment for the vnd,dma compatible:

dma-cells:
- channel
- config

Example usage:

DT_DMAS_CELL_BY_IDX(DT_NODELABEL(n), 0, channel) // 1
DT_DMAS_CELL_BY_IDX(DT_NODELABEL(n), 1, channel) // 6
DT_DMAS_CELL_BY_IDX(DT_NODELABEL(n), 0, config) // 0x400
DT_DMAS_CELL_BY_IDX(DT_NODELABEL(n), 1, config) // 0x404

See also

DT_PHA_BY_IDX()

Parameters
• node_id – node identifier for a node with a dmas property

• idx – logical index into dmas property

• cell – lowercase-and-underscores cell name

Returns
the cell value at index “idx”

DT_INST_DMAS_CELL_BY_IDX(inst, idx, cell)
Get a DT_DRV_COMPAT instance’s DMA specifier’s cell value at an index.

See also

DT_DMAS_CELL_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• idx – logical index into dmas property
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• cell – lowercase-and-underscores cell name

Returns
the cell value at index “idx”

DT_DMAS_CELL_BY_NAME(node_id, name, cell)
Get a DMA specifier’s cell value by name.

Example devicetree fragment:

dma1: dma@... {
compatible = "vnd,dma";
#dma-cells = <2>;

};

dma2: dma@... {
compatible = "vnd,dma";
#dma-cells = <2>;

};

n: node {
dmas = <&dma1 1 0x400>,

<&dma2 6 0x404>;
dma-names = "tx", "rx";

};

Bindings fragment for the vnd,dma compatible:

dma-cells:
- channel
- config

Example usage:

DT_DMAS_CELL_BY_NAME(DT_NODELABEL(n), tx, channel) // 1
DT_DMAS_CELL_BY_NAME(DT_NODELABEL(n), rx, channel) // 6
DT_DMAS_CELL_BY_NAME(DT_NODELABEL(n), tx, config) // 0x400
DT_DMAS_CELL_BY_NAME(DT_NODELABEL(n), rx, config) // 0x404

See also

DT_PHA_BY_NAME()

Parameters
• node_id – node identifier for a node with a dmas property

• name – lowercase-and-underscores name of a dmas element as defined
by the node’s dma-names property

• cell – lowercase-and-underscores cell name

Returns
the cell value in the specifier at the named element

DT_INST_DMAS_CELL_BY_NAME(inst, name, cell)
Get a DT_DRV_COMPAT instance’s DMA specifier’s cell value by name.
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See also

DT_DMAS_CELL_BY_NAME()

Parameters
• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a dmas element as defined
by the node’s dma-names property

• cell – lowercase-and-underscores cell name

Returns
the cell value in the specifier at the named element

DT_DMAS_HAS_IDX(node_id, idx)
Is index “idx” valid for a dmas property?

Parameters
• node_id – node identifier for a node with a dmas property

• idx – logical index into dmas property

Returns
1 if the “dmas” property has index “idx”, 0 otherwise

DT_INST_DMAS_HAS_IDX(inst, idx)
Is index “idx” valid for a DT_DRV_COMPAT instance’s dmas property?

Parameters
• inst – DT_DRV_COMPAT instance number

• idx – logical index into dmas property

Returns
1 if the “dmas” property has a specifier at index “idx”, 0 otherwise

DT_DMAS_HAS_NAME(node_id, name)
Does a dmas property have a named element?

Parameters
• node_id – node identifier for a node with a dmas property

• name – lowercase-and-underscores name of a dmas element as defined
by the node’s dma-names property

Returns
1 if the dmas property has the named element, 0 otherwise

DT_INST_DMAS_HAS_NAME(inst, name)
Does a DT_DRV_COMPAT instance’s dmas property have a named element?

Parameters
• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a dmas element as defined
by the node’s dma-names property

Returns
1 if the dmas property has the named element, 0 otherwise
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Fixed flash partitions These conveniences may be used for the special-purpose
fixed-partitions compatible used to encode information about flash memory partitions
in the device tree. See See fixed-partition for more details.

group devicetree-fixed-partition

Defines

DT_NODE_BY_FIXED_PARTITION_LABEL(label)
Get a node identifier for a fixed partition with a given label property.

Example devicetree fragment:

flash@... {
partitions {

compatible = "fixed-partitions";
boot_partition: partition@0 {

label = "mcuboot";
};
slot0_partition: partition@c000 {

label = "image-0";
};
...

};
};

Example usage:

DT_NODE_BY_FIXED_PARTITION_LABEL(mcuboot) // node identifier for boot_partition
DT_NODE_BY_FIXED_PARTITION_LABEL(image_0) // node identifier for slot0_partition

Parameters
• label – lowercase-and-underscores label property value

Returns
a node identifier for the partition with that label property

DT_HAS_FIXED_PARTITION_LABEL(label)
Test if a fixed partition with a given label property exists.

Parameters
• label – lowercase-and-underscores label property value

Returns
1 if any “fixed-partitions” child node has the given label, 0 otherwise.

DT_FIXED_PARTITION_EXISTS(node_id)
Test if fixed-partition compatible node exists.

Parameters
• node_id – DTS node to test

Returns
1 if node exists and is fixed-partition compatible, 0 otherwise.

DT_FIXED_PARTITION_ID(node_id)
Get a numeric identifier for a fixed partition.

Parameters

1470 Chapter 5. Build and Configuration Systems



Zephyr Project Documentation, Release 3.7.99

• node_id – node identifier for a fixed-partitions child node

Returns
the partition’s ID, a unique zero-based index number

DT_MEM_FROM_FIXED_PARTITION(node_id)
Get the node identifier of the flash memory for a partition.

Parameters
• node_id – node identifier for a fixed-partitions child node

Returns
the node identifier of the internal memory that contains the fixed-
partitions node, or DT_INVALID_NODE if it doesn’t exist.

DT_MTD_FROM_FIXED_PARTITION(node_id)
Get the node identifier of the flash controller for a partition.

Parameters
• node_id – node identifier for a fixed-partitions child node

Returns
the node identifier of the memory technology device that contains the
fixed-partitions node.

DT_FIXED_PARTITION_ADDR(node_id)
Get the absolute address of a fixed partition.

Example devicetree fragment:

&flash_controller {
flash@1000000 {

compatible = "soc-nv-flash";
partitions {

compatible = "fixed-partitions";
storage_partition: partition@3a000 {

label = "storage";
};

};
};

};

Here, the “storage” partition is seen to belong to flash memory starting at address
0x1000000. The partition’s unit address of 0x3a000 represents an offset inside that
flash memory.

Example usage:

DT_FIXED_PARTITION_ADDR(DT_NODELABEL(storage_partition)) // 0x103a000

This macro can only be used with partitions of internal memory address-
able by the CPU. Otherwise, it may produce a compile-time error, such as:
__REG_IDX_0_VAL_ADDRESS’ undeclared‘.

Parameters
• node_id – node identifier for a fixed-partitions child node

Returns
the partition’s offset plus the base address of the flash node containing it.

GPIO These conveniences may be used for nodes which describe GPIO controllers/pins, and
properties related to them.
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group devicetree-gpio

Defines

DT_GPIO_CTLR_BY_IDX(node_id, gpio_pha, idx)
Get the node identifier for the controller phandle from a gpio phandle-array property
at an index.

Example devicetree fragment:

gpio1: gpio@... { };

gpio2: gpio@... { };

n: node {
gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 30 GPIO_ACTIVE_HIGH>;
};

Example usage:

DT_GPIO_CTLR_BY_IDX(DT_NODELABEL(n), gpios, 1) // DT_NODELABEL(gpio2)

See also

DT_PHANDLE_BY_IDX()

Parameters
• node_id – node identifier

• gpio_pha – lowercase-and-underscores GPIO property with type
“phandle-array”

• idx – logical index into “gpio_pha”

Returns
the node identifier for the gpio controller referenced at index “idx”

DT_GPIO_CTLR(node_id, gpio_pha)
Equivalent to DT_GPIO_CTLR_BY_IDX(node_id, gpio_pha, 0)

See also

DT_GPIO_CTLR_BY_IDX()

Parameters
• node_id – node identifier

• gpio_pha – lowercase-and-underscores GPIO property with type
“phandle-array”

Returns
a node identifier for the gpio controller at index 0 in “gpio_pha”
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DT_GPIO_PIN_BY_IDX(node_id, gpio_pha, idx)
Get a GPIO specifier’s pin cell at an index.

This macro only works for GPIO specifiers with cells named “pin”. Refer to the node’s
binding to check if necessary.

Example devicetree fragment:

gpio1: gpio@... {
compatible = "vnd,gpio";
#gpio-cells = <2>;

};

gpio2: gpio@... {
compatible = "vnd,gpio";
#gpio-cells = <2>;

};

n: node {
gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 30 GPIO_ACTIVE_HIGH>;
};

Bindings fragment for the vnd,gpio compatible:

gpio-cells:
- pin
- flags

Example usage:

DT_GPIO_PIN_BY_IDX(DT_NODELABEL(n), gpios, 0) // 10
DT_GPIO_PIN_BY_IDX(DT_NODELABEL(n), gpios, 1) // 30

See also

DT_PHA_BY_IDX()

Parameters
• node_id – node identifier

• gpio_pha – lowercase-and-underscores GPIO property with type
“phandle-array”

• idx – logical index into “gpio_pha”

Returns
the pin cell value at index “idx”

DT_GPIO_PIN(node_id, gpio_pha)
Equivalent to DT_GPIO_PIN_BY_IDX(node_id, gpio_pha, 0)

See also

DT_GPIO_PIN_BY_IDX()

Parameters
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• node_id – node identifier

• gpio_pha – lowercase-and-underscores GPIO property with type
“phandle-array”

Returns
the pin cell value at index 0

DT_GPIO_FLAGS_BY_IDX(node_id, gpio_pha, idx)
Get a GPIO specifier’s flags cell at an index.

This macro expects GPIO specifiers with cells named “flags”. If there is no “flags” cell
in the GPIO specifier, zero is returned. Refer to the node’s binding to check specifier
cell names if necessary.

Example devicetree fragment:

gpio1: gpio@... {
compatible = "vnd,gpio";
#gpio-cells = <2>;

};

gpio2: gpio@... {
compatible = "vnd,gpio";
#gpio-cells = <2>;

};

n: node {
gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 30 GPIO_ACTIVE_HIGH>;
};

Bindings fragment for the vnd,gpio compatible:

gpio-cells:
- pin
- flags

Example usage:

DT_GPIO_FLAGS_BY_IDX(DT_NODELABEL(n), gpios, 0) // GPIO_ACTIVE_LOW
DT_GPIO_FLAGS_BY_IDX(DT_NODELABEL(n), gpios, 1) // GPIO_ACTIVE_HIGH

See also

DT_PHA_BY_IDX()

Parameters
• node_id – node identifier

• gpio_pha – lowercase-and-underscores GPIO property with type
“phandle-array”

• idx – logical index into “gpio_pha”

Returns
the flags cell value at index “idx”, or zero if there is none

DT_GPIO_FLAGS(node_id, gpio_pha)
Equivalent to DT_GPIO_FLAGS_BY_IDX(node_id, gpio_pha, 0)
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See also

DT_GPIO_FLAGS_BY_IDX()

Parameters
• node_id – node identifier

• gpio_pha – lowercase-and-underscores GPIO property with type
“phandle-array”

Returns
the flags cell value at index 0, or zero if there is none

DT_NUM_GPIO_HOGS(node_id)
Get the number of GPIO hogs in a node.

This expands to the number of hogged GPIOs, or zero if there are none.

Example devicetree fragment:

gpio1: gpio@... {
compatible = "vnd,gpio";
#gpio-cells = <2>;

n1: node-1 {
gpio-hog;
gpios = <0 GPIO_ACTIVE_HIGH>, <1 GPIO_ACTIVE_LOW>;
output-high;

};

n2: node-2 {
gpio-hog;
gpios = <3 GPIO_ACTIVE_HIGH>;
output-low;

};
};

Bindings fragment for the vnd,gpio compatible:

gpio-cells:
- pin
- flags

Example usage:

DT_NUM_GPIO_HOGS(DT_NODELABEL(n1)) // 2
DT_NUM_GPIO_HOGS(DT_NODELABEL(n2)) // 1

Parameters
• node_id – node identifier; may or may not be a GPIO hog node.

Returns
number of hogged GPIOs in the node

DT_GPIO_HOG_PIN_BY_IDX(node_id, idx)
Get a GPIO hog specifier’s pin cell at an index.

This macro only works for GPIO specifiers with cells named “pin”. Refer to the node’s
binding to check if necessary.

Example devicetree fragment:
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gpio1: gpio@... {
compatible = "vnd,gpio";
#gpio-cells = <2>;

n1: node-1 {
gpio-hog;
gpios = <0 GPIO_ACTIVE_HIGH>, <1 GPIO_ACTIVE_LOW>;
output-high;

};

n2: node-2 {
gpio-hog;
gpios = <3 GPIO_ACTIVE_HIGH>;
output-low;

};
};

Bindings fragment for the vnd,gpio compatible:

gpio-cells:
- pin
- flags

Example usage:

DT_GPIO_HOG_PIN_BY_IDX(DT_NODELABEL(n1), 0) // 0
DT_GPIO_HOG_PIN_BY_IDX(DT_NODELABEL(n1), 1) // 1
DT_GPIO_HOG_PIN_BY_IDX(DT_NODELABEL(n2), 0) // 3

Parameters
• node_id – node identifier

• idx – logical index into “gpios”

Returns
the pin cell value at index “idx”

DT_GPIO_HOG_FLAGS_BY_IDX(node_id, idx)
Get a GPIO hog specifier’s flags cell at an index.

This macro expects GPIO specifiers with cells named “flags”. If there is no “flags” cell
in the GPIO specifier, zero is returned. Refer to the node’s binding to check specifier
cell names if necessary.

Example devicetree fragment:

gpio1: gpio@... {
compatible = "vnd,gpio";
#gpio-cells = <2>;

n1: node-1 {
gpio-hog;
gpios = <0 GPIO_ACTIVE_HIGH>, <1 GPIO_ACTIVE_LOW>;
output-high;

};

n2: node-2 {
gpio-hog;
gpios = <3 GPIO_ACTIVE_HIGH>;
output-low;

};
};
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Bindings fragment for the vnd,gpio compatible:

gpio-cells:
- pin
- flags

Example usage:

DT_GPIO_HOG_FLAGS_BY_IDX(DT_NODELABEL(n1), 0) // GPIO_ACTIVE_HIGH
DT_GPIO_HOG_FLAGS_BY_IDX(DT_NODELABEL(n1), 1) // GPIO_ACTIVE_LOW
DT_GPIO_HOG_FLAGS_BY_IDX(DT_NODELABEL(n2), 0) // GPIO_ACTIVE_HIGH

Parameters
• node_id – node identifier

• idx – logical index into “gpios”

Returns
the flags cell value at index “idx”, or zero if there is none

DT_INST_GPIO_PIN_BY_IDX(inst, gpio_pha, idx)
Get a DT_DRV_COMPAT instance’s GPIO specifier’s pin cell value at an index.

See also

DT_GPIO_PIN_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• gpio_pha – lowercase-and-underscores GPIO property with type
“phandle-array”

• idx – logical index into “gpio_pha”

Returns
the pin cell value at index “idx”

DT_INST_GPIO_PIN(inst, gpio_pha)
Equivalent to DT_INST_GPIO_PIN_BY_IDX(inst, gpio_pha, 0)

See also

DT_INST_GPIO_PIN_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• gpio_pha – lowercase-and-underscores GPIO property with type
“phandle-array”

Returns
the pin cell value at index 0
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DT_INST_GPIO_FLAGS_BY_IDX(inst, gpio_pha, idx)
Get a DT_DRV_COMPAT instance’s GPIO specifier’s flags cell at an index.

See also

DT_GPIO_FLAGS_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• gpio_pha – lowercase-and-underscores GPIO property with type
“phandle-array”

• idx – logical index into “gpio_pha”

Returns
the flags cell value at index “idx”, or zero if there is none

DT_INST_GPIO_FLAGS(inst, gpio_pha)
Equivalent to DT_INST_GPIO_FLAGS_BY_IDX(inst, gpio_pha, 0)

See also

DT_INST_GPIO_FLAGS_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• gpio_pha – lowercase-and-underscores GPIO property with type
“phandle-array”

Returns
the flags cell value at index 0, or zero if there is none

IO channels These are commonly used by device drivers which need to use IO channels (e.g.
ADC or DAC channels) for conversion.

group devicetree-io-channels

Defines

DT_IO_CHANNELS_CTLR_BY_IDX(node_id, idx)
Get the node identifier for the node referenced by an io-channels property at an index.

Example devicetree fragment:

adc1: adc@... { ... };

adc2: adc@... { ... };

n: node {
(continues on next page)
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(continued from previous page)
io-channels = <&adc1 10>, <&adc2 20>;

};

Example usage:

DT_IO_CHANNELS_CTLR_BY_IDX(DT_NODELABEL(n), 0) // DT_NODELABEL(adc1)
DT_IO_CHANNELS_CTLR_BY_IDX(DT_NODELABEL(n), 1) // DT_NODELABEL(adc2)

See also

DT_PROP_BY_PHANDLE_IDX()

Parameters
• node_id – node identifier for a node with an io-channels property

• idx – logical index into io-channels property

Returns
the node identifier for the node referenced at index “idx”

DT_IO_CHANNELS_CTLR_BY_NAME(node_id, name)
Get the node identifier for the node referenced by an io-channels property by name.

Example devicetree fragment:

adc1: adc@... { ... };

adc2: adc@... { ... };

n: node {
io-channels = <&adc1 10>, <&adc2 20>;
io-channel-names = "SENSOR", "BANDGAP";

};

Example usage:

DT_IO_CHANNELS_CTLR_BY_NAME(DT_NODELABEL(n), sensor) //
DT_NODELABEL(adc1) DT_IO_CHANNELS_CTLR_BY_NAME(DT_NODELABEL(n),
bandgap) // DT_NODELABEL(adc2)

See also

DT_PHANDLE_BY_NAME()

Parameters
• node_id – node identifier for a node with an io-channels property

• name – lowercase-and-underscores name of an io-channels element as de-
fined by the node’s io-channel-names property

Returns
the node identifier for the node referenced at the named element
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DT_IO_CHANNELS_CTLR(node_id)
Equivalent to DT_IO_CHANNELS_CTLR_BY_IDX(node_id, 0)

See also

DT_IO_CHANNELS_CTLR_BY_IDX()

Parameters
• node_id – node identifier for a node with an io-channels property

Returns
the node identifier for the node referenced at index 0 in the node’s “io-
channels” property

DT_INST_IO_CHANNELS_CTLR_BY_IDX(inst, idx)
Get the node identifier from a DT_DRV_COMPAT instance’s io-channels property at an
index.

See also

DT_IO_CHANNELS_CTLR_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• idx – logical index into io-channels property

Returns
the node identifier for the node referenced at index “idx”

DT_INST_IO_CHANNELS_CTLR_BY_NAME(inst, name)
Get the node identifier from a DT_DRV_COMPAT instance’s io-channels property by
name.

See also

DT_IO_CHANNELS_CTLR_BY_NAME()

Parameters
• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of an io-channels element as de-
fined by the node’s io-channel-names property

Returns
the node identifier for the node referenced at the named element

1480 Chapter 5. Build and Configuration Systems



Zephyr Project Documentation, Release 3.7.99

DT_INST_IO_CHANNELS_CTLR(inst)
Equivalent to DT_INST_IO_CHANNELS_CTLR_BY_IDX(inst, 0)

See also

DT_IO_CHANNELS_CTLR_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

Returns
the node identifier for the node referenced at index 0 in the node’s “io-
channels” property

DT_IO_CHANNELS_INPUT_BY_IDX(node_id, idx)
Get an io-channels specifier input cell at an index.

This macro only works for io-channels specifiers with cells named “input”. Refer to
the node’s binding to check if necessary.

Example devicetree fragment:

adc1: adc@... {
compatible = "vnd,adc";
#io-channel-cells = <1>;

};

adc2: adc@... {
compatible = "vnd,adc";
#io-channel-cells = <1>;

};

n: node {
io-channels = <&adc1 10>, <&adc2 20>;

};

Bindings fragment for the vnd,adc compatible:

io-channel-cells:

• input

Example usage:

DT_IO_CHANNELS_INPUT_BY_IDX(DT_NODELABEL(n), 0) // 10
DT_IO_CHANNELS_INPUT_BY_IDX(DT_NODELABEL(n), 1) // 20

See also

DT_PHA_BY_IDX()

Parameters
• node_id – node identifier for a node with an io-channels property

• idx – logical index into io-channels property

Returns
the input cell in the specifier at index “idx”
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DT_IO_CHANNELS_INPUT_BY_NAME(node_id, name)
Get an io-channels specifier input cell by name.

This macro only works for io-channels specifiers with cells named “input”. Refer to
the node’s binding to check if necessary.

Example devicetree fragment:

adc1: adc@... {
compatible = "vnd,adc";
#io-channel-cells = <1>;

};

adc2: adc@... {
compatible = "vnd,adc";
#io-channel-cells = <1>;

};

n: node {
io-channels = <&adc1 10>, <&adc2 20>;
io-channel-names = "SENSOR", "BANDGAP";

};

Bindings fragment for the vnd,adc compatible:

io-channel-cells:

• input

Example usage:

DT_IO_CHANNELS_INPUT_BY_NAME(DT_NODELABEL(n), sensor) // 10
DT_IO_CHANNELS_INPUT_BY_NAME(DT_NODELABEL(n), bandgap) // 20

See also

DT_PHA_BY_NAME()

Parameters
• node_id – node identifier for a node with an io-channels property

• name – lowercase-and-underscores name of an io-channels element as de-
fined by the node’s io-channel-names property

Returns
the input cell in the specifier at the named element

DT_IO_CHANNELS_INPUT(node_id)
Equivalent to DT_IO_CHANNELS_INPUT_BY_IDX(node_id, 0)

See also

DT_IO_CHANNELS_INPUT_BY_IDX()

Parameters
• node_id – node identifier for a node with an io-channels property
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Returns
the input cell in the specifier at index 0

DT_INST_IO_CHANNELS_INPUT_BY_IDX(inst, idx)
Get an input cell from the “DT_DRV_INST(inst)” io-channels property at an index.

See also

DT_IO_CHANNELS_INPUT_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• idx – logical index into io-channels property

Returns
the input cell in the specifier at index “idx”

DT_INST_IO_CHANNELS_INPUT_BY_NAME(inst, name)
Get an input cell from the “DT_DRV_INST(inst)” io-channels property by name.

See also

DT_IO_CHANNELS_INPUT_BY_NAME()

Parameters
• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of an io-channels element as de-
fined by the instance’s io-channel-names property

Returns
the input cell in the specifier at the named element

DT_INST_IO_CHANNELS_INPUT(inst)
Equivalent to DT_INST_IO_CHANNELS_INPUT_BY_IDX(inst, 0)

Parameters
• inst – DT_DRV_COMPAT instance number

Returns
the input cell in the specifier at index 0

MBOX These conveniences may be used for nodes which describe MBOX controllers/users, and
properties related to them.

group devicetree-mbox
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Defines

DT_MBOX_CTLR_BY_NAME(node_id, name)
Get the node identifier for the MBOX controller from a mboxes property by name.

Example devicetree fragment:

mbox1: mbox-controller@... { ... };

n: node {
mboxes = <&mbox1 8>,

<&mbox1 9>;
mbox-names = "tx", "rx";

};

Example usage:

DT_MBOX_CTLR_BY_NAME(DT_NODELABEL(n), tx) // DT_NODELABEL(mbox1)
DT_MBOX_CTLR_BY_NAME(DT_NODELABEL(n), rx) // DT_NODELABEL(mbox1)

See also

DT_PHANDLE_BY_NAME()

Parameters
• node_id – node identifier for a node with a mboxes property

• name – lowercase-and-underscores name of a mboxes element as defined
by the node’s mbox-names property

Returns
the node identifier for the MBOX controller in the named element

DT_MBOX_CHANNEL_BY_NAME(node_id, name)
Get a MBOX channel value by name.

Example devicetree fragment:

mbox1: mbox@... {
#mbox-cells = <1>;

};

n: node {
mboxes = <&mbox1 1>,

<&mbox1 6>;
mbox-names = "tx", "rx";

};

Bindings fragment for the mbox compatible:

mbox-cells:
- channel

Example usage:

DT_MBOX_CHANNEL_BY_NAME(DT_NODELABEL(n), tx) // 1
DT_MBOX_CHANNEL_BY_NAME(DT_NODELABEL(n), rx) // 6
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See also

DT_PHA_BY_NAME_OR()

Parameters
• node_id – node identifier for a node with a mboxes property

• name – lowercase-and-underscores name of a mboxes element as defined
by the node’s mbox-names property

Returns
the channel value in the specifier at the named element or 0 if no channels
are supported

Pinctrl (pin control) These are used to access pin control properties by name or index.

Devicetree nodes may have properties which specify pin control (sometimes known as pin mux)
settings. These are expressed using pinctrl-<index> properties within the node, where the
<index> values are contiguous integers starting from 0. These may also be named using the
pinctrl-names property.

Here is an example:

node {
...
pinctrl-0 = <&foo &bar ...>;
pinctrl-1 = <&baz ...>;
pinctrl-names = "default", "sleep";

};

Above, pinctrl-0 has name "default", and pinctrl-1 has name "sleep". The pinctrl-<index>
property values contain phandles. The &foo, &bar, etc. phandles within the properties point to
nodes whose contents vary by platform, and which describe a pin configuration for the node.

group devicetree-pinctrl

Defines

DT_PINCTRL_BY_IDX(node_id, pc_idx, idx)
Get a node identifier for a phandle in a pinctrl property by index.

Example devicetree fragment:

n: node {
pinctrl-0 = <&foo &bar>;
pinctrl-1 = <&baz &blub>;

}

Example usage:

DT_PINCTRL_BY_IDX(DT_NODELABEL(n), 0, 1) // DT_NODELABEL(bar)
DT_PINCTRL_BY_IDX(DT_NODELABEL(n), 1, 0) // DT_NODELABEL(baz)

Parameters
• node_id – node with a pinctrl-‘pc_idx’ property

• pc_idx – index of the pinctrl property itself
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• idx – index into the value of the pinctrl property

Returns
node identifier for the phandle at index ‘idx’ in ‘pinctrl-‘pc_idx’’

DT_PINCTRL_0(node_id, idx)
Get a node identifier from a pinctrl-0 property.

This is equivalent to:

DT_PINCTRL_BY_IDX(node_id, 0, idx)

It is provided for convenience since pinctrl-0 is commonly used.

Parameters
• node_id – node with a pinctrl-0 property

• idx – index into the pinctrl-0 property

Returns
node identifier for the phandle at index idx in the pinctrl-0 property of that
node

DT_PINCTRL_BY_NAME(node_id, name, idx)
Get a node identifier for a phandle inside a pinctrl node by name.

Example devicetree fragment:

n: node {
pinctrl-0 = <&foo &bar>;
pinctrl-1 = <&baz &blub>;
pinctrl-names = "default", "sleep";

};

Example usage:

DT_PINCTRL_BY_NAME(DT_NODELABEL(n), default, 1) // DT_NODELABEL(bar)
DT_PINCTRL_BY_NAME(DT_NODELABEL(n), sleep, 0) // DT_NODELABEL(baz)

Parameters
• node_id – node with a named pinctrl property

• name – lowercase-and-underscores pinctrl property name

• idx – index into the value of the named pinctrl property

Returns
node identifier for the phandle at that index in the pinctrl property

DT_PINCTRL_NAME_TO_IDX(node_id, name)
Convert a pinctrl name to its corresponding index.

Example devicetree fragment:

n: node {
pinctrl-0 = <&foo &bar>;
pinctrl-1 = <&baz &blub>;
pinctrl-names = "default", "sleep";

};

Example usage:

DT_PINCTRL_NAME_TO_IDX(DT_NODELABEL(n), default) // 0
DT_PINCTRL_NAME_TO_IDX(DT_NODELABEL(n), sleep) // 1
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Parameters
• node_id – node identifier with a named pinctrl property

• name – lowercase-and-underscores name name of the pinctrl whose index
to get

Returns
integer literal for the index of the pinctrl property with that name

DT_PINCTRL_IDX_TO_NAME_TOKEN(node_id, pc_idx)
Convert a pinctrl property index to its name as a token.

This allows you to get a pinctrl property’s name, and “remove the

quotes” from it.

DT_PINCTRL_IDX_TO_NAME_TOKEN() can only be used if the node has a pinctrl-
‘pc_idx’ property and a pinctrl-names property element for that index. It is an error to
use it in other circumstances.

Example devicetree fragment:

n: node {
pinctrl-0 = <...>;
pinctrl-1 = <...>;
pinctrl-names = "default", "f.o.o2";

};

Example usage:

DT_PINCTRL_IDX_TO_NAME_TOKEN(DT_NODELABEL(n), 0) // default
DT_PINCTRL_IDX_TO_NAME_TOKEN(DT_NODELABEL(n), 1) // f_o_o2

The same caveats and restrictions that apply to DT_STRING_TOKEN()’s return value
also apply here.

Parameters
• node_id – node identifier

• pc_idx – index of a pinctrl property in that node

Returns
name of the pinctrl property, as a token, without any quotes and with non-
alphanumeric characters converted to underscores

DT_PINCTRL_IDX_TO_NAME_UPPER_TOKEN(node_id, pc_idx)
Like DT_PINCTRL_IDX_TO_NAME_TOKEN(), but with an uppercased result.

This does the a similar conversion as DT_PINCTRL_IDX_TO_NAME_TOKEN(node_id,
pc_idx). The only difference is that alphabetical characters in the result are upper-
cased.

Example devicetree fragment:

n: node {
pinctrl-0 = <...>;
pinctrl-1 = <...>;
pinctrl-names = "default", "f.o.o2";

};

Example usage:
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DT_PINCTRL_IDX_TO_NAME_TOKEN(DT_NODELABEL(n), 0) // DEFAULT
DT_PINCTRL_IDX_TO_NAME_TOKEN(DT_NODELABEL(n), 1) // F_O_O2

The same caveats and restrictions that apply to DT_STRING_UPPER_TOKEN()’s return
value also apply here.

DT_NUM_PINCTRLS_BY_IDX(node_id, pc_idx)
Get the number of phandles in a pinctrl property.

Example devicetree fragment:

n1: node-1 {
pinctrl-0 = <&foo &bar>;

};

n2: node-2 {
pinctrl-0 = <&baz>;

};

Example usage:

DT_NUM_PINCTRLS_BY_IDX(DT_NODELABEL(n1), 0) // 2
DT_NUM_PINCTRLS_BY_IDX(DT_NODELABEL(n2), 0) // 1

Parameters
• node_id – node identifier with a pinctrl property

• pc_idx – index of the pinctrl property itself

Returns
number of phandles in the property with that index

DT_NUM_PINCTRLS_BY_NAME(node_id, name)
Like DT_NUM_PINCTRLS_BY_IDX(), but by name instead.

Example devicetree fragment:

n: node {
pinctrl-0 = <&foo &bar>;
pinctrl-1 = <&baz>
pinctrl-names = "default", "sleep";

};

Example usage:

DT_NUM_PINCTRLS_BY_NAME(DT_NODELABEL(n), default) // 2
DT_NUM_PINCTRLS_BY_NAME(DT_NODELABEL(n), sleep) // 1

Parameters
• node_id – node identifier with a pinctrl property

• name – lowercase-and-underscores name name of the pinctrl property

Returns
number of phandles in the property with that name

DT_NUM_PINCTRL_STATES(node_id)
Get the number of pinctrl properties in a node.

This expands to 0 if there are no pinctrl-i properties. Otherwise, it expands to the
number of such properties.
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Example devicetree fragment:

n1: node-1 {
pinctrl-0 = <...>;
pinctrl-1 = <...>;

};

n2: node-2 {
};

Example usage:

DT_NUM_PINCTRL_STATES(DT_NODELABEL(n1)) // 2
DT_NUM_PINCTRL_STATES(DT_NODELABEL(n2)) // 0

Parameters
• node_id – node identifier; may or may not have any pinctrl properties

Returns
number of pinctrl properties in the node

DT_PINCTRL_HAS_IDX(node_id, pc_idx)
Test if a node has a pinctrl property with an index.

This expands to 1 if the pinctrl-‘idx’ property exists. Otherwise, it expands to 0.

Example devicetree fragment:

n1: node-1 {
pinctrl-0 = <...>;
pinctrl-1 = <...>;

};

n2: node-2 {
};

Example usage:

DT_PINCTRL_HAS_IDX(DT_NODELABEL(n1), 0) // 1
DT_PINCTRL_HAS_IDX(DT_NODELABEL(n1), 1) // 1
DT_PINCTRL_HAS_IDX(DT_NODELABEL(n1), 2) // 0
DT_PINCTRL_HAS_IDX(DT_NODELABEL(n2), 0) // 0

Parameters
• node_id – node identifier; may or may not have any pinctrl properties

• pc_idx – index of a pinctrl property whose existence to check

Returns
1 if the property exists, 0 otherwise

DT_PINCTRL_HAS_NAME(node_id, name)
Test if a node has a pinctrl property with a name.

This expands to 1 if the named pinctrl property exists. Otherwise, it expands to 0.

Example devicetree fragment:

n1: node-1 {
pinctrl-0 = <...>;
pinctrl-names = "default";

};
(continues on next page)
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(continued from previous page)

n2: node-2 {
};

Example usage:

DT_PINCTRL_HAS_NAME(DT_NODELABEL(n1), default) // 1
DT_PINCTRL_HAS_NAME(DT_NODELABEL(n1), sleep) // 0
DT_PINCTRL_HAS_NAME(DT_NODELABEL(n2), default) // 0

Parameters
• node_id – node identifier; may or may not have any pinctrl properties

• name – lowercase-and-underscores pinctrl property name to check

Returns
1 if the property exists, 0 otherwise

DT_INST_PINCTRL_BY_IDX(inst, pc_idx, idx)
Get a node identifier for a phandle in a pinctrl property by index for a
DT_DRV_COMPAT instance.

This is equivalent to DT_PINCTRL_BY_IDX(DT_DRV_INST(inst), pc_idx, idx).

Parameters
• inst – instance number

• pc_idx – index of the pinctrl property itself

• idx – index into the value of the pinctrl property

Returns
node identifier for the phandle at index ‘idx’ in ‘pinctrl-‘pc_idx’’

DT_INST_PINCTRL_0(inst, idx)
Get a node identifier from a pinctrl-0 property for a DT_DRV_COMPAT instance.

This is equivalent to:

DT_PINCTRL_BY_IDX(DT_DRV_INST(inst), 0, idx)

It is provided for convenience since pinctrl-0 is commonly used.

Parameters
• inst – instance number

• idx – index into the pinctrl-0 property

Returns
node identifier for the phandle at index idx in the pinctrl-0 property of that
instance

DT_INST_PINCTRL_BY_NAME(inst, name, idx)
Get a node identifier for a phandle inside a pinctrl node for a DT_DRV_COMPAT in-
stance.

This is equivalent to DT_PINCTRL_BY_NAME(DT_DRV_INST(inst), name, idx).

Parameters
• inst – instance number

• name – lowercase-and-underscores pinctrl property name
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• idx – index into the value of the named pinctrl property

Returns
node identifier for the phandle at that index in the pinctrl property

DT_INST_PINCTRL_NAME_TO_IDX(inst, name)
Convert a pinctrl name to its corresponding index for a DT_DRV_COMPAT instance.

This is equivalent to DT_PINCTRL_NAME_TO_IDX(DT_DRV_INST(inst),name).

Parameters
• inst – instance number

• name – lowercase-and-underscores name of the pinctrl whose index to get

Returns
integer literal for the index of the pinctrl property with that name

DT_INST_PINCTRL_IDX_TO_NAME_TOKEN(inst, pc_idx)
Convert a pinctrl index to its name as an uppercased token.

This is equivalent to DT_PINCTRL_IDX_TO_NAME_TOKEN(DT_DRV_INST(inst), pc_idx).

Parameters
• inst – instance number

• pc_idx – index of the pinctrl property itself

Returns
name of the pin control property as a token

DT_INST_PINCTRL_IDX_TO_NAME_UPPER_TOKEN(inst, pc_idx)
Convert a pinctrl index to its name as an uppercased token.

This is equivalent to DT_PINCTRL_IDX_TO_NAME_UPPER_TOKEN(DT_DRV_INST(inst),
idx).

Parameters
• inst – instance number

• pc_idx – index of the pinctrl property itself

Returns
name of the pin control property as an uppercase token

DT_INST_NUM_PINCTRLS_BY_IDX(inst, pc_idx)
Get the number of phandles in a pinctrl property for a DT_DRV_COMPAT instance.

This is equivalent to DT_NUM_PINCTRLS_BY_IDX(DT_DRV_INST(inst),pc_idx).

Parameters
• inst – instance number

• pc_idx – index of the pinctrl property itself

Returns
number of phandles in the property with that index

DT_INST_NUM_PINCTRLS_BY_NAME(inst, name)
Like DT_INST_NUM_PINCTRLS_BY_IDX(), but by name instead.

This is equivalent to DT_NUM_PINCTRLS_BY_NAME(DT_DRV_INST(inst),name).

Parameters
• inst – instance number

• name – lowercase-and-underscores name of the pinctrl property
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Returns
number of phandles in the property with that name

DT_INST_NUM_PINCTRL_STATES(inst)
Get the number of pinctrl properties in a DT_DRV_COMPAT instance.

This is equivalent to DT_NUM_PINCTRL_STATES(DT_DRV_INST(inst)).

Parameters
• inst – instance number

Returns
number of pinctrl properties in the instance

DT_INST_PINCTRL_HAS_IDX(inst, pc_idx)
Test if a DT_DRV_COMPAT instance has a pinctrl property with an index.

This is equivalent to DT_PINCTRL_HAS_IDX(DT_DRV_INST(inst), pc_idx).

Parameters
• inst – instance number

• pc_idx – index of a pinctrl property whose existence to check

Returns
1 if the property exists, 0 otherwise

DT_INST_PINCTRL_HAS_NAME(inst, name)
Test if a DT_DRV_COMPAT instance has a pinctrl property with a name.

This is equivalent to DT_PINCTRL_HAS_NAME(DT_DRV_INST(inst), name).

Parameters
• inst – instance number

• name – lowercase-and-underscores pinctrl property name to check

Returns
1 if the property exists, 0 otherwise

PWM These conveniences may be used for nodes which describe PWM controllers and prop-
erties related to them.

group devicetree-pwms

Defines

DT_PWMS_CTLR_BY_IDX(node_id, idx)
Get the node identifier for the PWM controller from a pwms property at an index.

Example devicetree fragment:

pwm1: pwm-controller@... { ... };

pwm2: pwm-controller@... { ... };

n: node {
pwms = <&pwm1 1 PWM_POLARITY_NORMAL>,

<&pwm2 3 PWM_POLARITY_INVERTED>;
};

Example usage:
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DT_PWMS_CTLR_BY_IDX(DT_NODELABEL(n), 0) // DT_NODELABEL(pwm1)
DT_PWMS_CTLR_BY_IDX(DT_NODELABEL(n), 1) // DT_NODELABEL(pwm2)

See also

DT_PROP_BY_PHANDLE_IDX()

Parameters
• node_id – node identifier for a node with a pwms property

• idx – logical index into pwms property

Returns
the node identifier for the PWM controller referenced at index “idx”

DT_PWMS_CTLR_BY_NAME(node_id, name)
Get the node identifier for the PWM controller from a pwms property by name.

Example devicetree fragment:

pwm1: pwm-controller@... { ... };

pwm2: pwm-controller… { … };

n: node { pwms = <&pwm1 1 PWM_POLARITY_NORMAL>, <&pwm2 3
PWM_POLARITY_INVERTED>; pwm-names = “alpha”, “beta”; };

Example usage:

DT_PWMS_CTLR_BY_NAME(DT_NODELABEL(n), alpha) // DT_NODELABEL(pwm1)
DT_PWMS_CTLR_BY_NAME(DT_NODELABEL(n), beta) // DT_NODELABEL(pwm2)

See also

DT_PHANDLE_BY_NAME()

Parameters
• node_id – node identifier for a node with a pwms property

• name – lowercase-and-underscores name of a pwms element as defined
by the node’s pwm-names property

Returns
the node identifier for the PWM controller in the named element

DT_PWMS_CTLR(node_id)
Equivalent to DT_PWMS_CTLR_BY_IDX(node_id, 0)

See also

DT_PWMS_CTLR_BY_IDX()

Parameters
• node_id – node identifier for a node with a pwms property
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Returns
the node identifier for the PWM controller at index 0 in the node’s “pwms”
property

DT_PWMS_CELL_BY_IDX(node_id, idx, cell)
Get PWM specifier’s cell value at an index.

Example devicetree fragment:

pwm1: pwm-controller@... {
compatible = "vnd,pwm";
#pwm-cells = <2>;

};

pwm2: pwm-controller@... {
compatible = "vnd,pwm";
#pwm-cells = <2>;

};

n: node {
pwms = <&pwm1 1 200000 PWM_POLARITY_NORMAL>,

<&pwm2 3 100000 PWM_POLARITY_INVERTED>;
};

Bindings fragment for the “vnd,pwm” compatible:

pwm-cells:
- channel
- period
- flags

Example usage:

DT_PWMS_CELL_BY_IDX(DT_NODELABEL(n), 0, channel) // 1
DT_PWMS_CELL_BY_IDX(DT_NODELABEL(n), 1, channel) // 3
DT_PWMS_CELL_BY_IDX(DT_NODELABEL(n), 0, period) // 200000
DT_PWMS_CELL_BY_IDX(DT_NODELABEL(n), 1, period) // 100000
DT_PWMS_CELL_BY_IDX(DT_NODELABEL(n), 0, flags) // PWM_POLARITY_NORMAL
DT_PWMS_CELL_BY_IDX(DT_NODELABEL(n), 1, flags) // PWM_POLARITY_INVERTED

See also

DT_PHA_BY_IDX()

Parameters
• node_id – node identifier for a node with a pwms property

• idx – logical index into pwms property

• cell – lowercase-and-underscores cell name

Returns
the cell value at index “idx”

DT_PWMS_CELL_BY_NAME(node_id, name, cell)
Get a PWM specifier’s cell value by name.

Example devicetree fragment:
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pwm1: pwm-controller@... {
compatible = "vnd,pwm";
#pwm-cells = <2>;

};

pwm2: pwm-controller@... {
compatible = "vnd,pwm";
#pwm-cells = <2>;

};

n: node {
pwms = <&pwm1 1 200000 PWM_POLARITY_NORMAL>,

<&pwm2 3 100000 PWM_POLARITY_INVERTED>;
pwm-names = "alpha", "beta";

};

Bindings fragment for the “vnd,pwm” compatible:

pwm-cells:
- channel
- period
- flags

Example usage:

DT_PWMS_CELL_BY_NAME(DT_NODELABEL(n), alpha, channel) // 1
DT_PWMS_CELL_BY_NAME(DT_NODELABEL(n), beta, channel) // 3
DT_PWMS_CELL_BY_NAME(DT_NODELABEL(n), alpha, period) // 200000
DT_PWMS_CELL_BY_NAME(DT_NODELABEL(n), beta, period) // 100000
DT_PWMS_CELL_BY_NAME(DT_NODELABEL(n), alpha, flags) // PWM_POLARITY_NORMAL
DT_PWMS_CELL_BY_NAME(DT_NODELABEL(n), beta, flags) // PWM_POLARITY_INVERTED

See also

DT_PHA_BY_NAME()

Parameters
• node_id – node identifier for a node with a pwms property

• name – lowercase-and-underscores name of a pwms element as defined
by the node’s pwm-names property

• cell – lowercase-and-underscores cell name

Returns
the cell value in the specifier at the named element

DT_PWMS_CELL(node_id, cell)
Equivalent to DT_PWMS_CELL_BY_IDX(node_id, 0, cell)

See also

DT_PWMS_CELL_BY_IDX()

Parameters
• node_id – node identifier for a node with a pwms property
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• cell – lowercase-and-underscores cell name

Returns
the cell value at index 0

DT_PWMS_CHANNEL_BY_IDX(node_id, idx)
Get a PWM specifier’s channel cell value at an index.

This macro only works for PWM specifiers with cells named “channel”. Refer to the
node’s binding to check if necessary.

This is equivalent to DT_PWMS_CELL_BY_IDX(node_id, idx, channel).

See also

DT_PWMS_CELL_BY_IDX()

Parameters
• node_id – node identifier for a node with a pwms property

• idx – logical index into pwms property

Returns
the channel cell value at index “idx”

DT_PWMS_CHANNEL_BY_NAME(node_id, name)
Get a PWM specifier’s channel cell value by name.

This macro only works for PWM specifiers with cells named “channel”. Refer to the
node’s binding to check if necessary.

This is equivalent to DT_PWMS_CELL_BY_NAME(node_id, name, channel).

See also

DT_PWMS_CELL_BY_NAME()

Parameters
• node_id – node identifier for a node with a pwms property

• name – lowercase-and-underscores name of a pwms element as defined
by the node’s pwm-names property

Returns
the channel cell value in the specifier at the named element

DT_PWMS_CHANNEL(node_id)
Equivalent to DT_PWMS_CHANNEL_BY_IDX(node_id, 0)

See also

DT_PWMS_CHANNEL_BY_IDX()
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Parameters
• node_id – node identifier for a node with a pwms property

Returns
the channel cell value at index 0

DT_PWMS_PERIOD_BY_IDX(node_id, idx)
Get PWM specifier’s period cell value at an index.

This macro only works for PWM specifiers with cells named “period”. Refer to the
node’s binding to check if necessary.

This is equivalent to DT_PWMS_CELL_BY_IDX(node_id, idx, period).

See also

DT_PWMS_CELL_BY_IDX()

Parameters
• node_id – node identifier for a node with a pwms property

• idx – logical index into pwms property

Returns
the period cell value at index “idx”

DT_PWMS_PERIOD_BY_NAME(node_id, name)
Get a PWM specifier’s period cell value by name.

This macro only works for PWM specifiers with cells named “period”. Refer to the
node’s binding to check if necessary.

This is equivalent to DT_PWMS_CELL_BY_NAME(node_id, name, period).

See also

DT_PWMS_CELL_BY_NAME()

Parameters
• node_id – node identifier for a node with a pwms property

• name – lowercase-and-underscores name of a pwms element as defined
by the node’s pwm-names property

Returns
the period cell value in the specifier at the named element

DT_PWMS_PERIOD(node_id)
Equivalent to DT_PWMS_PERIOD_BY_IDX(node_id, 0)

See also

DT_PWMS_PERIOD_BY_IDX()
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Parameters
• node_id – node identifier for a node with a pwms property

Returns
the period cell value at index 0

DT_PWMS_FLAGS_BY_IDX(node_id, idx)
Get a PWM specifier’s flags cell value at an index.

This macro expects PWM specifiers with cells named “flags”. If there is no “flags” cell
in the PWM specifier, zero is returned. Refer to the node’s binding to check specifier
cell names if necessary.

This is equivalent to DT_PWMS_CELL_BY_IDX(node_id, idx, flags).

See also

DT_PWMS_CELL_BY_IDX()

Parameters
• node_id – node identifier for a node with a pwms property

• idx – logical index into pwms property

Returns
the flags cell value at index “idx”, or zero if there is none

DT_PWMS_FLAGS_BY_NAME(node_id, name)
Get a PWM specifier’s flags cell value by name.

This macro expects PWM specifiers with cells named “flags”. If there is no “flags” cell
in the PWM specifier, zero is returned. Refer to the node’s binding to check specifier
cell names if necessary.

This is equivalent to DT_PWMS_CELL_BY_NAME(node_id, name, flags) if there is a flags
cell, but expands to zero if there is none.

See also

DT_PWMS_CELL_BY_NAME()

Parameters
• node_id – node identifier for a node with a pwms property

• name – lowercase-and-underscores name of a pwms element as defined
by the node’s pwm-names property

Returns
the flags cell value in the specifier at the named element, or zero if there is
none

DT_PWMS_FLAGS(node_id)
Equivalent to DT_PWMS_FLAGS_BY_IDX(node_id, 0)
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See also

DT_PWMS_FLAGS_BY_IDX()

Parameters
• node_id – node identifier for a node with a pwms property

Returns
the flags cell value at index 0, or zero if there is none

DT_INST_PWMS_CTLR_BY_IDX(inst, idx)
Get the node identifier for the PWM controller from a DT_DRV_COMPAT instance’s
pwms property at an index.

See also

DT_PWMS_CTLR_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• idx – logical index into pwms property

Returns
the node identifier for the PWM controller referenced at index “idx”

DT_INST_PWMS_CTLR_BY_NAME(inst, name)
Get the node identifier for the PWM controller from a DT_DRV_COMPAT instance’s
pwms property by name.

See also

DT_PWMS_CTLR_BY_NAME()

Parameters
• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a pwms element as defined
by the node’s pwm-names property

Returns
the node identifier for the PWM controller in the named element

DT_INST_PWMS_CTLR(inst)
Equivalent to DT_INST_PWMS_CTLR_BY_IDX(inst, 0)

See also

DT_PWMS_CTLR_BY_IDX()

5.2. Devicetree 1499



Zephyr Project Documentation, Release 3.7.99

Parameters
• inst – DT_DRV_COMPAT instance number

Returns
the node identifier for the PWM controller at index 0 in the instance’s
“pwms” property

DT_INST_PWMS_CELL_BY_IDX(inst, idx, cell)
Get a DT_DRV_COMPAT instance’s PWM specifier’s cell value at an index.

Parameters
• inst – DT_DRV_COMPAT instance number

• idx – logical index into pwms property

• cell – lowercase-and-underscores cell name

Returns
the cell value at index “idx”

DT_INST_PWMS_CELL_BY_NAME(inst, name, cell)
Get a DT_DRV_COMPAT instance’s PWM specifier’s cell value by name.

See also

DT_PWMS_CELL_BY_NAME()

Parameters
• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a pwms element as defined
by the node’s pwm-names property

• cell – lowercase-and-underscores cell name

Returns
the cell value in the specifier at the named element

DT_INST_PWMS_CELL(inst, cell)
Equivalent to DT_INST_PWMS_CELL_BY_IDX(inst, 0, cell)

Parameters
• inst – DT_DRV_COMPAT instance number

• cell – lowercase-and-underscores cell name

Returns
the cell value at index 0

DT_INST_PWMS_CHANNEL_BY_IDX(inst, idx)
Equivalent to DT_INST_PWMS_CELL_BY_IDX(inst, idx, channel)

See also

DT_INST_PWMS_CELL_BY_IDX()

Parameters

1500 Chapter 5. Build and Configuration Systems



Zephyr Project Documentation, Release 3.7.99

• inst – DT_DRV_COMPAT instance number

• idx – logical index into pwms property

Returns
the channel cell value at index “idx”

DT_INST_PWMS_CHANNEL_BY_NAME(inst, name)
Equivalent to DT_INST_PWMS_CELL_BY_NAME(inst, name, channel)

See also

DT_INST_PWMS_CELL_BY_NAME()

Parameters
• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a pwms element as defined
by the node’s pwm-names property

Returns
the channel cell value in the specifier at the named element

DT_INST_PWMS_CHANNEL(inst)
Equivalent to DT_INST_PWMS_CHANNEL_BY_IDX(inst, 0)

See also

DT_INST_PWMS_CHANNEL_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

Returns
the channel cell value at index 0

DT_INST_PWMS_PERIOD_BY_IDX(inst, idx)
Equivalent to DT_INST_PWMS_CELL_BY_IDX(inst, idx, period)

See also

DT_INST_PWMS_CELL_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• idx – logical index into pwms property

Returns
the period cell value at index “idx”
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DT_INST_PWMS_PERIOD_BY_NAME(inst, name)
Equivalent to DT_INST_PWMS_CELL_BY_NAME(inst, name, period)

See also

DT_INST_PWMS_CELL_BY_NAME()

Parameters
• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a pwms element as defined
by the node’s pwm-names property

Returns
the period cell value in the specifier at the named element

DT_INST_PWMS_PERIOD(inst)
Equivalent to DT_INST_PWMS_PERIOD_BY_IDX(inst, 0)

See also

DT_INST_PWMS_PERIOD_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

Returns
the period cell value at index 0

DT_INST_PWMS_FLAGS_BY_IDX(inst, idx)
Equivalent to DT_INST_PWMS_CELL_BY_IDX(inst, idx, flags)

See also

DT_INST_PWMS_CELL_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• idx – logical index into pwms property

Returns
the flags cell value at index “idx”, or zero if there is none

DT_INST_PWMS_FLAGS_BY_NAME(inst, name)
Equivalent to DT_INST_PWMS_CELL_BY_NAME(inst, name, flags)
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See also

DT_INST_PWMS_CELL_BY_NAME()

Parameters
• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a pwms element as defined
by the node’s pwm-names property

Returns
the flags cell value in the specifier at the named element, or zero if there is
none

DT_INST_PWMS_FLAGS(inst)
Equivalent to DT_INST_PWMS_FLAGS_BY_IDX(inst, 0)

See also

DT_INST_PWMS_FLAGS_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

Returns
the flags cell value at index 0, or zero if there is none

Reset Controller These conveniences may be used for nodes which describe reset controllers
and properties related to them.

group devicetree-reset-controller

Defines

DT_RESET_CTLR_BY_IDX(node_id, idx)
Get the node identifier for the controller phandle from a “resets” phandle-array prop-
erty at an index.

Example devicetree fragment:

reset1: reset-controller@... { ... };

reset2: reset-controller@... { ... };

n: node {
resets = <&reset1 10>, <&reset2 20>;

};

Example usage:

DT_RESET_CTLR_BY_IDX(DT_NODELABEL(n), 0)) // DT_NODELABEL(reset1)
DT_RESET_CTLR_BY_IDX(DT_NODELABEL(n), 1)) // DT_NODELABEL(reset2)
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See also

DT_PHANDLE_BY_IDX()

Parameters
• node_id – node identifier

• idx – logical index into “resets”

Returns
the node identifier for the reset controller referenced at index “idx”

DT_RESET_CTLR(node_id)
Equivalent to DT_RESET_CTLR_BY_IDX(node_id, 0)

See also

DT_RESET_CTLR_BY_IDX()

Parameters
• node_id – node identifier

Returns
a node identifier for the reset controller at index 0 in “resets”

DT_RESET_CTLR_BY_NAME(node_id, name)
Get the node identifier for the controller phandle from a resets phandle-array property
by name.

Example devicetree fragment:

reset1: reset-controller@... { ... };

reset2: reset-controller@... { ... };

n: node {
resets = <&reset1 10>, <&reset2 20>;
reset-names = "alpha", "beta";

};

Example usage:

DT_RESET_CTLR_BY_NAME(DT_NODELABEL(n), alpha) // DT_NODELABEL(reset1)
DT_RESET_CTLR_BY_NAME(DT_NODELABEL(n), beta) // DT_NODELABEL(reset2)

See also

DT_PHANDLE_BY_NAME()

Parameters
• node_id – node identifier

• name – lowercase-and-underscores name of a resets element as defined
by the node’s reset-names property
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Returns
the node identifier for the reset controller referenced by name

DT_RESET_CELL_BY_IDX(node_id, idx, cell)
Get a reset specifier’s cell value at an index.

Example devicetree fragment:

reset: reset-controller@... {
compatible = "vnd,reset";
#reset-cells = <1>;

};

n: node {
resets = <&reset 10>;

};

Bindings fragment for the vnd,reset compatible:

reset-cells:
- id

Example usage:

DT_RESET_CELL_BY_IDX(DT_NODELABEL(n), 0, id) // 10

See also

DT_PHA_BY_IDX()

Parameters
• node_id – node identifier for a node with a resets property

• idx – logical index into resets property

• cell – lowercase-and-underscores cell name

Returns
the cell value at index “idx”

DT_RESET_CELL_BY_NAME(node_id, name, cell)
Get a reset specifier’s cell value by name.

Example devicetree fragment:

reset: reset-controller@... {
compatible = "vnd,reset";
#reset-cells = <1>;

};

n: node {
resets = <&reset 10>;
reset-names = "alpha";

};

Bindings fragment for the vnd,reset compatible:

reset-cells:
- id

Example usage:
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DT_RESET_CELL_BY_NAME(DT_NODELABEL(n), alpha, id) // 10

See also

DT_PHA_BY_NAME()

Parameters
• node_id – node identifier for a node with a resets property

• name – lowercase-and-underscores name of a resets element as defined
by the node’s reset-names property

• cell – lowercase-and-underscores cell name

Returns
the cell value in the specifier at the named element

DT_RESET_CELL(node_id, cell)
Equivalent to DT_RESET_CELL_BY_IDX(node_id, 0, cell)

See also

DT_RESET_CELL_BY_IDX()

Parameters
• node_id – node identifier for a node with a resets property

• cell – lowercase-and-underscores cell name

Returns
the cell value at index 0

DT_INST_RESET_CTLR_BY_IDX(inst, idx)
Get the node identifier for the controller phandle from a “resets” phandle-array prop-
erty at an index.

See also

DT_RESET_CTLR_BY_IDX()

Parameters
• inst – instance number

• idx – logical index into “resets”

Returns
the node identifier for the reset controller referenced at index “idx”

DT_INST_RESET_CTLR(inst)
Equivalent to DT_INST_RESET_CTLR_BY_IDX(inst, 0)
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See also

DT_RESET_CTLR()

Parameters
• inst – instance number

Returns
a node identifier for the reset controller at index 0 in “resets”

DT_INST_RESET_CTLR_BY_NAME(inst, name)
Get the node identifier for the controller phandle from a resets phandle-array property
by name.

See also

DT_RESET_CTLR_BY_NAME()

Parameters
• inst – instance number

• name – lowercase-and-underscores name of a resets element as defined
by the node’s reset-names property

Returns
the node identifier for the reset controller referenced by the named ele-
ment

DT_INST_RESET_CELL_BY_IDX(inst, idx, cell)
Get a DT_DRV_COMPAT instance’s reset specifier’s cell value at an index.

See also

DT_RESET_CELL_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• idx – logical index into resets property

• cell – lowercase-and-underscores cell name

Returns
the cell value at index “idx”

DT_INST_RESET_CELL_BY_NAME(inst, name, cell)
Get a DT_DRV_COMPAT instance’s reset specifier’s cell value by name.
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See also

DT_RESET_CELL_BY_NAME()

Parameters
• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a resets element as defined
by the node’s reset-names property

• cell – lowercase-and-underscores cell name

Returns
the cell value in the specifier at the named element

DT_INST_RESET_CELL(inst, cell)
Equivalent to DT_INST_RESET_CELL_BY_IDX(inst, 0, cell)

Parameters
• inst – DT_DRV_COMPAT instance number

• cell – lowercase-and-underscores cell name

Returns
the value of the cell inside the specifier at index 0

DT_RESET_ID_BY_IDX(node_id, idx)
Get a Reset Controller specifier’s id cell at an index.

This macro only works for Reset Controller specifiers with cells named “id”. Refer to
the node’s binding to check if necessary.

Example devicetree fragment:

reset: reset-controller@... {
compatible = "vnd,reset";
#reset-cells = <1>;

};

n: node {
resets = <&reset 10>;

};

Bindings fragment for the vnd,reset compatible:

reset-cells:
- id

Example usage:

DT_RESET_ID_BY_IDX(DT_NODELABEL(n), 0) // 10

See also

DT_PHA_BY_IDX()

Parameters
• node_id – node identifier

• idx – logical index into “resets”
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Returns
the id cell value at index “idx”

DT_RESET_ID(node_id)
Equivalent to DT_RESET_ID_BY_IDX(node_id, 0)

See also

DT_RESET_ID_BY_IDX()

Parameters
• node_id – node identifier

Returns
the id cell value at index 0

DT_INST_RESET_ID_BY_IDX(inst, idx)
Get a DT_DRV_COMPAT instance’s Reset Controller specifier’s id cell value at an index.

See also

DT_RESET_ID_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• idx – logical index into “resets”

Returns
the id cell value at index “idx”

DT_INST_RESET_ID(inst)
Equivalent to DT_INST_RESET_ID_BY_IDX(inst, 0)

See also

DT_INST_RESET_ID_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

Returns
the id cell value at index 0

SPI These conveniences may be used for nodes which describe either SPI controllers or devices,
depending on the case.

group devicetree-spi
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Defines

DT_SPI_HAS_CS_GPIOS(spi)
Does a SPI controller node have chip select GPIOs configured?

SPI bus controllers use the “cs-gpios” property for configuring chip select GPIOs. Its
value is a phandle-array which specifies the chip select lines.

Example devicetree fragment:

spi1: spi@... {
compatible = "vnd,spi";
cs-gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 20 GPIO_ACTIVE_LOW>;
};

spi2: spi@... {
compatible = "vnd,spi";

};

Example usage:

DT_SPI_HAS_CS_GPIOS(DT_NODELABEL(spi1)) // 1
DT_SPI_HAS_CS_GPIOS(DT_NODELABEL(spi2)) // 0

Parameters
• spi – a SPI bus controller node identifier

Returns
1 if “spi” has a cs-gpios property, 0 otherwise

DT_SPI_NUM_CS_GPIOS(spi)
Number of chip select GPIOs in a SPI controller’s cs-gpios property.

Example devicetree fragment:

spi1: spi@... {
compatible = "vnd,spi";
cs-gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 20 GPIO_ACTIVE_LOW>;
};

spi2: spi@... {
compatible = "vnd,spi";

};

Example usage:

DT_SPI_NUM_CS_GPIOS(DT_NODELABEL(spi1)) // 2
DT_SPI_NUM_CS_GPIOS(DT_NODELABEL(spi2)) // 0

Parameters
• spi – a SPI bus controller node identifier

Returns
Logical length of spi’s cs-gpios property, or 0 if “spi” doesn’t have a cs-gpios
property
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DT_SPI_DEV_HAS_CS_GPIOS(spi_dev)
Does a SPI device have a chip select line configured? Example devicetree fragment:

spi1: spi@... {
compatible = "vnd,spi";
cs-gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 20 GPIO_ACTIVE_LOW>;

a: spi-dev-a@0 {
reg = <0>;

};

b: spi-dev-b@1 {
reg = <1>;

};
};

spi2: spi@... {
compatible = "vnd,spi";
c: spi-dev-c@0 {

reg = <0>;
};

};

Example usage:

DT_SPI_DEV_HAS_CS_GPIOS(DT_NODELABEL(a)) // 1
DT_SPI_DEV_HAS_CS_GPIOS(DT_NODELABEL(b)) // 1
DT_SPI_DEV_HAS_CS_GPIOS(DT_NODELABEL(c)) // 0

Parameters
• spi_dev – a SPI device node identifier

Returns
1 if spi_dev’s bus node DT_BUS(spi_dev) has a chip select pin at index
DT_REG_ADDR(spi_dev), 0 otherwise

DT_SPI_DEV_CS_GPIOS_CTLR(spi_dev)
Get a SPI device’s chip select GPIO controller’s node identifier.

Example devicetree fragment:

gpio1: gpio@... { ... };

gpio2: gpio@... { ... };

spi@... {
compatible = "vnd,spi";
cs-gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 20 GPIO_ACTIVE_LOW>;

a: spi-dev-a@0 {
reg = <0>;

};

b: spi-dev-b@1 {
reg = <1>;

};
};
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Example usage:

DT_SPI_DEV_CS_GPIOS_CTLR(DT_NODELABEL(a)) // DT_NODELABEL(gpio1)
DT_SPI_DEV_CS_GPIOS_CTLR(DT_NODELABEL(b)) // DT_NODELABEL(gpio2)

Parameters
• spi_dev – a SPI device node identifier

Returns
node identifier for spi_dev’s chip select GPIO controller

DT_SPI_DEV_CS_GPIOS_PIN(spi_dev)
Get a SPI device’s chip select GPIO pin number.

It’s an error if the GPIO specifier for spi_dev’s entry in its bus node’s cs-gpios property
has no pin cell.

Example devicetree fragment:

spi1: spi@... {
compatible = "vnd,spi";
cs-gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 20 GPIO_ACTIVE_LOW>;

a: spi-dev-a@0 {
reg = <0>;

};

b: spi-dev-b@1 {
reg = <1>;

};
};

Example usage:

DT_SPI_DEV_CS_GPIOS_PIN(DT_NODELABEL(a)) // 10
DT_SPI_DEV_CS_GPIOS_PIN(DT_NODELABEL(b)) // 20

Parameters
• spi_dev – a SPI device node identifier

Returns
pin number of spi_dev’s chip select GPIO

DT_SPI_DEV_CS_GPIOS_FLAGS(spi_dev)
Get a SPI device’s chip select GPIO flags.

Example devicetree fragment:

spi1: spi@... {
compatible = "vnd,spi";
cs-gpios = <&gpio1 10 GPIO_ACTIVE_LOW>;

a: spi-dev-a@0 {
reg = <0>;

};
};

Example usage:
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DT_SPI_DEV_CS_GPIOS_FLAGS(DT_NODELABEL(a)) // GPIO_ACTIVE_LOW

If the GPIO specifier for spi_dev’s entry in its bus node’s cs-gpios property has no flags
cell, this expands to zero.

Parameters
• spi_dev – a SPI device node identifier

Returns
flags value of spi_dev’s chip select GPIO specifier, or zero if there is none

DT_INST_SPI_DEV_HAS_CS_GPIOS(inst)
Equivalent to DT_SPI_DEV_HAS_CS_GPIOS(DT_DRV_INST(inst)).

See also

DT_SPI_DEV_HAS_CS_GPIOS()

Parameters
• inst – DT_DRV_COMPAT instance number

Returns
1 if the instance’s bus has a CS pin at index DT_INST_REG_ADDR(inst), 0
otherwise

DT_INST_SPI_DEV_CS_GPIOS_CTLR(inst)
Get GPIO controller node identifier for a SPI device instance This is equivalent to
DT_SPI_DEV_CS_GPIOS_CTLR(DT_DRV_INST(inst)).

See also

DT_SPI_DEV_CS_GPIOS_CTLR()

Parameters
• inst – DT_DRV_COMPAT instance number

Returns
node identifier for instance’s chip select GPIO controller

DT_INST_SPI_DEV_CS_GPIOS_PIN(inst)
Equivalent to DT_SPI_DEV_CS_GPIOS_PIN(DT_DRV_INST(inst)).

See also

DT_SPI_DEV_CS_GPIOS_PIN()

Parameters
• inst – DT_DRV_COMPAT instance number
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Returns
pin number of the instance’s chip select GPIO

DT_INST_SPI_DEV_CS_GPIOS_FLAGS(inst)
DT_SPI_DEV_CS_GPIOS_FLAGS(DT_DRV_INST(inst)).

See also

DT_SPI_DEV_CS_GPIOS_FLAGS()

Parameters
• inst – DT_DRV_COMPAT instance number

Returns
flags value of the instance’s chip select GPIO specifier, or zero if there is
none

Chosen nodes The special /chosen node contains properties whose values describe system-
wide settings. The DT_CHOSEN() macro can be used to get a node identifier for a chosen node.

group devicetree-generic-chosen

Defines

DT_CHOSEN(prop)
Get a node identifier for a /chosen node property.

This is only valid to call if DT_HAS_CHOSEN(prop) is 1.

Parameters
• prop – lowercase-and-underscores property name for the /chosen node

Returns
a node identifier for the chosen node property

DT_HAS_CHOSEN(prop)
Test if the devicetree has a /chosen node.

Parameters
• prop – lowercase-and-underscores devicetree property

Returns
1 if the chosen property exists and refers to a node, 0 otherwise

Zephyr-specific chosen nodes The following table documents some commonly used Zephyr-
specific chosen nodes.

Sometimes, a chosen node’s label property will be used to set the default value of a Kconfig option
which in turn configures a hardware-specific device. This is usually for backwards compatibility
in cases when the Kconfig option predates devicetree support in Zephyr. In other cases, there is
no Kconfig option, and the devicetree node is used directly in the source code to select a device.
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Table 1: Zephyr-specific chosen properties

Property Purpose
zephyr,bt-c2h-uart Selects the UART used for host communication in the bluetooth-hci-

uart-sample
zephyr,bt-mon-uart Sets UART device used for the Bluetooth monitor logging
zephyr,bt-hci Selects the HCI device used by the Bluetooth host stack
zephyr,canbus Sets the default CAN controller
zephyr,ccm Core-Coupled Memory node on some STM32 SoCs
zephyr,code-
partition

Flash partition that the Zephyr image’s text section should be linked
into

zephyr,console Sets UART device used by console driver
zephyr,display Sets the default display controller
zephyr,keyboard-
scan

Sets the default keyboard scan controller

zephyr,dtcm Data Tightly Coupled Memory node on some Arm SoCs
zephyr,entropy A device which can be used as a system-wide entropy source
zephyr,flash A node whose reg is sometimes used to set the defaults for CON-

FIG_FLASH_BASE_ADDRESS and CONFIG_FLASH_SIZE
zephyr,flash-
controller

The node corresponding to the flash controller device for the zephyr,
flash node

zephyr,gdbstub-uart Sets UART device used by the GDB stub subsystem
zephyr,ieee802154 Used by the networking subsystem to set the IEEE 802.15.4 device
zephyr,ipc Used by the OpenAMP subsystem to specify the inter-process commu-

nication (IPC) device
zephyr,ipc_shm A node whose reg is used by the OpenAMP subsystem to determine

the base address and size of the shared memory (SHM) usable for
interprocess-communication (IPC)

zephyr,itcm Instruction Tightly Coupled Memory node on some Arm SoCs
zephyr,log-uart Sets the UART device(s) used by the logging subsystem’s UART back-

end. If defined, the UART log backend would output to the devices
listed in this node.

zephyr,ocm On-chip memory node on Xilinx Zynq-7000 and ZynqMP SoCs
zephyr,osdp-uart Sets UART device used by OSDP subsystem
zephyr,ot-uart Used by the OpenThread to specify UART device for Spinel protocol
zephyr,pcie-
controller

The node corresponding to the PCIe Controller

zephyr,ppp-uart Sets UART device used by PPP
zephyr,settings-
partition

Fixed partition node. If defined this selects the partition used by the
NVS and FCB settings backends.

zephyr,shell-uart Sets UART device used by serial shell backend
zephyr,sram A node whose reg sets the base address and size of SRAM memory

available to the Zephyr image, used during linking
zephyr,tracing-uart Sets UART device used by tracing subsystem
zephyr,uart-mcumgr UART used for Device Management
zephyr,uart-pipe Sets UART device used by serial pipe driver
zephyr,usb-device USB device node. If defined and has a vbus-gpios property, these will

be used by the USB subsystem to enable/disable VBUS

Bindings index

This page documents the available devicetree bindings. See Devicetree bindings for an introduc-
tion to the Zephyr bindings file format.

Vendor index This section contains an index of hardware vendors. Click on a vendor’s name
to go to the list of bindings for that vendor.
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• Generic or vendor-independent

• Advanced Micro Devices (AMD), Inc. (amd)

• Altera Corp. (altr)

• Ambiq Micro, Inc. (ambiq)

• AMS AG (ams)

• Analog Devices, Inc. (adi)

• Andes Technology Corporation (andestech)

• Angst+Pfister (ap)

• Apa Electronic Co., Ltd (apa)

• Aptina Imaging (aptina)

• Arduino (arduino)

• ARM Ltd. (arm)

• Asahi Kasei Corp. (asahi-kasei)

• ASMedia Technology Inc. (asmedia)

• ASPEED Technology Inc. (aspeed)

• Atmel Corporation (atmel)

• Avago Technologies (avago)

• Bosch Sensortec GmbH (bosch)

• Broadcom Corporation (brcm)

• Cadence Design Systems Inc. (cdns)

• Chipsemi Corp. (chipsemi)

• Cirque Corporation (cirque)

• Cirrus Logic, Inc. (cirrus)

• Cypress Semiconductor Corporation (cypress)

• DFRobot (dfrobot)

• Diglent, Inc. (digilent)

• Diodes Incorporated (diodes)

• Efinix Inc (efinix)

• ENE Technology, Inc. (ene)

• EPCOS AG (epcos)

• Espressif Systems (espressif)

• Fairchild Semiconductor (fcs)

• Feature Integration Technology Inc. (fintek)

• Festo SE & Co. KG (festo)

• FocalTech Systems Co.,Ltd (focaltech)

• Freescale Semiconductor (fsl)

• Fujitsu Ltd. (fujitsu)

• Futaba Corporation (futaba)

• Future Technology Devices International Ltd. (ftdi)
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• Gaisler (gaisler)

• Galaxycore, Inc. (galaxycore)

• Gas Sensing Solutions Ltd. (gss)

• GigaDevice Semiconductor (gd)

• GreeLed Electronic Ltd. (greeled)

• Guangzhou Aosong Electronic Co., Ltd. (aosong)

• Hamamatsu Photonics K.K. (hamamatsu)

• Hangzhou Grow Technology Co., Ltd. (hzgrow)

• Himax Technologies, Inc. (himax)

• Hitachi Ltd. (hit)

• Holtek Semiconductor, Inc. (holtek)

• Honeywell (honeywell)

• HOPERF Microelectronics Co. Ltd (hoperf)

• Hynitron (hynitron)

• ILI Technology Corporation (ILITEK) (ilitek)

• Imagination Technologies Ltd. (formerly MIPS Technologies Inc.) (mti)

• Infineon Technologies (infineon)

• Innovative Sensor Technology IST AG (ist)

• Integrated Silicon Solutions Inc. (issi)

• Intel Corporation (intel)

• Intersil (isil)

• InvenSense Inc. (invensense)

• Inventek Systems (inventek)

• Isentek Inc. (isentek)

• ITE Tech. Inc. (ite)

• JEDEC Solid State Technology Association (jedec)

• Kvaser (kvaser)

• Lattice Semiconductor (lattice)

• Linaro Limited (linaro)

• Linear Technology Corporation (lltc)

• LiteOn OptoElectronics (ltr)

• LiteX SoC builder (litex)

• lowRISC Community Interest Company (lowrisc)

• LuatOS Team (luatos)

• M5Stack (m5stack)

• Maxim Integrated Products (maxim)

• Measurement Specialties (meas)

• MediaTek Inc. (mediatek)

• MEMSIC Inc. (memsic)
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• Micro Crystal AG (microcrystal)

• Micro:bit Educational Foundation (microbit)

• Microchip Technology Inc. (microchip)

• Micron Technology Inc. (micron)

• Motorola, Inc. (motorola)

• Murata Manufacturing Co., Ltd. (murata)

• National Semiconductor (national)

• Nordic Semiconductor (nordic)

• Noritake Co., Inc. Electronics Division (noritake)

• Nuclei System Technology (nuclei)

• Nuvoton Technology Corporation (nuvoton)

• NXP Semiconductors (nxp)

• OmniVision Technologies Co., Ltd. (ovti)

• ON Semiconductor Corp. (onnn)

• open-isa.org (openisa)

• OpenCores.org (opencores)

• OpenThread.io (openthread)

• Orise Technology (orisetech)

• Panasonic Corporation (panasonic)

• PixArt Imaging Inc. (pixart)

• Plantower Co., Ltd (plantower)

• Princeton Technology Corp. (ptc)

• QEMU, a generic and open source machine emulator and virtualizer (qemu)

• Qorvo, Inc (formerly Decawave) (decawave)

• Quectel Wireless Solutions Co., Ltd. (quectel)

• QuickLogic Corp. (quicklogic)

• Raspberry Pi Foundation (raspberrypi)

• Raydium Semiconductor Corp. (raydium)

• Realtek Semiconductor Corp. (realtek)

• Renesas Electronics Corporation (renesas)

• Reyax Technology Co., Ltd. (reyax)

• Richtek Technology Corporation (richtek)

• RISC-V Foundation (riscv)

• ROCKTECH DISPLAYS LIMITED (rocktech)

• ROHM Semiconductor Co., Ltd (rohm)

• Sciosense B.V. (sciosense)

• Seeed Technology Co., Ltd (seeed)

• SEGGER Microcontroller GmbH (segger)

• Semtech Corporation (semtech)
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• Sensirion AG (sensirion)

• Sequans Communications (sqn)

• Sharp Corporation (sharp)

• Shenzhen Frida LCD Co., Ltd. (frida)

• Shenzhen Huiding Technology Co., Ltd. (goodix)

• Shenzhen Jinghua Displays Electronics Co., Ltd. (jhd)

• Shenzhen Xptek Technology Co., Ltd (xptek)

• Siemens AG (siemens)

• Sierra Wireless (swir)

• SiFive, Inc. (sifive)

• Silicon Laboratories (silabs)

• SIMComWireless Solutions Co., LTD (simcom)

• Sino Wealth Electronic Ltd (sinowealth)

• Sitronix Technology Corporation (sitronix)

• Skyworks Solutions, Inc. (skyworks)

• Smart Battery System (sbs)

• Solomon Systech Limited (solomon)

• SparkFun Electronics (sparkfun)

• Standard Microsystems Corporation (smsc)

• StarFive Technology Co. Ltd. (starfive)

• STMicroelectronics (st)

• Synopsys, Inc. (snps)

• Synopsys, Inc. (formerly ARC International PLC) (arc)

• TDK Corporation. (tdk)

• Telink Semiconductor (telink)

• Telit Cinterion (telit)

• Texas Instruments (ti)

• u-blox (u-blox)

• UltraChip Inc. (ultrachip)

• Vishay Intertechnology, Inc (vishay)

• Wistron NeWeb Corporation (wnc)

• WIZnet Co., Ltd. (wiznet)

• Worldsemi Co., Limited (worldsemi)

• Würth Elektronik GmbH. (we)

• X-Powers (x-powers)

• Xen Hypervisor (xen)

• Xilinx (xlnx)

• Zephyr-specific binding (zephyr)

• Zhengzhou Winsen Electronics Technology Co., Ltd. (winsen)
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• Unknown vendor

Bindings by vendor This section contains available bindings, grouped by vendor. Within each
group, bindings are listed by the “compatible” property they apply to, like this:

Vendor name (vendor prefix)
• <compatible-A>

• <compatible-B> (on <bus-name> bus)

• <compatible-C>

• …

The text “(on <bus-name> bus)” appears when bindings may behave differently depending on
the bus the node appears on. For example, this applies to some sensor device nodes, which may
appear as children of either I2C or SPI bus nodes.

Generic or vendor-independent
• dtbinding_adafruit_feather_header

• dtbinding_adc_keys

• dtbinding_ambiq_header

• dtbinding_analog_axis

• dtbinding_arduino_header_r3

• dtbinding_arduino_mkr_header

• dtbinding_arduino_nano_header_r3

• dtbinding_atmel_xplained_header

• dtbinding_atmel_xplained_pro_header

• dtbinding_can_transceiver_gpio

• dtbinding_current_sense_amplifier

• dtbinding_current_sense_shunt

• dtbinding_ethernet_phy

• dtbinding_fixed_clock

• dtbinding_fixed_factor_clock

• dtbinding_fixed_partitions

• dtbinding_generic_fem_two_ctrl_pins

• dtbinding_gnss_nmea_generic

• dtbinding_gpio_i2c

• dtbinding_gpio_i2c_switch

• dtbinding_gpio_kbd_matrix

• dtbinding_gpio_keys

• dtbinding_gpio_leds

• dtbinding_gpio_qdec

• dtbinding_gpio_radio_coex

• dtbinding_grove_header
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• dtbinding_input_keymap

• dtbinding_led_strip_matrix

• dtbinding_lm35

• dtbinding_lm75

• dtbinding_lm77

• dtbinding_mikro_bus

• dtbinding_mmio_sram

• dtbinding_mspi_aps6404l

• dtbinding_mspi_atxp032

• dtbinding_neorv32_cpu

• dtbinding_neorv32_gpio

• dtbinding_neorv32_machine_timer

• dtbinding_neorv32_trng

• dtbinding_neorv32_uart

• dtbinding_niosv_machine_timer

• dtbinding_nordic_thingy53_edge_connector

• dtbinding_ns16550

• dtbinding_ntc_thermistor_generic

• dtbinding_nvme_controller

• dtbinding_particle_gen3_header

• dtbinding_pci_host_ecam_generic

• dtbinding_pcie_controller

• dtbinding_power_domain

• dtbinding_power_domain_gpio

• dtbinding_power_domain_gpio_monitor

• dtbinding_pwm_clock

• dtbinding_pwm_leds

• dtbinding_raspberrypi_40pins_header

• dtbinding_regulator_fixed

• dtbinding_regulator_gpio

• dtbinding_sample_controller

• dtbinding_shared_irq

• dtbinding_soc_nv_flash

• dtbinding_st_morpho_header

• dtbinding_swj_connector

• dtbinding_syscon

• dtbinding_vnd_gpio_enable_disable_interrupt

• dtbinding_usb_audio

• dtbinding_usb_audio_feature_volume
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• dtbinding_usb_audio_hp

• dtbinding_usb_audio_hs

• dtbinding_usb_audio_mic

• dtbinding_usb_c_connector

• dtbinding_usb_nop_xceiv

• dtbinding_usb_ulpi_phy

• dtbinding_voltage_divider

Advanced Micro Devices (AMD), Inc. (amd)
• dtbinding_amd_sb_tsi

Altera Corp. (altr)
• dtbinding_altr_jtag_uart

• dtbinding_altr_msgdma

• dtbinding_altr_nios2_i2c

• dtbinding_altr_nios2_qspi

• dtbinding_altr_nios2_qspi_nor

• dtbinding_altr_nios2f

• dtbinding_altr_pio_1.0

• dtbinding_altr_uart

Ambiq Micro, Inc. (ambiq)
• dtbinding_ambiq_am1805

• dtbinding_ambiq_apollo3_pinctrl

• dtbinding_ambiq_apollo4_pinctrl

• dtbinding_ambiq_bt_hci_spi

• dtbinding_ambiq_clkctrl

• dtbinding_ambiq_counter

• dtbinding_ambiq_flash_controller

• dtbinding_ambiq_gpio

• dtbinding_ambiq_gpio_bank

• dtbinding_ambiq_i2c

• dtbinding_ambiq_mspi

• dtbinding_ambiq_mspi_controller

• dtbinding_ambiq_mspi_device

• dtbinding_ambiq_pwrctrl

• dtbinding_ambiq_spi

• dtbinding_ambiq_spi_bleif

• dtbinding_ambiq_stimer
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• dtbinding_ambiq_uart

• dtbinding_ambiq_watchdog

AMS AG (ams)
• dtbinding_ams_as5600

• dtbinding_ams_as6212

• dtbinding_ams_ccs811

• dtbinding_ams_ens210

• dtbinding_ams_iaqcore

• dtbinding_ams_tcs3400

• dtbinding_ams_tmd2620

• dtbinding_ams_tsl2540

• dtbinding_ams_tsl2561

• dtbinding_ams_tsl2591

Analog Devices, Inc. (adi)
• dtbinding_adi_ad559x_i2c

• dtbinding_adi_ad559x_spi

• dtbinding_adi_ad559x_adc

• dtbinding_adi_ad559x_dac

• dtbinding_adi_ad559x_gpio

• dtbinding_adi_ad5628

• dtbinding_adi_ad5648

• dtbinding_adi_ad5668

• dtbinding_adi_ad5672

• dtbinding_adi_ad5674

• dtbinding_adi_ad5676

• dtbinding_adi_ad5679

• dtbinding_adi_ad5684

• dtbinding_adi_ad5686

• dtbinding_adi_ad5687

• dtbinding_adi_ad5689

• dtbinding_adi_ad5691

• dtbinding_adi_ad5692

• dtbinding_adi_ad5693

• dtbinding_adi_adin1100_phy

• dtbinding_adi_adin1110

• dtbinding_adi_adin2111

• dtbinding_adi_adin2111_mdio
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• dtbinding_adi_adin2111_phy

• dtbinding_adi_adltc2990

• dtbinding_adi_adp5360

• dtbinding_adi_adp5360_regulator

• dtbinding_adi_adp5585

• dtbinding_adi_adp5585_gpio

• dtbinding_adi_adt7310

• dtbinding_adi_adt7420

• dtbinding_adi_adxl345_spi

• dtbinding_adi_adxl345_i2c

• dtbinding_adi_adxl362

• dtbinding_adi_adxl367_i2c

• dtbinding_adi_adxl367_spi

• dtbinding_adi_adxl372_i2c

• dtbinding_adi_adxl372_spi

• dtbinding_adi_max32_gcr

• dtbinding_adi_max32_gpio

• dtbinding_adi_max32_i2c

• dtbinding_adi_max32_pinctrl

• dtbinding_adi_max32_spi

• dtbinding_adi_max32_trng

• dtbinding_adi_max32_uart

• dtbinding_adi_sdp_120

Andes Technology Corporation (andestech)
• dtbinding_andes_andescore_v5

• dtbinding_andestech_atcdmac300

• dtbinding_andestech_atcgpio100

• dtbinding_andestech_atciic100

• dtbinding_andestech_atcpit100

• dtbinding_andestech.atcspi200

• dtbinding_andestech_atcwdt200

• dtbinding_andestech_l2c

• dtbinding_andestech_machine_timer

• dtbinding_andestech_plic_sw

• dtbinding_andestech_qspi_nor

Angst+Pfister (ap)
• dtbinding_ap_fcx_mldx5
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Apa Electronic Co., Ltd (apa)
• dtbinding_apa_apa102

Aptina Imaging (aptina)
• dtbinding_aptina_mt9m114

Arduino (arduino)
• dtbinding_arduino_uno_adc

ARM Ltd. (arm)
• dtbinding_arm_armv6m_mpu

• dtbinding_arm_armv6m_systick

• dtbinding_arm_armv7m_itm

• dtbinding_arm_armv7m_mpu

• dtbinding_arm_armv7m_systick

• dtbinding_arm_armv8_timer

• dtbinding_arm_armv8.1m_mpu

• dtbinding_arm_armv8.1m_systick

• dtbinding_arm_armv8m_itm

• dtbinding_arm_armv8m_mpu

• dtbinding_arm_armv8m_systick

• dtbinding_arm_beetle_syscon

• dtbinding_arm_cmsdk_dtimer

• dtbinding_arm_cmsdk_gpio

• dtbinding_arm_cmsdk_timer

• dtbinding_arm_cmsdk_uart

• dtbinding_arm_cmsdk_watchdog

• dtbinding_arm_cortex_a53

• dtbinding_arm_cortex_a55

• dtbinding_arm_cortex_a72

• dtbinding_arm_cortex_a76

• dtbinding_arm_cortex_m0

• dtbinding_arm_cortex_m0+

• dtbinding_arm_cortex_m1

• dtbinding_arm_cortex_m23

• dtbinding_arm_cortex_m3

• dtbinding_arm_cortex_m33

• dtbinding_arm_cortex_m33f

• dtbinding_arm_cortex_m4

5.2. Devicetree 1525



Zephyr Project Documentation, Release 3.7.99

• dtbinding_arm_cortex_m4f

• dtbinding_arm_cortex_m55

• dtbinding_arm_cortex_m55f

• dtbinding_arm_cortex_m7

• dtbinding_arm_cortex_m85

• dtbinding_arm_cortex_m85f

• dtbinding_arm_cortex_r4

• dtbinding_arm_cortex_r4f

• dtbinding_arm_cortex_r5

• dtbinding_arm_cortex_r52

• dtbinding_arm_cortex_r5f

• dtbinding_arm_cortex_r7

• dtbinding_arm_cortex_r82

• dtbinding_arm_cryptocell_310

• dtbinding_arm_cryptocell_312

• dtbinding_arm_dma_pl330

• dtbinding_arm_dtcm

• dtbinding_arm_ethos_u

• dtbinding_arm_gic

• dtbinding_arm_gic_v1

• dtbinding_arm_gic_v2

• dtbinding_arm_gic_v3

• dtbinding_arm_gic_v3_its

• dtbinding_arm_itcm

• dtbinding_arm_mhu

• dtbinding_arm_mps2_fpgaio_gpio

• dtbinding_arm_mps3_fpgaio_gpio

• dtbinding_arm_pl011

• dtbinding_arm_pl022

• dtbinding_arm_psci_0.2

• dtbinding_arm_psci_1.1

• dtbinding_arm_sbsa_uart

• dtbinding_arm_scc

• dtbinding_arm_v6m_nvic

• dtbinding_arm_v7m_nvic

• dtbinding_arm_v8.1m_nvic

• dtbinding_arm_v8m_nvic

• dtbinding_arm_versatile_i2c

1526 Chapter 5. Build and Configuration Systems



Zephyr Project Documentation, Release 3.7.99

Asahi Kasei Corp. (asahi-kasei)
• dtbinding_asahi_kasei_ak8975

• dtbinding_asahi_kasei_akm09918c

ASMedia Technology Inc. (asmedia)
• dtbinding_asmedia_asm2364

ASPEED Technology Inc. (aspeed)
• dtbinding_aspeed_ast10x0_clock

• dtbinding_aspeed_ast10x0_reset

Atmel Corporation (atmel)
• dtbinding_atmel_at24

• dtbinding_atmel_24mac402

• dtbinding_atmel_at25

• dtbinding_atmel_at45

• dtbinding_atmel_ataes132a

• dtbinding_atmel_rf2xx

• dtbinding_atmel_sam_adc

• dtbinding_atmel_sam_afec

• dtbinding_atmel_sam_can

• dtbinding_atmel_sam_dac

• dtbinding_atmel_sam_flash

• dtbinding_atmel_sam_flash_controller

• dtbinding_atmel_sam_gmac

• dtbinding_atmel_sam_gpio

• dtbinding_atmel_sam_hsmci

• dtbinding_atmel_sam_i2c_twi

• dtbinding_atmel_sam_i2c_twihs

• dtbinding_atmel_sam_i2c_twim

• dtbinding_atmel_sam_mdio

• dtbinding_atmel_sam_pinctrl

• dtbinding_atmel_sam_pmc

• dtbinding_atmel_sam_pwm

• dtbinding_atmel_sam_rstc

• dtbinding_atmel_sam_rtc

• dtbinding_atmel_sam_smc

• dtbinding_atmel_sam_spi

• dtbinding_atmel_sam_ssc
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• dtbinding_atmel_sam_supc

• dtbinding_atmel_sam_tc

• dtbinding_atmel_sam_tc_qdec

• dtbinding_atmel_sam_trng

• dtbinding_atmel_sam_uart

• dtbinding_atmel_sam_usart

• dtbinding_atmel_sam_usbc

• dtbinding_atmel_sam_usbhs

• dtbinding_atmel_sam_watchdog

• dtbinding_atmel_sam_xdmac

• dtbinding_atmel_sam0_adc

• dtbinding_atmel_sam0_can

• dtbinding_atmel_sam0_dac

• dtbinding_atmel_sam0_dmac

• dtbinding_atmel_sam0_eic

• dtbinding_atmel_sam0_gmac

• dtbinding_atmel_sam0_gpio

• dtbinding_atmel_sam0_i2c

• dtbinding_atmel_sam0_id

• dtbinding_atmel_sam0_nvmctrl

• dtbinding_atmel_sam0_pinctrl

• dtbinding_atmel_sam0_pinmux

• dtbinding_atmel_sam0_rtc

• dtbinding_atmel_sam0_sercom

• dtbinding_atmel_sam0_spi

• dtbinding_atmel_sam0_tc32

• dtbinding_atmel_sam0_tcc_pwm

• dtbinding_atmel_sam0_uart

• dtbinding_atmel_sam0_usb

• dtbinding_atmel_sam0_watchdog

• dtbinding_atmel_sam4l_flashcalw_controller

• dtbinding_atmel_sam4l_gpio

• dtbinding_atmel_sam4l_uid

• dtbinding_atmel_samc2x_gclk

• dtbinding_atmel_samc2x_mclk

• dtbinding_atmel_samd2x_gclk

• dtbinding_atmel_samd2x_pm

• dtbinding_atmel_samd5x_gclk

• dtbinding_atmel_samd5x_mclk
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• dtbinding_atmel_saml2x_gclk

• dtbinding_atmel_saml2x_mclk

• dtbinding_atmel_winc1500

Avago Technologies (avago)
• dtbinding_avago_apds9960

Bosch Sensortec GmbH (bosch)
• dtbinding_bosch_bma280

• dtbinding_bosch_bma4xx_spi

• dtbinding_bosch_bma4xx_i2c

• dtbinding_bosch_bmc150_magn

• dtbinding_bosch_bme280_i2c

• dtbinding_bosch_bme280_spi

• dtbinding_bosch_bme680_spi

• dtbinding_bosch_bme680_i2c

• dtbinding_bosch_bmg160

• dtbinding_bosch_bmi08x_accel_i2c

• dtbinding_bosch_bmi08x_accel_spi

• dtbinding_bosch_bmi08x_gyro_spi

• dtbinding_bosch_bmi08x_gyro_i2c

• dtbinding_bosch_bmi160_spi

• dtbinding_bosch_bmi160_i2c

• dtbinding_bosch_bmi270_i2c

• dtbinding_bosch_bmi270

• dtbinding_bosch_bmi270_spi

• dtbinding_bosch_bmi323

• dtbinding_bosch_bmm150_i2c

• dtbinding_bosch_bmm150_spi

• dtbinding_bosch_bmp388_spi

• dtbinding_bosch_bmp388_i2c

• dtbinding_bosch_bmp581

Broadcom Corporation (brcm)
• dtbinding_brcm_bcm2711_aux_uart

• dtbinding_brcm_bcm2711_gpio

• dtbinding_brcm_brcmstb_gpio

• dtbinding_brcm_iproc_gpio

• dtbinding_brcm_iproc_i2c
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• dtbinding_brcm_iproc_pax_dma_v1

• dtbinding_brcm_iproc_pax_dma_v2

• dtbinding_brcm_iproc_pcie_ep

Cadence Design Systems Inc. (cdns)
• dtbinding_cdns_i3c

• dtbinding_cdns_nand

• dtbinding_cdns_qspi_nor

• dtbinding_cdns_sdhc

• dtbinding_cdns_tensilica_xtensa_lx3

• dtbinding_cdns_tensilica_xtensa_lx4

• dtbinding_cdns_tensilica_xtensa_lx6

• dtbinding_cdns_tensilica_xtensa_lx7

• dtbinding_cdns_uart

• dtbinding_cdns_xtensa_core_intc

Chipsemi Corp. (chipsemi)
• dtbinding_chipsemi_chsc6x

Cirque Corporation (cirque)
• dtbinding_cirque_pinnacle_spi

• dtbinding_cirque_pinnacle_i2c

Cirrus Logic, Inc. (cirrus)
• dtbinding_cirrus_cp9314

• dtbinding_cirrus_cs47l63

Cypress Semiconductor Corporation (cypress)
• dtbinding_cypress_cy8c95xx_gpio

• dtbinding_cypress_cy8c95xx_gpio_port

• dtbinding_cypress_psoc6_flash_controller

• dtbinding_cypress_psoc6_gpio

• dtbinding_cypress_psoc6_hsiom

• dtbinding_cypress_psoc6_intmux

• dtbinding_cypress_psoc6_intmux_ch

• dtbinding_cypress_psoc6_spi

• dtbinding_cypress_psoc6_uart

• dtbinding_cypress_psoc6_uid
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DFRobot (dfrobot)
• dtbinding_dfrobot_a01nyub

Diglent, Inc. (digilent)
• dtbinding_digilent_pmod

Diodes Incorporated (diodes)
• dtbinding_diodes_pi3usb9201

Efinix Inc (efinix)
• dtbinding_efinix_sapphire_gpio

• dtbinding_efinix_sapphire_timer0

• dtbinding_efinix_sapphire_uart0

• dtbinding_efinix_vexriscv_sapphire

ENE Technology, Inc. (ene)
• dtbinding_ene_kb1200_adc

• dtbinding_ene_kb1200_gcfg

• dtbinding_ene_kb1200_gpio

• dtbinding_ene_kb1200_i2c

• dtbinding_ene_kb1200_pinctrl

• dtbinding_ene_kb1200_pmu

• dtbinding_ene_kb1200_pwm

• dtbinding_ene_kb1200_tach

• dtbinding_ene_kb1200_uart

• dtbinding_ene_kb1200_watchdog

EPCOS AG (epcos)
• dtbinding_epcos_b57861s0103a039

Espressif Systems (espressif)
• dtbinding_espressif_esp_at

• dtbinding_espressif_esp32_adc

• dtbinding_espressif_esp32_bt_hci

• dtbinding_espressif_esp32_dac

• dtbinding_espressif_esp32_eth

• dtbinding_espressif_esp32_flash_controller

• dtbinding_espressif_esp32_gdma

• dtbinding_espressif_esp32_gpio
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• dtbinding_espressif_esp32_i2c

• dtbinding_espressif_esp32_intc

• dtbinding_espressif_esp32_ipm

• dtbinding_espressif_esp32_ledc

• dtbinding_espressif_esp32_mcpwm

• dtbinding_espressif_esp32_mdio

• dtbinding_espressif_esp32_pcnt

• dtbinding_espressif_esp32_pinctrl

• dtbinding_espressif_esp32_rtc

• dtbinding_espressif_esp32_rtc_timer

• dtbinding_espressif_esp32_sdhc

• dtbinding_espressif_esp32_sdhc_slot

• dtbinding_espressif_esp32_spi

• dtbinding_espressif_esp32_systimer

• dtbinding_espressif_esp32_temp

• dtbinding_espressif_esp32_timer

• dtbinding_espressif_esp32_touch_sensor

• dtbinding_espressif_esp32_trng

• dtbinding_espressif_esp32_twai

• dtbinding_espressif_esp32_uart

• dtbinding_espressif_esp32_usb_serial

• dtbinding_espressif_esp32_watchdog

• dtbinding_espressif_esp32_wifi

• dtbinding_espressif_esp32_xt_wdt

• dtbinding_espressif_riscv

• dtbinding_espressif_xtensa_lx6

• dtbinding_espressif_xtensa_lx7

Fairchild Semiconductor (fcs)
• dtbinding_fcs_fxl6408

Feature Integration Technology Inc. (fintek)
• dtbinding_fintek_f75303

Festo SE & Co. KG (festo)
• dtbinding_festo_veaa_x_3

FocalTech Systems Co.,Ltd (focaltech)
• dtbinding_focaltech_ft5336
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Freescale Semiconductor (fsl)
• dtbinding_fsl_imx21_i2c

• dtbinding_fsl_imx27_pwm

Fujitsu Ltd. (fujitsu)
• dtbinding_fujitsu_mb85rcxx

Futaba Corporation (futaba)
• dtbinding_futaba_sbus

Future Technology Devices International Ltd. (ftdi)
• dtbinding_ftdi_ft800

Gaisler (gaisler)
• dtbinding_gaisler_apbuart

• dtbinding_gaisler_gptimer

• dtbinding_gaisler_grgpio

• dtbinding_gaisler_irqmp

• dtbinding_gaisler_leon3

• dtbinding_gaisler_spimctrl

Galaxycore, Inc. (galaxycore)
• dtbinding_galaxycore_gc9x01x

Gas Sensing Solutions Ltd. (gss)
• dtbinding_gss_explorir_m

GigaDevice Semiconductor (gd)
• dtbinding_gd_gd32_adc

• dtbinding_gd_gd32_afio

• dtbinding_gd_gd32_cctl

• dtbinding_gd_gd32_dac

• dtbinding_gd_gd32_dma

• dtbinding_gd_gd32_dma_v1

• dtbinding_gd_gd32_exti

• dtbinding_gd_gd32_flash_controller

• dtbinding_gd_gd32_fwdgt

• dtbinding_gd_gd32_gpio

• dtbinding_gd_gd32_i2c
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• dtbinding_gd_gd32_nv_flash_v1

• dtbinding_gd_gd32_nv_flash_v2

• dtbinding_gd_gd32_nv_flash_v3

• dtbinding_gd_gd32_pinctrl_af

• dtbinding_gd_gd32_pinctrl_afio

• dtbinding_gd_gd32_pwm

• dtbinding_gd_gd32_rctl

• dtbinding_gd_gd32_rcu

• dtbinding_gd_gd32_spi

• dtbinding_gd_gd32_syscfg

• dtbinding_gd_gd32_timer

• dtbinding_gd_gd32_usart

• dtbinding_gd_gd32_wwdgt

GreeLed Electronic Ltd. (greeled)
• dtbinding_greeled_lpd8803

• dtbinding_greeled_lpd8806

Guangzhou Aosong Electronic Co., Ltd. (aosong)
• dtbinding_aosong_ags10

• dtbinding_aosong_aht20

• dtbinding_aosong_am2301b

• dtbinding_aosong_dht

• dtbinding_aosong_dht20

Hamamatsu Photonics K.K. (hamamatsu)
• dtbinding_hamamatsu_s11059

Hangzhou Grow Technology Co., Ltd. (hzgrow)
• dtbinding_hzgrow_r502a

Himax Technologies, Inc. (himax)
• dtbinding_himax_hx8394

Hitachi Ltd. (hit)
• dtbinding_hit_hd44780

Holtek Semiconductor, Inc. (holtek)
• dtbinding_holtek_ht16k33
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Honeywell (honeywell)
• dtbinding_honeywell_hmc5883l

• dtbinding_honeywell_mpr

• dtbinding_honeywell_sm351lt

HOPERF Microelectronics Co. Ltd (hoperf)
• dtbinding_hoperf_hp206c

• dtbinding_hoperf_th02

Hynitron (hynitron)
• dtbinding_hynitron_cst816s

ILI Technology Corporation (ILITEK) (ilitek)
• dtbinding_ilitek_ili9340

• dtbinding_ilitek_ili9341

• dtbinding_ilitek_ili9342c

• dtbinding_ilitek_ili9488

Imagination Technologies Ltd. (formerly MIPS Technologies Inc.) (mti)
• dtbinding_mti_cpu_intc

Infineon Technologies (infineon)
• dtbinding_infineon_airoc_wifi

• dtbinding_infineon_cat1_adc

• dtbinding_infineon_cat1_bless_hci

• dtbinding_infineon_cat1_counter

• dtbinding_infineon_cat1_flash_controller

• dtbinding_infineon_cat1_gpio

• dtbinding_infineon_cat1_i2c

• dtbinding_infineon_cat1_pinctrl

• dtbinding_infineon_cat1_qspi_flash

• dtbinding_infineon_cat1_scb

• dtbinding_infineon_cat1_sdhc_sdio

• dtbinding_infineon_cat1_spi

• dtbinding_infineon_cat1_uart

• dtbinding_infineon_cat1_watchdog

• dtbinding_infineon_cyw208xx_hci

• dtbinding_infineon_cyw43xxx_bt_hci

• dtbinding_infineon_dps310
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• dtbinding_infineon_tle9104

• dtbinding_infineon_tle9104_diagnostics

• dtbinding_infineon_tle9104_gpio

• dtbinding_infineon_xmc4xxx_adc

• dtbinding_infineon_xmc4xxx_can

• dtbinding_infineon_xmc4xxx_can_node

• dtbinding_infineon_xmc4xxx_ccu4_pwm

• dtbinding_infineon_xmc4xxx_ccu8_pwm

• dtbinding_infineon_xmc4xxx_dma

• dtbinding_infineon_xmc4xxx_ethernet

• dtbinding_infineon_xmc4xxx_flash_controller

• dtbinding_infineon_xmc4xxx_gpio

• dtbinding_infineon_xmc4xxx_i2c

• dtbinding_infineon_xmc4xxx_intc

• dtbinding_infineon_xmc4xxx_mdio

• dtbinding_infineon_xmc4xxx_nv_flash

• dtbinding_infineon_xmc4xxx_pinctrl

• dtbinding_infineon_xmc4xxx_spi

• dtbinding_infineon_xmc4xxx_temp

• dtbinding_infineon_xmc4xxx_uart

• dtbinding_infineon_xmc4xxx_watchdog

Innovative Sensor Technology IST AG (ist)
• dtbinding_ist_tsic_xx6

Integrated Silicon Solutions Inc. (issi)
• dtbinding_issi_is31fl3194

• dtbinding_issi_is31fl3216a

• dtbinding_issi_is31fl3733

Intel Corporation (intel)
• dtbinding_intel_ace_art_counter

• dtbinding_intel_ace_intc

• dtbinding_intel_ace_rtc_counter

• dtbinding_intel_ace_timestamp

• dtbinding_intel_adsp_communication_widget

• dtbinding_intel_adsp_dfpmcch

• dtbinding_intel_adsp_dfpmccu

• dtbinding_intel_adsp_dmic_vss
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• dtbinding_intel_adsp_gpdma

• dtbinding_intel_adsp_hda_dmic_cap

• dtbinding_intel_adsp_hda_host_in

• dtbinding_intel_adsp_hda_host_out

• dtbinding_intel_adsp_hda_link_in

• dtbinding_intel_adsp_hda_link_out

• dtbinding_intel_adsp_hda_ssp_cap

• dtbinding_intel_adsp_host_ipc

• dtbinding_intel_adsp_idc

• dtbinding_intel_adsp_imr

• dtbinding_intel_adsp_mailbox

• dtbinding_intel_adsp_mem_window

• dtbinding_intel_adsp_mtl_tlb

• dtbinding_intel_adsp_power_domain

• dtbinding_intel_adsp_sha

• dtbinding_intel_adsp_shim_clkctl

• dtbinding_intel_adsp_timer

• dtbinding_intel_adsp_tlb

• dtbinding_intel_adsp_watchdog

• dtbinding_intel_agilex_clock

• dtbinding_intel_agilex5_clock

• dtbinding_intel_alder_lake

• dtbinding_intel_alh_dai

• dtbinding_intel_apollo_lake

• dtbinding_intel_blinky_pwm

• dtbinding_intel_cavs_i2s

• dtbinding_intel_cavs_intc

• dtbinding_intel_dai_dmic

• dtbinding_intel_e1000

• dtbinding_intel_elkhart_lake

• dtbinding_intel_emmc_host

• dtbinding_intel_gpio

• dtbinding_intel_hda_dai

• dtbinding_intel_hpet

• dtbinding_intel_ibecc

• dtbinding_intel_ioapic

• dtbinding_intel_ish

• dtbinding_intel_lakemont

• dtbinding_intel_loapic
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• dtbinding_intel_lpss

• dtbinding_intel_lw_uart

• dtbinding_intel_multiboot_framebuffer

• dtbinding_intel_niosv

• dtbinding_intel_pch_smbus

• dtbinding_intel_penwell_spi

• dtbinding_intel_raptor_lake

• dtbinding_intel_sedi_dma

• dtbinding_intel_sedi_gpio

• dtbinding_intel_sedi_i2c

• dtbinding_intel_sedi_ipm

• dtbinding_intel_sedi_spi

• dtbinding_intel_sedi_uart

• dtbinding_intel_agilex_socfpga_sip_smc

• dtbinding_intel_socfpga_reset

• dtbinding_intel_ssp

• dtbinding_intel_ssp_dai

• dtbinding_intel_ssp_sspbase

• dtbinding_intel_tco_wdt

• dtbinding_intel_timeaware_gpio

• dtbinding_intel_vt_d

• dtbinding_intel_x86

Intersil (isil)
• dtbinding_isil_isl29035

InvenSense Inc. (invensense)
• dtbinding_invensense_icm42605

• dtbinding_invensense_icm42670

• dtbinding_invensense_icm42688

• dtbinding_invensense_icp10125

• dtbinding_invensense_mpu6050

• dtbinding_invensense_mpu9250

Inventek Systems (inventek)
• dtbinding_inventek_eswifi

• dtbinding_inventek_eswifi_uart

1538 Chapter 5. Build and Configuration Systems



Zephyr Project Documentation, Release 3.7.99

Isentek Inc. (isentek)
• dtbinding_istentek_ist8310

ITE Tech. Inc. (ite)
• dtbinding_ite_enhance_i2c

• dtbinding_ite_it82xx2_usb

• dtbinding_ite_it8xxx2_adc

• dtbinding_ite_it8xxx2_bbram

• dtbinding_ite_it8xxx2_espi

• dtbinding_ite_it8xxx2_flash_controller

• dtbinding_ite_it8xxx2_gpio

• dtbinding_ite_it8xxx2_gpio_v2

• dtbinding_ite_it8xxx2_gpiokscan

• dtbinding_ite_it8xxx2_i2c

• dtbinding_ite_it8xxx2_ilm

• dtbinding_ite_it8xxx2_intc

• dtbinding_ite_it8xxx2_intc_v2

• dtbinding_ite_it8xxx2_kbd

• dtbinding_ite_it8xxx2_peci

• dtbinding_ite_it8xxx2_pinctrl

• dtbinding_ite_it8xxx2_pinctrl_func

• dtbinding_ite_it8xxx2_pwm

• dtbinding_ite_it8xxx2_pwmprs

• dtbinding_ite_it8xxx2_sha

• dtbinding_ite_it8xxx2_sha_v2

• dtbinding_ite_it8xxx2_shi

• dtbinding_ite_it8xxx2_sspi

• dtbinding_ite_it8xxx2_tach

• dtbinding_ite_it8xxx2_timer

• dtbinding_ite_it8xxx2_uart

• dtbinding_ite_it8xxx2_usbpd

• dtbinding_ite_it8xxx2_vcmp

• dtbinding_ite_it8xxx2_watchdog

• dtbinding_ite_it8xxx2_wuc

• dtbinding_ite_it8xxx2_wuc_map

• dtbinding_ite_riscv_ite

JEDEC Solid State Technology Association (jedec)
• dtbinding_jedec_spi_nor
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Kvaser (kvaser)
• dtbinding_kvaser_pcican

Lattice Semiconductor (lattice)
• dtbinding_lattice_ice40_fpga

Linaro Limited (linaro)
• dtbinding_linaro_96b_lscon_1v8

• dtbinding_linaro_96b_lscon_3v3

• dtbinding_linaro_ivshmem_ipm

• dtbinding_linaro_optee_tz

Linear Technology Corporation (lltc)
• dtbinding_lltc_ltc1660

• dtbinding_lltc_ltc1665

• dtbinding_lltc_ltc2451

LiteOn OptoElectronics (ltr)
• dtbinding_ltrf216a

LiteX SoC builder (litex)
• dtbinding_litex_clk

• dtbinding_litex_clkout

• dtbinding_litex_dna0

• dtbinding_litex_gpio

• dtbinding_litex_i2c

• dtbinding_litex_i2s

• dtbinding_litex_liteeth

• dtbinding_litex_prbs

• dtbinding_litex_pwm

• dtbinding_litex_soc_controller

• dtbinding_litex_spi

• dtbinding_litex_spi_litespi

• dtbinding_litex_timer0

• dtbinding_litex_uart0

• dtbinding_litex_vexriscv_intc0

• dtbinding_litex_vexriscv_standard
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lowRISC Community Interest Company (lowrisc)
• dtbinding_lowrisc_ibex

• dtbinding_lowrisc_machine_timer

• dtbinding_lowrisc_opentitan_aontimer

• dtbinding_lowrisc_opentitan_pwrmgr

• dtbinding_lowrisc_opentitan_spi

• dtbinding_lowrisc_opentitan_uart

LuatOS Team (luatos)
• dtbinding_luatos_air530z

M5Stack (m5stack)
• dtbinding_m5stack_atom_header

• dtbinding_m5stack_mbus_header

• dtbinding_m5stack_stamps3_header

Maxim Integrated Products (maxim)
• dtbinding_maxim_ds1307

• dtbinding_maxim_ds18b20

• dtbinding_maxim_ds18s20

• dtbinding_maxim_ds2482_800

• dtbinding_maxim_ds2482_800_channel

• dtbinding_maxim_ds2484

• dtbinding_maxim_ds2485

• dtbinding_maxim_ds3231

• dtbinding_maxim_max11102

• dtbinding_maxim_max11103

• dtbinding_maxim_max11105

• dtbinding_maxim_max11106

• dtbinding_maxim_max11110

• dtbinding_maxim_max11111

• dtbinding_maxim_max11115

• dtbinding_maxim_max11116

• dtbinding_maxim_max11117

• dtbinding_maxim_max11253

• dtbinding_maxim_max11254

• dtbinding_maxim_max17048

• dtbinding_maxim_max17055

• dtbinding_maxim_max17262
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• dtbinding_maxim_max20335

• dtbinding_maxim_max20335_charger

• dtbinding_maxim_max20335_regulator

• dtbinding_maxim_max30101

• dtbinding_maxim_max31790

• dtbinding_maxim_max31790_fan_fault

• dtbinding_maxim_max31790_fan_speed

• dtbinding_maxim_max31790_pwm

• dtbinding_maxim_max31855_spi

• dtbinding_maxim_max31865

• dtbinding_maxim_max31875

• dtbinding_maxim_max3421e_spi

• dtbinding_maxim_max44009

• dtbinding_maxim_max6675

• dtbinding_maxim_max7219

Measurement Specialties (meas)
• dtbinding_meas_ms5607_i2c

• dtbinding_meas_ms5607_spi

• dtbinding_meas_ms5837

MediaTek Inc. (mediatek)
• dtbinding_mediatek_adsp_intc

• dtbinding_mediatek_mt8195_cpuclk

MEMSIC Inc. (memsic)
• dtbinding_memsic_mc3419

Micro Crystal AG (microcrystal)
• dtbinding_microcrystal_rv_8263_c8

• dtbinding_microcrystal_rv3028

Micro:bit Educational Foundation (microbit)
• dtbinding_microbit_edge_connector
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Microchip Technology Inc. (microchip)
• dtbinding_microchip_cap1203

• dtbinding_microchip_coreuart

• dtbinding_microchip_enc28j60

• dtbinding_microchip_enc424j600

• dtbinding_microchip_ksz8081

• dtbinding_microchip_ksz8794

• dtbinding_microchip_ksz8863

• dtbinding_microchip_lan865x

• dtbinding_microchip_mcp230xx

• dtbinding_microchip_mcp23s17

• dtbinding_microchip_mcp23sxx

• dtbinding_microchip_mcp2515

• dtbinding_microchip_mcp251xfd

• dtbinding_microchip_mcp3204

• dtbinding_microchip_mcp3208

• dtbinding_microchip_mcp4725

• dtbinding_microchip_mcp4728

• dtbinding_microchip_mcp7940n

• dtbinding_microchip_mcp9600

• dtbinding_microchip_mcp970x

• dtbinding_microchip_mcp9808

• dtbinding_microchip_mpfs_gpio

• dtbinding_microchip_mpfs_i2c

• dtbinding_microchip_mpfs_qspi

• dtbinding_microchip_mpfs_spi

• dtbinding_microchip_tcn75a

• dtbinding_microchip_xec_adc

• dtbinding_microchip_xec_bbled

• dtbinding_microchip_xec_bbram

• dtbinding_microchip_xec_dmac

• dtbinding_microchip_xec_ecia

• dtbinding_microchip_xec_ecia_girq

• dtbinding_microchip_xec_ecs

• dtbinding_microchip_xec_eeprom

• dtbinding_microchip_xec_espi

• dtbinding_microchip_xec_espi_host_dev

• dtbinding_microchip_xec_espi_saf

• dtbinding_microchip_xec_espi_saf_v2
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• dtbinding_microchip_xec_espi_v2

• dtbinding_microchip_xec_espi_vw_routing

• dtbinding_microchip_xec_gpio

• dtbinding_microchip_xec_gpio_v2

• dtbinding_microchip_xec_i2c

• dtbinding_microchip_xec_i2c_v2

• dtbinding_microchip_xec_kbd

• dtbinding_microchip_xec_pcr

• dtbinding_microchip_xec_peci

• dtbinding_microchip_xec_pinctrl

• dtbinding_microchip_xec_ps2

• dtbinding_microchip_xec_pwm

• dtbinding_microchip_xec_pwmbbled

• dtbinding_microchip_xec_qmspi

• dtbinding_microchip_xec_qmspi_ldma

• dtbinding_microchip_xec_rtos_timer

• dtbinding_microchip_xec_symcr

• dtbinding_microchip_xec_tach

• dtbinding_microchip_xec_timer

• dtbinding_microchip_xec_uart

• dtbinding_microchip_xec_watchdog

Micron Technology Inc. (micron)
• dtbinding_micron_mt25qu02g

Motorola, Inc. (motorola)
• dtbinding_motorola_mc146818

Murata Manufacturing Co., Ltd. (murata)
• dtbinding_murata_ncp15wb473

• dtbinding_murata_ncp15xh103

National Semiconductor (national)
• dtbinding_national_lm95234
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Nordic Semiconductor (nordic)
• dtbinding_nordic_mbox_nrf_ipc

• dtbinding_nordic_mram

• dtbinding_nordic_npm1100

• dtbinding_nordic_npm1300

• dtbinding_nordic_npm1300_charger

• dtbinding_nordic_npm1300_gpio

• dtbinding_nordic_npm1300_led

• dtbinding_nordic_npm1300_regulator

• dtbinding_nordic_npm1300_wdt

• dtbinding_nordic_npm6001

• dtbinding_nordic_npm6001_gpio

• dtbinding_nordic_npm6001_regulator

• dtbinding_nordic_npm6001_wdt

• dtbinding_nordic_nrf_acl

• dtbinding_nordic_nrf_adc

• dtbinding_nordic_nrf_auxpll

• dtbinding_nordic_nrf_bellboard_rx

• dtbinding_nordic_nrf_bellboard_tx

• dtbinding_nordic_nrf_bprot

• dtbinding_nordic_nrf_can

• dtbinding_nordic_nrf_ccm

• dtbinding_nordic_nrf_clic

• dtbinding_nordic_nrf_clock

• dtbinding_nordic_nrf_comp

• dtbinding_nordic_nrf_ctrlapperi

• dtbinding_nordic_nrf_dcnf

• dtbinding_nordic_nrf_dppic

• dtbinding_nordic_nrf_dppic_global

• dtbinding_nordic_nrf_dppic_local

• dtbinding_nordic_nrf_ecb

• dtbinding_nordic_nrf_egu

• dtbinding_nordic_nrf_exmif

• dtbinding_nordic_nrf_ficr

• dtbinding_nordic_nrf_gpio

• dtbinding_nordic_nrf_gpio_forwarder

• dtbinding_nordic_nrf_gpiote

• dtbinding_nordic_nrf_gpreget

• dtbinding_nordic_nrf_grtc
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• dtbinding_nordic_nrf_hfxo

• dtbinding_nordic_nrf_hsfll

• dtbinding_nordic_nrf_i2s

• dtbinding_nordic_nrf_ieee802154

• dtbinding_nordic_nrf_ipc

• dtbinding_nordic_nrf_ipct_global

• dtbinding_nordic_nrf_ipct_local

• dtbinding_nordic_nrf_kmu

• dtbinding_nordic_nrf_led_matrix

• dtbinding_nordic_nrf_lfxo

• dtbinding_nordic_nrf_lpcomp

• dtbinding_nordic_nrf_mpu

• dtbinding_nordic_nrf_mutex

• dtbinding_nordic_nrf_mwu

• dtbinding_nordic_nrf_nfct

• dtbinding_nordic_nrf_oscillators

• dtbinding_nordic_nrf_pdm

• dtbinding_nordic_nrf_pinctrl

• dtbinding_nordic_nrf_power

• dtbinding_nordic_nrf_ppi

• dtbinding_nordic_nrf_pwm

• dtbinding_nordic_nrf_qdec

• dtbinding_nordic_nrf_qspi

• dtbinding_nordic_nrf_radio

• dtbinding_nordic_nrf_regulators

• dtbinding_nordic_nrf_reset

• dtbinding_nordic_nrf_resetinfo

• dtbinding_nordic_nrf_rng

• dtbinding_nordic_nrf_rtc

• dtbinding_nordic_nrf_saadc

• dtbinding_nordic_nrf_spi

• dtbinding_nordic_nrf_spim

• dtbinding_nordic_nrf_spis

• dtbinding_nordic_nrf_spu

• dtbinding_nordic_nrf_sw_pwm

• dtbinding_nordic_nrf_swi

• dtbinding_nordic_nrf_temp

• dtbinding_nordic_nrf_temp_nrfs

• dtbinding_nordic_nrf_timer
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• dtbinding_nordic_nrf_twi

• dtbinding_nordic_nrf_twim

• dtbinding_nordic_nrf_twis

• dtbinding_nordic_nrf_uart

• dtbinding_nordic_nrf_uarte

• dtbinding_nordic_nrf_uicr

• dtbinding_nordic_nrf_uicr_v2

• dtbinding_nordic_nrf_usbd

• dtbinding_nordic_nrf_usbreg

• dtbinding_nordic_nrf_vevif_event_rx

• dtbinding_nordic_nrf_vevif_event_tx

• dtbinding_nordic_nrf_vevif_task_rx

• dtbinding_nordic_nrf_vevif_task_tx

• dtbinding_nordic_nrf_vmc

• dtbinding_nordic_nrf_vpr_coprocessor

• dtbinding_nordic_nrf_wdt

• dtbinding_nordic_nrf21540_fem

• dtbinding_nordic_nrf21540_fem_spi

• dtbinding_nordic_nrf51_flash_controller

• dtbinding_nordic_nrf52_flash_controller

• dtbinding_nordic_nrf53_flash_controller

• dtbinding_nordic_nrf91_flash_controller

• dtbinding_nordic_nrf91_slm

• dtbinding_nordic_owned_memory

• dtbinding_nordic_owned_partitions

• dtbinding_nordic_qspi_nor

• dtbinding_nordic_rram_controller

• dtbinding_nordic_vpr

Noritake Co., Inc. Electronics Division (noritake)
• dtbinding_noritake_itron

Nuclei System Technology (nuclei)
• dtbinding_nuclei_bumblebee

• dtbinding_nuclei_eclic

• dtbinding_nuclei_systimer
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Nuvoton Technology Corporation (nuvoton)
• dtbinding_nuvoton_adc_cmp

• dtbinding_nuvoton_nct38xx

• dtbinding_nuvoton_nct38xx_gpio

• dtbinding_nuvoton_nct38xx_gpio_alert

• dtbinding_nuvoton_nct38xx_gpio_port

• dtbinding_nuvoton_npcx_adc

• dtbinding_nuvoton_npcx_bbram

• dtbinding_nuvoton_npcx_booter_variant

• dtbinding_nuvoton_npcx_drbg

• dtbinding_nuvoton_npcx_espi

• dtbinding_nuvoton_npcx_espi_taf

• dtbinding_nuvoton_npcx_espi_vw_conf

• dtbinding_nuvoton_npcx_fiu_nor

• dtbinding_nuvoton_npcx_fiu_qspi

• dtbinding_nuvoton_npcx_gpio

• dtbinding_nuvoton_npcx_host_sub

• dtbinding_nuvoton_npcx_host_uart

• dtbinding_nuvoton_npcx_i2c_ctrl

• dtbinding_nuvoton_npcx_i2c_port

• dtbinding_nuvoton_npcx_i3c

• dtbinding_nuvoton_npcx_itim_timer

• dtbinding_nuvoton_npcx_kbd

• dtbinding_nuvoton_npcx_leakage_io

• dtbinding_nuvoton_npcx_lvolctrl_conf

• dtbinding_nuvoton_npcx_miwu

• dtbinding_nuvoton_npcx_miwu_int_map

• dtbinding_nuvoton_npcx_miwu_wui_map

• dtbinding_nuvoton_npcx_pcc

• dtbinding_nuvoton_npcx_peci

• dtbinding_nuvoton_npcx_pinctrl

• dtbinding_nuvoton_npcx_pinctrl_conf

• dtbinding_nuvoton_npcx_pinctrl_def

• dtbinding_nuvoton_npcx_power_psl

• dtbinding_nuvoton_npcx_ps2_channel

• dtbinding_nuvoton_npcx_ps2_ctrl

• dtbinding_nuvoton_npcx_pwm

• dtbinding_nuvoton_npcx_rst

• dtbinding_nuvoton_npcx_scfg
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• dtbinding_nuvoton_npcx_sha

• dtbinding_nuvoton_npcx_shi

• dtbinding_nuvoton_npcx_shi_enhanced

• dtbinding_nuvoton_npcx_soc_id

• dtbinding_nuvoton_npcx_spip

• dtbinding_nuvoton_npcx_tach

• dtbinding_nuvoton_npcx_uart

• dtbinding_nuvoton_npcx_watchdog

• dtbinding_nuvoton_numaker_adc

• dtbinding_nuvoton_numaker_canfd

• dtbinding_nuvoton_numaker_ethernet

• dtbinding_nuvoton_numaker_fmc

• dtbinding_nuvoton_numaker_gpio

• dtbinding_nuvoton_numaker_i2c

• dtbinding_nuvoton_numaker_pcc

• dtbinding_nuvoton_numaker_pinctrl

• dtbinding_nuvoton_numaker_ppc

• dtbinding_nuvoton_numaker_pwm

• dtbinding_nuvoton_numaker_rmc

• dtbinding_nuvoton_numaker_rst

• dtbinding_nuvoton_numaker_rtc

• dtbinding_nuvoton_numaker_scc

• dtbinding_nuvoton_numaker_spi

• dtbinding_nuvoton_numaker_tcpc

• dtbinding_nuvoton_numaker_uart

• dtbinding_nuvoton_numaker_usbd

• dtbinding_nuvoton_numaker_vbus

• dtbinding_nuvoton_numaker_wwdt

• dtbinding_nuvoton_numicro_gpio

• dtbinding_nuvoton_numicro_pinctrl

• dtbinding_nuvoton_numicro_uart

NXP Semiconductors (nxp)
• dtbinding_nxp_bt_hci_uart

• dtbinding_nxp_cam_44pins_connector

• dtbinding_nxp_ctimer_pwm

• dtbinding_nxp_dai_esai

• dtbinding_nxp_dai_sai

• dtbinding_nxp_dcnano_lcdif
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• dtbinding_nxp_dmic

• dtbinding_nxp_edma

• dtbinding_nxp_ehci

• dtbinding_nxp_enet

• dtbinding_nxp_enet_mac

• dtbinding_nxp_enet_mdio

• dtbinding_nxp_enet_ptp_clock

• dtbinding_nxp_enet_qos

• dtbinding_nxp_enet_qos_mac

• dtbinding_nxp_enet_qos_mdio

• dtbinding_nxp_enet1g

• dtbinding_nxp_flexcan

• dtbinding_nxp_flexcan_fd

• dtbinding_nxp_flexio

• dtbinding_nxp_flexio_pwm

• dtbinding_nxp_flexio_spi

• dtbinding_nxp_flexpwm

• dtbinding_nxp_flexram

• dtbinding_nxp_fs26_wdog

• dtbinding_nxp_fxas21002_spi

• dtbinding_nxp_fxas21002_i2c

• dtbinding_nxp_fxos8700_i2c

• dtbinding_nxp_fxos8700_spi

• dtbinding_nxp_gau_adc

• dtbinding_nxp_gau_dac

• dtbinding_nxp_gpio_cluster

• dtbinding_nxp_gpt_hw_timer

• dtbinding_nxp_hci_ble

• dtbinding_nxp_i2c_tsc_fpc

• dtbinding_nxp_iap_fmc11

• dtbinding_nxp_iap_fmc54

• dtbinding_nxp_iap_fmc55

• dtbinding_nxp_iap_fmc553

• dtbinding_nxp_iap_msf1

• dtbinding_nxp_imx_anatop

• dtbinding_nxp_imx_caam

• dtbinding_nxp_imx_ccm

• dtbinding_nxp_imx_ccm_fnpll

• dtbinding_nxp_imx_ccm_rev2
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• dtbinding_nxp_imx_csi

• dtbinding_nxp_imx_dtcm

• dtbinding_nxp_imx_ecspi

• dtbinding_nxp_imx_elcdif

• dtbinding_nxp_imx_epit

• dtbinding_nxp_imx_flexspi

• dtbinding_nxp_imx_flexspi_aps6408l

• dtbinding_nxp_imx_flexspi_hyperflash

• dtbinding_nxp_imx_flexspi_is66wvq8m4

• dtbinding_nxp_imx_flexspi_mx25um51345g

• dtbinding_nxp_imx_flexspi_nor

• dtbinding_nxp_imx_flexspi_s27ks0641

• dtbinding_nxp_imx_flexspi_w956a8mbya

• dtbinding_nxp_imx_gpio

• dtbinding_nxp_imx_gpr

• dtbinding_nxp_imx_gpt

• dtbinding_nxp_imx_iomuxc

• dtbinding_nxp_imx_iomuxc_scu

• dtbinding_nxp_imx_itcm

• dtbinding_nxp_imx_iuart

• dtbinding_nxp_imx_lpi2c

• dtbinding_nxp_imx_lpspi

• dtbinding_nxp_imx_mipi_dsi

• dtbinding_nxp_imx_mu

• dtbinding_nxp_imx_pwm

• dtbinding_nxp_imx_qtmr

• dtbinding_nxp_imx_rgpio

• dtbinding_nxp_imx_semc

• dtbinding_nxp_imx_snvs_rtc

• dtbinding_nxp_imx_tmr

• dtbinding_nxp_imx_uart

• dtbinding_nxp_imx_usdhc

• dtbinding_nxp_imx_wdog

• dtbinding_nxp_imx7d_pinctrl

• dtbinding_nxp_imx8_pinctrl

• dtbinding_nxp_imx8m_pinctrl

• dtbinding_nxp_imx8mp_pinctrl

• dtbinding_nxp_imx8ulp_pinctrl

• dtbinding_nxp_imx93_pinctrl

5.2. Devicetree 1551



Zephyr Project Documentation, Release 3.7.99

• dtbinding_nxp_irqsteer_intc

• dtbinding_nxp_irqsteer_master

• dtbinding_nxp_kinetis_acmp

• dtbinding_nxp_kinetis_adc12

• dtbinding_nxp_kinetis_adc16

• dtbinding_nxp_kinetis_dac

• dtbinding_nxp_kinetis_dac32

• dtbinding_nxp_kinetis_dspi

• dtbinding_nxp_kinetis_ethernet

• dtbinding_nxp_kinetis_ftfa

• dtbinding_nxp_kinetis_ftfe

• dtbinding_nxp_kinetis_ftfl

• dtbinding_nxp_kinetis_ftm

• dtbinding_nxp_kinetis_ftm_pwm

• dtbinding_nxp_kinetis_gpio

• dtbinding_nxp_kinetis_i2c

• dtbinding_nxp_kinetis_ke1xf_sim

• dtbinding_nxp_kinetis_lpsci

• dtbinding_nxp_kinetis_lptmr

• dtbinding_nxp_kinetis_lpuart

• dtbinding_nxp_kinetis_mcg

• dtbinding_nxp_kinetis_pcc

• dtbinding_nxp_kinetis_pinctrl

• dtbinding_nxp_kinetis_pinmux

• dtbinding_nxp_kinetis_ptp

• dtbinding_nxp_kinetis_pwt

• dtbinding_nxp_kinetis_rnga

• dtbinding_nxp_kinetis_rtc

• dtbinding_nxp_kinetis_scg

• dtbinding_nxp_kinetis_sim

• dtbinding_nxp_kinetis_temperature

• dtbinding_nxp_kinetis_tpm

• dtbinding_nxp_kinetis_trng

• dtbinding_nxp_kinetis_uart

• dtbinding_nxp_kinetis_usbd

• dtbinding_nxp_kinetis_wdog

• dtbinding_nxp_kinetis_wdog32

• dtbinding_nxp_kw41z_ieee802154

• dtbinding_nxp_lcdic
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• dtbinding_nxp_lp_flexcomm

• dtbinding_nxp_lpc_ctimer

• dtbinding_nxp_lpc_dma

• dtbinding_nxp_lpc_flexcomm

• dtbinding_nxp_lpc_gpio

• dtbinding_nxp_lpc_gpio_port

• dtbinding_nxp_lpc_i2c

• dtbinding_nxp_lpc_i2s

• dtbinding_nxp_lpc_iocon

• dtbinding_nxp_lpc_iocon_pinctrl

• dtbinding_nxp_lpc_iocon_pio

• dtbinding_nxp_lpc_lpadc

• dtbinding_nxp_lpc_mailbox

• dtbinding_nxp_lpc_mcan

• dtbinding_nxp_lpc_rng

• dtbinding_nxp_lpc_rtc

• dtbinding_nxp_lpc_rtc_highres

• dtbinding_nxp_lpc_sdif

• dtbinding_nxp_lpc_spi

• dtbinding_nxp_lpc_syscon

• dtbinding_nxp_lpc_syscon_reset

• dtbinding_nxp_lpc_uid

• dtbinding_nxp_lpc_usart

• dtbinding_nxp_lpc_wwdt

• dtbinding_nxp_lpc11u6x_eeprom

• dtbinding_nxp_lpc11u6x_gpio

• dtbinding_nxp_lpc11u6x_i2c

• dtbinding_nxp_lpc11u6x_pinctrl

• dtbinding_nxp_lpc11u6x_syscon

• dtbinding_nxp_lpc11u6x_uart

• dtbinding_nxp_lpcip3511

• dtbinding_nxp_lpcmp

• dtbinding_nxp_lpdac

• dtbinding_nxp_lptmr

• dtbinding_nxp_mbox_imx_mu

• dtbinding_nxp_mbox_mailbox

• dtbinding_nxp_mci_io_mux

• dtbinding_nxp_mcr20a

• dtbinding_nxp_mcux_12b1msps_sar

5.2. Devicetree 1553



Zephyr Project Documentation, Release 3.7.99

• dtbinding_nxp_mcux_dcp

• dtbinding_nxp_mcux_edma

• dtbinding_nxp_mcux_edma_v3

• dtbinding_nxp_mcux_edma_v4

• dtbinding_nxp_mcux_i2s

• dtbinding_nxp_mcux_i3c

• dtbinding_nxp_mcux_qdec

• dtbinding_nxp_mcux_rt_pinctrl

• dtbinding_nxp_mcux_rt11xx_pinctrl

• dtbinding_nxp_mcux_xbar

• dtbinding_nxp_mipi_csi2rx

• dtbinding_nxp_mipi_dbi_flexio_lcdif

• dtbinding_nxp_mipi_dsi_2l

• dtbinding_nxp_mrt

• dtbinding_nxp_mrt_channel

• dtbinding_nxp_nx20p3483

• dtbinding_nxp_os_timer

• dtbinding_nxp_parallel_lcd_connector

• dtbinding_nxp_pca9420

• dtbinding_nxp_pca95xx

• dtbinding_nxp_pca9633

• dtbinding_nxp_pca9685

• dtbinding_nxp_pcal6408a

• dtbinding_nxp_pcal6416a

• dtbinding_nxp_pcf8523

• dtbinding_nxp_pcf8563

• dtbinding_nxp_pcf857x

• dtbinding_nxp_pdcfg_power

• dtbinding_nxp_pint

• dtbinding_nxp_pit

• dtbinding_nxp_pit_channel

• dtbinding_nxp_pxp

• dtbinding_nxp_s32_qdec

• dtbinding_nxp_qtmr_pwm

• dtbinding_nxp_rdc

• dtbinding_nxp_rstctl

• dtbinding_nxp_rt_iocon_pinctrl

• dtbinding_nxp_rw_pmu

• dtbinding_nxp_rw_soc_ctrl
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• dtbinding_nxp_s32_adc_sar

• dtbinding_nxp_s32_canxl

• dtbinding_nxp_s32_clock

• dtbinding_nxp_s32_emios

• dtbinding_nxp_s32_emios_pwm

• dtbinding_nxp_s32_gmac

• dtbinding_nxp_s32_gmac_mdio

• dtbinding_nxp_s32_gpio

• dtbinding_nxp_s32_lcu

• dtbinding_nxp_s32_linflexd

• dtbinding_nxp_s32_mru

• dtbinding_nxp_s32_netc_emdio

• dtbinding_nxp_s32_netc_psi

• dtbinding_nxp_s32_netc_vsi

• dtbinding_nxp_s32_qspi

• dtbinding_nxp_s32_qspi_device

• dtbinding_nxp_s32_qspi_nor

• dtbinding_nxp_s32_siul2_eirq

• dtbinding_nxp_s32_spi

• dtbinding_nxp_s32_swt

• dtbinding_nxp_s32_sys_timer

• dtbinding_nxp_s32_trgmux

• dtbinding_nxp_s32_wkpu

• dtbinding_nxp_s32k3_pinctrl

• dtbinding_nxp_s32ze_pinctrl

• dtbinding_nxp_sc18im704

• dtbinding_nxp_sc18im704_gpio

• dtbinding_nxp_sc18im704_i2c

• dtbinding_nxp_sctimer_pwm

• dtbinding_nxp_smartdma

• dtbinding_nxp_sof_host_dma

• dtbinding_nxp_tempmon

• dtbinding_nxp_tja1103

• dtbinding_nxp_tpm_timer

• dtbinding_nxp_usbphy

• dtbinding_nxp_vf610_adc

• dtbinding_nxp_vref
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OmniVision Technologies Co., Ltd. (ovti)
• dtbinding_ovti_ov2640

• dtbinding_ovti_ov5640

• dtbinding_ovti_ov7670

• dtbinding_ovti_ov7725

ON Semiconductor Corp. (onnn)
• dtbinding_onnn_ncp5623

• dtbinding_onnn_nct75

open-isa.org (openisa)
• dtbinding_openisa_ri5cy

• dtbinding_openisa_rv32m1_event_unit

• dtbinding_openisa_rv32m1_ftfe

• dtbinding_openisa_rv32m1_genfsk

• dtbinding_openisa_rv32m1_gpio

• dtbinding_openisa_rv32m1_intmux

• dtbinding_openisa_rv32m1_intmux_ch

• dtbinding_openisa_rv32m1_lpi2c

• dtbinding_openisa_rv32m1_lpspi

• dtbinding_openisa_rv32m1_lptmr

• dtbinding_openisa_rv32m1_lpuart

• dtbinding_openisa_rv32m1_pcc

• dtbinding_openisa_rv32m1_pinctrl

• dtbinding_openisa_rv32m1_pinmux

• dtbinding_openisa_rv32m1_tpm

• dtbinding_openisa_rv32m1_trng

• dtbinding_openisa_zero_ri5cy

OpenCores.org (opencores)
• dtbinding_opencores_spi_simple

OpenThread.io (openthread)
• dtbinding_openthread_config

Orise Technology (orisetech)
• dtbinding_orisetech_otm8009a
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Panasonic Corporation (panasonic)
• dtbinding_panasonic_amg88xx

• dtbinding_panasonic_reduced_arduino_header

PixArt Imaging Inc. (pixart)
• dtbinding_pixart_pat912x

• dtbinding_pixart_paw32xx

• dtbinding_pixart_pmw3610

Plantower Co., Ltd (plantower)
• dtbinding_plantower_pms7003

Princeton Technology Corp. (ptc)
• dtbinding_ptc_pt6314

QEMU, a generic and open source machine emulator and virtualizer (qemu)
• dtbinding_qemu_ivshmem

• dtbinding_qemu_nios2_zephyr

• dtbinding_qemu_riscv_virt

Qorvo, Inc (formerly Decawave) (decawave)
• dtbinding_decawave_dw1000

Quectel Wireless Solutions Co., Ltd. (quectel)
• dtbinding_quectel_bg95

• dtbinding_quectel_bg9x

• dtbinding_quectel_eg25_g

• dtbinding_quectel_lc26g

• dtbinding_quectel_lc76g

• dtbinding_quectel_lc86g

QuickLogic Corp. (quicklogic)
• dtbinding_quicklogic_eos_s3_gpio

• dtbinding_quicklogic_eos_s3_pinctrl

• dtbinding_quicklogic_usbserialport_s3b
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Raspberry Pi Foundation (raspberrypi)
• dtbinding_raspberrypi_core_supply_regulator

• dtbinding_raspberrypi_pico_adc

• dtbinding_raspberrypi_pico_clock

• dtbinding_raspberrypi_pico_clock_controller

• dtbinding_raspberrypi_pico_dma

• dtbinding_raspberrypi_pico_flash_controller

• dtbinding_raspberrypi_pico_gpio

• dtbinding_raspberrypi_pico_header

• dtbinding_raspberrypi_pico_i2c

• dtbinding_raspberrypi_pico_pinctrl

• dtbinding_raspberrypi_pico_pio

• dtbinding_raspberrypi_pico_pio_device

• dtbinding_raspberrypi_pico_pll

• dtbinding_raspberrypi_pico_pwm

• dtbinding_raspberrypi_pico_reset

• dtbinding_raspberrypi_pico_rosc

• dtbinding_raspberrypi_pico_rtc

• dtbinding_raspberrypi_pico_spi

• dtbinding_raspberrypi_pico_spi_pio

• dtbinding_raspberrrypi_pico_temp

• dtbinding_raspberrypi_pico_timer

• dtbinding_raspberrypi_pico_uart

• dtbinding_raspberrypi_pico_uart_pio

• dtbinding_raspberrypi_pico_usbd

• dtbinding_raspberrypi_pico_watchdog

Raydium Semiconductor Corp. (raydium)
• dtbinding_raydium_rm67162

• dtbinding_raydium_rm68200

Realtek Semiconductor Corp. (realtek)
• dtbinding_realtek_rtl8211f

Renesas Electronics Corporation (renesas)
• dtbinding_renesas_bt_hci_da1469x

• dtbinding_renesas_hs300x

• dtbinding_renesas_pwm_rcar

• dtbinding_renesas_r8a7795_cpg_mssr
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• dtbinding_renesas_r8a779f0_cpg_mssr

• dtbinding_renesas_ra_clock_generation_circuit

• dtbinding_renesas_ra_gpio

• dtbinding_renesas_ra_interrupt_controller_unit

• dtbinding_renesas_ra_pinctrl

• dtbinding_renesas_ra_sci

• dtbinding_renesas_ra_uart_sci

• dtbinding_renesas_ra8_cgc_busclk

• dtbinding_renesas_ra8_cgc_external_clock

• dtbinding_renesas_ra8_cgc_pclk

• dtbinding_renesas_ra8_cgc_pclk_block

• dtbinding_renesas_ra8_cgc_pll

• dtbinding_renesas_ra8_cgc_subclk

• dtbinding_renesas_ra8_gpio

• dtbinding_renesas_ra8_pinctrl

• dtbinding_renesas_ra8_uart_sci_b

• dtbinding_renesas_rcar_can

• dtbinding_renesas_rcar_cmt

• dtbinding_renesas_rcar_gpio

• dtbinding_renesas_rcar_hscif

• dtbinding_renesas_rcar_i2c

• dtbinding_renesas_rcar_emmc

• dtbinding_renesas_rcar_pfc

• dtbinding_renesas_rcar_scif

• dtbinding_renesas_rzt2m_gpio

• dtbinding_renesas_rzt2m_gpio_common

• dtbinding_renesas_rzt2m_pinctrl

• dtbinding_renesas_rzt2m_uart

• dtbinding_renesas_smartbond_gpadc

• dtbinding_renesas_smartbond_crypto

• dtbinding_renesas_smartbond_display

• dtbinding_renesas_smartbond_dma

• dtbinding_renesas_smartbond_flash_controller

• dtbinding_renesas_smartbond_gpio

• dtbinding_renesas_smartbond_i2c

• dtbinding_renesas_smartbond_lp_clock

• dtbinding_renesas_smartbond_lp_osc

• dtbinding_renesas_smartbond_mipi_dbi

• dtbinding_renesas_smartbond_nor_psram
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• dtbinding_renesas_smartbond_pinctrl

• dtbinding_renesas_da1469x_regulator

• dtbinding_renesas_smartbond_rtc

• dtbinding_renesas_smartbond_sdadc

• dtbinding_renesas_smartbond_spi

• dtbinding_renesas_smartbond_sys_clock

• dtbinding_renesas_smartbond_timer

• dtbinding_renesas_smartbond_trng

• dtbinding_renesas_smartbond_uart

• dtbinding_renesas_smartbond_usbd

• dtbinding_renesas_smartbond_watchdog

Reyax Technology Co., Ltd. (reyax)
• dtbinding_reyax_rylrxxx

Richtek Technology Corporation (richtek)
• dtbinding_richtek_rt1718s

• dtbinding_richtek_rt1718s_gpio_port

RISC-V Foundation (riscv)
• dtbinding_riscv_cpu_intc

ROCKTECH DISPLAYS LIMITED (rocktech)
• dtbinding_rocktech_rk043fn02h_ct

ROHM Semiconductor Co., Ltd (rohm)
• dtbinding_rohm_bd8lb600fs

• dtbinding_rohm_bd8lb600fs_diagnostics

• dtbinding_rohm_bd8lb600fs_gpio

• dtbinding_rohm_bh1750

Sciosense B.V. (sciosense)
• dtbinding_sciosense_ens160_common

• dtbinding_sciosense_ens160_i2c

• dtbinding_sciosense_ens160_spi
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Seeed Technology Co., Ltd (seeed)
• dtbinding_seeed_grove_lcd_rgb

• dtbinding_seeed_grove_light

• dtbinding_seeed_grove_temperature

• dtbinding_seeed_hm330x

• dtbinding_seeed_xiao_header

SEGGER Microcontroller GmbH (segger)
• dtbinding_segger_rtt_uart

Semtech Corporation (semtech)
• dtbinding_semtech_sx1261

• dtbinding_semtech_sx1262

• dtbinding_semtech_sx1272

• dtbinding_semtech_sx1276

• dtbinding_semtech_sx1509b

• dtbinding_semtech_sx9500

Sensirion AG (sensirion)
• dtbinding_sensirion_sgp40

• dtbinding_sensirion_sht21

• dtbinding_sensirion_sht3xd

• dtbinding_sensirion_sht4x

• dtbinding_sensirion_shtcx

Sequans Communications (sqn)
• dtbinding_sqn_gm02s

• dtbinding_sqn_hwspinlock

Sharp Corporation (sharp)
• dtbinding_sharp_ls0xx

Shenzhen Frida LCD Co., Ltd. (frida)
• dtbinding_frida_nt35510

Shenzhen Huiding Technology Co., Ltd. (goodix)
• dtbinding_goodix_gt911
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Shenzhen Jinghua Displays Electronics Co., Ltd. (jhd)
• dtbinding_jhd_jhd1313

Shenzhen Xptek Technology Co., Ltd (xptek)
• dtbinding_xptek_xpt2046

Siemens AG (siemens)
• dtbinding_siemens_ivshmem_eth

Sierra Wireless (swir)
• dtbinding_swir_hl7800

SiFive, Inc. (sifive)
• dtbinding_sifive_clint0

• dtbinding_sifive_dtim0

• dtbinding_sifive_e24

• dtbinding_sifive_e31

• dtbinding_sifive_e51

• dtbinding_sifive_fu740_c000_ddr

• dtbinding_sifive_gpio0

• dtbinding_sifive_i2c0

• dtbinding_sifive_pinctrl

• dtbinding_sifive_plic_1.0.0

• dtbinding_sifive_pwm0

• dtbinding_sifive_s7

• dtbinding_sifive_spi0

• dtbinding_sifive_u54

• dtbinding_sifive_uart0

• dtbinding_sifive_wdt

Silicon Laboratories (silabs)
• dtbinding_silabs_bt_hci

• dtbinding_silabs_gecko_adc

• dtbinding_silabs_gecko_burtc

• dtbinding_silabs_gecko_ethernet

• dtbinding_silabs_gecko_flash_controller

• dtbinding_silabs_gecko_gpio

• dtbinding_silabs_gecko_gpio_port

• dtbinding_silabs_gecko_i2c
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• dtbinding_silabs_gecko_iadc

• dtbinding_silabs_gecko_leuart

• dtbinding_silabs_gecko_pinctrl

• dtbinding_silabs_gecko_pwm

• dtbinding_silabs_gecko_rtcc

• dtbinding_silabs_gecko_semailbox

• dtbinding_silabs_gecko_spi_usart

• dtbinding_silabs_gecko_stimer

• dtbinding_silabs_gecko_timer

• dtbinding_silabs_gecko_trng

• dtbinding_silabs_gecko_uart

• dtbinding_silabs_gecko_usart

• dtbinding_silabs_gecko_wdog

• dtbinding_silabs_hfxo

• dtbinding_silabs_si7006

• dtbinding_silabs_si7055

• dtbinding_silabs_si7060

• dtbinding_silabs_si7210

SIMComWireless Solutions Co., LTD (simcom)
• dtbinding_simcom_sim7080

Sino Wealth Electronic Ltd (sinowealth)
• dtbinding_sinowealth_sh1106_i2c

• dtbinding_sinowealth_sh1106_spi

Sitronix Technology Corporation (sitronix)
• dtbinding_sitronix_cf1133

• dtbinding_sitronix_st7735r

• dtbinding_sitronix_st7789v

• dtbinding_sitronix_st7796s

Skyworks Solutions, Inc. (skyworks)
• dtbinding_skyworks_sky13317

• dtbinding_skyworks_sky13351
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Smart Battery System (sbs)
• dtbinding_sbs_default_sbs_gauge

• dtbinding_sbs_sbs_charger

• dtbinding_sbs_sbs_gauge

• dtbinding_sbs_sbs_gauge_new_api

Solomon Systech Limited (solomon)
• dtbinding_solomon_ssd1306fb_i2c

• dtbinding_solomon_ssd1306fb_spi

• dtbinding_solomon_ssd1608

• dtbinding_solomon_ssd1673

• dtbinding_solomon_ssd1675a

• dtbinding_solomon_ssd1680

• dtbinding_solomon_ssd1681

SparkFun Electronics (sparkfun)
• dtbinding_sparkfun_micromod_gpio

• dtbinding_sparkfun_pro_micro_header

• dtbinding_sparkfun_serlcd

Standard Microsystems Corporation (smsc)
• dtbinding_smsc_lan91c111

• dtbinding_smsc_lan91c111_mdio

• dtbinding_smsc_lan9220

StarFive Technology Co. Ltd. (starfive)
• dtbinding_starfive_jh7100_clint

STMicroelectronics (st)
• dtbinding_st_dsi_lcd_qsh_030

• dtbinding_st_hci_spi_v1

• dtbinding_st_hci_spi_v2

• dtbinding_st_hci_stm32wba

• dtbinding_st_hts221_i2c

• dtbinding_st_hts221_spi

• dtbinding_st_i3g4250d

• dtbinding_st_iis2dh_i2c

• dtbinding_st_iis2dh_spi

• dtbinding_st_iis2dlpc_i2c
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• dtbinding_st_iis2dlpc_spi

• dtbinding_st_iis2iclx_spi

• dtbinding_st_iis2iclx_i2c

• dtbinding_st_iis2mdc_spi

• dtbinding_st_iis2mdc_i2c

• dtbinding_st_iis328dq_spi

• dtbinding_st_iis328dq_i2c

• dtbinding_st_iis3dhhc_spi

• dtbinding_st_ism330dhcx_spi

• dtbinding_st_ism330dhcx_i2c

• dtbinding_st_lis2de12_spi

• dtbinding_st_lis2de12_i2c

• dtbinding_st_lis2dh_spi

• dtbinding_st_lis2dh_i2c

• dtbinding_st_lis2dh12_i2c

• dtbinding_st_lis2ds12_spi

• dtbinding_st_lis2ds12_i2c

• dtbinding_st_lis2du12_spi

• dtbinding_st_lis2du12_i2c

• dtbinding_st_lis2dux12_spi

• dtbinding_st_lis2dux12_i2c

• dtbinding_st_lis2dw12_spi

• dtbinding_st_lis2dw12_i2c

• dtbinding_st_lis2mdl_spi

• dtbinding_st_lis2mdl_i2c

• dtbinding_st_lis3dh_i2c

• dtbinding_st_lis3mdl_magn

• dtbinding_st_lps22df_i2c

• dtbinding_st_lps22df_spi

• dtbinding_st_lps22df_i3c

• dtbinding_st_lps22hb_press

• dtbinding_st_lps22hh_i3c

• dtbinding_st_lps22hh_i2c

• dtbinding_st_lps22hh_spi

• dtbinding_st_lps25hb_press

• dtbinding_st_lps28dfw_i3c

• dtbinding_st_lps28dfw_i2c

• dtbinding_st_lsm303agr_accel_i2c

• dtbinding_st_lsm303agr_accel_spi
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• dtbinding_st_lsm303dlhc_accel

• dtbinding_st_lsm303dlhc_magn

• dtbinding_st_lsm6ds0

• dtbinding_st_lsm6dsl_spi

• dtbinding_st_lsm6dsl_i2c

• dtbinding_st_lsm6dso_spi

• dtbinding_st_lsm6dso_i2c

• dtbinding_st_lsm6dso16is_i2c

• dtbinding_st_lsm6dso16is_spi

• dtbinding_st_lsm6dso32_i2c

• dtbinding_st_lsm6dso32_spi

• dtbinding_st_lsm6dsv16x_spi

• dtbinding_st_lsm6dsv16x_i2c

• dtbinding_st_lsm9ds0_gyro_i2c

• dtbinding_st_lsm9ds0_mfd_i2c

• dtbinding_st_lsm9ds1

• dtbinding_st_mbox_stm32_hsem

• dtbinding_st_mpxxdtyy_i2s

• dtbinding_st_stm32_adc

• dtbinding_st_stm32_aes

• dtbinding_st_stm32_backup_sram

• dtbinding_st_stm32_bbram

• dtbinding_st_stm32_bdma

• dtbinding_st_stm32_bxcan

• dtbinding_st_stm32_ccm

• dtbinding_st_stm32_clock_mux

• dtbinding_st_stm32_counter

• dtbinding_st_stm32_cryp

• dtbinding_st_stm32_dac

• dtbinding_st_stm32_dcmi

• dtbinding_st_stm32_digi_temp

• dtbinding_st_stm32_dma

• dtbinding_st_stm32_dma_v1

• dtbinding_st_stm32_dma_v2

• dtbinding_st_stm32_dma_v2bis

• dtbinding_st_stm32_dmamux

• dtbinding_st_stm32_eeprom

• dtbinding_st_stm32_ethernet

• dtbinding_st_stm32_exti
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• dtbinding_st_stm32_fdcan

• dtbinding_st_stm32_flash_controller

• dtbinding_st_stm32_fmc

• dtbinding_st_stm32_fmc_nor_psram

• dtbinding_st_stm32_fmc_sdram

• dtbinding_st_stm32_gpio

• dtbinding_st_stm32_hse_clock

• dtbinding_st_stm32_hsem_mailbox

• dtbinding_st_stm32_hsi48_clock

• dtbinding_st_stm32_i2c_v1

• dtbinding_st_stm32_i2c_v2

• dtbinding_st_stm32_i2s

• dtbinding_st_stm32_ipcc_mailbox

• dtbinding_st_stm32_lptim

• dtbinding_st_stm32_lpuart

• dtbinding_st_stm32_lse_clock

• dtbinding_st_stm32_ltdc

• dtbinding_st_stm32_mdio

• dtbinding_st_stm32_mipi_dsi

• dtbinding_st_stm32_msi_clock

• dtbinding_st_stm32_nv_flash

• dtbinding_st_stm32_ospi

• dtbinding_st_stm32_ospi_nor

• dtbinding_st_stm32_otgfs

• dtbinding_st_stm32_otghs

• dtbinding_st_stm32_pinctrl

• dtbinding_st_stm32_pwm

• dtbinding_st_stm32_pwr

• dtbinding_st_stm32_qdec

• dtbinding_st_stm32_qspi

• dtbinding_st_stm32_qspi_nor

• dtbinding_st_stm32_rcc

• dtbinding_st_stm32_rcc_rctl

• dtbinding_st_stm32_rng

• dtbinding_st_stm32_rtc

• dtbinding_st_stm32_sdmmc

• dtbinding_st_stm32_smbus

• dtbinding_st_stm32_spi

• dtbinding_st_stm32_spi_fifo
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• dtbinding_st_stm32_spi_host_cmd

• dtbinding_st_stm32_spi_subghz

• dtbinding_st_stm32_temp

• dtbinding_st_stm32_temp_cal

• dtbinding_st_stm32_timers

• dtbinding_st_stm32_uart

• dtbinding_st_stm32_ucpd

• dtbinding_st_stm32_usart

• dtbinding_st_stm32_usb

• dtbinding_st_stm32_usbphyc

• dtbinding_st_stm32_vbat

• dtbinding_st_stm32_vref

• dtbinding_st_stm32_watchdog

• dtbinding_st_stm32_window_watchdog

• dtbinding_st_stm32_xspi

• dtbinding_st_stm32_xspi_nor

• dtbinding_st_stm32c0_hsi_clock

• dtbinding_st_stm32c0_temp_cal

• dtbinding_st_stm32f0_pll_clock

• dtbinding_st_stm32f0_rcc

• dtbinding_st_stm32f1_adc

• dtbinding_st_stm32f1_flash_controller

• dtbinding_st_stm32f1_pinctrl

• dtbinding_st_stm32f1_pll_clock

• dtbinding_st_stm32f1_rcc

• dtbinding_st_stm32f100_pll_clock

• dtbinding_st_stm32f105_pll_clock

• dtbinding_st_stm32f105_pll2_clock

• dtbinding_st_stm32f2_flash_controller

• dtbinding_st_stm32f2_pll_clock

• dtbinding_st_stm32f3_rcc

• dtbinding_st_stm32f4_adc

• dtbinding_st_stm32f4_flash_controller

• dtbinding_st_stm32f4_fsotg

• dtbinding_st_stm32f4_nv_flash

• dtbinding_st_stm32f4_pll_clock

• dtbinding_st_stm32f4_plli2s_clock

• dtbinding_st_stm32f412_plli2s_clock

• dtbinding_st_stm32f7_flash_controller
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• dtbinding_st_stm32f7_pll_clock

• dtbinding_st_stm32g0_exti

• dtbinding_st_stm32g0_flash_controller

• dtbinding_st_stm32g0_hsi_clock

• dtbinding_st_stm32g0_pll_clock

• dtbinding_st_stm32g4_flash_controller

• dtbinding_st_stm32g4_pll_clock

• dtbinding_st_stm32h7_fdcan

• dtbinding_st_stm32h7_flash_controller

• dtbinding_st_stm32h7_fmc

• dtbinding_st_stm32h7_hsi_clock

• dtbinding_st_stm32h7_i2s

• dtbinding_st_stm32h7_pll_clock

• dtbinding_st_stm32h7_rcc

• dtbinding_st_stm32h7_spi

• dtbinding_st_stm32h7rs_exti

• dtbinding_st_stm32h7rs_pll_clock

• dtbinding_st_stm32h7rs_rcc

• dtbinding_st_stm32l0_msi_clock

• dtbinding_st_stm32l0_nv_flash

• dtbinding_st_stm32l0_pll_clock

• dtbinding_st_stm32l4_flash_controller

• dtbinding_st_stm32l4_pll_clock

• dtbinding_st_stm32l5_flash_controller

• dtbinding_st_stm32mp1_rcc

• dtbinding_st_stm32u5_dma

• dtbinding_st_stm32u5_msi_clock

• dtbinding_st_stm32u5_pll_clock

• dtbinding_st_stm32u5_rcc

• dtbinding_st_stm32wb_flash_controller

• dtbinding_st_stm32wb_pll_clock

• dtbinding_st_stm32wb_rcc

• dtbinding_st_stm32wb_ble_rf

• dtbinding_st_stm32wba_flash_controller

• dtbinding_st_stm32wba_hse_clock

• dtbinding_st_stm32wba_pll_clock

• dtbinding_st_stm32wba_rcc

• dtbinding_st_stm32wl_hse_clock

• dtbinding_st_stm32wl_rcc
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• dtbinding_st_stm32wl_subghz_radio

• dtbinding_st_stmpe1600

• dtbinding_st_stmpe811

• dtbinding_st_stts22h_i2c

• dtbinding_st_stts751_i2c

• dtbinding_st_vl53l0x

• dtbinding_st_vl53l1x

Synopsys, Inc. (snps)
• dtbinding_snps_arc_iot_sysconf

• dtbinding_snps_arc_timer

• dtbinding_snps_arcem

• dtbinding_snps_archs_ici

• dtbinding_snps_archs_idu_intc

• dtbinding_snps_arcv2_intc

• dtbinding_snps_creg_gpio

• dtbinding_snps_designware_dma

• dtbinding_snps_designware_ethernet

• dtbinding_snps_designware_gpio

• dtbinding_snps_designware_i2c

• dtbinding_snps_designware_intc

• dtbinding_snps_designware_spi

• dtbinding_snps_designware_usb

• dtbinding_snps_designware_watchdog

• dtbinding_snps_dw_timers

• dtbinding_snps_dwc2

• dtbinding_snps_emsdp_pinctrl

• dtbinding_snps_ethernet_cyclonev

• dtbinding_snps_hostlink_uart

• dtbinding_snps_nsim_uart

Synopsys, Inc. (formerly ARC International PLC) (arc)
• dtbinding_arc_dccm

• dtbinding_arc_iccm

• dtbinding_arc_xccm

• dtbinding_arc_yccm

TDK Corporation. (tdk)
• dtbinding_tdk_ntcg163jf103ft1
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Telink Semiconductor (telink)
• dtbinding_telink_b91

• dtbinding_telink_b91_adc

• dtbinding_telink_b91_flash_controller

• dtbinding_telink_b91_gpio

• dtbinding_telink_b91_i2c

• dtbinding_telink_b91_pinctrl

• dtbinding_telink_b91_power

• dtbinding_telink_b91_pwm

• dtbinding_telink_b91_spi

• dtbinding_telink_b91_trng

• dtbinding_telink_b91_uart

• dtbinding_telink_b91_zb

• dtbinding_telink_machine_timer

Telit Cinterion (telit)
• dtbinding_telit_me910g1

Texas Instruments (ti)
• dtbinding_ti_ads1013

• dtbinding_ti_ads1014

• dtbinding_ti_ads1015

• dtbinding_ti_ads1112

• dtbinding_ti_ads1113

• dtbinding_ti_ads1114

• dtbinding_ti_ads1115

• dtbinding_ti_ads1119

• dtbinding_ti_ads114s08

• dtbinding_ti_ads114s0x_gpio

• dtbinding_ti_ads7052

• dtbinding_ti_am654_dmtimer

• dtbinding_ti_boosterpack_header

• dtbinding_ti_bq24190

• dtbinding_ti_bq25180

• dtbinding_ti_bq274xx

• dtbinding_ti_bq27z746

• dtbinding_ti_cc1200

• dtbinding_ti_cc13xx_cc26xx_adc

• dtbinding_ti_cc13xx_cc26xx_flash_controller
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• dtbinding_ti_cc13xx_cc26xx_gpio

• dtbinding_ti_cc13xx_cc26xx_i2c

• dtbinding_ti_cc13xx_cc26xx_ieee802154

• dtbinding_ti_cc13xx_cc26xx_ieee802154_subghz

• dtbinding_ti_cc13xx_cc26xx_pinctrl

• dtbinding_ti_cc13xx_cc26xx_radio

• dtbinding_ti_cc13xx_cc26xx_rtc_timer

• dtbinding_ti_cc13xx_cc26xx_spi

• dtbinding_ti_cc13xx_cc26xx_timer

• dtbinding_ti_cc13xx_cc26xx_timer_pwm

• dtbinding_ti_cc13xx_cc26xx_trng

• dtbinding_ti_cc13xx_cc26xx_uart

• dtbinding_ti_cc13xx_cc26xx_watchdog

• dtbinding_ti_cc2520

• dtbinding_ti_cc32xx_adc

• dtbinding_ti_cc32xx_gpio

• dtbinding_ti_cc32xx_i2c

• dtbinding_ti_cc32xx_pinctrl

• dtbinding_ti_cc32xx_uart

• dtbinding_ti_cc32xx_watchdog

• dtbinding_ti_dac43608

• dtbinding_ti_dac53608

• dtbinding_ti_dac60508

• dtbinding_ti_dac70508

• dtbinding_ti_dac80508

• dtbinding_ti_dacx0501

• dtbinding_ti_davinci_gpio

• dtbinding_ti_davinci_gpio_nexus

• dtbinding_ti_fdc2x1x

• dtbinding_ti_hdc

• dtbinding_ti_hdc2010

• dtbinding_ti_hdc2021

• dtbinding_ti_hdc2022

• dtbinding_ti_hdc2080

• dtbinding_ti_hdc20xx

• dtbinding_ti_ina219

• dtbinding_ti_ina226

• dtbinding_ti_ina230

• dtbinding_ti_ina237
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• dtbinding_ti_ina3221

• dtbinding_ti_k3_pinctrl

• dtbinding_ti_lmp90077

• dtbinding_ti_lmp90078

• dtbinding_ti_lmp90079

• dtbinding_ti_lmp90080

• dtbinding_ti_lmp90097

• dtbinding_ti_lmp90098

• dtbinding_ti_lmp90099

• dtbinding_ti_lmp90100

• dtbinding_ti_lmp90xxx_gpio

• dtbinding_ti_lp3943

• dtbinding_ti_lp5009

• dtbinding_ti_lp5012

• dtbinding_ti_lp5018

• dtbinding_ti_lp5024

• dtbinding_ti_lp5030

• dtbinding_ti_lp5036

• dtbinding_ti_lp5562

• dtbinding_ti_lp5569

• dtbinding_ti_msp432p4xx_uart

• dtbinding_ti_opt3001

• dtbinding_ti_sn74hc595

• dtbinding_ti_stellaris_ethernet

• dtbinding_ti_stellaris_flash_controller

• dtbinding_ti_stellaris_gpio

• dtbinding_ti_stellaris_uart

• dtbinding_ti_tas6422dac

• dtbinding_ti_tca6424a

• dtbinding_ti_tca9538

• dtbinding_ti_tca9546a

• dtbinding_ti_tca9548a

• dtbinding_ti_tcan4x5x

• dtbinding_ti_tla2021

• dtbinding_ti_tlc59108

• dtbinding_ti_tlc5971

• dtbinding_ti_tlc59731

• dtbinding_ti_tlv320dac

• dtbinding_ti_tmag5170
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• dtbinding_ti_tmag5273

• dtbinding_ti_tmp007

• dtbinding_ti_tmp108

• dtbinding_ti_tmp112

• dtbinding_ti_tmp114

• dtbinding_ti_tmp116

• dtbinding_ti_tmp116_eeprom

• dtbinding_ti_tps382x

• dtbinding_ti_vim

u-blox (u-blox)
• dtbinding_u_blox_m10

• dtbinding_u_blox_sara_r4

• dtbinding_u_blox_sara_r5

UltraChip Inc. (ultrachip)
• dtbinding_ultrachip_uc8175

• dtbinding_ultrachip_uc8176

• dtbinding_ultrachip_uc8179

Vishay Intertechnology, Inc (vishay)
• dtbinding_vishay_vcnl36825t

• dtbinding_vishay_vcnl4040

• dtbinding_vishay_veml7700

Wistron NeWeb Corporation (wnc)
• dtbinding_wnc_m14a2a

WIZnet Co., Ltd. (wiznet)
• dtbinding_wiznet_w5500

Worldsemi Co., Limited (worldsemi)
• dtbinding_worldsemi_ws2812_gpio

• dtbinding_worldsemi_ws2812_i2s

• dtbinding_worldsemi_ws2812_rpi_pico_pio

• dtbinding_worldsemi_ws2812_spi
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Würth Elektronik GmbH. (we)
• dtbinding_we_wsen_hids_spi

• dtbinding_we_wsen_hids_i2c

• dtbinding_we_wsen_itds

• dtbinding_we_wsen_pads_i2c

• dtbinding_we_wsen_pads_spi

• dtbinding_we_wsen_pdus

• dtbinding_we_wsen_tids

X-Powers (x-powers)
• dtbinding_x_powers_axp192

• dtbinding_x_powers_axp192_gpio

• dtbinding_x_powers_axp192_regulator

Xen Hypervisor (xen)
• dtbinding_xen_hvc_consoleio

• dtbinding_xen_hvc_uart

• dtbinding_xen_xen

Xilinx (xlnx)
• dtbinding_xlnx_fpga

• dtbinding_xlnx_gem

• dtbinding_xlnx_pinctrl_zynq

• dtbinding_xlnx_pinctrl_zynqmp

• dtbinding_xlnx_ps_gpio

• dtbinding_xlnx_ps_gpio_bank

• dtbinding_xlnx_ttcps

• dtbinding_xlnx_xps_gpio_1.00.a

• dtbinding_xlnx_xps_gpio_1.00.a_gpio2

• dtbinding_xlnx_xps_iic_2.00.a

• dtbinding_xlnx_xps_iic_2.1

• dtbinding_xlnx_xps_spi_2.00.a

• dtbinding_xlnx_xps_timebase_wdt_1.00.a

• dtbinding_xlnx_xps_timer_1.00.a

• dtbinding_xlnx_xps_timer_1.00.a_pwm

• dtbinding_xlnx_xps_uartlite_1.00.a

• dtbinding_xlnx_xuartps

• dtbinding_xlnx_zynq_ocm

• dtbinding_xlnx_zynqmp_ipi_mailbox
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Zephyr-specific binding (zephyr)
• dtbinding_zephyr_adc_emul

• dtbinding_zephyr_bbram_emul

• dtbinding_zephyr_bt_hci_3wire_uart

• dtbinding_zephyr_bt_hci_entropy

• dtbinding_zephyr_bt_hci_ipc

• dtbinding_zephyr_bt_hci_ll_sw_split

• dtbinding_zephyr_bt_hci_spi

• dtbinding_zephyr_bt_hci_spi_slave

• dtbinding_zephyr_bt_hci_uart

• dtbinding_zephyr_bt_hci_userchan

• dtbinding_zephyr_can_loopback

• dtbinding_zephyr_cdc_acm_uart

• dtbinding_zephyr_cdc_ecm_ethernet

• dtbinding_zephyr_coredump

• dtbinding_zephyr_counter_watchdog

• dtbinding_zephyr_devmux

• dtbinding_zephyr_dma_emul

• dtbinding_zephyr_dummy_dc

• dtbinding_zephyr_emu_eeprom

• dtbinding_zephyr_espi_emul_controller

• dtbinding_zephyr_fake_can

• dtbinding_zephyr_fake_eeprom

• dtbinding_zephyr_fake_regulator

• dtbinding_zephyr_fake_rtc

• dtbinding_zephyr_flash_disk

• dtbinding_zephyr_fstab

• dtbinding_zephyr_fstab_littlefs

• dtbinding_zephyr_gnss_emul

• dtbinding_zephyr_gpio_emul

• dtbinding_zephyr_gpio_emul_sdl

• dtbinding_zephyr_hid_device

• dtbinding_zephyr_i2c_dump_allowlist

• dtbinding_zephyr_i2c_emul_controller

• dtbinding_zephyr_i2c_target_eeprom

• dtbinding_zephyr_ieee802154_uart_pipe

• dtbinding_zephyr_input_longpress

• dtbinding_zephyr_input_sdl_touch

• dtbinding_zephyr_ipc_icbmsg
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• dtbinding_zephyr_ipc_icmsg

• dtbinding_zephyr_ipc_icmsg_me_follower

• dtbinding_zephyr_ipc_icmsg_me_initiator

• dtbinding_zephyr_ipc_openamp_static_vrings

• dtbinding_zephyr_kscan_input

• dtbinding_zephyr_log_uart

• dtbinding_zephyr_lvgl_button_input

• dtbinding_zephyr_lvgl_encoder_input

• dtbinding_zephyr_lvgl_keypad_input

• dtbinding_zephyr_lvgl_pointer_input

• dtbinding_zephyr_mdio_gpio

• dtbinding_zephyr_memory_region

• dtbinding_zephyr_mipi_dbi_spi

• dtbinding_zephyr_mmc_disk

• dtbinding_zephyr_modbus_serial

• dtbinding_zephyr_mspi_emul_controller

• dtbinding_zephyr_mspi_emul_device

• dtbinding_zephyr_mspi_emul_flash

• dtbinding_zephyr_native_linux_can

• dtbinding_zephyr_native_linux_evdev

• dtbinding_zephyr_native_posix_counter

• dtbinding_zephyr_native_posix_cpu

• dtbinding_zephyr_native_posix_rng

• dtbinding_zephyr_native_posix_uart

• dtbinding_zephyr_native_posix_udc

• dtbinding_zephyr_native_tty_uart

• dtbinding_zephyr_nus_uart

• dtbinding_panel_timing

• dtbinding_zephyr_power_state

• dtbinding_zephyr_psa_crypto_rng

• dtbinding_zephyr_ram_disk

• dtbinding_zephyr_retained_ram

• dtbinding_zephyr_retained_reg

• dtbinding_zephyr_retention

• dtbinding_zephyr_rtc_emul

• dtbinding_zephyr_sdhc_spi_slot

• dtbinding_zephyr_sdl_dc

• dtbinding_zephyr_sdmmc_disk

• dtbinding_zephyr_sensing
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• dtbinding_zephyr_sensing_hinge_angle

• dtbinding_zephyr_sensing_phy_3d_sensor

• dtbinding_zephyr_sim_eeprom

• dtbinding_zephyr_sim_flash

• dtbinding_zephyr_spi_bitbang

• dtbinding_zephyr_spi_emul_controller

• dtbinding_zephyr_swdp_gpio

• dtbinding_zephyr_uac2

• dtbinding_zephyr_uac2_audio_streaming

• dtbinding_zephyr_uac2_clock_source

• dtbinding_zephyr_uac2_input_terminal

• dtbinding_zephyr_uac2_output_terminal

• dtbinding_zephyr_uart_emul

• dtbinding_zephyr_udc_skeleton

• dtbinding_zephyr_udc_virtual

• dtbinding_zephyr_uhc_virtual

• dtbinding_zephyr_usb_c_vbus_adc

• dtbinding_zephyr_w1_gpio

• dtbinding_zephyr_w1_serial

Zhengzhou Winsen Electronics Technology Co., Ltd. (winsen)
• dtbinding_winsen_mhz19b

Unknown vendor
• dtbinding_swerv_pic

5.3 Configuration System (Kconfig)

The Zephyr kernel and subsystems can be configured at build time to adapt them for specific
application and platform needs. Configuration is handled through Kconfig, which is the same
configuration system used by the Linux kernel. The goal is to support configuration without
having to change any source code.

Configuration options (often called symbols) are defined in Kconfig files, which also specify de-
pendencies between symbols that determine what configurations are valid. Symbols can be
grouped into menus and sub-menus to keep the interactive configuration interfaces organized.

The output from Kconfig is a header file autoconf.h with macros that can be tested at build time.
Code for unused features can be compiled out to save space.

The following sections explain how to set Kconfig configuration options, go into detail on how
Kconfig is used within the Zephyr project, and have some tips and best practices for writing
Kconfig files.
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5.3.1 Interactive Kconfig interfaces

There are two interactive configuration interfaces available for exploring the available Kconfig
options and making temporary changes: menuconfig and guiconfig. menuconfig is a curses-
based interface that runs in the terminal, while guiconfig is a graphical configuration interface.

Note

The configuration can also be changed by editing zephyr/.config in the application build
directory by hand. Using one of the configuration interfaces is often handier, as they correctly
handle dependencies between configuration symbols.

If you try to enable a symbol with unsatisfied dependencies in zephyr/.config, the assign-
ment will be ignored and overwritten when re-configuring.

To make a setting permanent, you should set it in a *.conf file, as described in Setting Kconfig
configuration values.

Tip

Saving a minimal configuration file (with e.g. D in menuconfig) and inspecting it can be handy
when making settings permanent. The minimal configuration file only lists symbols that dif-
fer from their default value.

To run one of the configuration interfaces, do this:

1. Build your application as usual using either west or cmake:

Using west:

west build -b <board>

Using CMake and ninja:

mkdir build && cd build
cmake -GNinja -DBOARD=<board> ..
ninja

2. To run the terminal-based menuconfig interface, use either of these commands:

west build -t menuconfig

ninja menuconfig

To run the graphical guiconfig, use either of these commands:

west build -t guiconfig

ninja guiconfig

Note

If you get an import error for tkinter when trying to run guiconfig, you are missing
required packages. See Install LinuxHost Dependencies. The package you need is usually
called something like python3-tk/python3-tkinter.

tkinter is not included by default in many Python installations, despite being part of
the standard library.
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The two interfaces are shown below:

guiconfig always shows the help text and other information related to the currently se-
lected item in the bottom window pane. In the terminal interface, press ? to view the same
information.

Note

If you prefer to work in the guiconfig interface, then it’s a good idea to check any
changes to Kconfig files you make in single-menu mode, which is toggled via a checkbox
at the top. Unlike full-tree mode, single-menu mode will distinguish between symbols
defined with config and symbols defined with menuconfig, showing you what things
would look like in the menuconfig interface.

3. Change configuration values in the menuconfig interface as follows:

• Navigate the menu with the arrow keys. Common Vim key bindings are supported as
well.

• Use Space and Enter to enter menus and toggle values. Menus appear with ---> next
to them. Press ESC to return to the parent menu.

Boolean configuration options are shown with [ ] brackets, while numeric and string-
valued configuration symbols are shown with ( ) brackets. Symbol values that can’t be
changed are shown as - - or -*-.

Note

You can also press Y or N to set a boolean configuration symbol to the corresponding
value.

• Press ? to display information about the currently selected symbol, including its help
text. Press ESC or Q to return from the information display to the menu.

In the guiconfig interface, either click on the image next to the symbol to change its value,
or double-click on the row with the symbol (this only works if the symbol has no children,
as double-clicking a symbol with children open/closes its menu instead).

1580 Chapter 5. Build and Configuration Systems

https://www.vim.org


Zephyr Project Documentation, Release 3.7.99

guiconfig also supports keyboard controls, which are similar to menuconfig.

4. Pressing Q in the menuconfig interface will bring up the save-and-quit dialog (if there are
changes to save):

Press Y to save the kernel configuration options to the default filename (zephyr/.config).
You will typically save to the default filename unless you are experimenting with different
configurations.

The guiconfig interface will also prompt for saving the configuration on exit if it has been
modified.

Note

The configuration file used during the build is always zephyr/.config. If you have an-
other saved configuration that you want to build with, copy it to zephyr/.config. Make
sure to back up your original configuration file.

Also note that filenames starting with . are not listed by ls by default on Linux and
macOS. Use the -a flag to see them.

Finding a symbol in the menu tree and navigating to it can be tedious. To jump directly to a
symbol, press the / key (this also works in guiconfig). This brings up the following dialog, where
you can search for symbols by name and jump to them. In guiconfig, you can also change symbol
values directly within the dialog.

If you jump to a symbol that isn’t currently visible (e.g., due to having unsatisfied dependen-
cies), then show-all mode will be enabled. In show-all mode, all symbols are displayed, includ-
ing currently invisible symbols. To turn off show-all mode, press A in menuconfig or Ctrl-A in
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guiconfig.

Note

Show-all mode can’t be turned off if there are no visible items in the current menu.

To figure out why a symbol you jumped to isn’t visible, inspect its dependencies, either by press-
ing ? in menuconfig or in the information pane at the bottom in guiconfig. If you discover that
the symbol depends on another symbol that isn’t enabled, you can jump to that symbol in turn
to see if it can be enabled.

Note

In menuconfig, you can press Ctrl-F to view the help of the currently selected item in the
jump-to dialog without leaving the dialog.

For more information on menuconfig and guiconfig, see the Python docstrings at the top of
menuconfig.py and guiconfig.py.

5.3.2 Setting Kconfig configuration values

The menuconfig and guiconfig interfaces can be used to test out configurations during application
development. This page explains how to make settings permanent.

All Kconfig options can be searched in the Kconfig search page.

Note

Before making changes to Kconfig files, it’s a good idea to also go through the Kconfig - Tips
and Best Practices page.

Visible and invisible Kconfig symbols

When making Kconfig changes, it’s important to understand the difference between visible and
invisible symbols.

• A visible symbol is a symbol defined with a prompt. Visible symbols show up in the inter-
active configuration interfaces (hence visible), and can be set in configuration files.

Here’s an example of a visible symbol:

config FPU
bool "Support floating point operations"
depends on HAS_FPU

The symbol is shown like this in menuconfig, where it can be toggled:

[ ] Support floating point operations

• An invisible symbol is a symbol without a prompt. Invisible symbols are not shown in the
interactive configuration interfaces, and users have no direct control over their value. They
instead get their value from defaults or from other symbols.

Here’s an example of an invisible symbol:
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config CPU_HAS_FPU
bool
help
This symbol is y if the CPU has a hardware floating point unit.

In this case, CPU_HAS_FPU is enabled through other symbols having select CPU_HAS_FPU.

Setting symbols in configuration files

Visible symbols can be configured by setting them in configuration files. The initial configuration
is produced by merging a *_defconfig file for the board with application settings, usually from
prj.conf. See The Initial Configuration below for more details.

Assignments in configuration files use this syntax:

CONFIG_<symbol name>=<value>

There should be no spaces around the equals sign.

bool symbols can be enabled or disabled by setting them to y or n, respectively. The FPU symbol
from the example above could be enabled like this:

CONFIG_FPU=y

Note

A boolean symbol can also be set to n with a comment formatted like this:
# CONFIG_SOME_OTHER_BOOL is not set

This is the format you will see in the merged configuration in zephyr/.config.

This style is accepted for historical reasons: Kconfig configuration files can be parsed as make-
files (though Zephyr doesn’t use this). Having n-valued symbols correspond to unset variables
simplifies tests in Make.

Other symbol types are assigned like this:

CONFIG_SOME_STRING="cool value"
CONFIG_SOME_INT=123

Comments use a #:

# This is a comment

Assignments in configuration files are only respected if the dependencies for the symbol are
satisfied. A warning is printed otherwise. To figure out what the dependencies of a symbol are,
use one of the interactive configuration interfaces (you can jump directly to a symbol with /), or
look up the symbol in the Kconfig search page.

The Initial Configuration

The initial configuration for an application comes from merging configuration settings from
three sources:

1. A BOARD-specific configuration file stored in boards/<VENDOR>/<BOARD>/<BOARD>_defconfig
2. Any CMake cache entries prefix with CONFIG_
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3. The application configuration

The application configuration can come from the sources below (each file is known as a Kconfig
fragment, which are then merged to get the final configuration used for a particular build). By
default, prj.conf is used.

1. If CONF_FILE is set, the configuration file(s) specified in it are merged and used as the appli-
cation configuration. CONF_FILE can be set in various ways:

1. In CMakeLists.txt, before calling find_package(Zephyr)
2. By passing -DCONF_FILE=<conf file(s)>, either directly or via west
3. From the CMake variable cache

Furthermore if CONF_FILE is set as single configuration file of the form prj_<build>.conf
and if file boards/<BOARD>_<build>.conf exists in same folder as file prj_<build>.conf,
the result of merging prj_<build>.conf and boards/<BOARD>_<build>.conf is used - note
that this feature is deprecated, File Suffixes should be used instead.

2. Otherwise, if boards/<BOARD>.conf exists in the application configuration directory, the
result of merging it with prj.conf is used.

3. Otherwise, if board revisions are used and boards/<BOARD>_<revision>.conf exists in the
application configuration directory, the result of merging it with prj.conf and boards/
<BOARD>.conf is used.

4. Otherwise, prj.conf is used from the application configuration directory. If it does not exist
then a fatal error will be emitted.

Furthermore, applications can have SoC overlay configuration that is applied to it, the file socs/
<SOC>_<BOARD_QUALIFIERS>.conf will be applied if it exists, after the main project configuration
has been applied and before any board overlay configuration files have been applied.

All configuration files will be taken from the application’s configuration directory except for files
with an absolute path that are given with the CONF_FILE, EXTRA_CONF_FILE, DTC_OVERLAY_FILE,
and EXTRA_DTC_OVERLAY_FILE arguments. For these, a file in a Zephyr module can be referred by
escaping the Zephyr module dir variable like this \${ZEPHYR_<module>_MODULE_DIR}/<path-to>/
<file> when setting any of said variables in the application’s CMakeLists.txt.

See Application Configuration Directory on how the application configuration directory is de-
fined.

If a symbol is assigned both in <BOARD>_defconfig and in the application configuration, the value
set in the application configuration takes precedence.

The merged configuration is saved to zephyr/.config in the build directory.

As long as zephyr/.config exists and is up-to-date (is newer than any BOARD and application con-
figuration files), it will be used in preference to producing a new merged configuration. zephyr/
.config is also the configuration that gets modified when making changes in the interactive con-
figuration interfaces.

Tracking Kconfig symbols

It is possible to create Kconfig symbols which takes the default value of another Kconfig symbol.

This is valuable when you want a symbol specific to an application or subsystem but do not want
to rely directly on the common symbol. For example, you might want to decouple the settings
so they can be independently configured, or to ensure you always have a locally named setting,
even if the external setting name changes. is later changed.

For example, consider the common FOO_STRING setting where a subsystem wants to have a
SUB_FOO_STRING but still allow for customization.

This can be done like this:
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config FOO_STRING
string "Foo"
default "foo"

config SUB_FOO_STRING
string "Sub-foo"
default FOO_STRING

This ensures that the default value of SUB_FOO_STRING is identical to FOO_STRINGwhile still allows
users to configure both settings independently.

It is also possible to make SUB_FOO_STRING invisible and thereby keep the two symbols in sync,
unless the value of the tracking symbol is changed in a defconfig file.

config FOO_STRING
string "Foo"
default "foo"

config SUB_FOO_STRING
string
default FOO_STRING
help
Hidden symbol which follows FOO_STRING
Can be changed through *.defconfig files.

Configuring invisible Kconfig symbols

When making changes to the default configuration for a board, you might have to configure invis-
ible symbols. This is done in boards/<VENDOR>/<BOARD>/Kconfig.defconfig, which is a regular
Kconfig file.

Note

Assignments in .config files have no effect on invisible symbols, so this scheme is not just an
organizational issue.

Assigning values in Kconfig.defconfig relies on defining a Kconfig symbol in multiple locations.
As an example, say we want to set FOO_WIDTH below to 32:

config FOO_WIDTH
int

To do this, we extend the definition of FOO_WIDTH as follows, in Kconfig.defconfig:

if BOARD_MY_BOARD

config FOO_WIDTH
default 32

endif

Note

Since the type of the symbol (int) has already been given at the first definition location, it
does not need to be repeated here. Only giving the type once at the “base” definition of the
symbol is a good idea for reasons explained in Common Kconfig shorthands.
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default values in Kconfig.defconfig files have priority over default values given on the “base”
definition of a symbol. Internally, this is implemented by including the Kconfig.defconfig files
first. Kconfig uses the first default with a satisfied condition, where an empty condition corre-
sponds to if y (is always satisfied).

Note that conditions from surrounding top-level ifs are propagated to symbol properties, so the
above default is equivalent to default 32 if BOARD_MY_BOARD.

Multiple symbol definitions When a symbol is defined in multiple locations, each definition
acts as an independent symbol that happens to share the same name. This means that proper-
ties are not appended to previous definitions. If the conditions for ANY definition result in the
symbol resolving to y, the symbol will be y. It is therefore not possible to make the dependencies
of a symbol more restrictive by defining it in multiple locations.

For example, the dependencies of the symbol FOO below are satisfied if either DEP1 OR DEP2 are
true, it does not require both:

config FOO
...
depends on DEP1

config FOO
...
depends on DEP2

Warning

Symbols without explicit dependencies still follow the above rule. A symbol without any de-
pendencies will result in the symbol always being assignable. The definition below will result
in FOO always being enabled by default, regardless of the value of DEP1.
config FOO

bool "FOO"
depends on DEP1

config FOO
default y

This dependency weakening can be avoided with the configdefault extension if the desire is
only to add a new default without modifying any other behaviour of the symbol.

Note

When making changes to Kconfig.defconfig files, always check the symbol’s direct depen-
dencies in one of the interactive configuration interfaces afterwards. It is often necessary to
repeat dependencies from the base definition of the symbol to avoid weakening a symbol’s
dependencies.

Motivation for Kconfig.defconfig files One motivation for this configuration scheme is to
avoid making fixed BOARD-specific settings configurable in the interactive configuration inter-
faces. If all board configuration were done via <BOARD>_defconfig, all symbols would have to
be visible, as values given in <BOARD>_defconfig have no effect on invisible symbols.

Having fixed settings be user-configurable would clutter up the configuration interfaces and
make them harder to understand, and would make it easier to accidentally create broken con-
figurations.
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When dealing with fixed board-specific settings, also consider whether they should be handled
via devicetree instead.

Configuring choices There are two ways to configure a Kconfig choice:

1. By setting one of the choice symbols to y in a configuration file.

Setting one choice symbol to y automatically gives all other choice symbols the value n.

If multiple choice symbols are set to y, only the last one set to y will be honored (the rest will
get the value n). This allows a choice selection from a board defconfig file to be overridden
from an application prj.conf file.

2. By changing the default of the choice in Kconfig.defconfig.

As with symbols, changing the default for a choice is done by defining the choice in multiple
locations. For this to work, the choice must have a name.

As an example, assume that a choice has the following base definition (here, the name of
the choice is FOO):

choice FOO
bool "Foo choice"
default B

config A
bool "A"

config B
bool "B"

endchoice

To change the default symbol of FOO to A, you would add the following definition to Kconfig.
defconfig:

choice FOO
default A

endchoice

The Kconfig.defconfig method should be used when the dependencies of the choice might not
be satisfied. In that case, you’re setting the default selection whenever the user makes the choice
visible.

More Kconfig resources The Kconfig - Tips and Best Practices page has some tips for writing
Kconfig files.

The kconfiglib.py docstring (at the top of the file) goes over how symbol values are calculated in
detail.

5.3.3 Kconfig - Tips and Best Practices

This page covers some Kconfig best practices and explains some Kconfig behaviors and features
that might be cryptic or that are easily overlooked.

Note

The official Kconfig documentation is kconfig-language.rst and kconfig-macro-language.rst.
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• What to turn into Kconfig options

• What not to turn into Kconfig options

– Options that specify a device in the system by name

– Options that specify fixed hardware configuration

• select statements

– select pitfalls
– Alternatives to select
– Using select for helper symbols

– select recommendations

• (Lack of) conditional includes

• “Stuck” symbols in menuconfig and guiconfig

• Assignments to promptless symbols in configuration files

• depends on and string/int/hex symbols

• menuconfig symbols

• Commas in macro arguments

• Checking changes in menuconfig/guiconfig

• Checking changes with scripts/kconfig/lint.py
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– Factoring out common dependencies

– Redundant defaults

– Common Kconfig shorthands

– Prompt strings

– Header comments and other nits
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– The imply statement

– Optional prompts

– Optional choices

– visible if conditions
• Other resources

What to turn into Kconfig options

When deciding whether something belongs in Kconfig, it helps to distinguish between symbols
that have prompts and symbols that don’t.

If a symbol has a prompt (e.g. bool "Enable foo"), then the user can change the symbol’s value in
the menuconfig or guiconfig interface (see Interactive Kconfig interfaces), or by manually editing
configuration files. Conversely, a symbol without a prompt can never be changed directly by the
user, not even by manually editing configuration files.

Only put a prompt on a symbol if it makes sense for the user to change its value.
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Symbols without prompts are called hidden or invisible symbols, because they don’t show up in
menuconfig and guiconfig. Symbols that have prompts can also be invisible, when their depen-
dencies are not satisfied.

Symbols without prompts can’t be configured directly by the user (they derive their value from
other symbols), so less restrictions apply to them. If some derived setting is easier to calculate
in Kconfig than e.g. during the build, then do it in Kconfig, but keep the distinction between
symbols with and without prompts in mind.

See the optional prompts section for a way to deal with settings that are fixed on some machines
and configurable on other machines.

What not to turn into Kconfig options

In Zephyr, Kconfig configuration is done after selecting a target board. In general, it does not
make sense to use Kconfig for a value that corresponds to a fixed machine-specific setting. Usu-
ally, such settings should be handled via devicetree instead.

In particular, avoid adding new Kconfig options of the following types:

Options that specify a device in the system by name For example, if you are writing an I2C
device driver, avoid creating an option named MY_DEVICE_I2C_BUS_NAME for specifying the bus
node your device is controlled by. SeeDevice drivers that depend on other devices for alternatives.

Similarly, if your application depends on a hardware-specific PWM device to control an RGB LED,
avoid creating an option like MY_PWM_DEVICE_NAME. See Applications that depend on board-specific
devices for alternatives.

Options that specify fixed hardware configuration For example, avoid Kconfig options spec-
ifying a GPIO pin.

An alternative applicable to device drivers is to define a GPIO specifier with type phandle-array
in the device binding, and using the GPIO devicetree API from C. Similar advice applies to other
cases where devicetree.h provides Hardware specific APIs for referring to other nodes in the
system. Search the source code for drivers using these APIs for examples.

An application-specific devicetree binding to identify board specific properties may be appropri-
ate. See tests/drivers/gpio/gpio_basic_api for an example.

For applications, see blinky for a devicetree-based alternative.

select statements

The select statement is used to force one symbol to y whenever another symbol is y. For exam-
ple, the following code forces CONSOLE to y whenever USB_CONSOLE is y:

config CONSOLE
bool "Console support"

...

config USB_CONSOLE
bool "USB console support"
select CONSOLE

This section covers some pitfalls and good uses for select.
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select pitfalls select might seem like a generally useful feature at first, but can cause config-
uration issues if overused.

For example, say that a new dependency is added to the CONSOLE symbol above, by a developer
who is unaware of the USB_CONSOLE symbol (or simply forgot about it):

config CONSOLE
bool "Console support"
depends on STRING_ROUTINES

Enabling USB_CONSOLE now forces CONSOLE to y, even if STRING_ROUTINES is n.

To fix the problem, the STRING_ROUTINES dependency needs to be added to USB_CONSOLE as well:

config USB_CONSOLE
bool "USB console support"
select CONSOLE
depends on STRING_ROUTINES

...

config STRING_ROUTINES
bool "Include string routines"

More insidious cases with dependencies inherited from if and menu statements are common.

An alternative attempt to solve the issue might be to turn the depends on into another select:

config CONSOLE
bool "Console support"
select STRING_ROUTINES

...

config USB_CONSOLE
bool "USB console support"
select CONSOLE

In practice, this often amplifies the problem, because any dependencies added to
STRING_ROUTINES now need to be copied to both CONSOLE and USB_CONSOLE.

In general, whenever the dependencies of a symbol are updated, the dependencies of all symbols
that (directly or indirectly) select it have to be updated as well. This is very often overlooked in
practice, even for the simplest case above.

Chains of symbols selecting each other should be avoided in particular, except for simple helper
symbols, as covered below in Using select for helper symbols.

Liberal use of select also tends to make Kconfig files harder to read, both due to the extra depen-
dencies and due to the non-local nature of select, which hides ways in which a symbol might
get enabled.

Alternatives to select For the example in the previous section, a better solution is usually to
turn the select into a depends on:

config CONSOLE
bool "Console support"

...

config USB_CONSOLE
bool "USB console support"
depends on CONSOLE
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This makes it impossible to generate an invalid configuration, and means that dependencies only
ever have to be updated in a single spot.

An objection to using depends on here might be that configuration files that enable USB_CONSOLE
now also need to enable CONSOLE:

CONFIG_CONSOLE=y
CONFIG_USB_CONSOLE=y

This comes down to a trade-off, but if enabling CONSOLE is the norm, then a mitigation is to make
CONSOLE default to y:

config CONSOLE
bool "Console support"
default y

This gives just a single assignment in configuration files:

CONFIG_USB_CONSOLE=y

Note that configuration files that do not want CONSOLE enabled now have to explicitly disable it:

CONFIG_CONSOLE=n

Using select for helper symbols A good and safe use of select is for setting “helper” sym-
bols that capture some condition. Such helper symbols should preferably have no prompt or
dependencies.

For example, a helper symbol for indicating that a particular CPU/SoC has an FPU could be de-
fined as follows:

config CPU_HAS_FPU
bool
help
If y, the CPU has an FPU

...

config SOC_FOO
bool "FOO SoC"
select CPU_HAS_FPU

...

config SOC_BAR
bool "BAR SoC"
select CPU_HAS_FPU

This makes it possible for other symbols to check for FPU support in a generic way, without
having to look for particular architectures:

config FPU
bool "Support floating point operations"
depends on CPU_HAS_FPU

The alternative would be to have dependencies like the following, possibly duplicated in several
spots:

config FPU
bool "Support floating point operations"
depends on SOC_FOO || SOC_BAR || ...
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Invisible helper symbols can also be useful without select. For example, the following code
defines a helper symbol that has the value y if the machine has some arbitrarily-defined “large”
amount of memory:

config LARGE_MEM
def_bool MEM_SIZE >= 64

Note

This is short for the following:
config LARGE_MEM
bool
default MEM_SIZE >= 64

select recommendations In summary, here are some recommended practices for select:

• Avoid selecting symbols with prompts or dependencies. Prefer depends on. If depends on
causes annoying bloat in configuration files, consider adding a Kconfig default for the most
common value.

Rare exceptions might include cases where you’re sure that the dependencies of the select-
ing and selected symbol will never drift out of sync, e.g. when dealing with two simple
symbols defined close to one another within the same if.

Common sense applies, but be aware that select often causes issues in practice. depends
on is usually a cleaner and safer solution.

• Select simple helper symbols without prompts and dependencies however much you like.
They’re a great tool for simplifying Kconfig files.

• An exemption are buses like I2C and SPI, and following the same thought process things like
MFD as well. Drivers on these buses should use select to allow the automatic activation of
the necessary bus drivers when devices on the bus are enabled in the devicetree.

config ADC_FOO
bool "external SPI ADC foo driver"
select SPI

(Lack of) conditional includes

if blocks add dependencies to each item within the if, as if depends on was used.

A common misunderstanding related to if is to think that the following code conditionally in-
cludes the file Kconfig.other:

if DEP
source "Kconfig.other"
endif

In reality, there are no conditional includes in Kconfig. if has no special meaning around a
source.

Note

Conditional includes would be impossible to implement, because if conditions may contain
(either directly or indirectly) forward references to symbols that haven’t been defined yet.
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Say that Kconfig.other above contains this definition:

config FOO
bool "Support foo"

In this case, FOO will end up with this definition:

config FOO
bool "Support foo"
depends on DEP

Note that it is redundant to add depends on DEP to the definition of FOO in Kconfig.other, because
the DEP dependency has already been added by if DEP.

In general, try to avoid adding redundant dependencies. They can make the structure of the
Kconfig files harder to understand, and also make changes more error-prone, since it can be
hard to spot that the same dependency is added twice.

“Stuck” symbols in menuconfig and guiconfig

There is a common subtle gotcha related to interdependent configuration symbols with prompts.
Consider these symbols:

config FOO
bool "Foo"

config STACK_SIZE
hex "Stack size"
default 0x200 if FOO
default 0x100

Assume that the intention here is to use a larger stack whenever FOO is enabled, and that the
configuration initially has FOO disabled. Also, remember that Zephyr creates an initial config-
uration in zephyr/.config in the build directory by merging configuration files (including e.g.
prj.conf). This configuration file exists before menuconfig or guiconfig is run.

When first entering the configuration interface, the value of STACK_SIZE is 0x100, as expected.
After enabling FOO, you might reasonably expect the value of STACK_SIZE to change to 0x200, but
it stays as 0x100.

To understand what’s going on, remember that STACK_SIZE has a prompt, meaning it is user-
configurable, and consider that all Kconfig has to go on from the initial configuration is this:

CONFIG_STACK_SIZE=0x100

Since Kconfig can’t know if the 0x100 value came from a default or was typed in by the user, it
has to assume that it came from the user. Since STACK_SIZE is user-configurable, the value from
the configuration file is respected, and any symbol defaults are ignored. This is why the value of
STACK_SIZE appears to be “frozen” at 0x100 when toggling FOO.

The right fix depends on what the intention is. Here’s some different scenarios with suggestions:

• If STACK_SIZE can always be derived automatically and does not need to be user-
configurable, then just remove the prompt:

config STACK_SIZE
hex
default 0x200 if FOO
default 0x100

Symbols without prompts ignore any value from the saved configuration.
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• If STACK_SIZE should usually be user-configurable, but needs to be set to 0x200 when FOO
is enabled, then disable its prompt when FOO is enabled, as described in optional prompts:

config STACK_SIZE
hex "Stack size" if !FOO
default 0x200 if FOO
default 0x100

• If STACK_SIZE should usually be derived automatically, but needs to be set to a custom value
in rare circumstances, then add another option for making STACK_SIZE user-configurable:

config CUSTOM_STACK_SIZE
bool "Use a custom stack size"
help
Enable this if you need to use a custom stack size. When disabled, a
suitable stack size is calculated automatically.

config STACK_SIZE
hex "Stack size" if CUSTOM_STACK_SIZE
default 0x200 if FOO
default 0x100

As long as CUSTOM_STACK_SIZE is disabled, STACK_SIZE will ignore the value from the saved
configuration.

It is a good idea to try out changes in the menuconfig or guiconfig interface, to make sure that
things behave the way you expect. This is especially true when making moderately complex
changes like these.

Assignments to promptless symbols in configuration files

Assignments to hidden (promptless, also called invisible) symbols in configuration files are al-
ways ignored. Hidden symbols get their value indirectly from other symbols, via e.g. default
and select.

A common source of confusion is opening the output configuration file (zephyr/.config), seeing
a bunch of assignments to hidden symbols, and assuming that those assignments must be re-
spected when the configuration is read back in by Kconfig. In reality, all assignments to hidden
symbols in zephyr/.config are ignored by Kconfig, like for other configuration files.

To understand why zephyr/.config still includes assignments to hidden symbols, it helps to re-
alize that zephyr/.config serves two separate purposes:

1. It holds the saved configuration, and

2. it holds configuration output. zephyr/.config is parsed by the CMake files to let them query
configuration settings, for example.

The assignments to hidden symbols in zephyr/.config are just configuration output. Kconfig
itself ignores assignments to hidden symbols when calculating symbol values.

Note

A minimal configuration, which can be generated from within the menuconfig and guiconfig
interfaces, could be considered closer to just a saved configuration, without the full configu-
ration output.
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depends on and string/int/hex symbols

depends on works not just for bool symbols, but also for string, int, and hex symbols (and for
choices).

The Kconfig definitions below will hide the FOO_DEVICE_FREQUENCY symbol and disable any con-
figuration output for it when FOO_DEVICE is disabled.

config FOO_DEVICE
bool "Foo device"

config FOO_DEVICE_FREQUENCY
int "Foo device frequency"
depends on FOO_DEVICE

In general, it’s a good idea to check that only relevant symbols are ever shown in the menucon-
fig/guiconfig interface. Having FOO_DEVICE_FREQUENCY show up when FOO_DEVICE is disabled
(and possibly hidden) makes the relationship between the symbols harder to understand, even
if code never looks at FOO_DEVICE_FREQUENCY when FOO_DEVICE is disabled.

menuconfig symbols

If the definition of a symbol FOO is immediately followed by other symbols that depend on FOO,
then those symbols become children of FOO. If FOO is defined with config FOO, then the children
are shown indented relative to FOO. Defining FOO with menuconfig FOO instead puts the children
in a separate menu rooted at FOO.

menuconfig has no effect on evaluation. It’s just a display option.

menuconfig can cut down on the number of menus and make the menu structure easier to nav-
igate. For example, say you have the following definitions:

menu "Foo subsystem"

config FOO_SUBSYSTEM
bool "Foo subsystem"

if FOO_SUBSYSTEM

config FOO_FEATURE_1
bool "Foo feature 1"

config FOO_FEATURE_2
bool "Foo feature 2"

config FOO_FREQUENCY
int "Foo frequency"

... lots of other FOO-related symbols

endif # FOO_SUBSYSTEM

endmenu

In this case, it’s probably better to get rid of the menu and turn FOO_SUBSYSTEM into a menuconfig
symbol:

menuconfig FOO_SUBSYSTEM
bool "Foo subsystem"

if FOO_SUBSYSTEM
(continues on next page)
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(continued from previous page)

config FOO_FEATURE_1
bool "Foo feature 1"

config FOO_FEATURE_2
bool "Foo feature 2"

config FOO_FREQUENCY
int "Foo frequency"

... lots of other FOO-related symbols

endif # FOO_SUBSYSTEM

In the menuconfig interface, this will be displayed as follows:

[*] Foo subsystem --->

Note that making a symbol without children a menuconfig is meaningless. It should be avoided,
because it looks identical to a symbol with all children invisible:

[*] I have no children ----
[*] All my children are invisible ----

Commas in macro arguments

Kconfig uses commas to separate macro arguments. This means a construct like this will fail:

config FOO
bool
default y if $(dt_chosen_enabled,"zephyr,bar")

To solve this problem, create a variable with the text and use this variable as argument, as fol-
lows:

DT_CHOSEN_ZEPHYR_BAR := zephyr,bar

config FOO
bool
default y if $(dt_chosen_enabled,$(DT_CHOSEN_ZEPHYR_BAR))

Checking changes in menuconfig/guiconfig

When adding new symbols or making other changes to Kconfig files, it is a good idea to look up
the symbols in menuconfig or guiconfig afterwards. To get to a symbol quickly, use the jump-to
feature (press /).

Here are some things to check:

• Are the symbols placed in a good spot? Check that they appear in a menu where they make
sense, close to related symbols.

If one symbol depends on another, then it’s often a good idea to place it right after the symbol
it depends on. It will then be shown indented relative to the symbol it depends on in the
menuconfig interface, and in a separate menu rooted at the symbol in guiconfig. This also
works if several symbols are placed after the symbol they depend on.

• Is it easy to guess what the symbols do from their prompts?
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• If many symbols are added, do all combinations of values they can be set to make sense?

For example, if two symbols FOO_SUPPORT and NO_FOO_SUPPORT are added, and both can be
enabled at the same time, then that makes a nonsensical configuration. In this case, it’s
probably better to have a single FOO_SUPPORT symbol.

• Are there any duplicated dependencies?

This can be checked by selecting a symbol and pressing ? to view the symbol information.
If there are duplicated dependencies, then use the Included via ... path shown in the
symbol information to figure out where they come from.

Checking changes with scripts/kconfig/lint.py

After you make Kconfig changes, you can use the scripts/kconfig/lint.py script to check for some
potential issues, like unused symbols and symbols that are impossible to enable. Use --help to
see available options.

Some checks are necessarily a bit heuristic, so a symbol being flagged by a check does not nec-
essarily mean there’s a problem. If a check returns a false positive e.g. due to token pasting in C
(CONFIG_FOO_##index##_BAR), just ignore it.

When investigating an unknown symbol FOO_BAR, it is a good idea to run git grep FOO_BAR to
look for references. It is also a good idea to search for some components of the symbol name
with e.g. git grep FOO and git grep BAR, as it can help uncover token pasting.

Style recommendations and shorthands

This section gives some style recommendations and explains some common Kconfig shorthands.

Factoring out common dependencies If a sequence of symbols/choices share a common de-
pendency, the dependency can be factored out with an if.

As an example, consider the following code:

config FOO
bool "Foo"
depends on DEP

config BAR
bool "Bar"
depends on DEP

choice
prompt "Choice"
depends on DEP

config BAZ
bool "Baz"

config QAZ
bool "Qaz"

endchoice

Here, the DEP dependency can be factored out like this:
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if DEP

config FOO
bool "Foo"

config BAR
bool "Bar"

choice
prompt "Choice"

config BAZ
bool "Baz"

config QAZ
bool "Qaz"

endchoice

endif # DEP

Note

Internally, the second version of the code is transformed into the first.

If a sequence of symbols/choices with shared dependencies are all in the same menu, the depen-
dency can be put on the menu itself:

menu "Foo features"
depends on FOO_SUPPORT

config FOO_FEATURE_1
bool "Foo feature 1"

config FOO_FEATURE_2
bool "Foo feature 2"

endmenu

If FOO_SUPPORT is n, the entire menu disappears.

Redundant defaults bool symbols implicitly default to n, and string symbols implicitly de-
fault to the empty string. Therefore, default n and default "" are (almost) always redundant.

The recommended style in Zephyr is to skip redundant defaults for bool and string symbols.
That also generates clearer documentation: (Implicitly defaults to n instead of n if <dependencies,
possibly inherited>).

Defaults should always be given for int and hex symbols, however, as they implicitly default to
the empty string. This is partly for compatibility with the C Kconfig tools, though an implicit 0
default might be less likely to be what was intended compared to other symbol types as well.

The one case where default n/default "" is not redundant is when defining a symbol in multiple
locations and wanting to override e.g. a default y on a later definition. Note that a default n
does not override a previously defined default y.

That is, FOO will be set to n in the example below. If the default n was omitted in the first
definition, FOO would have been set to y.
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config FOO
bool "foo"
default n

config FOO
bool "foo"
default y

In the following example FOO will get the value y.

config FOO
bool "foo"
default y

config FOO
bool "foo"
default n

Common Kconfig shorthands Kconfig has two shorthands that deal with prompts and de-
faults.

• <type> "prompt" is a shorthand for giving a symbol/choice a type and a prompt at the same
time. These two definitions are equal:

config FOO
bool "foo"

config FOO
bool
prompt "foo"

The first style, with the shorthand, is preferred in Zephyr.

• def_<type> <value> is a shorthand for giving a type and a value at the same time. These
two definitions are equal:

config FOO
def_bool BAR && BAZ

config FOO
bool
default BAR && BAZ

Using both the <type> "prompt" and the def_<type> <value> shorthand in the same definition
is redundant, since it gives the type twice.

The def_<type> <value> shorthand is generally only useful for symbols without prompts, and
somewhat obscure.

Note

For a symbol defined in multiple locations (e.g., in a Kconfig.defconfig file in Zephyr), it is
best to only give the symbol type for the “base” definition of the symbol, and to use default
(instead of def_<type> value) for the remaining definitions. That way, if the base definition
of the symbol is removed, the symbol ends up without a type, which generates a warning
that points to the other definitions. That makes the extra definitions easier to discover and
remove.
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Prompt strings For a Kconfig symbol that enables a driver/subsystem FOO, consider having
just “Foo” as the prompt, instead of “Enable Foo support” or the like. It will usually be clear in
the context of an option that can be toggled on/off, and makes things consistent.

Header comments and other nits A few formatting nits, to help keep things consistent:

• Use this format for any header comments at the top of Kconfig files:

# <Overview of symbols defined in the file, preferably in plain English>
(Blank line)
# Copyright (c) 2019 ...
# SPDX-License-Identifier: <License>
(Blank line)
(Kconfig definitions)

• Format comments as # Comment rather than #Comment
• Put a blank line before/after each top-level if and endif
• Use a single tab for each indentation

• Indent help text with two extra spaces

Lesser-known/used Kconfig features

This section lists some more obscure Kconfig behaviors and features that might still come in
handy.

The imply statement The imply statement is similar to select, but respects dependencies and
doesn’t force a value. For example, the following code could be used to enable USB keyboard
support by default on the FOO SoC, while still allowing the user to turn it off:

config SOC_FOO
bool "FOO SoC"
imply USB_KEYBOARD

...

config USB_KEYBOARD
bool "USB keyboard support"

imply acts like a suggestion, whereas select forces a value.

Optional prompts A condition can be put on a symbol’s prompt to make it optionally config-
urable by the user. For example, a value MASK that’s hardcoded to 0xFF on some boards and
configurable on others could be expressed as follows:

config MASK
hex "Bitmask" if HAS_CONFIGURABLE_MASK
default 0xFF

Note

This is short for the following:
config MASK
hex
prompt "Bitmask" if HAS_CONFIGURABLE_MASK
default 0xFF
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The HAS_CONFIGURABLE_MASK helper symbol would get selected by boards to indicate that MASK is
configurable. When MASK is configurable, it will also default to 0xFF.

Optional choices Defining a choice with the optional keyword allows the whole choice to be
toggled off to select none of the symbols:

choice
prompt "Use legacy protocol"
optional

config LEGACY_PROTOCOL_1
bool "Legacy protocol 1"

config LEGACY_PROTOCOL_2
bool "Legacy protocol 2"

endchoice

In the menuconfig interface, this will be displayed e.g. as [*] Use legacy protocol (Legacy
protocol 1) --->, where the choice can be toggled off to enable neither of the symbols.

visible if conditions Putting a visible if condition on a menu hides the menu and all the
symbols within it, while still allowing symbol default values to kick in.

As a motivating example, consider the following code:

menu "Foo subsystem"
depends on HAS_CONFIGURABLE_FOO

config FOO_SETTING_1
int "Foo setting 1"
default 1

config FOO_SETTING_2
int "Foo setting 2"
default 2

endmenu

When HAS_CONFIGURABLE_FOO is n, no configuration output is generated for FOO_SETTING_1 and
FOO_SETTING_2, as the code above is logically equivalent to the following code:

config FOO_SETTING_1
int "Foo setting 1"
default 1
depends on HAS_CONFIGURABLE_FOO

config FOO_SETTING_2
int "Foo setting 2"
default 2
depends on HAS_CONFIGURABLE_FOO

If we want the symbols to still get their default values even when HAS_CONFIGURABLE_FOO is n, but
not be configurable by the user, then we can use visible if instead:

menu "Foo subsystem"
visible if HAS_CONFIGURABLE_FOO

(continues on next page)
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(continued from previous page)

config FOO_SETTING_1
int "Foo setting 1"
default 1

config FOO_SETTING_2
int "Foo setting 2"
default 2

endmenu

This is logically equivalent to the following:

config FOO_SETTING_1
int "Foo setting 1" if HAS_CONFIGURABLE_FOO
default 1

config FOO_SETTING_2
int "Foo setting 2" if HAS_CONFIGURABLE_FOO
default 2

Note

See the optional prompts section for the meaning of the conditions on the prompts.

When HAS_CONFIGURABLE_FOO is n, we now get the following configuration output for the symbols,
instead of no output:

...
CONFIG_FOO_SETTING_1=1
CONFIG_FOO_SETTING_2=2
...

Other resources

The Intro to symbol values section in the Kconfiglib docstring goes over how symbols values are
calculated in more detail.

5.3.4 Custom Kconfig Preprocessor Functions

Kconfiglib supports custom Kconfig preprocessor functions written in Python. These functions
are defined in scripts/kconfig/kconfigfunctions.py.

Note

The official Kconfig preprocessor documentation can be found here.

Most of the custom preprocessor functions are used to get devicetree information into Kconfig.
For example, the default value of a Kconfig symbol can be fetched from a devicetree reg property.
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Devicetree-related Functions

The functions listed below are used to get devicetree information into Kconfig. See the Python
docstrings in scripts/kconfig/kconfigfunctions.py for detailed documentation.

The *_int version of each function returns the value as a decimal integer, while the *_hex version
returns a hexadecimal value starting with 0x.

$(dt_alias_enabled,<node alias>)
$(dt_chosen_bool_prop, <property in /chosen>, <prop>)
$(dt_chosen_enabled,<property in /chosen>)
$(dt_chosen_has_compat,<property in /chosen>)
$(dt_chosen_label,<property in /chosen>)
$(dt_chosen_partition,addr_hex,<chosen>[,<index>,<unit>])
$(dt_chosen_partition,addr_int,<chosen>[,<index>,<unit>])
$(dt_chosen_path,<property in /chosen>)
$(dt_chosen_reg_addr_hex,<property in /chosen>[,<index>,<unit>])
$(dt_chosen_reg_addr_int,<property in /chosen>[,<index>,<unit>])
$(dt_chosen_reg_size_hex,<property in /chosen>[,<index>,<unit>])
$(dt_chosen_reg_size_int,<property in /chosen>[,<index>,<unit>])
$(dt_compat_any_has_prop,<compatible string>,<prop>)
$(dt_compat_any_on_bus,<compatible string>,<prop>)
$(dt_compat_enabled,<compatible string>)
$(dt_compat_on_bus,<compatible string>,<bus>)
$(dt_gpio_hogs_enabled)
$(dt_has_compat,<compatible string>)
$(dt_has_compat_enabled,<compatible string>)
$(dt_node_array_prop_hex,<node path>,<prop>,<index>[,<unit>])
$(dt_node_array_prop_int,<node path>,<prop>,<index>[,<unit>])
$(dt_node_bool_prop,<node path>,<prop>)
$(dt_node_has_compat,<node path>,<compatible string>)
$(dt_node_has_prop,<node path>,<prop>)
$(dt_node_int_prop_hex,<node path>,<prop>[,<unit>])
$(dt_node_int_prop_int,<node path>,<prop>[,<unit>])
$(dt_node_parent,<node path>)
$(dt_node_ph_array_prop_hex,<node path>,<prop>,<index>,<cell>[,<unit>])
$(dt_node_ph_array_prop_int,<node path>,<prop>,<index>,<cell>[,<unit>])
$(dt_node_ph_prop_path,<node path>,<prop>)
$(dt_node_reg_addr_hex,<node path>[,<index>,<unit>])
$(dt_node_reg_addr_int,<node path>[,<index>,<unit>])
$(dt_node_reg_size_hex,<node path>[,<index>,<unit>])
$(dt_node_reg_size_int,<node path>[,<index>,<unit>])
$(dt_node_str_prop_equals,<node path>,<prop>,<value>)
$(dt_nodelabel_array_prop_has_val, <node label>, <prop>, <value>)
$(dt_nodelabel_bool_prop,<node label>,<prop>)
$(dt_nodelabel_enabled,<node label>)
$(dt_nodelabel_enabled_with_compat,<node label>,<compatible string>)
$(dt_nodelabel_has_compat,<node label>,<compatible string>)
$(dt_nodelabel_has_prop,<node label>,<prop>)
$(dt_nodelabel_path,<node label>)
$(dt_nodelabel_reg_addr_hex,<node label>[,<index>,<unit>])
$(dt_nodelabel_reg_addr_int,<node label>[,<index>,<unit>])
$(dt_nodelabel_reg_size_hex,<node label>[,<index>,<unit>])
$(dt_nodelabel_reg_size_int,<node label>[,<index>,<unit>])
$(dt_path_enabled,<node path>)
$(normalize_upper,<string>)
$(shields_list_contains,<shield name>)
$(substring,<string>,<start>[,<stop>])

Example Usage Assume that the devicetree for some board looks like this:
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{
soc {

#address-cells = <1>;
#size-cells = <1>;

spi0: spi@10014000 {
compatible = "sifive,spi0";
reg = <0x10014000 0x1000 0x20010000 0x3c0900>;
reg-names = "control", "mem";
...

};
};

The second entry in reg in spi@1001400 (<0x20010000 0x3c0900>) corresponds to mem, and has
the address 0x20010000. This address can be inserted into Kconfig as follows:

config FLASH_BASE_ADDRESS
default $(dt_node_reg_addr_hex,/soc/spi@1001400,1)

After preprocessor expansion, this turns into the definition below:

config FLASH_BASE_ADDRESS
default 0x20010000

5.3.5 Kconfig extensions

Zephyr uses the Kconfiglib implementation of Kconfig, which includes some Kconfig extensions:

• Default values can be applied to existing symbols without weakening the symbols depen-
dencies through the use of configdefault.

config FOO
bool "FOO"
depends on BAR

configdefault FOO
default y if FIZZ

The statement above is equivalent to:

config FOO
bool "Foo"
default y if FIZZ
depends on BAR

configdefault symbols cannot contain any fields other than default, however they can be
wrapped in if statements. The two statements below are equivalent:

configdefault FOO
default y if BAR

if BAR
configdefault FOO

default y
endif # BAR

• Environment variables in source statements are expanded directly, meaning no “bounce”
symbols with option env="ENV_VAR" need to be defined.
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Note

option env has been removed from the C tools as of Linux 4.18 as well.

The recommended syntax for referencing environment variables is $(FOO) rather than
$FOO. This uses the new Kconfig preprocessor. The $FOO syntax for expanding environment
variables is only supported for backwards compatibility.

• The source statement supports glob patterns and includes each matching file. A pattern is
required to match at least one file.

Consider the following example:

source "foo/bar/*/Kconfig"

If the pattern foo/bar/*/Kconfigmatches the files foo/bar/baz/Kconfig and foo/bar/qaz/
Kconfig, the statement above is equivalent to the following two source statements:

source "foo/bar/baz/Kconfig"
source "foo/bar/qaz/Kconfig"

If no files match the pattern, an error is generated.

The wildcard patterns accepted are the same as for the Python glob module.

For cases where it’s okay for a pattern to match no files (or for a plain filename to not
exist), a separate osource (optional source) statement is available. osource is a no-op if no
file matches.

Note

source and osource are analogous to include and -include in Make.

• An rsource statement is available for including files specified with a relative path. The path
is relative to the directory of the Kconfig file that contains the rsource statement.

As an example, assume that foo/Kconfig is the top-level Kconfig file, and that foo/bar/
Kconfig has the following statements:

source "qaz/Kconfig1"
rsource "qaz/Kconfig2"

This will include the two files foo/qaz/Kconfig1 and foo/bar/qaz/Kconfig2.

rsource can be used to create Kconfig “subtrees” that can be moved around freely.

rsource also supports glob patterns.

A drawback of rsource is that it can make it harder to figure out where a file gets included,
so only use it if you need it.

• An orsource statement is available that combines osource and rsource.

For example, the following statement will include Kconfig1 and Kconfig2 from the current
directory (if they exist):

orsource "Kconfig[12]"

• def_int, def_hex, and def_string keywords are available, analogous to def_bool. These
set the type and add a default at the same time.

Users interested in optimizing their configuration for security should refer to the Zephyr Security
Guide’s section on the Hardening Tool.
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5.4 Snippets

Snippets are a way to save build system settings in one place, and then use those settings when
you build any Zephyr application. This lets you save common configuration separately when it
applies to multiple different applications.

Some example use cases for snippets are:

• changing your board’s console backend from a “real” UART to a USB CDC-ACM UART

• enabling frequently-used debugging options

• applying interrelated configuration settings to your “main” CPU and a co-processor core on
an AMP SoC

The following pages document this feature.

5.4.1 Using Snippets

Tip

See Built-in snippets for a list of snippets that are provided by Zephyr.

Snippets have names. You use snippets by giving their names to the build system.

With west build

To use a snippet named foo when building an application app:

west build -S foo app

To use multiple snippets:

west build -S snippet1 -S snippet2 [...] app

With cmake

If you are running CMake directly instead of using west build, use the SNIPPET variable. This is
a whitespace- or semicolon-separated list of snippet names you want to use. For example:

cmake -Sapp -Bbuild -DSNIPPET="snippet1;snippet2" [...]
cmake --build build

Application required snippets

If an application should always be compiled with a given snippet, it can be added to that appli-
cation’s CMakeLists.txt file. For example:

if(NOT snippet1 IN_LIST SNIPPET)
set(SNIPPET snippet1 ${SNIPPET} CACHE STRING "" FORCE)

endif()

find_package(Zephyr ....)
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5.4.2 Built-in snippets

CDC-ACM Console Snippet (cdc-acm-console)

west build -S cdc-acm-console [...]

Overview This snippet redirects serial console output to a CDC ACM UART. The USB device
which should be used is configured using Devicetree.

Requirements Hardware support for:

• CONFIG_USB_DEVICE_STACK
• CONFIG_SERIAL
• CONFIG_CONSOLE
• CONFIG_UART_CONSOLE
• CONFIG_UART_LINE_CTRL

A devicetree node with node label zephyr_udc0 that points to an enabled USB device node with
driver support. This should look roughly like this in your devicetree:

zephyr_udc0: usbd@deadbeef {
compatible = "vnd,usb-device";
/* ... */

};

Nordic FLPR snippet with execution in place (nordic-flpr-xip)

Overview This snippet allows users to build Zephyr with the capability to boot Nordic FLPR
(Fast Lightweight Peripheral Processor) from application core. FLPR code is to be executed from
RRAM, so the FLPR image must be built for the xip board variant, or with CONFIG_XIP enabled.

Nordic FLPR snippet with execution from SRAM (nordic-flpr)

Overview This snippet allows users to build Zephyr with the capability to boot Nordic FLPR
(Fast Lightweight Peripheral Processor) from application core. FLPR code is to be executed from
SRAM, so the FLPR image must be built without the xip board variant, or with CONFIG_XIP dis-
abled.

Nordic boot PPR snippet with execution in place (nordic-ppr-xip)

Overview This snippet allows users to build Zephyr with the capability to boot Nordic PPR
(Peripheral Processor) from another core. PPR code is to be executed from MRAM, so the PPR
image must be built for the xip board variant, or with CONFIG_XIP enabled.

Nordic PPR snippet (nordic-ppr)

Overview This snippet allows users to build Zephyr with the capability to boot Nordic PPR
(Peripheral Processor) from another core.
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NUS Console Snippet (nus-console)

west build -S nus-console [...]

Overview This snippet redirects serial console output to a UART over NUS (Bluetooth LE) in-
stance. The Bluetooth Serial device used shall be configured using Devicetree.

Requirements Hardware support for:

• CONFIG_BT
• CONFIG_BT_PERIPHERAL
• CONFIG_BT_ZEPHYR_NUS
• CONFIG_SERIAL
• CONFIG_CONSOLE
• CONFIG_UART_CONSOLE

RAM Console Snippet (ram-console)

west build -S ram-console [...]

Overview This snippet redirects console output to a RAM buffer. The RAM console buffer is
a global array located in RAM region by default, whose address is unknown before building.
The RAM console driver also supports using a dedicated section for the RAM console buffer with
prefined address.

How to enable RAM console buffer section Add board dts overlay to this snippet to add prop-
erty zephyr,ram-console in the chosen node and memory-region node with compatible string
zephyr,memory-region as the following:

/ {
chosen {

zephyr,ram-console = &snippet_ram_console;
};

snippet_ram_console: memory@93d00000 {
compatible = "zephyr,memory-region";
reg = <0x93d00000 DT_SIZE_K(4)>;
zephyr,memory-region = "RAM_CONSOLE";

};
};

RTT Console Snippet (rtt-console)

west build -S rtt-console [...]

Overview This snippet redirects serial console output to SEGGER RTT.
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Requirements Hardware support for:

• CONFIG_HAS_SEGGER_RTT
• CONFIG_CONSOLE

Xen Dom0: universal snippet for XEN control domain

Overview This snippet allows user to build Zephyr as a Xen initial domain (Dom0). The feature
is implemented as configuration snippet to allow support for any compatible platform.

How to add support of a new board
• add board dts overlay to this snippet which deletes/adds memory and deletes UART nodes;

• add correct memory and hypervisor nodes, based on regions Xen picked for Domain-0 on
your setup.

Programming Correct snippet designation for Xen must be entered when you invoke west
build. For example:

west build -b qemu_cortex_a53 -S xen_dom0 samples/synchronization

QEMU example with Xen Overlay for qemu_cortex_a53 board, that is present in board/ direc-
tory of this snippet is QEMU Xen control domain example. To run such setup, you need to:

• fetch and build Xen (e.g. RELEASE-4.17.0) for arm64 platform

• take and compile sample device tree from example/ directory

• build your Zephyr sample/application with xen_dom0 snippet and start it as Xen control
domain

For starting you can use QEMU from Zephyr SDK by following command:

<path to Zephyr SDK>/sysroots/x86_64-pokysdk-linux/usr/bin/qemu-system-aarch64 -cpu cortex-
↪→a53 \
-m 6G -nographic -machine virt,gic-version=3,virtualization=true -chardev stdio,id=con,
↪→mux=on \
-serial chardev:con -mon chardev=con,mode=readline -pidfile qemu.pid \
-device loader,file=<path to Zephyr app build>/zephyr.bin,addr=0x40600000 \
-dtb <path to DTB>/xen.dtb -kernel <path to Xen build>/xen

This will start you a Xen hypervisor with your application as Xen control domain. To make
it usable, you can add zephyr-xenlib by Xen-troops library to your project. It’ll provide basic
domain management functionalities - domain creation and configuration.

5.4.3 Writing Snippets

• Basics

• Namespacing

• Where snippets are located

• Processing order
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• Devicetree overlays (.overlay)
• .conf files
• DTS_EXTRA_CPPFLAGS
• Board-specific settings

– By name

– By regular expression

Basics

Snippets are defined using YAML files named snippet.yml.

A snippet.yml file contains the name of the snippet, along with additional build system settings,
like this:

name: snippet-name
# ... build system settings go here ...

Build system settings go in other keys in the file as described later on in this page.

You can combine settings whenever they appear under the same keys. For example, you can
combine a snippet-specific devicetree overlay and a .conf file like this:

name: foo
append:
EXTRA_DTC_OVERLAY_FILE: foo.overlay
EXTRA_CONF_FILE: foo.conf

Namespacing

When writing devicetree overlays in a snippet, use snippet_<name> or snippet-<name> as a
namespace prefix when choosing names for node labels, node names, etc. This avoids names-
pace conflicts.

For example, if your snippet is named foo-bar, write your devicetree overlays like this:

chosen {
zephyr,baz = &snippet_foo_bar_dev;

};

snippet_foo_bar_dev: device@12345678 {
/* ... */

};

Where snippets are located

The build system looks for snippets in these places:

1. In directories configured by the SNIPPET_ROOT CMake variable. This always includes the
zephyr repository (so snippets/ is always a source of snippets) and the application source
directory (so <app>/snippets is also).

Additional directories can be added manually at CMake time.
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The variable is a whitespace- or semicolon-separated list of directories which may contain
snippet definitions.

For each directory in the list, the build system looks for snippet.yml files underneath a
subdirectory named snippets/, if one exists.

For example, if SNIPPET_ROOT is set to /foo;/bar, the build system will look for snippet.yml
files underneath the following subdirectories:

• /foo/snippets/
• /bar/snippets/

The snippet.yml files can be nested anywhere underneath these locations.

2. In any module whose module.yml file provides a snippet_root setting.

For example, in a zephyr module named baz, you can add this to your module.yml file:

settings:
snippet_root: .

And then any snippet.yml files in baz/snippets will automatically be discovered by the
build system, just as if the path to baz had appeared in SNIPPET_ROOT.

Processing order

Snippets are processed in the order they are listed in the SNIPPET variable, or in the order of the
-S arguments if using west.

To apply bar after foo:

cmake -Sapp -Bbuild -DSNIPPET="foo;bar" [...]
cmake --build build

The same can be achieved with west as follows:

west build -S foo -S bar [...] app

When multiple snippets set the same configuration, the configuration value set by the last pro-
cessed snippet ends up in the final configurations.

For instance, if foo sets CONFIG_FOO=1 and bar sets CONFIG_FOO=2 in the above example, the re-
sulting final configuration will be CONFIG_FOO=2 because bar is processed after foo.

This principle applies to both Kconfig fragments (.conf files) and devicetree overlays (.overlay
files).

Devicetree overlays (.overlay)

This snippet.yml adds foo.overlay to the build:

name: foo
append:
EXTRA_DTC_OVERLAY_FILE: foo.overlay

The path to foo.overlay is relative to the directory containing snippet.yml.
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.conf files

This snippet.yml adds foo.conf to the build:

name: foo
append:
EXTRA_CONF_FILE: foo.conf

The path to foo.conf is relative to the directory containing snippet.yml.

DTS_EXTRA_CPPFLAGS

This snippet.yml adds DTS_EXTRA_CPPFLAGS CMake Cache variables to the build:

name: foo
append:
DTS_EXTRA_CPPFLAGS: -DMY_DTS_CONFIGURE

Adding these flags enables control over the content of a devicetree file.

Board-specific settings

You can write settings that only apply to some boards.

The settings described here are applied in addition to snippet settings that apply to all boards.
(This is similar, for example, to the way that an application with both prj.conf and boards/
foo.conf files will use both .conf files in the build when building for board foo, instead of just
boards/foo.conf)

By name
name: ...
boards:
bar: # settings for board "bar" go here
append:

EXTRA_DTC_OVERLAY_FILE: bar.overlay
baz: # settings for board "baz" go here
append:

EXTRA_DTC_OVERLAY_FILE: baz.overlay

The above example uses bar.overlaywhen building for board bar, and baz.overlaywhen build-
ing for baz.

By regular expression You can enclose the board name in slashes (/) to match the name
against a regular expression in the CMake syntax. The regular expression must match the entire
board name.

For example:

name: foo
boards:
/my_vendor_.*/:
append:

EXTRA_DTC_OVERLAY_FILE: my_vendor.overlay

The above example uses devicetree overlay my_vendor.overlay when building for either board
my_vendor_board1 or my_vendor_board2. It would not use the overlay when building for either
another_vendor_board or x_my_vendor_board.
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5.4.4 Snippets Design

This page documents design goals for the snippets feature. Further information can be found in
Issue #51834.

• extensible: for example, it is possible to add board support for an existing built-in snippet
without modifying the zephyr repository

• composable: it is possible to use multiple snippets at once, for example using:

west build -S <snippet1> -S <snippet2> ...

• able to combine multiple types of configuration: snippets make it possible to store mul-
tiple different types of build system settings in one place, and apply them all together

• specializable: for example, it is possible to customize a snippet’s behavior for a particular
board, or board revision

• future-proof and backwards-compatible: arbitrary future changes to the snippets fea-
ture will be possible without breaking backwards compatibility for older snippets

• applicable to purely “software” changes: unlike the shields feature, snippets do not as-
sume the presence of a “daughterboard”, “shield”, “hat”, or any other type of external as-
sembly which is connected to the main board

• DRY (don’t repeat yourself): snippets allow you to skip unnecessary repetition; for exam-
ple, you can apply the same board-specific configuration to boards foo and bar by speci-
fying /(foo|bar)/ as a regular expression for the settings, which will then apply to both
boards

5.5 Zephyr CMake Package

The Zephyr CMake package is a convenient way to create a Zephyr-based application.

Note

The Application types section introduces the application types used in this page.

The Zephyr CMake package ensures that CMake can automatically select a Zephyr installation to
use for building the application, whether it is a Zephyr repository application, a Zephyrworkspace
application, or a Zephyr freestanding application.

When developing a Zephyr-based application, then a developer simply needs to write
find_package(Zephyr) in the beginning of the application CMakeLists.txt file.

To use the Zephyr CMake package it must first be exported to the CMake user package registry.
This is means creating a reference to the current Zephyr installation inside the CMake user pack-
age registry.

Ubuntu

In Linux, the CMake user package registry is found in:

~/.cmake/packages/Zephyr
macOS

In macOS, the CMake user package registry is found in:

~/.cmake/packages/Zephyr
Windows
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In Windows, the CMake user package registry is found in:

HKEY_CURRENT_USER\Software\Kitware\CMake\Packages\Zephyr
The Zephyr CMake package allows CMake to automatically find a Zephyr base. One or more
Zephyr installations must be exported. Exporting multiple Zephyr installations may be useful
when developing or testing Zephyr freestanding applications, Zephyr workspace application
with vendor forks, etc..

5.5.1 Zephyr CMake package export (west)

When installing Zephyr using west then it is recommended to export Zephyr using west
zephyr-export.

5.5.2 Zephyr CMake package export (without west)

Zephyr CMake package is exported to the CMake user package registry using the following com-
mands:

cmake -P <PATH-TO-ZEPHYR>/share/zephyr-package/cmake/zephyr_export.cmake

This will export the current Zephyr to the CMake user package registry.

To also export the Zephyr Unittest CMake package, run the following command in addition:

cmake -P <PATH-TO-ZEPHYR>/share/zephyrunittest-package/cmake/zephyr_export.cmake

5.5.3 Zephyr Base Environment Setting

The Zephyr CMake package search functionality allows for explicitly specifying a Zephyr base
using an environment variable.

To do this, use the following find_package() syntax:

find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})

This syntax instructs CMake to first search for Zephyr using the Zephyr base environment setting
ZEPHYR_BASE and then use the normal search paths.

5.5.4 Zephyr CMake Package Search Order

When Zephyr base environment setting is not used for searching, the Zephyr installation match-
ing the following criteria will be used:

• A Zephyr repository application will use the Zephyr in which it is located. For example:

<projects>/zephyr-workspace/zephyr
└── samples

└── hello_world

in this example, hello_world will use <projects>/zephyr-workspace/zephyr.

• Zephyr workspace application will use the Zephyr that share the same workspace. For
example:
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<projects>/zephyr-workspace
├── zephyr
├── ...
└── my_applications

└── my_first_app

in this example, my_first_app will use <projects>/zephyr-workspace/zephyr as this
Zephyr is located in the same workspace as the Zephyr workspace application.

Note

The root of a Zephyr workspace is identical to west topdir if the workspace was installed
using west

• Zephyr freestanding application will use the Zephyr registered in the CMake user package
registry. For example:

<projects>/zephyr-workspace-1
└── zephyr (Not exported to CMake)

<projects>/zephyr-workspace-2
└── zephyr (Exported to CMake)

<home>/app
├── CMakeLists.txt
├── prj.conf
└── src

└── main.c

in this example, only <projects>/zephyr-workspace-2/zephyr is exported to the CMake
package registry and therefore this Zephyr will be used by the Zephyr freestanding appli-
cation <home>/app.

If user wants to test the application with <projects>/zephyr-workspace-1/zephyr,
this can be done by using the Zephyr Base environment setting, meaning set
ZEPHYR_BASE=<projects>/zephyr-workspace-1/zephyr, before running CMake.

Note

The Zephyr package selected on the first CMake invocation will be used for all subse-
quent builds. To change the Zephyr package, for example to test the application using
Zephyr base environment setting, then it is necessary to do a pristine build first (See
Rebuilding an Application).

5.5.5 Zephyr CMake Package Version

When writing an application then it is possible to specify a Zephyr version number x.y.z that
must be used in order to build the application.

Specifying a version is especially useful for a Zephyr freestanding application as it ensures the
application is built with a minimal Zephyr version.

It also helps CMake to select the correct Zephyr to use for building, when there are multiple
Zephyr installations in the system.

For example:
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find_package(Zephyr 2.2.0)
project(app)

will require app to be built with Zephyr 2.2.0 as minimum. CMake will search all exported can-
didates to find a Zephyr installation which matches this version criteria.

Thus it is possible to have multiple Zephyr installations and have CMake automatically select
between them based on the version number provided, see CMake package version for details.

For example:

<projects>/zephyr-workspace-2.a
└── zephyr (Exported to CMake)

<projects>/zephyr-workspace-2.b
└── zephyr (Exported to CMake)

<home>/app
├── CMakeLists.txt
├── prj.conf
└── src

└── main.c

in this case, there are two released versions of Zephyr installed at their own workspaces.
Workspace 2.a and 2.b, corresponding to the Zephyr version.

To ensure app is built with minimum version 2.a the following find_package syntax may be
used:

find_package(Zephyr 2.a)
project(app)

Note that both 2.a and 2.b fulfill this requirement.

CMake also supports the keyword EXACT, to ensure an exact version is used, if that is required.
In this case, the application CMakeLists.txt could be written as:

find_package(Zephyr 2.a EXACT)
project(app)

In case no Zephyr is found which satisfies the version required, as example, the application
specifies

find_package(Zephyr 2.z)
project(app)

then an error similar to below will be printed:

Could not find a configuration file for package "Zephyr" that is compatible
with requested version "2.z".

The following configuration files were considered but not accepted:

<projects>/zephyr-workspace-2.a/zephyr/share/zephyr-package/cmake/ZephyrConfig.cmake,␣
↪→version: 2.a.0
<projects>/zephyr-workspace-2.b/zephyr/share/zephyr-package/cmake/ZephyrConfig.cmake,␣

↪→version: 2.b.0

Note

It can also be beneficial to specify a version number for Zephyr repository applications and
Zephyr workspace applications. Specifying a version in those cases ensures the application
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will only build if the Zephyr repository or workspace is matching. This can be useful to avoid
accidental builds when only part of a workspace has been updated.

5.5.6 Multiple Zephyr Installations (Zephyr workspace)

Testing out a new Zephyr version, while at the same time keeping the existing Zephyr in the
workspace untouched is sometimes beneficial.

Or having both an upstream Zephyr, Vendor specific, and a custom Zephyr in same workspace.

For example:

<projects>/zephyr-workspace
├── zephyr
├── zephyr-vendor
├── zephyr-custom
├── ...
└── my_applications

└── my_first_app

in this setup, find_package(Zephyr) has the following order of precedence for selecting which
Zephyr to use:

• Project name: zephyr
• First project, when Zephyr projects are ordered lexicographical, in this case.

– zephyr-custom
– zephyr-vendor

This means that my_first_app will use <projects>/zephyr-workspace/zephyr.

It is possible to specify a Zephyr preference list in the application.

A Zephyr preference list can be specified as:

set(ZEPHYR_PREFER "zephyr-custom" "zephyr-vendor")
find_package(Zephyr)

project(my_first_app)

the ZEPHYR_PREFER is a list, allowing for multiple Zephyrs. If a Zephyr is specified in the list, but
not found in the system, it is simply ignored and find_package(Zephyr) will continue to the next
candidate.

This allows for temporary creation of a new Zephyr release to be tested, without touching current
Zephyr. When testing is done, the zephyr-test folder can simply be removed. Such a CMake-
Lists.txt could look as:

set(ZEPHYR_PREFER "zephyr-test")
find_package(Zephyr)

project(my_first_app)

5.5.7 Zephyr Build Configuration CMake packages

There are two Zephyr Build configuration packages which provide control over the build settings
in Zephyr in a more generic way. These packages are:

• ZephyrBuildConfiguration: Applies to all Zephyr applications in the workspace
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• ZephyrAppConfiguration: Applies only to the application you are currently building

They are similar to the per-user .zephyrrc file that can be used to set Environment Variables, but
they set CMake variables instead. They also allow you to automatically share the build configu-
ration among all users through the project repository. They also allow more advanced use cases,
such as loading of additional CMake boilerplate code.

The Zephyr Build Configuration CMake packages will be loaded in the Zephyr boilerplate code
after initial properties and ZEPHYR_BASE has been defined, but before CMake code execution.
The ZephyrBuildConfiguration is included first and ZephyrAppConfiguration afterwards. That
means the application-specific package could override the workspace settings, if needed. This
allows the Zephyr Build Configuration CMake packages to setup or extend properties such as:
DTS_ROOT, BOARD_ROOT, TOOLCHAIN_ROOT / other toolchain setup, fixed overlays, and any other
property that can be controlled. It also allows inclusion of additional boilerplate code.

To provide a ZephyrBuildConfiguration or ZephyrAppConfiguration, create ZephyrBuildConfig.
cmake and/or ZephyrAppConfig.cmake respectively and place them in the appropriate location.
The CMake find_package mechanism will search for these files with the steps below. Other de-
fault CMake package search paths and hints are disabled and there is no version checking im-
plemented for these packages. This also means that these packages cannot be installed in the
CMake package registry. The search steps are:

1. If ZephyrBuildConfiguration_ROOT, or ZephyrAppConfiguration_ROOT respectively, is set,
search within this prefix path. If a matching file is found, execute this file. If no matching
file is found, go to step 2.

2. Search within ${ZEPHYR_BASE}/../*, or ${APPLICATION_SOURCE_DIR} respectively. If a
matching file is found, execute this file. If no matching file is found, abort the search.

It is recommended to place the files in the default paths from step 2, but with the
<PackageName>_ROOT variables you have the flexibility to place them anywhere. This is especially
necessary for freestanding applications, for which the default path to ZephyrBuildConfiguration
usually does not work. In this case the <PackageName>_ROOT variables can be set on the CMake
command line, before find_package(Zephyr ...), as environment variable or from a CMake
cache initialization file with the -C command line option.

Note

The <PackageName>_ROOT variables, as well as the default paths, are just the prefixes to the
search path. These prefixes get combined with additional path suffixes, which together form
the actual search path. Any combination that honors the CMake package search procedure is
valid and will work.

If you want to completely disable the search for these packages, you can
use the special CMake CMAKE_DISABLE_FIND_PACKAGE_<PackageName> variable
for that. Just set CMAKE_DISABLE_FIND_PACKAGE_ZephyrBuildConfiguration or
CMAKE_DISABLE_FIND_PACKAGE_ZephyrAppConfiguration to TRUE to disable the package.

An example folder structure could look like this:

<projects>/zephyr-workspace
├── zephyr
├── ...
├── manifest repo (can be named anything)
│ └── cmake/ZephyrBuildConfig.cmake
├── ...
└── zephyr application

└── share/zephyrapp-package/cmake/ZephyrAppConfig.cmake

A sample ZephyrBuildConfig.cmake can be seen below.
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# ZephyrBuildConfig.cmake sample code

# To ensure final path is absolute and does not contain ../.. in variable.
get_filename_component(APPLICATION_PROJECT_DIR

${CMAKE_CURRENT_LIST_DIR}/../../..
ABSOLUTE

)

# Add this project to list of board roots
list(APPEND BOARD_ROOT ${APPLICATION_PROJECT_DIR})

# Default to GNU Arm Embedded toolchain if no toolchain is set
if(NOT ENV{ZEPHYR_TOOLCHAIN_VARIANT})

set(ZEPHYR_TOOLCHAIN_VARIANT gnuarmemb)
find_program(GNU_ARM_GCC arm-none-eabi-gcc)
if(NOT ${GNU_ARM_GCC} STREQUAL GNU_ARM_GCC-NOTFOUND)

# The toolchain root is located above the path to the compiler.
get_filename_component(GNUARMEMB_TOOLCHAIN_PATH ${GNU_ARM_GCC}/../.. ABSOLUTE)

endif()
endif()

5.5.8 Zephyr CMake package source code

The Zephyr CMake package source code in share/zephyr-package/cmake and
share/zephyrunittest-package/cmake contains the CMake config package which is used by
the CMake find_package function.

It also contains code for exporting Zephyr as a CMake config package.

The following is an overview of the files in these directories:

ZephyrConfigVersion.cmake
The Zephyr package version file. This file is called by CMake to determine if this installation
fulfils the requirements specified by user when calling find_package(Zephyr ...). It is also
responsible for detection of Zephyr repository or workspace only installations.

ZephyrUnittestConfigVersion.cmake
Same responsibility as ZephyrConfigVersion.cmake, but for unit tests. Includes
ZephyrConfigVersion.cmake.

ZephyrConfig.cmake
The Zephyr package file. This file is called by CMake to for the package meeting which
fulfils the requirements specified by user when calling find_package(Zephyr ...). This
file is responsible for sourcing of boilerplate code.

ZephyrUnittestConfig.cmake
Same responsibility as ZephyrConfig.cmake, but for unit tests. Includes ZephyrConfig.
cmake.

zephyr_package_search.cmake
Common file used for detection of Zephyr repository and workspace candidates. Used by
ZephyrConfigVersion.cmake and ZephyrConfig.cmake for common code.

zephyr_export.cmake
See Zephyr CMake package export (without west).

5.6 Sysbuild (System build)

Sysbuild is a higher-level build system that can be used to combine multiple other build systems
together. It is a higher-level layer that combines one or more Zephyr build systems and optional

1620 Chapter 5. Build and Configuration Systems

https://github.com/zephyrproject-rtos/zephyr/blob/main/share/zephyr-package/cmake
https://github.com/zephyrproject-rtos/zephyr/blob/main/share/zephyrunittest-package/cmake


Zephyr Project Documentation, Release 3.7.99

additional build systems into a hierarchical build system.

For example, you can use sysbuild to build a Zephyr application together with the MCUboot
bootloader, flash them both onto your device, and debug the results.

Sysbuild works by configuring and building at least a Zephyr application and, optionally, as many
additional projects as you want. The additional projects can be either Zephyr applications or
other types of builds you want to run.

Like Zephyr’s build system, sysbuild is written in CMake and uses Kconfig.

5.6.1 Definitions

The following are some key concepts used in this document:

Single-image build
When sysbuild is used to create and manage just one Zephyr application’s build system.

Multi-image build
When sysbuild is used to manage multiple build systems. The word “image” is used because
your main goal is usually to generate the binaries of the firmware application images from
each build system.

Domain
Every Zephyr CMake build system managed by sysbuild.

Multi-domain
When more than one Zephyr CMake build system (domain) is managed by sysbuild.

5.6.2 Architectural Overview

This figure is an overview of sysbuild’s inputs, outputs, and user interfaces:

west build... Sysbuild CMake (share/sysbuild/CMakeLists.txt)

<app> CMake build MCUboot build

BOARD... BOARD...

MCUboot

enabled

runners.yaml
elf, bin, hex,...

runners.yaml
elf, bin, hex,...

Actor

BOARD...

Kconfig

SB_CONF_FILE

domains.yaml

Board specific build...

BOARD...

enabled

elf, bin, hex,...
runners.yaml

Board / sample Kconfig

Extra image

Board / sample CMake

Text is not SVG - cannot display
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The following are some key sysbuild features indicated in this figure:

• You can run sysbuild either with west build or directly via cmake.

• You can use sysbuild to generate application images from each build system, shown above
as ELF, BIN, and HEX files.

• You can configure sysbuild or any of the build systems it manages using various configura-
tion variables. These variables are namespaced so that sysbuild can direct them to the right
build system. In some cases, such as the BOARD variable, these are shared among multiple
build systems.

• Sysbuild itself is also configured using Kconfig. For example, you can instruct sysbuild to
build the MCUboot bootloader, as well as to build and link your main Zephyr application as
an MCUboot-bootable image, using sysbuild’s Kconfig files.

• Sysbuild integrates with west’s Building, Flashing and Debugging commands. It does this
by managing the Flash and debug runners, and specifically the runners.yaml files that each
Zephyr build system will contain. These are packaged into a global view of how to flash
and debug each build system in a domains.yaml file generated and managed by sysbuild.

• Build names are prefixed with the target name and an underscore, for example the sysbuild
target is prefixed with sysbuild_ and if MCUboot is enabled as part of sysbuild, it will be
prefixed with mcuboot_. This also allows for running things like menuconfig with the prefix,
for example (if using ninja) ninja sysbuild_menuconfig to configure sysbuild or (if using
make) make mcuboot_menuconfig.

5.6.3 Building with sysbuild

As mentioned above, you can run sysbuild via west build or cmake.

west build
Here is an example. For details, see Sysbuild (multi-domain builds) in the west build documen-
tation.

west build -b reel_board --sysbuild samples/hello_world

Tip

To configure west build to use --sysbuild by default from now on, run:
west config build.sysbuild True

Since sysbuild supports both single- and multi-image builds, this lets you use sysbuild all the
time, without worrying about what type of build you are running.

To turn this off, run this before generating your build system:
west config build.sysbuild False

To turn this off for just one west build command, run:
west build --no-sysbuild ...

cmake
Here is an example using CMake and Ninja.

cmake -Bbuild -GNinja -DBOARD=reel_board -DAPP_DIR=samples/hello_world share/sysbuild
ninja -Cbuild
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To use sysbuild directly with CMake, you must specify the sysbuild project as the source folder,
and give -DAPP_DIR=<path-to-sample> as an extra CMake argument. APP_DIR is the path to the
main Zephyr application managed by sysbuild.

5.6.4 Configuration namespacing

When building a single Zephyr application without sysbuild, all CMake cache settings and Kcon-
fig build options given on the command line as -D<var>=<value> or -DCONFIG_<var>=<value>
are handled by the Zephyr build system.

However, when sysbuild combines multiple Zephyr build systems, there could be Kconfig settings
exclusive to sysbuild (and not used by any of the applications). To handle this, sysbuild has
namespaces for configuration variables. You can use these namespaces to direct settings either
to sysbuild itself or to a specific Zephyr application managed by sysbuild using the information
in these sections.

The following example shows how to build hello_world with MCUboot enabled, applying to both
images debug optimizations:

west build

west build -b reel_board --sysbuild samples/hello_world -- -DSB_CONFIG_BOOTLOADER_MCUBOOT=y␣
↪→-DCONFIG_DEBUG_OPTIMIZATIONS=y -Dmcuboot_CONFIG_DEBUG_OPTIMIZATIONS=y

cmake

cmake -Bbuild -GNinja -DBOARD=reel_board -DAPP_DIR=samples/hello_world -DSB_CONFIG_
↪→BOOTLOADER_MCUBOOT=y -DCONFIG_DEBUG_OPTIMIZATIONS=y -Dmcuboot_CONFIG_DEBUG_
↪→OPTIMIZATIONS=y share/sysbuild
ninja -Cbuild

See the following subsections for more information.

CMake variable namespacing

CMake variable settings can be passed to CMake using -D<var>=<value> on the com-
mand line. You can also set Kconfig options via CMake as -DCONFIG_<var>=<value> or
-D<namespace>_CONFIG_<var>=<value>.

Since sysbuild is the entry point for the build system, and sysbuild is written in CMake, all CMake
variables are first processed by sysbuild.

Sysbuild creates a namespace for each domain. The namespace prefix is the domain’s application
name. See Adding Zephyr applications to sysbuild for more information.

To set the variable <var> in the namespace <namespace>, use this syntax:

-D<namespace>_<var>=<value>

For example, to set the CMake variable FOO in the my_sample application build system to the value
BAR, run the following commands:

west build

west build --sysbuild ... -- -Dmy_sample_FOO=BAR

cmake

cmake -Dmy_sample_FOO=BAR ...
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Kconfig namespacing

To set the sysbuild Kconfig option <var> to the value <value>, use this syntax:

-DSB_CONFIG_<var>=<value>

In the previous example, SB_CONFIG is the namespace prefix for sysbuild’s Kconfig options.

To set a Zephyr application’s Kconfig option instead, use this syntax:

-D<namespace>_CONFIG_<var>=<value>

In the previous example, <namespace> is the application name discussed above in CMake variable
namespacing.

For example, to set the Kconfig option FOO in the my_sample application build system to the value
BAR, run the following commands:

west build

west build --sysbuild ... -- -Dmy_sample_CONFIG_FOO=BAR

cmake

cmake -Dmy_sample_CONFIG_FOO=BAR ...

Tip

When no <namespace> is used, the Kconfig setting is passed to the main Zephyr application
my_sample.

This means that passing -DCONFIG_<var>=<value> and -Dmy_sample_CONFIG_<var>=<value>
are equivalent.

This allows you to build the same application with or without sysbuild using the same syntax
for setting Kconfig values at CMake time. For example, the following commands will work in
the same way:
west build -b <board> my_sample -- -DCONFIG_FOO=BAR

west build -b <board> --sysbuild my_sample -- -DCONFIG_FOO=BAR

5.6.5 Sysbuild flashing using west flash

You can use west flash to flash applications with sysbuild.

When invoking west flash on a build consisting of multiple images, each image is flashed in
sequence. Extra arguments such as --runner jlink are passed to each invocation.

For more details, see Multi-domain flashing.

5.6.6 Sysbuild debugging using west debug

You can use west debug to debug the main application, whether you are using sysbuild or not.
Just follow the existing west debug guide to debug the main sample.

To debug a different domain (Zephyr application), such as mcuboot, use the --domain argument,
as follows:
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west debug --domain mcuboot

For more details, see Multi-domain debugging.

5.6.7 Building a sample with MCUboot

Sysbuild supports MCUboot natively.

To build a sample like hello_world with MCUboot, enable MCUboot and build and flash the sam-
ple as follows:

west build

west build -b reel_board --sysbuild samples/hello_world -- -DSB_CONFIG_BOOTLOADER_MCUBOOT=y

cmake

cmake -Bbuild -GNinja -DBOARD=reel_board -DAPP_DIR=samples/hello_world -DSB_CONFIG_
↪→BOOTLOADER_MCUBOOT=y share/sysbuild
ninja -Cbuild

This builds hello_world and mcuboot for the reel_board, and then flashes both the mcuboot and
hello_world application images to the board.

More detailed information regarding the use of MCUboot with Zephyr can be found in the MCU-
boot with Zephyr documentation page on the MCUboot website.

Note

The deprecated MCUBoot Kconfig option CONFIG_ZEPHYR_TRY_MASS_ERASE will perform a full
chip erase when flashed. If this option is enabled, then flashing only MCUBoot, for example
using west flash --domain mcuboot, may erase the entire flash, including the main applica-
tion image.

5.6.8 Sysbuild Kconfig file

You can set sysbuild’s Kconfig options for a single application using configuration files. By de-
fault, sysbuild looks for a configuration file named sysbuild.conf in the application top-level
directory.

In the following example, there is a sysbuild.conf file that enables building and flashing with
MCUboot whenever sysbuild is used:

<home>/application
├── CMakeLists.txt
├── prj.conf
└── sysbuild.conf

SB_CONFIG_BOOTLOADER_MCUBOOT=y

You can set a configuration file to use with the -DSB_CONF_FILE=<sysbuild-conf-file> CMake
build setting.

For example, you can create sysbuild-mcuboot.conf and then specify this file when building
with sysbuild, as follows:

west build
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west build -b reel_board --sysbuild samples/hello_world -- -DSB_CONF_FILE=sysbuild-mcuboot.
↪→conf

cmake

cmake -Bbuild -GNinja -DBOARD=reel_board -DAPP_DIR=samples/hello_world -DSB_CONF_
↪→FILE=sysbuild-mcuboot.conf share/sysbuild
ninja -Cbuild

5.6.9 Sysbuild targets

Sysbuild creates build targets for each image (including sysbuild itself) for the following modes:

• menuconfig

• hardenconfig

• guiconfig

For the main application (as is the same without using sysbuild) these can be ran normally with-
out any prefix. For other images (including sysbuild), these are ran with a prefix of the image
name and an underscore e.g. sysbuild_ or mcuboot_, using ninja or make - for details on how
to run image build targets that do not have mapped build targets in sysbuild, see the Dedicated
image build targets section.

5.6.10 Dedicated image build targets

Not all build targets for images are given equivalent prefixed build targets when sysbuild is used,
for example build targets like ram_report, rom_report, footprint, puncover and pahole are not
exposed. When using Trusted Firmware, this includes build targets prefix with tfm_ and bl2_, for
example: tfm_rom_report and bl2_ram_report. To run these build targets, the build directory of
the image can be provided to west/ninja/make along with the name of the build target to execute
and it will run.

west
Assuming that a project has been configured and built using west using sysbuild with mcuboot
enabled in the default build folder location, the rom_report build target for mcuboot can be ran
with:

west build -d build/mcuboot -t rom_report

ninja
Assuming that a project has been configured using cmake and built using ninja using sysbuild
with mcuboot enabled, the rom_report build target for mcuboot can be ran with:

ninja -C mcuboot rom_report

make
Assuming that a project has been configured using cmake and built using make using sysbuild
with mcuboot enabled, the rom_report build target for mcuboot can be ran with:

make -C mcuboot rom_report
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5.6.11 Adding Zephyr applications to sysbuild

You can use the ExternalZephyrProject_Add() function to add Zephyr applications as sysbuild
domains. Call this CMake function from your application’s sysbuild.cmake file, or any other
CMake file you know will run as part sysbuild CMake invocation.

Targeting the same board

To include my_sample as another sysbuild domain, targeting the same board as the main image,
use this example:

ExternalZephyrProject_Add(
APPLICATION my_sample
SOURCE_DIR <path-to>/my_sample

)

This could be useful, for example, if your board requires you to build and flash an SoC-specific
bootloader along with your main application.

Targeting a different board

In sysbuild and Zephyr CMake build system a board may refer to:

• A physical board with a single core SoC.

• A specific core on a physical board with a multi-core SoC, such as nrf5340dk_nrf5340.

• A specific SoC on a physical board with multiple SoCs, such as nrf9160dk_nrf9160 and
nrf9160dk_nrf52840.

If your main application, for example, is built for mps2_an521, and your helper application must
target the mps2_an521_remote board (cpu1), add a CMake function call that is structured as fol-
lows:

ExternalZephyrProject_Add(
APPLICATION my_sample
SOURCE_DIR <path-to>/my_sample
BOARD mps2_an521_remote

)

This could be useful, for example, if your main application requires another helper Zephyr ap-
plication to be built and flashed alongside it, but the helper runs on another core in your SoC.

Targeting conditionally using Kconfig

You can control whether extra applications are included as sysbuild domains using Kconfig.

If the extra application image is specific to the board or an application, you can create two addi-
tional files: sysbuild.cmake and Kconfig.sysbuild.

For an application, this would look like this:

<home>/application
├── CMakeLists.txt
├── prj.conf
├── Kconfig.sysbuild
└── sysbuild.cmake

In the previous example, sysbuild.cmake would be structured as follows:
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if(SB_CONFIG_SECOND_SAMPLE)
ExternalZephyrProject_Add(
APPLICATION second_sample
SOURCE_DIR <path-to>/second_sample

)
endif()

Kconfig.sysbuild would be structured as follows:

source "sysbuild/Kconfig"

config SECOND_SAMPLE
bool "Second sample"
default y

This will include second_sample by default, while still allowing you to disable it using the Kconfig
option SECOND_SAMPLE.

For more information on setting sysbuild Kconfig options, see Kconfig namespacing.

Building without flashing

You can mark my_sample as a build-only application in this manner:

ExternalZephyrProject_Add(
APPLICATION my_sample
SOURCE_DIR <path-to>/my_sample
BUILD_ONLY TRUE

)

As a result, my_sample will be built as part of the sysbuild build invocation, but it will be excluded
from the default image sequence used by west flash. Instead, you may use the outputs of this
domain for other purposes - for example, to produce a secondary image for DFU, or to merge
multiple images together.

You can also replace TRUE with another boolean constant in CMake, such as a Kconfig option,
which would make my_sample conditionally build-only.

Note

Applications marked as build-only can still be flashed manually, using west flash --domain
my_sample. As such, the BUILD_ONLY option only controls the default behavior of west flash.

Zephyr application configuration

When adding a Zephyr application to sysbuild, such as MCUboot, then the configuration files
from the application (MCUboot) itself will be used.

When integrating multiple applications with each other, then it is often necessary to make ad-
justments to the configuration of extra images.

Sysbuild gives users the ability of creating Kconfig fragments or devicetree overlays that will be
used together with the application’s default configuration. Sysbuild also allows users to change
Application Configuration Directory in order to give users full control of an image’s configuration.
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Zephyr application Kconfig fragment and devicetree overlay In the folder of the main ap-
plication, create a Kconfig fragment or a devicetree overlay under a sysbuild folder, where the
name of the file is <image>.conf or <image>.overlay, for example if your main application in-
cludes my_sample then create a sysbuild/my_sample.conf file or a devicetree overlay sysbuild/
my_sample.overlay.

A Kconfig fragment could look as:

# sysbuild/my_sample.conf
CONFIG_FOO=n

Zephyr application configuration directory In the folder of the main application, create a
new folder under sysbuild/<image>/. This folder will then be used as APPLICATION_CONFIG_DIR
when building <image>. As an example, if your main application includes my_sample then create
a sysbuild/my_sample/ folder and place any configuration files in there as you would normally
do:

<home>/application
├── CMakeLists.txt
├── prj.conf
└── sysbuild

└── my_sample
├── prj.conf
├── app.overlay
└── boards

├── <board_A>.conf
├── <board_A>.overlay
├── <board_B>.conf
└── <board_B>.overlay

All configuration files under the sysbuild/my_sample/ folder will now be used when my_sample
is included in the build, and the default configuration files for my_sample will be ignored.

This give you full control on how images are configured when integrating those with applica-
tion.

Sysbuild file suffix support File suffix support through the makevar:FILE_SUFFIX is sup-
ported in sysbuild (see File Suffixes for details on this feature in applications). For sysbuild, a
globally provided option will be passed down to all images. In addition, the image configuration
file will have this value applied and used (instead of the build type) if the file exists.

Given the example project:

<home>/application
├── CMakeLists.txt
├── prj.conf
├── sysbuild.conf
├── sysbuild_test_key.conf
└── sysbuild

├── mcuboot.conf
├── mcuboot_max_log.conf
└── my_sample.conf

• If FILE_SUFFIX is not defined and both mcuboot and my_sample images are included, mcuboot
will use the mcuboot.conf Kconfig fragment file and my_sample will use the my_sample.conf
Kconfig fragment file. Sysbuild itself will use the sysbuild.conf Kconfig fragment file.

• If FILE_SUFFIX is set to max_log and both mcuboot and my_sample images are included, mcu-
boot will use the mcuboot_max_log.conf Kconfig fragment file and my_sample will use the
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my_sample.conf Kconfig fragment file (as it will fallback to the file without the suffix). Sys-
build itself will use the sysbuild.conf Kconfig fragment file (as it will fallback to the file
without the suffix).

• If FILE_SUFFIX is set to test_key and both mcuboot and my_sample images are included, mcu-
bootwill use the mcuboot.confKconfig fragment file and my_samplewill use the my_sample.
conf Kconfig fragment file (as it will fallback to the files without the suffix). Sysbuild itself
will use the sysbuild_test_key.conf Kconfig fragment file. This can be used to apply a dif-
ferent sysbuild configuration, for example to use a different signing key in MCUboot and
when signing the main application.

The FILE_SUFFIX can also be applied only to single images by prefixing the variable with the
image name:

west build

west build -b reel_board --sysbuild file_suffix_example -- -DSB_CONFIG_BOOTLOADER_MCUBOOT=y␣
↪→-Dmcuboot_FILE_SUFFIX="max_log"

cmake

cmake -Bbuild -GNinja -DBOARD=reel_board -DAPP_DIR=<app_dir> -DSB_CONFIG_BOOTLOADER_
↪→MCUBOOT=y -Dmcuboot_FILE_SUFFIX="max_log" share/sysbuild
ninja -Cbuild

Adding dependencies among Zephyr applications

Sometimes, in a multi-image build, you may want certain Zephyr applications to be configured
or flashed in a specific order. For example, if you need some information from one applica-
tion’s build system to be available to another’s, then the first thing to do is to add a configuration
dependency between them. Separately, you can also add flashing dependencies to control the
sequence of images used by west flash; this could be used if a specific flashing order is required
by an SoC, a _runner_, or something else.

By default, sysbuild will configure and flash applications in the order that they are added,
as ExternalZephyrProject_Add() calls are processed by CMake. You can use the sys-
build_add_dependencies() function to make adjustments to this order, according to your needs.
Its usage is similar to the standard add_dependencies() function in CMake.

Here is an example of adding configuration dependencies for my_sample:

sysbuild_add_dependencies(IMAGE CONFIGURE my_sample sample_a sample_b)

This will ensure that sysbuild will run CMake for sample_a and sample_b (in some order) before
doing the same for my_sample, when building these domains in a single invocation.

If you want to add flashing dependencies instead, then do it like this:

sysbuild_add_dependencies(IMAGE FLASH my_sample sample_a sample_b)

As a result, my_samplewill be flashed after sample_a and sample_b (in some order), when flashing
these domains in a single invocation.

Note

Adding flashing dependencies is not allowed for build-only applications. If my_sample had
been created with BUILD_ONLY TRUE, then the above call to sysbuild_add_dependencies()
would have produced an error.
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5.6.12 Adding non-Zephyr applications to sysbuild

You can include non-Zephyr applications in a multi-image build using the standard CMake mod-
ule ExternalProject. Please refer to the CMake documentation for usage details.

When using ExternalProject, the non-Zephyr application will be built as part of the sysbuild
build invocation, but west flash or west debug will not be aware of the application. Instead,
you must manually flash and debug the application.

5.6.13 Extending sysbuild

Sysbuild can be extended by other modules to give it additional functionality or include other
configuration or images, an example could be to add support for another bootloader or external
signing method.

Modules can be extended by adding custom CMake or Kconfig files as normal modules do, this
will cause the files to be included in each image that is part of a project. Alternatively, there are
sysbuild-specific module extension files which can be used to include CMake and Kconfig files for
the overall sysbuild image itself, this is where e.g. a custom image for a particular board or SoC
can be added.

5.7 Application version management

Zephyr supports an application version management system for applications which is built
around the system that Zephyr uses for its own version system management. This allows appli-
cations to define a version file and have application (or module) code include the auto-generated
file and be able to access it, just as they can with the kernel version. This version information is
available from multiple scopes, including:

• Code (C/C++)

• Kconfig

• CMake

which makes it a very versatile system for lifecycle management of applications. In addition,
it can be used when building applications which target supported bootloaders (e.g. MCUboot)
allowing images to be signed with correct version of the application automatically - no manual
signing steps are required.

5.7.1 VERSION file

Application version information is set on a per-application basis in a file named VERSION, which
must be placed at the base directory of the application, where the CMakeLists.txt file is located.
This is a simple text file which contains the various version information fields, each on a newline.
The basic VERSION file has the following structure:

VERSION_MAJOR =
VERSION_MINOR =
PATCHLEVEL =
VERSION_TWEAK =
EXTRAVERSION =

Each field and the values it supports is described below. Zephyr limits the value of each numeric
field to a single byte (note that there may be further restrictions depending upon what the version
is used for, e.g. bootloaders might only support some of these fields or might place limits on the
maximum values of fields):
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Field Data type
VERSION_MAJOR Numerical (0-255)
VERSION_MINOR Numerical (0-255)
PATCHLEVEL Numerical (0-255)
VERSION_TWEAK Numerical (0-255)
EXTRAVERSION Alphanumerical (Lowercase a-z and 0-9)

When an application is configured using CMake, the version file will be automatically processed,
and will be checked automatically each time the version is changed, so CMake does not need to
be manually re-ran for changes to this file.

For the sections below, examples are provided for the following VERSION file:

VERSION_MAJOR = 1
VERSION_MINOR = 2
PATCHLEVEL = 3
VERSION_TWEAK = 4
EXTRAVERSION = unstable

5.7.2 Use in code

To use the version information in application code, the version file must be included, then the
fields can be freely used. The include file name is app_version.h (no path is needed), the follow-
ing defines are available:

Define Type Field(s) Example
APPVERSION Nu-

meri-
cal

VERSION_MAJOR (left shifted by 24 bits), VERSION_MINOR
(left shifted by 16 bits), PATCHLEVEL (left shifted by 8
bits), VERSION_TWEAK

0x1020304

APP_VERSION_NUMBERNu-
meri-
cal

VERSION_MAJOR (left shifted by 16 bits), VERSION_MINOR
(left shifted by 8 bits), PATCHLEVEL

0x10203

APP_VERSION_MAJORNu-
meri-
cal

VERSION_MAJOR 1

APP_VERSION_MINORNu-
meri-
cal

VERSION_MINOR 2

APP_PATCHLEVELNu-
meri-
cal

PATCHLEVEL 3

APP_TWEAK Nu-
meri-
cal

VERSION_TWEAK 4

APP_VERSION_STRINGString
(quoted)

VERSION_MAJOR, VERSION_MINOR, PATCHLEVEL, EX-
TRAVERSION

“1.2.3-
unstable”

APP_VERSION_EXTENDED_STRINGString
(quoted)

VERSION_MAJOR, VERSION_MINOR, PATCHLEVEL, EX-
TRAVERSION VERSION_TWEAK

“1.2.3-
unstable+4”

APP_VERSION_TWEAK_STRINGString
(quoted)

VERSION_MAJOR, VERSION_MINOR, PATCHLEVEL, VER-
SION_TWEAK

“1.2.3+4”

APP_BUILD_VERSIONString
(un-
quoted)

None (value of git describe --abbrev=12 --always
from application repository)

v3.3.0-18-
g2c85d9224fca
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5.7.3 Use in Kconfig

The following variables are available for usage in Kconfig files:

Variable Type Field(s) Example
$(VERSION_MAJOR) Nu-

meri-
cal

VERSION_MAJOR 1

$(VERSION_MINOR) Nu-
meri-
cal

VERSION_MINOR 2

$(PATCHLEVEL) Nu-
meri-
cal

PATCHLEVEL 3

$(VERSION_TWEAK) Nu-
meri-
cal

VERSION_TWEAK 4

$(APPVERSION) String VERSION_MAJOR, VERSION_MINOR, PATCHLEVEL,
EXTRAVERSION

1.2.3-
unstable

$(APP_VERSION_EXTENDED_STRING)String VERSION_MAJOR, VERSION_MINOR, PATCHLEVEL,
EXTRAVERSION, VERSION_TWEAK

1.2.3-
unstable+4

$(APP_VERSION_TWEAK_STRING)String VERSION_MAJOR, VERSION_MINOR, PATCHLEVEL,
VERSION_TWEAK

1.2.3+4

5.7.4 Use in CMake

The following variable are available for usage in CMake files:
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Variable Type Field(s) Exam-
ple

APPVERSION Nu-
mer-
ical
(hex)

VERSION_MAJOR (left shifted by 24 bits), VERSION_MINOR
(left shifted by 16 bits), PATCHLEVEL (left shifted by 8 bits),
VERSION_TWEAK

0x1020304

APP_VERSION_NUMBERNu-
mer-
ical
(hex)

VERSION_MAJOR (left shifted by 16 bits), VERSION_MINOR
(left shifted by 8 bits), PATCHLEVEL

0x10203

APP_VERSION_MAJORNu-
meri-
cal

VERSION_MAJOR 1

APP_VERSION_MINORNu-
meri-
cal

VERSION_MINOR 2

APP_PATCHLEVELNu-
meri-
cal

PATCHLEVEL 3

APP_VERSION_TWEAKNu-
meri-
cal

VERSION_TWEAK 4

APP_VERSION_STRINGString VERSION_MAJOR, VERSION_MINOR, PATCHLEVEL, EXTRAVER-
SION

1.2.3-
unstable

APP_VERSION_EXTENDED_STRINGString VERSION_MAJOR, VERSION_MINOR, PATCHLEVEL, EXTRAVER-
SION, VERSION_TWEAK

1.2.3-
unstable+4

APP_VERSION_TWEAK_STRINGString VERSION_MAJOR, VERSION_MINOR, PATCHLEVEL, VER-
SION_TWEAK

1.2.3+4

5.7.5 Use in MCUboot-supported applications

No additional configuration needs to be done to the target application so long as it is configured to
support MCUboot and a signed image is generated, the version information will be automatically
included in the image data.

5.8 Flashing

5.8.1 Flashing configuration

Zephyr supports setting up configuration for flash runners (invoked from west flash) which al-
lows for customising how commands are used when programming boards. This configuration is
used for Sysbuild (System build) projects and allows for configuring when commands are ran for
groups of board targets. As an example: a multi-core SoC might want to only allow the --erase
argument to be used once for all of the cores in the SoC which would prevent multiple erase
tasks running in a single west flash invocation, which could wrongly clear the memory which
is used by the other images being programmed.

Priority

Flashing configuration is singular, it will only be read from a single location, this configuration
can reside in the following files starting with the highest priority:
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• soc.yml (in soc folder)

• board.yml (in board folder)

Configuration

Configuration is applied in the yml file by using a runners map with a single run_once child, this
then contains a map of commands as they would be provided to the flash runner e.g. --reset
followed by a list which specifies the settings for each of these commands (these are grouped by
flash runner, and by qualifiers/boards). Commands have associated runners that they apply to
using a runners list value, this can contain all if it applies to all runners, otherwise must contain
each runner that it applies to using the runner-specific name. Groups of board targets can be
specified using the groups key which has a list of board target sets. Board targets are regular
expression matches, for soc.yml files each set of board targets must be in a qualifiers key (only
regular expression matches for board qualifiers are allowed, board names must be omitted from
these entries). For board.yml files each set of board targets must be in a boards key, these are
lists containing the matches which form a singular group. A final parameter run can be set to
first which means that the command will be ran once with the first image flashing process per
set of board targets, or to last which will be ran once for the final image flash per set of board
targets.

An example flashing configuration for a soc.yml is shown below in which the --recover com-
mand will only be used once for any board targets which used the nRF5340 SoC application or
network CPU cores, and will only reset the network or application core after all images for the
respective core have been flashed.

runners:
run_once:
'--recover':

- run: first
runners:
- nrfjprog

groups:
- qualifiers:

- nrf5340/cpunet
- nrf5340/cpuapp
- nrf5340/cpuapp/ns

'--reset':
- run: last
runners:
- nrfjprog
- jlink

groups:
- qualifiers:

- nrf5340/cpunet
- qualifiers:

- nrf5340/cpuapp
- nrf5340/cpuapp/ns

# Made up non-real world example to show how to specify different options for␣
↪→different

# flash runners
- run: first
runners:
- some_other_runner

groups:
- qualifiers:

- nrf5340/cpunet
- qualifiers:

- nrf5340/cpuapp
- nrf5340/cpuapp/ns
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Usage

Commands that are supported by flash runners can be used as normal when flashing non-
sysbuild applications, the run once configuration will not be used. When flashing a sysbuild
project with multiple images, the flash runner run once configuration will be applied.

For example, building the smp-svr sample for the nrf5340dk which will include MCUboot as a
secondary image:

cmake -GNinja -Sshare/sysbuild/ -Bbuild -DBOARD=nrf5340dk/nrf5340/cpuapp -DAPP_DIR=samples/
↪→subsys/mgmt/mcumgr/smp_svr
cmake --build build

Once built with an nrf5340dk connected, the following command can be used to flash the board
with both applications and will only perform a single device recovery operation when program-
ming the first image:

west flash --recover

If the above was ran without the flashing configuration, the recovery process would be ran twice
and the device would be unbootable.
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Connectivity

6.1 Bluetooth

This section contains information regarding the Bluetooth stack of the Zephyr OS. You can use
this information to understand the principles behind the operation of the layers and how they
were implemented.

Zephyr includes a complete Bluetooth Low Energy stack from application to radio hardware, as
well as portions of a Classical Bluetooth (BR/EDR) Host layer.

6.1.1 Supported features

Since its inception, Zephyr has had a strong focus on Bluetooth and, in particular, on Bluetooth
Low Energy (BLE). Through the contributions of several companies and individuals involved in
existing open source implementations of the Bluetooth specification (Linux’s BlueZ) as well as
the design and development of BLE radio hardware, the protocol stack in Zephyr has grown to
be mature and feature-rich, as can be seen in the section below.

• Bluetooth v5.3 compliant

– Highly configurable

* Features, buffer sizes/counts, stack sizes, etc.

– Portable to all architectures supported by Zephyr (including big and little endian, align-
ment flavors and more)

– Support for all combinations of Host and Controller builds:

* Controller-only (HCI) over UART, SPI, USB and IPC physical transports

* Host-only over UART, SPI, and IPC (shared memory)

* Combined (Host + Controller)

• Bluetooth-SIG qualifiable

– Conformance tests run regularly on all layers (Controller and Host, except BT Classic)
on Nordic Semiconductor hardware.

• Bluetooth Low Energy Controller (LE Link Layer)

– Unlimited role and connection count, all roles supported

– All v5.3 specification features supported (except a few minor items)

– Concurrent multi-protocol support ready

– Intelligent scheduling of roles to minimize overlap
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– Portable design to any open BLE radio, currently supports Nordic Semiconductor
nRF52x and nRF53x SoC Series, as well as proprietary radios

– Supports little and big endian architectures, and abstracts the hard real-time specifics
so that they can be encapsulated in a hardware-specific module

– Support for Controller (HCI) builds over different physical transports

– Isochronous channels

• Bluetooth Host

– Generic Access Profile (GAP) with all possible LE roles

* Peripheral & Central

* Observer & Broadcaster

* Multiple PHY support (2Mbit/s, Coded)

* Extended Advertising

* Periodic Advertising (including Sync Transfer)

– GATT (Generic Attribute Profile)

* Server (to be a sensor)

* Client (to connect to sensors)

* Enhanced ATT (EATT)

* GATT Database Hash

* GATT Multiple Notifications

– Pairing support, including the Secure Connections feature from Bluetooth 4.2

– Non-volatile storage support for permanent storage of Bluetooth-specific settings and
data

– Bluetooth Mesh support

* Relay, Friend Node, Low-Power Node (LPN) and GATT Proxy features

* Both Provisioning roles and bearers supported (PB-ADV & PB-GATT)

* Foundation Models included

* Highly configurable, fits as small as 16k RAM devices

– Basic Bluetooth BR/EDR (Classic) support

* Generic Access Profile (GAP)

* Logical Link Control and Adaptation Protocol (L2CAP)

* Serial Port emulation (RFCOMM protocol)

* Service Discovery Protocol (SDP)

– Clean HCI driver abstraction

* 3-Wire (H:5) & 5-Wire (H:4) UART

* SPI

* Local controller support as a virtual HCI driver

– Verified with multiple popular controllers

– Isochronous channels

– LE Audio
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6.1.2 Qualification

Qualification setup

The Zephyr Bluetooth host can be qualified using Bluetooth’s PTS (Profile Tuning Suite) software.
It is originally a manual process, but is automated by using the AutoPTS automation software.

The setup is described in more details in the pages linked below.

AutoPTS on Windows 10 with nRF52 board This tutorial shows how to setup AutoPTS client
and server to run both on Windows 10. We use WSL1 with Ubuntu only to build a Zephyr
project to an elf file, because Zephyr SDK is not available on Windows yet. Tutorial covers only
nrf52840dk.

• Update Windows and drivers

• Install Python 3

• Install Git

• Install PTS 8

• Setup Zephyr project for Windows

• Install nrftools

• Connect devices

• Flash board

• Setup auto-pts project

• Install socat.exe

• Running AutoPTS

• Troubleshooting

Update Windows and drivers Update Windows in:

Start -> Settings -> Update & Security -> Windows Update

Update drivers, following the instructions from your hardware vendor.

Install Python 3 Download and install Python 3. Setup was tested with versions >=3.8. Let the
installer add the Python installation directory to the PATH and disable the path length limitation.
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Install Git Download and install Git. During installation enable option: Enable experimental
support for pseudo consoles. We will use Git Bash as Windows terminal.
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Install PTS 8 Install latest PTS from https://www.bluetooth.org. Remember to install
drivers from installation directory “C:/Program Files (x86)/Bluetooth SIG/Bluetooth PTS/PTS
Driver/win64/CSRBlueCoreUSB.inf”

Note

Starting with PTS 8.0.1 the Bluetooth Protocol Viewer is no longer included. So to capture
Bluetooth events, you have to download it separately.

Setup Zephyr project for Windows Perform Windows setup from Getting Started Guide.

Install nrftools On Windows download latest nrftools (version >= 10.12.1) from site https:
//www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Command-Line-Tools/
Download and run default install.
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Connect devices
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Flash board In Device Manager find COM port of your nrf board. In my case it is COM3.
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In Git Bash, go to zephyrproject

cd ~/zephyrproject

Build the auto-pts tester app

west build -p auto -b nrf52840dk/nrf52840 zephyr/tests/bluetooth/tester/

You can display flashing options with:

west flash --help

and flash board with built earlier elf file:

west flash --skip-rebuild --board-dir /dev/ttyS2 --elf-file ~/zephyrproject/build/zephyr/
↪→zephyr.elf

Note that west does not accept COMs, so use /dev/ttyS2 as the COM3 equivalent, /dev/ttyS2 as the
COM3 equivalent, etc.(/dev/ttyS + decremented COM number).

Setup auto-pts project In Git Bash, clone project repo:

git clone https://github.com/intel/auto-pts.git

Go into the project folder:

cd auto-pts

Install required python modules:

pip3 install --user wheel
pip3 install --user -r autoptsserver_requirements.txt
pip3 install --user -r autoptsclient_requirements.txt
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Install socat.exe Download and extract socat.exe from https://sourceforge.net/projects/
unix-utils/files/socat/1.7.3.2/ into folder ~/socat-1.7.3.2-1-x86_64/.

Add path to directory of socat.exe to PATH:

Running AutoPTS Server and client by default will run on localhost address. Run server:
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python ./autoptsserver.py -S 65000

Note

If the error “ImportError: No module named pywintypes” appeared after the fresh setup,
uninstall and install the pywin32 module:
pip install --upgrade --force-reinstall pywin32

Run client:

python ./autoptsclient-zephyr.py zephyr-master ~/zephyrproject/build/zephyr/zephyr.elf -t␣
↪→COM3 -b nrf52 -S 65000 -C 65001

At the first run, when Windows asks, enable connection through firewall:
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Troubleshooting
• “When running actual hardware test mode, I have only BTP TIMEOUTs.”

This is a problem with connection between auto-pts client and board. There are many possible
causes. Try:

• Clean your auto-pts and zephyr repos with

Warning

This command will force the irreversible removal of all uncommitted files in the repo.

git clean -fdx

then build and flash tester elf again.

• If you have set up Windows on virtual machine, check if guest extensions are installed
properly or change USB compatibility mode in VM settings to USB 2.0.

• Check, if firewall in not blocking python.exe or socat.exe.

• Check if board sends ready event after restart (hex 00 00 80 ff 00 00). Open serial connection
to board with e.g. PuTTy with proper COM and baud rate. After board reset you should see
some strings in console.

• Check if socat.exe creates tunnel to board. Run in console

socat.exe -x -v tcp-listen:65123 /dev/ttyS2,raw,b115200
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where /dev/ttyS2 is the COM3 equivalent. Open PuTTY, set connection type to Raw, IP to 127.0.0.1,
port to 65123. After board reset you should see some strings in console.

AutoPTS on Linux This tutorial shows how to setup AutoPTS client on Linux with AutoPTS
server running on Windows 10 virtual machine. Tested with Ubuntu 20.4 and Linux Mint 20.4.

You must have a Zephyr development environment set up. See Getting Started Guide for details.

Supported methods to test zephyr bluetooth host:

• Testing Zephyr Host Stack on QEMU

• Testing Zephyr Host Stack on native_sim

• Testing Zephyr combined (controller + host) build on Real hardware (such as nRF52)

For running with QEMU or native_sim, see Running on QEMU or native_sim.

• Setup Linux

• Install nrftools (only required in the actual hardware test mode)

• Setup Windows 10 virtual machine

– Update Windows

– Setup static IP

– Install Python 3

– Install Git

– Install PTS 8

– Connect PTS dongle

• Connect devices (only required in the actual hardware test mode)

• Flash board (only required in the actual hardware test mode)

• Setup auto-pts project

– AutoPTS client on Linux

– Autopts server on Windows virtual machine

• Running AutoPTS

• Troubleshooting

Setup Linux

Install nrftools (only required in the actual hardware test mode) Download lat-
est nrftools (version >= 10.12.1) from site https://www.nordicsemi.com/Software-and-tools/
Development-Tools/nRF-Command-Line-Tools/Download.
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After you extract archive, you will see 2 .deb files, e.g.:

• JLink_Linux_V688a_x86_64.deb

• nRF-Command-Line-Tools_10_12_1_Linux-amd64.deb

and README.md. To install the tools, double click on each .deb file or follow instructions from
README.md.

Setup Windows 10 virtual machine Choose and install your hypervisor like VMWare Work-
station(preferred) or VirtualBox. On VirtualBox could be some issues, if your host has fewer
than 6 CPU.

Create Windows virtual machine instance. Make sure it has at least 2 cores and installed guest
extensions.

Setup tested with VirtualBox 6.1.18 and VMWare Workstation 16.1.1 Pro.

Update Windows Update Windows in:

Start -> Settings -> Update & Security -> Windows Update

Setup static IP

WMWare Works On Linux, open Virtual Network Editor app and create network:
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Open virtual machine network settings. Add custom adapter:

If you type ‘ifconfig’ in terminal, you should be able to find your host IP:
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VirtualBox Go to:

File -> Host Network Manager

and create network:

Open virtual machine network settings. On adapter 1 you will have created by default NAT. Add
adapter 2:
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Windows Setup static IP on Windows virtual machine. Go to

Settings -> Network & Internet -> Ethernet -> Unidentified network -> Edit

and set:
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Install Python 3 Download and install latest Python 3 on Windows. Let the installer add the
Python installation directory to the PATH and disable the path length limitation.

Install Git Download and install Git. During installation enable option: Enable experimental
support for pseudo consoles. We will use Git Bash as Windows terminal.
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Install PTS 8 On Windows virtual machine, install latest PTS from https://www.bluetooth.
org. Remember to install drivers from installation directory “C:/Program Files (x86)/Bluetooth
SIG/Bluetooth PTS/PTS Driver/win64/CSRBlueCoreUSB.inf”

Note

Starting with PTS 8.0.1 the Bluetooth Protocol Viewer is no longer included. So to capture
Bluetooth events, you have to download it separately.

Connect PTS dongle With VirtualBox there should be no problem. Just find dongle in Devices
-> USB and connect.

With VMWare you might need to use some trick, if you cannot find dongle in VM -> Removable
Devices. Type in Linux terminal:

usb-devices

and find in output your PTS Bluetooth USB dongle
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Note Vendor and ProdID number. Close VMWare Workstation and open .vmx of your virtual
machine (path similar to /home/codecoup/vmware/Windows 10/Windows 10.vmx) in text editor.
Write anywhere in the file following line:

usb.autoConnect.device0 = "0x0a12:0x0001"

just replace 0x0a12 with Vendor number and 0x0001 with ProdID number you found earlier.

Connect devices (only required in the actual hardware test mode)
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Flash board (only required in the actual hardware test mode) On Linux, go to ~/zephyrpro-
ject. There should be already ~/zephyrproject/build directory. Flash board:

west flash

Setup auto-pts project

AutoPTS client on Linux Clone auto-pts project:
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git clone https://github.com/intel/auto-pts.git

Install socat, that is used to transfer BTP data stream from UART’s tty file:

sudo apt-get install python-setuptools socat

Install required python modules:

cd auto-pts
pip3 install --user wheel
pip3 install --user -r autoptsclient_requirements.txt

Autopts server on Windows virtual machine In Git Bash, clone auto-pts project repo:

git clone https://github.com/intel/auto-pts.git

Install required python modules:

cd auto-pts
pip3 install --user wheel
pip3 install --user -r autoptsserver_requirements.txt

Restart virtual machine.

Running AutoPTS Server and client by default will run on localhost address. Run server:

python ./autoptsserver.py

Testing Zephyr Host Stack on QEMU:

# A Bluetooth controller needs to be mounted.
# For running with HCI UART, please visit: https://docs.zephyrproject.org/latest/samples/
↪→bluetooth/hci_uart/README.html#bluetooth-hci-uart

python ./autoptsclient-zephyr.py "C:\Users\USER_NAME\Documents\Profile Tuning Suite\PTS_
↪→PROJECT\PTS_PROJECT.pqw6" \

~/zephyrproject/build/zephyr/zephyr.elf -i SERVER_IP -l LOCAL_IP

Testing Zephyr Host Stack on native_sim:

# A Bluetooth controller needs to be mounted.
# For running with HCI UART, please visit: https://docs.zephyrproject.org/latest/samples/
↪→bluetooth/hci_uart/README.html#bluetooth-hci-uart

west build -b native_sim zephyr/tests/bluetooth/tester/ -DEXTRA_CONF_FILE=overlay-native.
↪→conf

sudo python ./autoptsclient-zephyr.py "C:\Users\USER_NAME\Documents\Profile Tuning Suite\
↪→PTS_PROJECT\PTS_PROJECT.pqw6" \

~/zephyrproject/build/zephyr/zephyr.exe -i SERVER_IP -l LOCAL_IP --hci 0
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Testing Zephyr combined (controller + host) build on nRF52:

Note

If the error “ImportError: No module named pywintypes” appeared after the fresh setup,
uninstall and install the pywin32 module:
pip install --upgrade --force-reinstall pywin32

Run client:

python ./autoptsclient-zephyr.py zephyr-master ~/zephyrproject/build/zephyr/zephyr.elf -t /
↪→dev/ACM0 \

-b nrf52 -l 192.168.2.1 -i 192.168.2.2

At the first run, when Windows asks, enable connection through firewall:

Troubleshooting
• “After running one test, I need to restart my Windows virtual machine to run another, be-

cause of fail verdict from APICOM in PTS logs.”

It means your virtual machine has not enough processor cores or memory. Try to add more in
settings. Note that a host with 4 CPUs could be not enough with VirtualBox as hypervisor. In this
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case, choose rather VMWare Workstation.

• “I cannot start autoptsserver-zephyr.py. I always got error:”

One or more of the following steps should help:

• Close all PTS Windows.

• Replug PTS bluetooth dongle.

• Delete temporary workspace. You will find it in auto-pts-code/workspaces/zephyr/zephyr-
master/ as temp_zephyr-master. Be careful, do not remove the original one zephyr-
master.pqw6.

• Restart Windows virtual machine.

ICS Features

The Zephyr ICS file for the Host features can be downloaded here: ICS_Zephyr_Bluetooth_Host.
pts.

Use the Bluetooth Qualification website to view and edit the ICS.

6.1.3 Stack Architecture

Overview

This page describes the software architecture of Zephyr’s Bluetooth protocol stack.

Note

Zephyr supports mainly Bluetooth Low Energy (BLE), the low-power version of the Bluetooth
specification. Zephyr also has limited support for portions of the BR/EDR Host. Throughout
this architecture document we use BLE interchangeably for Bluetooth except when noted.

BLE Layers There are 3 main layers that together constitute a full Bluetooth Low Energy pro-
tocol stack:
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• Host: This layer sits right below the application, and is comprised of multiple (non real-
time) network and transport protocols enabling applications to communicate with peer
devices in a standard and interoperable way.

• Controller: The Controller implements the Link Layer (LE LL), the low-level, real-time
protocol which provides, in conjunction with the Radio Hardware, standard-interoperable
over-the-air communication. The LL schedules packet reception and transmission, guaran-
tees the delivery of data, and handles all the LL control procedures.

• Radio Hardware: Hardware implements the required analog and digital baseband func-
tional blocks that permit the Link Layer firmware to send and receive in the 2.4GHz band
of the spectrum.

Host Controller Interface The Bluetooth Specification describes the format in which a Host
must communicate with a Controller. This is called the Host Controller Interface (HCI) protocol.
HCI can be implemented over a range of different physical transports like UART, SPI, or USB. This
protocol defines the commands that a Host can send to a Controller and the events that it can
expect in return, and also the format for user and protocol data that needs to go over the air. The
HCI ensures that different Host and Controller implementations can communicate in a standard
way making it possible to combine Hosts and Controllers from different vendors.

Configurations The three separate layers of the protocol and the standardized interface make
it possible to implement the Host and Controller on different platforms. The two following con-
figurations are commonly used:

• Single-chip configuration: In this configuration, a single microcontroller implements all
three layers and the application itself. This can also be called a system-on-chip (SoC) imple-
mentation. In this case the BLE Host and the BLE Controller communicate directly through
function calls and queues in RAM. The Bluetooth specification does not specify how HCI is
implemented in this single-chip configuration and so how HCI commands, events, and data
flows between the two can be implementation-specific. This configuration is well suited for
those applications and designs that require a small footprint and the lowest possible power
consumption, since everything runs on a single IC.

• Dual-chip configuration: This configuration uses two separate ICs, one running the Appli-
cation and the Host, and a second one with the Controller and the Radio Hardware. This
is sometimes also called a connectivity-chip configuration. This configuration allows for a
wider variety of combinations of Hosts when using the Zephyr OS as a Controller. Since HCI
ensures interoperability among Host and Controller implementations, including of course
Zephyr’s very own BLE Host and Controller, users of the Zephyr Controller can choose to
use whatever Host running on any platform they prefer. For example, the host can be the
Linux BLE Host stack (BlueZ) running on any processor capable of supporting Linux. The
Host processor may of course also run Zephyr and the Zephyr OS BLE Host. Conversely,
combining an IC running the Zephyr Host with an external Controller that does not run
Zephyr is also supported.

Build Types The Zephyr software stack as an RTOS is highly configurable, and in particular,
the BLE subsystem can be configured in multiple ways during the build process to include only
the features and layers that are required to reduce RAM and ROM footprint as well as power
consumption. Here’s a short list of the different BLE-enabled builds that can be produced from
the Zephyr project codebase:

• Controller-only build: When built as a BLE Controller, Zephyr includes the Link Layer
and a special application. This application is different depending on the physical transport
chosen for HCI:

– hci_uart

– hci_usb
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– hci_spi

This application acts as a bridge between the UART, SPI or USB peripherals and the Con-
troller subsystem, listening for HCI commands, sending application data and responding
with events and received data. A build of this type sets the following Kconfig option values:

– CONFIG_BT =y
– CONFIG_BT_HCI =y
– CONFIG_BT_HCI_RAW =y
– CONFIG_BT_CTLR =y
– CONFIG_BT_LL_SW_SPLIT =y (if using the open source Link Layer)

• Host-only build: A Zephyr OS Host build will contain the Application and the BLE Host,
along with an HCI driver (UART or SPI) to interface with an external Controller chip. A
build of this type sets the following Kconfig option values:

– CONFIG_BT =y
– CONFIG_BT_HCI =y
– CONFIG_BT_CTLR =n

All of the samples located in samples/bluetooth except for the ones used for Controller-
only builds can be built as Host-only

• Combined build: This includes the Application, the Host and the Controller, and it is used
exclusively for single-chip (SoC) configurations. A build of this type sets the following Kcon-
fig option values:

– CONFIG_BT =y
– CONFIG_BT_HCI =y
– CONFIG_BT_CTLR =y
– CONFIG_BT_LL_SW_SPLIT =y (if using the open source Link Layer)

All of the samples located in samples/bluetooth except for the ones used for Controller-
only builds can be built as Combined

The picture below shows the SoC or single-chip configuration when using a Zephyr combined
build (a build that includes both a BLE Host and a Controller in the same firmware image that is
programmed onto the chip):

When using connectivity or dual-chip configurations, several Host and Controller combinations
are possible, some of which are depicted below:

When using a Zephyr Host (left side of image), two instances of Zephyr OS must be built with
different configurations, yielding two separate images that must be programmed into each of the
chips respectively. The Host build image contains the application, the BLE Host and the selected
HCI driver (UART or SPI), while the Controller build runs either the hci_uart, or the hci_spi app
to provide an interface to the BLE Controller.

This configuration is not limited to using a Zephyr OS Host, as the right side of the image shows.
One can indeed take one of the many existing GNU/Linux distributions, most of which include
Linux’s own BLE Host (BlueZ), to connect it via UART or USB to one or more instances of the
Zephyr OS Controller build. BlueZ as a Host supports multiple Controllers simultaneously for
applications that require more than one BLE radio operating at the same time but sharing the
same Host stack.

Source tree layout

The stack is split up as follows in the source tree:
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Fig. 1: A Combined build on a Single-Chip configuration

1662 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

Fig. 2: Host-only and Controller-only builds on dual-chip configurations

subsys/bluetooth/host
The host stack. This is where the HCI command and event handling as well as connection
tracking happens. The implementation of the core protocols such as L2CAP, ATT, and SMP
is also here.

subsys/bluetooth/controller
Bluetooth LE Controller implementation. Implements the controller-side of HCI, the Link
Layer as well as access to the radio transceiver.

include/bluetooth/
Public API header files. These are the header files applications need to include in order to
use Bluetooth functionality.

drivers/bluetooth/
HCI transport drivers. Every HCI transport needs its own driver. For example, the two
common types of UART transport protocols (3-Wire and 5-Wire) have their own drivers.

samples/bluetooth/
Sample Bluetooth code. This is a good reference to get started with Bluetooth application
development.

tests/bluetooth/
Test applications. These applications are used to verify the functionality of the Bluetooth
stack, but are not necessary the best source for sample code (see samples/bluetooth in-
stead).

doc/connectivity/bluetooth/
Extra documentation, such as PICS documents.
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6.1.4 LE Host

The Bluetooth Host implements all the higher-level protocols and profiles, and most importantly,
provides a high-level API for applications. The following diagram depicts the main protocol &
profile layers of the host.

Fig. 3: Bluetooth Host protocol & profile layers.

Lowest down in the host stack sits a so-called HCI driver, which is responsible for abstracting
away the details of the HCI transport. It provides a basic API for delivering data from the con-
troller to the host, and vice-versa.

Perhaps the most important block above the HCI handling is the Generic Access Profile (GAP).
GAP simplifies Bluetooth LE access by defining four distinct roles of BLE usage:

• Connection-oriented roles

– Peripheral (e.g. a smart sensor, often with a limited user interface)

– Central (typically a mobile phone or a PC)

• Connection-less roles

– Broadcaster (sending out BLE advertisements, e.g. a smart beacon)

– Observer (scanning for BLE advertisements)

Each role comes with its own build-time configuration option: CONFIG_BT_PERIPHERAL, CON-
FIG_BT_CENTRAL, CONFIG_BT_BROADCASTER & CONFIG_BT_OBSERVER. Of the connection-oriented
roles central implicitly enables observer role, and peripheral implicitly enables broadcaster role.
Usually the first step when creating an application is to decide which roles are needed and go
from there. Bluetooth Mesh is a slightly special case, requiring at least the observer and broad-
caster roles, and possibly also the Peripheral role. This will be described in more detail in a later
section.

Peripheral role

Most Zephyr-based BLE devices will most likely be peripheral-role devices. This means that they
perform connectable advertising and expose one or more GATT services. After registering ser-
vices using the bt_gatt_service_register() API the application will typically start connectable
advertising using the bt_le_adv_start() API.

There are several peripheral sample applications available in the tree, such as sam-
ples/bluetooth/peripheral_hr.
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Central role

Central role may not be as common for Zephyr-based devices as peripheral role, but it is still a
plausible one and equally well supported in Zephyr. Rather than accepting connections from
other devices a central role device will scan for available peripheral device and choose one to
connect to. Once connected, a central will typically act as a GATT client, first performing discov-
ery of available services and then accessing one or more supported services.

To initially discover a device to connect to the application will likely use the bt_le_scan_start()
API, wait for an appropriate device to be found (using the scan callback), stop scanning
using bt_le_scan_stop() and then connect to the device using bt_conn_le_create(). If
the central wants to keep automatically reconnecting to the peripheral it should use the
bt_le_set_auto_conn() API.

There are some sample applications for the central role available in the tree, such as sam-
ples/bluetooth/central_hr.

Observer role

An observer role device will use the bt_le_scan_start() API to scan for device, but it will not
connect to any of them. Instead it will simply utilize the advertising data of found devices, com-
bining it optionally with the received signal strength (RSSI).

Broadcaster role

A broadcaster role device will use the bt_le_adv_start() API to advertise specific advertising
data, but the type of advertising will be non-connectable, i.e. other device will not be able to
connect to it.

Connections

Connection handling and the related APIs can be found in the Connection Management section.

Security

To achieve a secure relationship between two Bluetooth devices a process called pairing is used.
This process can either be triggered implicitly through the security properties of GATT services,
or explicitly using the bt_conn_security() API on a connection object.

To achieve a higher security level, and protect against Man-In-The-Middle (MITM) attacks, it is
recommended to use some out-of-band channel during the pairing. If the devices have a suffi-
cient user interface this “channel” is the user itself. The capabilities of the device are registered
using the bt_conn_auth_cb_register()API. The bt_conn_auth_cb struct that’s passed to this API
has a set of optional callbacks that can be used during the pairing - if the device lacks some fea-
ture the corresponding callback may be set to NULL. For example, if the device does not have
an input method but does have a display, the passkey_entry and passkey_confirm callbacks
would be set to NULL, but the passkey_display would be set to a callback capable of displaying
a passkey to the user.

Depending on the local and remote security requirements & capabilities, there are four possible
security levels that can be reached:

BT_SECURITY_L1
No encryption and no authentication.

BT_SECURITY_L2
Encryption but no authentication (no MITM protection).
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BT_SECURITY_L3
Encryption and authentication using the legacy pairing method from Bluetooth
4.0 and 4.1.

BT_SECURITY_L4
Encryption and authentication using the LE Secure Connections feature available
since Bluetooth 4.2.

Note

Mesh has its own security solution through a process called provisioning. It follows a similar
procedure as pairing, but is done using separate mesh-specific APIs.

L2CAP

L2CAP stands for the Logical Link Control and Adaptation Protocol. It is a common layer for
all communication over Bluetooth connections, however an application comes in direct contact
with it only when using it in the so-called Connection-oriented Channels (CoC) mode. More in-
formation on this can be found in the L2CAP API section.

Terminology The definitions are from the Core Specification version 5.4, volume 3, part A 1.4.

Term Description
Upper layer Layer above L2CAP, it exchanges data in form of SDUs. It may be an application

or a higher level protocol.
Lower layer Layer below L2CAP, it exchanges data in form of PDUs (or fragments). It is

usually the HCI.
Service Data
Unit (SDU)

Packet of data that L2CAP exchanges with the upper layer.
This term is relevant only in Enhanced Retransmission mode, Streaming
mode, Retransmission mode and Flow Control Mode, not in Basic L2CAP mode.

Protocol
Data Unit
(PDU)

Packet of data containing L2CAP data. PDUs always start with Basic L2CAP
header.
Types of PDUs for LE: B-frames and K-frames.
Types of PDUs for BR/EDR: I-frames, S-frames, C-frames and G-frames.

Maximum
Transmis-
sion Unit
(MTU)

Maximum size of an SDU that the upper layer is capable of accepting.

Maximum
Payload Size
(MPS)

Maximum payload size that the L2CAP layer is capable of accepting.
In Basic L2CAP mode, the MTU size is equal to MPS. In credit-based channels
without segmentation, the MTU is MPS minus 2.

Basic L2CAP
header

Present at the beginning of each PDU. It contains two fields, the PDU length
and the Channel Identifier (CID).

PDU Types

B-frame: Basic information frame PDU used in Basic L2CAP mode. It contains the payload
received from the upper layer or delivered to the upper layer as its payload.
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K-frame: Credit-based frame PDU used in LE Credit Based Flow Control mode and Enhanced
Credit Based Flow Control mode. It contains a SDU segment and additional protocol information.

Relevant Kconfig

Kconfig symbol Description
CON-
FIG_BT_BUF_ACL_RX_SIZE

Represents the MPS

CONFIG_BT_L2CAP_TX_MTU Represents the L2CAP MTU
CON-
FIG_BT_L2CAP_DYNAMIC_CHANNEL

Enables LE Credit Based Flow Control and thus the stack may
use K-frame PDUs

GATT

The Generic Attribute Profile is the most common means of communication over LE connections.
A more detailed description of this layer and the API reference can be found in the GATT API
reference section.

Mesh

Mesh is a little bit special when it comes to the needed GAP roles. By default, mesh requires both
observer and broadcaster role to be enabled. If the optional GATT Proxy feature is desired, then
peripheral role should also be enabled.

The API reference for mesh can be found in the Mesh API reference section.
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LE Audio

The LE audio is a set of profiles and services that utilizes GATT and Isochronous Channel to
provide audio over Bluetooth Low Energy. The architecture and API references can be found in
Bluetooth Audio Architecture.

Persistent storage

The Bluetooth host stack uses the settings subsystem to implement persistent storage to flash.
This requires the presence of a flash driver and a designated “storage” partition on flash. A
typical set of configuration options needed will look something like the following:

CONFIG_BT_SETTINGS=y
CONFIG_FLASH=y
CONFIG_FLASH_PAGE_LAYOUT=y
CONFIG_FLASH_MAP=y
CONFIG_NVS=y
CONFIG_SETTINGS=y

Once enabled, it is the responsibility of the application to call settings_load() after having initial-
ized Bluetooth (using the bt_enable() API).

6.1.5 LE Audio Stack

TMAP HAP PBP GMAP ...

GAF

GATT GAP

Low-level protocols (L2CAP, ATT, etc.)
GAP ISO

HCI Driver (USB, UART, SPI, virtual, etc.)

Fig. 4: Bluetooth Audio Architecture
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Overall design

The overall design of the LE Audio stack is that the implementation follows the specifications
as closely as possible, both in terms of structure but also naming. Most API functions are pre-
fixed by the specification acronym (e.g. bt_bap for the Basic Audio Profile (BAP) and bt_vcp
for the Volume Control Profile (VCP)). The functions are then further prefixed with the spe-
cific role from each profile where applicable (e.g. bt_bap_unicast_client_discover() and
bt_vcp_vol_rend_set_vol()). There are usually a function per procedure defined by the pro-
file or service specifications, and additional helper or meta functions that do not correspond to
procedures.

The structure of the files generally also follow this, where BAP related files are prefixed with bap
and VCP related files are prefixed with vcp. If the file is specific for a profile role, the role is also
embedded in the file name.

Generic Audio Framework (GAF)

The Generic Audio Framework (GAF) is considered the middleware of the Bluetooth LE Audio
architecture. The GAF contains the profiles and services that allows higher layer applications
and profiles to set up streams, change volume, control media and telephony and more. The GAF
builds on GATT, GAP and isochronous channels (ISO).

GAF uses GAP to connect, advertise and synchronize to other devices. GAF uses GATT to config-
ure streams, associate streams with content (e.g. media or telephony), control volume and more.
GAF uses ISO for the audio streams themselves, both as unicast (connected) audio streams or
broadcast (unconnected) audio streams.

GAF mandates the use of the LC3 codec, but also supports other codecs.

HAP PBP TMAP GMAP

Generic Audio Framework

Transition and Coordination Control

CAPCSIP

Stream Control

BAP

Content Control

MCPCCP

Rendering and Capture Control

MICPVCP

HAS

CAS

BASIAS TMAS GMAS

PACSASCS BASS MCSTBS MICSMICP_AICSVCSVOCS VCP_AICS

CSIS

Fig. 5: Generic Audio Framework (GAF)

The top-level profiles TMAP and HAP are not part of the GAF, but rather provide top-level re-
quirements for how to use the GAF.

GAF and the top layer profiles gave been implemented in Zephyr with the following structure.

Profile Dependencies The LE Audio profiles depend on other profiles and services, as outlined
in the following tables. In these tables ‘Server’ refers to acting in the GATT server role, and ‘Client’
refers to acting in the GATT client role for the specific service. If a profile role depends on another
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HAP PBP TMAP GMAP

Generic Audio Framework

Transition and Coordination Control

CAPCSIP

Stream Control

BAP

Content Control

MCPCCP

Rendering and Capture Control

MICPVCP

has.h

cap.h

bas.hias.h pbp.h tmap.h gmap.hgmap_lc3_preset.h

audio.hlc3.h

pacs.hbap.hbap_lc3_preset.h mcs.hmcc.hmedia_proxy.htbs.h micp.hvcp.h

csip.h

aics.hvocs.h

Fig. 6: Zephyr Generic Audio Framework

profile that depends on a service, then that dependency is implicitly also applied to that profile.
For example, if the CAP Acceptor uses the BAP Unicast Server role, then the requirements on the
ASCS Server and PACS Server also apply to the CAP Acceptor.

The dependencies for Stream Control (BAP) are in the following table.

Table 1: BAP dependencies

Unicast
Server

Unicast
Client

Broadcast
Source

Broadcast
Sink

Scan Dele-
gator

Broadcast
Assistant

BAP Scan
Delegator

M

ASCS Client M
ASCS Server M
PACS Client M O
PACS Server M M
BASS Client M
BASS Server M

Note:

• As the table shows, the Broadcast Source role has no dependencies on other LE Audio pro-
files or services

The dependencies for Content Control (MCP and CCP) are in the following tables.

Table 2: MCP dependencies

Media Control Server Media Control Client
GMCS Server M
GMCS Client M
MCS Server O
MCS Client O
OTS Server O
OTS Client O
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Table 3: CCP dependencies

Call Control Server Call Control Client
GTBS Server M
GTBS Client M
TBS Server M
TBS Client M

The dependencies for Rendering Control (MICP and VCP) are in the following tables.

Table 4: MICP dependencies

Microphone Controller Microphone Device
MICS Server M
MICS Client M
AICS Server O
AICS Client O

Table 5: VCP dependencies

Volume Renderer Volume Controller
VCS Server M
VCS Client M
VOCS Server O
VOCS Client O
AICS Server O
AICS Client O

The last element in GAF is Transition and Coordination Control (CAP and CSIP) with the depen-
dencies from the following tables.

Table 6: CAP dependencies

Acceptor Initiator Commander
CAS Server M C.8
CAS Client M M
BAP Unicast Client C.1
BAP Unicast Server C.2
BAP Broadcast Source C.1
BAP Broadcast Sink C.2
BAP Broadcast Assistant C.4, C.6
BAP Scan Delegator C.3 C.6
VCP Volume Controller C.6
VCP Volume Renderer O
MICP Microphone Controller C.6
MICP Microphone Device O
CCP Call Control Server O
CCP Call Control Client O C.6
MCP Media Control Server O
MCP Media Control Client O C.6
CSIP Set Coordinator C.5 M
CSIP Set Member C.7

Notes:
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• C.1: Support at least one of BAP Unicast Client or BAP Broadcast Source

• C.2: Support at least one of BAP Unicast Server or BAP Broadcast Sink

• C.3: Mandatory if BAP Broadcast Sink

• C.4: Mandatory if BAP Scan Delegator

• C.5: Mandatory if BAP Unicast Client

• C.6: Support at least one

• C.7: Mandatory if part of a coordinated set

• C.8: Mandatory if the Commander transmits CAP announcements

Table 7: CSIP dependencies

Set Member Set Coordinator
CSIS Server M
CSIS Client M

The dependencies of the higher level profiles (GMAP, HAP, PBP and TMAP) are listed in the fol-
lowing tables.

Table 8: GMAP dependencies

Unicast Game
Gateway

Unicast Game
Terminal

Broadcast
Game Sender

Broadcast Game
Receiver

GMAS Server M M O M
GMAS Client M O O O
CAP Initiator M M
CAP Acceptor M M
CAP Commander M M
BAP Broadcast
Source

M

BAP Broadcast Sink M
BAP Unicast Client M
BAP Unicast Server M
VCP Volume Con-
troller

M

VCP Volume Ren-
derer

C.1 M

MICP Microphone
Controller

O

MICP Microphone
Device

C.2

Notes:

• C.1 Mandatory if the UGT supports the UGT Sink feature

• C.2 Optional if the UGT supports the UGT Source feature
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Table 9: HAP dependencies

Hearing
Aid

Hearing Aid Unicast
Client

Hearing Aid Remote Con-
troller

HAS Client M
HAS Server M
CAP Initiator M
CAP Acceptor M
CAP Commander M
BAP Unicast Client M
BAP Unicast Server M
VCP Volume Controller M
VCP Volume Renderer M
VOCS Server C.1
AICS Server O
MICP Microphone Con-
troller

O

MICP Microphone Device C.2
CCP Call Control Client O
CCP Call Control Server O
CSIP Set Coordinator M M
CSIP Set Member C.3
BAS Server C.4
IAS Server O

Notes:

• C.1 Mandatory if the HA supports the Volume Baslance feature and is part of a Binaural
Hearing Aid Set

• C.2 Mandatory if the HA supports the BAP Audio Source Role

• C.3 Mandatory if the HA is capable of being part of a Binaural Hearing Aid set

• C.4 If equipped with batteries

• C.5 If CCP Call Control Server is supported

Table 10: PBP dependencies

Public Broadcast
Source

Public Broadcast
sink

Public Broadcast Assis-
tant

CAP Initiator M
CAP Acceptor M
CAP Commander M
BAP Broadcast Assis-
tant

M
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Table 11: TMAP dependencies

Call
Gate-
way

Call
Termi-
nal

Unicast
Media
Sender

Unicast Me-
dia Receiver

Broad-
cast Media
Sender

Broadcast
Media Re-
ceiver

TMAS Server M M M M O M
TMAS Client O O O O O O
CAP Initiator M M M
CAP Acceptor M M M
CAP Comman-
der

M O M O O O

BAP Broad-
cast Source

M

BAP Broad-
cast Sink

M

BAP Unicast
Client

M M

BAP Unicast
Server

M M

VCP Volume
Controller

M M

VCP Volume
Renderer

C.1 M M

MCP Me-
dia Control
Server

M

CCP Call Con-
trol Server

M

Notes:

• C.1 Mandatory to support if the BAP Unicast Server is acting as an Audio Sink

Bluetooth Audio Stack Status The following table shows the current status and support of the
profiles in the Bluetooth Audio Stack.

Table 12: Bluetooth Audio Profile status

Module Role Version Added in Re-
lease

Status Remaining

VCP Volume Ren-
derer

1.0 2.6 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

continues on next page
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Table 12 – continued from previous page
Module Role Version Added in Re-

lease
Status Remaining

Volume Con-
troller

1.0 2.6 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

MICP Microphone
Device

1.0 2.7 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Microphone
Controller

1.0 2.7 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

CSIP Set Member 1.0.1 3.0 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Set Coordina-
tor

1.0.1 3.0 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

CCP Call Control
Server

1.0 3.0 • Feature
com-
plete

• Shell
Module

• BSIM
test

• API
refactor

• Sample
Appli-
cation

continues on next page
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Table 12 – continued from previous page
Module Role Version Added in Re-

lease
Status Remaining

Call Control
Client

1.0 3.0 • Feature
com-
plete

• Shell
Module

• BSIM
test

• API
refactor

• Sample
Appli-
cation

MCP Media Con-
trol Server

1.0 3.0 • Feature
com-
plete

• Shell
Module

• BSIM
test

• API
refactor

• Support
for mul-
tiple
in-
stances
and
connec-
tions

• Sample
Appli-
cation

Media Con-
trol Client

1.0 3.0 • Feature
com-
plete

• Shell
Module

• BSIM
test

• API
refactor

• Sample
Appli-
cation

BAP Unicast
Server

1.0.1 3.0 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

continues on next page
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Table 12 – continued from previous page
Module Role Version Added in Re-

lease
Status Remaining

Unicast
Client

1.0.1 3.0 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Broadcast
Source

1.0.1 3.0 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Broadcast
Sink

1.0.1 3.0 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Scan Delega-
tor

1.0.1 3.3 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

continues on next page
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Table 12 – continued from previous page
Module Role Version Added in Re-

lease
Status Remaining

Broadcast
Assistant

1.0.1 3.3 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

CAP Acceptor 1.0 3.2 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Initiator 1.0 3.3 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Commander • WIP • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

continues on next page
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Table 12 – continued from previous page
Module Role Version Added in Re-

lease
Status Remaining

HAP Hearing Aid 1.0 3.1 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Hearing
Aid Unicast
Client

1.0 3.1 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Hearing
Aid Remote
Controller

• WIP • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

TMAP Call Gateway 1.0 3.4 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

continues on next page
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Table 12 – continued from previous page
Module Role Version Added in Re-

lease
Status Remaining

Call Terminal 1.0 3.4 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Unicast Me-
dia Sender

1.0 3.4 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Unicast Me-
dia Receiver

1.0 3.4 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Broadcast
Media
Sender

1.0 3.4 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

continues on next page
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Table 12 – continued from previous page
Module Role Version Added in Re-

lease
Status Remaining

Broadcast
Media Re-
ceiver

1.0 3.4 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

PBP Public Broad-
cast Source

3.5 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Public Broad-
cast Sink

3.5 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Public Broad-
cast Assistant • Feature

com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

continues on next page
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Table 12 – continued from previous page
Module Role Version Added in Re-

lease
Status Remaining

GMAP Unicast
Game Gate-
way

3.5 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Unicast
Game Termi-
nal

3.5 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Broadcast
Game Sender

3.5 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Broadcast
Game Re-
ceiver

3.5 • Feature
com-
plete

• Shell
Module

• BSIM
test

• Sample
Appli-
cation

Using the Bluetooth Audio Stack To use any of the profiles in the Bluetooth Audio Stack, in-
cluding the top-level profiles outside of GAF, CONFIG_BT_AUDIO shall be enabled. This Kconfig
option allows the enabling of the individual profiles inside of the Bluetooth Audio Stack. Each
profile can generally be enabled on its own, but enabling higher-layer profiles (such as CAP,
TMAP and HAP) will typically require enabling some of the lower layer profiles.

It is, however, possible to create a device that uses e.g. only Stream Control (with just the BAP),
without using any of the content control or rendering/capture control profiles, or vice versa.
Using the higher layer profiles will however typically provide a better user experience and better
interoperability with other devices.

CommonAudio Profile (CAP) The Common Audio Profile introduces restrictions and require-
ments on the lower layer profiles. The procedures in CAP works on one or more streams for one
or more devices. Is it thus possible via CAP to do a single function call to setup multiple streams
across multiple devices.

The figure below shows a complete structure of the procedures in CAP and how they correspond
to procedures from the other profiles. The circles with I, A and C show whether the procedure
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has active involvement or requirements from the CAP Initiator, CAP Accept and CAP Commander
roles respectively.

The API reference for CAP can be found in Common Audio Profile.

Stream Control (BAP) Stream control is implemented by the Basic Audio Profile. This profile
defines multiple roles:

• Unicast Client

• Unicast Server

• Broadcast Source

• Broadcast Sink

• Scan Delegator

• Broadcast Assistant

Each role can be enabled individually, and it is possible to support more than one role.

Notes about the stream control services There are 3 services primarily used by stream con-
trol using the Basic Audio Profile.

Audio StreamControl Service (ASCS) ASCS is a service used exclusively for setting up unicast
streams, and is located on the BAP Unicast Server device. The service exposes one or more end-
points that can either be a sink or source endpoint, from the perspective of the Unicast Server.
That means a sink endpoint is always audio from the Unicast Client to the Unicast Server, and a
source endpoint is always from the Unicast Server to the Unicast Client.

Unlike most other GATT services, ASCS require that each characteristic in the service has unique
data per client. This means that if a Unicast Server is connected to multiple Unicast Clients, the
Unicast Clients are not able to see or control the endpoints configured by the other clients. For
example if a person’s smartphone is streaming audio to a headset, then the same person will not
be able to see or control that stream from their smartwatch.

Broadcast Audio Scan Service (BASS) BASS is a service that is exclusively used by the Scan
Delegator and Broadcast Assistant. The main purpose of the service is to offload scanning from
low power peripherals to e.g. phones and PCs. Unlike ASCS where the data is required to be
unique per client, the data in BASS (called receive states) are (usually) shared among all con-
nected clients. That means it is possible for a person to tell their headphones to synchronize to a
Broadcast Source using their phone, and then later tell their headphones to stop synchronizing
using their smartwatch.

A Broadcast Assistant can be any device, and may only support this one role without
any audio capabilities. This allows legacy devices that do not support periodic adver-
tisements or isochronous channels to still provide an interface and scan offloading for
peripherals. The Bluetooth SIG have provided a guide on how to develop such legacy
Broadcast Assistants that can be found at https://www.bluetooth.com/bluetooth-resources/
developing-auracast-receivers-with-an-assistant-application-for-legacy-smartphones/. An im-
portant note about this guide is that many operating systems (especially on phones), do not allow
generic usage of the BASS UUID, effectively making it impossible to implement your own Broad-
cast Assistant, because you cannot access the BASS.
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Fig. 7: Common Audio Profile Procedures
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Published Audio Capabilities Service (PACS) PACS is used to expose a device’s audio capabil-
ities in Published Audio Capabilities (PAC) records. PACS is used by nearly all roles, where the
Unicast Client and Broadcast Assistant will act as PACS clients, and Unicast Server and Broadcast
Sink will act as PACS servers. These records contain information about the codec, and which
values are supported by each codec. The values for the LC3 codec are defined by the Bluetooth
Assigned numbers (https://www.bluetooth.com/specifications/assigned-numbers/), and the val-
ues for other codecs such as SBC are left undefined/implementation specific for BAP.

PACS also usually share the same data between each connected client, but by using functions
such as bt_pacs_conn_set_available_contexts_for_conn(), it is possible to set specific values
for specific clients.

The API reference for stream control can be found in Bluetooth Audio.

RenderingandCaptureControl Rendering and capture control is implemented by the Volume
Control Profile (VCP) and Microphone Control Profile (MICP).

The VCP implementation supports the following roles

• Volume Control Service (VCS) Server

• Volume Control Service (VCS) Client

The MICP implementation supports the following roles

• Microphone Control Profile (MICP) Microphone Device (server)

• Microphone Control Profile (MICP) Microphone Controller (client)

The API reference for volume control can be found in Bluetooth Volume Control.

The API reference for Microphone Control can be found in Bluetooth Microphone Control.

Content Control Content control is implemented by the Call Control Profile (CCP) and Media
Control Profile (MCP).

The CCP implementation is not yet implemented in Zephyr.

The MCP implementation supports the following roles

• Media Control Service (MCS) Server via the Media Proxy module

• Media Control Client (MCC)

The API reference for media control can be found in Bluetooth Media Control.

Generic TBS and Generic MCS Both the Telephone Bearer Service (TBS) used by CCP and the
Media Control Service (MCS) used by MCP have the concept of generic instances of the services
called Generic TBS (GTBS) and Generic MCS (GMCS).

While these share a common name prefix, the behavior of these two may be significantly differ-
ent.

Generic TBS The TBS spec defines GTBS as

GTBS provides a single point of access and exposes a representation of its internal tele-
phone bearers into a single telephone bearer. This service provides telephone status
and control of the device as a single unit with a single set of characteristics. It is left up
to the implementation to determine what telephone bearer a characteristic of GTBS
represents at any time. There is no specified manner of representing a characteristic
from each individual TBS that resides on the device to the same characteristic of the
GTBS.
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For example, if there is more than one TBS on a device and each has a unique tele-
phone bearer name (e.g., Name1 and Name2), the way the GTBS represents the tele-
phone bearer name is left up to the implementation. GTBS is suited for clients that
do not need to access or control all the information available on specific telephone
bearers.

This means that a GTBS instance represents one or more telephone bearers. A telephone bearer
could be any application on a device that can handle (telephone) calls, such as the default Call
application on a smartphone, but also other applications such as Signal, Discord, Teams, Slack,
etc.

GTBS may be standalone (i.e.the device only has a GTBS instance without any TBS instances), and
the behavior of the GTBS is mostly left up to the implementation. In Zephyr the implementation
of GBTS is that it contains some generic information, such as the provider name which is defined
to simply be “Generic TBS”, but the majority of the information in the GTBS instance in Zephyr
has been implemented to be a union of the data of the other bearers. For example if you have a
bearer for regular phone calls and Teams and have an active call in both bearers, then each of
those bearers will report a single call, but the GTBS instance will report 2 calls, making it possible
for a simple Call Control Client to control all calls from a single bearer. Similarly the supported
URIs for each bearer are also made into a union in GTBS, and when placing a call using the GTBS
the server will pick the most suited bearer depending on the URI. For example calls with URI tel
would go to the regular phone application, and calls with the URI skype would go to the Teams
application.

In conclusion the GTBS implementation in Zephyr is a union of the non-generic telephone bear-
ers.

Generic MCS The MCS spec defines GMCS as

The GMCS provides status and control of media playback for the device as a single
unit. An MCS instance describes and controls the media playback for a specific media
player within the device. A device implements MCS instances to allow clients to access
the separate internal media player entities.

and where the behavior of GMCS is defined as

… the behavior of MCS and GMCS is identical, and all the characteristics and the char-
acteristics’ behaviors are the same. The term “MCS” is used throughout the document.
Unless otherwise specifically stated in this specification, the same meaning applies to
GMCS as well.

This means that a GMCS instance works the same way as an MCS instance, and it follows that
GMCS

controls the media playback for a specific media player within the device

A media player on a device could be anything that plays media, such as a Spotify or Youtube
application on a smartphone. Thus if a device has multiple MCS instances, then each of these
control media for that specific application, but the GMCS also controls media playback for a
specific media player. GMCS can thus be considered a pointer to a specific MCS instance, and
control either e.g. Spotify or Youtube, but not both.

The MCS spec does however provide an example of GMCS where a device can

Implement a GMCS that provides status and control of media playback for the device
as a whole.

Which may indicate that an implementation may use GMCS to represent all media players with
GMCS and not a specific media player as stated above. In the case where a device does not have
any MCS instances and only GMCS, then GMCS will point to a generic instance.

The Zephyr implementation of MCS and GMCS is incomplete, and currently only supports instan-
tiating a single instance that can either be an MCS or GMCS. This means that the implementation
is neither complete nor spec-compliant.
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Difference betweenGTBS andGMCS The definitions and implementations of GTBS and GMCS
as stated above are notably different. GTBS works as a union between the other TBS instances
(if any), and GMCS works as a pointer to a specific MCS instance (if any). This effectively means
that a simple Call Control Client can control all calls just using GTBS, but a Media Control Client
may only be able to control a single player using GMCS.

Coordinated Sets Coordinated Sets is implemented by the Coordinated Sets Identification Pro-
file (CSIP).

The CSIP implementation supports the following roles

• Coordinated Set Identification Service (CSIP) Set Member

• Coordinated Set Identification Service (CSIP) Set Coordinator

The API reference for media control can be found in Bluetooth Coordinated Sets.

Specification correctness and data location The implementations are designed to ensure
specification compliance as much as possible. When a specification introduces a requirement
with e.g. a shall then the implementation should attempt to ensure that this requirement is al-
ways followed. Depending on the context of this, the implementation ensures this by rejecting
invalid parameters from the application, or from the remote devices.

Some requirements from the specifications are not or can not be handled by the stack itself for
various reasons. One reason when the stack cannot handle a requirement is if the data related to
the requirement is exclusively controlled by the application. An example of this is the advertising
data, where multiple service have requirements for what to advertise and when, but where both
the advertising state and data is exclusively controlled by the application.

Oppositely there are also requirements from the specification, where the data related to the
requirement is exclusively controlled by the stack. An example of this is the Volume Control
Service (VCS) state, where the specifications mandata that the VCP Volume Renderer (VCS server)
modify the values without a choice, e.g. when setting the absolutely volume. In cases like this
the application is only notified about the change with a callback, but cannot reject the request
(the stack will reject any invalid requests).

Generally when the data is simple (like the VCS state which only take up a few bytes), the data
is kept in and controlled by the stack, as this can ensure that the requirements can be handled
by the stack, making it easier to use a profile role correctly. When the data is more complex (e.g.
the PAC records), the data may be kept by the application and the stack only contains a reference
to it. When the data is very application specific (e.g. advertising data), the data is kept in and
controlled by the application.

As a rule of thumb, the return types of the callbacks for each profile implementation indicate
whether the data is controlled by the stack or the application. For example all the callbacks for
the VCP Volume Renderer have the return type of void, but the return type of the BAP Unicast
Server callbacks are int, indicating that the application not only controls a lot of the Unicast
Server data, but can also reject the requests. The choice of what the return type of the callbacks
often depend on the specifications, and how much control the role has in a given context.

Things worth knowing or considering when using LE Audio This section describes a few
tings to consider when contributing to or using LE Audio in Zephyr. The things described by this
section are not unique to Zephyr as they are defined by the specifications.

Security requirements All LE Audio services require Security Level 2 but where the key must
be 128-bit and derived via an OOB method or via LE Secure connections. There is no Core-spec
defined way of reporting this in GATT, as ATT does not have a specific error code for missing OOB
method or LE Secure Connections (although there is a way to report wrong key size).
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In Zephyr we do not force the device to always use these, as a device that uses LE Audio may
also use other profiles and services that do not require such security. We guard all access to ser-
vices using a custom security check implemented in subsys/bluetooth/audio/audio.c, where all
LE Audio services must use the internal BT_AUDIO_CHRC macro for proper security verification.

Access to the LTK for encrypted SIRKs in CSIS The Coordinated Set Identification Service
(CSIS) may encrypt the SIRK (set identity resolving key). The process of encrypting the SIRK
requires the LTK as the encryption key, which is typically not exposed to higher layer implemen-
tations such as CSIS. This does not have any effect on the security though.

MTU requirements The Basic Audio Profile (BAP) has a requirement that both sides shall sup-
port a minimum ATT_MTU of at least 64 on the unenhanced ATT bearer or at least one enhanced
ATT bearer. The requirement comes from the preferred (or sometimes mandatory) use of GATT
Write Without Response, and where support for Write Long Characteristic Value is optional in
most cases.

If a ASCS device supports values larger than the minimum ATT_MTU of 64 octets, then it shall
support Read long Characteristic Value by setting CONFIG_BT_ATT_PREPARE_COUNT to a non-zero
value.

6.1.6 LE Audio resources

This section contains some links and reference to resources that are useful for either contributors
to the LE Audio Stack in Zephyr, LE Audio application developers or both.

The LE audio channel on Discord

Zephyr has a specific Discord channel for LE Audio development, which is open to all. Find it
here at https://discordapp.com/channels/720317445772017664/1207326649591271434 or simply
search for ble-audio from within Discord. Since the ble-audio channel is open for all, we can-
not discuss any specifications that are in development in that channel. For discussions that
require a Bluetooth SIG membership we refer to the bluetooth-sig Discord channel found at
https://discordapp.com/channels/720317445772017664/869172014018097162.

Zephyr weekly meetings

Anyone who is a Bluetooth SIG member and a Zephyr member can join the weekly meetings
where we discuss and plan the development of LE Audio in Zephyr. You can find the time of the
meetings by joining the Bluetooth-sig group at https://lists.zephyrproject.org/g/Bluetooth-sig.

Github project

LE Audio in Zephyr has its own Github project available at https://github.com/orgs/
zephyrproject-rtos/projects/26. The project is mostly automated, and the LE Audio contributors
almost only rely on the automated workflows to present the state of development. Anyone is
able to pick any of the open issues and work on it. If you cannot assign the issue to yourself,
please leave a comment in the issue itself or ping the Discord channel for help.
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Bluetooth SIG errata for LE Audio

There are many specifications for LE Audio, and several of them are still being updated and
developed. To get an overview of the errata for the LE Audio specifications you can visit

• Generic Audio (GA) errata https://bluetooth.atlassian.net/wiki/spaces/GA/pages/
1634402349/GAWG+Errata+Lists

• Hearing Aid (HA) errata https://bluetooth.atlassian.net/wiki/spaces/HA/pages/1634140216/
HA+WG+Errata+List

• Audio, Telephony and Automotive (ATA) errata https://bluetooth.atlassian.net/wiki/spaces/
ATA/pages/1668481034/ATA+Errata+Lists

Access to errata requires a Bluetooth SIG membership.

Bluetooth SIG working groups for LE Audio

There are 3 working groups in the Bluetooth SIG related to LE Audio:

• Generic Audio (GA) https://www.bluetooth.org/groups/group.aspx?gId=665

• Hearing Aid (HA) https://www.bluetooth.org/groups/group.aspx?gId=605

• Audio, Telephony, and Automotive (ATA) https://www.bluetooth.org/groups/group.aspx?
gId=659

By joining these groups you will also get emails from their respective mailing lists, where mul-
tiple questions and discussions are handled. The working groups also have scheduled weekly
meetings, where issues and the development of the specifications are handled.

Access to the Bluetooth SIG working groups requires a Bluetooth SIG membership.

The LE Audio Book

There is a free ebook on LE Audio at https://www.bluetooth.com/bluetooth-resources/
le-audio-book/. The book was released in January 2022, and thus before some of the specifi-
cations were finalized, but also before some of the released updates to the specifications. Never-
theless the book still provides a good explanation for many of the concepts and ideas, but please
refer to the individual specifications for technical information.

Bluetooth SIG informational papers, reports and guides

The Bluetooth SIG occasionally release new informational papers, report and guides. These can
be found at https://www.bluetooth.com/bluetooth-resources/?tags=le-audio&keyword. Here you
will also find the aforementioned LE Audio book, among many other good resources.

6.1.7 LE Controller
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Overview

1. HCI

• Host Controller Interface, Bluetooth standard

• Provides Zephyr Bluetooth HCI Driver

2. HAL

• Hardware Abstraction Layer

• Vendor Specific, and Zephyr Driver usage

3. Ticker

• Soft real time radio/resource scheduling

4. LL_SW

• Software-based Link Layer implementation

• States and roles, control procedures, packet controller

5. Util

• Bare metal memory pool management

• Queues of variable count, lockless usage

• FIFO of fixed count, lockless usage

• Mayfly concept based deferred ISR executions
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Architecture

ExecutionOverview

ArchitectureOverview
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Scheduling

Ticker

1692 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

UpperLinkLayer andLowerLinkLayer

SchedulingVariants

ULLandLLLTiming

6.1. Bluetooth 1693



Zephyr Project Documentation, Release 3.7.99

Event Handling
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SchedulingClosely SpacedEvents

AbortingActiveEvent
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CancellingPendingEvent

Pre-emptionofActiveEvent
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Data Flow

TransmitDataFlow
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ReceiveDataFlow
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Execution Priorities

• Event handle (0, 1) < Event preparation (2, 3) < Event/Rx done (4) < Tx request (5) < Role
management (6) < Host (7).

• LLL is vendor ISR, ULL is Mayfly ISR concept, Host is kernel thread.

Lower Link Layer

LLLExecution
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LLLResume

Bare metal utilities

MemoryFIFOandMemoryQueue

Mayfly
• Mayfly are multi-instance scalable ISR execution contexts
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• What a Work is to a Thread, Mayfly is to an ISR

• List of functions executing in ISRs

• Execution priorities map to IRQ priorities

• Facilitate cross execution context scheduling

• Race-to-idle execution

• Lock-less, bare metal

Legacy Controller

Bluetooth Low Energy Controller - Vendor Specific Details

Hardware Requirements

Nordic Semiconductor The Nordic Semiconductor Bluetooth Low Energy Controller imple-
mentation requires the following hardware peripherals.
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Table 13: SoC Peripheral Use

Resource nRF Pe-
ripheral

# instances Zephyr
Driver
Acces-
sible

Description

Clock NRF_CLOCK 1 Yes
• A Low Frequency Clock (LFCLOCK) or

sleep clock, for low power consump-
tion between Bluetooth radio events

• A High Frequency Clock (HFCLOCK)
or active clock, for high precision
packet timing and software based
transceiver state switching with inter-
frame space (tIFS) timing inside Blue-
tooth radio events

RTC [a] NRF_RTC0 1 No
• Uses 2 capture/compare registers

Timer NRF_TIMER0
or
NRF_TIMER41,
and
NRF_TIMER10

2 or
1Page 1703, 1

No
• 2 instances, one each for packet tim-

ing and tIFS software switching, re-
spectively

• 7 capture/compare registers (3
mandatory, 1 optional for ISR profil-
ing, 4 for single timer tIFS switching)
on first instance

• 4 capture/compare registers for sec-
ond instance, if single tIFS timer is not
used.

PPI [b] NRF_PPI 21 chan-
nels (202),
and 2
channel
groups3

Yes4
• Used for radio mode switching to

achieve tIFS timings, for PA/LNA con-
trol

DPPI [c] NRF_DPPI 20 chan-
nels, and
2 channel
groupsPage 1703, 3

YesPage 1703, 4
• Used for radio mode switching to

achieve tIFS timings, for PA/LNA con-
trol

SWI [d] NRF_SWI4
and
NRF_SWI5,
or
NRF_SWI2
and
NRF_SWI35

2 No
• 2 instances, for Lower Link Layer and

Upper Link Layer Low priority execu-
tion context

Radio NRF_RADIO 1 No
• 2.4 GHz radio transceiver with multi-

ple radio standards such as 1 Mbps,
2 Mbps and Coded PHY S2/S8 Long
Range Bluetooth Low Energy technol-
ogy

RNG [e] NRF_RNG 1 Yes
ECB [f] NRF_ECB 1 No
CBC-CCM
[g]

NRF_CCM 1 No

AAR [h] NRF_AAR 1 No
GPIO [i] NRF_GPIO 2 GPIO

pins for PA
and LNA, 1
each

Yes
• Additionally, 10 Debug GPIO pins (op-

tional)

GPIOTE [j] NRF_GPIOTE 1 Yes
• Used for PA/LNA

TEMP [k] NRF_TEMP 1 Yes
• For RC sourced LFCLOCK calibration

UART [l] NRF_UART0 1 Yes
• For HCI interface in Controller only

builds

IPC [m] NRF_IPCPage 1703, 51 Yes
• For HCI interface in Controller only

builds

1702 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

6.1.8 Application Development

Bluetooth applications are developed using the common infrastructure and approach that is de-
scribed in the Application Development section of the documentation.

Additional information that is only relevant to Bluetooth applications can be found on this page.

• Thread safety

• Hardware setup

– Embedded

– Host on Linux with an external Controller

– Simulated nRF5x with BabbleSim

• Initialization

• Bluetooth Application Example

• More Examples

Thread safety

Calling into the Bluetooth API is intended to be thread safe, unless otherwise noted in the doc-
umentation of the API function. The effort to ensure that this is the case for all API calls is an
ongoing one, but the overall goal is formally stated in this paragraph. Bug reports and Pull Re-
quests that move the subsystem in the direction of such goal are welcome.

Hardware setup

This section describes the options you have when building and debugging Bluetooth applications
with Zephyr. Depending on the hardware that is available to you, the requirements you have and
the type of development you prefer you may pick one or another setup to match your needs.

There are 3 possible setups:

1. Embedded

2. External controller

• QEMU host

• native_sim host

3. Simulated nRF5x with BabbleSim

Embedded This setup relies on all software running directly on the embedded platform(s) that
the application is targeting. All the Configurations and Build Types are supported but you might
need to build Zephyr more than once if you are using a dual-chip configuration or if you have
multiple cores in your SoC each running a different build type (e.g., one running the Host, the
other the Controller).

1 CONFIG_BT_CTLR_SW_SWITCH_SINGLE_TIMER =y
0 CONFIG_BT_CTLR_TIFS_HW =n
2 When not using pre-defined PPI channels
3 For software-based tIFS switching
4 Drivers that use nRFx interfaces
5 For nRF53x Series

6.1. Bluetooth 1703



Zephyr Project Documentation, Release 3.7.99

To start developing using this setup follow the Getting Started Guide, choose one (or more if you
are using a dual-chip solution) boards that support Bluetooth and then run the application).

There is a way to access the HCI traffic between the Host and Controller, even if there is no
physical transport. See Embedded HCI tracing for instructions.

Note

This is currently only available on GNU/Linux

Host on Linux with an external Controller This setup relies on a “dual-chip” configuration
which is comprised of the following devices:

1. A Host-only application running in the QEMU emulator or the native_sim native port of
Zephyr

2. A Controller, which can be one of the following types:

• A commercially available Controller

• A Controller-only build of Zephyr

• A Virtual controller

Warning

Certain external Controllers are either unable to accept the Host to Controller flow control
parameters that Zephyr sets by default (Qualcomm), or do not transmit any data from the
Controller to the Host (Realtek). If you see a message similar to:
<wrn> bt_hci_core: opcode 0x0c33 status 0x12

when booting your sample of choice (make sure you have enabled CONFIG_LOG in your
prj.conf before running the sample), or if there is no data flowing from the Controller
to the Host, then you need to disable Host to Controller flow control. To do so, set CON-
FIG_BT_HCI_ACL_FLOW_CONTROL=n in your prj.conf.

QEMU You can run the Zephyr Host on the QEMU emulator and have it interact with a physical
external Bluetooth Controller.

Refer to Running on QEMU or native_sim for full instructions on how to build and run an appli-
cation in this setup.

Note

This is currently only available on GNU/Linux

native_sim The native_sim target builds your Zephyr application with the Zephyr kernel, and
some minimal HW emulation as a native Linux executable.

This executable is a normal Linux program, which can be debugged and instrumented like any
other, and it communicates with a physical or virtual external Controller. Refer to:

• Running on QEMU or native_sim for the physical controller

• Running on a Virtual Controller and native_sim for the virtual controller
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Note

This is currently only available on GNU/Linux

Simulated nRF5x with BabbleSim The nrf52_bsim and nrf5340bsim boards, are simulated
target boards which emulate the necessary peripherals of a nRF52/53 SOC to be able to develop
and test BLE applications. These boards, use:

• BabbleSim to simulate the nRF5x modem and the radio environment.

• The POSIX arch and native simulator to emulate the processor, and run natively on your
host.

• Models of the nrf5x HW

Just like with the native_sim target, the build result is a normal Linux executable. You can
find more information on how to run simulations with one or several devices in either of these
boards’s documentation.

With the nrf52_bsim, typically you do Combined builds, but it is also possible to build the con-
troller with one of the HCI UART samples in one simulated device, and the host with the H4
driver instead of the integrated controller in another simulated device.

With the nrf5340bsim, you can build with either, both controller and host on its network core,
or, with the network core running only the controller, the application core running the host and
your application, and the HCI transport over IPC.

Initialization

The Bluetooth subsystem is initialized using the bt_enable() function. The caller should ensure
that function succeeds by checking the return code for errors. If a function pointer is passed to
bt_enable(), the initialization happens asynchronously, and the completion is notified through
the given function.

Bluetooth Application Example

A simple Bluetooth beacon application is shown below. The application initializes the Bluetooth
Subsystem and enables non-connectable advertising, effectively acting as a Bluetooth Low En-
ergy broadcaster.

1

2 /*
3 * Set Advertisement data. Based on the Eddystone specification:
4 * https://github.com/google/eddystone/blob/master/protocol-specification.md
5 * https://github.com/google/eddystone/tree/master/eddystone-url
6 */
7 static const struct bt_data ad[] = {
8 BT_DATA_BYTES(BT_DATA_FLAGS, BT_LE_AD_NO_BREDR),
9 BT_DATA_BYTES(BT_DATA_UUID16_ALL, 0xaa, 0xfe),

10 BT_DATA_BYTES(BT_DATA_SVC_DATA16,
11 0xaa, 0xfe, /* Eddystone UUID */
12 0x10, /* Eddystone-URL frame type */
13 0x00, /* Calibrated Tx power at 0m */
14 0x00, /* URL Scheme Prefix http://www. */
15 'z', 'e', 'p', 'h', 'y', 'r',
16 'p', 'r', 'o', 'j', 'e', 'c', 't',
17 0x08) /* .org */
18 };
19

(continues on next page)
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(continued from previous page)
20 /* Set Scan Response data */
21 static const struct bt_data sd[] = {
22 BT_DATA(BT_DATA_NAME_COMPLETE, DEVICE_NAME, DEVICE_NAME_LEN),
23 };
24

25 static void bt_ready(int err)
26 {
27 char addr_s[BT_ADDR_LE_STR_LEN];
28 bt_addr_le_t addr = {0};
29 size_t count = 1;
30

31 if (err) {
32 printk("Bluetooth init failed (err %d)\n", err);
33 return;
34 }
35

36 printk("Bluetooth initialized\n");
37

38 /* Start advertising */
39 err = bt_le_adv_start(BT_LE_ADV_NCONN_IDENTITY, ad, ARRAY_SIZE(ad),
40 sd, ARRAY_SIZE(sd));
41 if (err) {
42 printk("Advertising failed to start (err %d)\n", err);
43 return;
44 }
45

46

47 /* For connectable advertising you would use
48 * bt_le_oob_get_local(). For non-connectable non-identity
49 * advertising an non-resolvable private address is used;
50 * there is no API to retrieve that.
51 */
52

53 bt_id_get(&addr, &count);
54 bt_addr_le_to_str(&addr, addr_s, sizeof(addr_s));
55

56 printk("Beacon started, advertising as %s\n", addr_s);
57 }
58

59 int main(void)
60 {
61 int err;
62

63 printk("Starting Beacon Demo\n");
64

65 /* Initialize the Bluetooth Subsystem */
66 err = bt_enable(bt_ready);
67 if (err) {
68 printk("Bluetooth init failed (err %d)\n", err);
69 }
70 return 0;
71 }

The key APIs employed by the beacon sample are bt_enable() that’s used to initialize Bluetooth
and then bt_le_adv_start() that’s used to start advertising a specific combination of advertising
and scan response data.

More Examples

More sample Bluetooth applications are available in samples/bluetooth/.
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6.1.9 API

Bluetooth Classic Host and profiles

Hands Free Profile (HFP)

API Reference

group bt_hfp
Hands Free Profile (HFP)

Defines

HFP_HF_CMD_OK

HFP_HF_CMD_ERROR

HFP_HF_CMD_CME_ERROR

HFP_HF_CMD_UNKNOWN_ERROR

Enums

enum bt_hfp_hf_at_cmd
Values:

enumerator BT_HFP_HF_ATA

enumerator BT_HFP_HF_AT_CHUP

Functions

int bt_hfp_hf_register(struct bt_hfp_hf_cb *cb)
Register HFP HF profile.

Register Handsfree profile callbacks to monitor the state and get the required HFP
details to display.

Parameters
• cb – callback structure.

Returns
0 in case of success or negative value in case of error.

int bt_hfp_hf_send_cmd(struct bt_conn *conn, enum bt_hfp_hf_at_cmd cmd)
Handsfree client Send AT.

Send specific AT commands to handsfree client profile.

Parameters
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• conn – Connection object.

• cmd – AT command to be sent.

Returns
0 in case of success or negative value in case of error.

struct bt_hfp_hf_cmd_complete
#include <hfp_hf.h> HFP HF Command completion field.

struct bt_hfp_hf_cb
#include <hfp_hf.h> HFP profile application callback.

Public Members

void (*connected)(struct bt_conn *conn)
HF connected callback to application.

If this callback is provided it will be called whenever the connection completes.
Param conn

Connection object.

void (*disconnected)(struct bt_conn *conn)
HF disconnected callback to application.

If this callback is provided it will be called whenever the connection gets discon-
nected, including when a connection gets rejected or cancelled or any error in SLC
establishment.

Param conn
Connection object.

void (*sco_connected)(struct bt_conn *conn, struct bt_conn *sco_conn)
HF SCO/eSCO connected Callback.

If this callback is provided it will be called whenever the SCO/eSCO connection
completes.

Param conn
Connection object.

Param sco_conn
SCO/eSCO Connection object.

void (*sco_disconnected)(struct bt_conn *sco_conn, uint8_t reason)
HF SCO/eSCO disconnected Callback.

If this callback is provided it will be called whenever the SCO/eSCO connection gets
disconnected.

Param conn
Connection object.

Param reason
BT_HCI_ERR_* reason for the disconnection.

void (*service)(struct bt_conn *conn, uint32_t value)
HF indicator Callback.

This callback provides service indicator value to the application
Param conn

Connection object.
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Param value
service indicator value received from the AG.

void (*call)(struct bt_conn *conn, uint32_t value)
HF indicator Callback.

This callback provides call indicator value to the application
Param conn

Connection object.
Param value

call indicator value received from the AG.

void (*call_setup)(struct bt_conn *conn, uint32_t value)
HF indicator Callback.

This callback provides call setup indicator value to the application
Param conn

Connection object.
Param value

call setup indicator value received from the AG.

void (*call_held)(struct bt_conn *conn, uint32_t value)
HF indicator Callback.

This callback provides call held indicator value to the application
Param conn

Connection object.
Param value

call held indicator value received from the AG.

void (*signal)(struct bt_conn *conn, uint32_t value)
HF indicator Callback.

This callback provides signal indicator value to the application
Param conn

Connection object.
Param value

signal indicator value received from the AG.

void (*roam)(struct bt_conn *conn, uint32_t value)
HF indicator Callback.

This callback provides roaming indicator value to the application
Param conn

Connection object.
Param value

roaming indicator value received from the AG.

void (*battery)(struct bt_conn *conn, uint32_t value)
HF indicator Callback.

This callback battery service indicator value to the application
Param conn

Connection object.
Param value

battery indicator value received from the AG.
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void (*ring_indication)(struct bt_conn *conn)
HF incoming call Ring indication callback to application.

If this callback is provided it will be called whenever there is an incoming call.
Param conn

Connection object.

void (*cmd_complete_cb)(struct bt_conn *conn, struct bt_hfp_hf_cmd_complete *cmd)
HF notify command completed callback to application.

The command sent from the application is notified about its status
Param conn

Connection object.
Param cmd

structure contains status of the command including cme.

Serial Port Emulation (RFCOMM)

API Reference

group bt_rfcomm
RFCOMM.

Typedefs

typedef enum bt_rfcomm_role bt_rfcomm_role_t
Role of RFCOMM session and dlc.

Used only by internal APIs

Enums

Values:

enumerator BT_RFCOMM_CHAN_HFP_HF = 1

enumerator BT_RFCOMM_CHAN_HFP_AG

enumerator BT_RFCOMM_CHAN_HSP_AG

enumerator BT_RFCOMM_CHAN_HSP_HS

enumerator BT_RFCOMM_CHAN_SPP

enum bt_rfcomm_role
Role of RFCOMM session and dlc.

Used only by internal APIs

Values:
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enumerator BT_RFCOMM_ROLE_ACCEPTOR

enumerator BT_RFCOMM_ROLE_INITIATOR

Functions

int bt_rfcomm_server_register(struct bt_rfcomm_server *server)
Register RFCOMM server.

Register RFCOMM server for a channel, each new connection is authorized using the
accept() callback which in case of success shall allocate the dlc structure to be used by
the new connection.

Parameters
• server – Server structure.

Returns
0 in case of success or negative value in case of error.

int bt_rfcomm_dlc_connect(struct bt_conn *conn, struct bt_rfcomm_dlc *dlc, uint8_t
channel)

Connect RFCOMM channel.

Connect RFCOMM dlc by channel, once the connection is completed dlc connected()
callback will be called. If the connection is rejected disconnected() callback is called
instead.

Parameters
• conn – Connection object.

• dlc – Dlc object.

• channel – Server channel to connect to.

Returns
0 in case of success or negative value in case of error.

int bt_rfcomm_dlc_send(struct bt_rfcomm_dlc *dlc, struct net_buf *buf)
Send data to RFCOMM.

Send data from buffer to the dlc. Length should be less than or equal to mtu.

Parameters
• dlc – Dlc object.

• buf – Data buffer.

Returns
Bytes sent in case of success or negative value in case of error.

int bt_rfcomm_dlc_disconnect(struct bt_rfcomm_dlc *dlc)
Disconnect RFCOMM dlc.

Disconnect RFCOMM dlc, if the connection is pending it will be canceled and as a result
the dlc disconnected() callback is called.

Parameters
• dlc – Dlc object.

Returns
0 in case of success or negative value in case of error.

6.1. Bluetooth 1711



Zephyr Project Documentation, Release 3.7.99

struct net_buf *bt_rfcomm_create_pdu(struct net_buf_pool *pool)
Allocate the buffer from pool after reserving head room for RFCOMM, L2CAP and ACL
headers.

Parameters
• pool – Which pool to take the buffer from.

Returns
New buffer.

struct bt_rfcomm_dlc_ops
#include <rfcomm.h> RFCOMM DLC operations structure.

Public Members

void (*connected)(struct bt_rfcomm_dlc *dlc)
DLC connected callback.

If this callback is provided it will be called whenever the connection completes.
Param dlc

The dlc that has been connected

void (*disconnected)(struct bt_rfcomm_dlc *dlc)
DLC disconnected callback.

If this callback is provided it will be called whenever the dlc is disconnected, in-
cluding when a connection gets rejected or cancelled (both incoming and outgoing)

Param dlc
The dlc that has been Disconnected

void (*recv)(struct bt_rfcomm_dlc *dlc, struct net_buf *buf)
DLC recv callback.

Param dlc
The dlc receiving data.

Param buf
Buffer containing incoming data.

void (*sent)(struct bt_rfcomm_dlc *dlc, int err)
DLC sent callback.

Param dlc
The dlc which has sent data.

Param err
Sent result.

struct bt_rfcomm_dlc
#include <rfcomm.h> RFCOMM DLC structure.

struct bt_rfcomm_server
#include <rfcomm.h>

Public Members
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uint8_t channel
Server Channel.

int (*accept)(struct bt_conn *conn, struct bt_rfcomm_dlc **dlc)
Server accept callback.

This callback is called whenever a new incoming connection requires authoriza-
tion.

Param conn
The connection that is requesting authorization

Param dlc
Pointer to received the allocated dlc

Return
0 in case of success or negative value in case of error.

Service Discovery Protocol (SDP)

API Reference

group bt_sdp

Service class identifiers of standard services and service groups

BT_SDP_SDP_SERVER_SVCLASS
Service Discovery Server.

BT_SDP_BROWSE_GRP_DESC_SVCLASS
Browse Group Descriptor.

BT_SDP_PUBLIC_BROWSE_GROUP
Public Browse Group.

BT_SDP_SERIAL_PORT_SVCLASS
Serial Port.

BT_SDP_LAN_ACCESS_SVCLASS
LAN Access Using PPP.

BT_SDP_DIALUP_NET_SVCLASS
Dialup Networking.

BT_SDP_IRMC_SYNC_SVCLASS
IrMC Sync.

BT_SDP_OBEX_OBJPUSH_SVCLASS
OBEX Object Push.

BT_SDP_OBEX_FILETRANS_SVCLASS
OBEX File Transfer.
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BT_SDP_IRMC_SYNC_CMD_SVCLASS
IrMC Sync Command.

BT_SDP_HEADSET_SVCLASS
Headset.

BT_SDP_CORDLESS_TELEPHONY_SVCLASS
Cordless Telephony.

BT_SDP_AUDIO_SOURCE_SVCLASS
Audio Source.

BT_SDP_AUDIO_SINK_SVCLASS
Audio Sink.

BT_SDP_AV_REMOTE_TARGET_SVCLASS
A/V Remote Control Target.

BT_SDP_ADVANCED_AUDIO_SVCLASS
Advanced Audio Distribution.

BT_SDP_AV_REMOTE_SVCLASS
A/V Remote Control.

BT_SDP_AV_REMOTE_CONTROLLER_SVCLASS
A/V Remote Control Controller.

BT_SDP_INTERCOM_SVCLASS
Intercom.

BT_SDP_FAX_SVCLASS
Fax.

BT_SDP_HEADSET_AGW_SVCLASS
Headset AG.

BT_SDP_WAP_SVCLASS
WAP.

BT_SDP_WAP_CLIENT_SVCLASS
WAP Client.

BT_SDP_PANU_SVCLASS
Personal Area Networking User.

BT_SDP_NAP_SVCLASS
Network Access Point.
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BT_SDP_GN_SVCLASS
Group Network.

BT_SDP_DIRECT_PRINTING_SVCLASS
Direct Printing.

BT_SDP_REFERENCE_PRINTING_SVCLASS
Reference Printing.

BT_SDP_IMAGING_SVCLASS
Basic Imaging Profile.

BT_SDP_IMAGING_RESPONDER_SVCLASS
Imaging Responder.

BT_SDP_IMAGING_ARCHIVE_SVCLASS
Imaging Automatic Archive.

BT_SDP_IMAGING_REFOBJS_SVCLASS
Imaging Referenced Objects.

BT_SDP_HANDSFREE_SVCLASS
Handsfree.

BT_SDP_HANDSFREE_AGW_SVCLASS
Handsfree Audio Gateway.

BT_SDP_DIRECT_PRT_REFOBJS_SVCLASS
Direct Printing Reference Objects Service.

BT_SDP_REFLECTED_UI_SVCLASS
Reflected UI.

BT_SDP_BASIC_PRINTING_SVCLASS
Basic Printing.

BT_SDP_PRINTING_STATUS_SVCLASS
Printing Status.

BT_SDP_HID_SVCLASS
Human Interface Device Service.

BT_SDP_HCR_SVCLASS
Hardcopy Cable Replacement.

BT_SDP_HCR_PRINT_SVCLASS
HCR Print.
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BT_SDP_HCR_SCAN_SVCLASS
HCR Scan.

BT_SDP_CIP_SVCLASS
Common ISDN Access.

BT_SDP_VIDEO_CONF_GW_SVCLASS
Video Conferencing Gateway.

BT_SDP_UDI_MT_SVCLASS
UDI MT.

BT_SDP_UDI_TA_SVCLASS
UDI TA.

BT_SDP_AV_SVCLASS
Audio/Video.

BT_SDP_SAP_SVCLASS
SIM Access.

BT_SDP_PBAP_PCE_SVCLASS
Phonebook Access Client.

BT_SDP_PBAP_PSE_SVCLASS
Phonebook Access Server.

BT_SDP_PBAP_SVCLASS
Phonebook Access.

BT_SDP_MAP_MSE_SVCLASS
Message Access Server.

BT_SDP_MAP_MCE_SVCLASS
Message Notification Server.

BT_SDP_MAP_SVCLASS
Message Access Profile.

BT_SDP_GNSS_SVCLASS
GNSS.

BT_SDP_GNSS_SERVER_SVCLASS
GNSS Server.

BT_SDP_MPS_SC_SVCLASS
MPS SC.
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BT_SDP_MPS_SVCLASS
MPS.

BT_SDP_PNP_INFO_SVCLASS
PnP Information.

BT_SDP_GENERIC_NETWORKING_SVCLASS
Generic Networking.

BT_SDP_GENERIC_FILETRANS_SVCLASS
Generic File Transfer.

BT_SDP_GENERIC_AUDIO_SVCLASS
Generic Audio.

BT_SDP_GENERIC_TELEPHONY_SVCLASS
Generic Telephony.

BT_SDP_UPNP_SVCLASS
UPnP Service.

BT_SDP_UPNP_IP_SVCLASS
UPnP IP Service.

BT_SDP_UPNP_PAN_SVCLASS
UPnP IP PAN.

BT_SDP_UPNP_LAP_SVCLASS
UPnP IP LAP.

BT_SDP_UPNP_L2CAP_SVCLASS
UPnP IP L2CAP.

BT_SDP_VIDEO_SOURCE_SVCLASS
Video Source.

BT_SDP_VIDEO_SINK_SVCLASS
Video Sink.

BT_SDP_VIDEO_DISTRIBUTION_SVCLASS
Video Distribution.

BT_SDP_HDP_SVCLASS
HDP.

BT_SDP_HDP_SOURCE_SVCLASS
HDP Source.
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BT_SDP_HDP_SINK_SVCLASS
HDP Sink.

BT_SDP_GENERIC_ACCESS_SVCLASS
Generic Access Profile.

BT_SDP_GENERIC_ATTRIB_SVCLASS
Generic Attribute Profile.

BT_SDP_APPLE_AGENT_SVCLASS
Apple Agent.

Attribute identifier codes

Possible values for attribute-id are listed below.

See SDP Spec, section “Service Attribute Definitions” for more details.

BT_SDP_ATTR_RECORD_HANDLE
Service Record Handle.

BT_SDP_ATTR_SVCLASS_ID_LIST
Service Class ID List.

BT_SDP_ATTR_RECORD_STATE
Service Record State.

BT_SDP_ATTR_SERVICE_ID
Service ID.

BT_SDP_ATTR_PROTO_DESC_LIST
Protocol Descriptor List.

BT_SDP_ATTR_BROWSE_GRP_LIST
Browse Group List.

BT_SDP_ATTR_LANG_BASE_ATTR_ID_LIST
Language Base Attribute ID List.

BT_SDP_ATTR_SVCINFO_TTL
Service Info Time to Live.

BT_SDP_ATTR_SERVICE_AVAILABILITY
Service Availability.

BT_SDP_ATTR_PROFILE_DESC_LIST
Bluetooth Profile Descriptor List.
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BT_SDP_ATTR_DOC_URL
Documentation URL.

BT_SDP_ATTR_CLNT_EXEC_URL
Client Executable URL.

BT_SDP_ATTR_ICON_URL
Icon URL.

BT_SDP_ATTR_ADD_PROTO_DESC_LIST
Additional Protocol Descriptor List.

BT_SDP_ATTR_GROUP_ID
Group ID.

BT_SDP_ATTR_IP_SUBNET
IP Subnet.

BT_SDP_ATTR_VERSION_NUM_LIST
Version Number List.

BT_SDP_ATTR_SUPPORTED_FEATURES_LIST
Supported Features List.

BT_SDP_ATTR_GOEP_L2CAP_PSM
GOEP L2CAP PSM.

BT_SDP_ATTR_SVCDB_STATE
Service Database State.

BT_SDP_ATTR_MPSD_SCENARIOS
MPSD Scenarios.

BT_SDP_ATTR_MPMD_SCENARIOS
MPMD Scenarios.

BT_SDP_ATTR_MPS_DEPENDENCIES
Supported Profiles & Protocols.

BT_SDP_ATTR_SERVICE_VERSION
Service Version.

BT_SDP_ATTR_EXTERNAL_NETWORK
External Network.

BT_SDP_ATTR_SUPPORTED_DATA_STORES_LIST
Supported Data Stores List.
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BT_SDP_ATTR_DATA_EXCHANGE_SPEC
Data Exchange Specification.

BT_SDP_ATTR_NETWORK
Network.

BT_SDP_ATTR_FAX_CLASS1_SUPPORT
Fax Class 1 Support.

BT_SDP_ATTR_REMOTE_AUDIO_VOLUME_CONTROL
Remote Audio Volume Control.

BT_SDP_ATTR_MCAP_SUPPORTED_PROCEDURES
MCAP Supported Procedures.

BT_SDP_ATTR_FAX_CLASS20_SUPPORT
Fax Class 2.0 Support.

BT_SDP_ATTR_SUPPORTED_FORMATS_LIST
Supported Formats List.

BT_SDP_ATTR_FAX_CLASS2_SUPPORT
Fax Class 2 Support (vendor-specific)

BT_SDP_ATTR_AUDIO_FEEDBACK_SUPPORT
Audio Feedback Support.

BT_SDP_ATTR_NETWORK_ADDRESS
Network Address.

BT_SDP_ATTR_WAP_GATEWAY
WAP Gateway.

BT_SDP_ATTR_HOMEPAGE_URL
Homepage URL.

BT_SDP_ATTR_WAP_STACK_TYPE
WAP Stack Type.

BT_SDP_ATTR_SECURITY_DESC
Security Description.

BT_SDP_ATTR_NET_ACCESS_TYPE
Net Access Type.

BT_SDP_ATTR_MAX_NET_ACCESSRATE
Max Net Access Rate.
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BT_SDP_ATTR_IP4_SUBNET
IPv4 Subnet.

BT_SDP_ATTR_IP6_SUBNET
IPv6 Subnet.

BT_SDP_ATTR_SUPPORTED_CAPABILITIES
BIP Supported Capabilities.

BT_SDP_ATTR_SUPPORTED_FEATURES
BIP Supported Features.

BT_SDP_ATTR_SUPPORTED_FUNCTIONS
BIP Supported Functions.

BT_SDP_ATTR_TOTAL_IMAGING_DATA_CAPACITY
BIP Total Imaging Data Capacity.

BT_SDP_ATTR_SUPPORTED_REPOSITORIES
Supported Repositories.

BT_SDP_ATTR_MAS_INSTANCE_ID
MAS Instance ID.

BT_SDP_ATTR_SUPPORTED_MESSAGE_TYPES
Supported Message Types.

BT_SDP_ATTR_PBAP_SUPPORTED_FEATURES
PBAP Supported Features.

BT_SDP_ATTR_MAP_SUPPORTED_FEATURES
MAP Supported Features.

BT_SDP_ATTR_SPECIFICATION_ID
Specification ID.

BT_SDP_ATTR_VENDOR_ID
Vendor ID.

BT_SDP_ATTR_PRODUCT_ID
Product ID.

BT_SDP_ATTR_VERSION
Version.

BT_SDP_ATTR_PRIMARY_RECORD
Primary Record.
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BT_SDP_ATTR_VENDOR_ID_SOURCE
Vendor ID Source.

BT_SDP_ATTR_HID_DEVICE_RELEASE_NUMBER
HID Device Release Number.

BT_SDP_ATTR_HID_PARSER_VERSION
HID Parser Version.

BT_SDP_ATTR_HID_DEVICE_SUBCLASS
HID Device Subclass.

BT_SDP_ATTR_HID_COUNTRY_CODE
HID Country Code.

BT_SDP_ATTR_HID_VIRTUAL_CABLE
HID Virtual Cable.

BT_SDP_ATTR_HID_RECONNECT_INITIATE
HID Reconnect Initiate.

BT_SDP_ATTR_HID_DESCRIPTOR_LIST
HID Descriptor List.

BT_SDP_ATTR_HID_LANG_ID_BASE_LIST
HID Language ID Base List.

BT_SDP_ATTR_HID_SDP_DISABLE
HID SDP Disable.

BT_SDP_ATTR_HID_BATTERY_POWER
HID Battery Power.

BT_SDP_ATTR_HID_REMOTE_WAKEUP
HID Remote Wakeup.

BT_SDP_ATTR_HID_PROFILE_VERSION
HID Profile Version.

BT_SDP_ATTR_HID_SUPERVISION_TIMEOUT
HID Supervision Timeout.

BT_SDP_ATTR_HID_NORMALLY_CONNECTABLE
HID Normally Connectable.

BT_SDP_ATTR_HID_BOOT_DEVICE
HID Boot Device.
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The Data representation in SDP PDUs (pps 339, 340 of BT SDP Spec)

These are the exact data type+size descriptor values that go into the PDU buffer.

The datatype (leading 5bits) + size descriptor (last 3 bits) is 8 bits. The size descriptor is
critical to extract the right number of bytes for the data value from the PDU.

For most basic types, the datatype+size descriptor is straightforward. However for con-
structed types and strings, the size of the data is in the next “n” bytes following the 8 bits
(datatype+size) descriptor. Exactly what the “n” is specified in the 3 bits of the data size
descriptor.

TextString and URLString can be of size 2^{8, 16, 32} bytes DataSequence and DataSe-
quenceAlternates can be of size 2^{8, 16, 32} The size are computed post-facto in the API
and are not known apriori.

BT_SDP_DATA_NIL
Nil, the null type.

BT_SDP_UINT8
Unsigned 8-bit integer.

BT_SDP_UINT16
Unsigned 16-bit integer.

BT_SDP_UINT32
Unsigned 32-bit integer.

BT_SDP_UINT64
Unsigned 64-bit integer.

BT_SDP_UINT128
Unsigned 128-bit integer.

BT_SDP_INT8
Signed 8-bit integer.

BT_SDP_INT16
Signed 16-bit integer.

BT_SDP_INT32
Signed 32-bit integer.

BT_SDP_INT64
Signed 64-bit integer.

BT_SDP_INT128
Signed 128-bit integer.

BT_SDP_UUID_UNSPEC
UUID, unspecified size.
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BT_SDP_UUID16
UUID, 16-bit.

BT_SDP_UUID32
UUID, 32-bit.

BT_SDP_UUID128
UUID, 128-bit.

BT_SDP_TEXT_STR_UNSPEC
Text string, unspecified size.

BT_SDP_TEXT_STR8
Text string, 8-bit length.

BT_SDP_TEXT_STR16
Text string, 16-bit length.

BT_SDP_TEXT_STR32
Text string, 32-bit length.

BT_SDP_BOOL
Boolean.

BT_SDP_SEQ_UNSPEC
Data element sequence, unspecified size.

BT_SDP_SEQ8
Data element sequence, 8-bit length.

BT_SDP_SEQ16
Data element sequence, 16-bit length.

BT_SDP_SEQ32
Data element sequence, 32-bit length.

BT_SDP_ALT_UNSPEC
Data element alternative, unspecified size.

BT_SDP_ALT8
Data element alternative, 8-bit length.

BT_SDP_ALT16
Data element alternative, 16-bit length.

BT_SDP_ALT32
Data element alternative, 32-bit length.
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BT_SDP_URL_STR_UNSPEC
URL string, unspecified size.

BT_SDP_URL_STR8
URL string, 8-bit length.

BT_SDP_URL_STR16
URL string, 16-bit length.

BT_SDP_URL_STR32
URL string, 32-bit length.

Defines

BT_SDP_SERVER_RECORD_HANDLE

BT_SDP_PRIMARY_LANG_BASE

BT_SDP_ATTR_SVCNAME_PRIMARY

BT_SDP_ATTR_SVCDESC_PRIMARY

BT_SDP_ATTR_PROVNAME_PRIMARY

BT_SDP_TYPE_DESC_MASK

BT_SDP_SIZE_DESC_MASK

BT_SDP_SIZE_INDEX_OFFSET

BT_SDP_ARRAY_8(...)
Declare an array of 8-bit elements in an attribute.

BT_SDP_ARRAY_16(...)
Declare an array of 16-bit elements in an attribute.

BT_SDP_ARRAY_32(...)
Declare an array of 32-bit elements in an attribute.

BT_SDP_TYPE_SIZE(_type)
Declare a fixed-size data element header.

Parameters
• _type – Data element header containing type and size descriptors.

BT_SDP_TYPE_SIZE_VAR(_type, _size)
Declare a variable-size data element header.

Parameters
• _type – Data element header containing type and size descriptors.

• _size – The actual size of the data.
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BT_SDP_DATA_ELEM_LIST(...)
Declare a list of data elements.

BT_SDP_NEW_SERVICE
SDP New Service Record Declaration Macro.

Helper macro to declare a new service record. Default attributes: Record Handle,
Record State, Language Base, Root Browse Group

BT_SDP_LIST(_att_id, _type_size, _data_elem_seq)
Generic SDP List Attribute Declaration Macro.

Helper macro to declare a list attribute.

Parameters
• _att_id – List Attribute ID.

• _data_elem_seq – Data element sequence for the list.

• _type_size – SDP type and size descriptor.

BT_SDP_SERVICE_ID(_uuid)
SDP Service ID Attribute Declaration Macro.

Helper macro to declare a service ID attribute.

Parameters
• _uuid – Service ID 16bit UUID.

BT_SDP_SERVICE_NAME(_name)
SDP Name Attribute Declaration Macro.

Helper macro to declare a service name attribute.

Parameters
• _name – Service name as a string (up to 256 chars).

BT_SDP_SUPPORTED_FEATURES(_features)
SDP Supported Features Attribute Declaration Macro.

Helper macro to declare supported features of a profile/protocol.

Parameters
• _features – Feature mask as 16bit unsigned integer.

BT_SDP_RECORD(_attrs)
SDP Service Declaration Macro.

Helper macro to declare a service.

Parameters
• _attrs – List of attributes for the service record.

Typedefs

typedef uint8_t (*bt_sdp_discover_func_t)(struct bt_conn *conn, struct
bt_sdp_client_result *result)

Callback type reporting to user that there is a resolved result on remote for given UUID
and the result record buffer can be used by user for further inspection.
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A function of this type is given by the user to the bt_sdp_discover_params object. It’ll
be called on each valid record discovery completion for given UUID. When UUID res-
olution gives back no records then NULL is passed to the user. Otherwise user can get
valid record(s) and then the internal hint ‘next record’ is set to false saying the UUID
resolution is complete or the hint can be set by caller to true meaning that next record
is available for given UUID. The returned function value allows the user to control
retrieving follow-up resolved records if any. If the user doesn’t want to read more re-
solved records for given UUID since current record data fulfills its requirements then
should return BT_SDP_DISCOVER_UUID_STOP. Otherwise returned value means more
subcall iterations are allowable.

Param conn
Connection object identifying connection to queried remote.

Param result
Object pointing to logical unparsed SDP record collected on base of re-
sponse driven by given UUID.

Return
BT_SDP_DISCOVER_UUID_STOP in case of no more need to read next
record data and continue discovery for given UUID. By returning
BT_SDP_DISCOVER_UUID_CONTINUE user allows this discovery continua-
tion.

Enums

Helper enum to be used as return value of bt_sdp_discover_func_t.

The value informs the caller to perform further pending actions or stop them.

Values:

enumerator BT_SDP_DISCOVER_UUID_STOP = 0

enumerator BT_SDP_DISCOVER_UUID_CONTINUE

enum bt_sdp_proto
Protocols to be asked about specific parameters.

Values:

enumerator BT_SDP_PROTO_RFCOMM = 0x0003

enumerator BT_SDP_PROTO_L2CAP = 0x0100

Functions

int bt_sdp_register_service(struct bt_sdp_record *service)
Register a Service Record.

Register a Service Record. Applications can make use of macros
such as BT_SDP_DECLARE_SERVICE, BT_SDP_LIST, BT_SDP_SERVICE_ID,
BT_SDP_SERVICE_NAME, etc. A service declaration must start with
BT_SDP_NEW_SERVICE.

Parameters
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• service – Service record declared using BT_SDP_DECLARE_SERVICE.

Returns
0 in case of success or negative value in case of error.

int bt_sdp_discover(struct bt_conn *conn, const struct bt_sdp_discover_params *params)
Allows user to start SDP discovery session.

The function performs SDP service discovery on remote server driven by user deliv-
ered discovery parameters. Discovery session is made as soon as no SDP transaction is
ongoing between peers and if any then this one is queued to be processed at discovery
completion of previous one. On the service discovery completion the callback function
will be called to get feedback to user about findings.

Parameters
• conn – Object identifying connection to remote.

• params – SDP discovery parameters.

Returns
0 in case of success or negative value in case of error.

int bt_sdp_discover_cancel(struct bt_conn *conn, const struct bt_sdp_discover_params
*params)

Release waiting SDP discovery request.

It can cancel valid waiting SDP client request identified by SDP discovery parameters
object.

Parameters
• conn – Object identifying connection to remote.

• params – SDP discovery parameters.

Returns
0 in case of success or negative value in case of error.

int bt_sdp_get_proto_param(const struct net_buf *buf, enum bt_sdp_proto proto, uint16_t
*param)

Give to user parameter value related to given stacked protocol UUID.

API extracts specific parameter associated with given protocol UUID available in Pro-
tocol Descriptor List attribute.

Parameters
• buf – Original buffered raw record data.

• proto – Known protocol to be checked like RFCOMM or L2CAP.

• param – On success populated by found parameter value.

Returns
0 on success when specific parameter associated with given protocol value
is found, or negative if error occurred during processing.

int bt_sdp_get_addl_proto_param(const struct net_buf *buf, enum bt_sdp_proto proto,
uint8_t param_index, uint16_t *param)

Get additional parameter value related to given stacked protocol UUID.

API extracts specific parameter associated with given protocol UUID available in Addi-
tional Protocol Descriptor List attribute.

Parameters
• buf – Original buffered raw record data.
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• proto – Known protocol to be checked like RFCOMM or L2CAP.

• param_index – There may be more than one parameter related to the
given protocol UUID. This function returns the result that is indexed by
this parameter. It’s value is from 0, 0 means the first matched result, 1
means the second matched result.

• param – [out] On success populated by found parameter value.

Returns
0 on success when a specific parameter associated with a given protocol
value is found, or negative if error occurred during processing.

int bt_sdp_get_profile_version(const struct net_buf *buf, uint16_t profile, uint16_t
*version)

Get profile version.

Helper API extracting remote profile version number. To get it proper generic profile
parameter needs to be selected usually listed in SDP Interoperability Requirements
section for given profile specification.

Parameters
• buf – Original buffered raw record data.

• profile – Profile family identifier the profile belongs.

• version – On success populated by found version number.

Returns
0 on success, negative value if error occurred during processing.

int bt_sdp_get_features(const struct net_buf *buf, uint16_t *features)
Get SupportedFeatures attribute value.

Allows if exposed by remote retrieve SupportedFeature attribute.

Parameters
• buf – Buffer holding original raw record data from remote.

• features – On success object to be populated with SupportedFeature
mask.

Returns
0 on success if feature found and valid, negative in case any error

struct bt_sdp_data_elem
#include <sdp.h> SDP Generic Data Element Value.

Public Members

uint8_t type
Type of the data element.

uint32_t data_size
Size of the data element.

uint32_t total_size
Total size of the data element.
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struct bt_sdp_attribute
#include <sdp.h> SDP Attribute Value.

Public Members

uint16_t id
Attribute ID.

struct bt_sdp_data_elem val
Attribute data.

struct bt_sdp_record
#include <sdp.h> SDP Service Record Value.

Public Members

uint32_t handle
Redundant, for quick ref.

struct bt_sdp_attribute *attrs
Base addr of attr array.

size_t attr_count
Number of attributes.

uint8_t index
Index of the record in LL.

struct bt_sdp_record *next
Next service record.

struct bt_sdp_client_result
#include <sdp.h> Generic SDP Client Query Result data holder.

Public Members

struct net_buf *resp_buf
buffer containing unparsed SDP record result for given UUID

bool next_record_hint
flag pointing that there are more result chunks for given UUID

const struct bt_uuid *uuid
Reference to UUID object on behalf one discovery was started.

struct bt_sdp_discover_params
#include <sdp.h> Main user structure used in SDP discovery of remote.
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Public Members

const struct bt_uuid *uuid
UUID (service) to be discovered on remote SDP entity.

bt_sdp_discover_func_t func
Discover callback to be called on resolved SDP record.

struct net_buf_pool *pool
Memory buffer enabled by user for SDP query results

Bluetooth LE Audio

Bluetooth Audio

API Reference

group bt_audio
Bluetooth Audio.

Unicast Announcement Type

BT_AUDIO_UNICAST_ANNOUNCEMENT_GENERAL
Unicast Server is connectable and is requesting a connection.

BT_AUDIO_UNICAST_ANNOUNCEMENT_TARGETED
Unicast Server is connectable but is not requesting a connection.

Defines

BT_AUDIO_BROADCAST_ID_SIZE
Size of the broadcast ID in octets.

BT_AUDIO_BROADCAST_ID_MAX
Maximum broadcast ID value.

BT_AUDIO_PD_PREF_NONE
Indicates that the server have no preference for the presentation delay.

BT_AUDIO_PD_MAX
Maximum presentation delay in microseconds.

BT_AUDIO_BROADCAST_CODE_SIZE
Maximum size of the broadcast code in octets.
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BT_AUDIO_BROADCAST_NAME_LEN_MIN
The minimum size of a Broadcast Name as defined by Bluetooth Assigned Numbers.

BT_AUDIO_BROADCAST_NAME_LEN_MAX
The maximum size of a Broadcast Name as defined by Bluetooth Assigned Numbers.

BT_AUDIO_LANG_SIZE
Size of the stream language value, e.g.

“eng”

BT_AUDIO_CODEC_CAP_CHAN_COUNT_MIN
Minimum supported channel counts.

BT_AUDIO_CODEC_CAP_CHAN_COUNT_MAX
Maximum supported channel counts.

BT_AUDIO_CODEC_CAP_CHAN_COUNT_SUPPORT(...)
Channel count support capability.

Macro accepts variable number of channel counts. The al-
lowed channel counts are defined by specification and have to
be in range from BT_AUDIO_CODEC_CAP_CHAN_COUNT_MIN to
BT_AUDIO_CODEC_CAP_CHAN_COUNT_MAX inclusive.

Example to support 1 and 3 channels: BT_AUDIO_CODEC_CAP_CHAN_COUNT_SUPPORT(1,
3)

BT_AUDIO_CONTEXT_TYPE_ANY
Any known context.

BT_AUDIO_METADATA_TYPE_IS_KNOWN(_type)
Helper to check whether metadata type is known by the stack.

Note

_type is evaluated thrice.

BT_AUDIO_CODEC_DATA(_type, _bytes...)
Helper to declare elements of bt_audio_codec_cap arrays.

This macro is mainly for creating an array of struct bt_audio_codec_cap data arrays.

Parameters
• _type – Type of advertising data field

• _bytes – Variable number of single-byte parameters

BT_AUDIO_CODEC_CFG(_id, _cid, _vid, _data, _meta)
Helper to declare Codec config parsing APIs.

Parameters
• _id – Codec ID

• _cid – Company ID

• _vid – Vendor ID
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• _data – Codec Specific Data in LVT format

• _meta – Codec Specific Metadata in LVT format

BT_AUDIO_CODEC_CAP(_id, _cid, _vid, _data, _meta)
Helper to declare Codec capability parsing APIs structure.

Parameters
• _id – Codec ID

• _cid – Company ID

• _vid – Vendor ID

• _data – Codec Specific Data in LVT format

• _meta – Codec Specific Metadata in LVT format

BT_AUDIO_LOCATION_ANY
Any known location.

BT_AUDIO_CODEC_QOS(_interval, _framing, _phy, _sdu, _rtn, _latency, _pd)
Helper to declare elements of bt_audio_codec_qos.

Parameters
• _interval – SDU interval (usec)

• _framing – Framing

• _phy – Target PHY

• _sdu – Maximum SDU Size

• _rtn – Retransmission number

• _latency – Maximum Transport Latency (msec)

• _pd – Presentation Delay (usec)

BT_AUDIO_CODEC_QOS_UNFRAMED(_interval, _sdu, _rtn, _latency, _pd)
Helper to declare Input Unframed bt_audio_codec_qos.

Parameters
• _interval – SDU interval (usec)

• _sdu – Maximum SDU Size

• _rtn – Retransmission number

• _latency – Maximum Transport Latency (msec)

• _pd – Presentation Delay (usec)

BT_AUDIO_CODEC_QOS_FRAMED(_interval, _sdu, _rtn, _latency, _pd)
Helper to declare Input Framed bt_audio_codec_qos.

Parameters
• _interval – SDU interval (usec)

• _sdu – Maximum SDU Size

• _rtn – Retransmission number

• _latency – Maximum Transport Latency (msec)

• _pd – Presentation Delay (usec)
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BT_AUDIO_CODEC_QOS_PREF(_unframed_supported, _phy, _rtn, _latency, _pd_min, _pd_max,
_pref_pd_min, _pref_pd_max)

Helper to declare elements of bt_audio_codec_qos_pref .

Parameters
• _unframed_supported – Unframed PDUs supported

• _phy – Preferred Target PHY

• _rtn – Preferred Retransmission number

• _latency – Preferred Maximum Transport Latency (msec)

• _pd_min – Minimum Presentation Delay (usec)

• _pd_max – Maximum Presentation Delay (usec)

• _pref_pd_min – Preferred Minimum Presentation Delay (usec)

• _pref_pd_max – Preferred Maximum Presentation Delay (usec)

Enums

enum bt_audio_codec_cap_type
Codec capability types.

Used to build and parse codec capabilities as specified in the PAC specification. Source
is assigned numbers for Generic Audio, bluetooth.com.

Values:

enumerator BT_AUDIO_CODEC_CAP_TYPE_FREQ = 0x01
Supported sampling frequencies.

enumerator BT_AUDIO_CODEC_CAP_TYPE_DURATION = 0x02
Supported frame durations.

enumerator BT_AUDIO_CODEC_CAP_TYPE_CHAN_COUNT = 0x03
Supported audio channel counts.

enumerator BT_AUDIO_CODEC_CAP_TYPE_FRAME_LEN = 0x04
Supported octets per codec frame.

enumerator BT_AUDIO_CODEC_CAP_TYPE_FRAME_COUNT = 0x05
Supported maximum codec frames per SDU

enum bt_audio_codec_cap_freq
Supported frequencies bitfield.

Values:

enumerator BT_AUDIO_CODEC_CAP_FREQ_8KHZ = BIT(0)
8 Khz sampling frequency

enumerator BT_AUDIO_CODEC_CAP_FREQ_11KHZ = BIT(1)
11.025 Khz sampling frequency
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enumerator BT_AUDIO_CODEC_CAP_FREQ_16KHZ = BIT(2)
16 Khz sampling frequency

enumerator BT_AUDIO_CODEC_CAP_FREQ_22KHZ = BIT(3)
22.05 Khz sampling frequency

enumerator BT_AUDIO_CODEC_CAP_FREQ_24KHZ = BIT(4)
24 Khz sampling frequency

enumerator BT_AUDIO_CODEC_CAP_FREQ_32KHZ = BIT(5)
32 Khz sampling frequency

enumerator BT_AUDIO_CODEC_CAP_FREQ_44KHZ = BIT(6)
44.1 Khz sampling frequency

enumerator BT_AUDIO_CODEC_CAP_FREQ_48KHZ = BIT(7)
48 Khz sampling frequency

enumerator BT_AUDIO_CODEC_CAP_FREQ_88KHZ = BIT(8)
88.2 Khz sampling frequency

enumerator BT_AUDIO_CODEC_CAP_FREQ_96KHZ = BIT(9)
96 Khz sampling frequency

enumerator BT_AUDIO_CODEC_CAP_FREQ_176KHZ = BIT(10)
176.4 Khz sampling frequency

enumerator BT_AUDIO_CODEC_CAP_FREQ_192KHZ = BIT(11)
192 Khz sampling frequency

enumerator BT_AUDIO_CODEC_CAP_FREQ_384KHZ = BIT(12)
384 Khz sampling frequency

enumerator BT_AUDIO_CODEC_CAP_FREQ_ANY = (BT_AUDIO_CODEC_CAP_FREQ_8KHZ |
BT_AUDIO_CODEC_CAP_FREQ_11KHZ | BT_AUDIO_CODEC_CAP_FREQ_16KHZ |
BT_AUDIO_CODEC_CAP_FREQ_22KHZ | BT_AUDIO_CODEC_CAP_FREQ_24KHZ |
BT_AUDIO_CODEC_CAP_FREQ_32KHZ | BT_AUDIO_CODEC_CAP_FREQ_44KHZ |
BT_AUDIO_CODEC_CAP_FREQ_48KHZ | BT_AUDIO_CODEC_CAP_FREQ_88KHZ |
BT_AUDIO_CODEC_CAP_FREQ_96KHZ | BT_AUDIO_CODEC_CAP_FREQ_176KHZ |
BT_AUDIO_CODEC_CAP_FREQ_192KHZ | BT_AUDIO_CODEC_CAP_FREQ_384KHZ)

Any frequency capability.

enum bt_audio_codec_cap_frame_dur
Supported frame durations bitfield.

Values:

enumerator BT_AUDIO_CODEC_CAP_DURATION_7_5 = BIT(0)
7.5 msec frame duration capability
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enumerator BT_AUDIO_CODEC_CAP_DURATION_10 = BIT(1)
10 msec frame duration capability

enumerator BT_AUDIO_CODEC_CAP_DURATION_ANY =
(BT_AUDIO_CODEC_CAP_DURATION_7_5 | BT_AUDIO_CODEC_CAP_DURATION_10)

Any frame duration capability.

enumerator BT_AUDIO_CODEC_CAP_DURATION_PREFER_7_5 = BIT(4)
7.5 msec preferred frame duration capability.

This shall only be set if BT_AUDIO_CODEC_CAP_DURATION_7_5 is also set, and if
BT_AUDIO_CODEC_CAP_DURATION_PREFER_10 is not set.

enumerator BT_AUDIO_CODEC_CAP_DURATION_PREFER_10 = BIT(5)
10 msec preferred frame duration capability

This shall only be set if BT_AUDIO_CODEC_CAP_DURATION_10 is also set, and if
BT_AUDIO_CODEC_CAP_DURATION_PREFER_7_5 is not set.

enum bt_audio_codec_cap_chan_count
Supported audio capabilities channel count bitfield.

Values:

enumerator BT_AUDIO_CODEC_CAP_CHAN_COUNT_1 = BIT(0)
Supporting 1 channel.

enumerator BT_AUDIO_CODEC_CAP_CHAN_COUNT_2 = BIT(1)
Supporting 2 channel.

enumerator BT_AUDIO_CODEC_CAP_CHAN_COUNT_3 = BIT(2)
Supporting 3 channel.

enumerator BT_AUDIO_CODEC_CAP_CHAN_COUNT_4 = BIT(3)
Supporting 4 channel.

enumerator BT_AUDIO_CODEC_CAP_CHAN_COUNT_5 = BIT(4)
Supporting 5 channel.

enumerator BT_AUDIO_CODEC_CAP_CHAN_COUNT_6 = BIT(5)
Supporting 6 channel.

enumerator BT_AUDIO_CODEC_CAP_CHAN_COUNT_7 = BIT(6)
Supporting 7 channel.

enumerator BT_AUDIO_CODEC_CAP_CHAN_COUNT_8 = BIT(7)
Supporting 8 channel.

enumerator BT_AUDIO_CODEC_CAP_CHAN_COUNT_ANY =
(BT_AUDIO_CODEC_CAP_CHAN_COUNT_1 | BT_AUDIO_CODEC_CAP_CHAN_COUNT_2
| BT_AUDIO_CODEC_CAP_CHAN_COUNT_3 |
BT_AUDIO_CODEC_CAP_CHAN_COUNT_4 | BT_AUDIO_CODEC_CAP_CHAN_COUNT_5
| BT_AUDIO_CODEC_CAP_CHAN_COUNT_6 |
BT_AUDIO_CODEC_CAP_CHAN_COUNT_7 | BT_AUDIO_CODEC_CAP_CHAN_COUNT_8)
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Supporting all channels.

enum bt_audio_codec_cfg_type
Codec configuration types.

Used to build and parse codec configurations as specified in the ASCS and BAP specifi-
cations. Source is assigned numbers for Generic Audio, bluetooth.com.

Values:

enumerator BT_AUDIO_CODEC_CFG_FREQ = 0x01
Sampling frequency.

enumerator BT_AUDIO_CODEC_CFG_DURATION = 0x02
Frame duration.

enumerator BT_AUDIO_CODEC_CFG_CHAN_ALLOC = 0x03
Audio channel allocation.

enumerator BT_AUDIO_CODEC_CFG_FRAME_LEN = 0x04
Octets per codec frame.

enumerator BT_AUDIO_CODEC_CFG_FRAME_BLKS_PER_SDU = 0x05
Codec frame blocks per SDU.

enum bt_audio_codec_cfg_freq
Codec configuration sampling freqency.

Values:

enumerator BT_AUDIO_CODEC_CFG_FREQ_8KHZ = 0x01
8 Khz codec sampling frequency

enumerator BT_AUDIO_CODEC_CFG_FREQ_11KHZ = 0x02
11.025 Khz codec sampling frequency

enumerator BT_AUDIO_CODEC_CFG_FREQ_16KHZ = 0x03
16 Khz codec sampling frequency

enumerator BT_AUDIO_CODEC_CFG_FREQ_22KHZ = 0x04
22.05 Khz codec sampling frequency

enumerator BT_AUDIO_CODEC_CFG_FREQ_24KHZ = 0x05
24 Khz codec sampling frequency

enumerator BT_AUDIO_CODEC_CFG_FREQ_32KHZ = 0x06
32 Khz codec sampling frequency

enumerator BT_AUDIO_CODEC_CFG_FREQ_44KHZ = 0x07
44.1 Khz codec sampling frequency
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enumerator BT_AUDIO_CODEC_CFG_FREQ_48KHZ = 0x08
48 Khz codec sampling frequency

enumerator BT_AUDIO_CODEC_CFG_FREQ_88KHZ = 0x09
88.2 Khz codec sampling frequency

enumerator BT_AUDIO_CODEC_CFG_FREQ_96KHZ = 0x0a
96 Khz codec sampling frequency

enumerator BT_AUDIO_CODEC_CFG_FREQ_176KHZ = 0x0b
176.4 Khz codec sampling frequency

enumerator BT_AUDIO_CODEC_CFG_FREQ_192KHZ = 0x0c
192 Khz codec sampling frequency

enumerator BT_AUDIO_CODEC_CFG_FREQ_384KHZ = 0x0d
384 Khz codec sampling frequency

enum bt_audio_codec_cfg_frame_dur
Codec configuration frame duration.

Values:

enumerator BT_AUDIO_CODEC_CFG_DURATION_7_5 = 0x00
7.5 msec Frame Duration configuration

enumerator BT_AUDIO_CODEC_CFG_DURATION_10 = 0x01
10 msec Frame Duration configuration

enum bt_audio_context
Audio Context Type for Generic Audio.

These values are defined by the Generic Audio Assigned Numbers, bluetooth.com

Values:

enumerator BT_AUDIO_CONTEXT_TYPE_PROHIBITED = 0
Prohibited.

enumerator BT_AUDIO_CONTEXT_TYPE_UNSPECIFIED = BIT(0)
Identifies audio where the use case context does not match any other defined
value, or where the context is unknown or cannot be determined.

enumerator BT_AUDIO_CONTEXT_TYPE_CONVERSATIONAL = BIT(1)
Conversation between humans, for example, in telephony or video calls, including
traditional cellular as well as VoIP and Push-to-Talk.

enumerator BT_AUDIO_CONTEXT_TYPE_MEDIA = BIT(2)
Media, for example, music playback, radio, podcast or movie soundtrack, or tv
audio.
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enumerator BT_AUDIO_CONTEXT_TYPE_GAME = BIT(3)
Audio associated with video gaming, for example gaming media; gaming effects;
music and in-game voice chat between participants; or a mix of all the above.

enumerator BT_AUDIO_CONTEXT_TYPE_INSTRUCTIONAL = BIT(4)
Instructional audio, for example, in navigation, announcements, or user guidance.

enumerator BT_AUDIO_CONTEXT_TYPE_VOICE_ASSISTANTS = BIT(5)
Man-machine communication, for example, with voice recognition or virtual as-
sistants.

enumerator BT_AUDIO_CONTEXT_TYPE_LIVE = BIT(6)
Live audio, for example, from a microphone where audio is perceived both
through a direct acoustic path and through an LE Audio Stream.

enumerator BT_AUDIO_CONTEXT_TYPE_SOUND_EFFECTS = BIT(7)
Sound effects including keyboard and touch feedback; menu and user interface
sounds; and other system sounds.

enumerator BT_AUDIO_CONTEXT_TYPE_NOTIFICATIONS = BIT(8)
Notification and reminder sounds; attention-seeking audio, for example, in beeps
signaling the arrival of a message.

enumerator BT_AUDIO_CONTEXT_TYPE_RINGTONE = BIT(9)
Alerts the user to an incoming call, for example, an incoming telephony or video
call, including traditional cellular as well as VoIP and Push-to-Talk.

enumerator BT_AUDIO_CONTEXT_TYPE_ALERTS = BIT(10)
Alarms and timers; immediate alerts, for example, in a critical battery alarm, timer
expiry or alarm clock, toaster, cooker, kettle, microwave, etc.

enumerator BT_AUDIO_CONTEXT_TYPE_EMERGENCY_ALARM = BIT(11)
Emergency alarm Emergency sounds, for example, fire alarms or other urgent
alerts.

enum bt_audio_parental_rating
Parental rating defined by the Generic Audio assigned numbers (bluetooth.com).

The numbering scheme is aligned with Annex F of EN 300 707 v1.2.1 which defined
parental rating for viewing.

Values:

enumerator BT_AUDIO_PARENTAL_RATING_NO_RATING = 0x00
No rating.

enumerator BT_AUDIO_PARENTAL_RATING_AGE_ANY = 0x01
For all ages.

enumerator BT_AUDIO_PARENTAL_RATING_AGE_5_OR_ABOVE = 0x02
Recommended for listeners of age 5 and above.
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enumerator BT_AUDIO_PARENTAL_RATING_AGE_6_OR_ABOVE = 0x03
Recommended for listeners of age 6 and above.

enumerator BT_AUDIO_PARENTAL_RATING_AGE_7_OR_ABOVE = 0x04
Recommended for listeners of age 7 and above.

enumerator BT_AUDIO_PARENTAL_RATING_AGE_8_OR_ABOVE = 0x05
Recommended for listeners of age 8 and above.

enumerator BT_AUDIO_PARENTAL_RATING_AGE_9_OR_ABOVE = 0x06
Recommended for listeners of age 9 and above.

enumerator BT_AUDIO_PARENTAL_RATING_AGE_10_OR_ABOVE = 0x07
Recommended for listeners of age 10 and above.

enumerator BT_AUDIO_PARENTAL_RATING_AGE_11_OR_ABOVE = 0x08
Recommended for listeners of age 11 and above.

enumerator BT_AUDIO_PARENTAL_RATING_AGE_12_OR_ABOVE = 0x09
Recommended for listeners of age 12 and above.

enumerator BT_AUDIO_PARENTAL_RATING_AGE_13_OR_ABOVE = 0x0A
Recommended for listeners of age 13 and above.

enumerator BT_AUDIO_PARENTAL_RATING_AGE_14_OR_ABOVE = 0x0B
Recommended for listeners of age 14 and above.

enumerator BT_AUDIO_PARENTAL_RATING_AGE_15_OR_ABOVE = 0x0C
Recommended for listeners of age 15 and above.

enumerator BT_AUDIO_PARENTAL_RATING_AGE_16_OR_ABOVE = 0x0D
Recommended for listeners of age 16 and above.

enumerator BT_AUDIO_PARENTAL_RATING_AGE_17_OR_ABOVE = 0x0E
Recommended for listeners of age 17 and above.

enumerator BT_AUDIO_PARENTAL_RATING_AGE_18_OR_ABOVE = 0x0F
Recommended for listeners of age 18 and above.

enum bt_audio_active_state
Audio Active State defined by the Generic Audio assigned numbers (bluetooth.com).

Values:

enumerator BT_AUDIO_ACTIVE_STATE_DISABLED = 0x00
No audio data is being transmitted.

enumerator BT_AUDIO_ACTIVE_STATE_ENABLED = 0x01
Audio data is being transmitted.
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enum bt_audio_metadata_type
Codec metadata type IDs.

Metadata types defined by the Generic Audio assigned numbers (bluetooth.com).

Values:

enumerator BT_AUDIO_METADATA_TYPE_PREF_CONTEXT = 0x01
Preferred audio context.

Bitfield of preferred audio contexts.

If 0, the context type is not a preferred use case for this codec configuration.

See the BT_AUDIO_CONTEXT_* for valid values.

enumerator BT_AUDIO_METADATA_TYPE_STREAM_CONTEXT = 0x02
Streaming audio context.

Bitfield of streaming audio contexts.

If 0, the context type is not a preferred use case for this codec configuration.

See the BT_AUDIO_CONTEXT_* for valid values.

enumerator BT_AUDIO_METADATA_TYPE_PROGRAM_INFO = 0x03
UTF-8 encoded title or summary of stream content.

enumerator BT_AUDIO_METADATA_TYPE_LANG = 0x04
Language.

3 octet lower case language code defined by ISO 639-3 Possible values can be found
at https://iso639-3.sil.org/code_tables/639/data

enumerator BT_AUDIO_METADATA_TYPE_CCID_LIST = 0x05
Array of 8-bit CCID values.

enumerator BT_AUDIO_METADATA_TYPE_PARENTAL_RATING = 0x06
Parental rating.

See bt_audio_parental_rating for valid values.

enumerator BT_AUDIO_METADATA_TYPE_PROGRAM_INFO_URI = 0x07
UTF-8 encoded URI for additional Program information.

enumerator BT_AUDIO_METADATA_TYPE_AUDIO_STATE = 0x08
Audio active state.

See bt_audio_active_state for valid values.

enumerator BT_AUDIO_METADATA_TYPE_BROADCAST_IMMEDIATE = 0x09
Broadcast Audio Immediate Rendering flag

enumerator BT_AUDIO_METADATA_TYPE_EXTENDED = 0xFE
Extended metadata.
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enumerator BT_AUDIO_METADATA_TYPE_VENDOR = 0xFF
Vendor specific metadata.

enum bt_audio_location
Location values for BT Audio.

These values are defined by the Generic Audio Assigned Numbers, bluetooth.com

Values:

enumerator BT_AUDIO_LOCATION_MONO_AUDIO = 0
Mono Audio (no specified Audio Location)

enumerator BT_AUDIO_LOCATION_FRONT_LEFT = BIT(0)
Front Left.

enumerator BT_AUDIO_LOCATION_FRONT_RIGHT = BIT(1)
Front Right.

enumerator BT_AUDIO_LOCATION_FRONT_CENTER = BIT(2)
Front Center.

enumerator BT_AUDIO_LOCATION_LOW_FREQ_EFFECTS_1 = BIT(3)
Low Frequency Effects 1.

enumerator BT_AUDIO_LOCATION_BACK_LEFT = BIT(4)
Back Left.

enumerator BT_AUDIO_LOCATION_BACK_RIGHT = BIT(5)
Back Right.

enumerator BT_AUDIO_LOCATION_FRONT_LEFT_OF_CENTER = BIT(6)
Front Left of Center.

enumerator BT_AUDIO_LOCATION_FRONT_RIGHT_OF_CENTER = BIT(7)
Front Right of Center.

enumerator BT_AUDIO_LOCATION_BACK_CENTER = BIT(8)
Back Center.

enumerator BT_AUDIO_LOCATION_LOW_FREQ_EFFECTS_2 = BIT(9)
Low Frequency Effects 2.

enumerator BT_AUDIO_LOCATION_SIDE_LEFT = BIT(10)
Side Left.

enumerator BT_AUDIO_LOCATION_SIDE_RIGHT = BIT(11)
Side Right.
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enumerator BT_AUDIO_LOCATION_TOP_FRONT_LEFT = BIT(12)
Top Front Left.

enumerator BT_AUDIO_LOCATION_TOP_FRONT_RIGHT = BIT(13)
Top Front Right.

enumerator BT_AUDIO_LOCATION_TOP_FRONT_CENTER = BIT(14)
Top Front Center.

enumerator BT_AUDIO_LOCATION_TOP_CENTER = BIT(15)
Top Center.

enumerator BT_AUDIO_LOCATION_TOP_BACK_LEFT = BIT(16)
Top Back Left.

enumerator BT_AUDIO_LOCATION_TOP_BACK_RIGHT = BIT(17)
Top Back Right.

enumerator BT_AUDIO_LOCATION_TOP_SIDE_LEFT = BIT(18)
Top Side Left.

enumerator BT_AUDIO_LOCATION_TOP_SIDE_RIGHT = BIT(19)
Top Side Right.

enumerator BT_AUDIO_LOCATION_TOP_BACK_CENTER = BIT(20)
Top Back Center.

enumerator BT_AUDIO_LOCATION_BOTTOM_FRONT_CENTER = BIT(21)
Bottom Front Center.

enumerator BT_AUDIO_LOCATION_BOTTOM_FRONT_LEFT = BIT(22)
Bottom Front Left.

enumerator BT_AUDIO_LOCATION_BOTTOM_FRONT_RIGHT = BIT(23)
Bottom Front Right.

enumerator BT_AUDIO_LOCATION_FRONT_LEFT_WIDE = BIT(24)
Front Left Wide.

enumerator BT_AUDIO_LOCATION_FRONT_RIGHT_WIDE = BIT(25)
Front Right Wide.

enumerator BT_AUDIO_LOCATION_LEFT_SURROUND = BIT(26)
Left Surround.

enumerator BT_AUDIO_LOCATION_RIGHT_SURROUND = BIT(27)
Right Surround.
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enum bt_audio_dir
Audio direction from the perspective of the BAP Unicast Server / BAP Broadcast Sink.

Values:

enumerator BT_AUDIO_DIR_SINK = 0x01
Audio direction sink.

For a BAP Unicast Client or Broadcast Source this is considered outgoing audio (TX).
For a BAP Unicast Server or Broadcast Sink this is considered incoming audio (RX).

enumerator BT_AUDIO_DIR_SOURCE = 0x02
Audio direction source.

For a BAP Unicast Client or Broadcast Source this is considered incoming audio
(RX). For a BAP Unicast Server or Broadcast Sink this is considered outgoing audio
(TX).

enum bt_audio_codec_qos_framing
Codec QoS Framing.

Values:

enumerator BT_AUDIO_CODEC_QOS_FRAMING_UNFRAMED = 0x00
Packets may be framed or unframed.

enumerator BT_AUDIO_CODEC_QOS_FRAMING_FRAMED = 0x01
Packets are always framed.

Codec QoS Preferred PHY.

Values:

enumerator BT_AUDIO_CODEC_QOS_1M = BIT(0)
LE 1M PHY.

enumerator BT_AUDIO_CODEC_QOS_2M = BIT(1)
LE 2M PHY.

enumerator BT_AUDIO_CODEC_QOS_CODED = BIT(2)
LE Coded PHY.

Functions

int bt_audio_data_parse(const uint8_t ltv[], size_t size, bool (*func)(struct bt_data *data,
void *user_data), void *user_data)

Helper for parsing length-type-value data.

Parameters
• ltv – Length-type-value (LTV) encoded data.

• size – Size of the ltv data.
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• func – Callback function which will be called for each element that’s
found in the data. The callback should return true to continue parsing,
or false to stop parsing.

• user_data – User data to be passed to the callback.

Return values
• 0 – if all entries were parsed.

• -EINVAL – if the data is incorrectly encoded

• -ECANCELED – if parsing was prematurely cancelled by the callback

uint8_t bt_audio_get_chan_count(enum bt_audio_location chan_allocation)
Function to get the number of channels from the channel allocation.

Parameters
• chan_allocation – The channel allocation

Returns
The number of channels

struct bt_audio_codec_octets_per_codec_frame
#include <audio.h> struct to hold minimum and maximum supported codec frame sizes

Public Members

uint16_t min
Minimum number of octets supported per codec frame.

uint16_t max
Maximum number of octets supported per codec frame.

struct bt_audio_codec_cap
#include <audio.h> Codec capability structure.

Public Members

uint8_t path_id
Data path ID.

BT_ISO_DATA_PATH_HCI for HCI path, or any other value for vendor specific ID.

bool ctlr_transcode
Whether or not the local controller should transcode.

This effectively sets the coding format for the ISO data path to
BT_HCI_CODING_FORMAT_TRANSPARENT if false, else uses the
bt_audio_codec_cfg::id.

uint8_t id
Codec ID.
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uint16_t cid
Codec Company ID.

uint16_t vid
Codec Company Vendor ID.

size_t data_len
Codec Specific Capabilities Data count.

uint8_t data[CONFIG_BT_AUDIO_CODEC_CAP_MAX_DATA_SIZE]
Codec Specific Capabilities Data.

size_t meta_len
Codec Specific Capabilities Metadata count.

uint8_t meta[CONFIG_BT_AUDIO_CODEC_CAP_MAX_METADATA_SIZE]
Codec Specific Capabilities Metadata.

struct bt_audio_codec_cfg
#include <audio.h> Codec specific configuration structure.

Public Members

uint8_t path_id
Data path ID.

BT_ISO_DATA_PATH_HCI for HCI path, or any other value for vendor specific ID.

bool ctlr_transcode
Whether or not the local controller should transcode.

This effectively sets the coding format for the ISO data path to
BT_HCI_CODING_FORMAT_TRANSPARENT if false, else uses the
bt_audio_codec_cfg::id.

uint8_t id
Codec ID.

uint16_t cid
Codec Company ID.

uint16_t vid
Codec Company Vendor ID.

size_t data_len
Codec Specific Capabilities Data count.

uint8_t data[CONFIG_BT_AUDIO_CODEC_CFG_MAX_DATA_SIZE]
Codec Specific Capabilities Data.
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size_t meta_len
Codec Specific Capabilities Metadata count.

uint8_t meta[CONFIG_BT_AUDIO_CODEC_CFG_MAX_METADATA_SIZE]
Codec Specific Capabilities Metadata.

struct bt_audio_codec_qos
#include <audio.h> Codec QoS structure.

Public Members

uint32_t pd
Presentation Delay in microseconds.

This value can be changed up and until bt_bap_stream_qos() has been called. Once
a stream has been QoS configured, modifying this field does not modify the value.
It is however possible to modify this field and call bt_bap_stream_qos() again to
update the value, assuming that the stream is in the correct state.

Value range 0 to BT_AUDIO_PD_MAX.

enum bt_audio_codec_qos_framing framing
QoS Framing.

uint8_t phy
PHY.

Allowed values are BT_AUDIO_CODEC_QOS_1M, BT_AUDIO_CODEC_QOS_2M and
BT_AUDIO_CODEC_QOS_CODED.

uint8_t rtn
Retransmission Number.

This a recommendation to the controller, and the actual retransmission number
may be different than this.

uint16_t sdu
Maximum SDU size.

Value range BT_ISO_MIN_SDU to BT_ISO_MAX_SDU.

uint16_t latency
Maximum Transport Latency.

Not used for the CONFIG_BT_BAP_BROADCAST_SINK role.

uint32_t interval
SDU Interval.

Value range BT_ISO_SDU_INTERVAL_MIN to BT_ISO_SDU_INTERVAL_MAX
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uint16_t max_pdu
Maximum PDU size.

Maximum size, in octets, of the payload from link layer to link layer.

Value range BT_ISO_CONNECTED_PDU_MIN to BT_ISO_PDU_MAX for connected
ISO.

Value range BT_ISO_BROADCAST_PDU_MIN to BT_ISO_PDU_MAX for broadcast
ISO.

uint8_t burst_number
Burst number.

Value range BT_ISO_BN_MIN to BT_ISO_BN_MAX.

uint8_t num_subevents
Number of subevents.

Maximum number of subevents in each CIS or BIS event.

Value range BT_ISO_NSE_MIN to BT_ISO_NSE_MAX.

struct bt_audio_codec_qos
Connected Isochronous Group (CIG) parameters.

The fields in this struct affect the value sent to the controller via HCI when creat-
ing the CIG. Once the group has been created with bt_bap_unicast_group_create(),
modifying these fields will not affect the group.

struct bt_audio_codec_qos_pref
#include <audio.h> Audio Stream Quality of Service Preference structure.

Public Members

bool unframed_supported
Unframed PDUs supported.

Unlike the other fields, this is not a preference but whether the codec supports
unframed ISOAL PDUs.

uint8_t phy
Preferred PHY.

uint8_t rtn
Preferred Retransmission Number.

uint16_t latency
Preferred Transport Latency.

uint32_t pd_min
Minimum Presentation Delay in microseconds.

Unlike the other fields, this is not a preference but a minimum requirement.

1748 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

Value range 0 to BT_AUDIO_PD_MAX, or BT_AUDIO_PD_PREF_NONE to indicate no
preference.

uint32_t pd_max
Maximum Presentation Delay.

Unlike the other fields, this is not a preference but a maximum requirement.

Value range 0 to BT_AUDIO_PD_MAX, or BT_AUDIO_PD_PREF_NONE to indicate no
preference.

uint32_t pref_pd_min
Preferred minimum Presentation Delay.

Value range 0 to BT_AUDIO_PD_MAX.

uint32_t pref_pd_max
Preferred maximum Presentation Delay.

Value range 0 to BT_AUDIO_PD_MAX.

group bt_audio_codec_cfg
Audio codec Config APIs.

Functions to parse codec config data when formatted as LTV wrapped into Codec config
parsing APIs.

Functions

int bt_audio_codec_cfg_freq_to_freq_hz(enum bt_audio_codec_cfg_freq freq)
Convert assigned numbers frequency to frequency value.

Parameters
• freq – The assigned numbers frequency to convert.

Return values
• -EINVAL – if arguments are invalid.

• The – converted frequency value in Hz.

int bt_audio_codec_cfg_freq_hz_to_freq(uint32_t freq_hz)
Convert frequency value to assigned numbers frequency.

Parameters
• freq_hz – The frequency value to convert.

Return values
• -EINVAL – if arguments are invalid.

• The – assigned numbers frequency (bt_audio_codec_cfg_freq).

int bt_audio_codec_cfg_get_freq(const struct bt_audio_codec_cfg *codec_cfg)
Extract the frequency from a codec configuration.

Parameters
• codec_cfg – The codec configuration to extract data from.

Return values
• A – bt_audio_codec_cfg_freq value
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• -EINVAL – if arguments are invalid

• -ENODATA – if not found

• -EBADMSG – if found value has invalid size or value

int bt_audio_codec_cfg_set_freq(struct bt_audio_codec_cfg *codec_cfg, enum
bt_audio_codec_cfg_freq freq)

Set the frequency of a codec configuration.

Parameters
• codec_cfg – The codec configuration to set data for.

• freq – The assigned numbers frequency to set.

Return values
• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory

int bt_audio_codec_cfg_frame_dur_to_frame_dur_us(enum
bt_audio_codec_cfg_frame_dur
frame_dur)

Convert assigned numbers frame duration to duration in microseconds.

Parameters
• frame_dur – The assigned numbers frame duration to convert.

Return values
• -EINVAL – if arguments are invalid.

• The – converted frame duration value in microseconds.

int bt_audio_codec_cfg_frame_dur_us_to_frame_dur(uint32_t frame_dur_us)
Convert frame duration in microseconds to assigned numbers frame duration.

Parameters
• frame_dur_us – The frame duration in microseconds to convert.

Return values
• -EINVAL – if arguments are invalid.

• The – assigned numbers frame duration (bt_audio_codec_cfg_frame_dur).

int bt_audio_codec_cfg_get_frame_dur(const struct bt_audio_codec_cfg *codec_cfg)
Extract frame duration from BT codec config.

Parameters
• codec_cfg – The codec configuration to extract data from.

Return values
• A – bt_audio_codec_cfg_frame_dur value

• -EINVAL – if arguments are invalid

• -ENODATA – if not found

• -EBADMSG – if found value has invalid size or value
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int bt_audio_codec_cfg_set_frame_dur(struct bt_audio_codec_cfg *codec_cfg, enum
bt_audio_codec_cfg_frame_dur frame_dur)

Set the frame duration of a codec configuration.

Parameters
• codec_cfg – The codec configuration to set data for.

• frame_dur – The assigned numbers frame duration to set.

Return values
• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory

int bt_audio_codec_cfg_get_chan_allocation(const struct bt_audio_codec_cfg
*codec_cfg, enum bt_audio_location
*chan_allocation, bool
fallback_to_default)

Extract channel allocation from BT codec config.

The value returned is a bit field representing one or more audio locations
as specified by bt_audio_location Shall match one or more of the bits set in
BT_PAC_SNK_LOC/BT_PAC_SRC_LOC.

Up to the configured BT_AUDIO_CODEC_CAP_TYPE_CHAN_COUNT number of chan-
nels can be present.

Parameters
• codec_cfg – The codec configuration to extract data from.

• chan_allocation – Pointer to the variable to store the extracted value in.

• fallback_to_default – If true this function will provide the default value
of BT_AUDIO_LOCATION_MONO_AUDIO if the type is not found when
codec_cfg.id is BT_HCI_CODING_FORMAT_LC3.

Return values
• 0 – if value is found and stored in the pointer provided

• -EINVAL – if arguments are invalid

• -ENODATA – if not found

• -EBADMSG – if found value has invalid size or value

int bt_audio_codec_cfg_set_chan_allocation(struct bt_audio_codec_cfg *codec_cfg,
enum bt_audio_location chan_allocation)

Set the channel allocation of a codec configuration.

Parameters
• codec_cfg – The codec configuration to set data for.

• chan_allocation – The channel allocation to set.

Return values
• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory
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int bt_audio_codec_cfg_get_octets_per_frame(const struct bt_audio_codec_cfg
*codec_cfg)

Extract frame size in octets from BT codec config.

The overall SDU size will be octets_per_frame * blocks_per_sdu.

The Bluetooth specifications are not clear about this value - it does not state that the
codec shall use this SDU size only. A codec like LC3 supports variable bit-rate (per SDU)
hence it might be allowed for an encoder to reduce the frame size below this value.
Hence it is recommended to use the received SDU size and divide by blocks_per_sdu
rather than relying on this octets_per_sdu value to be fixed.

Parameters
• codec_cfg – The codec configuration to extract data from.

Return values
• Frame – length in octets

• -EINVAL – if arguments are invalid

• -ENODATA – if not found

• -EBADMSG – if found value has invalid size or value

int bt_audio_codec_cfg_set_octets_per_frame(struct bt_audio_codec_cfg *codec_cfg,
uint16_t octets_per_frame)

Set the octets per codec frame of a codec configuration.

Parameters
• codec_cfg – The codec configuration to set data for.

• octets_per_frame – The octets per codec frame to set.

Return values
• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory

int bt_audio_codec_cfg_get_frame_blocks_per_sdu(const struct bt_audio_codec_cfg
*codec_cfg, bool
fallback_to_default)

Extract number of audio frame blocks in each SDU from BT codec config.

The overall SDU size will be octets_per_frame * frame_blocks_per_sdu * number-of-
channels.

If this value is not present a default value of 1 shall be used.

A frame block is one or more frames that represents data for the same period of time
but for different channels. If the stream have two audio channels and this value is two
there will be four frames in the SDU.

Parameters
• codec_cfg – The codec configuration to extract data from.

• fallback_to_default – If true this function will return the de-
fault value of 1 if the type is not found when codec_cfg.id is
BT_HCI_CODING_FORMAT_LC3.

Return values
• The – count of codec frame blocks in each SDU.

• -EINVAL – if arguments are invalid
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• -ENODATA – if not found

• -EBADMSG – if found value has invalid size or value

int bt_audio_codec_cfg_set_frame_blocks_per_sdu(struct bt_audio_codec_cfg
*codec_cfg, uint8_t frame_blocks)

Set the frame blocks per SDU of a codec configuration.

Parameters
• codec_cfg – The codec configuration to set data for.

• frame_blocks – The frame blocks per SDU to set.

Return values
• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory

int bt_audio_codec_cfg_get_val(const struct bt_audio_codec_cfg *codec_cfg, enum
bt_audio_codec_cfg_type type, const uint8_t **data)

Lookup a specific codec configuration value.

Parameters
• codec_cfg – [in] The codec data to search in.

• type – [in] The type id to look for

• data – [out] Pointer to the data-pointer to update when item is found

Return values
• Length – of found data (may be 0)

• -EINVAL – if arguments are invalid

• -ENODATA – if not found

int bt_audio_codec_cfg_set_val(struct bt_audio_codec_cfg *codec_cfg, enum
bt_audio_codec_cfg_type type, const uint8_t *data, size_t
data_len)

Set or add a specific codec configuration value.

Parameters
• codec_cfg – The codec data to set the value in.

• type – The type id to set

• data – Pointer to the data-pointer to set

• data_len – Length of data
Return values

• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory

int bt_audio_codec_cfg_unset_val(struct bt_audio_codec_cfg *codec_cfg, enum
bt_audio_codec_cfg_type type)

Unset a specific codec configuration value.

The type and the value will be removed from the codec configuration.

Parameters
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• codec_cfg – The codec data to set the value in.

• type – The type id to unset.

Return values
• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

int bt_audio_codec_cfg_meta_get_val(const struct bt_audio_codec_cfg *codec_cfg,
uint8_t type, const uint8_t **data)

Lookup a specific metadata value based on type.

Parameters
• codec_cfg – [in] The codec data to search in.

• type – [in] The type id to look for

• data – [out] Pointer to the data-pointer to update when item is found

Return values
• Length – of found data (may be 0)

• -EINVAL – if arguments are invalid

• -ENODATA – if not found

int bt_audio_codec_cfg_meta_set_val(struct bt_audio_codec_cfg *codec_cfg, enum
bt_audio_metadata_type type, const uint8_t *data,
size_t data_len)

Set or add a specific codec configuration metadata value.

Parameters
• codec_cfg – The codec configuration to set the value in.

• type – The type id to set.

• data – Pointer to the data-pointer to set.

• data_len – Length of data.

Return values
• The – meta_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory

int bt_audio_codec_cfg_meta_unset_val(struct bt_audio_codec_cfg *codec_cfg, enum
bt_audio_metadata_type type)

Unset a specific codec configuration metadata value.

The type and the value will be removed from the codec configuration metadata.

Parameters
• codec_cfg – The codec data to set the value in.

• type – The type id to unset.

Return values
• The – meta_len of codec_cfg on success

• -EINVAL – if arguments are invalid
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int bt_audio_codec_cfg_meta_get_pref_context(const struct bt_audio_codec_cfg
*codec_cfg, bool fallback_to_default)

Extract preferred contexts.

See BT_AUDIO_METADATA_TYPE_PREF_CONTEXT for more information about this
value.

Parameters
• codec_cfg – The codec data to search in.

• fallback_to_default – If true this function will provide the default value
of BT_AUDIO_CONTEXT_TYPE_UNSPECIFIED if the type is not found
when codec_cfg.id is BT_HCI_CODING_FORMAT_LC3.

Return values
• The – preferred context type if positive or 0

• -EINVAL – if arguments are invalid

• -ENODATA – if not found

• -EBADMSG – if found value has invalid size

int bt_audio_codec_cfg_meta_set_pref_context(struct bt_audio_codec_cfg *codec_cfg,
enum bt_audio_context ctx)

Set the preferred context of a codec configuration metadata.

Parameters
• codec_cfg – The codec configuration to set data for.

• ctx – The preferred context to set.

Return values
• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory

int bt_audio_codec_cfg_meta_get_stream_context(const struct bt_audio_codec_cfg
*codec_cfg)

Extract stream contexts.

See BT_AUDIO_METADATA_TYPE_STREAM_CONTEXT for more information about this
value.

Parameters
• codec_cfg – The codec data to search in.

Return values
• The – stream context type if positive or 0

• -EINVAL – if arguments are invalid

• -ENODATA – if not found

• -EBADMSG – if found value has invalid size

int bt_audio_codec_cfg_meta_set_stream_context(struct bt_audio_codec_cfg *codec_cfg,
enum bt_audio_context ctx)

Set the stream context of a codec configuration metadata.

Parameters
• codec_cfg – The codec configuration to set data for.
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• ctx – The stream context to set.

Return values
• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory

int bt_audio_codec_cfg_meta_get_program_info(const struct bt_audio_codec_cfg
*codec_cfg, const uint8_t
**program_info)

Extract program info.

See BT_AUDIO_METADATA_TYPE_PROGRAM_INFO for more information about this
value.

Parameters
• codec_cfg – [in] The codec data to search in.

• program_info – [out] Pointer to the UTF-8 formatted program info.

Return values
• The – length of the program_info (may be 0)

• -EINVAL – if arguments are invalid

• -ENODATA – if not found

int bt_audio_codec_cfg_meta_set_program_info(struct bt_audio_codec_cfg *codec_cfg,
const uint8_t *program_info, size_t
program_info_len)

Set the program info of a codec configuration metadata.

Parameters
• codec_cfg – The codec configuration to set data for.

• program_info – The program info to set.

• program_info_len – The length of program_info.

Return values
• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory

int bt_audio_codec_cfg_meta_get_lang(const struct bt_audio_codec_cfg *codec_cfg, const
uint8_t **lang)

Extract language.

See BT_AUDIO_METADATA_TYPE_LANG for more information about this value.

Parameters
• codec_cfg – [in] The codec data to search in.

• lang – [out] Pointer to the language bytes (of length
BT_AUDIO_LANG_SIZE)

Return values
• The – language if positive or 0

• -EINVAL – if arguments are invalid

• -ENODATA – if not found
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• -EBADMSG – if found value has invalid size

int bt_audio_codec_cfg_meta_set_lang(struct bt_audio_codec_cfg *codec_cfg, const
uint8_t lang[3])

Set the language of a codec configuration metadata.

Parameters
• codec_cfg – The codec configuration to set data for.

• lang – The 24-bit language to set.

Return values
• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory

int bt_audio_codec_cfg_meta_get_ccid_list(const struct bt_audio_codec_cfg *codec_cfg,
const uint8_t **ccid_list)

Extract CCID list.

See BT_AUDIO_METADATA_TYPE_CCID_LIST for more information about this value.

Parameters
• codec_cfg – [in] The codec data to search in.

• ccid_list – [out] Pointer to the array containing 8-bit CCIDs.

Return values
• The – length of the ccid_list (may be 0)

• -EINVAL – if arguments are invalid

• -ENODATA – if not found

int bt_audio_codec_cfg_meta_set_ccid_list(struct bt_audio_codec_cfg *codec_cfg, const
uint8_t *ccid_list, size_t ccid_list_len)

Set the CCID list of a codec configuration metadata.

Parameters
• codec_cfg – The codec configuration to set data for.

• ccid_list – The program info to set.

• ccid_list_len – The length of ccid_list.

Return values
• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory

int bt_audio_codec_cfg_meta_get_parental_rating(const struct bt_audio_codec_cfg
*codec_cfg)

Extract parental rating.

SeeBT_AUDIO_METADATA_TYPE_PARENTAL_RATING for more information about this
value.

Parameters
• codec_cfg – The codec data to search in.

Return values
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• The – parental rating if positive or 0

• -EINVAL – if arguments are invalid

• -ENODATA – if not found

• -EBADMSG – if found value has invalid size

int bt_audio_codec_cfg_meta_set_parental_rating(struct bt_audio_codec_cfg
*codec_cfg, enum
bt_audio_parental_rating
parental_rating)

Set the parental rating of a codec configuration metadata.

Parameters
• codec_cfg – The codec configuration to set data for.

• parental_rating – The parental rating to set.

Return values
• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory

int bt_audio_codec_cfg_meta_get_program_info_uri(const struct bt_audio_codec_cfg
*codec_cfg, const uint8_t
**program_info_uri)

Extract program info URI.

See BT_AUDIO_METADATA_TYPE_PROGRAM_INFO_URI for more information about
this value.

Parameters
• codec_cfg – [in] The codec data to search in.

• program_info_uri – [out] Pointer to the UTF-8 formatted program info
URI.

Return values
• The – length of the ccid_list (may be 0)

• -EINVAL – if arguments are invalid

• -ENODATA – if not found

int bt_audio_codec_cfg_meta_set_program_info_uri(struct bt_audio_codec_cfg
*codec_cfg, const uint8_t
*program_info_uri, size_t
program_info_uri_len)

Set the program info URI of a codec configuration metadata.

Parameters
• codec_cfg – The codec configuration to set data for.

• program_info_uri – The program info URI to set.

• program_info_uri_len – The length of program_info_uri.

Return values
• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory
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int bt_audio_codec_cfg_meta_get_audio_active_state(const struct bt_audio_codec_cfg
*codec_cfg)

Extract audio active state.

See BT_AUDIO_METADATA_TYPE_AUDIO_STATE for more information about this
value.

Parameters
• codec_cfg – The codec data to search in.

Return values
• The – preferred context type if positive or 0

• -EINVAL – if arguments are invalid

• -ENODATA – if not found

• -EBADMSG – if found value has invalid size

int bt_audio_codec_cfg_meta_set_audio_active_state(struct bt_audio_codec_cfg
*codec_cfg, enum
bt_audio_active_state state)

Set the audio active state of a codec configuration metadata.

Parameters
• codec_cfg – The codec configuration to set data for.

• state – The audio active state to set.

Return values
• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory

int bt_audio_codec_cfg_meta_get_bcast_audio_immediate_rend_flag(const struct
bt_audio_codec_cfg
*codec_cfg)

Extract broadcast audio immediate rendering flag.

See BT_AUDIO_METADATA_TYPE_BROADCAST_IMMEDIATE for more information
about this value.

Parameters
• codec_cfg – The codec data to search in.

Return values
• 0 – if the flag was found

• -EINVAL – if arguments are invalid

• -ENODATA – if not the flag was not found

int bt_audio_codec_cfg_meta_set_bcast_audio_immediate_rend_flag(struct
bt_audio_codec_cfg
*codec_cfg)

Set the broadcast audio immediate rendering flag of a codec configuration metadata.

Parameters
• codec_cfg – The codec configuration to set data for.

Return values
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• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory

int bt_audio_codec_cfg_meta_get_extended(const struct bt_audio_codec_cfg *codec_cfg,
const uint8_t **extended_meta)

Extract extended metadata.

See BT_AUDIO_METADATA_TYPE_EXTENDED for more information about this value.

Parameters
• codec_cfg – [in] The codec data to search in.

• extended_meta – [out] Pointer to the extended metadata.

Return values
• The – length of the ccid_list (may be 0)

• -EINVAL – if arguments are invalid

• -ENODATA – if not found

int bt_audio_codec_cfg_meta_set_extended(struct bt_audio_codec_cfg *codec_cfg, const
uint8_t *extended_meta, size_t
extended_meta_len)

Set the extended metadata of a codec configuration metadata.

Parameters
• codec_cfg – The codec configuration to set data for.

• extended_meta – The extended metadata to set.

• extended_meta_len – The length of extended_meta.

Return values
• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory

int bt_audio_codec_cfg_meta_get_vendor(const struct bt_audio_codec_cfg *codec_cfg,
const uint8_t **vendor_meta)

Extract vendor specific metadata.

See BT_AUDIO_METADATA_TYPE_VENDOR for more information about this value.

Parameters
• codec_cfg – [in] The codec data to search in.

• vendor_meta – [out] Pointer to the vendor specific metadata.

Return values
• The – length of the ccid_list (may be 0)

• -EINVAL – if arguments are invalid

• -ENODATA – if not found

int bt_audio_codec_cfg_meta_set_vendor(struct bt_audio_codec_cfg *codec_cfg, const
uint8_t *vendor_meta, size_t
vendor_meta_len)

Set the vendor specific metadata of a codec configuration metadata.
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Parameters
• codec_cfg – The codec configuration to set data for.

• vendor_meta – The vendor specific metadata to set.

• vendor_meta_len – The length of vendor_meta.

Return values
• The – data_len of codec_cfg on success

• -EINVAL – if arguments are invalid

• -ENOMEM – if the new value could not set or added due to memory

Basic Audio Profile

Related code samples

Bluetooth: Broadcast Audio Assistant
Use LE Audio Broadcast Assistant functionality

Bluetooth: Common Audio Profile Acceptor
CAP Acceptor sample that advertises audio availability to CAP Initiators.

Bluetooth: Common Audio Profile Initiator
CAP Initiator sample that connects to CAP Acceptors and setup unicast audio streaming,
or broadcast audio streams.

API Reference

group bt_bap
Bluetooth Basic Audio Profile (BAP)

The Basic Audio Profile (BAP) allows for both unicast and broadcast Audio Stream control.

Since
3.0

Version
0.8.0

Defines

BT_BAP_PA_INTERVAL_UNKNOWN
Value indicating that the periodic advertising interval is unknown.

BT_BAP_BIS_SYNC_NO_PREF
Broadcast Assistant no BIS sync preference.

Value indicating that the Broadcast Assistant has no preference to which BIS the Scan
Delegator syncs to
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BT_BAP_ASCS_RSP(c, r)
Macro used to initialise the object storing values of ASE Control Point notification.

Parameters
• c – Response Code field

• r – Reason field - bt_bap_ascs_reason or bt_audio_metadata_type (see
notes in bt_bap_ascs_rsp).

Typedefs

typedef bool (*bt_bap_scan_delegator_state_func_t)(const struct
bt_bap_scan_delegator_recv_state *recv_state, void *user_data)

Callback function for Scan Delegator receive state search functions.

Param recv_state
The receive state.

Param user_data
User data.

Retval true
to stop iterating. If this is used in the context of
bt_bap_scan_delegator_find_state(), the recv_state will be returned by
bt_bap_scan_delegator_find_state()

Retval false
to continue iterating

typedef void (*bt_bap_broadcast_assistant_write_cb)(struct bt_conn *conn, int err)
Callback function for writes.

Param conn
The connection to the peer device.

Param err
Error value. 0 on success, GATT error on fail.

Enums

enum bt_bap_pa_state
Periodic advertising state reported by the Scan Delegator.

Values:

enumerator BT_BAP_PA_STATE_NOT_SYNCED = 0x00
The periodic advertising has not been synchronized.

enumerator BT_BAP_PA_STATE_INFO_REQ = 0x01
Waiting for SyncInfo from Broadcast Assistant.

enumerator BT_BAP_PA_STATE_SYNCED = 0x02
Synchronized to periodic advertising.
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enumerator BT_BAP_PA_STATE_FAILED = 0x03
Failed to synchronized to periodic advertising.

enumerator BT_BAP_PA_STATE_NO_PAST = 0x04
No periodic advertising sync transfer receiver from Broadcast Assistant.

enum bt_bap_big_enc_state
Broadcast Isochronous Group encryption state reported by the Scan Delegator.

Values:

enumerator BT_BAP_BIG_ENC_STATE_NO_ENC = 0x00
The Broadcast Isochronous Group not encrypted.

enumerator BT_BAP_BIG_ENC_STATE_BCODE_REQ = 0x01
The Broadcast Isochronous Group broadcast code requested.

enumerator BT_BAP_BIG_ENC_STATE_DEC = 0x02
The Broadcast Isochronous Group decrypted.

enumerator BT_BAP_BIG_ENC_STATE_BAD_CODE = 0x03
The Broadcast Isochronous Group bad broadcast code.

enum bt_bap_bass_att_err
Broadcast Audio Scan Service (BASS) specific ATT error codes.

Values:

enumerator BT_BAP_BASS_ERR_OPCODE_NOT_SUPPORTED = 0x80
Opcode not supported.

enumerator BT_BAP_BASS_ERR_INVALID_SRC_ID = 0x81
Invalid source ID supplied.

enum bt_bap_ep_state
Endpoint states.

Values:

enumerator BT_BAP_EP_STATE_IDLE = 0x00
Audio Stream Endpoint Idle state.

enumerator BT_BAP_EP_STATE_CODEC_CONFIGURED = 0x01
Audio Stream Endpoint Codec Configured state.

enumerator BT_BAP_EP_STATE_QOS_CONFIGURED = 0x02
Audio Stream Endpoint QoS Configured state.

enumerator BT_BAP_EP_STATE_ENABLING = 0x03
Audio Stream Endpoint Enabling state.
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enumerator BT_BAP_EP_STATE_STREAMING = 0x04
Audio Stream Endpoint Streaming state.

enumerator BT_BAP_EP_STATE_DISABLING = 0x05
Audio Stream Endpoint Disabling state.

enumerator BT_BAP_EP_STATE_RELEASING = 0x06
Audio Stream Endpoint Streaming state.

enum bt_bap_ascs_rsp_code
Response Status Code.

These are sent by the server to the client when a stream operation is requested.

Values:

enumerator BT_BAP_ASCS_RSP_CODE_SUCCESS = 0x00
Server completed operation successfully.

enumerator BT_BAP_ASCS_RSP_CODE_NOT_SUPPORTED = 0x01
Server did not support operation by client.

enumerator BT_BAP_ASCS_RSP_CODE_INVALID_LENGTH = 0x02
Server rejected due to invalid operation length.

enumerator BT_BAP_ASCS_RSP_CODE_INVALID_ASE = 0x03
Invalid ASE ID.

enumerator BT_BAP_ASCS_RSP_CODE_INVALID_ASE_STATE = 0x04
Invalid ASE state.

enumerator BT_BAP_ASCS_RSP_CODE_INVALID_DIR = 0x05
Invalid operation for direction.

enumerator BT_BAP_ASCS_RSP_CODE_CAP_UNSUPPORTED = 0x06
Capabilities not supported by server.

enumerator BT_BAP_ASCS_RSP_CODE_CONF_UNSUPPORTED = 0x07
Configuration parameters not supported by server.

enumerator BT_BAP_ASCS_RSP_CODE_CONF_REJECTED = 0x08
Configuration parameters rejected by server.

enumerator BT_BAP_ASCS_RSP_CODE_CONF_INVALID = 0x09
Invalid Configuration parameters.

enumerator BT_BAP_ASCS_RSP_CODE_METADATA_UNSUPPORTED = 0x0a
Unsupported metadata.
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enumerator BT_BAP_ASCS_RSP_CODE_METADATA_REJECTED = 0x0b
Metadata rejected by server.

enumerator BT_BAP_ASCS_RSP_CODE_METADATA_INVALID = 0x0c
Invalid metadata.

enumerator BT_BAP_ASCS_RSP_CODE_NO_MEM = 0x0d
Server has insufficient resources.

enumerator BT_BAP_ASCS_RSP_CODE_UNSPECIFIED = 0x0e
Unspecified error.

enum bt_bap_ascs_reason
Response Reasons.

These are used if the bt_bap_ascs_rsp_code value is
BT_BAP_ASCS_RSP_CODE_CONF_UNSUPPORTED,BT_BAP_ASCS_RSP_CODE_CONF_REJECTED
or BT_BAP_ASCS_RSP_CODE_CONF_INVALID.

Values:

enumerator BT_BAP_ASCS_REASON_NONE = 0x00
No reason.

enumerator BT_BAP_ASCS_REASON_CODEC = 0x01
Codec ID.

enumerator BT_BAP_ASCS_REASON_CODEC_DATA = 0x02
Codec configuration.

enumerator BT_BAP_ASCS_REASON_INTERVAL = 0x03
SDU interval.

enumerator BT_BAP_ASCS_REASON_FRAMING = 0x04
Framing.

enumerator BT_BAP_ASCS_REASON_PHY = 0x05
PHY.

enumerator BT_BAP_ASCS_REASON_SDU = 0x06
Maximum SDU size.

enumerator BT_BAP_ASCS_REASON_RTN = 0x07
RTN.

enumerator BT_BAP_ASCS_REASON_LATENCY = 0x08
Max transport latency.

enumerator BT_BAP_ASCS_REASON_PD = 0x09
Presendation delay.
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enumerator BT_BAP_ASCS_REASON_CIS = 0x0a
Invalid CIS mapping.

Functions

int bt_bap_ep_get_info(const struct bt_bap_ep *ep, struct bt_bap_ep_info *info)
Return structure holding information of audio stream endpoint.

Parameters
• ep – The audio stream endpoint object.

• info – The structure object to be filled with the info.

Return values
• 0 – in case of success

• -EINVAL – if ep or info are NULL

void bt_bap_stream_cb_register(struct bt_bap_stream *stream, struct bt_bap_stream_ops
*ops)

Register Audio callbacks for a stream.

Register Audio callbacks for a stream.

Parameters
• stream – Stream object.

• ops – Stream operations structure.

int bt_bap_stream_config(struct bt_conn *conn, struct bt_bap_stream *stream, struct
bt_bap_ep *ep, struct bt_audio_codec_cfg *codec_cfg)

Configure Audio Stream.

This procedure is used by a client to configure a new stream using the remote endpoint,
local capability and codec configuration.

Parameters
• conn – Connection object

• stream – Stream object being configured

• ep – Remote Audio Endpoint being configured

• codec_cfg – Codec configuration

Returns
Allocated Audio Stream object or NULL in case of error.

int bt_bap_stream_reconfig(struct bt_bap_stream *stream, struct bt_audio_codec_cfg
*codec_cfg)

Reconfigure Audio Stream.

This procedure is used by a unicast client or unicast server to reconfigure a stream to
use a different local codec configuration.

This can only be done for unicast streams.

Parameters
• stream – Stream object being reconfigured

• codec_cfg – Codec configuration
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Returns
0 in case of success or negative value in case of error.

int bt_bap_stream_qos(struct bt_conn *conn, struct bt_bap_unicast_group *group)
Configure Audio Stream QoS.

This procedure is used by a client to configure the Quality of Service of streams in a
unicast group. All streams in the group for the specified conn will have the Quality of
Service configured. This shall only be used to configure unicast streams.

Parameters
• conn – Connection object

• group – Unicast group object

Returns
0 in case of success or negative value in case of error.

int bt_bap_stream_enable(struct bt_bap_stream *stream, const uint8_t meta[], size_t
meta_len)

Enable Audio Stream.

This procedure is used by a client to enable a stream.

This shall only be called for unicast streams, as broadcast streams will always be en-
abled once created.

Parameters
• stream – Stream object

• meta – Metadata

• meta_len – Metadata length

Returns
0 in case of success or negative value in case of error.

int bt_bap_stream_metadata(struct bt_bap_stream *stream, const uint8_t meta[], size_t
meta_len)

Change Audio Stream Metadata.

This procedure is used by a unicast client or unicast server to change the metadata of
a stream.

Parameters
• stream – Stream object

• meta – Metadata

• meta_len – Metadata length

Returns
0 in case of success or negative value in case of error.

int bt_bap_stream_disable(struct bt_bap_stream *stream)
Disable Audio Stream.

This procedure is used by a unicast client or unicast server to disable a stream.

This shall only be called for unicast streams, as broadcast streams will always be en-
abled once created.

Parameters
• stream – Stream object

Returns
0 in case of success or negative value in case of error.
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int bt_bap_stream_connect(struct bt_bap_stream *stream)
Connect unicast audio stream.

This procedure is used by a unicast client to connect the connected isochronous stream
(CIS) associated with the audio stream. If two audio streams share a CIS, then this only
needs to be done once for those streams. This can only be done for streams in the QoS
configured or enabled states.

The bt_bap_stream_ops.connected() callback will be called on the streams once this has
finished.

This shall only be called for unicast streams, and only as the unicast client ( CON-
FIG_BT_BAP_UNICAST_CLIENT ).

Parameters
• stream – Stream object

Return values
• 0 – in case of success

• -EINVAL – if the stream, endpoint, ISO channel or connection is NULL

• -EBADMSG – if the stream or ISO channel is in an invalid state for connec-
tion

• -EOPNOTSUPP – if the role of the stream is not BT_HCI_ROLE_CENTRAL

• -EALREADY – if the ISO channel is already connecting or connected

• -EBUSY – if another ISO channel is connecting

• -ENOEXEC – if otherwise rejected by the ISO layer

int bt_bap_stream_start(struct bt_bap_stream *stream)
Start Audio Stream.

This procedure is used by a unicast client or unicast server to make a stream start
streaming.

For the unicast client, this will send the receiver start ready command to the unicast
server for BT_AUDIO_DIR_SOURCE ASEs. The CIS is required to be connected first by
bt_bap_stream_connect() before the command can be sent.

For the unicast server, this will execute the receiver start ready command on the uni-
cast server for BT_AUDIO_DIR_SINK ASEs. If the CIS is not connected yet, the stream
will go into the streaming state as soon as the CIS is connected.

This shall only be called for unicast streams.

Broadcast sinks will always be started once synchronized, and broadcast source
streams shall be started with bt_bap_broadcast_source_start().

Parameters
• stream – Stream object

Returns
0 in case of success or negative value in case of error.

int bt_bap_stream_stop(struct bt_bap_stream *stream)
Stop Audio Stream.

This procedure is used by a client to make a stream stop streaming.

This shall only be called for unicast streams. Broadcast sinks cannot be stopped.
Broadcast sources shall be stopped with bt_bap_broadcast_source_stop().

Parameters
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• stream – Stream object

Returns
0 in case of success or negative value in case of error.

int bt_bap_stream_release(struct bt_bap_stream *stream)
Release Audio Stream.

This procedure is used by a unicast client or unicast server to release a unicast stream.

Broadcast sink streams cannot be released, but can be deleted by
bt_bap_broadcast_sink_delete(). Broadcast source streams cannot be released,
but can be deleted by bt_bap_broadcast_source_delete().

Parameters
• stream – Stream object

Returns
0 in case of success or negative value in case of error.

int bt_bap_stream_send(struct bt_bap_stream *stream, struct net_buf *buf, uint16_t
seq_num)

Send data to Audio stream without timestamp.

Send data from buffer to the stream.

Note

Support for sending must be supported, determined by CONFIG_BT_AUDIO_TX .

Parameters
• stream – Stream object.

• buf – Buffer containing data to be sent.

• seq_num – Packet Sequence number. This value shall be incremented for
each call to this function and at least once per SDU interval for a specific
channel.

Returns
Bytes sent in case of success or negative value in case of error.

int bt_bap_stream_send_ts(struct bt_bap_stream *stream, struct net_buf *buf, uint16_t
seq_num, uint32_t ts)

Send data to Audio stream with timestamp.

Send data from buffer to the stream.

Note

Support for sending must be supported, determined by CONFIG_BT_AUDIO_TX .

Parameters
• stream – Stream object.

• buf – Buffer containing data to be sent.

• seq_num – Packet Sequence number. This value shall be incremented for
each call to this function and at least once per SDU interval for a specific
channel.
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• ts – Timestamp of the SDU in microseconds (us). This value can be used
to transmit multiple SDUs in the same SDU interval in a CIG or BIG.

Returns
Bytes sent in case of success or negative value in case of error.

int bt_bap_stream_get_tx_sync(struct bt_bap_stream *stream, struct bt_iso_tx_info *info)
Get ISO transmission timing info for a Basic Audio Profile stream.

Reads timing information for transmitted ISO packet on an ISO channel. The
HCI_LE_Read_ISO_TX_Sync HCI command is used to retrieve this information from the
controller.

Note

An SDU must have already been successfully transmitted on the ISO channel for this
function to return successfully. Support for sending must be supported, determined
by CONFIG_BT_AUDIO_TX .

Parameters
• stream – [in] Stream object.

• info – [out] Transmit info object.

Return values
• 0 – on success

• -EINVAL – if the stream is invalid, if the stream is not configured for send-
ing or if it is not connected with a isochronous stream

• Any – return value from bt_iso_chan_get_tx_sync()

void bt_bap_scan_delegator_register_cb(struct bt_bap_scan_delegator_cb *cb)
Register the callbacks for the Basic Audio Profile Scan Delegator.

Only one set of callbacks can be registered at any one time, and calling this function
multiple times will override any previously registered callbacks.

Parameters
• cb – Pointer to the callback struct

int bt_bap_scan_delegator_set_pa_state(uint8_t src_id, enum bt_bap_pa_state pa_state)
Set the periodic advertising sync state to syncing.

Set the periodic advertising sync state for a receive state to syncing, notifying Broadcast
Assistants.

Parameters
• src_id – The source id used to identify the receive state.

• pa_state – The Periodic Advertising sync state to set.
BT_BAP_PA_STATE_NOT_SYNCED and BT_BAP_PA_STATE_SYNCED is
not necessary to provide, as they are handled internally.

Returns
int Error value. 0 on success, errno on fail.

int bt_bap_scan_delegator_set_bis_sync_state(uint8_t src_id, uint32_t
bis_synced[CONFIG_BT_BAP_BASS_MAX_SUBGROUPS])

Set the sync state of a receive state in the server.
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Parameters
• src_id – The source id used to identify the receive state.

• bis_synced – Array of bitfields to set the BIS sync state for each subgroup.

Returns
int Error value. 0 on success, ERRNO on fail.

int bt_bap_scan_delegator_add_src(const struct bt_bap_scan_delegator_add_src_param
*param)

Add a receive state source locally.

This will notify any connected clients about the new source. This allows them to modify
and even remove it.

If CONFIG_BT_BAP_BROADCAST_SINK is enabled, any Broadcast Sink sources are au-
tonomously added.

Parameters
• param – The parameters for adding the new source

Returns
int errno on failure, or source ID on success.

int bt_bap_scan_delegator_mod_src(const struct bt_bap_scan_delegator_mod_src_param
*param)

Add a receive state source locally.

This will notify any connected clients about the new source. This allows them to modify
and even remove it.

If CONFIG_BT_BAP_BROADCAST_SINK is enabled, any Broadcast Sink sources are au-
tonomously modified.

Parameters
• param – The parameters for adding the new source

Returns
int errno on failure, or source ID on success.

int bt_bap_scan_delegator_rem_src(uint8_t src_id)
Remove a receive state source.

This will remove the receive state. If the receive state periodic advertising is synced,
bt_bap_scan_delegator_cb.pa_sync_term_req() will be called.

If CONFIG_BT_BAP_BROADCAST_SINK is enabled, any Broadcast Sink sources are au-
tonomously removed.

Parameters
• src_id – The source ID to remove

Returns
int Error value. 0 on success, errno on fail.

void bt_bap_scan_delegator_foreach_state(bt_bap_scan_delegator_state_func_t func,
void *user_data)

Iterate through all existing receive states.

Parameters
• func – The callback function

• user_data – User specified data that sent to the callback function
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const struct bt_bap_scan_delegator_recv_state *bt_bap_scan_delegator_find_state(bt_bap_scan_delegator_state_func_t
func,
void
*user_data)

Find and return a receive state based on a compare function.

Parameters
• func – The compare callback function

• user_data – User specified data that sent to the callback function

Returns
The first receive state where the func returned true, or NULL

int bt_bap_broadcast_assistant_discover(struct bt_conn *conn)
Discover Broadcast Audio Scan Service on the server.

Warning: Only one connection can be active at any time; discovering for a new con-
nection, will delete all previous data.

Parameters
• conn – The connection

Returns
int Error value. 0 on success, GATT error or ERRNO on fail.

int bt_bap_broadcast_assistant_scan_start(struct bt_conn *conn, bool start_scan)
Scan start for BISes for a remote server.

This will let the Broadcast Audio Scan Service server know that this device is actively
scanning for broadcast sources. The function can optionally also start scanning, if the
caller does not want to start scanning itself.

Scan results, if start_scan is true, is sent to the bt_bap_broadcast_assistant_scan_cb
callback.

Parameters
• conn – Connection to the Broadcast Audio Scan Service server. Used to let

the server know that we are scanning.

• start_scan – Start scanning if true. If false, the application should enable
scan itself.

Returns
int Error value. 0 on success, GATT error or ERRNO on fail.

int bt_bap_broadcast_assistant_scan_stop(struct bt_conn *conn)
Stop remote scanning for BISes for a server.

Parameters
• conn – Connection to the server.

Returns
int Error value. 0 on success, GATT error or ERRNO on fail.

int bt_bap_broadcast_assistant_register_cb(struct bt_bap_broadcast_assistant_cb *cb)
Registers the callbacks used by Broadcast Audio Scan Service client.

Parameters
• cb – The callback structure.

Return values
• 0 – on success
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• -EINVAL – if cb is NULL

• -EALREADY – if cb was already registered

int bt_bap_broadcast_assistant_unregister_cb(struct bt_bap_broadcast_assistant_cb
*cb)

Unregisters the callbacks used by the Broadcast Audio Scan Service client.

Parameters
• cb – The callback structure.

Return values
• 0 – on success

• -EINVAL – if cb is NULL

• -EALREADY – if cb was not registered

int bt_bap_broadcast_assistant_add_src(struct bt_conn *conn, const struct
bt_bap_broadcast_assistant_add_src_param
*param)

Add a source on the server.

Parameters
• conn – Connection to the server.

• param – Parameter struct.

Returns
Error value. 0 on success, GATT error or ERRNO on fail.

int bt_bap_broadcast_assistant_mod_src(struct bt_conn *conn, const struct
bt_bap_broadcast_assistant_mod_src_param
*param)

Modify a source on the server.

Parameters
• conn – Connection to the server.

• param – Parameter struct.

Returns
Error value. 0 on success, GATT error or ERRNO on fail.

int bt_bap_broadcast_assistant_set_broadcast_code(struct bt_conn *conn,
uint8_t src_id, const uint8_t broad-
cast_code[BT_AUDIO_BROADCAST_CODE_SIZE])

Set a broadcast code to the specified receive state.

Parameters
• conn – Connection to the server.

• src_id – Source ID of the receive state.

• broadcast_code – The broadcast code.

Returns
Error value. 0 on success, GATT error or ERRNO on fail.

int bt_bap_broadcast_assistant_rem_src(struct bt_conn *conn, uint8_t src_id)
Remove a source from the server.

Parameters
• conn – Connection to the server.
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• src_id – Source ID of the receive state.

Returns
Error value. 0 on success, GATT error or ERRNO on fail.

int bt_bap_broadcast_assistant_read_recv_state(struct bt_conn *conn, uint8_t idx)
Read the specified receive state from the server.

Parameters
• conn – Connection to the server.

• idx – The index of the receive start (0 up to the value from
bt_bap_broadcast_assistant_discover_cb)

Returns
Error value. 0 on success, GATT error or ERRNO on fail.

struct bt_bap_ascs_rsp
#include <bap.h> Structure storing values of fields of ASE Control Point notification.

Public Members

enum bt_bap_ascs_rsp_code code
Value of the Response Code field.

The following response codes are accepted:
• BT_BAP_ASCS_RSP_CODE_SUCCESS
• BT_BAP_ASCS_RSP_CODE_CAP_UNSUPPORTED
• BT_BAP_ASCS_RSP_CODE_CONF_UNSUPPORTED
• BT_BAP_ASCS_RSP_CODE_CONF_REJECTED
• BT_BAP_ASCS_RSP_CODE_METADATA_UNSUPPORTED
• BT_BAP_ASCS_RSP_CODE_METADATA_REJECTED
• BT_BAP_ASCS_RSP_CODE_NO_MEM
• BT_BAP_ASCS_RSP_CODE_UNSPECIFIED

enum bt_bap_ascs_reason reason
Response reason.

If the Response Code is one of the following:
• BT_BAP_ASCS_RSP_CODE_CONF_UNSUPPORTED
• BT_BAP_ASCS_RSP_CODE_CONF_REJECTED all values from bt_bap_ascs_reason

can be used.
If the Response Code is one of the following:

• BT_BAP_ASCS_RSP_CODE_SUCCESS
• BT_BAP_ASCS_RSP_CODE_CAP_UNSUPPORTED
• BT_BAP_ASCS_RSP_CODE_NO_MEM
• BT_BAP_ASCS_RSP_CODE_UNSPECIFIED only value
BT_BAP_ASCS_REASON_NONE shall be used.

enum bt_audio_metadata_type metadata_type
Response metadata type.

If the Response Code is one of the following:
• BT_BAP_ASCS_RSP_CODE_METADATA_UNSUPPORTED
• BT_BAP_ASCS_RSP_CODE_METADATA_REJECTED the value of the Metadata

Type shall be used.
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union bt_bap_ascs_rsp
Value of the Reason field.

The meaning of this value depend on the Response Code field.

struct bt_bap_bass_subgroup
#include <bap.h> Struct to hold subgroup specific information for the receive state.

Public Members

uint32_t bis_sync
BIS synced bitfield.

uint8_t metadata_len
Length of the metadata.

uint8_t metadata[CONFIG_BT_AUDIO_CODEC_CFG_MAX_METADATA_SIZE]
The metadata.

struct bt_bap_scan_delegator_recv_state
#include <bap.h> Represents the Broadcast Audio Scan Service receive state.

Public Members

uint8_t src_id
The source ID

bt_addr_le_t addr
The Bluetooth address.

uint8_t adv_sid
The advertising set ID.

enum bt_bap_pa_state pa_sync_state
The periodic adverting sync state.

enum bt_bap_big_enc_state encrypt_state
The broadcast isochronous group encryption state.

uint32_t broadcast_id
The 24-bit broadcast ID.

uint8_t bad_code[BT_AUDIO_BROADCAST_CODE_SIZE]
The bad broadcast code.

Only valid if encrypt_state is BT_BAP_BIG_ENC_STATE_BCODE_REQ
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uint8_t num_subgroups
Number of subgroups.

struct bt_bap_bass_subgroup subgroups[CONFIG_BT_BAP_BASS_MAX_SUBGROUPS]
Subgroup specific information.

struct bt_bap_scan_delegator_cb
#include <bap.h> Struct to hold the Basic Audio Profile Scan Delegator callbacks.

These can be registered for usage with bt_bap_scan_delegator_register_cb().

Public Members

void (*recv_state_updated)(struct bt_conn *conn, const struct
bt_bap_scan_delegator_recv_state *recv_state)

Receive state updated.
Param conn

Pointer to the connection to a remote device if the change was caused by
it, otherwise NULL.

Param recv_state
Pointer to the receive state that was updated.

Return
0 in case of success or negative value in case of error.

int (*pa_sync_req)(struct bt_conn *conn, const struct
bt_bap_scan_delegator_recv_state *recv_state, bool past_avail, uint16_t pa_interval)

Periodic advertising sync request.

Request from peer device to synchronize with the periodic advertiser denoted by
the recv_state. To notify the Broadcast Assistant about any pending sync

Param conn
Pointer to the connection requesting the periodic advertising sync.

Param recv_state
Pointer to the receive state that is being requested for periodic advertis-
ing sync.

Param past_avail
True if periodic advertising sync transfer is available.

Param pa_interval
The periodic advertising interval.

Return
0 in case of accept, or other value to reject.

int (*pa_sync_term_req)(struct bt_conn *conn, const struct
bt_bap_scan_delegator_recv_state *recv_state)

Periodic advertising sync termination request.

Request from peer device to terminate the periodic advertiser sync denoted by the
recv_state.

Param conn
Pointer to the connection requesting the periodic advertising sync termi-
nation.

Param recv_state
Pointer to the receive state that is being requested for periodic advertis-
ing sync.

1776 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

Return
0 in case of success or negative value in case of error.

void (*broadcast_code)(struct bt_conn *conn, const struct
bt_bap_scan_delegator_recv_state *recv_state, const uint8_t
broadcast_code[BT_AUDIO_BROADCAST_CODE_SIZE])

Broadcast code received.

Broadcast code received from a broadcast assistant
Param conn

Pointer to the connection providing the broadcast code.
Param recv_state

Pointer to the receive state the broadcast code is being provided for.
Param broadcast_code

The 16-octet broadcast code

int (*bis_sync_req)(struct bt_conn *conn, const struct
bt_bap_scan_delegator_recv_state *recv_state, const uint32_t
bis_sync_req[CONFIG_BT_BAP_BASS_MAX_SUBGROUPS])

Broadcast Isochronous Stream synchronize request.

Request from Broadcast Assistant device to modify the Broadcast Isochronous
Stream states. The request shall be fulfilled with accordance to the bis_sync_req
within reasonable time. The Broadcast Assistant may also request fewer, or none,
indexes to be synchronized.

Param conn
[in] Pointer to the connection of the Broadcast Assistant requesting the
sync.

Param recv_state
[in] Pointer to the receive state that is being requested for the sync.

Param bis_sync_req
[in] Array of bitfields of which BIS indexes that is requested to sync for
each subgroup by the Broadcast Assistant. A value of 0 indicates a request
to terminate the BIG sync.

Return
0 in case of accept, or other value to reject.

struct bt_bap_ep_info
#include <bap.h> Structure holding information of audio stream endpoint.

Public Members

uint8_t id
The ID of the endpoint.

enum bt_bap_ep_state state
The state of the endpoint.

enum bt_audio_dir dir
Capabilities type.

struct bt_iso_chan *iso_chan
The isochronous channel associated with the endpoint.
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bool can_send
True if the stream associated with the endpoint is able to send data.

bool can_recv
True if the stream associated with the endpoint is able to receive data.

struct bt_bap_ep *paired_ep
Pointer to paired endpoint if the endpoint is part of a bidirectional CIS, otherwise
NULL.

const struct bt_audio_codec_qos_pref *qos_pref
Pointer to the preferred QoS settings associated with the endpoint.

struct bt_bap_stream
#include <bap.h> Basic Audio Profile stream structure.

Streams represents a stream configuration of a Remote Endpoint and a Local Capabil-
ity.

Note

Streams are unidirectional but can be paired with other streams to use a bidirec-
tional connected isochronous stream.

Public Members

struct bt_conn *conn
Connection reference.

struct bt_bap_ep *ep
Endpoint reference.

struct bt_audio_codec_cfg *codec_cfg
Codec Configuration.

struct bt_audio_codec_qos *qos
QoS Configuration.

struct bt_bap_stream_ops *ops
Audio stream operations.

void *user_data
Stream user data.

struct bt_bap_stream_ops
#include <bap.h> Stream operation.
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Public Members

void (*configured)(struct bt_bap_stream *stream, const struct
bt_audio_codec_qos_pref *pref)

Stream configured callback.

Configured callback is called whenever an Audio Stream has been configured.
Param stream

Stream object that has been configured.
Param pref

Remote QoS preferences.

void (*qos_set)(struct bt_bap_stream *stream)
Stream QoS set callback.

QoS set callback is called whenever an Audio Stream Quality of Service has been
set or updated.

Param stream
Stream object that had its QoS updated.

void (*enabled)(struct bt_bap_stream *stream)
Stream enabled callback.

Enabled callback is called whenever an Audio Stream has been enabled.
Param stream

Stream object that has been enabled.

void (*metadata_updated)(struct bt_bap_stream *stream)
Stream metadata updated callback.

Metadata Updated callback is called whenever an Audio Stream’s metadata has
been updated.

Param stream
Stream object that had its metadata updated.

void (*disabled)(struct bt_bap_stream *stream)
Stream disabled callback.

Disabled callback is called whenever an Audio Stream has been disabled.
Param stream

Stream object that has been disabled.

void (*released)(struct bt_bap_stream *stream)
Stream released callback.

Released callback is called whenever a Audio Stream has been released and can
be deallocated.

Param stream
Stream object that has been released.

void (*started)(struct bt_bap_stream *stream)
Stream started callback.

Started callback is called whenever an Audio Stream has been started and will be
usable for streaming.

Param stream
Stream object that has been started.
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void (*stopped)(struct bt_bap_stream *stream, uint8_t reason)
Stream stopped callback.

Stopped callback is called whenever an Audio Stream has been stopped.
Param stream

Stream object that has been stopped.
Param reason

BT_HCI_ERR_* reason for the disconnection.

void (*recv)(struct bt_bap_stream *stream, const struct bt_iso_recv_info *info, struct
net_buf *buf)

Stream audio HCI receive callback.

This callback is only used if the ISO data path is HCI.
Param stream

Stream object.
Param info

Pointer to the metadata for the buffer. The lifetime of the pointer is linked
to the lifetime of the net_buf . Metadata such as sequence number and
timestamp can be provided by the bluetooth controller.

Param buf
Buffer containing incoming audio data.

void (*sent)(struct bt_bap_stream *stream)
Stream audio HCI sent callback.

This callback will be called once the controller marks the SDU as completed. When
the controller does so is implementation dependent. It could be after the SDU is
enqueued for transmission, or after it is sent on air or flushed.

This callback is only used if the ISO data path is HCI.
Param stream

Stream object.

void (*connected)(struct bt_bap_stream *stream)
Isochronous channel connected callback.

If this callback is provided it will be called whenever the isochronous channel for
the stream has been connected. This does not mean that the stream is ready to be
used, which is indicated by the bt_bap_stream_ops::started callback.

If the stream shares an isochronous channel with another stream, then this call-
back may still be called, without the stream going into the started state.

Param stream
Stream object.

void (*disconnected)(struct bt_bap_stream *stream, uint8_t reason)
Isochronous channel disconnected callback.

If this callback is provided it will be called whenever the isochronous channel is
disconnected, including when a connection gets rejected.

If the stream shares an isochronous channel with another stream, then this call-
back may not be called, even if the stream is leaving the streaming state.

Param stream
Stream object.

Param reason
BT_HCI_ERR_* reason for the disconnection.
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struct bt_bap_scan_delegator_add_src_param
#include <bap.h> Parameters for bt_bap_scan_delegator_add_src()

Public Members

bt_addr_le_t addr
Periodic Advertiser Address.

uint8_t sid
Advertiser SID.

enum bt_bap_big_enc_state encrypt_state
The broadcast isochronous group encryption state.

uint32_t broadcast_id
The 24-bit broadcast ID.

uint8_t num_subgroups
Number of subgroups.

struct bt_bap_bass_subgroup subgroups[CONFIG_BT_BAP_BASS_MAX_SUBGROUPS]
Subgroup specific information.

struct bt_bap_scan_delegator_mod_src_param
#include <bap.h> Parameters for bt_bap_scan_delegator_mod_src()

Public Members

uint8_t src_id
The periodic adverting sync.

enum bt_bap_big_enc_state encrypt_state
The broadcast isochronous group encryption state.

uint32_t broadcast_id
The 24-bit broadcast ID.

uint8_t num_subgroups
Number of subgroups.

struct bt_bap_bass_subgroup subgroups[CONFIG_BT_BAP_BASS_MAX_SUBGROUPS]
Subgroup specific information.

If a subgroup’s metadata_len is set to 0, the existing metadata for the subgroup will
remain unchanged
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struct bt_bap_broadcast_assistant_cb
#include <bap.h> Struct to hold the Basic Audio Profile Broadcast Assistant callbacks.

These can be registered for usage with bt_bap_broadcast_assistant_register_cb().

Public Members

void (*discover)(struct bt_conn *conn, int err, uint8_t recv_state_count)
Callback function for bt_bap_broadcast_assistant_discover.

Param conn
The connection that was used to discover Broadcast Audio Scan Service.

Param err
Error value. 0 on success, GATT error or ERRNO on fail.

Param recv_state_count
Number of receive states on the server.

void (*scan)(const struct bt_le_scan_recv_info *info, uint32_t broadcast_id)
Callback function for Broadcast Audio Scan Service client scan results.

Called when the scanner finds an advertiser that advertises the
BT_UUID_BROADCAST_AUDIO UUID.

Param info
Advertiser information.

Param broadcast_id
24-bit broadcast ID.

void (*recv_state)(struct bt_conn *conn, int err, const struct
bt_bap_scan_delegator_recv_state *state)

Callback function for when a receive state is read or updated.

Called whenever a receive state is read or updated.
Param conn

The connection to the Broadcast Audio Scan Service server.
Param err

Error value. 0 on success, GATT error on fail.
Param state

The receive state or NULL if the receive state is empty.

void (*recv_state_removed)(struct bt_conn *conn, uint8_t src_id)
Callback function for when a receive state is removed.

Param conn
The connection to the Broadcast Audio Scan Service server.

Param src_id
The receive state.

void (*scan_start)(struct bt_conn *conn, int err)
Callback function for bt_bap_broadcast_assistant_scan_start().

Param conn
The connection to the peer device.

Param err
Error value. 0 on success, GATT error on fail.

void (*scan_stop)(struct bt_conn *conn, int err)
Callback function for bt_bap_broadcast_assistant_scan_stop().
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Param conn
The connection to the peer device.

Param err
Error value. 0 on success, GATT error on fail.

void (*add_src)(struct bt_conn *conn, int err)
Callback function for bt_bap_broadcast_assistant_add_src().

Param conn
The connection to the peer device.

Param err
Error value. 0 on success, GATT error on fail.

void (*mod_src)(struct bt_conn *conn, int err)
Callback function for bt_bap_broadcast_assistant_mod_src().

Param conn
The connection to the peer device.

Param err
Error value. 0 on success, GATT error on fail.

void (*broadcast_code)(struct bt_conn *conn, int err)
Callback function for bt_bap_broadcast_assistant_broadcast_code().

Param conn
The connection to the peer device.

Param err
Error value. 0 on success, GATT error on fail.

void (*rem_src)(struct bt_conn *conn, int err)
Callback function for bt_bap_broadcast_assistant_rem_src().

Param conn
The connection to the peer device.

Param err
Error value. 0 on success, GATT error on fail.

struct bt_bap_broadcast_assistant_add_src_param
#include <bap.h> Parameters for adding a source to a Broadcast Audio Scan Service
server.

Public Members

bt_addr_le_t addr
Address of the advertiser.

uint8_t adv_sid
SID of the advertising set.

bool pa_sync
Whether to sync to periodic advertisements.

uint32_t broadcast_id
24-bit broadcast ID
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uint16_t pa_interval
Periodic advertising interval in milliseconds.

BT_BAP_PA_INTERVAL_UNKNOWN if unknown.

uint8_t num_subgroups
Number of subgroups.

struct bt_bap_bass_subgroup *subgroups
Pointer to array of subgroups.

struct bt_bap_broadcast_assistant_mod_src_param
#include <bap.h> Parameters for modifying a source.

Public Members

uint8_t src_id
Source ID of the receive state.

bool pa_sync
Whether to sync to periodic advertisements.

uint16_t pa_interval
Periodic advertising interval.

BT_BAP_PA_INTERVAL_UNKNOWN if unknown.

uint8_t num_subgroups
Number of subgroups.

struct bt_bap_bass_subgroup *subgroups
Pointer to array of subgroups.

group bt_bap_unicast_client

Functions

int bt_bap_unicast_group_create(struct bt_bap_unicast_group_param *param, struct
bt_bap_unicast_group **unicast_group)

Create audio unicast group.

Create a new audio unicast group with one or more audio streams as a unicast client.
Streams in a unicast group shall share the same interval, framing and latency (see
bt_audio_codec_qos).

Parameters
• param – [in] The unicast group create parameters.

• unicast_group – [out] Pointer to the unicast group created.

Returns
Zero on success or (negative) error code otherwise.
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int bt_bap_unicast_group_add_streams(struct bt_bap_unicast_group *unicast_group,
struct bt_bap_unicast_group_stream_pair_param
params[], size_t num_param)

Add streams to a unicast group as a unicast client.

This function can be used to add additional streams to a bt_bap_unicast_group.

This can be called at any time before any of the streams in the group has been started
(see bt_bap_stream_ops.started()). This can also be called after the streams have been
stopped (see bt_bap_stream_ops.stopped()).

Once a stream has been added to a unicast group, it cannot be removed. To remove
a stream from a group, the group must be deleted with bt_bap_unicast_group_delete(),
but this will require all streams in the group to be released first.

Parameters
• unicast_group – Pointer to the unicast group

• params – Array of stream parameters with streams being added to the
group.

• num_param – Number of parameters in params.

Returns
0 in case of success or negative value in case of error.

int bt_bap_unicast_group_delete(struct bt_bap_unicast_group *unicast_group)
Delete audio unicast group.

Delete a audio unicast group as a client. All streams in the group shall be in the idle or
configured state.

Parameters
• unicast_group – Pointer to the unicast group to delete

Returns
Zero on success or (negative) error code otherwise.

int bt_bap_unicast_client_register_cb(const struct bt_bap_unicast_client_cb *cb)
Register unicast client callbacks.

Only one callback structure can be registered, and attempting to registering more than
one will result in an error.

Parameters
• cb – Unicast client callback structure.

Returns
0 in case of success or negative value in case of error.

int bt_bap_unicast_client_discover(struct bt_conn *conn, enum bt_audio_dir dir)
Discover remote capabilities and endpoints.

This procedure is used by a client to discover remote capabilities and endpoints and
notifies via params callback.

Parameters
• conn – Connection object

• dir – The type of remote endpoints and capabilities to discover.

struct bt_bap_unicast_group_stream_param
#include <bap.h> Parameter struct for each stream in the unicast group.
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Public Members

struct bt_bap_stream *stream
Pointer to a stream object.

struct bt_audio_codec_qos *qos
The QoS settings for the stream object.

struct bt_bap_unicast_group_stream_pair_param
#include <bap.h> Parameter struct for the unicast group functions.

Parameter struct for the bt_bap_unicast_group_create() and
bt_bap_unicast_group_add_streams() functions.

Public Members

struct bt_bap_unicast_group_stream_param *rx_param
Pointer to a receiving stream parameters.

struct bt_bap_unicast_group_stream_param *tx_param
Pointer to a transmitting stream parameters.

struct bt_bap_unicast_group_param
#include <bap.h> Parameters for the creating unicast groups with
bt_bap_unicast_group_create()

Public Members

size_t params_count
The number of parameters in params.

struct bt_bap_unicast_group_stream_pair_param *params
Array of stream parameters.

uint8_t packing
Unicast Group packing mode.

BT_ISO_PACKING_SEQUENTIAL or BT_ISO_PACKING_INTERLEAVED.

Note

This is a recommendation to the controller, which the controller may ignore.

uint8_t c_to_p_ft
Central to Peripheral flush timeout.

The flush timeout in multiples of ISO_Interval for each payload sent from the Cen-
tral to Peripheral.

Value range from BT_ISO_FT_MIN to BT_ISO_FT_MAX
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uint8_t p_to_c_ft
Peripheral to Central flush timeout.

The flush timeout in multiples of ISO_Interval for each payload sent from the Pe-
ripheral to Central.

Value range from BT_ISO_FT_MIN to BT_ISO_FT_MAX.

uint16_t iso_interval
ISO interval.

Time between consecutive CIS anchor points.

Value range from BT_ISO_ISO_INTERVAL_MIN to BT_ISO_ISO_INTERVAL_MAX.

struct bt_bap_unicast_client_cb
#include <bap.h> Unicast Client callback structure.

Public Members

void (*location)(struct bt_conn *conn, enum bt_audio_dir dir, enum
bt_audio_location loc)

Remote Unicast Server Audio Locations.

This callback is called whenever the audio locations is read from the server or
otherwise notified to the client.

Param conn
Connection to the remote unicast server.

Param dir
Direction of the location.

Param loc
The location bitfield value.

Return
0 in case of success or negative value in case of error.

void (*available_contexts)(struct bt_conn *conn, enum bt_audio_context snk_ctx,
enum bt_audio_context src_ctx)

Remote Unicast Server Available Contexts.

This callback is called whenever the available contexts are read from the server
or otherwise notified to the client.

Param conn
Connection to the remote unicast server.

Param snk_ctx
The sink context bitfield value.

Param src_ctx
The source context bitfield value.

Return
0 in case of success or negative value in case of error.

void (*config)(struct bt_bap_stream *stream, enum bt_bap_ascs_rsp_code rsp_code,
enum bt_bap_ascs_reason reason)

Callback function for bt_bap_stream_config() and bt_bap_stream_reconfig().

Called when the codec configure operation is completed on the server.
Param stream

Stream the operation was performed on.
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Param rsp_code
Response code.

Param reason
Reason code.

void (*qos)(struct bt_bap_stream *stream, enum bt_bap_ascs_rsp_code rsp_code,
enum bt_bap_ascs_reason reason)

Callback function for bt_bap_stream_qos().

Called when the QoS configure operation is completed on the server. This will be
called for each stream in the group that was being QoS configured.

Param stream
Stream the operation was performed on. May be NULL if there is no
stream associated with the ASE ID sent by the server.

Param rsp_code
Response code.

Param reason
Reason code.

void (*enable)(struct bt_bap_stream *stream, enum bt_bap_ascs_rsp_code rsp_code,
enum bt_bap_ascs_reason reason)

Callback function for bt_bap_stream_enable().

Called when the enable operation is completed on the server.
Param stream

Stream the operation was performed on. May be NULL if there is no
stream associated with the ASE ID sent by the server.

Param rsp_code
Response code.

Param reason
Reason code.

void (*start)(struct bt_bap_stream *stream, enum bt_bap_ascs_rsp_code rsp_code,
enum bt_bap_ascs_reason reason)

Callback function for bt_bap_stream_start().

Called when the start operation is completed on the server. This will only be called
if the stream supplied to bt_bap_stream_start() is for a BT_AUDIO_DIR_SOURCE
endpoint.

Param stream
Stream the operation was performed on. May be NULL if there is no
stream associated with the ASE ID sent by the server.

Param rsp_code
Response code.

Param reason
Reason code.

void (*stop)(struct bt_bap_stream *stream, enum bt_bap_ascs_rsp_code rsp_code,
enum bt_bap_ascs_reason reason)

Callback function for bt_bap_stream_stop().

Called when the stop operation is completed on the server. This will only be called
if the stream supplied to bt_bap_stream_stop() is for aBT_AUDIO_DIR_SOURCE end-
point.

Param stream
Stream the operation was performed on. May be NULL if there is no
stream associated with the ASE ID sent by the server.
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Param rsp_code
Response code.

Param reason
Reason code.

void (*disable)(struct bt_bap_stream *stream, enum bt_bap_ascs_rsp_code rsp_code,
enum bt_bap_ascs_reason reason)

Callback function for bt_bap_stream_disable().

Called when the disable operation is completed on the server.
Param stream

Stream the operation was performed on. May be NULL if there is no
stream associated with the ASE ID sent by the server.

Param rsp_code
Response code.

Param reason
Reason code.

void (*metadata)(struct bt_bap_stream *stream, enum bt_bap_ascs_rsp_code rsp_code,
enum bt_bap_ascs_reason reason)

Callback function for bt_bap_stream_metadata().

Called when the metadata operation is completed on the server.
Param stream

Stream the operation was performed on. May be NULL if there is no
stream associated with the ASE ID sent by the server.

Param rsp_code
Response code.

Param reason
Reason code.

void (*release)(struct bt_bap_stream *stream, enum bt_bap_ascs_rsp_code rsp_code,
enum bt_bap_ascs_reason reason)

Callback function for bt_bap_stream_release().

Called when the release operation is completed on the server.
Param stream

Stream the operation was performed on. May be NULL if there is no
stream associated with the ASE ID sent by the server.

Param rsp_code
Response code.

Param reason
Reason code.

void (*pac_record)(struct bt_conn *conn, enum bt_audio_dir dir, const struct
bt_audio_codec_cap *codec_cap)

Remote Published Audio Capability (PAC) record discovered.

Called when a PAC record has been discovered as part of the discovery procedure.

The codec is only valid while in the callback, so the values must be stored by the
receiver if future use is wanted.

If discovery procedure has complete both codec and ep are set to NULL.
Param conn

Connection to the remote unicast server.
Param dir

The type of remote endpoints and capabilities discovered.
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Param codec_cap
Remote capabilities.

void (*endpoint)(struct bt_conn *conn, enum bt_audio_dir dir, struct bt_bap_ep *ep)
Remote Audio Stream Endpoint (ASE) discovered.

Called when an ASE has been discovered as part of the discovery procedure.

If discovery procedure has complete both codec and ep are set to NULL.
Param conn

Connection to the remote unicast server.
Param dir

The type of remote endpoints and capabilities discovered.
Param ep

Remote endpoint.

void (*discover)(struct bt_conn *conn, int err, enum bt_audio_dir dir)
BAP discovery callback function.

If discovery procedure has completed ep is set to NULL and err is 0.

If discovery procedure has complete both codec and ep are set to NULL.
Param conn

Connection to the remote unicast server.
Param err

Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param dir
The type of remote endpoints and capabilities discovered.

group bt_bap_unicast_server

Typedefs

typedef void (*bt_bap_ep_func_t)(struct bt_bap_ep *ep, void *user_data)
The callback function called for each endpoint.

Param ep
The structure object with endpoint info.

Param user_data
Data to pass to the function.

Functions

int bt_bap_unicast_server_register_cb(const struct bt_bap_unicast_server_cb *cb)
Register unicast server callbacks.

Only one callback structure can be registered, and attempting to registering more than
one will result in an error.

Parameters
• cb – Unicast server callback structure.
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Returns
0 in case of success or negative value in case of error.

int bt_bap_unicast_server_unregister_cb(const struct bt_bap_unicast_server_cb *cb)
Unregister unicast server callbacks.

May only unregister a callback structure that has previously been registered by
bt_bap_unicast_server_register_cb().

Parameters
• cb – Unicast server callback structure.

Returns
0 in case of success or negative value in case of error.

void bt_bap_unicast_server_foreach_ep(struct bt_conn *conn, bt_bap_ep_func_t func,
void *user_data)

Iterate through all endpoints of the given connection.

Parameters
• conn – Connection object

• func – Function to call for each endpoint.

• user_data – Data to pass to the callback function.

int bt_bap_unicast_server_config_ase(struct bt_conn *conn, struct bt_bap_stream
*stream, struct bt_audio_codec_cfg *codec_cfg,
const struct bt_audio_codec_qos_pref *qos_pref)

Initialize and configure a new ASE.

Parameters
• conn – Connection object

• stream – Configured stream object to be attached to the ASE

• codec_cfg – Codec configuration

• qos_pref – Audio Stream Quality of Service Preference

Returns
0 in case of success or negative value in case of error.

struct bt_bap_unicast_server_cb
#include <bap.h> Unicast Server callback structure.

Public Members

int (*config)(struct bt_conn *conn, const struct bt_bap_ep *ep, enum bt_audio_dir dir,
const struct bt_audio_codec_cfg *codec_cfg, struct bt_bap_stream **stream, struct
bt_audio_codec_qos_pref *const pref, struct bt_bap_ascs_rsp *rsp)

Endpoint config request callback.

Config callback is called whenever an endpoint is requested to be configured
Param conn
[in] Connection object.

Param ep
[in] Local Audio Endpoint being configured.

Param dir
[in] Direction of the endpoint.
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Param codec_cfg
[in] Codec configuration.

Param stream
[out] Pointer to stream that will be configured for the endpoint.

Param pref
[out] Pointer to a QoS preference object that shall be populated with val-
ues. Invalid values will reject the codec configuration request.

Param rsp
[out]Object for the ASE operation response. Only used if the return value
is non-zero.

Return
0 in case of success or negative value in case of error.

int (*reconfig)(struct bt_bap_stream *stream, enum bt_audio_dir dir, const struct
bt_audio_codec_cfg *codec_cfg, struct bt_audio_codec_qos_pref *const pref, struct
bt_bap_ascs_rsp *rsp)

Stream reconfig request callback.

Reconfig callback is called whenever an Audio Stream needs to be reconfigured
with different codec configuration.

Param stream
[in] Stream object being reconfigured.

Param dir
[in] Direction of the endpoint.

Param codec_cfg
[in] Codec configuration.

Param pref
[out] Pointer to a QoS preference object that shall be populated with val-
ues. Invalid values will reject the codec configuration request.

Param rsp
[out]Object for the ASE operation response. Only used if the return value
is non-zero.

Return
0 in case of success or negative value in case of error.

int (*qos)(struct bt_bap_stream *stream, const struct bt_audio_codec_qos *qos, struct
bt_bap_ascs_rsp *rsp)

Stream QoS request callback.

QoS callback is called whenever an Audio Stream Quality of Service needs to be
configured.

Param stream
[in] Stream object being reconfigured.

Param qos
[in] Quality of Service configuration.

Param rsp
[out]Object for the ASE operation response. Only used if the return value
is non-zero.

Return
0 in case of success or negative value in case of error.

int (*enable)(struct bt_bap_stream *stream, const uint8_t meta[], size_t meta_len,
struct bt_bap_ascs_rsp *rsp)

Stream Enable request callback.

Enable callback is called whenever an Audio Stream is requested to be enabled to
stream.
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Param stream
[in] Stream object being enabled.

Parammeta
[in] Metadata entries.

Parammeta_len
[in] Length of metadata.

Param rsp
[out]Object for the ASE operation response. Only used if the return value
is non-zero.

Return
0 in case of success or negative value in case of error.

int (*start)(struct bt_bap_stream *stream, struct bt_bap_ascs_rsp *rsp)
Stream Start request callback.

Start callback is called whenever an Audio Stream is requested to start streaming.
Param stream
[in] Stream object.

Param rsp
[out]Object for the ASE operation response. Only used if the return value
is non-zero.

Return
0 in case of success or negative value in case of error.

int (*metadata)(struct bt_bap_stream *stream, const uint8_t meta[], size_t meta_len,
struct bt_bap_ascs_rsp *rsp)

Stream Metadata update request callback.

Metadata callback is called whenever an Audio Stream is requested to update its
metadata.

Param stream
[in] Stream object.

Parammeta
[in] Metadata entries.

Parammeta_len
[in] Length of metadata.

Param rsp
[out]Object for the ASE operation response. Only used if the return value
is non-zero.

Return
0 in case of success or negative value in case of error.

int (*disable)(struct bt_bap_stream *stream, struct bt_bap_ascs_rsp *rsp)
Stream Disable request callback.

Disable callback is called whenever an Audio Stream is requested to disable the
stream.

Param stream
[in] Stream object being disabled.

Param rsp
[out]Object for the ASE operation response. Only used if the return value
is non-zero.

Return
0 in case of success or negative value in case of error.

int (*stop)(struct bt_bap_stream *stream, struct bt_bap_ascs_rsp *rsp)
Stream Stop callback.
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Stop callback is called whenever an Audio Stream is requested to stop streaming.
Param stream
[in] Stream object.

Param rsp
[out]Object for the ASE operation response. Only used if the return value
is non-zero.

Return
0 in case of success or negative value in case of error.

int (*release)(struct bt_bap_stream *stream, struct bt_bap_ascs_rsp *rsp)
Stream release callback.

Release callback is called whenever a new Audio Stream needs to be released and
thus deallocated.

Param stream
[in] Stream object.

Param rsp
[out]Object for the ASE operation response. Only used if the return value
is non-zero.

Return
0 in case of success or negative value in case of error.

group bt_bap_broadcast
BAP Broadcast APIs.

Functions

const struct bt_bap_base *bt_bap_base_get_base_from_ad(const struct bt_data *ad)
Generate a pointer to a BASE from periodic advertising data.

Parameters
• ad – The periodic advertising data

Return values
• NULL – if the data does not contain a BASE

• Pointer – to a bt_bap_base structure

int bt_bap_base_get_size(const struct bt_bap_base *base)
Get the size of a BASE.

Parameters
• base – The BASE pointer

Return values
• -EINVAL – if arguments are invalid

• The – size of the BASE

int bt_bap_base_get_pres_delay(const struct bt_bap_base *base)
Get the presentation delay value of a BASE.

Parameters
• base – The BASE pointer

Return values
• -EINVAL – if arguments are invalid
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• The – 24-bit presentation delay value

int bt_bap_base_get_subgroup_count(const struct bt_bap_base *base)
Get the subgroup count of a BASE.

Parameters
• base – The BASE pointer

Return values
• -EINVAL – if arguments are invalid

• The – 8-bit subgroup count value

int bt_bap_base_get_bis_indexes(const struct bt_bap_base *base, uint32_t *bis_indexes)
Get all BIS indexes of a BASE.

Parameters
• base – [in] The BASE pointer

• bis_indexes – [out] 32-bit BIS index bitfield that will be populated

Return values
• -EINVAL – if arguments are invalid

• 0 – on success

int bt_bap_base_foreach_subgroup(const struct bt_bap_base *base, bool (*func)(const
struct bt_bap_base_subgroup *subgroup, void
*user_data), void *user_data)

Iterate on all subgroups in the BASE.

Parameters
• base – The BASE pointer

• func – Callback function. Return true to continue iterating, or false to
stop.

• user_data – Userdata supplied to func
Return values

• -EINVAL – if arguments are invalid

• -ECANCELED – if iterating over the subgroups stopped prematurely by
func

• 0 – if all subgroups were iterated

int bt_bap_base_get_subgroup_codec_id(const struct bt_bap_base_subgroup *subgroup,
struct bt_bap_base_codec_id *codec_id)

Get the codec ID of a subgroup.

Parameters
• subgroup – [in] The subgroup pointer

• codec_id – [out] Pointer to the struct where the results are placed

Return values
• -EINVAL – if arguments are invalid

• 0 – on success
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int bt_bap_base_get_subgroup_codec_data(const struct bt_bap_base_subgroup
*subgroup, uint8_t **data)

Get the codec configuration data of a subgroup.

Parameters
• subgroup – [in] The subgroup pointer

• data – [out] Pointer that will point to the resulting codec configuration
data

Return values
• -EINVAL – if arguments are invalid

• 0 – on success

int bt_bap_base_get_subgroup_codec_meta(const struct bt_bap_base_subgroup
*subgroup, uint8_t **meta)

Get the codec metadata of a subgroup.

Parameters
• subgroup – [in] The subgroup pointer

• meta – [out] Pointer that will point to the resulting codec metadata

Return values
• -EINVAL – if arguments are invalid

• 0 – on success

int bt_bap_base_subgroup_codec_to_codec_cfg(const struct bt_bap_base_subgroup
*subgroup, struct bt_audio_codec_cfg
*codec_cfg)

Store subgroup codec data in a Codec config parsing APIs.

Parameters
• subgroup – [in] The subgroup pointer

• codec_cfg – [out] Pointer to the struct where the results are placed

Return values
• -EINVAL – if arguments are invalid

• -ENOMEM – if the codec_cfg cannot store the subgroup codec data

• 0 – on success

int bt_bap_base_get_subgroup_bis_count(const struct bt_bap_base_subgroup
*subgroup)

Get the BIS count of a subgroup.

Parameters
• subgroup – The subgroup pointer

Return values
• -EINVAL – if arguments are invalid

• The – 8-bit BIS count value

int bt_bap_base_subgroup_get_bis_indexes(const struct bt_bap_base_subgroup
*subgroup, uint32_t *bis_indexes)

Get all BIS indexes of a subgroup.

Parameters
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• subgroup – [in] The subgroup pointer

• bis_indexes – [out] 32-bit BIS index bitfield that will be populated

Return values
• -EINVAL – if arguments are invalid

• 0 – on success

int bt_bap_base_subgroup_foreach_bis(const struct bt_bap_base_subgroup *subgroup,
bool (*func)(const struct
bt_bap_base_subgroup_bis *bis, void *user_data),
void *user_data)

Iterate on all BIS in the subgroup.

Parameters
• subgroup – The subgroup pointer

• func – Callback function. Return true to continue iterating, or false to
stop.

• user_data – Userdata supplied to func
Return values

• -EINVAL – if arguments are invalid

• -ECANCELED – if iterating over the subgroups stopped prematurely by
func

• 0 – if all BIS were iterated

int bt_bap_base_subgroup_bis_codec_to_codec_cfg(const struct
bt_bap_base_subgroup_bis *bis,
struct bt_audio_codec_cfg
*codec_cfg)

Store BIS codec configuration data in a Codec config parsing APIs.

This only sets the Codec config parsing APIs data and Codec config parsing
APIs data_len, but is useful to use the BIS codec configuration data with the
bt_audio_codec_cfg_* functions.

Parameters
• bis – [in] The BIS pointer

• codec_cfg – [out] Pointer to the struct where the results are placed

Return values
• -EINVAL – if arguments are invalid

• -ENOMEM – if the codec_cfg cannot store the subgroup codec data

• 0 – on success

struct bt_bap_base_codec_id
#include <bap.h> Codec ID structure for a Broadcast Audio Source Endpoint (BASE)

Public Members

uint8_t id
Codec ID.
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uint16_t cid
Codec Company ID.

uint16_t vid
Codec Company Vendor ID.

struct bt_bap_base_subgroup_bis
#include <bap.h> BIS structure for each BIS in a Broadcast Audio Source Endpoint
(BASE) subgroup.

Public Members

uint8_t index
Unique index of the BIS.

uint8_t data_len
Codec Specific Data length.

uint8_t *data
Codec Specific Data.

group bt_bap_broadcast_sink
BAP Broadcast Sink APIs.

Functions

int bt_bap_broadcast_sink_register_cb(struct bt_bap_broadcast_sink_cb *cb)
Register Broadcast sink callbacks.

It is possible to register multiple struct of callbacks, but a single struct can only be
registered once. Registering the same callback multiple times is undefined behavior
and may break the stack.

Parameters
• cb – Broadcast sink callback structure.

Return values
• 0 – in case of success

• -EINVAL – if cb is NULL

int bt_bap_broadcast_sink_create(struct bt_le_per_adv_sync *pa_sync, uint32_t
broadcast_id, struct bt_bap_broadcast_sink **sink)

Create a Broadcast Sink from a periodic advertising sync.

This should only be done after verifying that the periodic advertising sync is from a
Broadcast Source.

The created Broadcast Sink will need to be supplied to bt_bap_broadcast_sink_sync() in
order to synchronize to the broadcast audio.

bt_bap_broadcast_sink_cb.pa_synced() will be called with the Broadcast Sink object
created if this is successful.
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Parameters
• pa_sync – Pointer to the periodic advertising sync object.

• broadcast_id – 24-bit broadcast ID.

• sink – [out] Pointer to the Broadcast Sink created.

Returns
0 in case of success or errno value in case of error.

int bt_bap_broadcast_sink_sync(struct bt_bap_broadcast_sink *sink, uint32_t
indexes_bitfield, struct bt_bap_stream *streams[], const
uint8_t broadcast_code[16])

Sync to a broadcaster’s audio.

Example: The string “Broadcast Code” shall be [42 72 6F 61 64 63 61 73 74 20 43 6F 64
65 00 00]

Parameters
• sink – Pointer to the sink object from the base_recv callback.

• indexes_bitfield – Bitfield of the BIS index to sync to. To sync to e.g. BIS
index 1 and 2, this should have the value of BIT(1) | BIT(2).

• streams – Stream object pointers to be used for the receiver. If multiple
BIS indexes shall be synchronized, multiple streams shall be provided.

• broadcast_code – The 16-octet broadcast code. Shall be supplied if the
broadcast is encrypted (see bt_bap_broadcast_sink_cb::syncable). If the
value is a string or a the value is less than 16 octets, the remaining octets
shall be 0.

Returns
0 in case of success or negative value in case of error.

int bt_bap_broadcast_sink_stop(struct bt_bap_broadcast_sink *sink)
Stop audio broadcast sink.

Stop an audio broadcast sink. The broadcast sink will stop receiving BIGInfo, and audio
data can no longer be streamed.

Parameters
• sink – Pointer to the broadcast sink

Returns
Zero on success or (negative) error code otherwise.

int bt_bap_broadcast_sink_delete(struct bt_bap_broadcast_sink *sink)
Release a broadcast sink.

Once a broadcast sink has been allocated after the pa_synced callback, it can be deleted
using this function. If the sink has synchronized to any broadcast audio streams, these
must first be stopped using bt_bap_stream_stop.

Parameters
• sink – Pointer to the sink object to delete.

Returns
0 in case of success or negative value in case of error.

struct bt_bap_broadcast_sink_cb
#include <bap.h> Broadcast Audio Sink callback structure.
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Public Members

void (*base_recv)(struct bt_bap_broadcast_sink *sink, const struct bt_bap_base
*base, size_t base_size)

Broadcast Audio Source Endpoint (BASE) received.

Callback for when we receive a BASE from a broadcaster after syncing to the broad-
caster’s periodic advertising.

Param sink
Pointer to the sink structure.

Param base
Broadcast Audio Source Endpoint (BASE).

Param base_size
Size of the base

void (*syncable)(struct bt_bap_broadcast_sink *sink, const struct bt_iso_biginfo
*biginfo)

Broadcast sink is syncable.

Called whenever a broadcast sink is not synchronized to audio, but the audio is
synchronizable. This is inferred when a BIGInfo report is received.

Once this callback has been called, it is possible to call
bt_bap_broadcast_sink_sync() to synchronize to the audio stream(s).

Param sink
Pointer to the sink structure.

Param biginfo
The BIGInfo report.

group bt_bap_broadcast_source
BAP Broadcast Source APIs.

Functions

int bt_bap_broadcast_source_create(struct bt_bap_broadcast_source_param *param,
struct bt_bap_broadcast_source **source)

Create audio broadcast source.

Create a new audio broadcast source with one or more audio streams.

The broadcast source will be visible for scanners once this has been called, and the
device will advertise audio announcements.

No audio data can be sent until bt_bap_broadcast_source_start() has been called and
no audio information (BIGInfo) will be visible to scanners (see bt_le_per_adv_sync_cb).

Parameters
• param – [in] Pointer to parameters used to create the broadcast source.

• source – [out] Pointer to the broadcast source created

Returns
Zero on success or (negative) error code otherwise.

int bt_bap_broadcast_source_reconfig(struct bt_bap_broadcast_source *source, struct
bt_bap_broadcast_source_param *param)

Reconfigure audio broadcast source.
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Reconfigure an audio broadcast source with a new codec and codec quality of service
parameters. This can only be done when the source is stopped.

Since this may modify the Broadcast Audio Source Endpoint (BASE),
bt_bap_broadcast_source_get_base() should be called after this to get the new BASE
information.

If the param.params_count is smaller than the number of subgroups that have been
created in the Broadcast Source, only the first param.params_count subgroups are up-
dated. If a stream exist in a subgroup not part of param, then that stream is left as is
(i.e. it is not removed; the only way to remove a stream from a Broadcast Source is to
recreate the Broadcast Source).

Parameters
• source – Pointer to the broadcast source

• param – Pointer to parameters used to reconfigure the broadcast source.

Returns
Zero on success or (negative) error code otherwise.

int bt_bap_broadcast_source_update_metadata(struct bt_bap_broadcast_source *source,
const uint8_t meta[], size_t meta_len)

Modify the metadata of an audio broadcast source.

Modify the metadata an audio broadcast source. This can only be done when
the source is started. To update the metadata in the stopped state, use
bt_bap_broadcast_source_reconfig().

Parameters
• source – Pointer to the broadcast source.

• meta – Metadata.

• meta_len – Length of metadata.

Returns
Zero on success or (negative) error code otherwise.

int bt_bap_broadcast_source_start(struct bt_bap_broadcast_source *source, struct
bt_le_ext_adv *adv)

Start audio broadcast source.

Start an audio broadcast source with one or more audio streams. The broadcast source
will start advertising BIGInfo, and audio data can be streamed.

Parameters
• source – Pointer to the broadcast source

• adv – Pointer to an extended advertising set with periodic advertising
configured.

Returns
Zero on success or (negative) error code otherwise.

int bt_bap_broadcast_source_stop(struct bt_bap_broadcast_source *source)
Stop audio broadcast source.

Stop an audio broadcast source. The broadcast source will stop advertising BIGInfo,
and audio data can no longer be streamed.

Parameters
• source – Pointer to the broadcast source
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Returns
Zero on success or (negative) error code otherwise.

int bt_bap_broadcast_source_delete(struct bt_bap_broadcast_source *source)
Delete audio broadcast source.

Delete an audio broadcast source. The broadcast source will stop advertising entirely,
and the source can no longer be used.

Parameters
• source – Pointer to the broadcast source

Returns
Zero on success or (negative) error code otherwise.

int bt_bap_broadcast_source_get_id(struct bt_bap_broadcast_source *source, uint32_t
*const broadcast_id)

Get the broadcast ID of a broadcast source.

This will return the 3-octet broadcast ID that should be advertised in the extended
advertising data with BT_UUID_BROADCAST_AUDIO_VAL as BT_DATA_SVC_DATA16.

See table 3.14 in the Basic Audio Profile v1.0.1 for the structure.

Parameters
• source – [in] Pointer to the broadcast source.

• broadcast_id – [out] Pointer to the 3-octet broadcast ID.

Returns
Zero on success or (negative) error code otherwise.

int bt_bap_broadcast_source_get_base(struct bt_bap_broadcast_source *source, struct
net_buf_simple *base_buf)

Get the Broadcast Audio Stream Endpoint of a broadcast source.

This will encode the BASE of a broadcast source into a buffer, that can be used for
advertisement. The encoded BASE will thus be encoded as little-endian. The BASE
shall be put into the periodic advertising data (see bt_le_per_adv_set_data()).

See table 3.15 in the Basic Audio Profile v1.0.1 for the structure.

Parameters
• source – Pointer to the broadcast source.

• base_buf – Pointer to a buffer where the BASE will be inserted.

Returns
Zero on success or (negative) error code otherwise.

struct bt_bap_broadcast_source_stream_param
#include <bap.h> Broadcast Source stream parameters.

Public Members

struct bt_bap_stream *stream
Audio stream.
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size_t data_len
The number of elements in the data array.

The BIS specific data may be omitted and this set to 0.

uint8_t *data
BIS Codec Specific Configuration.

struct bt_bap_broadcast_source_subgroup_param
#include <bap.h> Broadcast Source subgroup parameters.

Public Members

size_t params_count
The number of parameters in stream_params.

struct bt_bap_broadcast_source_stream_param *params
Array of stream parameters.

struct bt_audio_codec_cfg *codec_cfg
Subgroup Codec configuration.

struct bt_bap_broadcast_source_param
#include <bap.h> Broadcast Source create parameters.

Public Members

size_t params_count
The number of parameters in subgroup_params.

struct bt_bap_broadcast_source_subgroup_param *params
Array of stream parameters.

struct bt_audio_codec_qos *qos
Quality of Service configuration.

uint8_t packing
Broadcast Source packing mode.

BT_ISO_PACKING_SEQUENTIAL or BT_ISO_PACKING_INTERLEAVED.

Note

This is a recommendation to the controller, which the controller may ignore.

bool encryption
Whether or not to encrypt the streams.
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uint8_t broadcast_code[BT_AUDIO_BROADCAST_CODE_SIZE]
Broadcast code.

If the value is a string or a the value is less than 16 octets, the remaining octets
shall be 0.

Example: The string “Broadcast Code” shall be [42 72 6F 61 64 63 61 73 74 20 43 6F
64 65 00 00]

uint8_t irc
Immediate Repetition Count.

The number of times the scheduled payloads are transmitted in a given event.

Value range from BT_ISO_IRC_MIN to BT_ISO_IRC_MAX.

uint8_t pto
Pre-transmission offset.

Offset used for pre-transmissions.

Value range from BT_ISO_PTO_MIN to BT_ISO_PTO_MAX.

uint16_t iso_interval
ISO interval.

Time between consecutive BIS anchor points.

Value range from BT_ISO_ISO_INTERVAL_MIN to BT_ISO_ISO_INTERVAL_MAX.

Common Audio Profile

Related code samples

Bluetooth: Common Audio Profile Acceptor
CAP Acceptor sample that advertises audio availability to CAP Initiators.

Bluetooth: Common Audio Profile Initiator
CAP Initiator sample that connects to CAP Acceptors and setup unicast audio streaming,
or broadcast audio streams.

API Reference

group bt_cap
Common Audio Profile (CAP)

Common Audio Profile (CAP) provides procedures to start, update, and stop unicast and
broadcast Audio Streams on individual or groups of devices using procedures in the Basic
Audio Profile (BAP). This profile also provides procedures to control volume and device
input on groups of devices using procedures in the Volume Control Profile (VCP) and the
Microphone Control Profile (MICP). This profile specification also refers to the Common
Audio Service (CAS).

Since
3.2
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Version
0.8.0

Enums

enum bt_cap_set_type
Type of CAP set.

Values:

enumerator BT_CAP_SET_TYPE_AD_HOC
The set is an ad-hoc set.

enumerator BT_CAP_SET_TYPE_CSIP
The set is a CSIP Coordinated Set.

Functions

int bt_cap_acceptor_register(const struct bt_csip_set_member_register_param *param,
struct bt_csip_set_member_svc_inst **svc_inst)

Register the Common Audio Service.

This will register and enable the service and make it discoverable by clients. This will
also register a Coordinated Set Identification Service instance.

This shall only be done as a server, and requires BT_CAP_ACCEPTOR_SET_MEMBER . If
BT_CAP_ACCEPTOR_SET_MEMBER is not enabled, the Common Audio Service will by stati-
cally registered.

Parameters
• param – [in] Coordinated Set Identification Service register parameters.

• svc_inst – [out] Pointer to the registered Coordinated Set Identification
Service.

Returns
0 if success, errno on failure.

int bt_cap_initiator_unicast_discover(struct bt_conn *conn)
Discovers audio support on a remote device.

This will discover the Common Audio Service (CAS) on the remote device, to verify if
the remote device supports the Common Audio Profile.

Parameters
• conn – Connection to a remote server.

Return values
• 0 – Success

• -EINVAL – conn is NULL

• -ENOTCONN – conn is not connected

• -ENOMEM – Could not allocated memory for the request
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void bt_cap_stream_ops_register(struct bt_cap_stream *stream, struct
bt_bap_stream_ops *ops)

Register Audio operations for a Common Audio Profile stream.

Register Audio operations for a stream.

Parameters
• stream – Stream object.

• ops – Stream operations structure.

int bt_cap_stream_send(struct bt_cap_stream *stream, struct net_buf *buf, uint16_t
seq_num)

Send data to Common Audio Profile stream without timestamp.

See bt_bap_stream_send() for more information

Note

Support for sending must be supported, determined by CONFIG_BT_AUDIO_TX .

Parameters
• stream – Stream object.

• buf – Buffer containing data to be sent.

• seq_num – Packet Sequence number. This value shall be incremented for
each call to this function and at least once per SDU interval for a specific
channel.

Return values
• -EINVAL – if stream object is NULL

• Any – return value from bt_bap_stream_send()

int bt_cap_stream_send_ts(struct bt_cap_stream *stream, struct net_buf *buf, uint16_t
seq_num, uint32_t ts)

Send data to Common Audio Profile stream with timestamp.

See bt_bap_stream_send() for more information

Note

Support for sending must be supported, determined by CONFIG_BT_AUDIO_TX .

Parameters
• stream – Stream object.

• buf – Buffer containing data to be sent.

• seq_num – Packet Sequence number. This value shall be incremented for
each call to this function and at least once per SDU interval for a specific
channel.

• ts – Timestamp of the SDU in microseconds (us). This value can be used
to transmit multiple SDUs in the same SDU interval in a CIG or BIG.

Return values
• -EINVAL – if stream object is NULL
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• Any – return value from bt_bap_stream_send()

int bt_cap_stream_get_tx_sync(struct bt_cap_stream *stream, struct bt_iso_tx_info *info)
Get ISO transmission timing info for a Common Audio Profile stream.

See bt_bap_stream_get_tx_sync() for more information

Note

Support for sending must be supported, determined by CONFIG_BT_AUDIO_TX .

Parameters
• stream – [in] Stream object.

• info – [out] Transmit info object.

Return values
• -EINVAL – if stream object is NULL

• Any – return value from bt_bap_stream_get_tx_sync()

int bt_cap_initiator_register_cb(const struct bt_cap_initiator_cb *cb)
Register Common Audio Profile Initiator callbacks.

Parameters
• cb – The callback structure. Shall remain static.

Returns
0 on success or negative error value on failure.

int bt_cap_initiator_unregister_cb(const struct bt_cap_initiator_cb *cb)
Unregister Common Audio Profile Initiator callbacks.

Parameters
• cb – The callback structure that was previously registered.

Return values
• 0 – Success

• -EINVAL – cb is NULL or cb was not registered

int bt_cap_initiator_unicast_audio_start(const struct
bt_cap_unicast_audio_start_param *param)

Setup and start unicast audio streams for a set of devices.

The result of this operation is that the streams in param will be initialized and will be
usable for streaming audio data. The unicast_group value can be used to update and
stop the streams.

Note

CONFIG_BT_CAP_INITIATOR and CONFIG_BT_BAP_UNICAST_CLIENT must be enabled
for this function to be enabled.

Parameters
• param – Parameters to start the audio streams.
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Returns
0 on success or negative error value on failure.

int bt_cap_initiator_unicast_audio_update(const struct
bt_cap_unicast_audio_update_param
*param)

Update unicast audio streams.

This will update the metadata of one or more streams.

Note

CONFIG_BT_CAP_INITIATOR and CONFIG_BT_BAP_UNICAST_CLIENT must be enabled
for this function to be enabled.

Parameters
• param – Update parameters.

Returns
0 on success or negative error value on failure.

int bt_cap_initiator_unicast_audio_stop(const struct
bt_cap_unicast_audio_stop_param *param)

Stop unicast audio streams.

This will stop one or more streams.

Note

CONFIG_BT_CAP_INITIATOR and CONFIG_BT_BAP_UNICAST_CLIENT must be enabled
for this function to be enabled.

Parameters
• param – Stop parameters.

Returns
0 on success or negative error value on failure.

int bt_cap_initiator_unicast_audio_cancel(void)
Cancel any current Common Audio Profile procedure.

This will stop the current procedure from continuing and making it possible to run a
new Common Audio Profile procedure.

It is recommended to do this if any existing procedure takes longer time than expected,
which could indicate a missing response from the Common Audio Profile Acceptor.

This does not send any requests to any Common Audio Profile Acceptors involved with
the current procedure, and thus notifications from the Common Audio Profile Accep-
tors may arrive after this has been called. It is thus recommended to either only use
this if a procedure has stalled, or wait a short while before starting any new Com-
mon Audio Profile procedure after this has been called to avoid getting notifications
from the cancelled procedure. The wait time depends on the connection interval, the
number of devices in the previous procedure and the behavior of the Common Audio
Profile Acceptors.

The respective callbacks of the procedure will be called as part of this with the connec-
tion pointer set to 0 and the err value set to -ECANCELED.
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Return values
• 0 – on success

• -EALREADY – if no procedure is active

int bt_cap_initiator_broadcast_audio_create(const struct
bt_cap_initiator_broadcast_create_param
*param, struct bt_cap_broadcast_source
**broadcast_source)

Create a Common Audio Profile broadcast source.

Create a new audio broadcast source with one or more audio streams.

Note

CONFIG_BT_CAP_INITIATOR and CONFIG_BT_BAP_BROADCAST_SOURCE must be enabled
for this function to be enabled.

Parameters
• param – [in] Parameters to start the audio streams.

• broadcast_source – [out] Pointer to the broadcast source created.

Returns
0 on success or negative error value on failure.

int bt_cap_initiator_broadcast_audio_start(struct bt_cap_broadcast_source
*broadcast_source, struct bt_le_ext_adv
*adv)

Start Common Audio Profile broadcast source.

The broadcast source will be visible for scanners once this has been called, and the
device will advertise audio announcements.

This will allow the streams in the broadcast source to send audio by calling
bt_bap_stream_send().

Note

CONFIG_BT_CAP_INITIATOR and CONFIG_BT_BAP_BROADCAST_SOURCE must be enabled
for this function to be enabled.

Parameters
• broadcast_source – Pointer to the broadcast source.

• adv – Pointer to an extended advertising set with periodic advertising
configured.

Returns
0 on success or negative error value on failure.

int bt_cap_initiator_broadcast_audio_update(struct bt_cap_broadcast_source
*broadcast_source, const uint8_t meta[],
size_t meta_len)

Update broadcast audio streams for a Common Audio Profile broadcast source.
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Note

CONFIG_BT_CAP_INITIATOR and CONFIG_BT_BAP_BROADCAST_SOURCE must be enabled
for this function to be enabled.

Parameters
• broadcast_source – The broadcast source to update.

• meta – The new metadata. The metadata shall contain a list of CCIDs as
well as a non-0 context bitfield.

• meta_len – The length of meta.

Returns
0 on success or negative error value on failure.

int bt_cap_initiator_broadcast_audio_stop(struct bt_cap_broadcast_source
*broadcast_source)

Stop broadcast audio streams for a Common Audio Profile broadcast source.

Note

CONFIG_BT_CAP_INITIATOR and CONFIG_BT_BAP_BROADCAST_SOURCE must be enabled
for this function to be enabled.

Parameters
• broadcast_source – The broadcast source to stop. The audio streams in

this will be stopped and reset.

Returns
0 on success or negative error value on failure.

int bt_cap_initiator_broadcast_audio_delete(struct bt_cap_broadcast_source
*broadcast_source)

Delete Common Audio Profile broadcast source.

This can only be done after the broadcast source has been stopped by call-
ing bt_cap_initiator_broadcast_audio_stop() and after the bt_bap_stream_ops.stopped()
callback has been called for all streams in the broadcast source.

Note

CONFIG_BT_CAP_INITIATOR and CONFIG_BT_BAP_BROADCAST_SOURCE must be enabled
for this function to be enabled.

Parameters
• broadcast_source – The broadcast source to delete. The broad-
cast_source will be invalidated.

Returns
0 on success or negative error value on failure.

int bt_cap_initiator_broadcast_get_id(const struct bt_cap_broadcast_source
*broadcast_source, uint32_t *const
broadcast_id)
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Get the broadcast ID of a Common Audio Profile broadcast source.

This will return the 3-octet broadcast ID that should be advertised in the extended
advertising data with BT_UUID_BROADCAST_AUDIO_VAL as BT_DATA_SVC_DATA16.

See table 3.14 in the Basic Audio Profile v1.0.1 for the structure.

Parameters
• broadcast_source – [in] Pointer to the broadcast source.

• broadcast_id – [out] Pointer to the 3-octet broadcast ID.

Returns
int 0 if on success, errno on error.

int bt_cap_initiator_broadcast_get_base(struct bt_cap_broadcast_source
*broadcast_source, struct net_buf_simple
*base_buf)

Get the Broadcast Audio Stream Endpoint of a Common Audio Profile broadcast source.

This will encode the BASE of a broadcast source into a buffer, that can be used for
advertisement. The encoded BASE will thus be encoded as little-endian. The BASE
shall be put into the periodic advertising data (see bt_le_per_adv_set_data()).

See table 3.15 in the Basic Audio Profile v1.0.1 for the structure.

Parameters
• broadcast_source – Pointer to the broadcast source.

• base_buf – Pointer to a buffer where the BASE will be inserted.

Returns
int 0 if on success, errno on error.

int bt_cap_initiator_unicast_to_broadcast(const struct
bt_cap_unicast_to_broadcast_param
*param, struct bt_cap_broadcast_source
**source)

Hands over the data streams in a unicast group to a broadcast source.

The streams in the unicast group will be stopped and the unicast group will be deleted.
This can only be done for source streams.

Note

CONFIG_BT_CAP_INITIATOR , CONFIG_BT_BAP_UNICAST_CLIENT and CON-
FIG_BT_BAP_BROADCAST_SOURCE must be enabled for this function to be enabled.

Parameters
• param – The parameters for the handover.

• source – The resulting broadcast source.

Returns
0 on success or negative error value on failure.

int bt_cap_initiator_broadcast_to_unicast(const struct
bt_cap_broadcast_to_unicast_param
*param, struct bt_bap_unicast_group
**unicast_group)
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Hands over the data streams in a broadcast source to a unicast group.

The streams in the broadcast source will be stopped and the broadcast source will be
deleted.

Note

CONFIG_BT_CAP_INITIATOR , CONFIG_BT_BAP_UNICAST_CLIENT and CON-
FIG_BT_BAP_BROADCAST_SOURCE must be enabled for this function to be enabled.

Parameters
• param – [in] The parameters for the handover.

• unicast_group – [out] The resulting broadcast source.

Returns
0 on success or negative error value on failure.

int bt_cap_commander_register_cb(const struct bt_cap_commander_cb *cb)
Register Common Audio Profile Commander callbacks.

Parameters
• cb – The callback structure. Shall remain static.

Return values
• 0 – Success

• -EINVAL – cb is NULL

• -EALREADY – Callbacks are already registered

int bt_cap_commander_unregister_cb(const struct bt_cap_commander_cb *cb)
Unregister Common Audio Profile Commander callbacks.

Parameters
• cb – The callback structure that was previously registered.

Return values
• 0 – Success

• -EINVAL – cb is NULL or cb was not registered

int bt_cap_commander_discover(struct bt_conn *conn)
Discovers audio support on a remote device.

This will discover the Common Audio Service (CAS) on the remote device, to verify if
the remote device supports the Common Audio Profile.

Note

CONFIG_BT_CAP_COMMANDER must be enabled for this function. If
CONFIG_BT_CAP_INITIATOR is also enabled, it does not matter if
bt_cap_commander_discover() or bt_cap_initiator_unicast_discover() is used.

Parameters
• conn – Connection to a remote server.

Return values
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• 0 – Success

• -EINVAL – conn is NULL

• -ENOTCONN – conn is not connected

• -ENOMEM – Could not allocated memory for the request

• -EBUSY – Already doing discovery for conn

int bt_cap_commander_cancel(void)
Cancel any current Common Audio Profile commander procedure.

This will stop the current procedure from continuing and making it possible to run a
new Common Audio Profile procedure.

It is recommended to do this if any existing procedure takes longer time than expected,
which could indicate a missing response from the Common Audio Profile Acceptor.

This does not send any requests to any Common Audio Profile Acceptors involved with
the current procedure, and thus notifications from the Common Audio Profile Accep-
tors may arrive after this has been called. It is thus recommended to either only use
this if a procedure has stalled, or wait a short while before starting any new Com-
mon Audio Profile procedure after this has been called to avoid getting notifications
from the cancelled procedure. The wait time depends on the connection interval, the
number of devices in the previous procedure and the behavior of the Common Audio
Profile Acceptors.

The respective callbacks of the procedure will be called as part of this with the connec-
tion pointer set to NULL and the err value set to -ECANCELED.

Return values
• 0 – on success

• -EALREADY – if no procedure is active

int bt_cap_commander_broadcast_reception_start(const struct
bt_cap_commander_broadcast_reception_start_param
*param)

Starts the reception of broadcast audio on one or more remote Common Audio Profile
Acceptors.

Parameters
• param – The parameters to start the broadcast audio

Returns
0 on success or negative error value on failure.

int bt_cap_commander_broadcast_reception_stop(const struct
bt_cap_commander_broadcast_reception_stop_param
*param)

Stops the reception of broadcast audio on one or more remote Common Audio Profile
Acceptors.

Parameters
• param – The parameters to stop the broadcast audio

Returns
0 on success or negative error value on failure.

int bt_cap_commander_change_volume(const struct
bt_cap_commander_change_volume_param
*param)

Change the volume on one or more Common Audio Profile Acceptors.
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Parameters
• param – The parameters for the volume change

Returns
0 on success or negative error value on failure.

int bt_cap_commander_change_volume_offset(const struct
bt_cap_commander_change_volume_offset_param
*param)

Change the volume offset on one or more Common Audio Profile Acceptors.

Parameters
• param – The parameters for the volume offset change

Returns
0 on success or negative error value on failure.

int bt_cap_commander_change_volume_mute_state(const struct
bt_cap_commander_change_volume_mute_state_param
*param)

Change the volume mute state on one or more Common Audio Profile Acceptors.

Parameters
• param – The parameters for the volume mute state change

Returns
0 on success or negative error value on failure.

int bt_cap_commander_change_microphone_mute_state(const struct
bt_cap_commander_change_microphone_mute_state_param
*param)

Change the microphone mute state on one or more Common Audio Profile Acceptors.

Parameters
• param – The parameters for the microphone mute state change

Returns
0 on success or negative error value on failure.

int bt_cap_commander_change_microphone_gain_setting(const struct
bt_cap_commander_change_microphone_gain_setting_param
*param)

Change the microphone gain setting on one or more Common Audio Profile Acceptors.

Parameters
• param – The parameters for the microphone gain setting change

Returns
0 on success or negative error value on failure.

struct bt_cap_initiator_cb
#include <cap.h> Callback structure for CAP procedures.

Public Members

void (*unicast_discovery_complete)(struct bt_conn *conn, int err, const struct
bt_csip_set_coordinator_set_member *member, const struct
bt_csip_set_coordinator_csis_inst *csis_inst)
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Callback for bt_cap_initiator_unicast_discover().
Param conn

The connection pointer supplied to bt_cap_initiator_unicast_discover().
Param err

0 if Common Audio Service was found else -ENODATA.
Parammember

Pointer to the set member. NULL if err != 0.
Param csis_inst

The Coordinated Set Identification Service if Common Audio Service was
found and includes a Coordinated Set Identification Service. NULL on
error or if remote device does not include Coordinated Set Identification
Service. NULL if err != 0.

void (*unicast_start_complete)(int err, struct bt_conn *conn)
Callback for bt_cap_initiator_unicast_audio_start().

Param err
0 if success, BT_GATT_ERR() with a specific ATT
(BT_ATT_ERR_*) error code or -ECANCELED if cancelled by
bt_cap_initiator_unicast_audio_cancel().

Param conn
Pointer to the connection where the error occurred. NULL if err is 0 or
if cancelled by bt_cap_initiator_unicast_audio_cancel()

void (*unicast_update_complete)(int err, struct bt_conn *conn)
Callback for bt_cap_initiator_unicast_audio_update().

Param err
0 if success, BT_GATT_ERR() with a specific ATT
(BT_ATT_ERR_*) error code or -ECANCELED if cancelled by
bt_cap_initiator_unicast_audio_cancel().

Param conn
Pointer to the connection where the error occurred. NULL if err is 0 or
if cancelled by bt_cap_initiator_unicast_audio_cancel()

void (*unicast_stop_complete)(int err, struct bt_conn *conn)
Callback for bt_cap_initiator_unicast_audio_stop().

Param err
0 if success, BT_GATT_ERR() with a specific ATT
(BT_ATT_ERR_*) error code or -ECANCELED if cancelled by
bt_cap_initiator_unicast_audio_cancel().

Param conn
Pointer to the connection where the error occurred. NULL if err is 0 or
if cancelled by bt_cap_initiator_unicast_audio_cancel()

union bt_cap_set_member
#include <cap.h> Represents a Common Audio Set member that are either in a Coordi-
nated or ad-hoc set.

Public Members

struct bt_conn *member
Connection pointer if the type is BT_CAP_SET_TYPE_AD_HOC.
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struct bt_csip_set_coordinator_csis_inst *csip
CSIP Coordinated Set struct used if type is BT_CAP_SET_TYPE_CSIP.

struct bt_cap_stream
#include <cap.h> Common Audio Profile stream structure.

Streams represents a Basic Audio Profile (BAP) stream and operation callbacks. See
bt_bap_stream for additional information.

Public Members

struct bt_bap_stream bap_stream
The underlying BAP audio stream.

struct bt_bap_stream_ops *ops
Audio stream operations.

struct bt_cap_unicast_audio_start_stream_param
#include <cap.h> Stream specific parameters for the
bt_cap_initiator_unicast_audio_start() function.

Public Members

union bt_cap_set_member member
Coordinated or ad-hoc set member.

struct bt_cap_stream *stream
Stream for the member.

struct bt_bap_ep *ep
Endpoint reference for the stream.

struct bt_audio_codec_cfg *codec_cfg
Codec configuration.

The codec_cfg.meta shall include a list of CCIDs
(BT_AUDIO_METADATA_TYPE_CCID_LIST) as well as a non-0 stream context
(BT_AUDIO_METADATA_TYPE_STREAM_CONTEXT) bitfield.

This value is assigned to the stream, and shall remain valid while the stream is
non-idle.

struct bt_cap_unicast_audio_start_param
#include <cap.h> Parameters for the bt_cap_initiator_unicast_audio_start() function.

Public Members
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enum bt_cap_set_type type
The type of the set.

size_t count
The number of parameters in stream_params.

struct bt_cap_unicast_audio_start_stream_param *stream_params
Array of stream parameters.

struct bt_cap_unicast_audio_update_stream_param
#include <cap.h> Stream specific parameters for the
bt_cap_initiator_unicast_audio_update() function.

Public Members

struct bt_cap_stream *stream
Stream to update.

size_t meta_len
The length of meta.

uint8_t *meta
The new metadata.

The metadata shall contain a list of CCIDs as well as a non-0 context bitfield.

struct bt_cap_unicast_audio_update_param
#include <cap.h> Parameters for the bt_cap_initiator_unicast_audio_update() function.

Public Members

enum bt_cap_set_type type
The type of the set.

size_t count
The number of parameters in stream_params.

struct bt_cap_unicast_audio_update_stream_param *stream_params
Array of stream parameters.

struct bt_cap_unicast_audio_stop_param
#include <cap.h> Parameters for the bt_cap_initiator_unicast_audio_stop() function.

Public Members
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enum bt_cap_set_type type
The type of the set.

size_t count
The number of streams in streams.

struct bt_cap_stream **streams
Array of streams to stop.

struct bt_cap_initiator_broadcast_stream_param
#include <cap.h> Parameters part of bt_cap_initiator_broadcast_subgroup_param
for bt_cap_initiator_broadcast_audio_create()

Public Members

struct bt_cap_stream *stream
Audio stream.

size_t data_len
The length of the p data array.

The BIS specific data may be omitted and this set to 0.

uint8_t *data
BIS Codec Specific Configuration.

struct bt_cap_initiator_broadcast_subgroup_param
#include <cap.h> Parameters part of bt_cap_initiator_broadcast_create_param for
bt_cap_initiator_broadcast_audio_create()

Public Members

size_t stream_count
The number of parameters in stream_params.

struct bt_cap_initiator_broadcast_stream_param *stream_params
Array of stream parameters.

struct bt_audio_codec_cfg *codec_cfg
Subgroup Codec configuration.

struct bt_cap_initiator_broadcast_create_param
#include <cap.h> Parameters for * bt_cap_initiator_broadcast_audio_create()

Public Members

1818 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

size_t subgroup_count
The number of parameters in subgroup_params.

struct bt_cap_initiator_broadcast_subgroup_param *subgroup_params
Array of stream parameters.

struct bt_audio_codec_qos *qos
Quality of Service configuration.

uint8_t packing
Broadcast Source packing mode.

BT_ISO_PACKING_SEQUENTIAL or BT_ISO_PACKING_INTERLEAVED.

Note

This is a recommendation to the controller, which the controller may ignore.

bool encryption
Whether or not to encrypt the streams.

uint8_t broadcast_code[BT_AUDIO_BROADCAST_CODE_SIZE]
16-octet broadcast code.

Only valid if encrypt is true.

If the value is a string or a the value is less than 16 octets, the remaining octets
shall be 0.

Example: The string “Broadcast Code” shall be [42 72 6F 61 64 63 61 73 74 20 43 6F
64 65 00 00]

uint8_t irc
Immediate Repetition Count.

The number of times the scheduled payloads are transmitted in a given event.

Value range from BT_ISO_IRC_MIN to BT_ISO_IRC_MAX.

uint8_t pto
Pre-transmission offset.

Offset used for pre-transmissions.

Value range from BT_ISO_PTO_MIN to BT_ISO_PTO_MAX.

uint16_t iso_interval
ISO interval.

Time between consecutive BIS anchor points.

Value range from BT_ISO_ISO_INTERVAL_MIN to BT_ISO_ISO_INTERVAL_MAX.

struct bt_cap_unicast_to_broadcast_param
#include <cap.h> Parameters for bt_cap_initiator_unicast_to_broadcast()
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Public Members

struct bt_bap_unicast_group *unicast_group
The source unicast group with the streams.

bool encrypt
Whether or not to encrypt the streams.

If set to true, then the broadcast code in broadcast_code will be used to encrypt
the streams.

uint8_t broadcast_code[BT_ISO_BROADCAST_CODE_SIZE]
16-octet broadcast code.

Only valid if encrypt is true.

If the value is a string or a the value is less than 16 octets, the remaining octets
shall be 0.

Example: The string “Broadcast Code” shall be [42 72 6F 61 64 63 61 73 74 20 43 6F
64 65 00 00]

struct bt_cap_broadcast_to_unicast_param
#include <cap.h> Parameters for bt_cap_initiator_broadcast_to_unicast()

Public Members

struct bt_cap_broadcast_source *broadcast_source
The source broadcast source with the streams.

The broadcast source will be stopped and deleted.

enum bt_cap_set_type type
The type of the set.

size_t count
The number of set members in members.

This value shall match the number of streams in the broadcast_source.

union bt_cap_set_member **members
Coordinated or ad-hoc set members.

struct bt_cap_commander_cb
#include <cap.h> Callback structure for CAP procedures.

Public Members

void (*discovery_complete)(struct bt_conn *conn, int err, const struct
bt_csip_set_coordinator_set_member *member, const struct
bt_csip_set_coordinator_csis_inst *csis_inst)

Callback for bt_cap_initiator_unicast_discover().
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Param conn
The connection pointer supplied to bt_cap_initiator_unicast_discover().

Param err
0 if Common Audio Service was found else -ENODATA.

Parammember
Pointer to the set member. NULL if err != 0.

Param csis_inst
The Coordinated Set Identification Service if Common Audio Service was
found and includes a Coordinated Set Identification Service. NULL on
error or if remote device does not include Coordinated Set Identification
Service. NULL if err != 0.

void (*volume_changed)(struct bt_conn *conn, int err)
Callback for bt_cap_commander_change_volume().

Param conn
Pointer to the connection where the error occurred. NULL if err is 0 or
if cancelled by bt_cap_commander_cancel()

Param err
0 on success, BT_GATT_ERR() with a specific ATT (BT_ATT_ERR_*) error
code or -ECANCELED if cancelled by bt_cap_commander_cancel().

void (*volume_mute_changed)(struct bt_conn *conn, int err)
Callback for bt_cap_commander_change_volume_mute_state().

Param conn
Pointer to the connection where the error occurred. NULL if err is 0 or
if cancelled by bt_cap_commander_cancel()

Param err
0 on success, BT_GATT_ERR() with a specific ATT (BT_ATT_ERR_*) error
code or -ECANCELED if cancelled by bt_cap_commander_cancel().

void (*volume_offset_changed)(struct bt_conn *conn, int err)
Callback for bt_cap_commander_change_volume_offset().

Param conn
Pointer to the connection where the error occurred. NULL if err is 0 or
if cancelled by bt_cap_commander_cancel()

Param err
0 on success, BT_GATT_ERR() with a specific ATT (BT_ATT_ERR_*) error
code or -ECANCELED if cancelled by bt_cap_commander_cancel().

void (*microphone_mute_changed)(struct bt_conn *conn, int err)
Callback for bt_cap_commander_change_microphone_mute_state().

Param conn
Pointer to the connection where the error occurred. NULL if err is 0 or
if cancelled by bt_cap_commander_cancel()

Param err
0 on success, BT_GATT_ERR() with a specific ATT (BT_ATT_ERR_*) error
code or -ECANCELED if cancelled by bt_cap_commander_cancel().

void (*microphone_gain_changed)(struct bt_conn *conn, int err)
Callback for bt_cap_commander_change_microphone_gain_setting().

Param conn
Pointer to the connection where the error occurred. NULL if err is 0 or
if cancelled by bt_cap_commander_cancel()

Param err
0 on success, BT_GATT_ERR() with a specific ATT (BT_ATT_ERR_*) error
code or -ECANCELED if cancelled by bt_cap_commander_cancel().
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void (*broadcast_reception_start)(struct bt_conn *conn, int err)
Callback for bt_cap_commander_broadcast_reception_start().

Param conn
Pointer to the connection where the error occurred. NULL if err is 0 or
if cancelled by bt_cap_commander_cancel()

Param err
0 on success, BT_GATT_ERR() with a specific ATT (BT_ATT_ERR_*) error
code or -ECANCELED if cancelled by bt_cap_commander_cancel().

struct bt_cap_commander_broadcast_reception_start_member_param
#include <cap.h>Parameters part of bt_cap_commander_broadcast_reception_start_param
for bt_cap_commander_broadcast_reception_start()

Public Members

union bt_cap_set_member member
Coordinated or ad-hoc set member.

bt_addr_le_t addr
Address of the advertiser.

uint8_t adv_sid
SID of the advertising set.

uint16_t pa_interval
Periodic advertising interval in milliseconds.

BT_BAP_PA_INTERVAL_UNKNOWN if unknown.

uint32_t broadcast_id
24-bit broadcast ID

struct bt_bap_bass_subgroup subgroups[CONFIG_BT_BAP_BASS_MAX_SUBGROUPS]
Pointer to array of subgroups.

At least one bit in one of the subgroups bis_sync parameters shall be set.

size_t num_subgroups
Number of subgroups.

struct bt_cap_commander_broadcast_reception_start_param
#include <cap.h> Parameters for starting broadcast reception

Public Members

enum bt_cap_set_type type
The type of the set.
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struct bt_cap_commander_broadcast_reception_start_member_param *param
The set of devices for this procedure.

size_t count
The number of parameters in param.

struct bt_cap_commander_broadcast_reception_stop_param
#include <cap.h> Parameters for stopping broadcast reception

Public Members

enum bt_cap_set_type type
The type of the set.

union bt_cap_set_member *members
Coordinated or ad-hoc set member.

size_t count
The number of members in members.

struct bt_cap_commander_change_volume_param
#include <cap.h> Parameters for changing absolute volume

Public Members

enum bt_cap_set_type type
The type of the set.

union bt_cap_set_member *members
Coordinated or ad-hoc set member.

size_t count
The number of members in members.

uint8_t volume
The absolute volume to set.

struct bt_cap_commander_change_volume_offset_member_param
#include <cap.h> Parameters part of bt_cap_commander_change_volume_offset_param
for bt_cap_commander_change_volume_offset()

Public Members

union bt_cap_set_member member
Coordinated or ad-hoc set member.
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int16_t offset
The offset to set.

Value shall be between BT_VOCS_MIN_OFFSET and BT_VOCS_MAX_OFFSET

struct bt_cap_commander_change_volume_offset_param
#include <cap.h> Parameters for changing volume offset.

Public Members

enum bt_cap_set_type type
The type of the set.

struct bt_cap_commander_change_volume_offset_member_param *param
The set of devices for this procedure.

size_t count
The number of parameters in param.

struct bt_cap_commander_change_volume_mute_state_param
#include <cap.h> Parameters for changing volume mute state.

Public Members

enum bt_cap_set_type type
The type of the set.

union bt_cap_set_member *members
Coordinated or ad-hoc set member.

size_t count
The number of members in members.

bool mute
The volume mute state to set.

true to mute, and false to unmute

struct bt_cap_commander_change_microphone_mute_state_param
#include <cap.h> Parameters for changing microphone mute state.

Public Members

enum bt_cap_set_type type
The type of the set.
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union bt_cap_set_member *members
Coordinated or ad-hoc set member.

size_t count
The number of members in members.

bool mute
The microphone mute state to set.

true to mute, and false to unmute

struct bt_cap_commander_change_microphone_gain_setting_member_param
#include <cap.h>Parameters part of bt_cap_commander_change_microphone_gain_setting_param
for bt_cap_commander_change_microphone_gain_setting()

Public Members

union bt_cap_set_member member
Coordinated or ad-hoc set member.

int8_t gain
The microphone gain setting to set.

struct bt_cap_commander_change_microphone_gain_setting_param
#include <cap.h> Parameters for changing microphone mute state.

Public Members

enum bt_cap_set_type type
The type of the set.

struct bt_cap_commander_change_microphone_gain_setting_member_param *param
The set of devices for this procedure.

size_t count
The number of parameters in param.

Bluetooth Coordinated Sets

API Reference

group bt_gatt_csip
Coordinated Set Identification Profile (CSIP)

Published Audio Capabilities Service (PACS)

The Coordinated Set Identification Profile (CSIP) provides procedures to discover and coor-
dinate sets of devices.
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Since
3.0

Version
0.8.0

The Published Audio Capabilities Service (PACS) is used to expose capabilities to remote
devices.

Since
3.0

Version
0.8.0

Defines

BT_CSIP_SET_COORDINATOR_DISCOVER_TIMER_VALUE
Recommended timer for member discovery.

BT_CSIP_SET_COORDINATOR_MAX_CSIS_INSTANCES
Defines the maximum number of Coordinated Set Identification service instances for
the Coordinated Set Identification Set Coordinator.

BT_CSIP_READ_SIRK_REQ_RSP_ACCEPT
Accept the request to read the SIRK as plaintext.

BT_CSIP_READ_SIRK_REQ_RSP_ACCEPT_ENC
Accept the request to read the SIRK, but return encrypted SIRK.

BT_CSIP_READ_SIRK_REQ_RSP_REJECT
Reject the request to read the SIRK.

BT_CSIP_READ_SIRK_REQ_RSP_OOB_ONLY
SIRK is available only via an OOB procedure.

BT_CSIP_SIRK_SIZE
Size of the Set Identification Resolving Key (SIRK)

BT_CSIP_RSI_SIZE
Size of the Resolvable Set Identifier (RSI)

BT_CSIP_ERROR_LOCK_DENIED
Service is already locked.

BT_CSIP_ERROR_LOCK_RELEASE_DENIED
Service is not locked.

BT_CSIP_ERROR_LOCK_INVAL_VALUE
Invalid lock value.
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BT_CSIP_ERROR_SIRK_OOB_ONLY
SIRK only available out-of-band.

BT_CSIP_ERROR_LOCK_ALREADY_GRANTED
Client is already owner of the lock.

BT_CSIP_DATA_RSI(_rsi)
Helper to declare bt_data array including RSI.

This macro is mainly for creating an array of struct bt_data elements which is then
passed to e.g. bt_le_ext_adv_start().

Parameters
• _rsi – Pointer to the RSI value

Typedefs

typedef void (*bt_csip_set_coordinator_discover_cb)(struct bt_conn *conn, const struct
bt_csip_set_coordinator_set_member *member, int err, size_t set_count)

Callback for discovering Coordinated Set Identification Services.

Param conn
Pointer to the remote device.

Parammember
Pointer to the set member.

Param err
0 on success, or an errno value on error.

Param set_count
Number of sets on the member.

typedef void (*bt_csip_set_coordinator_lock_set_cb)(int err)
Callback for locking a set across one or more devices.

Param err
0 on success, or an errno value on error.

typedef void (*bt_csip_set_coordinator_lock_changed_cb)(struct
bt_csip_set_coordinator_csis_inst *inst, bool locked)

Callback when the lock value on a set of a connected device changes.

Param inst
The Coordinated Set Identification Service instance that was changed.

Param locked
Whether the lock is locked or release.

Return
int Return 0 on success, or an errno value on error.

typedef void (*bt_csip_set_coordinator_sirk_changed_cb)(struct
bt_csip_set_coordinator_csis_inst *inst)

Callback when the SIRK value of a set of a connected device changes.

Param inst
The Coordinated Set Identification Service instance that was changed. The
new SIRK can be accessed via the inst.info.
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typedef void (*bt_csip_set_coordinator_ordered_access_cb_t)(const struct
bt_csip_set_coordinator_set_info *set_info, int err, bool locked, struct
bt_csip_set_coordinator_set_member *member)

Callback for bt_csip_set_coordinator_ordered_access()

If any of the set members supplied to bt_csip_set_coordinator_ordered_access() is in
the locked state, this will be called with locked true and member will be the locked
member, and the ordered access procedure is cancelled. Likewise, if any error occurs,
the procedure will also be aborted.

Param set_info
Pointer to the a specific set_info struct.

Param err
Error value. 0 on success, GATT error or errno on fail.

Param locked
Whether the lock is locked or release.

Parammember
The locked member if locked is true, otherwise NULL.

typedef bool (*bt_csip_set_coordinator_ordered_access_t)(const struct
bt_csip_set_coordinator_set_info *set_info, struct bt_csip_set_coordinator_set_member
*members[], size_t count)

Callback function definition for bt_csip_set_coordinator_ordered_access()

Param set_info
Pointer to the a specific set_info struct.

Parammembers
Array of members ordered by rank. The procedure shall be done on the
members in ascending order.

Param count
Number of members in members.

Return
true if the procedures can be successfully done, or false to stop the proce-
dure.

typedef bool (*bt_pacs_cap_foreach_func_t)(const struct bt_pacs_cap *cap, void
*user_data)

Published Audio Capability iterator callback.

Param cap
Capability found.

Param user_data
Data given.

Return
true to continue to the next capability

Return
false to stop the iteration

Functions
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void *bt_csip_set_member_svc_decl_get(const struct bt_csip_set_member_svc_inst
*svc_inst)

Get the service declaration attribute.

The first service attribute can be included in any other GATT service.

Parameters
• svc_inst – Pointer to the Coordinated Set Identification Service.

Returns
The first CSIS attribute instance.

int bt_csip_set_member_register(const struct bt_csip_set_member_register_param
*param, struct bt_csip_set_member_svc_inst
**svc_inst)

Register a Coordinated Set Identification Service instance.

This will register and enable the service and make it discoverable by clients.

This shall only be done as a server.

Parameters
• param – Coordinated Set Identification Service register parameters.

• svc_inst – [out] Pointer to the registered Coordinated Set Identification
Service.

Returns
0 if success, errno on failure.

int bt_csip_set_member_unregister(struct bt_csip_set_member_svc_inst *svc_inst)
Unregister a Coordinated Set Identification Service instance.

This will unregister and disable the service instance.

Parameters
• svc_inst – Pointer to the registered Coordinated Set Identification Ser-

vice.

Returns
0 if success, errno on failure.

int bt_csip_set_member_sirk(struct bt_csip_set_member_svc_inst *svc_inst, const uint8_t
sirk[16])

Set the SIRK of a service instance.

Parameters
• svc_inst – Pointer to the registered Coordinated Set Identification Ser-

vice.

• sirk – The new SIRK.

int bt_csip_set_member_get_sirk(struct bt_csip_set_member_svc_inst *svc_inst, uint8_t
sirk[16])

Get the SIRK of a service instance.

Parameters
• svc_inst – [in] Pointer to the registered Coordinated Set Identification

Service.

• sirk – [out] Array to store the SIRK in.
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int bt_csip_set_member_generate_rsi(const struct bt_csip_set_member_svc_inst
*svc_inst, uint8_t rsi[6])

Generate the Resolvable Set Identifier (RSI) value.

This will generate RSI for given svc_inst instance.

Parameters
• svc_inst – Pointer to the Coordinated Set Identification Service.

• rsi – Pointer to the 6-octet newly generated RSI data in little-endian.

Returns
int 0 if on success, errno on error.

int bt_csip_set_member_lock(struct bt_csip_set_member_svc_inst *svc_inst, bool lock,
bool force)

Locks a specific Coordinated Set Identification Service instance on the server.

Parameters
• svc_inst – Pointer to the Coordinated Set Identification Service.

• lock – If true lock the set, if false release the set.

• force – This argument only have meaning when lock is false (release)
and will force release the lock, regardless of who took the lock.

Returns
0 on success, GATT error on error.

int bt_csip_set_coordinator_discover(struct bt_conn *conn)
Initialise the csip_set_coordinator instance for a connection.

This will do a discovery on the device and prepare the instance for following com-
mands.

Parameters
• conn – Pointer to remote device to perform discovery on.

Returns
int Return 0 on success, or an errno value on error.

struct bt_csip_set_coordinator_set_member *bt_csip_set_coordinator_set_member_by_conn(const
struct
bt_conn
*conn)

Get the set member from a connection pointer.

Get the Coordinated Set Identification Profile Set Coordinator pointer from
a connection pointer. Only Set Coordinators that have been initiated via
bt_csip_set_coordinator_discover() can be retrieved.

Parameters
• conn – Connection pointer.

Return values
• Pointer – to a Coordinated Set Identification Profile Set Coordinator in-

stance

• NULL – if conn is NULL or if the connection has not done discovery yet

bool bt_csip_set_coordinator_is_set_member(const uint8_t sirk[16], struct bt_data
*data)

Check if advertising data indicates a set member.
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Parameters
• sirk – The SIRK of the set to check against

• data – The advertising data

Returns
true if the advertising data indicates a set member, false otherwise

int bt_csip_set_coordinator_register_cb(struct bt_csip_set_coordinator_cb *cb)
Registers callbacks for csip_set_coordinator.

Parameters
• cb – Pointer to the callback structure.

Returns
Return 0 on success, or an errno value on error.

int bt_csip_set_coordinator_ordered_access(const struct
bt_csip_set_coordinator_set_member
*members[], uint8_t count, const struct
bt_csip_set_coordinator_set_info *set_info,
bt_csip_set_coordinator_ordered_access_t
cb)

Access Coordinated Set devices in an ordered manner as a client.

This function will read the lock state of all devices and if all devices are in the unlocked
state, then cb will be called with the same members as provided by members, but where
the members are ordered by rank (if present). Once this procedure is finished or an
error occurs, bt_csip_set_coordinator_cb::ordered_access will be called.

This procedure only works if all the members have the lock characteristic, and all ei-
ther has rank = 0 or unique ranks.

If any of the members are in the locked state, the procedure will be cancelled.

This can only be done on members that are bonded.

Parameters
• members – Array of set members to access.

• count – Number of set members in members.

• set_info – Pointer to the a specific set_info struct, as a member may be
part of multiple sets.

• cb – The callback function to be called for each member.

int bt_csip_set_coordinator_lock(const struct bt_csip_set_coordinator_set_member
**members, uint8_t count, const struct
bt_csip_set_coordinator_set_info *set_info)

Lock an array of set members.

The members will be locked starting from lowest rank going up.

TODO: If locking fails, the already locked members will not be unlocked.

Parameters
• members – Array of set members to lock.

• count – Number of set members in members.

• set_info – Pointer to the a specific set_info struct, as a member may be
part of multiple sets.

Returns
Return 0 on success, or an errno value on error.
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int bt_csip_set_coordinator_release(const struct bt_csip_set_coordinator_set_member
**members, uint8_t count, const struct
bt_csip_set_coordinator_set_info *set_info)

Release an array of set members.

The members will be released starting from highest rank going down.

Parameters
• members – Array of set members to lock.

• count – Number of set members in members.

• set_info – Pointer to the a specific set_info struct, as a member may be
part of multiple sets.

Returns
Return 0 on success, or an errno value on error.

void bt_pacs_cap_foreach(enum bt_audio_dir dir, bt_pacs_cap_foreach_func_t func, void
*user_data)

Published Audio Capability iterator.

Iterate capabilities with endpoint direction specified.

Parameters
• dir – Direction of the endpoint to look capability for.

• func – Callback function.

• user_data – Data to pass to the callback.

int bt_pacs_cap_register(enum bt_audio_dir dir, struct bt_pacs_cap *cap)
Register Published Audio Capability.

Register Audio Local Capability.

Parameters
• dir – Direction of the endpoint to register capability for.

• cap – Capability structure.

Returns
0 in case of success or negative value in case of error.

int bt_pacs_cap_unregister(enum bt_audio_dir dir, struct bt_pacs_cap *cap)
Unregister Published Audio Capability.

Unregister Audio Local Capability.

Parameters
• dir – Direction of the endpoint to unregister capability for.

• cap – Capability structure.

Returns
0 in case of success or negative value in case of error.

int bt_pacs_set_location(enum bt_audio_dir dir, enum bt_audio_location location)
Set the location for an endpoint type.

Parameters
• dir – Direction of the endpoints to change location for.

• location – The location to be set.
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Returns
0 in case of success or negative value in case of error.

int bt_pacs_set_available_contexts(enum bt_audio_dir dir, enum bt_audio_context
contexts)

Set the available contexts for an endpoint type.

Parameters
• dir – Direction of the endpoints to change available contexts for.

• contexts – The contexts to be set.

Returns
0 in case of success or negative value in case of error.

enum bt_audio_context bt_pacs_get_available_contexts(enum bt_audio_dir dir)
Get the available contexts for an endpoint type.

Parameters
• dir – Direction of the endpoints to get contexts for.

Returns
Bitmask of available contexts.

int bt_pacs_conn_set_available_contexts_for_conn(struct bt_conn *conn, enum
bt_audio_dir dir, enum
bt_audio_context *contexts)

Set the available contexts for a given connection.

This function sets the available contexts value for a given conn connection object. If the
contextsparameter is NULL the available contexts value is reset to default. The default
value of the available contexts is set using bt_pacs_set_available_contexts function. The
Available Context Value is reset to default on ACL disconnection.

Parameters
• conn – Connection object.

• dir – Direction of the endpoints to change available contexts for.

• contexts – The contexts to be set or NULL to reset to default.

Returns
0 in case of success or negative value in case of error.

enum bt_audio_context bt_pacs_get_available_contexts_for_conn(struct bt_conn
*conn, enum
bt_audio_dir dir)

Get the available contexts for a given connection.

This server function returns the available contexts value for a given
conn connection object. The value returned is the one set with
bt_pacs_conn_set_available_contexts_for_conn function or the default value set
with bt_pacs_set_available_contexts function.

Parameters
• conn – Connection object.

• dir – Direction of the endpoints to get contexts for.

Return values
BT_AUDIO_CONTEXT_TYPE_PROHIBITED – if conn or dir are invalid

Returns
Bitmask of available contexts.
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int bt_pacs_set_supported_contexts(enum bt_audio_dir dir, enum bt_audio_context
contexts)

Set the supported contexts for an endpoint type.

Parameters
• dir – Direction of the endpoints to change available contexts for.

• contexts – The contexts to be set.

Returns
0 in case of success or negative value in case of error.

struct bt_csip_set_member_cb
#include <csip.h> Callback structure for the Coordinated Set Identification Service.

Public Members

void (*lock_changed)(struct bt_conn *conn, struct bt_csip_set_member_svc_inst
*svc_inst, bool locked)

Callback whenever the lock changes on the server.
Param conn

The connection to the client that changed the lock. NULL if server
changed it, either by calling bt_csip_set_member_lock() or by timeout.

Param svc_inst
Pointer to the Coordinated Set Identification Service.

Param locked
Whether the lock was locked or released.

uint8_t (*sirk_read_req)(struct bt_conn *conn, struct bt_csip_set_member_svc_inst
*svc_inst)

Request from a peer device to read the sirk.

If this callback is not set, all clients will be allowed to read the SIRK unencrypted.
Param conn

The connection to the client that requested to read the SIRK.
Param svc_inst

Pointer to the Coordinated Set Identification Service.
Return

A BT_CSIP_READ_SIRK_REQ_RSP_* response code.

struct bt_csip_set_member_register_param
#include <csip.h> Register structure for Coordinated Set Identification Service.

Public Members

uint8_t set_size
Size of the set.

If set to 0, the set size characteristic won’t be initialized.

uint8_t sirk[16]
The unique Set Identity Resolving Key (SIRK)

This shall be unique between different sets, and shall be the same for each set
member for each set.
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bool lockable
Boolean to set whether the set is lockable by clients.

Setting this to false will disable the lock characteristic.

uint8_t rank
Rank of this device in this set.

If the lockable parameter is set to true, this shall be > 0 and <= to the set_size.
If the lockable parameter is set to false, this may be set to 0 to disable the rank
characteristic.

struct bt_csip_set_member_cb *cb
Pointer to the callback structure.

const struct bt_gatt_service *parent
Parent service pointer.

Mandatory parent service pointer if this CSIS instance is included by another ser-
vice. All CSIS instances when CONFIG_BT_CSIP_SET_MEMBER_MAX_INSTANCE_COUNT
is above 1 shall be included by another service, as per the Coordinated Set Identi-
fication Profile (CSIP).

struct bt_csip_set_coordinator_set_info
#include <csip.h> Information about a specific set.

Public Members

uint8_t sirk[16]
The 16 octet set Set Identity Resolving Key (SIRK)

The SIRK may not be exposed by the server over Bluetooth, and may require an
out-of-band solution.

uint8_t set_size
The size of the set.

Will be 0 if not exposed by the server.

uint8_t rank
The rank of the set on the remote device.

Will be 0 if not exposed by the server.

bool lockable
Whether or not the set can be locked on this device.

struct bt_csip_set_coordinator_csis_inst
#include <csip.h> Struct representing a coordinated set instance on a remote device.

The values in this struct will be populated during discovery of sets
(bt_csip_set_coordinator_discover()).
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Public Members

struct bt_csip_set_coordinator_set_info info
Information about the coordinated set.

void *svc_inst
Internally used pointer value.

struct bt_csip_set_coordinator_set_member
#include <csip.h> Struct representing a remote device as a set member.

Public Members

struct bt_csip_set_coordinator_csis_inst insts[0]
Array of Coordinated Set Identification Service instances for the remote device.

struct bt_csip_set_coordinator_cb
#include <csip.h> Struct to hold the Coordinated Set Identification Profile Set Coordina-
tor callbacks.

These can be registered for usage with bt_csip_set_coordinator_register_cb().

Public Members

bt_csip_set_coordinator_discover_cb discover
Callback when discovery has finished.

bt_csip_set_coordinator_lock_set_cb lock_set
Callback when locking a set has finished.

bt_csip_set_coordinator_lock_set_cb release_set
Callback when unlocking a set has finished.

bt_csip_set_coordinator_lock_changed_cb lock_changed
Callback when a set’s lock state has changed.

bt_csip_set_coordinator_sirk_changed_cb sirk_changed
Callback when a set’s SIRK has changed.

bt_csip_set_coordinator_ordered_access_cb_t ordered_access
Callback for the ordered access procedure.

struct bt_pacs_cap
#include <pacs.h> Published Audio Capability structure.
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Public Members

const struct bt_audio_codec_cap *codec_cap
Codec capability reference.

Bluetooth Media

API Reference

Media Control Service

group bt_mcs
Media Control Service (MCS)

Definitions and types related to the Media Control Service and Media Control Profile spec-
ifications.

Since
3.0

Version
0.8.0

Playback speeds

The playback speed (s) is calculated by the value of 2 to the power of p divided by 64.

All values from -128 to 127 allowed, only some examples defined.

BT_MCS_PLAYBACK_SPEED_MIN
Minimum playback speed, resulting in 25 % speed.

BT_MCS_PLAYBACK_SPEED_QUARTER
Quarter playback speed, resulting in 25 % speed.

BT_MCS_PLAYBACK_SPEED_HALF
Half playback speed, resulting in 50 % speed.

BT_MCS_PLAYBACK_SPEED_UNITY
Unity playback speed, resulting in 100 % speed.

BT_MCS_PLAYBACK_SPEED_DOUBLE
Double playback speed, resulting in 200 % speed.

BT_MCS_PLAYBACK_SPEED_MAX
Max playback speed, resulting in 395.7 % speed (nearly 400 %)
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Seeking speed

The allowed values for seeking speed are the range -64 to -4 (endpoints included), the value
0, and the range 4 to 64 (endpoints included).

BT_MCS_SEEKING_SPEED_FACTOR_MAX
Maximum seeking speed - Can be negated.

BT_MCS_SEEKING_SPEED_FACTOR_MIN
Minimum seeking speed - Can be negated.

BT_MCS_SEEKING_SPEED_FACTOR_ZERO
No seeking.

Playing orders

BT_MCS_PLAYING_ORDER_SINGLE_ONCE
A single track is played once; there is no next track.

BT_MCS_PLAYING_ORDER_SINGLE_REPEAT
A single track is played repeatedly; the next track is the current track.

BT_MCS_PLAYING_ORDER_INORDER_ONCE
The tracks within a group are played once in track order.

BT_MCS_PLAYING_ORDER_INORDER_REPEAT
The tracks within a group are played in track order repeatedly.

BT_MCS_PLAYING_ORDER_OLDEST_ONCE
The tracks within a group are played once only from the oldest first.

BT_MCS_PLAYING_ORDER_OLDEST_REPEAT
The tracks within a group are played from the oldest first repeatedly.

BT_MCS_PLAYING_ORDER_NEWEST_ONCE
The tracks within a group are played once only from the newest first.

BT_MCS_PLAYING_ORDER_NEWEST_REPEAT
The tracks within a group are played from the newest first repeatedly.

BT_MCS_PLAYING_ORDER_SHUFFLE_ONCE
The tracks within a group are played in random order once.

BT_MCS_PLAYING_ORDER_SHUFFLE_REPEAT
The tracks within a group are played in random order repeatedly.
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Playing orders supported

A bitmap, in the same order as the playing orders above.

Note that playing order 1 corresponds to bit 0, and so on.

BT_MCS_PLAYING_ORDERS_SUPPORTED_SINGLE_ONCE
A single track is played once; there is no next track.

BT_MCS_PLAYING_ORDERS_SUPPORTED_SINGLE_REPEAT
A single track is played repeatedly; the next track is the current track.

BT_MCS_PLAYING_ORDERS_SUPPORTED_INORDER_ONCE
The tracks within a group are played once in track order.

BT_MCS_PLAYING_ORDERS_SUPPORTED_INORDER_REPEAT
The tracks within a group are played in track order repeatedly.

BT_MCS_PLAYING_ORDERS_SUPPORTED_OLDEST_ONCE
The tracks within a group are played once only from the oldest first.

BT_MCS_PLAYING_ORDERS_SUPPORTED_OLDEST_REPEAT
The tracks within a group are played from the oldest first repeatedly.

BT_MCS_PLAYING_ORDERS_SUPPORTED_NEWEST_ONCE
The tracks within a group are played once only from the newest first.

BT_MCS_PLAYING_ORDERS_SUPPORTED_NEWEST_REPEAT
The tracks within a group are played from the newest first repeatedly.

BT_MCS_PLAYING_ORDERS_SUPPORTED_SHUFFLE_ONCE
The tracks within a group are played in random order once.

BT_MCS_PLAYING_ORDERS_SUPPORTED_SHUFFLE_REPEAT
The tracks within a group are played in random order repeatedly.

Media states

BT_MCS_MEDIA_STATE_INACTIVE
The current track is invalid, and no track has been selected.

BT_MCS_MEDIA_STATE_PLAYING
The media player is playing the current track.

BT_MCS_MEDIA_STATE_PAUSED
The current track is paused.

The media player has a current track, but it is not being played

BT_MCS_MEDIA_STATE_SEEKING
The current track is fast forwarding or fast rewinding.
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Media control point opcodes

BT_MCS_OPC_PLAY
Start playing the current track.

BT_MCS_OPC_PAUSE
Pause playing the current track.

BT_MCS_OPC_FAST_REWIND
Fast rewind the current track.

BT_MCS_OPC_FAST_FORWARD
Fast forward the current track.

BT_MCS_OPC_STOP
Stop current activity and return to the paused state and set the current track position
to the start of the current track.

BT_MCS_OPC_MOVE_RELATIVE
Set a new current track position relative to the current track position.

BT_MCS_OPC_PREV_SEGMENT
Set the current track position to the starting position of the previous segment of the
current track.

BT_MCS_OPC_NEXT_SEGMENT
Set the current track position to the starting position of the next segment of the current
track.

BT_MCS_OPC_FIRST_SEGMENT
Set the current track position to the starting position of the first segment of the current
track.

BT_MCS_OPC_LAST_SEGMENT
Set the current track position to the starting position of the last segment of the current
track.

BT_MCS_OPC_GOTO_SEGMENT
Set the current track position to the starting position of the nth segment of the current
track.

BT_MCS_OPC_PREV_TRACK
Set the current track to the previous track based on the playing order.

BT_MCS_OPC_NEXT_TRACK
Set the current track to the next track based on the playing order.

BT_MCS_OPC_FIRST_TRACK
Set the current track to the first track based on the playing order.
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BT_MCS_OPC_LAST_TRACK
Set the current track to the last track based on the playing order.

BT_MCS_OPC_GOTO_TRACK
Set the current track to the nth track based on the playing order.

BT_MCS_OPC_PREV_GROUP
Set the current group to the previous group in the sequence of groups.

BT_MCS_OPC_NEXT_GROUP
Set the current group to the next group in the sequence of groups.

BT_MCS_OPC_FIRST_GROUP
Set the current group to the first group in the sequence of groups.

BT_MCS_OPC_LAST_GROUP
Set the current group to the last group in the sequence of groups.

BT_MCS_OPC_GOTO_GROUP
Set the current group to the nth group in the sequence of groups.

Media control point supported opcodes values

BT_MCS_OPC_SUP_PLAY
Support the Play opcode.

BT_MCS_OPC_SUP_PAUSE
Support the Pause opcode.

BT_MCS_OPC_SUP_FAST_REWIND
Support the Fast Rewind opcode.

BT_MCS_OPC_SUP_FAST_FORWARD
Support the Fast Forward opcode.

BT_MCS_OPC_SUP_STOP
Support the Stop opcode.

BT_MCS_OPC_SUP_MOVE_RELATIVE
Support the Move Relative opcode.

BT_MCS_OPC_SUP_PREV_SEGMENT
Support the Previous Segment opcode.

BT_MCS_OPC_SUP_NEXT_SEGMENT
Support the Next Segment opcode.
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BT_MCS_OPC_SUP_FIRST_SEGMENT
Support the First Segment opcode.

BT_MCS_OPC_SUP_LAST_SEGMENT
Support the Last Segment opcode.

BT_MCS_OPC_SUP_GOTO_SEGMENT
Support the Goto Segment opcode.

BT_MCS_OPC_SUP_PREV_TRACK
Support the Previous Track opcode.

BT_MCS_OPC_SUP_NEXT_TRACK
Support the Next Track opcode.

BT_MCS_OPC_SUP_FIRST_TRACK
Support the First Track opcode.

BT_MCS_OPC_SUP_LAST_TRACK
Support the Last Track opcode.

BT_MCS_OPC_SUP_GOTO_TRACK
Support the Goto Track opcode.

BT_MCS_OPC_SUP_PREV_GROUP
Support the Previous Group opcode.

BT_MCS_OPC_SUP_NEXT_GROUP
Support the Next Group opcode.

BT_MCS_OPC_SUP_FIRST_GROUP
Support the First Group opcode.

BT_MCS_OPC_SUP_LAST_GROUP
Support the Last Group opcode.

BT_MCS_OPC_SUP_GOTO_GROUP
Support the Goto Group opcode.

Media control point notification result codes

BT_MCS_OPC_NTF_SUCCESS
Action requested by the opcode write was completed successfully.

BT_MCS_OPC_NTF_NOT_SUPPORTED
An invalid or unsupported opcode was used for the Media Control Point write.
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BT_MCS_OPC_NTF_PLAYER_INACTIVE
The Media Player State characteristic value is Inactive when the opcode is received
or the result of the requested action of the opcode results in the Media Player State
characteristic being set to Inactive.

BT_MCS_OPC_NTF_CANNOT_BE_COMPLETED
The requested action of any Media Control Point write cannot be completed success-
fully because of a condition within the player.

Search control point type values

Reference: Media Control Service spec v1.0 section 3.20.2

BT_MCS_SEARCH_TYPE_TRACK_NAME
Search for Track Name.

BT_MCS_SEARCH_TYPE_ARTIST_NAME
Search for Artist Name.

BT_MCS_SEARCH_TYPE_ALBUM_NAME
Search for Album Name.

BT_MCS_SEARCH_TYPE_GROUP_NAME
Search for Group Name.

BT_MCS_SEARCH_TYPE_EARLIEST_YEAR
Search for Earliest Year.

BT_MCS_SEARCH_TYPE_LATEST_YEAR
Search for Latest Year.

BT_MCS_SEARCH_TYPE_GENRE
Search for Genre.

BT_MCS_SEARCH_TYPE_ONLY_TRACKS
Search for Tracks only.

BT_MCS_SEARCH_TYPE_ONLY_GROUPS
Search for Groups only.

Search notification result codes

Reference: Media Control Service spec v1.0 section 3.20.2

BT_MCS_SCP_NTF_SUCCESS
Search request was accepted; search has started.

BT_MCS_SCP_NTF_FAILURE
Search request was invalid; no search started.
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Group object object types

Reference: Media Control Service spec v1.0 section 4.4.1

BT_MCS_GROUP_OBJECT_TRACK_TYPE
Group object type is track.

BT_MCS_GROUP_OBJECT_GROUP_TYPE
Group object type is group.

Defines

BT_MCS_ERR_LONG_VAL_CHANGED
A characteristic value has changed while a Read Long Value Characteristic sub-
procedure is in progress.

BT_MCS_OPCODES_SUPPORTED_LEN
Media control point supported opcodes length.

SEARCH_LEN_MIN
Search control point minimum length.

At least one search control item (SCI), consisting of the length octet and the type octet.
(The * parameter field may be empty.)

SEARCH_LEN_MAX
Search control point maximum length.

SEARCH_SCI_LEN_MIN
Search control point item (SCI) minimum length.

An SCI length can be as little as one byte, for an SCI that has only the type field. (The
SCI len is the length of type + param.)

SEARCH_PARAM_MAX
Search parameters maximum length

Media Proxy

group bt_media_proxy
Media proxy module.

The media proxy module is the connection point between media players and media con-
trollers.

Since
3.0

Version
0.8.0
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A media player has (access to) media content and knows how to navigate and play this
content. A media controller reads or gets information from a player and controls the player
by setting player parameters and giving the player commands.

The media proxy module allows media player implementations to make themselves avail-
able to media controllers. And it allows controllers to access, and get updates from, any
player.

The media proxy module allows both local and remote control of local player instances: A
media controller may be a local application, or it may be a Media Control Service relaying
requests from a remote Media Control Client. There may be either local or remote control,
or both, or even multiple instances of each.

Playback speed parameters

All values from -128 to 127 allowed, only some defined

MEDIA_PROXY_PLAYBACK_SPEED_MIN
Minimum playback speed, resulting in 25 % speed.

MEDIA_PROXY_PLAYBACK_SPEED_QUARTER
Quarter playback speed, resulting in 25 % speed.

MEDIA_PROXY_PLAYBACK_SPEED_HALF
Half playback speed, resulting in 50 % speed.

MEDIA_PROXY_PLAYBACK_SPEED_UNITY
Unity playback speed, resulting in 100 % speed.

MEDIA_PROXY_PLAYBACK_SPEED_DOUBLE
Double playback speed, resulting in 200 % speed.

MEDIA_PROXY_PLAYBACK_SPEED_MAX
Max playback speed, resulting in 395.7 % speed (nearly 400 %)

Seeking speed factors

The allowed values for seeking speed are the range -64 to -4 (endpoints included), the value
0, and the range 4 to 64 (endpoints included).

MEDIA_PROXY_SEEKING_SPEED_FACTOR_MAX
Maximum seeking speed - Can be negated.

MEDIA_PROXY_SEEKING_SPEED_FACTOR_MIN
Minimum seeking speed - Can be negated.

MEDIA_PROXY_SEEKING_SPEED_FACTOR_ZERO
No seeking.
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Playing orders

MEDIA_PROXY_PLAYING_ORDER_SINGLE_ONCE
A single track is played once; there is no next track.

MEDIA_PROXY_PLAYING_ORDER_SINGLE_REPEAT
A single track is played repeatedly; the next track is the current track.

MEDIA_PROXY_PLAYING_ORDER_INORDER_ONCE
The tracks within a group are played once in track order.

MEDIA_PROXY_PLAYING_ORDER_INORDER_REPEAT
The tracks within a group are played in track order repeatedly.

MEDIA_PROXY_PLAYING_ORDER_OLDEST_ONCE
The tracks within a group are played once only from the oldest first.

MEDIA_PROXY_PLAYING_ORDER_OLDEST_REPEAT
The tracks within a group are played from the oldest first repeatedly.

MEDIA_PROXY_PLAYING_ORDER_NEWEST_ONCE
The tracks within a group are played once only from the newest first.

MEDIA_PROXY_PLAYING_ORDER_NEWEST_REPEAT
The tracks within a group are played from the newest first repeatedly.

MEDIA_PROXY_PLAYING_ORDER_SHUFFLE_ONCE
The tracks within a group are played in random order once.

MEDIA_PROXY_PLAYING_ORDER_SHUFFLE_REPEAT
The tracks within a group are played in random order repeatedly.

Playing orders supported

A bitmap, in the same order as the playing orders above.

Note that playing order 1 corresponds to bit 0, and so on.

MEDIA_PROXY_PLAYING_ORDERS_SUPPORTED_SINGLE_ONCE
A single track is played once; there is no next track.

MEDIA_PROXY_PLAYING_ORDERS_SUPPORTED_SINGLE_REPEAT
A single track is played repeatedly; the next track is the current track.

MEDIA_PROXY_PLAYING_ORDERS_SUPPORTED_INORDER_ONCE
The tracks within a group are played once in track order.

MEDIA_PROXY_PLAYING_ORDERS_SUPPORTED_INORDER_REPEAT
The tracks within a group are played in track order repeatedly.
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MEDIA_PROXY_PLAYING_ORDERS_SUPPORTED_OLDEST_ONCE
The tracks within a group are played once only from the oldest first.

MEDIA_PROXY_PLAYING_ORDERS_SUPPORTED_OLDEST_REPEAT
The tracks within a group are played from the oldest first repeatedly.

MEDIA_PROXY_PLAYING_ORDERS_SUPPORTED_NEWEST_ONCE
The tracks within a group are played once only from the newest first.

MEDIA_PROXY_PLAYING_ORDERS_SUPPORTED_NEWEST_REPEAT
The tracks within a group are played from the newest first repeatedly.

MEDIA_PROXY_PLAYING_ORDERS_SUPPORTED_SHUFFLE_ONCE
The tracks within a group are played in random order once.

MEDIA_PROXY_PLAYING_ORDERS_SUPPORTED_SHUFFLE_REPEAT
The tracks within a group are played in random order repeatedly.

Media player states

MEDIA_PROXY_STATE_INACTIVE
The current track is invalid, and no track has been selected.

MEDIA_PROXY_STATE_PLAYING
The media player is playing the current track.

MEDIA_PROXY_STATE_PAUSED
The current track is paused.

The media player has a current track, but it is not being played

MEDIA_PROXY_STATE_SEEKING
The current track is fast forwarding or fast rewinding.

MEDIA_PROXY_STATE_LAST
Used internally as the last state value.

Media player command opcodes

MEDIA_PROXY_OP_PLAY
Start playing the current track.

MEDIA_PROXY_OP_PAUSE
Pause playing the current track.

MEDIA_PROXY_OP_FAST_REWIND
Fast rewind the current track.
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MEDIA_PROXY_OP_FAST_FORWARD
Fast forward the current track.

MEDIA_PROXY_OP_STOP
Stop current activity and return to the paused state and set the current track position
to the start of the current track.

MEDIA_PROXY_OP_MOVE_RELATIVE
Set a new current track position relative to the current track position.

MEDIA_PROXY_OP_PREV_SEGMENT
Set the current track position to the starting position of the previous segment of the
current track.

MEDIA_PROXY_OP_NEXT_SEGMENT
Set the current track position to the starting position of the next segment of the current
track.

MEDIA_PROXY_OP_FIRST_SEGMENT
Set the current track position to the starting position of the first segment of the current
track.

MEDIA_PROXY_OP_LAST_SEGMENT
Set the current track position to the starting position of the last segment of the current
track.

MEDIA_PROXY_OP_GOTO_SEGMENT
Set the current track position to the starting position of the nth segment of the current
track.

MEDIA_PROXY_OP_PREV_TRACK
Set the current track to the previous track based on the playing order.

MEDIA_PROXY_OP_NEXT_TRACK
Set the current track to the next track based on the playing order.

MEDIA_PROXY_OP_FIRST_TRACK
Set the current track to the first track based on the playing order.

MEDIA_PROXY_OP_LAST_TRACK
Set the current track to the last track based on the playing order.

MEDIA_PROXY_OP_GOTO_TRACK
Set the current track to the nth track based on the playing order.

MEDIA_PROXY_OP_PREV_GROUP
Set the current group to the previous group in the sequence of groups.

MEDIA_PROXY_OP_NEXT_GROUP
Set the current group to the next group in the sequence of groups.
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MEDIA_PROXY_OP_FIRST_GROUP
Set the current group to the first group in the sequence of groups.

MEDIA_PROXY_OP_LAST_GROUP
Set the current group to the last group in the sequence of groups.

MEDIA_PROXY_OP_GOTO_GROUP
Set the current group to the nth group in the sequence of groups.

Unnamed Group

MEDIA_PROXY_OP_SUP_PLAY
Media player supported command opcodes.

Support the Play opcode

MEDIA_PROXY_OP_SUP_PAUSE
Support the Pause opcode.

MEDIA_PROXY_OP_SUP_FAST_REWIND
Support the Fast Rewind opcode.

MEDIA_PROXY_OP_SUP_FAST_FORWARD
Support the Fast Forward opcode.

MEDIA_PROXY_OP_SUP_STOP
Support the Stop opcode.

MEDIA_PROXY_OP_SUP_MOVE_RELATIVE
Support the Move Relative opcode.

MEDIA_PROXY_OP_SUP_PREV_SEGMENT
Support the Previous Segment opcode.

MEDIA_PROXY_OP_SUP_NEXT_SEGMENT
Support the Next Segment opcode.

MEDIA_PROXY_OP_SUP_FIRST_SEGMENT
Support the First Segment opcode.

MEDIA_PROXY_OP_SUP_LAST_SEGMENT
Support the Last Segment opcode.

MEDIA_PROXY_OP_SUP_GOTO_SEGMENT
Support the Goto Segment opcode.

MEDIA_PROXY_OP_SUP_PREV_TRACK
Support the Previous Track opcode.
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MEDIA_PROXY_OP_SUP_NEXT_TRACK
Support the Next Track opcode.

MEDIA_PROXY_OP_SUP_FIRST_TRACK
Support the First Track opcode.

MEDIA_PROXY_OP_SUP_LAST_TRACK
Support the Last Track opcode.

MEDIA_PROXY_OP_SUP_GOTO_TRACK
Support the Goto Track opcode.

MEDIA_PROXY_OP_SUP_PREV_GROUP
Support the Previous Group opcode.

MEDIA_PROXY_OP_SUP_NEXT_GROUP
Support the Next Group opcode.

MEDIA_PROXY_OP_SUP_FIRST_GROUP
Support the First Group opcode.

MEDIA_PROXY_OP_SUP_LAST_GROUP
Support the Last Group opcode.

MEDIA_PROXY_OP_SUP_GOTO_GROUP
Support the Goto Group opcode.

Media player command result codes

MEDIA_PROXY_CMD_SUCCESS
Action requested by the opcode write was completed successfully.

MEDIA_PROXY_CMD_NOT_SUPPORTED
An invalid or unsupported opcode was used for the Media Control Point write.

MEDIA_PROXY_CMD_PLAYER_INACTIVE
The Media Player State characteristic value is Inactive when the opcode is received
or the result of the requested action of the opcode results in the Media Player State
characteristic being set to Inactive.

MEDIA_PROXY_CMD_CANNOT_BE_COMPLETED
The requested action of any Media Control Point write cannot be completed success-
fully because of a condition within the player.

Search operation type values
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MEDIA_PROXY_SEARCH_TYPE_TRACK_NAME
Search for Track Name.

MEDIA_PROXY_SEARCH_TYPE_ARTIST_NAME
Search for Artist Name.

MEDIA_PROXY_SEARCH_TYPE_ALBUM_NAME
Search for Album Name.

MEDIA_PROXY_SEARCH_TYPE_GROUP_NAME
Search for Group Name.

MEDIA_PROXY_SEARCH_TYPE_EARLIEST_YEAR
Search for Earliest Year.

MEDIA_PROXY_SEARCH_TYPE_LATEST_YEAR
Search for Latest Year.

MEDIA_PROXY_SEARCH_TYPE_GENRE
Search for Genre.

MEDIA_PROXY_SEARCH_TYPE_ONLY_TRACKS
Search for Tracks only.

MEDIA_PROXY_SEARCH_TYPE_ONLY_GROUPS
Search for Groups only.

Search notification result codes

MEDIA_PROXY_SEARCH_SUCCESS
Search request was accepted; search has started.

MEDIA_PROXY_SEARCH_FAILURE
Search request was invalid; no search started.

Group object object types

MEDIA_PROXY_GROUP_OBJECT_TRACK_TYPE
Group object type is track.

MEDIA_PROXY_GROUP_OBJECT_GROUP_TYPE
Group object type is group.
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Defines

MEDIA_PROXY_OPCODES_SUPPORTED_LEN
Media player supported opcodes length.

Functions

int media_proxy_ctrl_register(struct media_proxy_ctrl_cbs *ctrl_cbs)
Register a controller with the media_proxy.

Parameters
• ctrl_cbs – Callbacks to the controller

Returns
0 if success, errno on failure

int media_proxy_ctrl_discover_player(struct bt_conn *conn)
Discover a remote media player.

Discover a remote media player instance. The remote player instance will be discov-
ered, and accessed, using Bluetooth, via the media control client and a remote media
control service. This call will start a GATT discovery of the Media Control Service on
the peer, and setup handles and subscriptions.

This shall be called once before any other actions can be executed for the remote player.
The remote player instance will be returned in the discover_player() callback.

Parameters
• conn – The connection to do discovery for

Returns
0 if success, errno on failure

int media_proxy_ctrl_get_player_name(struct media_player *player)
Read Media Player Name.

Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.

int media_proxy_ctrl_get_icon_id(struct media_player *player)
Read Icon Object ID.

Get an ID (48 bit) that can be used to retrieve the Icon Object from an Object Transfer
Service

See the Media Control Service spec v1.0 sections 3.2 and 4.1 for a description of the
Icon Object.

Requires Object Transfer Service

Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.
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int media_proxy_ctrl_get_icon_url(struct media_player *player)
Read Icon URL.

Get a URL to the media player’s icon.

Parameters
• player – Media player instance pointer

int media_proxy_ctrl_get_track_title(struct media_player *player)
Read Track Title.

Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.

int media_proxy_ctrl_get_track_duration(struct media_player *player)
Read Track Duration.

The duration of a track is measured in hundredths of a second.

Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.

int media_proxy_ctrl_get_track_position(struct media_player *player)
Read Track Position.

The position of the player (the playing position) is measured in hundredths of a second
from the beginning of the track

Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.

int media_proxy_ctrl_set_track_position(struct media_player *player, int32_t position)
Set Track Position.

Set the playing position of the media player in the current track. The position is given
in hundredths of a second, from the beginning of the track of the track for positive
values, and (backwards) from the end of the track for negative values.

Parameters
• player – Media player instance pointer

• position – The track position to set

Returns
0 if success, errno on failure.

int media_proxy_ctrl_get_playback_speed(struct media_player *player)
Get Playback Speed.

The playback speed parameter is related to the actual playback speed as follows: actual
playback speed = 2^(speed_parameter/64)

A speed parameter of 0 corresponds to unity speed playback (i.e. playback at “normal”
speed). A speed parameter of -128 corresponds to playback at one fourth of normal
speed, 127 corresponds to playback at almost four times the normal speed.
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Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.

int media_proxy_ctrl_set_playback_speed(struct media_player *player, int8_t speed)
Set Playback Speed.

See the get_playback_speed() function for an explanation of the playback speed param-
eter.

Note that the media player may not support all possible values of the playback speed
parameter. If the value given is not supported, and is higher than the current value,
the player should set the playback speed to the next higher supported value. (And
correspondingly to the next lower supported value for given values lower than the
current value.)

Parameters
• player – Media player instance pointer

• speed – The playback speed parameter to set

Returns
0 if success, errno on failure.

int media_proxy_ctrl_get_seeking_speed(struct media_player *player)
Get Seeking Speed.

The seeking speed gives the speed with which the player is seeking. It is a factor, rel-
ative to real-time playback speed - a factor four means seeking happens at four times
the real-time playback speed. Positive values are for forward seeking, negative values
for backwards seeking.

The seeking speed is not settable - a non-zero seeking speed is the result of “fast rewind”
of “fast forward” commands.

Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.

int media_proxy_ctrl_get_track_segments_id(struct media_player *player)
Read Current Track Segments Object ID.

Get an ID (48 bit) that can be used to retrieve the Current Track Segments Object from
an Object Transfer Service

See the Media Control Service spec v1.0 sections 3.10 and 4.2 for a description of the
Track Segments Object.

Requires Object Transfer Service

Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.

int media_proxy_ctrl_get_current_track_id(struct media_player *player)
Read Current Track Object ID.

Get an ID (48 bit) that can be used to retrieve the Current Track Object from an Object
Transfer Service
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See the Media Control Service spec v1.0 sections 3.11 and 4.3 for a description of the
Current Track Object.

Requires Object Transfer Service

Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.

int media_proxy_ctrl_set_current_track_id(struct media_player *player, uint64_t id)
Set Current Track Object ID.

Change the player’s current track to the track given by the ID. (Behaves similarly to the
goto track command.)

Requires Object Transfer Service

Parameters
• player – Media player instance pointer

• id – The ID of a track object

Returns
0 if success, errno on failure.

int media_proxy_ctrl_get_next_track_id(struct media_player *player)
Read Next Track Object ID.

Get an ID (48 bit) that can be used to retrieve the Next Track Object from an Object
Transfer Service

Requires Object Transfer Service

Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.

int media_proxy_ctrl_set_next_track_id(struct media_player *player, uint64_t id)
Set Next Track Object ID.

Change the player’s next track to the track given by the ID.

Requires Object Transfer Service

Parameters
• player – Media player instance pointer

• id – The ID of a track object

Returns
0 if success, errno on failure.

int media_proxy_ctrl_get_parent_group_id(struct media_player *player)
Read Parent Group Object ID.

Get an ID (48 bit) that can be used to retrieve the Parent Track Object from an Object
Transfer Service

The parent group is the parent of the current group.

See the Media Control Service spec v1.0 sections 3.14 and 4.4 for a description of the
Current Track Object.

Requires Object Transfer Service
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Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.

int media_proxy_ctrl_get_current_group_id(struct media_player *player)
Read Current Group Object ID.

Get an ID (48 bit) that can be used to retrieve the Current Track Object from an Object
Transfer Service

See the Media Control Service spec v1.0 sections 3.14 and 4.4 for a description of the
Current Group Object.

Requires Object Transfer Service

Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.

int media_proxy_ctrl_set_current_group_id(struct media_player *player, uint64_t id)
Set Current Group Object ID.

Change the player’s current group to the group given by the ID, and the current track
to the first track in that group.

Requires Object Transfer Service

Parameters
• player – Media player instance pointer

• id – The ID of a group object

Returns
0 if success, errno on failure.

int media_proxy_ctrl_get_playing_order(struct media_player *player)
Read Playing Order.

Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.

int media_proxy_ctrl_set_playing_order(struct media_player *player, uint8_t order)
Set Playing Order.

Set the media player’s playing order

Parameters
• player – Media player instance pointer

• order – The playing order to set

Returns
0 if success, errno on failure.

int media_proxy_ctrl_get_playing_orders_supported(struct media_player *player)
Read Playing Orders Supported.

Read a bitmap containing the media player’s supported playing orders.
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Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.

int media_proxy_ctrl_get_media_state(struct media_player *player)
Read Media State.

Read the media player’s state

Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.

int media_proxy_ctrl_send_command(struct media_player *player, const struct mpl_cmd
*command)

Send Command.

Send a command to the media player. Commands may cause the media player to
change its state May result in two callbacks - one for the actual sending of the com-
mand to the player, one for the result of the command from the player.

Parameters
• player – Media player instance pointer

• command – The command to send

Returns
0 if success, errno on failure.

int media_proxy_ctrl_get_commands_supported(struct media_player *player)
Read Commands Supported.

Read a bitmap containing the media player’s supported command opcodes.

Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.

int media_proxy_ctrl_send_search(struct media_player *player, const struct mpl_search
*search)

Set Search.

Write a search to the media player. If the search is successful, the search results will
be available as a group object in the Object Transfer Service (OTS).

May result in up to three callbacks

• one for the actual sending of the search to the player

• one for the result code for the search from the player

• if the search is successful, one for the search results object ID in the OTs

Requires Object Transfer Service

Parameters
• player – Media player instance pointer

• search – The search to write
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Returns
0 if success, errno on failure.

int media_proxy_ctrl_get_search_results_id(struct media_player *player)
Read Search Results Object ID.

Get an ID (48 bit) that can be used to retrieve the Search Results Object from an Object
Transfer Service

The search results object is a group object. The search results object only exists if a
successful search operation has been done.

Requires Object Transfer Service

Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.

uint8_t media_proxy_ctrl_get_content_ctrl_id(struct media_player *player)
Read Content Control ID.

The content control ID identifies a content control service on a device, and links it to
the corresponding audio stream.

Parameters
• player – Media player instance pointer

Returns
0 if success, errno on failure.

int media_proxy_pl_register(struct media_proxy_pl_calls *pl_calls)
Register a player with the media proxy.

Register a player with the media proxy module, for use by media controllers.

The media proxy may call any non-NULL function pointers in the supplied me-
dia_proxy_pl_calls structure.

Parameters
• pl_calls – Function pointers to the media player’s calls

Returns
0 if success, errno on failure

int media_proxy_pl_init(void)
Initialize player.

TODO: Move to player header file

struct bt_ots *bt_mcs_get_ots(void)
Get the pointer of the Object Transfer Service used by the Media Control Service.

TODO: Find best location for this call, and move this one also

void media_proxy_pl_name_cb(const char *name)
Player name changed callback.

To be called when the player’s name is changed.

Parameters
• name – The name of the player
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void media_proxy_pl_icon_url_cb(const char *url)
Player icon URL changed callback.

To be called when the player’s icon URL is changed.

Parameters
• url – The URL of the player’s icon

void media_proxy_pl_track_changed_cb(void)
Track changed callback.

To be called when the player’s current track is changed

void media_proxy_pl_track_title_cb(char *title)
Track title callback.

To be called when the player’s current track is changed

Parameters
• title – The title of the track

void media_proxy_pl_track_duration_cb(int32_t duration)
Track duration callback.

To be called when the current track’s duration is changed (e.g. due to a track change)

The track duration is given in hundredths of a second.

Parameters
• duration – The track duration

void media_proxy_pl_track_position_cb(int32_t position)
Track position callback.

To be called when the media player’s position in the track is changed, or when the
player is paused or similar.

Exception: This callback should not be called when the position changes during regu-
lar playback, i.e. while the player is playing and playback happens at a constant speed.

The track position is given in hundredths of a second from the start of the track.

Parameters
• position – The media player’s position in the track

void media_proxy_pl_playback_speed_cb(int8_t speed)
Playback speed callback.

To be called when the playback speed is changed.

Parameters
• speed – The playback speed parameter

void media_proxy_pl_seeking_speed_cb(int8_t speed)
Seeking speed callback.

To be called when the seeking speed is changed.

Parameters
• speed – The seeking speed factor
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void media_proxy_pl_current_track_id_cb(uint64_t id)
Current track object ID callback.

To be called when the ID of the current track is changed (e.g. due to a track change).

Parameters
• id – The ID of the current track object in the OTS

void media_proxy_pl_next_track_id_cb(uint64_t id)
Next track object ID callback.

To be called when the ID of the current track is changes

Parameters
• id – The ID of the next track object in the OTS

void media_proxy_pl_parent_group_id_cb(uint64_t id)
Parent group object ID callback.

To be called when the ID of the parent group is changed

Parameters
• id – The ID of the parent group object in the OTS

void media_proxy_pl_current_group_id_cb(uint64_t id)
Current group object ID callback.

To be called when the ID of the current group is changed

Parameters
• id – The ID of the current group object in the OTS

void media_proxy_pl_playing_order_cb(uint8_t order)
Playing order callback.

To be called when the playing order is changed

Parameters
• order – The playing order

void media_proxy_pl_media_state_cb(uint8_t state)
Media state callback.

To be called when the media state is changed

Parameters
• state – The media player’s state

void media_proxy_pl_command_cb(const struct mpl_cmd_ntf *cmd_ntf)
Command callback.

To be called when a command has been sent, to notify whether the command was
successfully performed or not. See the MEDIA_PROXY_CMD_* result code defines.

Parameters
• cmd_ntf – The result of the command

void media_proxy_pl_commands_supported_cb(uint32_t opcodes)
Commands supported callback.

To be called when the set of commands supported is changed

Parameters
• opcodes – The supported commands opcodes
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void media_proxy_pl_search_cb(uint8_t result_code)
Search callback.

To be called when a search has been set to notify whether the search was successfully
performed or not. See the MEDIA_PROXY_SEARCH_* result code defines.

The actual results of the search, if successful, can be found in the search results object.

Parameters
• result_code – The result (success or failure) of the search

void media_proxy_pl_search_results_id_cb(uint64_t id)
Search Results object ID callback.

To be called when the ID of the search results is changed (typically as the result of a
new successful search).

Parameters
• id – The ID of the search results object in the OTS

struct mpl_cmd
#include <media_proxy.h> Media player command.

Public Members

uint8_t opcode
The opcode.

See the MEDIA_PROXY_OP_* values

bool use_param
Whether or not the mpl_cmd::param is used.

int32_t param
A 32-bit signed parameter.

The parameter value depends on the mpl_cmd::opcode

struct mpl_cmd_ntf
#include <media_proxy.h> Media command notification.

Public Members

uint8_t requested_opcode
The opcode that was sent.

uint8_t result_code
The result of the operation

struct mpl_sci
#include <media_proxy.h> Search control item.
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Public Members

uint8_t len
Length of type and parameter.

uint8_t type
MEDIA_PROXY_SEARCH_TYPE_<…>

char param[62]
Search parameter.

struct mpl_search
#include <media_proxy.h> Search.

Public Members

uint8_t len
The length of the mpl_search::search value.

char search[64]
Concatenated search control items - (type, length, param)

struct media_proxy_ctrl_cbs
#include <media_proxy.h> Callbacks to a controller, from the media proxy.

Given by a controller when registering

Public Members

void (*local_player_instance)(struct media_player *player, int err)
Media Player Instance callback.

Called when the local Media Player instance is registered or read (TODO). Also
called if the local player instance is already registered when the controller is reg-
istered. Provides the controller with the pointer to the local player instance.

Param player
Media player instance pointer

Param err
Error value. 0 on success, or errno on negative value.

void (*player_name_recv)(struct media_player *player, int err, const char *name)
Media Player Name receive callback.

Called when the Media Player Name is read or changed See also me-
dia_proxy_ctrl_name_get()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.
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Param name
The name of the media player

void (*icon_id_recv)(struct media_player *player, int err, uint64_t id)
Media Player Icon Object ID receive callback.

Called when the Media Player Icon Object ID is read See also me-
dia_proxy_ctrl_get_icon_id()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param id
The ID of the Icon object in the Object Transfer Service (48 bits)

void (*icon_url_recv)(struct media_player *player, int err, const char *url)
Media Player Icon URL receive callback.

Called when the Media Player Icon URL is read See also me-
dia_proxy_ctrl_get_icon_url()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param url
The URL of the icon

void (*track_changed_recv)(struct media_player *player, int err)
Track changed receive callback.

Called when the Current Track is changed
Param player

Media player instance pointer
Param err

Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

void (*track_title_recv)(struct media_player *player, int err, const char *title)
Track Title receive callback.

Called when the Track Title is read or changed See also me-
dia_proxy_ctrl_get_track_title()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param title
The title of the current track

void (*track_duration_recv)(struct media_player *player, int err, int32_t duration)
Track Duration receive callback.

Called when the Track Duration is read or changed See also me-
dia_proxy_ctrl_get_track_duration()
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Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param duration
The duration of the current track

void (*track_position_recv)(struct media_player *player, int err, int32_t position)
Track Position receive callback.

Called when the Track Position is read or changed See also me-
dia_proxy_ctrl_get_track_position() and media_proxy_ctrl_set_track_position()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param position
The player’s position in the track

void (*track_position_write)(struct media_player *player, int err, int32_t position)
Track Position write callback.

Called when the Track Position is written See also me-
dia_proxy_ctrl_set_track_position().

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param position
The position given attempted to write

void (*playback_speed_recv)(struct media_player *player, int err, int8_t speed)
Playback Speed receive callback.

Called when the Playback Speed is read or changed See also me-
dia_proxy_ctrl_get_playback_speed() and media_proxy_ctrl_set_playback_speed()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param speed
The playback speed parameter

void (*playback_speed_write)(struct media_player *player, int err, int8_t speed)
Playback Speed write callback.

Called when the Playback Speed is written See also me-
dia_proxy_ctrl_set_playback_speed()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.
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Param speed
The playback speed parameter attempted to write

void (*seeking_speed_recv)(struct media_player *player, int err, int8_t speed)
Seeking Speed receive callback.

Called when the Seeking Speed is read or changed See also me-
dia_proxy_ctrl_get_seeking_speed()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param speed
The seeking speed factor

void (*track_segments_id_recv)(struct media_player *player, int err, uint64_t id)
Track Segments Object ID receive callback.

Called when the Track Segments Object ID is read See also me-
dia_proxy_ctrl_get_track_segments_id()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param id
The ID of the track segments object in Object Transfer Service (48 bits)

void (*current_track_id_recv)(struct media_player *player, int err, uint64_t id)
Current Track Object ID receive callback.

Called when the Current Track Object ID is read or changed See also me-
dia_proxy_ctrl_get_current_track_id() and media_proxy_ctrl_set_current_track_id()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param id
The ID of the current track object in Object Transfer Service (48 bits)

void (*current_track_id_write)(struct media_player *player, int err, uint64_t id)
Current Track Object ID write callback.

Called when the Current Track Object ID is written See also me-
dia_proxy_ctrl_set_current_track_id()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param id
The ID (48 bits) attempted to write

void (*next_track_id_recv)(struct media_player *player, int err, uint64_t id)
Next Track Object ID receive callback.
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Called when the Next Track Object ID is read or changed See also me-
dia_proxy_ctrl_get_next_track_id() and media_proxy_ctrl_set_next_track_id()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param id
The ID of the next track object in Object Transfer Service (48 bits)

void (*next_track_id_write)(struct media_player *player, int err, uint64_t id)
Next Track Object ID write callback.

Called when the Next Track Object ID is written See also me-
dia_proxy_ctrl_set_next_track_id()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param id
The ID (48 bits) attempted to write

void (*parent_group_id_recv)(struct media_player *player, int err, uint64_t id)
Parent Group Object ID receive callback.

Called when the Parent Group Object ID is read or changed See also me-
dia_proxy_ctrl_get_parent_group_id()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param id
The ID of the parent group object in Object Transfer Service (48 bits)

void (*current_group_id_recv)(struct media_player *player, int err, uint64_t id)
Current Group Object ID receive callback.

Called when the Current Group Object ID is read or changed
See also media_proxy_ctrl_get_current_group_id() and me-
dia_proxy_ctrl_set_current_group_id()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param id
The ID of the current group object in Object Transfer Service (48 bits)

void (*current_group_id_write)(struct media_player *player, int err, uint64_t id)
Current Group Object ID write callback.

Called when the Current Group Object ID is written See also me-
dia_proxy_ctrl_set_current_group_id()

Param player
Media player instance pointer

1866 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param id
The ID (48 bits) attempted to write

void (*playing_order_recv)(struct media_player *player, int err, uint8_t order)
Playing Order receive callback.

Called when the Playing Order is read or changed See also me-
dia_proxy_ctrl_get_playing_order() and media_proxy_ctrl_set_playing_order()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param order
The playing order

void (*playing_order_write)(struct media_player *player, int err, uint8_t order)
Playing Order write callback.

Called when the Playing Order is written See also me-
dia_proxy_ctrl_set_playing_order()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param order
The playing order attempted to write

void (*playing_orders_supported_recv)(struct media_player *player, int err, uint16_t
orders)

Playing Orders Supported receive callback.

Called when the Playing Orders Supported is read See also me-
dia_proxy_ctrl_get_playing_orders_supported()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param orders
The playing orders supported

void (*media_state_recv)(struct media_player *player, int err, uint8_t state)
Media State receive callback.

Called when the Media State is read or changed See also me-
dia_proxy_ctrl_get_media_state() and media_proxy_ctrl_send_command()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param state
The media player state
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void (*command_send)(struct media_player *player, int err, const struct mpl_cmd *cmd)
Command send callback.

Called when a command has been sent See also media_proxy_ctrl_send_command()
Param player

Media player instance pointer
Param err

Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param cmd
The command sent

void (*command_recv)(struct media_player *player, int err, const struct mpl_cmd_ntf
*result)

Command result receive callback.

Called when a command result has been received See also me-
dia_proxy_ctrl_send_command()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param result
The result received

void (*commands_supported_recv)(struct media_player *player, int err, uint32_t
opcodes)

Commands supported receive callback.

Called when the Commands Supported is read or changed See also me-
dia_proxy_ctrl_get_commands_supported()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param opcodes
The supported command opcodes (bitmap)

void (*search_send)(struct media_player *player, int err, const struct mpl_search
*search)

Search send callback.

Called when a search has been sent See also media_proxy_ctrl_send_search()
Param player

Media player instance pointer
Param err

Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param search
The search sent

void (*search_recv)(struct media_player *player, int err, uint8_t result_code)
Search result code receive callback.

Called when a search result code has been received See also me-
dia_proxy_ctrl_send_search()
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The search result code tells whether the search was successful or not. For a suc-
cessful search, the actual results of the search (i.e. what was found as a result of
the search)can be accessed using the Search Results Object ID. The Search Results
Object ID has a separate callback - search_results_id_recv().

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param result_code
Search result code

void (*search_results_id_recv)(struct media_player *player, int err, uint64_t id)
Search Results Object ID receive callback See also me-
dia_proxy_ctrl_get_search_results_id()

Called when the Search Results Object ID is read or changed
Param player

Media player instance pointer
Param err

Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param id
The ID of the search results object in Object Transfer Service (48 bits)

void (*content_ctrl_id_recv)(struct media_player *player, int err, uint8_t ccid)
Content Control ID receive callback.

Called when the Content Control ID is read See also me-
dia_proxy_ctrl_get_content_ctrl_id()

Param player
Media player instance pointer

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param ccid
The content control ID

struct media_proxy_pl_calls
#include <media_proxy.h> Available calls in a player, that the media proxy can call.

Given by a player when registering.

Public Members

const char *(*get_player_name)(void)
Read Media Player Name.

Return
The name of the media player

uint64_t (*get_icon_id)(void)
Read Icon Object ID.

Get an ID (48 bit) that can be used to retrieve the Icon Object from an Object Trans-
fer Service

6.1. Bluetooth 1869



Zephyr Project Documentation, Release 3.7.99

See the Media Control Service spec v1.0 sections 3.2 and 4.1 for a description of the
Icon Object.

Return
The Icon Object ID

const char *(*get_icon_url)(void)
Read Icon URL.

Get a URL to the media player’s icon.
Return

The URL of the Icon

const char *(*get_track_title)(void)
Read Track Title.

Return
The title of the current track

int32_t (*get_track_duration)(void)
Read Track Duration.

The duration of a track is measured in hundredths of a second.
Return

The duration of the current track

int32_t (*get_track_position)(void)
Read Track Position.

The position of the player (the playing position) is measured in hundredths of a
second from the beginning of the track

Return
The position of the player in the current track

void (*set_track_position)(int32_t position)
Set Track Position.

Set the playing position of the media player in the current track. The position is
given in hundredths of a second, from the beginning of the track of the track for
positive values, and (backwards) from the end of the track for negative values.

Param position
The player position to set

int8_t (*get_playback_speed)(void)
Get Playback Speed.

The playback speed parameter is related to the actual playback speed as follows:
actual playback speed = 2^(speed_parameter/64)

A speed parameter of 0 corresponds to unity speed playback (i.e. playback at “nor-
mal” speed). A speed parameter of -128 corresponds to playback at one fourth of
normal speed, 127 corresponds to playback at almost four times the normal speed.

Return
The playback speed parameter

void (*set_playback_speed)(int8_t speed)
Set Playback Speed.

See the get_playback_speed() function for an explanation of the playback speed pa-
rameter.
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Note that the media player may not support all possible values of the playback
speed parameter. If the value given is not supported, and is higher than the current
value, the player should set the playback speed to the next higher supported value.
(And correspondingly to the next lower supported value for given values lower
than the current value.)

Param speed
The playback speed parameter to set

int8_t (*get_seeking_speed)(void)
Get Seeking Speed.

The seeking speed gives the speed with which the player is seeking. It is a fac-
tor, relative to real-time playback speed - a factor four means seeking happens at
four times the real-time playback speed. Positive values are for forward seeking,
negative values for backwards seeking.

The seeking speed is not settable - a non-zero seeking speed is the result of “fast
rewind” of “fast forward” commands.

Return
The seeking speed factor

uint64_t (*get_track_segments_id)(void)
Read Current Track Segments Object ID.

Get an ID (48 bit) that can be used to retrieve the Current Track Segments Object
from an Object Transfer Service

See the Media Control Service spec v1.0 sections 3.10 and 4.2 for a description of
the Track Segments Object.

Return
Current The Track Segments Object ID

uint64_t (*get_current_track_id)(void)
Read Current Track Object ID.

Get an ID (48 bit) that can be used to retrieve the Current Track Object from an
Object Transfer Service

See the Media Control Service spec v1.0 sections 3.11 and 4.3 for a description of
the Current Track Object.

Return
The Current Track Object ID

void (*set_current_track_id)(uint64_t id)
Set Current Track Object ID.

Change the player’s current track to the track given by the ID. (Behaves similarly
to the goto track command.)

Param id
The ID of a track object

uint64_t (*get_next_track_id)(void)
Read Next Track Object ID.

Get an ID (48 bit) that can be used to retrieve the Next Track Object from an Object
Transfer Service

Return
The Next Track Object ID
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void (*set_next_track_id)(uint64_t id)
Set Next Track Object ID.

Change the player’s next track to the track given by the ID.
Param id

The ID of a track object

uint64_t (*get_parent_group_id)(void)
Read Parent Group Object ID.

Get an ID (48 bit) that can be used to retrieve the Parent Track Object from an
Object Transfer Service

The parent group is the parent of the current group.

See the Media Control Service spec v1.0 sections 3.14 and 4.4 for a description of
the Current Track Object.

Return
The Current Group Object ID

uint64_t (*get_current_group_id)(void)
Read Current Group Object ID.

Get an ID (48 bit) that can be used to retrieve the Current Track Object from an
Object Transfer Service

See the Media Control Service spec v1.0 sections 3.14 and 4.4 for a description of
the Current Group Object.

Return
The Current Group Object ID

void (*set_current_group_id)(uint64_t id)
Set Current Group Object ID.

Change the player’s current group to the group given by the ID, and the current
track to the first track in that group.

Param id
The ID of a group object

uint8_t (*get_playing_order)(void)
Read Playing Order.

return The media player’s current playing order

void (*set_playing_order)(uint8_t order)
Set Playing Order.

Set the media player’s playing order. See the MEDIA_PROXY_PLAYING_ORDER_*
defines.

Param order
The playing order to set

uint16_t (*get_playing_orders_supported)(void)
Read Playing Orders Supported.

Read a bitmap containing the media player’s supported playing orders. See the
MEDIA_PROXY_PLAYING_ORDERS_SUPPORTED_* defines.

Return
The media player’s supported playing orders
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uint8_t (*get_media_state)(void)
Read Media State.

Read the media player’s state See the MEDIA_PROXY_MEDIA_STATE_* defines.
Return

The media player’s state

void (*send_command)(const struct mpl_cmd *command)
Send Command.

Send a command to the media player. For command opcodes (play, pause, …) - see
the MEDIA_PROXY_OP_* defines.

Param command
The command to send

uint32_t (*get_commands_supported)(void)
Read Commands Supported.

Read a bitmap containing the media player’s supported command opcodes. See
the MEDIA_PROXY_OP_SUP_* defines.

Return
The media player’s supported command opcodes

void (*send_search)(const struct mpl_search *search)
Set Search.

Write a search to the media player. (For the formatting of a search, see the Media
Control Service spec and the mcs.h file.)

Param search
The search to write

uint64_t (*get_search_results_id)(void)
Read Search Results Object ID.

Get an ID (48 bit) that can be used to retrieve the Search Results Object from an
Object Transfer Service

The search results object is a group object. The search results object only exists if
a successful search operation has been done.

Return
The Search Results Object ID

uint8_t (*get_content_ctrl_id)(void)
Read Content Control ID.

The content control ID identifies a content control service on a device, and links it
to the corresponding audio stream.

Return
The content control ID for the media player

Media Control Client

group bt_gatt_mcc
Bluetooth Media Control Client (MCC) interface.

Updated to the Media Control Profile specification revision 1.0
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Since
3.0

Version
0.8.0

Typedefs

typedef void (*bt_mcc_discover_mcs_cb)(struct bt_conn *conn, int err)
Callback function for bt_mcc_discover_mcs()

Called when a media control server is discovered

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

typedef void (*bt_mcc_read_player_name_cb)(struct bt_conn *conn, int err, const char
*name)

Callback function for bt_mcc_read_player_name()

Called when the player name is read or notified

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param name
Player name

typedef void (*bt_mcc_read_icon_obj_id_cb)(struct bt_conn *conn, int err, uint64_t
icon_id)

Callback function for bt_mcc_read_icon_obj_id()

Called when the icon object ID is read

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param icon_id
The ID of the Icon Object. This is a UINT48 in a uint64_t

typedef void (*bt_mcc_read_icon_url_cb)(struct bt_conn *conn, int err, const char
*icon_url)

Callback function for bt_mcc_read_icon_url()

Called when the icon URL is read

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param icon_url
The URL of the Icon
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typedef void (*bt_mcc_track_changed_ntf_cb)(struct bt_conn *conn, int err)
Callback function for track changed notifications.

Called when a track change is notified.

The track changed characteristic is a special case. It can not be read or set, it can only
be notified.

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

typedef void (*bt_mcc_read_track_title_cb)(struct bt_conn *conn, int err, const char
*title)

Callback function for bt_mcc_read_track_title()

Called when the track title is read or notified

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param title
The title of the track

typedef void (*bt_mcc_read_track_duration_cb)(struct bt_conn *conn, int err, int32_t dur)
Callback function for bt_mcc_read_track_duration()

Called when the track duration is read or notified

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param dur
The duration of the track

typedef void (*bt_mcc_read_track_position_cb)(struct bt_conn *conn, int err, int32_t pos)
Callback function for bt_mcc_read_track_position()

Called when the track position is read or notified

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param pos
The Track Position

typedef void (*bt_mcc_set_track_position_cb)(struct bt_conn *conn, int err, int32_t pos)
Callback function for bt_mcc_set_track_position()

Called when the track position is set

Param conn
The connection that was used to initialise the media control client
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Param err
Error value. 0 on success, GATT error or errno on fail

Param pos
The Track Position set (or attempted to set)

typedef void (*bt_mcc_read_playback_speed_cb)(struct bt_conn *conn, int err, int8_t
speed)

Callback function for bt_mcc_read_playback_speed()

Called when the playback speed is read or notified

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param speed
The Playback Speed

typedef void (*bt_mcc_set_playback_speed_cb)(struct bt_conn *conn, int err, int8_t speed)
Callback function for bt_mcc_set_playback_speed()

Called when the playback speed is set

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param speed
The Playback Speed set (or attempted to set)

typedef void (*bt_mcc_read_seeking_speed_cb)(struct bt_conn *conn, int err, int8_t speed)
Callback function for bt_mcc_read_seeking_speed()

Called when the seeking speed is read or notified

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param speed
The Seeking Speed

typedef void (*bt_mcc_read_segments_obj_id_cb)(struct bt_conn *conn, int err, uint64_t
id)

Callback function for bt_mcc_read_segments_obj_id()

Called when the track segments object ID is read

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param id
The Track Segments Object ID (UINT48)

1876 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

typedef void (*bt_mcc_read_current_track_obj_id_cb)(struct bt_conn *conn, int err,
uint64_t id)

Callback function for bt_mcc_read_current_track_obj_id()

Called when the current track object ID is read or notified

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param id
The Current Track Object ID (UINT48)

typedef void (*bt_mcc_set_current_track_obj_id_cb)(struct bt_conn *conn, int err,
uint64_t id)

Callback function for bt_mcc_set_current_track_obj_id()

Called when the current track object ID is set

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param id
The Object ID (UINT48) set (or attempted to set)

typedef void (*bt_mcc_read_next_track_obj_id_cb)(struct bt_conn *conn, int err,
uint64_t id)

Callback function for bt_mcc_read_next_track_obj_id_obj()

Called when the next track object ID is read or notified

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param id
The Next Track Object ID (UINT48)

typedef void (*bt_mcc_set_next_track_obj_id_cb)(struct bt_conn *conn, int err, uint64_t
id)

Callback function for bt_mcc_set_next_track_obj_id()

Called when the next track object ID is set

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param id
The Object ID (UINT48) set (or attempted to set)

typedef void (*bt_mcc_read_parent_group_obj_id_cb)(struct bt_conn *conn, int err,
uint64_t id)
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Callback function for bt_mcc_read_parent_group_obj_id()

Called when the parent group object ID is read or notified

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param id
The Parent Group Object ID (UINT48)

typedef void (*bt_mcc_read_current_group_obj_id_cb)(struct bt_conn *conn, int err,
uint64_t id)

Callback function for bt_mcc_read_current_group_obj_id()

Called when the current group object ID is read or notified

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param id
The Current Group Object ID (UINT48)

typedef void (*bt_mcc_set_current_group_obj_id_cb)(struct bt_conn *conn, int err,
uint64_t obj_id)

Callback function for bt_mcc_set_current_group_obj_id()

Called when the current group object ID is set

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param obj_id
The Object ID (UINT48) set (or attempted to set)

typedef void (*bt_mcc_read_playing_order_cb)(struct bt_conn *conn, int err, uint8_t
order)

Callback function for bt_mcc_read_playing_order()

Called when the playing order is read or notified

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param order
The playback order

typedef void (*bt_mcc_set_playing_order_cb)(struct bt_conn *conn, int err, uint8_t order)
Callback function for bt_mcc_set_playing_order()

Called when the playing order is set
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Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param order
The Playing Order set (or attempted to set)

typedef void (*bt_mcc_read_playing_orders_supported_cb)(struct bt_conn *conn, int err,
uint16_t orders)

Callback function for bt_mcc_read_playing_orders_supported()

Called when the supported playing orders are read or notified

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param orders
The playing orders supported (bitmap)

typedef void (*bt_mcc_read_media_state_cb)(struct bt_conn *conn, int err, uint8_t state)
Callback function for bt_mcc_read_media_state()

Called when the media state is read or notified

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param state
The Media State

typedef void (*bt_mcc_send_cmd_cb)(struct bt_conn *conn, int err, const struct mpl_cmd
*cmd)

Callback function for bt_mcc_send_cmd()

Called when a command is sent, i.e. when the media control point is set

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param cmd
The command sent

typedef void (*bt_mcc_cmd_ntf_cb)(struct bt_conn *conn, int err, const struct mpl_cmd_ntf
*ntf)

Callback function for command notifications.

Called when the media control point is notified

Notifications for commands (i.e. for writes to the media control point) use a different
parameter structure than what is used for sending commands (writing to the media
control point)

Param conn
The connection that was used to initialise the media control client
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Param err
Error value. 0 on success, GATT error or errno on fail

Param ntf
The command notification

typedef void (*bt_mcc_read_opcodes_supported_cb)(struct bt_conn *conn, int err,
uint32_t opcodes)

Callback function for bt_mcc_read_opcodes_supported()

Called when the supported opcodes (commands) are read or notified

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param opcodes
The supported opcodes

typedef void (*bt_mcc_send_search_cb)(struct bt_conn *conn, int err, const struct
mpl_search *search)

Callback function for bt_mcc_send_search()

Called when a search is sent, i.e. when the search control point is set

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param search
The search set (or attempted to set)

typedef void (*bt_mcc_search_ntf_cb)(struct bt_conn *conn, int err, uint8_t result_code)
Callback function for search notifications.

Called when the search control point is notified

Notifications for searches (i.e. for writes to the search control point) use a different pa-
rameter structure than what is used for sending searches (writing to the search control
point)

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param result_code
The search notification

typedef void (*bt_mcc_read_search_results_obj_id_cb)(struct bt_conn *conn, int err,
uint64_t id)

Callback function for bt_mcc_read_search_results_obj_id()

Called when the search results object ID is read or notified

Note that the Search Results Object ID value may be zero, in case the characteristic
does not exist on the server. (This will be the case if there has not been a successful
search.)
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Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param id
The Search Results Object ID (UINT48)

typedef void (*bt_mcc_read_content_control_id_cb)(struct bt_conn *conn, int err, uint8_t
ccid)

Callback function for bt_mcc_read_content_control_id()

Called when the content control ID is read

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param ccid
The Content Control ID

typedef void (*bt_mcc_otc_obj_selected_cb)(struct bt_conn *conn, int err)
Callback function for object selected.

Called when an object is selected

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

typedef void (*bt_mcc_otc_obj_metadata_cb)(struct bt_conn *conn, int err)
Callback function for bt_mcc_otc_read_object_metadata()

Called when object metadata is read

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

typedef void (*bt_mcc_otc_read_icon_object_cb)(struct bt_conn *conn, int err, struct
net_buf_simple *buf)

Callback function for bt_mcc_otc_read_icon_object()

Called when the icon object is read

If err is EMSGSIZE, the object contents have been truncated.

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param buf
Buffer containing the object contents
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typedef void (*bt_mcc_otc_read_track_segments_object_cb)(struct bt_conn *conn, int
err, struct net_buf_simple *buf)

Callback function for bt_mcc_otc_read_track_segments_object()

Called when the track segments object is read

If err is EMSGSIZE, the object contents have been truncated.

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param buf
Buffer containing the object contents

typedef void (*bt_mcc_otc_read_current_track_object_cb)(struct bt_conn *conn, int err,
struct net_buf_simple *buf)

Callback function for bt_mcc_otc_read_current_track_object()

Called when the current track object is read

If err is EMSGSIZE, the object contents have been truncated.

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param buf
Buffer containing the object contents

typedef void (*bt_mcc_otc_read_next_track_object_cb)(struct bt_conn *conn, int err,
struct net_buf_simple *buf)

Callback function for bt_mcc_otc_read_next_track_object()

Called when the next track object is read

If err is EMSGSIZE, the object contents have been truncated.

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param buf
Buffer containing the object contents

typedef void (*bt_mcc_otc_read_parent_group_object_cb)(struct bt_conn *conn, int err,
struct net_buf_simple *buf)

Callback function for bt_mcc_otc_read_parent_group_object()

Called when the parent group object is read

If err is EMSGSIZE, the object contents have been truncated.

1882 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param buf
Buffer containing the object contents

typedef void (*bt_mcc_otc_read_current_group_object_cb)(struct bt_conn *conn, int err,
struct net_buf_simple *buf)

Callback function for bt_mcc_otc_read_current_group_object()

Called when the current group object is read

If err is EMSGSIZE, the object contents have been truncated.

Param conn
The connection that was used to initialise the media control client

Param err
Error value. 0 on success, GATT error or errno on fail

Param buf
Buffer containing the object contents

Functions

int bt_mcc_init(struct bt_mcc_cb *cb)
Initialize Media Control Client.

Parameters
• cb – Callbacks to be used

Returns
0 if success, errno on failure.

int bt_mcc_discover_mcs(struct bt_conn *conn, bool subscribe)
Discover Media Control Service.

Discover Media Control Service (MCS) on the server given by the connection Optionally
subscribe to notifications.

Shall be called once, after media control client initialization and before using other
media control client functionality.

Parameters
• conn – Connection to the peer device

• subscribe – Whether to subscribe to notifications

Returns
0 if success, errno on failure.

int bt_mcc_read_player_name(struct bt_conn *conn)
Read Media Player Name.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.
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int bt_mcc_read_icon_obj_id(struct bt_conn *conn)
Read Icon Object ID.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_read_icon_url(struct bt_conn *conn)
Read Icon Object URL.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_read_track_title(struct bt_conn *conn)
Read Track Title.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_read_track_duration(struct bt_conn *conn)
Read Track Duration.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_read_track_position(struct bt_conn *conn)
Read Track Position.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_set_track_position(struct bt_conn *conn, int32_t pos)
Set Track position.

Parameters
• conn – Connection to the peer device

• pos – Track position

Returns
0 if success, errno on failure.

int bt_mcc_read_playback_speed(struct bt_conn *conn)
Read Playback speed.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.
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int bt_mcc_set_playback_speed(struct bt_conn *conn, int8_t speed)
Set Playback Speed.

Parameters
• conn – Connection to the peer device

• speed – Playback speed

Returns
0 if success, errno on failure.

int bt_mcc_read_seeking_speed(struct bt_conn *conn)
Read Seeking speed.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_read_segments_obj_id(struct bt_conn *conn)
Read Track Segments Object ID.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_read_current_track_obj_id(struct bt_conn *conn)
Read Current Track Object ID.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_set_current_track_obj_id(struct bt_conn *conn, uint64_t id)
Set Current Track Object ID.

Set the Current Track to the track given by the id parameter

Parameters
• conn – Connection to the peer device

• id – Object Transfer Service ID (UINT48) of the track to set as the current
track

Returns
0 if success, errno on failure.

int bt_mcc_read_next_track_obj_id(struct bt_conn *conn)
Read Next Track Object ID.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.
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int bt_mcc_set_next_track_obj_id(struct bt_conn *conn, uint64_t id)
Set Next Track Object ID.

Set the Next Track to the track given by the id parameter

Parameters
• conn – Connection to the peer device

• id – Object Transfer Service ID (UINT48) of the track to set as the next
track

Returns
0 if success, errno on failure.

int bt_mcc_read_current_group_obj_id(struct bt_conn *conn)
Read Current Group Object ID.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_set_current_group_obj_id(struct bt_conn *conn, uint64_t id)
Set Current Group Object ID.

Set the Current Group to the group given by the id parameter

Parameters
• conn – Connection to the peer device

• id – Object Transfer Service ID (UINT48) of the group to set as the current
group

Returns
0 if success, errno on failure.

int bt_mcc_read_parent_group_obj_id(struct bt_conn *conn)
Read Parent Group Object ID.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_read_playing_order(struct bt_conn *conn)
Read Playing Order.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_set_playing_order(struct bt_conn *conn, uint8_t order)
Set Playing Order.

Parameters
• conn – Connection to the peer device

• order – Playing order

Returns
0 if success, errno on failure.
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int bt_mcc_read_playing_orders_supported(struct bt_conn *conn)
Read Playing Orders Supported.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_read_media_state(struct bt_conn *conn)
Read Media State.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_send_cmd(struct bt_conn *conn, const struct mpl_cmd *cmd)
Send a command.

Write a command (e.g. “play”, “pause”) to the server’s media control point.

Parameters
• conn – Connection to the peer device

• cmd – The command to send

Returns
0 if success, errno on failure.

int bt_mcc_read_opcodes_supported(struct bt_conn *conn)
Read Opcodes Supported.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_send_search(struct bt_conn *conn, const struct mpl_search *search)
Send a Search command.

Write a search to the server’s search control point.

Parameters
• conn – Connection to the peer device

• search – The search

Returns
0 if success, errno on failure.

int bt_mcc_read_search_results_obj_id(struct bt_conn *conn)
Search Results Group Object ID.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.
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int bt_mcc_read_content_control_id(struct bt_conn *conn)
Read Content Control ID.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_otc_read_object_metadata(struct bt_conn *conn)
Read the current object metadata.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_otc_read_icon_object(struct bt_conn *conn)
Read the Icon Object.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_otc_read_track_segments_object(struct bt_conn *conn)
Read the Track Segments Object.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_otc_read_current_track_object(struct bt_conn *conn)
Read the Current Track Object.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_otc_read_next_track_object(struct bt_conn *conn)
Read the Next Track Object.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

int bt_mcc_otc_read_current_group_object(struct bt_conn *conn)
Read the Current Group Object.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.
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int bt_mcc_otc_read_parent_group_object(struct bt_conn *conn)
Read the Parent Group Object.

Parameters
• conn – Connection to the peer device

Returns
0 if success, errno on failure.

struct bt_ots_client *bt_mcc_otc_inst(struct bt_conn *conn)
Look up MCC OTC instance.

Parameters
• conn – The connection to the MCC server.

Returns
Pointer to a MCC OTC instance if found else NULL.

struct bt_mcc_cb
#include <mcc.h> Media control client callbacks.

Public Members

bt_mcc_discover_mcs_cb discover_mcs
Callback when discovery has finished.

bt_mcc_read_player_name_cb read_player_name
Callback when reading the player name.

bt_mcc_read_icon_obj_id_cb read_icon_obj_id
Callback when reading the icon object ID.

bt_mcc_read_icon_url_cb read_icon_url
Callback when reading the icon URL.

bt_mcc_track_changed_ntf_cb track_changed_ntf
Callback when getting a track changed notification.

bt_mcc_read_track_title_cb read_track_title
Callback when reading the track title.

bt_mcc_read_track_duration_cb read_track_duration
Callback when reading the track duration.

bt_mcc_read_track_position_cb read_track_position
Callback when reading the track position.

bt_mcc_set_track_position_cb set_track_position
Callback when setting the track position.

bt_mcc_read_playback_speed_cb read_playback_speed
Callback when reading the playback speed.
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bt_mcc_set_playback_speed_cb set_playback_speed
Callback when setting the playback speed.

bt_mcc_read_seeking_speed_cb read_seeking_speed
Callback when reading the seeking speed.

bt_mcc_read_segments_obj_id_cb read_segments_obj_id
Callback when reading the segments object ID.

bt_mcc_read_current_track_obj_id_cb read_current_track_obj_id
Callback when reading the current track object ID.

bt_mcc_set_current_track_obj_id_cb set_current_track_obj_id
Callback when setting the current track object ID.

bt_mcc_read_next_track_obj_id_cb read_next_track_obj_id
Callback when reading the next track object ID.

bt_mcc_set_next_track_obj_id_cb set_next_track_obj_id
Callback when setting the next track object ID.

bt_mcc_read_current_group_obj_id_cb read_current_group_obj_id
Callback when reading the current group object ID.

bt_mcc_set_current_group_obj_id_cb set_current_group_obj_id
Callback when setting the current group object ID.

bt_mcc_read_parent_group_obj_id_cb read_parent_group_obj_id
Callback when reading the parent group object ID.

bt_mcc_read_playing_order_cb read_playing_order
Callback when reading the playing order.

bt_mcc_set_playing_order_cb set_playing_order
Callback when setting the playing order.

bt_mcc_read_playing_orders_supported_cb read_playing_orders_supported
Callback when reading the supported playing orders.

bt_mcc_read_media_state_cb read_media_state
Callback when reading the media state.

bt_mcc_send_cmd_cb send_cmd
Callback when sending a command.

bt_mcc_cmd_ntf_cb cmd_ntf
Callback command notifications.
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bt_mcc_read_opcodes_supported_cb read_opcodes_supported
Callback when reading the supported opcodes.

bt_mcc_send_search_cb send_search
Callback when sending the a search query.

bt_mcc_search_ntf_cb search_ntf
Callback when receiving a search notification.

bt_mcc_read_search_results_obj_id_cb read_search_results_obj_id
Callback when reading the search results object ID.

bt_mcc_read_content_control_id_cb read_content_control_id
Callback when reading the content control ID.

bt_mcc_otc_obj_selected_cb otc_obj_selected
Callback when selecting an object.

bt_mcc_otc_obj_metadata_cb otc_obj_metadata
Callback when receiving the current object metadata.

bt_mcc_otc_read_icon_object_cb otc_icon_object
Callback when reading the current icon object.

bt_mcc_otc_read_track_segments_object_cb otc_track_segments_object
Callback when reading the track segments object.

bt_mcc_otc_read_current_track_object_cb otc_current_track_object
Callback when reading the current track object.

bt_mcc_otc_read_next_track_object_cb otc_next_track_object
Callback when reading the next track object.

bt_mcc_otc_read_current_group_object_cb otc_current_group_object
Callback when reading the current group object.

bt_mcc_otc_read_parent_group_object_cb otc_parent_group_object
Callback when reading the parent group object.

Bluetooth Microphone Control

API Reference

group bt_gatt_micp
Microphone Control Profile (MICP)

Since
2.7
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Version
0.8.0

Application error codes

BT_MICP_ERR_MUTE_DISABLED
Mute/unmute commands are disabled.

Microphone Control Profile mute states

BT_MICP_MUTE_UNMUTED
The microphone state is unmuted.

BT_MICP_MUTE_MUTED
The microphone state is muted.

BT_MICP_MUTE_DISABLED
The microphone state is disabled and cannot be muted or unmuted.

Defines

BT_MICP_MIC_DEV_AICS_CNT
Defines the maximum number of Microphone Control Service instances for the Micro-
phone Control Profile Microphone Device.

Functions

int bt_micp_mic_dev_register(struct bt_micp_mic_dev_register_param *param)
Initialize the Microphone Control Profile Microphone Device.

This will enable the Microphone Control Service instance and make it discoverable by
Microphone Controllers.

Parameters
• param – Pointer to an initialization structure.

Returns
0 if success, errno on failure.

int bt_micp_mic_dev_included_get(struct bt_micp_included *included)
Get Microphone Device included services.

Returns a pointer to a struct that contains information about the Microphone Device
included Audio Input Control Service instances.

Requires that CONFIG_BT_MICP_MIC_DEV_AICS is enabled.

Parameters
• included – Pointer to store the result in.

Returns
0 if success, errno on failure.
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int bt_micp_mic_dev_unmute(void)
Unmute the Microphone Device.

Returns
0 on success, GATT error value on fail.

int bt_micp_mic_dev_mute(void)
Mute the Microphone Device.

Returns
0 on success, GATT error value on fail.

int bt_micp_mic_dev_mute_disable(void)
Disable the mute functionality on the Microphone Device.

Can be reenabled by called bt_micp_mic_dev_mute or bt_micp_mic_dev_unmute.

Returns
0 on success, GATT error value on fail.

int bt_micp_mic_dev_mute_get(void)
Read the mute state on the Microphone Device.

Returns
0 on success, GATT error value on fail.

int bt_micp_mic_ctlr_included_get(struct bt_micp_mic_ctlr *mic_ctlr, struct
bt_micp_included *included)

Get Microphone Control Profile included services.

Returns a pointer to a struct that contains information about the Microphone Control
Profile included services instances, such as pointers to the Audio Input Control Service
instances.

Requires that CONFIG_BT_MICP_MIC_CTLR_AICS is enabled.

Parameters
• mic_ctlr – Microphone Controller instance pointer.

• included – [out] Pointer to store the result in.

Returns
0 if success, errno on failure.

int bt_micp_mic_ctlr_conn_get(const struct bt_micp_mic_ctlr *mic_ctlr, struct bt_conn
**conn)

Get the connection pointer of a Microphone Controller instance.

Get the Bluetooth connection pointer of a Microphone Controller instance.

Parameters
• mic_ctlr – Microphone Controller instance pointer.

• conn – Connection pointer.

Returns
0 if success, errno on failure.

struct bt_micp_mic_ctlr *bt_micp_mic_ctlr_get_by_conn(const struct bt_conn *conn)
Get the volume controller from a connection pointer.

Get the Volume Control Profile Volume Controller pointer from a connection pointer.
Only volume controllers that have been initiated via bt_micp_mic_ctlr_discover() can
be retrieved.

Parameters
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• conn – Connection pointer.

Return values
• Pointer – to a Microphone Control Profile Microphone Controller in-

stance

• NULL – if conn is NULL or if the connection has not done discovery yet

int bt_micp_mic_ctlr_discover(struct bt_conn *conn, struct bt_micp_mic_ctlr **mic_ctlr)
Discover Microphone Control Service.

This will start a GATT discovery and setup handles and subscriptions. This shall be
called once before any other actions can be executed for the peer device, and the
bt_micp_mic_ctlr_cb::discover callback will notify when it is possible to start remote
operations.

•

Parameters
• conn – The connection to initialize the profile for.

• mic_ctlr – [out] Valid remote instance object on success.

Returns
0 on success, GATT error value on fail.

int bt_micp_mic_ctlr_unmute(struct bt_micp_mic_ctlr *mic_ctlr)
Unmute a remote Microphone Device.

Parameters
• mic_ctlr – Microphone Controller instance pointer.

Returns
0 on success, GATT error value on fail.

int bt_micp_mic_ctlr_mute(struct bt_micp_mic_ctlr *mic_ctlr)
Mute a remote Microphone Device.

Parameters
• mic_ctlr – Microphone Controller instance pointer.

Returns
0 on success, GATT error value on fail.

int bt_micp_mic_ctlr_mute_get(struct bt_micp_mic_ctlr *mic_ctlr)
Read the mute state of a remote Microphone Device.

Parameters
• mic_ctlr – Microphone Controller instance pointer.

Returns
0 on success, GATT error value on fail.

int bt_micp_mic_ctlr_cb_register(struct bt_micp_mic_ctlr_cb *cb)
Registers the callbacks used by Microphone Controller.

This can only be done as the client.

Parameters
• cb – The callback structure.

Returns
0 if success, errno on failure.
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struct bt_micp_mic_dev_register_param
#include <micp.h> Register parameters structure for Microphone Control Service.

Public Members

struct bt_aics_register_param aics_param[0]
Register parameter structure for Audio Input Control Services.

struct bt_micp_mic_dev_cb *cb
Microphone Control Profile callback structure.

struct bt_micp_included
#include <micp.h> Microphone Control Profile included services.

Used for to represent the Microphone Control Profile included service instances, for
either a Microphone Controller or a Microphone Device. The instance pointers either
represent local service instances, or remote service instances.

Public Members

uint8_t aics_cnt
Number of Audio Input Control Service instances.

struct bt_aics **aics
Array of pointers to Audio Input Control Service instances.

struct bt_micp_mic_dev_cb
#include <micp.h> Struct to hold the Microphone Device callbacks.

These can be registered for usage with bt_micp_mic_dev_register().

Public Members

void (*mute)(uint8_t mute)
Callback function for Microphone Device mute.

Called when the value is read with bt_micp_mic_dev_mute_get(), or if the value is
changed by either the Microphone Device or a Microphone Controller.

Parammute
The mute setting of the Microphone Control Service.

struct bt_micp_mic_ctlr_cb
#include <micp.h> Struct to hold the Microphone Controller callbacks.

These can be registered for usage with bt_micp_mic_ctlr_cb_register().
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Public Members

void (*mute)(struct bt_micp_mic_ctlr *mic_ctlr, int err, uint8_t mute)
Callback function for Microphone Control Profile mute.

Called when the value is read, or if the value is changed by either the Microphone
Device or a Microphone Controller.

Parammic_ctlr
Microphone Controller instance pointer.

Param err
Error value. 0 on success, GATT error or errno on fail. For notifications,
this will always be 0.

Parammute
The mute setting of the Microphone Control Service.

void (*discover)(struct bt_micp_mic_ctlr *mic_ctlr, int err, uint8_t aics_count)
Callback function for bt_micp_mic_ctlr_discover().

Parammic_ctlr
Microphone Controller instance pointer.

Param err
Error value. 0 on success, GATT error or errno on fail.

Param aics_count
Number of Audio Input Control Service instances on peer device.

void (*mute_written)(struct bt_micp_mic_ctlr *mic_ctlr, int err)
Callback function for Microphone Control Profile mute/unmute.

Parammic_ctlr
Microphone Controller instance pointer.

Param err
Error value. 0 on success, GATT error or errno on fail.

void (*unmute_written)(struct bt_micp_mic_ctlr *mic_ctlr, int err)
Callback function for Microphone Control Profile mute/unmute.

Parammic_ctlr
Microphone Controller instance pointer.

Param err
Error value. 0 on success, GATT error or errno on fail.

Bluetooth Audio Volume Control

API Reference

group bt_gatt_vcp
Volume Control Profile (VCP)

The Volume Control Profile (VCP) provides procedures to control the volume level and mute
state on audio devices.

Since
2.7

Version
0.8.0
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Volume Control Service Error codes

BT_VCP_ERR_INVALID_COUNTER
The Change_Counter operand value does not match the Change_Counter field value of
the Volume State characteristic.

BT_VCP_ERR_OP_NOT_SUPPORTED
An invalid opcode has been used in a control point procedure.

Volume Control Service Mute Values

BT_VCP_STATE_UNMUTED
The volume state is unmuted.

BT_VCP_STATE_MUTED
The volume state is muted.

Defines

BT_VCP_VOL_REND_VOCS_CNT
Defines the maximum number of Volume Offset Control service instances for the Vol-
ume Control Profile Volume Renderer.

BT_VCP_VOL_REND_AICS_CNT
Defines the maximum number of Audio Input Control service instances for the Volume
Control Profile Volume Renderer.

Functions

int bt_vcp_vol_rend_included_get(struct bt_vcp_included *included)
Get Volume Control Service included services.

Returns a pointer to a struct that contains information about the Volume Control Ser-
vice included service instances, such as pointers to the Volume Offset Control Service
(Volume Offset Control Service) or Audio Input Control Service (AICS) instances.

Parameters
• included – [out] Pointer to store the result in.

Returns
0 if success, errno on failure.

int bt_vcp_vol_rend_register(struct bt_vcp_vol_rend_register_param *param)
Register the Volume Control Service.

This will register and enable the service and make it discoverable by clients.

Parameters
• param – Volume Control Service register parameters.

Returns
0 if success, errno on failure.
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int bt_vcp_vol_rend_set_step(uint8_t volume_step)
Set the Volume Control Service volume step size.

Set the value that the volume changes, when changed relatively with e.g.
bt_vcp_vol_rend_vol_down or bt_vcp_vol_rend_vol_up.

This can only be done as the server.

Parameters
• volume_step – The volume step size (1-255).

Returns
0 if success, errno on failure.

int bt_vcp_vol_rend_get_state(void)
Get the Volume Control Service volume state.

Returns
0 if success, errno on failure.

int bt_vcp_vol_rend_get_flags(void)
Get the Volume Control Service flags.

Returns
0 if success, errno on failure.

int bt_vcp_vol_rend_vol_down(void)
Turn the volume down by one step on the server.

Returns
0 if success, errno on failure.

int bt_vcp_vol_rend_vol_up(void)
Turn the volume up by one step on the server.

Returns
0 if success, errno on failure.

int bt_vcp_vol_rend_unmute_vol_down(void)
Turn the volume down and unmute the server.

Returns
0 if success, errno on failure.

int bt_vcp_vol_rend_unmute_vol_up(void)
Turn the volume up and unmute the server.

Returns
0 if success, errno on failure.

int bt_vcp_vol_rend_set_vol(uint8_t volume)
Set the volume on the server.

Parameters
• volume – The absolute volume to set.

Returns
0 if success, errno on failure.

int bt_vcp_vol_rend_unmute(void)
Unmute the server.

Returns
0 if success, errno on failure.
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int bt_vcp_vol_rend_mute(void)
Mute the server.

Returns
0 if success, errno on failure.

int bt_vcp_vol_ctlr_cb_register(struct bt_vcp_vol_ctlr_cb *cb)
Registers the callbacks used by the Volume Controller.

Parameters
• cb – The callback structure.

Return values
• 0 – on success

• -EINVAL – if cb is NULL

• -EALREADY – if cb was already registered

int bt_vcp_vol_ctlr_cb_unregister(struct bt_vcp_vol_ctlr_cb *cb)
Unregisters the callbacks used by the Volume Controller.

Parameters
• cb – The callback structure.

Return values
• 0 – on success

• -EINVAL – if cb is NULL

• -EALREADY – if cb was not registered

int bt_vcp_vol_ctlr_discover(struct bt_conn *conn, struct bt_vcp_vol_ctlr **vol_ctlr)
Discover Volume Control Service and included services.

This will start a GATT discovery and setup handles and subscriptions. This shall be
called once before any other actions can be executed for the peer device, and the
bt_vcp_vol_ctlr_cb::discover callback will notify when it is possible to start remote op-
erations.

This shall only be done as the client,

Parameters
• conn – The connection to discover Volume Control Service for.

• vol_ctlr – [out] Valid remote instance object on success.

Returns
0 if success, errno on failure.

struct bt_vcp_vol_ctlr *bt_vcp_vol_ctlr_get_by_conn(const struct bt_conn *conn)
Get the volume controller from a connection pointer.

Get the Volume Control Profile Volume Controller pointer from a connection pointer.
Only volume controllers that have been initiated via bt_vcp_vol_ctlr_discover() can be
retrieved.

Parameters
• conn – Connection pointer.

Return values
• Pointer – to a Volume Control Profile Volume Controller instance

• NULL – if conn is NULL or if the connection has not done discovery yet
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int bt_vcp_vol_ctlr_conn_get(const struct bt_vcp_vol_ctlr *vol_ctlr, struct bt_conn
**conn)

Get the connection pointer of a client instance.

Get the Bluetooth connection pointer of a Volume Control Service client instance.

Parameters
• vol_ctlr – Volume Controller instance pointer.

• conn – [out] Connection pointer.

Returns
0 if success, errno on failure.

int bt_vcp_vol_ctlr_included_get(struct bt_vcp_vol_ctlr *vol_ctlr, struct bt_vcp_included
*included)

Get Volume Control Service included services.

Returns a pointer to a struct that contains information about the Volume Control Ser-
vice included service instances, such as pointers to the Volume Offset Control Service
(Volume Offset Control Service) or Audio Input Control Service (AICS) instances.

Requires that CONFIG_BT_VCP_VOL_CTLR_VOCS or CONFIG_BT_VCP_VOL_CTLR_AICS is en-
abled.

Parameters
• vol_ctlr – Volume Controller instance pointer.

• included – [out] Pointer to store the result in.

Returns
0 if success, errno on failure.

int bt_vcp_vol_ctlr_read_state(struct bt_vcp_vol_ctlr *vol_ctlr)
Read the volume state of a remote Volume Renderer.

Parameters
• vol_ctlr – Volume Controller instance pointer.

Returns
0 if success, errno on failure.

int bt_vcp_vol_ctlr_read_flags(struct bt_vcp_vol_ctlr *vol_ctlr)
Read the volume flags of a remote Volume Renderer.

Parameters
• vol_ctlr – Volume Controller instance pointer.

Returns
0 if success, errno on failure.

int bt_vcp_vol_ctlr_vol_down(struct bt_vcp_vol_ctlr *vol_ctlr)
Turn the volume down one step on a remote Volume Renderer.

Parameters
• vol_ctlr – Volume Controller instance pointer.

Returns
0 if success, errno on failure.

int bt_vcp_vol_ctlr_vol_up(struct bt_vcp_vol_ctlr *vol_ctlr)
Turn the volume up one step on a remote Volume Renderer.

Parameters
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• vol_ctlr – Volume Controller instance pointer.

Returns
0 if success, errno on failure.

int bt_vcp_vol_ctlr_unmute_vol_down(struct bt_vcp_vol_ctlr *vol_ctlr)
Turn the volume down one step and unmute on a remote Volume Renderer.

Parameters
• vol_ctlr – Volume Controller instance pointer.

Returns
0 if success, errno on failure.

int bt_vcp_vol_ctlr_unmute_vol_up(struct bt_vcp_vol_ctlr *vol_ctlr)
Turn the volume up one step and unmute on a remote Volume Renderer.

Parameters
• vol_ctlr – Volume Controller instance pointer.

Returns
0 if success, errno on failure.

int bt_vcp_vol_ctlr_set_vol(struct bt_vcp_vol_ctlr *vol_ctlr, uint8_t volume)
Set the absolute volume on a remote Volume Renderer.

Parameters
• vol_ctlr – Volume Controller instance pointer.

• volume – The absolute volume to set.

Returns
0 if success, errno on failure.

int bt_vcp_vol_ctlr_unmute(struct bt_vcp_vol_ctlr *vol_ctlr)
Unmute a remote Volume Renderer.

Parameters
• vol_ctlr – Volume Controller instance pointer.

Returns
0 if success, errno on failure.

int bt_vcp_vol_ctlr_mute(struct bt_vcp_vol_ctlr *vol_ctlr)
Mute a remote Volume Renderer.

Parameters
• vol_ctlr – Volume Controller instance pointer.

Returns
0 if success, errno on failure.

struct bt_vcp_vol_rend_register_param
#include <vcp.h> Register structure for Volume Control Service.

Public Members

uint8_t step
Initial step size (1-255)
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uint8_t mute
Initial mute state (0-1)

uint8_t volume
Initial volume level (0-255)

struct bt_vocs_register_param vocs_param[0]
Register parameters for Volume Offset Control Services.

struct bt_aics_register_param aics_param[0]
Register parameters for Audio Input Control Services.

struct bt_vcp_vol_rend_cb *cb
Volume Control Service callback structure.

struct bt_vcp_included
#include <vcp.h> Volume Control Service included services.

Used for to represent the Volume Control Service included service instances, for either
a client or a server. The instance pointers either represent local server instances, or
remote service instances.

Public Members

uint8_t vocs_cnt
Number of Volume Offset Control Service instances.

struct bt_vocs **vocs
Array of pointers to Volume Offset Control Service instances.

uint8_t aics_cnt
Number of Audio Input Control Service instances.

struct bt_aics **aics
Array of pointers to Audio Input Control Service instances.

struct bt_vcp_vol_rend_cb
#include <vcp.h> Struct to hold the Volume Renderer callbacks.

These can be registered for usage with bt_vcp_vol_rend_register().

Public Members

void (*state)(int err, uint8_t volume, uint8_t mute)
Callback function for Volume Control Service volume state.

Called when the value is locally read with bt_vcp_vol_rend_get_state(), or if the state
is changed by either the Volume Renderer or a remote Volume Controller.

1902 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param volume
The volume of the Volume Control Service server.

Parammute
The mute setting of the Volume Control Service server.

void (*flags)(int err, uint8_t flags)
Callback function for Volume Control Service flags.

Called when the value is locally read as the server. Called when the value is re-
motely read as the client. Called if the value is changed by either the server or
client.

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param flags
The flags of the Volume Control Service server.

struct bt_vcp_vol_ctlr_cb
#include <vcp.h> Struct to hold the Volume Controller callbacks.

These can be registered for usage with bt_vcp_vol_ctlr_cb_register().

Public Members

void (*state)(struct bt_vcp_vol_ctlr *vol_ctlr, int err, uint8_t volume, uint8_t mute)
Callback function for Volume Control Profile volume state.

Called when the value is remotely read as the Volume Controller. Called if the value
is changed by either the Volume Renderer or Volume Controller, and notified to the
to Volume Controller.

Param vol_ctlr
Volume Controller instance pointer.

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param volume
The volume of the Volume Renderer.

Parammute
The mute setting of the Volume Renderer.

void (*flags)(struct bt_vcp_vol_ctlr *vol_ctlr, int err, uint8_t flags)
Callback function for Volume Control Profile volume flags.

Called when the value is remotely read as the Volume Controller. Called if the value
is changed by the Volume Renderer.

A non-zero value indicates the volume has been changed on the Volume Renderer
since it was booted.

Param vol_ctlr
Volume Controller instance pointer.

Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.
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Param flags
The flags of the Volume Renderer.

void (*discover)(struct bt_vcp_vol_ctlr *vol_ctlr, int err, uint8_t vocs_count, uint8_t
aics_count)

Callback function for bt_vcp_vol_ctlr_discover().

This callback is called once the discovery procedure is completed.
Param vol_ctlr

Volume Controller instance pointer.
Param err

Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

Param vocs_count
Number of Volume Offset Control Service instances on the remote Volume
Renderer.

Param aics_count
Number of Audio Input Control Service instances the remote Volume Ren-
derer.

void (*vol_down)(struct bt_vcp_vol_ctlr *vol_ctlr, int err)
Callback function for bt_vcp_vol_ctlr_vol_down().

Called when the volume down procedure is completed.
Param vol_ctlr

Volume Controller instance pointer.
Param err

Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

void (*vol_up)(struct bt_vcp_vol_ctlr *vol_ctlr, int err)
Callback function for bt_vcp_vol_ctlr_vol_up().

Called when the volume up procedure is completed.
Param vol_ctlr

Volume Controller instance pointer.
Param err

Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

void (*mute)(struct bt_vcp_vol_ctlr *vol_ctlr, int err)
Callback function for bt_vcp_vol_ctlr_mute().

Called when the mute procedure is completed.
Param vol_ctlr

Volume Controller instance pointer.
Param err

Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

void (*unmute)(struct bt_vcp_vol_ctlr *vol_ctlr, int err)
Callback function for bt_vcp_vol_ctlr_unmute().

Called when the unmute procedure is completed.
Param vol_ctlr

Volume Controller instance pointer.
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Param err
Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

void (*vol_down_unmute)(struct bt_vcp_vol_ctlr *vol_ctlr, int err)
Callback function for bt_vcp_vol_ctlr_vol_down_unmute().

Called when the volume down and unmute procedure is completed.
Param vol_ctlr

Volume Controller instance pointer.
Param err

Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

void (*vol_up_unmute)(struct bt_vcp_vol_ctlr *vol_ctlr, int err)
Callback function for bt_vcp_vol_ctlr_vol_up_unmute().

Called when the volume up and unmute procedure is completed.
Param vol_ctlr

Volume Controller instance pointer.
Param err

Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

void (*vol_set)(struct bt_vcp_vol_ctlr *vol_ctlr, int err)
Callback function for bt_vcp_vol_ctlr_vol_set().

Called when the set absolute volume procedure is completed.
Param vol_ctlr

Volume Controller instance pointer.
Param err

Error value. 0 on success, GATT error on positive value or errno on neg-
ative value.

struct bt_vocs_cb vocs_cb
Volume Offset Control Service callbacks.

struct bt_aics_cb aics_cb
Audio Input Control Service callbacks.

Bluetooth: Basic Audio Profile This document describes how to run Basic Audio Profile func-
tionality which includes:

• Capabilities and Endpoint discovery

• Audio Stream Endpoint procedures

Commands
bap --help
Subcommands:

init
select_broadcast : <stream>
create_broadcast : [preset <preset_name>] [enc <broadcast_code>]
start_broadcast :
stop_broadcast :
delete_broadcast :

(continues on next page)
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(continued from previous page)
create_broadcast_sink : 0x<broadcast_id>
sync_broadcast : 0x<bis_index> [[[0x<bis_index>] 0x<bis_index>] ...]

[bcode <broadcast code> || bcode_str <broadcast code
as string>]

stop_broadcast_sink : Stops broadcast sink
term_broadcast_sink :
discover : [dir: sink, source]
config : <direction: sink, source> <index> [loc <loc_bits>]

[preset <preset_name>]
stream_qos : interval [framing] [latency] [pd] [sdu] [phy] [rtn]
qos : Send QoS configure for Unicast Group
enable : [context]
connect : Connect the CIS of the stream
stop
list
print_ase_info : Print ASE info for default connection
metadata : [context]
start
disable
release
select_unicast : <stream>
preset : <sink, source, broadcast> [preset]

[config
[freq <frequency>]
[dur <duration>]
[chan_alloc <location>]
[frame_len <frame length>]
[frame_blks <frame blocks>]]

[meta
[pref_ctx <context>]
[stream_ctx <context>]
[program_info <program info>]
[lang <ISO 639-3 lang>]
[ccid_list <ccids>]
[parental_rating <rating>]
[program_info_uri <URI>]
[audio_active_state <state>]
[bcast_flag]
[extended <meta>]
[vendor <meta>]]

send : Send to Audio Stream [data]
bap_stats : Sets or gets the statistics reporting interval in # of

packets
set_location : <direction: sink, source> <location bitmask>
set_context : <direction: sink, source><context bitmask> <type:

supported, available>
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Table 14: State Machine Transitions

Command Depends Allowed States Next States
init none any none
discover init any any
config discover idle/codec-configured/qos-

configured
codec-configured

qos config codec-configured/qos-configured qos-configured
enable qos qos-configured enabling
connect qos/enable qos-configured/enabling qos-configured/enabling
[start] en-

able/connect
enabling streaming

disable enable enabling/streaming disabling
[stop] disable disabling qos-configure/idle
release config any releasing/codec-

configure/idle
list none any none
se-
lect_unicast

none any none

send enable streaming none

Example Central Connect and establish a sink stream:

uart:~$ bt init
uart:~$ bap init
uart:~$ bt connect <address>
uart:~$ gatt exchange-mtu
uart:~$ bap discover sink
uart:~$ bap config sink 0
uart:~$ bap qos
uart:~$ bap enable
uart:~$ bap connect

Connect and establish a source stream:

uart:~$ bt init
uart:~$ bap init
uart:~$ bt connect <address>
uart:~$ gatt exchange-mtu
uart:~$ bap discover source
uart:~$ bap config source 0
uart:~$ bap qos
uart:~$ bap enable
uart:~$ bap connect
uart:~$ bap start

Disconnect and release:

uart:~$ bap disable
uart:~$ bap release

Example Peripheral Listen:

uart:~$ bt init
uart:~$ bap init
uart:~$ bt advertise on

Server initiated disable and release:
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uart:~$ bap disable
uart:~$ bap release

Example Broadcast Source Create and establish a broadcast source stream:

uart:~$ bap init
uart:~$ bap create_broadcast
uart:~$ bap start_broadcast

Stop and release a broadcast source stream:

uart:~$ bap stop_broadcast
uart:~$ bap delete_broadcast

Example Broadcast Sink Scan for and establish a broadcast sink stream. The command bap
create_broadcast_sink will either use existing periodic advertising sync (if exist) or start scan-
ning and sync to the periodic advertising with the provided broadcast ID before syncing to the
BIG.

uart:~$ bap init
uart:~$ bap create_broadcast_sink 0xEF6716
No PA sync available, starting scanning for broadcast_id
Found broadcaster with ID 0xEF6716 and addr 03:47:95:75:C0:08 (random) and sid 0x00
Attempting to PA sync to the broadcaster
PA synced to broadcast with broadcast ID 0xEF6716
Attempting to sync to the BIG
Received BASE from sink 0x20019080:
Presentation delay: 40000
Subgroup count: 1
Subgroup 0x20024182:

Codec Format: 0x06
Company ID : 0x0000
Vendor ID : 0x0000
codec cfg id 0x06 cid 0x0000 vid 0x0000 count 16

Codec specific configuration:
Sampling frequency: 16000 Hz (3)
Frame duration: 10000 us (1)
Channel allocation:

Front left (0x00000001)
Front right (0x00000002)

Octets per codec frame: 40
Codec specific metadata:
Streaming audio contexts:

Unspecified (0x0001)
BIS index: 0x01

codec cfg id 0x06 cid 0x0000 vid 0x0000 count 6
Codec specific configuration:

Channel allocation:
Front left (0x00000001)

Codec specific metadata:
None

BIS index: 0x02
codec cfg id 0x06 cid 0x0000 vid 0x0000 count 6
Codec specific configuration:

Channel allocation:
Front right (0x00000002)

Codec specific metadata:
None

Possible indexes: 0x01 0x02
(continues on next page)
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(continued from previous page)
Sink 0x20019110 is ready to sync without encryption
uart:~$ bap sync_broadcast 0x01

Syncing to encrypted broadcast If the broadcast is encrypted, the broadcast code can be en-
tered with the bap sync_broadcast command as such:

Sink 0x20019110 is ready to sync with encryption
uart:~$ bap sync_broadcast 0x01 bcode 0102030405060708090a0b0c0d0e0f

The broadcast code can be 1-16 values, either as a string or a hexadecimal value.

Sink 0x20019110 is ready to sync with encryption
uart:~$ bap sync_broadcast 0x01 bcode_str thisismycode

Stop and release a broadcast sink stream:

uart:~$ bap stop_broadcast_sink
uart:~$ bap term_broadcast_sink

Init The init command register local PAC records which are necessary to be able to configure
stream and properly manage capabilities in use.

Table 15: State Machine Transitions

Depends Allowed States Next States
none any none

uart:~$ bap init

Discover PAC(s) andASE(s) Once connected the discover command discover PAC records and
ASE characteristics representing remote endpoints.

Table 16: State Machine Transitions

Depends Allowed States Next States
init any any

Note

Use command gatt exchange-mtu to make sure the MTU is configured properly.

uart:~$ gatt exchange-mtu
Exchange pending
Exchange successful
uart:~$ bap discover [type: sink, source]
uart:~$ bap discover sink
conn 0x2000b168: codec_cap 0x2001f8ec dir 0x02
codec cap id 0x06 cid 0x0000 vid 0x0000

Codec specific capabilities:
Supported sampling frequencies:

8000 Hz (0x0001)
(continues on next page)
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11025 Hz (0x0002)
16000 Hz (0x0004)
22050 Hz (0x0008)
24000 Hz (0x0010)
32000 Hz (0x0020)
44100 Hz (0x0040)
48000 Hz (0x0080)
88200 Hz (0x0100)
96000 Hz (0x0200)
176400 Hz (0x0400)
192000 Hz (0x0800)
384000 Hz (0x1000)

Supported frame durations:
10 ms (0x02)

Supported channel counts:
1 channel (0x01)

Supported octets per codec frame counts:
Min: 40
Max: 120

Supported max codec frames per SDU: 1
Codec capabilities metadata:

Preferred audio contexts:
Conversational (0x0002)
Media (0x0004)

ep 0x81754e0
ep 0x81755d4
Discover complete: err 0

Select preset The preset command can be used to either print the default preset configuration
or set a different one, it is worth noting that it doesn’t change any stream previously configured.

uart:~$ bap preset
preset - <sink, source, broadcast> [preset]

[config
[freq <frequency>]
[dur <duration>]
[chan_alloc <location>]
[frame_len <frame length>]
[frame_blks <frame blocks>]]

[meta
[pref_ctx <context>]
[stream_ctx <context>]
[program_info <program info>]
[lang <ISO 639-3 lang>]
[ccid_list <ccids>]
[parental_rating <rating>]
[program_info_uri <URI>]
[audio_active_state <state>]
[bcast_flag]
[extended <meta>]
[vendor <meta>]]

uart:~$ bap preset sink
16_2_1
codec cfg id 0x06 cid 0x0000 vid 0x0000 count 16

Codec specific configuration:
Sampling frequency: 16000 Hz (3)
Frame duration: 10000 us (1)
Channel allocation:

Front left (0x00000001)
(continues on next page)

1910 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

(continued from previous page)
Front right (0x00000002)

Octets per codec frame: 40
Codec specific metadata:

Streaming audio contexts:
Game (0x0008)

QoS: interval 10000 framing 0x00 phy 0x02 sdu 40 rtn 2 latency 10 pd 40000

uart:~$ bap preset sink 32_2_1
32_2_1
codec cfg id 0x06 cid 0x0000 vid 0x0000 count 16

Codec specific configuration:
Sampling frequency: 32000 Hz (6)
Frame duration: 10000 us (1)
Channel allocation:

Front left (0x00000001)
Front right (0x00000002)

Octets per codec frame: 80
Codec specific metadata:

Streaming audio contexts:
Game (0x0008)

QoS: interval 10000 framing 0x00 phy 0x02 sdu 80 rtn 2 latency 10 pd 40000

Configure preset The bap preset command can also be used to configure the preset used for
the subsequent commands. It is possible to add or set (or reset) any value. To reset the preset, the
command can simply be run without the config or meta parameter. The parameters are using
the assigned numbers values.

uart:~$ bap preset sink 32_2_1
32_2_1
codec cfg id 0x06 cid 0x0000 vid 0x0000 count 16
data #0: type 0x01 value_len 1
00000000: 06 |. |
data #1: type 0x02 value_len 1
00000000: 01 |. |
data #2: type 0x03 value_len 4
00000000: 03 00 00 00 |.... |
data #3: type 0x04 value_len 2
00000000: 50 00 |P. |
meta #0: type 0x02 value_len 2
00000000: 08 00 |.. |
QoS: interval 10000 framing 0x00 phy 0x02 sdu 80 rtn 2 latency 10 pd 40000

uart:~$ bap preset sink 32_2_1 config freq 10
32_2_1
codec cfg id 0x06 cid 0x0000 vid 0x0000 count 16
data #0: type 0x01 value_len 1
00000000: 0a |. |
data #1: type 0x02 value_len 1
00000000: 01 |. |
data #2: type 0x03 value_len 4
00000000: 03 00 00 00 |.... |
data #3: type 0x04 value_len 2
00000000: 50 00 |P. |
meta #0: type 0x02 value_len 2
00000000: 08 00 |.. |
QoS: interval 10000 framing 0x00 phy 0x02 sdu 80 rtn 2 latency 10 pd 40000

uart:~$ bap preset sink 32_2_1 config freq 10 meta lang "eng" stream_ctx 4
32_2_1

(continues on next page)
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codec cfg id 0x06 cid 0x0000 vid 0x0000 count 16
data #0: type 0x01 value_len 1
00000000: 0a |. |
data #1: type 0x02 value_len 1
00000000: 01 |. |
data #2: type 0x03 value_len 4
00000000: 03 00 00 00 |.... |
data #3: type 0x04 value_len 2
00000000: 50 00 |P. |
meta #0: type 0x02 value_len 2
00000000: 04 00 |.. |
meta #1: type 0x04 value_len 3
00000000: 65 6e 67 |eng |
QoS: interval 10000 framing 0x00 phy 0x02 sdu 80 rtn 2 latency 10 pd 40000

Configure Codec The config command attempts to configure a stream for the given direction
using a preset codec configuration which can either be passed directly or in case it is omitted the
default preset is used.

Table 17: State Machine Transitions

Depends Allowed States Next States
discover idle/codec-configured/qos-configured codec-configured

uart:~$ bap config <direction: sink, source> <index> [loc <loc_bits>] [preset <preset_name>]
uart:~$ bap config sink 0
Setting location to 0x00000000
ASE config: preset 16_2_1
stream 0x2000df70 config operation rsp_code 0 reason 0

Configure Stream QoS The stream_qos Sets a new stream QoS.

uart:~$ bap stream_qos <interval> [framing] [latency] [pd] [sdu] [phy] [rtn]
uart:~$ bap stream_qos 10

Configure QoS The qos command attempts to configure the stream QoS using the preset con-
figuration, each individual QoS parameter can be set with use optional parameters.

Table 18: State Machine Transitions

Depends Allowed States Next States
config qos-configured/codec-configured qos-configured

uart:~$ bap qos

Enable The enable command attempts to enable the stream previously configured.

Table 19: State Machine Transitions

Depends Allowed States Next States
qos qos-configured enabling
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uart:~$ bap enable [context]
uart:~$ bap enable Media

Connect The connect command attempts to connect the stream previously configured. Sink
streams will have to be started by the unicast server, and source streams will have to be started
by the unicast client.

Table 20: State Machine Transitions

Depends Allowed States Next States
qos/enable qos-configured/enabling qos-configured/enabling

uart:~$ bap connect

Start The start command is only necessary when starting a source stream.

Table 21: State Machine Transitions

Depends Allowed States Next States
enable/connect enabling streaming

uart:~$ bap start

Disable The disable command attempts to disable the stream previously enabled, if the re-
mote peer accepts then the ISO disconnection procedure is also initiated.

Table 22: State Machine Transitions

Depends Allowed States Next States
enable enabling/streaming disabling

uart:~$ bap disable

Stop The stop command is only necessary when acting as a sink as it indicates to the source
the stack is ready to stop receiving data.

Table 23: State Machine Transitions

Depends Allowed States Next States
disable disabling qos-configure/idle

uart:~$ bap stop

Release The release command releases the current stream and its configuration.
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Table 24: State Machine Transitions

Depends Allowed States Next States
config any releasing/codec-configure/idle

uart:~$ bap release

List The list command list the available streams.

Table 25: State Machine Transitions

Depends Allowed States Next States
none any none

uart:~$ bap list
*0: ase 0x01 dir 0x01 state 0x01

Select Unicast The select_unicast command set a unicast stream as default.

Table 26: State Machine Transitions

Depends Allowed States Next States
none any none

uart:~$ bap select <ase>
uart:~$ bap select 0x01
Default stream: 1

To select a broadcast stream:

uart:~$ bap select 0x01 broadcast
Default stream: 1 (broadcast)

Send The send command sends data over BAP Stream.

Table 27: State Machine Transitions

Depends Allowed States Next States
enable streaming none

uart:~$ bap send [count]
uart:~$ bap send
Audio sending...

Bluetooth: Broadcast Audio Profile Broadcast Assistant This document describes how to
run the BAP Broadcast Assistant functionality. Note that in the examples below, some lines of
debug have been removed to make this shorter and provide a better overview.
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The Broadcast Assistant is responsible for offloading scan for a resource restricted device, such
that scanning does not drain the battery. The Broadcast Assistant shall support scanning for pe-
riodic advertisements and may optionally support the periodic advertisements synchronization
transfer (PAST) protocol.

The Broadcast Assistant will typically be phones or laptops. The Broadcast Assistant scans for
periodic advertisements and transfer information to the server.

It is necessary to have CONFIG_BT_BAP_BROADCAST_ASSISTANT_LOG_LEVEL_DBG enabled for using
the Broadcast Assistant interactively.

When the Bluetooth stack has been initialized (bt init), and a device has been
connected, the Broadcast Assistant can discover BASS on the connected device calling
bap_broadcast_assistant discover, which will start a discovery for the BASS UUIDs and store
the handles, and subscribe to all notifications.

uart:~$ bap_broadcast_assistant --help
bap_broadcast_assistant - Bluetooth BAP broadcast assistant client shell

commands
Subcommands:
discover : Discover BASS on the server
scan_start : Start scanning for broadcasters
scan_stop : Stop scanning for BISs
add_src : Add a source <address: XX:XX:XX:XX:XX:XX> <type:

public/random> <adv_sid> <sync_pa> <broadcast_id>
[<pa_interval>] [<sync_bis>] [<metadata>]

add_broadcast_id : Add a source by broadcast ID <broadcast_id> <sync_pa>
[<sync_bis>] [<metadata>]

add_pa_sync : Add a PA sync as a source <sync_pa> <broadcast_id>
[bis_index [bis_index [bix_index [...]]]]>

mod_src : Set sync <src_id> <sync_pa> [<pa_interval> | "unknown"] [<sync_bis>]
[<metadata>]

broadcast_code : Send a string-based broadcast code of up to 16 bytes
<src_id> <broadcast code>

rem_src : Remove a source <src_id>
read_state : Remove a source <index>

Example usage

Setup
uart:~$ bt init
uart:~$ bap init
uart:~$ bt connect xx:xx:xx:xx:xx:xx public

When connected

Note

The Broadcast Assistant will not actually start scanning for periodic advertisements, as that
feature is still, at the time of writing, not implemented.

Start scanning for periodic advertisements for a server:
uart:~$ bap_broadcast_assistant discover
BASS discover done with 1 recv states

(continues on next page)
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uart:~$ bap_broadcast_assistant scan_start true
BASS scan start successful
Found broadcaster with ID 0x05BD38 and addr 1E:4D:0A:AA:6E:49 (random) and sid 0x00

Adding a source to the receive state with add_src:
uart:~$ bap_broadcast_assistant add_src 11:22:33:44:55:66 public 5 1 1
BASS recv state: src_id 0, addr 11:22:33:44:55:66 (public), sid 5, sync_state 1, encrypt_
↪→state 000000000000000000000000000000000

[0]: BIS sync 0, metadata_len 0

Adding a source to the receive state with add_broadcast_id (recommended):
uart:~$ bap_broadcast_assistant add_broadcast_id 0x05BD38 true
[DEVICE]: 1E:4D:0A:AA:6E:49 (random), AD evt type 5, RSSI -28 Broadcast Audio Source C:0␣
↪→S:0 D:0 SR:0 E:1 Prim: LE 1M, Secn: LE 2M, Interval: 0x03c0 (1200000 us), SID: 0x0
Found BAP broadcast source with address 1E:4D:0A:AA:6E:49 (random) and ID 0x05BD38
BASS recv state: src_id 0, addr 1E:4D:0A:AA:6E:49 (random), sid 0, sync_state 0, encrypt_
↪→state 0

[0]: BIS sync 0x0000, metadata_len 0
BASS add source successful
BASS recv state: src_id 0, addr 1E:4D:0A:AA:6E:49 (random), sid 0, sync_state 2, encrypt_
↪→state 0

[0]: BIS sync 0x0000, metadata_len 0
BASS recv state: src_id 0, addr 1E:4D:0A:AA:6E:49 (random), sid 0, sync_state 2, encrypt_
↪→state 0

[0]: BIS sync 0x0000, metadata_len 4
Metadata length 2, type 2, data: 0100

Modifying a receive state:
uart:~$ bap_broadcast_assistant mod_src 0 true 0x03c0 0x02
BASS modify source successful
BASS recv state: src_id 0, addr 1E:4D:0A:AA:6E:49 (random), sid 0, sync_state 2, encrypt_
↪→state 0

[0]: BIS sync 0x0001, metadata_len 4
Metadata length 2, type 2, data: 0100

Supplying a broadcast code:
uart:~$ bap_broadcast_assistant broadcast_code 0 secretCode
Sending broadcast code:
00000000: 73 65 63 72 65 74 43 6f 64 65 00 00 00 00 00 00 |secretCo de....|
uart:~$ BASS broadcast code successful

Bluetooth: Broadcast Audio Profile Scan Delegator This document describes how to run the
Scan Delegator functionality, Note that in the examples below, some lines of debug have been
removed to make this shorter and provide a better overview.

The Scan Delegator may optionally support the periodic advertisements synchronization trans-
fer (PAST) protocol.

The Scan Delegator server typically resides on devices that have inputs or outputs.

It is necessary to have CONFIG_BT_BAP_SCAN_DELEGATOR_LOG_LEVEL_DBG enabled for using the
Scan Delegator interactively.
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The Scan Delegator can currently only set the sync state of a receive state, but does not actually
support syncing with periodic advertisements yet.

bap_scan_delegator --help
bap_scan_delegator - Bluetooth BAP Scan Delegator shell commands
Subcommands:
init : Initialize the service and register callbacks
set_past_pref : Set PAST preference <true || false>
sync_pa : Sync to PA <src_id>
term_pa : Terminate PA sync <src_id>
add_src : Add a PA as source <addr> <sid> <broadcast_id>

<enc_state> [bis_sync [metadata]]
add_src_by_pa_sync : Add a PA as source <broadcast_id> <enc_state> [bis_sync

[metadata]]
mod_src : Modify source <src_id> <broadcast_id> <enc_state>

[bis_sync [metadata]]
rem_src : Remove source <src_id>
synced : Set server scan state <src_id> <bis_syncs>

Example Usage

Setup
uart:~$ bt init
uart:~$ bap_scan_delegator init
uart:~$ bt advertise on
Advertising started

Adding a source
uart:~$ bap_scan_delegator add_src 11:22:33:44:55:66 public 0 1234 0
Receive state with ID 0 updated

Adding a source from a PA sync
uart:~$ bt scan on
Found broadcaster with ID 0x681A22 and addr 2C:44:05:82:EB:82 (random) and sid 0x00␣
↪→(looking for 0x1000000)
uart:~$ bt scan off
uart:~$ bt per-adv-sync-create 2C:44:05:82:EB:82 (random) 0
PA 0x2003e9b0 synced
uart:~$ bap_scan_delegator add_src_by_pa_sync 0x681A22 0
Receive state with ID 0 updated

When connected Set sync state for a source:

uart:~$ bap_scan_delegator synced 0 1 3 0

Bluetooth: Common Audio Profile Shell This document describes how to run the Common
Audio Profile functionality.

CAP Acceptor The Acceptor will typically be a resource-constrained device, such as a head-
set, earbud or hearing aid. The Acceptor can initialize a Coordinated Set Identification Service
instance, if it is in a pair with one or more other CAP Acceptors.
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Using the CAP Acceptor When the Bluetooth stack has been initialized (bt init), the Acceptor
can be registered by calling cap_acceptor init, which will register the CAS and CSIS services,
as well as register callbacks.

cap_acceptor --help
cap_acceptor - Bluetooth CAP acceptor shell commands
Subcommands:
init :Initialize the service and register callbacks [size <int>]

[rank <int>] [not-lockable] [sirk <data>]
lock :Lock the set
release :Release the set [force]
sirk :Set the currently used SIRK <sirk>
get_sirk :Get the currently used SIRK
sirk_rsp :Set the response used in SIRK requests <accept, accept_enc,

reject, oob>

Besides initializing the CAS and the CSIS, there are also commands to lock and release the CSIS
instance, as well as printing and modifying access to the SIRK of the CSIS.

Setting a new SIRK This command can modify the currently used SIRK. To get the new RSI
to advertise on air, bt adv-data or bt advertise must be called again to set the new advertis-
ing data. If CONFIG_BT_CSIP_SET_MEMBER_NOTIFIABLE is enabled, this will also notify connected
clients.

uart:~$ cap_acceptor sirk 00112233445566778899aabbccddeeff
SIRK updated

Getting the current SIRK This command can get the currently used SIRK.

uart:~$ cap_acceptor get_sirk
SIRK
36 04 9a dc 66 3a a1 a1 |6...f:..
1d 9a 2f 41 01 73 3e 01 |../A.s>.

CAP Initiator The Initiator will typically be a resource-rich device, such as a phone or PC. The
Initiator can discover CAP Acceptors’s CAS and optional CSIS services. The CSIS service can be
read to provide information about other CAP Acceptors in the same Coordinated Set. The Initia-
tor can execute stream control procedures on sets of devices, either ad-hoc or Coordinated, and
thus provides an easy way to setup multiple streams on multiple devices at once.

Using the CAP Initiator When the Bluetooth stack has been initialized (bt init), the Initiator
can discover CAS and the optionally included CSIS instance by calling (cap_initiator discover).
The CAP initiator also supports broadcast audio as a source.

uart:~$ cap_initiator --help
cap_initiator - Bluetooth CAP initiator shell commands
Subcommands:
discover : Discover CAS
unicast_start : Unicast Start [csip] [sinks <cnt> (default 1)] [sources

<cnt> (default 1)] [conns (<cnt> | all) (default 1)]
unicast_list : Unicast list streams
unicast_update : Unicast Update <all | stream [stream [stream...]]>
unicast_stop : Unicast stop streams [stream [stream [stream...]]] (all by default)
unicast_cancel : Unicast cancel current procedure
ac_1 : Unicast audio configuration 1
ac_2 : Unicast audio configuration 2

(continues on next page)
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ac_3 : Unicast audio configuration 3
ac_4 : Unicast audio configuration 4
ac_5 : Unicast audio configuration 5
ac_6_i : Unicast audio configuration 6(i)
ac_6_ii : Unicast audio configuration 6(ii)
ac_7_i : Unicast audio configuration 7(i)
ac_7_ii : Unicast audio configuration 7(ii)
ac_8_i : Unicast audio configuration 8(i)
ac_8_ii : Unicast audio configuration 8(ii)
ac_9_i : Unicast audio configuration 9(i)
ac_9_ii : Unicast audio configuration 9(ii)
ac_10 : Unicast audio configuration 10
ac_11_i : Unicast audio configuration 11(i)
ac_11_ii : Unicast audio configuration 11(ii)
broadcast_start :
broadcast_update : <meta>
broadcast_stop :
broadcast_delete :
ac_12 : Broadcast audio configuration 12
ac_13 : Broadcast audio configuration 13
ac_14 : Broadcast audio configuration 14

Before being able to perform any stream operation, the device must also perform the bap dis-
cover operation to discover the ASEs and PAC records. The bap init command also needs to be
called.

When connected Discovering CAS and CSIS on a device:

uart:~$ cap_initiator discover
discovery completed with CSIS

Discovering ASEs and PAC records on a device:

uart:~$ bap discover
conn 0x81cc260: #0: codec 0x81d5b28 dir 0x01
codec 0x06 cid 0x0000 vid 0x0000 count 5
data #0: type 0x01 len 2
00000000: f5 |. |
data #1: type 0x02 len 1
data #2: type 0x03 len 1
data #3: type 0x04 len 4
00000000: 1e 00 f0 |... |
data #4: type 0x05 len 1
meta #0: type 0x01 len 2
00000000: 06 |. |
dir 1 loc 1
snk ctx 6 src ctx 6
Conn: 0x81cc260, Sink #0: ep 0x81e4248
Conn: 0x81cc260, Sink #1: ep 0x81e46a8
conn 0x81cc260: #0: codec 0x81d5f00 dir 0x02
codec 0x06 cid 0x0000 vid 0x0000 count 5
data #0: type 0x01 len 2
00000000: f5 |. |
data #1: type 0x02 len 1
data #2: type 0x03 len 1
data #3: type 0x04 len 4
00000000: 1e 00 f0 |... |
data #4: type 0x05 len 1
meta #0: type 0x01 len 2
00000000: 06 |. |

(continues on next page)
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dir 2 loc 1
snk ctx 6 src ctx 6
Conn: 0x81cc260, Source #0: ep 0x81e5c88
Conn: 0x81cc260, Source #1: ep 0x81e60e8
Discover complete: err 0

Both of the above commands should be done for each device that you want to use in the set. To
use multiple devices, simply connect to more and then use bt select the device to execute the
commands on.

Once all devices have been connected and the respective discovery commands have been called,
the cap_initiator unicast_start command can be used to put one or more streams into the
streaming state.

uart:~$ cap_initiator unicast_start sinks 1 sources 0 conns all
Setting up 1 sinks and 0 sources on each (2) conn
Starting 1 streams
Unicast start completed

To stop all the streams that has been started, the cap_initiator unicast_stop command can be
used.

uart:~$ cap_initiator unicast_stop all
Unicast stop completed

When doing broadcast To start a broadcast as the CAP initiator there are a few steps to be
done:

1. Create and configure an extended advertising set with periodic advertising

2. Create and configure a broadcast source

3. Setup extended and periodic advertising data

The following commands will setup a CAP broadcast source using the 16_2_1 preset (defined by
BAP):

bt init
bap init
bt adv-create nconn-nscan ext-adv name
bt per-adv-param
bap preset broadcast 16_2_1
cap_initiator ac_12
bt adv-data discov
bt per-adv-data
cap_initiator broadcast_start

The broadcast source is created by the cap_initiator ac_12, cap_initiator ac_13, and
cap_initiator ac_14 commands, configuring the broadcast source for the defined audio con-
figurations from BAP. The broadcast source can then be stopped with cap_initiator broad-
cast_stop or deleted with cap_initiator broadcast_delete.

The metadata of the broadcast source can be updated at any time, including when it is already
streaming. To update the metadata the cap_initiator broadcast_update command can be used.
The command takes an array of data, and the only requirement (besides having valid data) is
that the streaming context shall be set. For example to set the streaming context to media, the
command can be used as

cap_initiator broadcast_update 03020400
CAP Broadcast source updated with new metadata. Update the advertised base via `bt per-adv-

(continues on next page)
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↪→data`
bt per-adv-data

The bt per-adv-data command should be used afterwards to update the data is the advertised
BASE. The data must be little-endian, so in the above example the metadata 03020400 is setting
the metadata entry with 03 as the length, 02 as the type (streaming context) and 0400 as the value
BT_AUDIO_CONTEXT_TYPE_MEDIA (which has the numeric value of 0x).

CAP Commander The Commander will typically be a either co-located with a CAP Initiator or
be on a separate resource-rich mobile device, such as a phone or smartwatch. The Commander
can discover CAP Acceptors’s CAS and optional CSIS services. The CSIS service can be read to
provide information about other CAP Acceptors in the same Coordinated Set. The Commander
can provide information about broadcast sources to CAP Acceptors or coordinate capture and
rendering information such as mute or volume states.

Using the CAP Commander When the Bluetooth stack has been initialized (bt init), the Com-
mander can discover CAS and the optionally included CSIS instance by calling (cap_commander
discover).

cap_commander --help
cap_commander - Bluetooth CAP commander shell commands
Subcommands:
discover :Discover CAS
cancel :CAP commander cancel current procedure
change_volume :Change volume on all connections <volume>
change_volume_mute :Change volume mute state on all connections <mute>
change_volume_offset :Change volume offset per connection <volume_offset

[volume_offset [...]]>
change_microphone_mute :Change microphone mute state on all connections <mute>
change_microphone_gain :Change microphone gain per connection <gain

[gain [...]]>

Before being able to perform any stream operation, the device must also perform the bap dis-
cover operation to discover the ASEs and PAC records. The bap init command also needs to be
called.

When connected

Discovering CAS and CSIS on a device
uart:~$ cap_commander discover
discovery completed with CSIS

Setting the volume on all connected devices
uart:~$ vcp_vol_ctlr discover
VCP discover done with 1 VOCS and 1 AICS
uart:~$ cap_commander change_volume 15
uart:~$ cap_commander change_volume 15
Setting volume to 15 on 2 connections
VCP volume 15, mute 0
VCP vol_set done
VCP volume 15, mute 0
VCP flags 0x01
VCP vol_set done
Volume change completed
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Setting the volume offset on one or more devices The offsets are set by connection index, so
connection index 0 gets the first offset, and index 1 gets the second offset, etc.:

uart:~$ bt connect <device A>
Connected: <device A>
uart:~$ cap_commander discover
discovery completed with CSIS
uart:~$ vcp_vol_ctlr discover
VCP discover done with 1 VOCS and 1 AICS
uart:~$
uart:~$ bt connect <device B>
Connected: <device B>
uart:~$ cap_commander discover
discovery completed with CSIS
uart:~$ vcp_vol_ctlr discover
VCP discover done with 1 VOCS and 1 AICS
uart:~$
uart:~$ cap_commander change_volume_offset 10
Setting volume offset on 1 connections
VOCS inst 0x200140a4 offset 10
Offset set for inst 0x200140a4
Volume offset change completed
uart:~$
uart:~$ cap_commander change_volume_offset 10 15
Setting volume offset on 2 connections
Offset set for inst 0x200140a4
VOCS inst 0x20014188 offset 15
Offset set for inst 0x20014188
Volume offset change completed

Setting the volume mute on all connected devices
uart:~$ bt connect <device A>
Connected: <device A>
uart:~$ cap_commander discover
discovery completed with CSIS
uart:~$ vcp_vol_ctlr discover
VCP discover done with 1 VOCS and 1 AICS
uart:~$
uart:~$ bt connect <device B>
Connected: <device B>
uart:~$ cap_commander discover
discovery completed with CSIS
uart:~$ vcp_vol_ctlr discover
VCP discover done with 1 VOCS and 1 AICS
uart:~$
uart:~$ cap_commander change_volume_mute 1
Setting volume mute to 1 on 2 connections
VCP volume 100, mute 1
VCP mute done
VCP volume 100, mute 1
VCP mute done
Volume mute change completed
uart:~$ cap_commander change_volume_mute 0
Setting volume mute to 0 on 2 connections
VCP volume 100, mute 0
VCP unmute done
VCP volume 100, mute 0
VCP unmute done
Volume mute change completed
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Setting the microphone mute on all connected devices
uart:~$ bt connect <device A>
Connected: <device A>
uart:~$ cap_commander discover
discovery completed with CSIS
uart:~$ micp_mic_ctlr discover
MICP discover done with 1 VOCS and 1 AICS
uart:~$
uart:~$ bt connect <device B>
Connected: <device B>
uart:~$ cap_commander discover
discovery completed with CSIS
uart:~$ micp_mic_ctlr discover
MICP discover done with 1 VOCS and 1 AICS
uart:~$
uart:~$ cap_commander change_microphone_mute 1
Setting microphone mute to 1 on 2 connections
MICP microphone 100, mute 1
MICP mute done
MICP microphone 100, mute 1
MICP mute done
Microphone mute change completed
uart:~$ cap_commander change_microphone_mute 0
Setting microphone mute to 0 on 2 connections
MICP microphone 100, mute 0
MICP unmute done
MICP microphone 100, mute 0
MICP unmute done
Microphone mute change completed

Setting the microphone gain on one or more devices The gains are set by connection index,
so connection index 0 gets the first offset, and index 1 gets the second offset, etc.:

uart:~$ bt connect <device A>
Connected: <device A>
uart:~$ cap_commander discover
discovery completed with CSIS
uart:~$ micp_mic_ctlr discover
MICP discover done with 1 AICS
uart:~$
uart:~$ bt connect <device B>
Connected: <device B>
uart:~$ cap_commander discover
discovery completed with CSIS
uart:~$ micp_mic_ctlr discover
MICP discover done with 1 AICS
uart:~$
uart:~$ cap_commander change_microphone_gain 10
Setting microphone gain on 1 connections
AICS inst 0x200140a4 state gain 10, mute 0, mode 0
Gain set for inst 0x200140a4
Microphone gain change completed
uart:~$
uart:~$ cap_commander change_microphone_gain 10 15
Setting microphone gain on 2 connections
Gain set for inst 0x200140a4
AICS inst 0x20014188 state gain 15, mute 0, mode 0
Gain set for inst 0x20014188
Microphone gain change completed

6.1. Bluetooth 1923



Zephyr Project Documentation, Release 3.7.99

Starting a broadcast reception
uart:~$ bt connect <device A>
Connected: <device A>
uart:~$ bap_init
uart:~$ cap_commander discover
discovery completed with CSIS
uart:~$ bap_broadcast_assistant discover
BASS discover done with 1 recv states
uart:~$ cap_commander broadcast_reception_start <device B> 0 4
Starting broadcast reception on 1 connection(s)

Bluetooth: Call Control Profile This document describes how to run the call control function-
ality, both as a client and as a (telephone bearer service (TBS)) server. Note that in the exam-
ples below, some lines of debug have been removed to make this shorter and provide a better
overview.

Telephone Bearer Service Client The telephone bearer service client will typically exist on
a resource restricted device, such as headphones, but may also exist on e.g. phones or laptops.
The call control client will also thus typically be the advertiser. The client can control the states
of calls on a server using the call control point.

It is necessary to have CONFIG_BT_TBS_CLIENT_LOG_LEVEL_DBG enabled for using the client inter-
actively.

Using the telephone bearer service client When the Bluetooth stack has been initialized (bt
init), and a device has been connected, the telephone bearer service client can discover TBS
on the connected device calling tbs_client discover, which will start a discovery for the TBS
UUIDs and store the handles, and optionally subscribe to all notifications (default is to subscribe
to all).

Since a server may have multiple TBS instances, most of the tbs_client commands will take an
index (starting from 0) as input. Joining calls require at least 2 call IDs, and all call indexes shall
be on the same TBS instance.

A server may also have a GTBS instance, which is an abstraction layer for all the telephone bear-
ers on the server. If the server has both GTBS and TBS, the client may subscribe and use either
when sending requests if BT_TBS_CLIENT_GTBS is enabled.

tbs_client --help
tbs_client - Bluetooth TBS_CLIENT shell commands
Subcommands:

discover :Discover TBS [subscribe]
set_signal_reporting_interval :Set the signal reporting interval

[<{instance_index, gtbs}>] <interval>
originate :Originate a call [<{instance_index, gtbs}>]

<uri>
terminate :terminate a call [<{instance_index, gtbs}>]

<id>
accept :Accept a call [<{instance_index, gtbs}>] <id>
hold :Place a call on hold [<{instance_index,

gtbs}>] <id>
retrieve :Retrieve a held call [<{instance_index,

gtbs}>] <id>
read_provider_name :Read the bearer name [<{instance_index,

gtbs}>]
read_bearer_uci :Read the bearer UCI [<{instance_index, gtbs}>]
read_technology :Read the bearer technology [<{instance_index,

gtbs}>]
(continues on next page)
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read_uri_list :Read the bearer's supported URI list

[<{instance_index, gtbs}>]
read_signal_strength :Read the bearer signal strength

[<{instance_index, gtbs}>]
read_signal_interval :Read the bearer signal strength reporting

interval [<{instance_index, gtbs}>]
read_current_calls :Read the current calls [<{instance_index,

gtbs}>]
read_ccid :Read the CCID [<{instance_index, gtbs}>]
read_status_flags :Read the in feature and status value

[<{instance_index, gtbs}>]
read_uri :Read the incoming call target URI

[<{instance_index, gtbs}>]
read_call_state :Read the call state [<{instance_index, gtbs}>]
read_remote_uri :Read the incoming remote URI

[<{instance_index, gtbs}>]
read_friendly_name :Read the friendly name of an incoming call

[<{instance_index, gtbs}>]
read_optional_opcodes :Read the optional opcodes [<{instance_index,

gtbs}>]

In the following examples, notifications from GTBS is ignored, unless otherwise specified.

Example usage

Setup
uart:~$ bt init
uart:~$ bt advertise on
Advertising started

When connected Placing a call:

uart:~$ tbs_client discover
<dbg> bt_tbs_client.primary_discover_func: Discover complete, found 1 instances (GTBS found)
<dbg> bt_tbs_client.discover_func: Setup complete for 1 / 1 TBS
<dbg> bt_tbs_client.discover_func: Setup complete GTBS
uart:~$ tbs_client originate 0 tel:123
<dbg> bt_tbs_client.notify_handler: Index 0
<dbg> bt_tbs_client.current_calls_notify_handler: Call 0x01 is in the dialing state with␣
↪→URI tel:123
<dbg> bt_tbs_client.call_cp_notify_handler: Status: success for the originate opcode for␣
↪→call 0x00
<dbg> bt_tbs_client.notify_handler: Index 0
<dbg> bt_tbs_client.current_calls_notify_handler: Call 0x01 is in the alerting state with␣
↪→URI tel:123
<call answered by peer device, and status notified by TBS server>
<dbg> bt_tbs_client.notify_handler: Index 0
<dbg> bt_tbs_client.current_calls_notify_handler: Call 0x01 is in the active state with URI␣
↪→tel:123

Placing a call on GTBS:

uart:~$ tbs_client originate 0 tel:123
<dbg> bt_tbs_client.notify_handler: Index 0
<dbg> bt_tbs_client.current_calls_notify_handler: Call 0x01 is in the dialing state with␣
↪→URI tel:123
<dbg> bt_tbs_client.call_cp_notify_handler: Status: success for the originate opcode for␣

(continues on next page)
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↪→call 0x00
<dbg> bt_tbs_client.notify_handler: Index 0
<dbg> bt_tbs_client.current_calls_notify_handler: Call 0x01 is in the alerting state with␣
↪→URI tel:123
<call answered by peer device, and status notified by TBS server>
<dbg> bt_tbs_client.notify_handler: Index 0
<dbg> bt_tbs_client.current_calls_notify_handler: Call 0x01 is in the active state with URI␣
↪→tel:123

It is necessary to set an outgoing caller ID before placing a call.

Accepting incoming call from peer device:

<dbg> bt_tbs_client.incoming_uri_notify_handler: tel:123
<dbg> bt_tbs_client.in_call_notify_handler: tel:456
<dbg> bt_tbs_client.friendly_name_notify_handler: Peter
<dbg> bt_tbs_client.current_calls_notify_handler: Call 0x05 is in the incoming state with␣
↪→URI tel:456
uart:~$ tbs_client accept 0 5
<dbg> bt_tbs_client.call_cp_callback_handler: Status: success for the accept opcode for␣
↪→call 0x05
<dbg> bt_tbs_client.current_calls_notify_handler: Call 0x05 is in the active state with URI␣
↪→tel

Terminate call:

uart:~$ tbs_client terminate 0 5
<dbg> bt_tbs_client.termination_reason_notify_handler: ID 0x05, reason 0x06
<dbg> bt_tbs_client.call_cp_notify_handler: Status: success for the terminate opcode for␣
↪→call 0x05
<dbg> bt_tbs_client.current_calls_notify_handler:

Telephone Bearer Service (TBS) The telephone bearer service is a service that typically re-
sides on devices that can make calls, including calls from apps such as Skype, e.g. (smart)phones
and PCs.

It is necessary to have CONFIG_BT_TBS_LOG_LEVEL_DBG enabled for using the TBS server interac-
tively.

Using the telephonebearer service TBS can be controlled locally, or by a remote device (when
in a call). For example a remote device may initiate a call to the device with the TBS server,
or the TBS server may initiate a call to remote device, without a TBS_CLIENT client. The TBS
implementation is capable of fully controlling any call.

tbs --help
tbs - Bluetooth TBS shell commands
Subcommands:

init :Initialize TBS
authorize :Authorize the current connection
accept :Accept call <call_index>
terminate :Terminate call <call_index>
hold :Hold call <call_index>
retrieve :Retrieve call <call_index>
originate :Originate call [<instance_index>] <uri>
join :Join calls <id> <id> [<id> [<id> [...]]]
incoming :Simulate incoming remote call [<{instance_index,

gtbs}>] <local_uri> <remote_uri>
<remote_friendly_name>

remote_answer :Simulate remote answer outgoing call <call_index>
(continues on next page)
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remote_retrieve :Simulate remote retrieve <call_index>
remote_terminate :Simulate remote terminate <call_index>
remote_hold :Simulate remote hold <call_index>
set_bearer_provider_name :Set the bearer provider name [<{instance_index,

gtbs}>] <name>
set_bearer_technology :Set the bearer technology [<{instance_index,

gtbs}>] <technology>
set_bearer_signal_strength :Set the bearer signal strength [<{instance_index,

gtbs}>] <strength>
set_status_flags :Set the bearer feature and status value

[<{instance_index, gtbs}>] <feature_and_status>
set_uri_scheme :Set the URI prefix list <bearer_idx> <uri1 [uri2

[uri3 [...]]]>
print_calls :Output all calls in the debug log

Example Usage

Setup
uart:~$ bt init
uart:~$ bt connect xx:xx:xx:xx:xx:xx public

When connected Answering a call for a peer device originated by a client:

<dbg> bt_tbs.write_call_cp: Index 0: Processing the originate opcode
<dbg> bt_tbs.originate_call: New call with call index 1
<dbg> bt_tbs.write_call_cp: Index 0: Processed the originate opcode with status success for␣
↪→call index 1
uart:~$ tbs remote_answer 1
TBS succeeded for call_id: 1

Incoming call from a peer device, accepted by client:

uart:~$ tbs incoming 0 tel:123 tel:456 Peter
TBS succeeded for call_id: 4
<dbg> bt_tbs.bt_tbs_remote_incoming: New call with call index 4
<dbg> bt_tbs.write_call_cp: Index 0: Processed the accept opcode with status success for␣
↪→call index 4

Bluetooth: Coordinated Set Identification Profile This document describes how to run the
coordinated set identification functionality, both as a client and as a server. Note that in the
examples below, some lines of debug have been removed to make this shorter and provide a
better overview.

Set Coordinator (Client) The client will typically be a resource-rich device, such as a smart-
phone or a laptop. The client is able to lock and release members of a coordinated set. While the
coordinated set is locked, no other clients may lock the set.

To lock a set, the client must connect to each of the set members it wants to lock. This implemen-
tation will always try to connect to all the members of the set, and at the same time. Thus if the
set size is 3, then BT_MAX_CONN shall be at least 3.

If the locks on set members shall persists through disconnects, it is necessary to bond with the
set members. If you need to bond with multiple set members, make sure that BT_MAX_PAIRED is
correctly configured.
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Using the Set Coordinator When the Bluetooth stack has been initialized (bt init), and
a set member device has been connected, the call control client can be initialized by calling
csip_set_coordinator init, which will start a discovery for the TBS uuids and store the han-
dles, and optionally subscribe to all notifications (default is to subscribe to all).

Once the client has connected and discovered the handles, then it can read the set information,
which is needed to identify other set members. The client can then scan for and connect to the
remaining set members, and once all the members has been connected to, it can lock and release
the set.

It is necessary to enable CONFIG_BT_CSIP_SET_COORDINATOR_LOG_LEVEL_DBG to properly use the
set coordinator.

csip_set_coordinator --help
csip_set_coordinator - Bluetooth CSIP_SET_COORDINATOR shell commands
Subcommands:

init :Initialize CSIP_SET_COORDINATOR
discover :Run discover for CSIS on peer device [member_index]
discover_members :Scan for set members <set_pointer>
lock_set :Lock set
release_set :Release set
lock :Lock specific member [member_index]
release :Release specific member [member_index]
lock_get :Get the lock value of the specific member and instance

[member_index [inst_idx]]

Example usage

Setup
uart:~$ init
uart:~$ bt connect xx:xx:xx:xx:xx:xx public

When connected Discovering sets on a device:

uart:~$ csip_set_coordinator init
<dbg> bt_csip_set_coordinator.primary_discover_func: [ATTRIBUTE] handle 0x0048
<dbg> bt_csip_set_coordinator.primary_discover_func: Discover complete, found 1 instances
<dbg> bt_csip_set_coordinator.discover_func: Setup complete for 1 / 1
Found 1 sets on device
uart:~$ csip_set_coordinator discover_sets
<dbg> bt_csip_set_coordinator.SIRK
36 04 9a dc 66 3a a1 a1 |6...f:..
1d 9a 2f 41 01 73 3e 01 |../A.s>.
<dbg> bt_csip_set_coordinator.csip_set_coordinator_discover_sets_read_set_size_cb: 2
<dbg> bt_csip_set_coordinator.csip_set_coordinator_discover_sets_read_set_lock_cb: 1
<dbg> bt_csip_set_coordinator.csip_set_coordinator_discover_sets_read_rank_cb: 1
Set size 2 (pointer: 0x566fdfe8)

Discover set members, based on the set pointer above:

uart:~$ csip_set_coordinator discover_members 0x566fdfe8
<dbg> bt_csip_set_coordinator.csip_found: Found CSIS advertiser with address␣
↪→34:02:86:03:86:c0 (public)
<dbg> bt_csip_set_coordinator.is_set_member: hash: 0x33ccb1, prand 0x5bfe6a
<dbg> bt_csip_set_coordinator.is_discovered: 34:02:86:03:86:c0 (public)
<dbg> bt_csip_set_coordinator.is_discovered: 34:13:e8:b3:7f:9e (public)
<dbg> bt_csip_set_coordinator.csip_found: Found member (2 / 2)
Discovered 2/2 set members
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Lock set members:

uart:~$ csip_set_coordinator lock_set
<dbg> bt_csip_set_coordinator.bt_csip_set_coordinator_lock_set: Connecting to␣
↪→34:02:86:03:86:c0 (public)
<dbg> bt_csip_set_coordinator.csip_set_coordinator_connected: Connected to␣
↪→34:02:86:03:86:c0 (public)
<dbg> bt_csip_set_coordinator.discover_func: Setup complete for 1 / 1
<dbg> bt_csip_set_coordinator.csip_set_coordinator_lock_set_init_cb:
<dbg> bt_csip_set_coordinator.SIRK
36 04 9a dc 66 3a a1 a1 |6...f:..
1d 9a 2f 41 01 73 3e 01 |../A.s>.
<dbg> bt_csip_set_coordinator.csip_set_coordinator_discover_sets_read_set_size_cb: 2
<dbg> bt_csip_set_coordinator.csip_set_coordinator_discover_sets_read_set_lock_cb: 1
<dbg> bt_csip_set_coordinator.csip_set_coordinator_discover_sets_read_rank_cb: 2
<dbg> bt_csip_set_coordinator.csip_set_coordinator_write_lowest_rank: Locking member with␣
↪→rank 1
<dbg> bt_csip_set_coordinator.notify_func: Instance 0 lock was locked
<dbg> bt_csip_set_coordinator.csip_set_coordinator_write_lowest_rank: Locking member with␣
↪→rank 2
<dbg> bt_csip_set_coordinator.notify_func: Instance 0 lock was locked
Set locked

Release set members:

uart:~$ csip_set_coordinator release_set
<dbg> bt_csip_set_coordinator.csip_set_coordinator_release_highest_rank: Releasing member␣
↪→with rank 2
<dbg> bt_csip_set_coordinator.notify_func: Instance 0 lock was released
<dbg> bt_csip_set_coordinator.csip_set_coordinator_release_highest_rank: Releasing member␣
↪→with rank 1
<dbg> bt_csip_set_coordinator.notify_func: Instance 0 lock was released
Set released

Coordinated Set Member (Server) The server on devices that are part of a set, consisting of
at least two devices, e.g. a pair of earbuds.

Using the Set Member
csip_set_member --help
csip_set_member - Bluetooth CSIP set member shell commands
Subcommands:

register :Initialize the service and register callbacks [size <int>]
[rank <int>] [not-lockable] [sirk <data>]

lock :Lock the set
release :Release the set [force]
sirk :Set the currently used SIRK <sirk>
get_sirk :Get the currently used SIRK
sirk_rsp :Set the response used in SIRK requests <accept, accept_enc,

reject, oob>

Example Usage

Setup
uart:~$ bt init
uart:~$ csip_set_member register
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Setting a new SIRK This command can modify the currently used SIRK. To get the new RSI
to advertise on air, bt adv-data or bt advertise must be called again to set the new advertis-
ing data. If CONFIG_BT_CSIP_SET_MEMBER_NOTIFIABLE is enabled, this will also notify connected
clients.

uart:~$ csip_set_member sirk 00112233445566778899aabbccddeeff
SIRK updated

Getting the current SIRK This command can get the currently used SIRK.

uart:~$ csip_set_member get_sirk
SIRK
36 04 9a dc 66 3a a1 a1 |6...f:..
1d 9a 2f 41 01 73 3e 01 |../A.s>.

Bluetooth: Gaming Audio Profile Shell This document describes how to run the Gaming Au-
dio Profile shell functionality. Unlike most other low-layer profiles, GMAP is a profile that exists
and has a service (GMAS) on all devices. Thus both the initiator and acceptor (or central and pe-
ripheral) should do a discovery of the remote device’s GMAS to see what GMAP roles and features
they support.

Using the GMAP Shell When the Bluetooth stack has been initialized (bt init), the GMAS can
be registered by by calling gmap init. It is also strongly suggested to enable BAP via bap init.

uart:~$ gmap --help
gmap - Bluetooth GMAP shell commands
Subcommands:
init : [none]
set_role : [ugt | ugg | bgr | bgs]
discover : [none]
ac_1 : Unicast audio configuration 1
ac_2 : Unicast audio configuration 2
ac_3 : Unicast audio configuration 3
ac_4 : Unicast audio configuration 4
ac_5 : Unicast audio configuration 5
ac_6_i : Unicast audio configuration 6(i)
ac_6_ii : Unicast audio configuration 6(ii)
ac_7_ii : Unicast audio configuration 7(ii)
ac_8_i : Unicast audio configuration 8(i)
ac_8_ii : Unicast audio configuration 8(ii)
ac_11_i : Unicast audio configuration 11(i)
ac_11_ii : Unicast audio configuration 11(ii)
ac_12 : Broadcast audio configuration 12
ac_13 : Broadcast audio configuration 13
ac_14 : Broadcast audio configuration 14

The set_role command can be used to change the role at runtime, assuming that the device
supports the role (the GMAP roles depend on some BAP configurations).

Example Central with GMAP UGT role Connect and establish Gaming Audio streams using
Audio Configuration (AC) 3 (some logging has been omitted for clarity):

uart:~$ bt init
uart:~$ bap init
uart:~$ gmap init
uart:~$ bt connect <address>

(continues on next page)
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(continued from previous page)
uart:~$ gatt exchange-mtu
uart:~$ bap discover
Discover complete: err 0
uart:~$ cap_initiator discover
discovery completed with CSIS
uart:~$ gmap discover
gmap discovered for conn 0x2001c7d8:

role 0x0f
ugg_feat 0x07
ugt_feat 0x6f
bgs_feat 0x01
bgr_feat 0x03

uart:~$ bap preset sink 32_2_gr
uart:~$ bap preset source 32_2_gs
uart:~$ gmap ac_3
Starting 2 streams for AC_3
stream 0x20020060 config operation rsp_code 0 reason 0
stream 0x200204d0 config operation rsp_code 0 reason 0
stream 0x200204d0 qos operation rsp_code 0 reason 0
stream 0x20020060 qos operation rsp_code 0 reason 0
Stream 0x20020060 enabled
stream 0x200204d0 enable operation rsp_code 0 reason 0
Stream 0x200204d0 enabled
stream 0x20020060 enable operation rsp_code 0 reason 0
Stream 0x20020060 started
stream 0x200204d0 start operation rsp_code 0 reason 0
Stream 0x200204d0 started
Unicast start completed
uart:~$ bap start_sine
Started transmitting on default_stream 0x20020060
[0]: stream 0x20020060 : TX LC3: 80 (seq_num 24800)

Media control for Generic Audio Content Control This document describes how to run the
media control functionality, using the shell, both as a client and as a server.

The media control server consists of to parts. There is a media player (mpl) that contains the logic
to handle media, and there is a media control service (mcs) that serves as a GATT-based interface
to the player. The media control client consists of one part, the GATT based client (mcc).

The media control server may include an object transfer service (ots) and the media control client
may include an object transfer client (otc). When these are included, a richer set of functionality
is available.

The media control server and client both implement the Generic Media Control Service (only),
and do not use any underlying Media Control Services.

Note that in the examples below, in many cases the debug output has been removed and long
outputs may have been shortened to make the examples shorter and clearer.

Also note that this documentation does not list all shell commands, it just shows examples of
some of them. The set of commands is explorable from the mcc shell and the mpl shell, by typing
mcc or mpl and pressing TAB. A help text for each command can be found by doing mcc <command>
help or mpl <command> help.

Overview A media player has a name and an icon that allows identification of the player for
the user.

The content of the media player is structured into tracks and groups. A media player has a
number of groups. A group contains tracks and other groups. (In this implementation, a group
only contains tracks, not other groups.) Tracks can be divided into segments.
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An active player will have a current track. This is the track that is playing now (if the player is
playing). The current track has a title, a duration (given in hundredths of a second) and a position
- the current position of the player within the track.

There is also a current group (the group of the current track), a parent group (the parent group
of the current group) and a next track.

The media player is in a state, which will be one of playing, paused, seeking or inactive. When
playing, playback happens at a given playback speed, and the tracks are played according to
the playing order, which is one of the playing orders supported. Track changes are signalled as
notifications of the track changed characteristic. When seeking (fast forward or fast rewind), the
track position is moved according to the seeking speed.

The opcodes supported tells which operations are supported by the player by writing to themedia
control point. There is also a search control point that allows to search for groups and tracks
according to various criteria, with the result returned in the search results.

Finally, the content control ID is used to associate the media player with an audio stream.

Media Control Client (MCP) The media control client is used to control, and to get information
from, a media control server. Control is done by writing to one of the two control points, or by
writing to other writable characteristics. Getting information is done by reading characteristics,
or by configuring the server to send notifications.

Using the media control client Before use, the media control client must be initialized by the
command mcc init.

To achieve a connection to the peer, the bt commands must be used - bt init followed by bt
advertise on (or bt connect if the server is advertising).

When the media control client is connected to a media control server, the client can discover
the server’s Generic Media Control Service, by giving the command mcc discover_mcs. This will
store the handles of the service, and (optionally, but default) subscribe to all notifications.

After discovery, the media control client can read and write characteristics, including the media
control point and the search control point.

Example usage

Setup
uart:~$ bt init
Bluetooth initialized

uart:~$ mcc init
MCC init complete

uart:~$ bt advertise on
Advertising started
Connected: F6:58:DC:27:F3:57 (random)

When connected Service discovery (GMCS and included OTS):

uart:~$ mcc discover_mcs
<dbg> bt_mcc.bt_mcc_discover_mcs: start discovery of MCS primary service
<dbg> bt_mcc.discover_primary_func: [ATTRIBUTE] handle 0x00ae
<dbg> bt_mcc.discover_primary_func: Primary discovery complete
<dbg> bt_mcc.discover_primary_func: UUID: 2800

(continues on next page)
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(continued from previous page)
<dbg> bt_mcc.discover_primary_func: UUID: 8fd7
<dbg> bt_mcc.discover_primary_func: Start discovery of MCS characteristics
<dbg> bt_mcc.discover_mcs_char_func: [ATTRIBUTE] handle 0x00b0
<dbg> bt_mcc.discover_mcs_char_func: Player name, UUID: 8fa0
<dbg> bt_mcc.discover_mcs_char_func: [ATTRIBUTE] handle 0x00b2
<dbg> bt_mcc.discover_mcs_char_func: Icon Object, UUID: 8fa1
<dbg> bt_mcc.discover_mcs_char_func: [ATTRIBUTE] handle 0x00b4
<dbg> bt_mcc.discover_mcs_char_func: Icon URI, UUID: 8fa2
<dbg> bt_mcc.discover_mcs_char_func: [ATTRIBUTE] handle 0x00b6
<dbg> bt_mcc.discover_mcs_char_func: Track Changed, UUID: 8fa3
<dbg> bt_mcc.discover_mcs_char_func: Subscribing - handle: 0x00b6
[...]
<dbg> bt_mcc.discover_mcs_char_func: [ATTRIBUTE] handle 0x00ea
<dbg> bt_mcc.discover_mcs_char_func: Content Control ID, UUID: 8fb5
<dbg> bt_mcc.discover_mcs_char_func: Setup complete for MCS
<dbg> bt_mcc.discover_mcs_char_func: Start discovery of included services
<dbg> bt_mcc.discover_include_func: [ATTRIBUTE] handle 0x00af
<dbg> bt_mcc.discover_include_func: Include UUID 1825
<dbg> bt_mcc.discover_include_func: Discover include complete for MCS: OTS
<dbg> bt_mcc.discover_include_func: Start discovery of OTS characteristics
<dbg> bt_mcc.discover_otc_char_func: [ATTRIBUTE] handle 0x009c
<dbg> bt_mcc.discover_otc_char_func: OTS Features
[...]
<dbg> bt_mcc.discover_otc_char_func: [ATTRIBUTE] handle 0x00ac
<dbg> bt_mcc.discover_otc_char_func: Object Size
Discovery complete
<dbg> bt_otc.bt_otc_register: 0
<dbg> bt_otc.bt_otc_register: L2CAP psm 0x 25 sec_level 1 registered
<dbg> bt_mcc.discover_otc_char_func: Setup complete for OTS 1 / 1
uart:~$

Reading characteristics - the player name and the track duration as examples:

uart:~$ mcc read_player_name
Player name: My media player
4d 79 20 6d 65 64 69 61 20 70 6c 61 79 65 72 |My media player

uart:~$ mcc read_track_duration
Track duration: 6300

Note that the value of some characteristics may be truncated due to being too long to fit in the
ATT packet. Increasing the ATT MTU may help:

uart:~$ mcc read_track_title
Track title: Interlude #1 (Song for

uart:~$ gatt exchange-mtu
Exchange pending
Exchange successful

uart:~$ mcc read_track_title
Track title: Interlude #1 (Song for Alison)

Writing characteristics - track position as an example:

The track position is where the player “is” in the current track. Read the track position, change
it by writing to it, confirm by reading it again.

uart:~$ mcc read_track_position
Track Position: 0

(continues on next page)
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(continued from previous page)
uart:~$ mcc set_track_position 500
Track Position: 500

uart:~$ mcc read_track_position
Track Position: 500

Controlling the player via the control point:

Writing to the control point allows the client to request the server to do operations like play,
pause, fast forward, change track, change group and so on. Some operations (e.g. goto track)
take an argument. Currently, raw opcode values are used as input to the control point shell
command. These opcode values can be found in the mpl.h header file.

Send the play command (opcode “1”), the command to go to track (opcode “52”) number three,
and the pause command (opcode “2”):

uart:~$ mcc set_cp 1
Media State: 1
Operation: 1, result: 1
Operation: 1, param: 0

uart:~$ mcc set_cp 52 3
Track changed
Track title: Interlude #3 (Levanto Seventy)
Track duration: 7800
Track Position: 0
Current Track Object ID: 0x000000000104
Next Track Object ID: 0x000000000105
Operation: 52, result: 1
Operation: 52, param: 3

uart:~$ mcc set_cp 2
Media State: 2
Operation: 2, result: 1
Operation: 2, param: 0

Using the included object transfer client When object transfer is supported by both the client
and the server, a larger set of characteristics is available. These include object IDs for the various
track and group objects. These IDs can be used to select and download the corresponding objects
from the server’s object transfer service.

Read the object ID of the current group object:

uart:~$ mcc read_current_group_obj_id
Current Group Object ID: 0x000000000107

Select the object with that ID:

uart:~$ mcc ots_select 0x107
Selecting object succeeded

Read the object’s metadata:

uart:~$ mcc ots_read_metadata
Reading object metadata succeeded
<inf> bt_mcc: Object's meta data:
<inf> bt_mcc: Current size :35
<inf> bt_otc: --- Displaying 1 metadata records ---
<inf> bt_otc: Object ID: 0x000000000107
<inf> bt_otc: Object name: Joe Pass - Guitar Inte

(continues on next page)
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(continued from previous page)
<inf> bt_otc: Object Current Size: 35
<inf> bt_otc: Object Allocate Size: 35
<inf> bt_otc: Type: Group Obj Type
<inf> bt_otc: Properties:0x4
<inf> bt_otc: - read permitted

Read the object itself:

The object received is a group object. It consists of a series of records consisting of a type (track
or group) and an object ID.

uart:~$ mcc ots_read_current_group_object
<dbg> bt_mcc.on_group_content: Object type: 0, object ID: 0x000000000102
<dbg> bt_mcc.on_group_content: Object type: 0, object ID: 0x000000000103
<dbg> bt_mcc.on_group_content: Object type: 0, object ID: 0x000000000104
<dbg> bt_mcc.on_group_content: Object type: 0, object ID: 0x000000000105
<dbg> bt_mcc.on_group_content: Object type: 0, object ID: 0x000000000106

Search The search control point takes as its input a sequence of search control items, each
consisting of length, type (e.g. track name or artist name) and parameter (the track name or artist
name to search for). If the result is successful, the search results are stored in an object in the
object transfer service. The ID of the search results ID object can be read from the search results
object ID characteristic. The search result object can then be downloaded as for the current
group object above. (Note that the search results object ID is empty until a search has been
done.)

This implementation has a working implementation of the search functionality interface and
the server-side search control point parameter parsing. But the actual searching is faked, the
same results are returned no matter what is searched for.

There are two commands for search, one (mcc set_scp_raw) allows to input the search con-
trol point parameter (the sequence of search control items) as a string. The other (mcc
set_scp_ioptest) does preset IOP test searches and takes the round number of the IOP search
control point test as a parameter.

Before the search, the search results object ID is empty

uart:~$ mcc read_search_results_obj_id
Search Results Object ID: 0x000000000000
<dbg> bt_mcc.mcc_read_search_results_obj_id_cb: Zero-length Search Results Object ID

Run the search corresponding to the fourth round of the IOP test:

The search control point parameter generated by this command and parameter has one search
control item. The length field (first octet) is 16 (0x10). (The length of the length field itself is not
included.) The type field (second octet) is 0x04 (search for a group name). The parameter (the
group name to search for) is “TSPX_Group_Name”.

uart:~$ mcc set_scp_ioptest 4
Search string:
00000000: 10 04 54 53 50 58 5f 47 72 6f 75 70 5f 4e 61 6d |..TSPX_G roup_Nam|
00000010: 65 |e |
Search control point notification result code: 1
Search Results Object ID: 0x000000000107
Search Control Point set

After the successful search, the search results object ID has a value:

uart:~$ mcc read_search_results_obj_id
Search Results Object ID: 0x000000000107
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MediaControl Service (MCS) The media control service (mcs) and the associated media player
(mpl) typically reside on devices that can provide access to, and serve, media content, like PCs
and smartphones.

As mentioned above, the media player (mpl) has the player logic, while the media control service
(mcs) has the GATT-based interface. This separation is done so that the media player can also be
used without the GATT-based interface.

Using the media control service and the media player The media control service and the
media player are in general controlled remotely, from the media control client.

Before use, the media control client must be initialized by the command mpl init.

As for the client, the bt commands are used for connecting - bt init followed by bt connect
<address> <address type> (or bt advertise on if the server is advertising).

Example Usage

Setup
uart:~$ bt init
Bluetooth initialized

uart:~$ mpl init
[Large amounts of debug output]

uart:~$ bt connect F9:33:3B:67:D2:A7 (random)
Connection pending
Connected: F9:33:3B:67:D2:A7 (random)

When connected Control is done from the client.

The server will give debug output related to the various operations performed by the client.

Example: Debug output by the server when the client gives the “next track” command:

[00:13:29.932,373] <dbg> bt_mcs.control_point_write: Opcode: 49
[00:13:29.932,403] <dbg> bt_mpl.mpl_operation_set: opcode: 49, param: 536880068
[00:13:29.932,403] <dbg> bt_mpl.paused_state_operation_handler: Operation opcode: 49
[00:13:29.932,495] <dbg> bt_mpl.do_next_track: Track ID before: 0x000000000104
[00:13:29.932,586] <dbg> bt_mpl.do_next_track: Track ID after: 0x000000000105
[00:13:29.932,617] <dbg> bt_mcs.mpl_track_changed_cb: Notifying track change
[00:13:29.932,708] <dbg> bt_mcs.mpl_track_title_cb: Notifying track title: Interlude #4␣
↪→(Vesper Dreams)
[00:13:29.932,800] <dbg> bt_mcs.mpl_track_duration_cb: Notifying track duration: 13500
[00:13:29.932,861] <dbg> bt_mcs.mpl_track_position_cb: Notifying track position: 0
[00:13:29.933,044] <dbg> bt_mcs.mpl_current_track_id_cb: Notifying current track ID:␣
↪→0x000000000105
[00:13:29.933,258] <dbg> bt_mcs.mpl_next_track_id_cb: Notifying next track ID:␣
↪→0x000000000106
[00:13:29.933,380] <dbg> bt_mcs.mpl_operation_cb: Notifying control point - opcode: 49,␣
↪→result: 1

Some server commands are available. These commands force notifications of the various char-
acteristics, for testing that the client receives notifications. The values sent in the notifications
caused by these testing commands are independent of the media player, so they do not corre-
spond the actual values of the characteristics nor to the actual state of the media player.

Example: Force (fake value) notification of the track duration:
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uart:~$ mpl duration_changed_cb
[00:15:17.491,058] <dbg> bt_mcs.mpl_track_duration_cb: Notifying track duration: 12000

Bluetooth: Telephone and Media Audio Profile Shell This document describes how to run
the Telephone and Media Audio Profile functionality. Unlike most other low-layer profiles, TMAP
is a profile that exists and has a service (TMAS) on all devices. Thus both the initiator and accep-
tor (or central and peripheral) should do a discovery of the remote device’s TMAS to see what
TMAP roles they support.

Using the TMAP Shell When the Bluetooth stack has been initialized (bt init), the TMAS can
be registered by calling tmap init.

tmap --help
tmap - Bluetooth TMAP shell commands
Subcommands:
init :Initialize and register the TMAS
discover :Discover TMAS on remote device

Bluetooth: Public Broadcast Profile Shell This document describes how to run the Public
Broadcast Profile functionality. PBP does not have an associated service. Its purpose is to enable
a faster, more efficient discovery of Broadcast Sources that are transmitting audio with com-
monly used codec configurations.

Using the PBP Shell When the Bluetooth stack has been initialized (bt init), the Public
Broadcast Profile is ready to run. To set the Public Broadcast Announcement features call pbp
set_features.

pbp --help
pbp - Bluetooth PBP shell commands
Subcommands:
set_features :Set the Public Broadcast Announcement features

Bluetooth LE Host

Bluetooth standard services

Battery Service

group bt_bas
Battery Service (BAS)

[Experimental] Users should note that the APIs can change as a part of ongoing develop-
ment.

Functions

uint8_t bt_bas_get_battery_level(void)
Read battery level value.

Read the characteristic value of the battery level
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Returns
The battery level in percent.

int bt_bas_set_battery_level(uint8_t level)
Update battery level value.

Update the characteristic value of the battery level This will send a GATT notification
to all current subscribers.

Parameters
• level – The battery level in percent.

Returns
Zero in case of success and error code in case of error.

Heart Rate Service

group bt_hrs
Heart Rate Service (HRS)

[Experimental] Users should note that the APIs can change as a part of ongoing develop-
ment.

Functions

int bt_hrs_cb_register(struct bt_hrs_cb *cb)
Heart rate service callback register.

This function will register callbacks that will be called in certain events related to Heart
rate service.

Parameters
• cb – Pointer to callbacks structure. Must point to memory that remains

valid until unregistered.

Returns
0 on success

Returns
-EINVAL in case cb is NULL

int bt_hrs_cb_unregister(struct bt_hrs_cb *cb)
Heart rate service callback unregister.

This function will unregister callback from Heart rate service.

Parameters
• cb – Pointer to callbacks structure

Returns
0 on success

Returns
-EINVAL in case cb is NULL

Returns
-ENOENT in case the cb was not found in registered callbacks

int bt_hrs_notify(uint16_t heartrate)
Notify heart rate measurement.

This will send a GATT notification to all current subscribers.
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Parameters
• heartrate – The heartrate measurement in beats per minute.

Returns
Zero in case of success and error code in case of error.

struct bt_hrs_cb
#include <hrs.h> Heart rate service callback structure.

Public Members

void (*ntf_changed)(bool enabled)
Heart rate notifications changed.

Param enabled
Flag that is true if notifications were enabled, false if they were disabled.

Immediate Alert Service

group bt_ias
Immediate Alert Service (IAS)

[Experimental] Users should note that the APIs can change as a part of ongoing develop-
ment.

Defines

BT_IAS_CB_DEFINE(_name)
Register a callback structure for immediate alert events.

Parameters
• _name – Name of callback structure.

Enums

enum bt_ias_alert_lvl
Values:

enumerator BT_IAS_ALERT_LVL_NO_ALERT
No alerting should be done on device.

enumerator BT_IAS_ALERT_LVL_MILD_ALERT
Device shall alert.

enumerator BT_IAS_ALERT_LVL_HIGH_ALERT
Device should alert in strongest possible way.
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Functions

int bt_ias_local_alert_stop(void)
Method for stopping alert locally.

Returns
Zero in case of success and error code in case of error.

int bt_ias_client_alert_write(struct bt_conn *conn, enum bt_ias_alert_lvl)
Set alert level.

Parameters
• conn – Bluetooth connection object

• bt_ias_alert_lvl – Level of alert to write

Returns
Zero in case of success and error code in case of error.

int bt_ias_discover(struct bt_conn *conn)
Discover Immediate Alert Service.

Parameters
• conn – Bluetooth connection object

Returns
Zero in case of success and error code in case of error.

int bt_ias_client_cb_register(const struct bt_ias_client_cb *cb)
Register Immediate Alert Client callbacks.

Parameters
• cb – The callback structure

Returns
Zero in case of success and error code in case of error.

struct bt_ias_cb
#include <ias.h> Immediate Alert Service callback structure.

Public Members

void (*no_alert)(void)
Callback function to stop alert.

This callback is called when peer commands to disable alert.

void (*mild_alert)(void)
Callback function for alert level value.

This callback is called when peer commands to alert.

void (*high_alert)(void)
Callback function for alert level value.

This callback is called when peer commands to alert in the strongest possible way.

struct bt_ias_client_cb
#include <ias.h>
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Public Members

void (*discover)(struct bt_conn *conn, int err)
Callback function for bt_ias_discover.

This callback is called when discovery procedure is complete.
Param conn

Bluetooth connection object.
Param err

0 on success, ATT error or negative errno otherwise

Object Transfer Service

group bt_ots
Object Transfer Service (OTS)

[Experimental] Users should note that the APIs can change as a part of ongoing develop-
ment.

Defines

BT_OTS_OBJ_ID_SIZE
Size of OTS object ID (in bytes).

BT_OTS_OBJ_ID_MIN
Minimum allowed value for object ID (except ID for directory listing)

BT_OTS_OBJ_ID_MAX
Maximum allowed value for object ID (except ID for directory listing)

OTS_OBJ_ID_DIR_LIST
ID of the Directory Listing Object.

BT_OTS_OBJ_ID_MASK
Mask for OTS object IDs, preserving the 48 bits.

BT_OTS_OBJ_ID_STR_LEN
Length of OTS object ID string (in bytes).

BT_OTS_OBJ_SET_PROP_DELETE(prop)
Set BT_OTS_OBJ_PROP_DELETE property.

Parameters
• prop – Object properties.

BT_OTS_OBJ_SET_PROP_EXECUTE(prop)
Set BT_OTS_OBJ_PROP_EXECUTE property.

Parameters
• prop – Object properties.
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BT_OTS_OBJ_SET_PROP_READ(prop)
Set BT_OTS_OBJ_PROP_READ property.

Parameters
• prop – Object properties.

BT_OTS_OBJ_SET_PROP_WRITE(prop)
Set BT_OTS_OBJ_PROP_WRITE property.

Parameters
• prop – Object properties.

BT_OTS_OBJ_SET_PROP_APPEND(prop)
Set BT_OTS_OBJ_PROP_APPEND property.

Parameters
• prop – Object properties.

BT_OTS_OBJ_SET_PROP_TRUNCATE(prop)
Set BT_OTS_OBJ_PROP_TRUNCATE property.

Parameters
• prop – Object properties.

BT_OTS_OBJ_SET_PROP_PATCH(prop)
Set BT_OTS_OBJ_PROP_PATCH property.

Parameters
• prop – Object properties.

BT_OTS_OBJ_SET_PROP_MARKED(prop)
Set BT_OTS_OBJ_SET_PROP_MARKED property.

Parameters
• prop – Object properties.

BT_OTS_OBJ_GET_PROP_DELETE(prop)
Get BT_OTS_OBJ_PROP_DELETE property.

Parameters
• prop – Object properties.

BT_OTS_OBJ_GET_PROP_EXECUTE(prop)
Get BT_OTS_OBJ_PROP_EXECUTE property.

Parameters
• prop – Object properties.

BT_OTS_OBJ_GET_PROP_READ(prop)
Get BT_OTS_OBJ_PROP_READ property.

Parameters
• prop – Object properties.

BT_OTS_OBJ_GET_PROP_WRITE(prop)
Get BT_OTS_OBJ_PROP_WRITE property.

Parameters
• prop – Object properties.
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BT_OTS_OBJ_GET_PROP_APPEND(prop)
Get BT_OTS_OBJ_PROP_APPEND property.

Parameters
• prop – Object properties.

BT_OTS_OBJ_GET_PROP_TRUNCATE(prop)
Get BT_OTS_OBJ_PROP_TRUNCATE property.

Parameters
• prop – Object properties.

BT_OTS_OBJ_GET_PROP_PATCH(prop)
Get BT_OTS_OBJ_PROP_PATCH property.

Parameters
• prop – Object properties.

BT_OTS_OBJ_GET_PROP_MARKED(prop)
Get BT_OTS_OBJ_PROP_MARKED property.

Parameters
• prop – Object properties.

BT_OTS_OACP_SET_FEAT_CREATE(feat)
Set BT_OTS_OACP_SET_FEAT_CREATE feature.

Parameters
• feat – OTS features.

BT_OTS_OACP_SET_FEAT_DELETE(feat)
Set BT_OTS_OACP_FEAT_DELETE feature.

Parameters
• feat – OTS features.

BT_OTS_OACP_SET_FEAT_CHECKSUM(feat)
Set BT_OTS_OACP_FEAT_CHECKSUM feature.

Parameters
• feat – OTS features.

BT_OTS_OACP_SET_FEAT_EXECUTE(feat)
Set BT_OTS_OACP_FEAT_EXECUTE feature.

Parameters
• feat – OTS features.

BT_OTS_OACP_SET_FEAT_READ(feat)
Set BT_OTS_OACP_FEAT_READ feature.

Parameters
• feat – OTS features.

BT_OTS_OACP_SET_FEAT_WRITE(feat)
Set BT_OTS_OACP_FEAT_WRITE feature.

Parameters
• feat – OTS features.

6.1. Bluetooth 1943



Zephyr Project Documentation, Release 3.7.99

BT_OTS_OACP_SET_FEAT_APPEND(feat)
Set BT_OTS_OACP_FEAT_APPEND feature.

Parameters
• feat – OTS features.

BT_OTS_OACP_SET_FEAT_TRUNCATE(feat)
Set BT_OTS_OACP_FEAT_TRUNCATE feature.

Parameters
• feat – OTS features.

BT_OTS_OACP_SET_FEAT_PATCH(feat)
Set BT_OTS_OACP_FEAT_PATCH feature.

Parameters
• feat – OTS features.

BT_OTS_OACP_SET_FEAT_ABORT(feat)
Set BT_OTS_OACP_FEAT_ABORT feature.

Parameters
• feat – OTS features.

BT_OTS_OACP_GET_FEAT_CREATE(feat)
Get BT_OTS_OACP_FEAT_CREATE feature.

Parameters
• feat – OTS features.

BT_OTS_OACP_GET_FEAT_DELETE(feat)
Get BT_OTS_OACP_FEAT_DELETE feature.

Parameters
• feat – OTS features.

BT_OTS_OACP_GET_FEAT_CHECKSUM(feat)
Get BT_OTS_OACP_FEAT_CHECKSUM feature.

Parameters
• feat – OTS features.

BT_OTS_OACP_GET_FEAT_EXECUTE(feat)
Get BT_OTS_OACP_FEAT_EXECUTE feature.

Parameters
• feat – OTS features.

BT_OTS_OACP_GET_FEAT_READ(feat)
Get BT_OTS_OACP_FEAT_READ feature.

Parameters
• feat – OTS features.

BT_OTS_OACP_GET_FEAT_WRITE(feat)
Get BT_OTS_OACP_FEAT_WRITE feature.

Parameters
• feat – OTS features.
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BT_OTS_OACP_GET_FEAT_APPEND(feat)
Get BT_OTS_OACP_FEAT_APPEND feature.

Parameters
• feat – OTS features.

BT_OTS_OACP_GET_FEAT_TRUNCATE(feat)
Get BT_OTS_OACP_FEAT_TRUNCATE feature.

Parameters
• feat – OTS features.

BT_OTS_OACP_GET_FEAT_PATCH(feat)
Get BT_OTS_OACP_FEAT_PATCH feature.

Parameters
• feat – OTS features.

BT_OTS_OACP_GET_FEAT_ABORT(feat)
Get BT_OTS_OACP_FEAT_ABORT feature.

Parameters
• feat – OTS features.

BT_OTS_OLCP_SET_FEAT_GO_TO(feat)
Set BT_OTS_OLCP_FEAT_GO_TO feature.

Parameters
• feat – OTS features.

BT_OTS_OLCP_SET_FEAT_ORDER(feat)
Set BT_OTS_OLCP_FEAT_ORDER feature.

Parameters
• feat – OTS features.

BT_OTS_OLCP_SET_FEAT_NUM_REQ(feat)
Set BT_OTS_OLCP_FEAT_NUM_REQ feature.

Parameters
• feat – OTS features.

BT_OTS_OLCP_SET_FEAT_CLEAR(feat)
Set BT_OTS_OLCP_FEAT_CLEAR feature.

Parameters
• feat – OTS features.

BT_OTS_OLCP_GET_FEAT_GO_TO(feat)
Get BT_OTS_OLCP_GET_FEAT_GO_TO feature.

Parameters
• feat – OTS features.

BT_OTS_OLCP_GET_FEAT_ORDER(feat)
Get BT_OTS_OLCP_GET_FEAT_ORDER feature.

Parameters
• feat – OTS features.
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BT_OTS_OLCP_GET_FEAT_NUM_REQ(feat)
Get BT_OTS_OLCP_GET_FEAT_NUM_REQ feature.

Parameters
• feat – OTS features.

BT_OTS_OLCP_GET_FEAT_CLEAR(feat)
Get BT_OTS_OLCP_GET_FEAT_CLEAR feature.

Parameters
• feat – OTS features.

BT_OTS_DATE_TIME_FIELD_SIZE

BT_OTS_STOP

BT_OTS_CONTINUE

Typedefs

typedef int (*bt_ots_client_dirlisting_cb)(struct bt_ots_obj_metadata *meta)
Directory listing object metadata callback.

If a directory listing is decoded using bt_ots_client_decode_dirlisting(), this callback will
be called for each object in the directory listing.

Parammeta
The metadata of the decoded object

Return
int BT_OTS_STOP or BT_OTS_CONTINUE. BT_OTS_STOP can be used to stop
the decoding.

Enums

Properties of an OTS object.

Values:

enumerator BT_OTS_OBJ_PROP_DELETE = 0
Bit 0 Deletion of this object is permitted.

enumerator BT_OTS_OBJ_PROP_EXECUTE = 1
Bit 1 Execution of this object is permitted.

enumerator BT_OTS_OBJ_PROP_READ = 2
Bit 2 Reading this object is permitted.

enumerator BT_OTS_OBJ_PROP_WRITE = 3
Bit 3 Writing data to this object is permitted.
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enumerator BT_OTS_OBJ_PROP_APPEND = 4
Bit 4 Appending data to this object is permitted.

Appending data increases its Allocated Size.

enumerator BT_OTS_OBJ_PROP_TRUNCATE = 5
Bit 5 Truncation of this object is permitted.

enumerator BT_OTS_OBJ_PROP_PATCH = 6
Bit 6 Patching this object is permitted.

Patching this object overwrites some of
the object's existing contents.

enumerator BT_OTS_OBJ_PROP_MARKED = 7
Bit 7 This object is a marked object.

Object Action Control Point Feature bits.

Values:

enumerator BT_OTS_OACP_FEAT_CREATE = 0
Bit 0 OACP Create Op Code Supported.

enumerator BT_OTS_OACP_FEAT_DELETE = 1
Bit 1 OACP Delete Op Code Supported

enumerator BT_OTS_OACP_FEAT_CHECKSUM = 2
Bit 2 OACP Calculate Checksum Op Code Supported.

enumerator BT_OTS_OACP_FEAT_EXECUTE = 3
Bit 3 OACP Execute Op Code Supported.

enumerator BT_OTS_OACP_FEAT_READ = 4
Bit 4 OACP Read Op Code Supported.

enumerator BT_OTS_OACP_FEAT_WRITE = 5
Bit 5 OACP Write Op Code Supported.

enumerator BT_OTS_OACP_FEAT_APPEND = 6
Bit 6 Appending Additional Data to Objects Supported

enumerator BT_OTS_OACP_FEAT_TRUNCATE = 7
Bit 7 Truncation of Objects Supported.

enumerator BT_OTS_OACP_FEAT_PATCH = 8
Bit 8 Patching of Objects Supported

6.1. Bluetooth 1947



Zephyr Project Documentation, Release 3.7.99

enumerator BT_OTS_OACP_FEAT_ABORT = 9
Bit 9 OACP Abort Op Code Supported.

enum bt_ots_oacp_write_op_mode
Values:

enumerator BT_OTS_OACP_WRITE_OP_MODE_NONE = 0

enumerator BT_OTS_OACP_WRITE_OP_MODE_TRUNCATE = BIT(1)

Object List Control Point Feature bits.

Values:

enumerator BT_OTS_OLCP_FEAT_GO_TO = 0
Bit 0 OLCP Go To Op Code Supported.

enumerator BT_OTS_OLCP_FEAT_ORDER = 1
Bit 1 OLCP Order Op Code Supported.

enumerator BT_OTS_OLCP_FEAT_NUM_REQ = 2
Bit 2 OLCP Request Number of Objects Op Code Supported.

enumerator BT_OTS_OLCP_FEAT_CLEAR = 3
Bit 3 OLCP Clear Marking Op Code Supported.

Object metadata request bit field values.

Values:

enumerator BT_OTS_METADATA_REQ_NAME = BIT(0)
Request object name.

enumerator BT_OTS_METADATA_REQ_TYPE = BIT(1)
Request object type.

enumerator BT_OTS_METADATA_REQ_SIZE = BIT(2)
Request object size.

enumerator BT_OTS_METADATA_REQ_CREATED = BIT(3)
Request object first created time.

enumerator BT_OTS_METADATA_REQ_MODIFIED = BIT(4)
Request object last modified time.

enumerator BT_OTS_METADATA_REQ_ID = BIT(5)
Request object ID.
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enumerator BT_OTS_METADATA_REQ_PROPS = BIT(6)
Request object properties.

enumerator BT_OTS_METADATA_REQ_ALL = 0x7F
Request all object metadata.

Functions

int bt_ots_obj_add(struct bt_ots *ots, const struct bt_ots_obj_add_param *param)
Add an object to the OTS instance.

This function adds an object to the OTS database. When the object is being added, a
callback obj_created() is called to notify the user about a new object ID.

Parameters
• ots – OTS instance.

• param – Object addition parameters.

Returns
ID of created object in case of success.

Returns
negative value in case of error.

int bt_ots_obj_delete(struct bt_ots *ots, uint64_t id)
Delete an object from the OTS instance.

This function deletes an object from the OTS database. When the object is deleted a
callback obj_deleted() is called to notify the user about this event. At this point, it is
possible to free allocated buffer for object data.

Parameters
• ots – OTS instance.

• id – ID of the object to be deleted (uint48).

Returns
0 in case of success or negative value in case of error.

void *bt_ots_svc_decl_get(struct bt_ots *ots)
Get the service declaration attribute.

This function is enabled for CONFIG_BT_OTS_SECONDARY_SVC configuration. The first
service attribute can be included in any other GATT service.

Parameters
• ots – OTS instance.

Returns
The first OTS attribute instance.

int bt_ots_init(struct bt_ots *ots, struct bt_ots_init_param *ots_init)
Initialize the OTS instance.

Parameters
• ots – OTS instance.

• ots_init – OTS initialization descriptor.

Returns
0 in case of success or negative value in case of error.
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struct bt_ots *bt_ots_free_instance_get(void)
Get a free instance of OTS from the pool.

Returns
OTS instance in case of success or NULL in case of error.

int bt_ots_client_register(struct bt_ots_client *ots_inst)
Register an Object Transfer Service Instance.

Register an Object Transfer Service instance discovered on the peer. Call this function
when an OTS instance is discovered (discovery is to be handled by the higher layer).

Parameters
• ots_inst – [in] Discovered OTS instance.

Returns
int 0 if success, ERRNO on failure.

int bt_ots_client_unregister(uint8_t index)
Unregister an Object Transfer Service Instance.

Unregister an Object Transfer Service instance when disconnect from the peer. Call
this function when an ACL using OTS instance is disconnected.

Parameters
• index – [in] Index of OTS instance.

Returns
int 0 if success, ERRNO on failure.

uint8_t bt_ots_client_indicate_handler(struct bt_conn *conn, struct
bt_gatt_subscribe_params *params, const void
*data, uint16_t length)

OTS Indicate Handler function.

Set this function as callback for indicate handler when discovering OTS.

Parameters
• conn – Connection object. May be NULL, indicating that the peer is being

unpaired.

• params – Subscription parameters.

• data – Attribute value data. If NULL then subscription was removed.

• length – Attribute value length.

int bt_ots_client_read_feature(struct bt_ots_client *otc_inst, struct bt_conn *conn)
Read the OTS feature characteristic.

Parameters
• otc_inst – Pointer to the OTC instance.

• conn – Pointer to the connection object.

Returns
int 0 if success, ERRNO on failure.

int bt_ots_client_select_id(struct bt_ots_client *otc_inst, struct bt_conn *conn, uint64_t
obj_id)

Select an object by its Object ID.

Parameters
• otc_inst – Pointer to the OTC instance.
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• conn – Pointer to the connection object.

• obj_id – Object’s ID.

Returns
int 0 if success, ERRNO on failure.

int bt_ots_client_select_first(struct bt_ots_client *otc_inst, struct bt_conn *conn)
Select the first object.

Parameters
• otc_inst – Pointer to the OTC instance.

• conn – Pointer to the connection object.

Returns
int 0 if success, ERRNO on failure.

int bt_ots_client_select_last(struct bt_ots_client *otc_inst, struct bt_conn *conn)
Select the last object.

Parameters
• otc_inst – Pointer to the OTC instance.

• conn – Pointer to the connection object.

Returns
int 0 if success, ERRNO on failure.

int bt_ots_client_select_next(struct bt_ots_client *otc_inst, struct bt_conn *conn)
Select the next object.

Parameters
• otc_inst – Pointer to the OTC instance.

• conn – Pointer to the connection object.

Returns
int 0 if success, ERRNO on failure.

int bt_ots_client_select_prev(struct bt_ots_client *otc_inst, struct bt_conn *conn)
Select the previous object.

Parameters
• otc_inst – Pointer to the OTC instance.

• conn – Pointer to the connection object.

Returns
int 0 if success, ERRNO on failure.

int bt_ots_client_read_object_metadata(struct bt_ots_client *otc_inst, struct bt_conn
*conn, uint8_t metadata)

Read the metadata of the current object.

The metadata are returned in the obj_metadata_read() callback.

Parameters
• otc_inst – Pointer to the OTC instance.

• conn – Pointer to the connection object.

• metadata – Bitfield (BT_OTS_METADATA_REQ_*) of the metadata to read.

Returns
int 0 if success, ERRNO on failure.
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int bt_ots_client_read_object_data(struct bt_ots_client *otc_inst, struct bt_conn *conn)
Read the data of the current selected object.

This will trigger an OACP read operation for the current size of the object with a 0 offset
and then expect receiving the content via the L2CAP CoC.

The data of the object are returned in the obj_data_read() callback.

Parameters
• otc_inst – Pointer to the OTC instance.

• conn – Pointer to the connection object.

Returns
int 0 if success, ERRNO on failure.

int bt_ots_client_write_object_data(struct bt_ots_client *otc_inst, struct bt_conn
*conn, const void *buf, size_t len, off_t offset,
enum bt_ots_oacp_write_op_mode mode)

Write the data of the current selected object.

This will trigger an OACP write operation for the current object with a specified offset
and then expect transferring the content via the L2CAP CoC.

The length of the data written to object is returned in the obj_data_written() callback.

Parameters
• otc_inst – Pointer to the OTC instance.

• conn – Pointer to the connection object.

• buf – Pointer to the data buffer to be written.

• len – Size of data.

• offset – Offset to write, usually 0.

• mode – Mode Parameter for OACP Write Op Code. See
bt_ots_oacp_write_op_mode.

Returns
int 0 if success, ERRNO on failure.

int bt_ots_client_get_object_checksum(struct bt_ots_client *otc_inst, struct bt_conn
*conn, off_t offset, size_t len)

Get the checksum of the current selected object.

This will trigger an OACP calculate checksum operation for the current object with a
specified offset and length.

The checksum goes to OACP IND and obj_checksum_calculated() callback.

Parameters
• otc_inst – Pointer to the OTC instance.

• conn – Pointer to the connection object.

• offset – Offset to calculate, usually 0.

• len – Len of data to calculate checksum for. May be less than the current
object’s size, but shall not be larger.

Returns
int 0 if success, ERRNO on failure.
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int bt_ots_client_decode_dirlisting(uint8_t *data, uint16_t length,
bt_ots_client_dirlisting_cb cb)

Decode Directory Listing object into object metadata.

If the Directory Listing object contains multiple objects, then the callback will be called
for each of them.

Parameters
• data – The data received for the directory listing object.

• length – Length of the data.

• cb – The callback that will be called for each object.

static inline int bt_ots_obj_id_to_str(uint64_t obj_id, char *str, size_t len)
Converts binary OTS Object ID to string.

Parameters
• obj_id – Object ID.

• str – Address of user buffer with enough room to store formatted string
containing binary Object ID.

• len – Length of data to be copied to user string buffer. Refer to
BT_OTS_OBJ_ID_STR_LEN about recommended value.

Returns
Number of successfully formatted bytes from binary ID.

void bt_ots_metadata_display(struct bt_ots_obj_metadata *metadata, uint16_t count)
Displays one or more object metadata as text with LOG_INF.

Parameters
• metadata – Pointer to the first (or only) metadata in an array.

• count – Number of metadata objects to display information of.

struct bt_ots_obj_type
#include <ots.h> Type of an OTS object.

struct bt_ots_obj_size
#include <ots.h> Descriptor for OTS Object Size parameter.

Public Members

uint32_t cur
Current Size.

uint32_t alloc
Allocated Size.

struct bt_ots_feat
#include <ots.h> Features of the OTS.

struct bt_ots_date_time
#include <ots.h> Date and Time structure.
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struct bt_ots_obj_metadata
#include <ots.h> Metadata of an OTS object.

Used by the server as a descriptor for OTS object initialization. Used by the client to
present object metadata to the application.

Public Members

struct bt_ots_obj_type type
Object Type.

struct bt_ots_obj_size size
Object Size.

uint32_t props
Object Properties.

struct bt_ots_obj_add_param
#include <ots.h> Descriptor for OTS object addition.

Public Members

uint32_t size
Object size to allocate.

struct bt_ots_obj_type type
Object type.

struct bt_ots_obj_created_desc
#include <ots.h> Descriptor for OTS created object.

Descriptor for OTS object created by the application. This descriptor is returned by
bt_ots_cb::obj_created callback which contains further documentation on distinguish-
ing between server and client object creation.

Public Members

char *name
Object name.

The object name as a NULL terminated string.

When the server creates a new object the name shall be > 0 and <=
BT_OTS_OBJ_MAX_NAME_LEN When the client creates a new object the name shall
be an empty string
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struct bt_ots_obj_size size
Object size.

bt_ots_obj_size::alloc shall be >= bt_ots_obj_add_param::size

When the server creates a new object bt_ots_obj_size::cur shall be
<= bt_ots_obj_add_param::size When the client creates a new object
bt_ots_obj_size::cur shall be 0

uint32_t props
Object properties.

struct bt_ots_cb
#include <ots.h> OTS callback structure.

Public Members

int (*obj_created)(struct bt_ots *ots, struct bt_conn *conn, uint64_t id, const struct
bt_ots_obj_add_param *add_param, struct bt_ots_obj_created_desc *created_desc)

Object created callback.

This callback is called whenever a new object is created. Application can reject
this request by returning an error when it does not have necessary resources to
hold this new object. This callback is also triggered when the server creates a new
object with bt_ots_obj_add() API.

Param ots
OTS instance.

Param conn
The connection that is requesting object creation or NULL if object is cre-
ated by bt_ots_obj_add().

Param id
Object ID.

Param add_param
Object creation requested parameters.

Param created_desc
Created object descriptor that shall be filled by the receiver of this call-
back.

Return
0 in case of success or negative value in case of error.

Return
-ENOTSUP if object type is not supported

Return
-ENOMEM if no available space for new object.

Return
-EINVAL if an invalid parameter is provided

Return
other negative values are treated as a generic operation failure

int (*obj_deleted)(struct bt_ots *ots, struct bt_conn *conn, uint64_t id)
Object deleted callback.

This callback is called whenever an object is deleted. It is also triggered when the
server deletes an object with bt_ots_obj_delete() API.

Param ots
OTS instance.
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Param conn
The connection that deleted the object or NULL if this request came from
the server.

Param id
Object ID.

Retval When
an error is indicated by using a negative value, the object delete proce-
dure is aborted and a corresponding failed status is returned to the client.

Return
0 in case of success.

Return
-EBUSY if the object is locked. This is generally not expected to be re-
turned by the application as the OTS layer tracks object accesses. An ob-
ject locked status is returned to the client.

Return
Other negative values in case of error. A generic operation failed status
is returned to the client.

void (*obj_selected)(struct bt_ots *ots, struct bt_conn *conn, uint64_t id)
Object selected callback.

This callback is called on successful object selection.
Param ots

OTS instance.
Param conn

The connection that selected new object.
Param id

Object ID.

ssize_t (*obj_read)(struct bt_ots *ots, struct bt_conn *conn, uint64_t id, void **data,
size_t len, off_t offset)

Object read callback.

This callback is called multiple times during the Object read operation. OTS mod-
ule will keep requesting successive Object fragments from the application until the
read operation is completed. The end of read operation is indicated by NULL data
parameter.

Param ots
OTS instance.

Param conn
The connection that read object.

Param id
Object ID.

Param data
In: NULL once the read operations is completed. Out: Next chunk of data
to be sent.

Param len
Remaining length requested by the client.

Param offset
Object data offset.

Return
Data length to be sent via data parameter. This value shall be smaller or
equal to the len parameter.

Return
Negative value in case of an error.

ssize_t (*obj_write)(struct bt_ots *ots, struct bt_conn *conn, uint64_t id, const void
*data, size_t len, off_t offset, size_t rem)
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Object write callback.

This callback is called multiple times during the Object write operation. OTS mod-
ule will keep providing successive Object fragments to the application until the
write operation is completed. The offset and length of each write fragment is vali-
dated by the OTS module to be within the allocated size of the object. The remain-
ing length indicates data length remaining to be written and will decrease each
write iteration until it reaches 0 in the last write fragment.

Param ots
OTS instance.

Param conn
The connection that wrote object.

Param id
Object ID.

Param data
Next chunk of data to be written.

Param len
Length of the current chunk of data in the buffer.

Param offset
Object data offset.

Param rem
Remaining length in the write operation.

Return
Number of bytes written in case of success, if the number of bytes written
does not match len, -EIO is returned to the L2CAP layer.

Return
A negative value in case of an error.

Return
-EINPROGRESS has a special meaning and is unsupported at the moment.
It should not be returned.

void (*obj_name_written)(struct bt_ots *ots, struct bt_conn *conn, uint64_t id, const
char *cur_name, const char *new_name)

Object name written callback.

This callback is called when the object name is written. This is a notification to the
application that the object name will be updated by the OTS service implementa-
tion.

Param ots
OTS instance.

Param conn
The connection that wrote object name.

Param id
Object ID.

Param cur_name
Current object name.

Param new_name
New object name.

int (*obj_cal_checksum)(struct bt_ots *ots, struct bt_conn *conn, uint64_t id, off_t
offset, size_t len, void **data)

Object Calculate checksum callback.

This callback is called when the OACP Calculate Checksum procedure is performed.
Because object data is opaque to OTS, the application is the only one who knows
where data is and should return pointer of actual object data.

Param ots
[in] OTS instance.
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Param conn
[in] The connection that wrote object.

Param id
[in] Object ID.

Param offset
[in] The first octet of the object contents need to be calculated.

Param len
[in] The length number of octets object name.

Param data
[out] Pointer of actual object data.

Return
0 to accept, or any negative value to reject.

struct bt_ots_init_param
#include <ots.h> Descriptor for OTS initialization.

struct bt_ots_client
#include <ots.h> OTS client instance.

struct bt_ots_client_cb
#include <ots.h> OTS client callback structure.

Public Members

void (*obj_selected)(struct bt_ots_client *ots_inst, struct bt_conn *conn, int err)
Callback function when a new object is selected.

Called when the a new object is selected and the current object has changed. The
cur_object in ots_inst will have been reset, and metadata should be read again
with bt_ots_client_read_object_metadata().

Param ots_inst
Pointer to the OTC instance.

Param conn
The connection to the peer device.

Param err
Error code (bt_ots_olcp_res_code).

int (*obj_data_read)(struct bt_ots_client *ots_inst, struct bt_conn *conn, uint32_t
offset, uint32_t len, uint8_t *data_p, bool is_complete)

Callback function for the data of the selected object.

Called when the data of the selected object are read using
bt_ots_client_read_object_data().

Param ots_inst
Pointer to the OTC instance.

Param conn
The connection to the peer device.

Param offset
Offset of the received data.

Param len
Length of the received data.

Param data_p
Pointer to the received data.

Param is_complete
Indicate if the whole object has been received.

1958 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

Return
int BT_OTS_STOP or BT_OTS_CONTINUE. BT_OTS_STOP can be used to
stop reading.

void (*obj_metadata_read)(struct bt_ots_client *ots_inst, struct bt_conn *conn, int err,
uint8_t metadata_read)

Callback function for metadata of the selected object.

Called when metadata of the selected object are read using
bt_ots_client_read_object_metadata(). Not all of the metadata may have been
initialized.

Param ots_inst
Pointer to the OTC instance.

Param conn
The connection to the peer device.

Param err
Error value. 0 on success, GATT error or ERRNO on fail.

Parammetadata_read
Bitfield of the metadata that was successfully read.

void (*obj_data_written)(struct bt_ots_client *ots_inst, struct bt_conn *conn, size_t
len)

Callback function for the data of the write object.

Called when the data of the selected object is written using
bt_ots_client_write_object_data().

Param ots_inst
Pointer to the OTC instance.

Param conn
The connection to the peer device.

Param len
Length of the written data.

void (*obj_checksum_calculated)(struct bt_ots_client *ots_inst, struct bt_conn *conn,
int err, uint32_t checksum)

Callback function when checksum indication is received.

Called when the oacp_ind_handler received response of OP
BT_GATT_OTS_OACP_PROC_CHECKSUM_CALC.

Param ots_inst
Pointer to the OTC instance.

Param conn
The connection to the peer device.

Param err
Error code (bt_gatt_ots_oacp_res_code).

Param checksum
Checksum if error code is BT_GATT_OTS_OACP_RES_SUCCESS, otherwise
0.

Generic Access Profile (GAP)

API Reference

group bt_gap
Generic Access Profile (GAP)
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Since
1.0

Version
1.0.0

Defines

BT_ID_DEFAULT
Convenience macro for specifying the default identity.

This helps make the code more readable, especially when only one identity is sup-
ported.

BT_DATA_SERIALIZED_SIZE(data_len)
Bluetooth data serialized size.

Get the size of a serialized bt_data given its data length.

Size of ‘AD Structure’->’Length’ field, equal to 1. Size of ‘AD Structure’->’Data’->’AD
Type’ field, equal to 1. Size of ‘AD Structure’->’Data’->’AD Data’ field, equal to data_len.

See Core Specification Version 5.4 Vol. 3 Part C, 11, Figure 11.1.

BT_DATA(_type, _data, _data_len)
Helper to declare elements of bt_data arrays.

This macro is mainly for creating an array of struct bt_data elements which is then
passed to e.g. bt_le_adv_start().

Parameters
• _type – Type of advertising data field

• _data – Pointer to the data field payload

• _data_len – Number of bytes behind the _data pointer

BT_DATA_BYTES(_type, _bytes...)
Helper to declare elements of bt_data arrays.

This macro is mainly for creating an array of struct bt_data elements which is then
passed to e.g. bt_le_adv_start().

Parameters
• _type – Type of advertising data field

• _bytes – Variable number of single-byte parameters

BT_LE_ADV_PARAM_INIT(_options, _int_min, _int_max, _peer)
Initialize advertising parameters.

Parameters
• _options – Advertising Options

• _int_min – Minimum advertising interval

• _int_max – Maximum advertising interval

• _peer – Peer address, set to NULL for undirected advertising or address
of peer for directed advertising.
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BT_LE_ADV_PARAM(_options, _int_min, _int_max, _peer)
Helper to declare advertising parameters inline.

Parameters
• _options – Advertising Options

• _int_min – Minimum advertising interval

• _int_max – Maximum advertising interval

• _peer – Peer address, set to NULL for undirected advertising or address
of peer for directed advertising.

BT_LE_ADV_CONN_DIR(_peer)

BT_LE_ADV_CONN

BT_LE_ADV_CONN_ONE_TIME
This is the recommended default for connectable advertisers.

BT_LE_ADV_CONN_NAME

Deprecated:
This macro will be removed in the near future, see https://github.com/
zephyrproject-rtos/zephyr/issues/71686

BT_LE_ADV_CONN_NAME_AD

Deprecated:
This macro will be removed in the near future, see https://github.com/
zephyrproject-rtos/zephyr/issues/71686

BT_LE_ADV_CONN_DIR_LOW_DUTY(_peer)

BT_LE_ADV_NCONN
Non-connectable advertising with private address.

BT_LE_ADV_NCONN_NAME

Deprecated:
This macro will be removed in the near future, see https://github.com/
zephyrproject-rtos/zephyr/issues/71686

Non-connectable advertising with BT_LE_ADV_OPT_USE_NAME

BT_LE_ADV_NCONN_IDENTITY
Non-connectable advertising with BT_LE_ADV_OPT_USE_IDENTITY .

BT_LE_EXT_ADV_CONN
Connectable extended advertising.

BT_LE_EXT_ADV_CONN_NAME

Deprecated:
This macro will be removed in the near future, see https://github.com/
zephyrproject-rtos/zephyr/issues/71686
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Connectable extended advertising with BT_LE_ADV_OPT_USE_NAME

BT_LE_EXT_ADV_SCAN
Scannable extended advertising.

BT_LE_EXT_ADV_SCAN_NAME

Deprecated:
This macro will be removed in the near future, see https://github.com/
zephyrproject-rtos/zephyr/issues/71686

Scannable extended advertising with BT_LE_ADV_OPT_USE_NAME

BT_LE_EXT_ADV_NCONN
Non-connectable extended advertising with private address.

BT_LE_EXT_ADV_NCONN_NAME

Deprecated:
This macro will be removed in the near future, see https://github.com/
zephyrproject-rtos/zephyr/issues/71686

Non-connectable extended advertising with BT_LE_ADV_OPT_USE_NAME

BT_LE_EXT_ADV_NCONN_IDENTITY
Non-connectable extended advertising with BT_LE_ADV_OPT_USE_IDENTITY .

BT_LE_EXT_ADV_CODED_NCONN
Non-connectable extended advertising on coded PHY with private address.

BT_LE_EXT_ADV_CODED_NCONN_NAME

Deprecated:
This macro will be removed in the near future, see https://github.com/
zephyrproject-rtos/zephyr/issues/71686

Non-connectable extended advertising on coded PHY with
BT_LE_ADV_OPT_USE_NAME

BT_LE_EXT_ADV_CODED_NCONN_IDENTITY
Non-connectable extended advertising on coded PHY with
BT_LE_ADV_OPT_USE_IDENTITY .

BT_LE_EXT_ADV_START_PARAM_INIT(_timeout, _n_evts)
Helper to initialize extended advertising start parameters inline.

Parameters
• _timeout – Advertiser timeout

• _n_evts – Number of advertising events

BT_LE_EXT_ADV_START_PARAM(_timeout, _n_evts)
Helper to declare extended advertising start parameters inline.

Parameters
• _timeout – Advertiser timeout

• _n_evts – Number of advertising events
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BT_LE_EXT_ADV_START_DEFAULT

BT_LE_PER_ADV_PARAM_INIT(_int_min, _int_max, _options)
Helper to declare periodic advertising parameters inline.

Parameters
• _int_min – Minimum periodic advertising interval

• _int_max – Maximum periodic advertising interval

• _options – Periodic advertising properties bitfield.

BT_LE_PER_ADV_PARAM(_int_min, _int_max, _options)
Helper to declare periodic advertising parameters inline.

Parameters
• _int_min – Minimum periodic advertising interval

• _int_max – Maximum periodic advertising interval

• _options – Periodic advertising properties bitfield.

BT_LE_PER_ADV_DEFAULT

BT_LE_SCAN_OPT_FILTER_WHITELIST

BT_LE_SCAN_PARAM_INIT(_type, _options, _interval, _window)
Initialize scan parameters.

Parameters
• _type – Scan Type, BT_LE_SCAN_TYPE_ACTIVE or

BT_LE_SCAN_TYPE_PASSIVE.

• _options – Scan options

• _interval – Scan Interval (N * 0.625 ms)

• _window – Scan Window (N * 0.625 ms)

BT_LE_SCAN_PARAM(_type, _options, _interval, _window)
Helper to declare scan parameters inline.

Parameters
• _type – Scan Type, BT_LE_SCAN_TYPE_ACTIVE or

BT_LE_SCAN_TYPE_PASSIVE.

• _options – Scan options

• _interval – Scan Interval (N * 0.625 ms)

• _window – Scan Window (N * 0.625 ms)

BT_LE_SCAN_ACTIVE
Helper macro to enable active scanning to discover new devices.

BT_LE_SCAN_ACTIVE_CONTINUOUS
Helper macro to enable active scanning to discover new devices with window == in-
terval.

Continuous scanning should be used to maximize the chances of receiving advertising
packets.
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BT_LE_SCAN_PASSIVE
Helper macro to enable passive scanning to discover new devices.

This macro should be used if information required for device identification (e.g., UUID)
are known to be placed in Advertising Data.

BT_LE_SCAN_PASSIVE_CONTINUOUS
Helper macro to enable passive scanning to discover new devices with win-
dow==interval.

This macro should be used if information required for device identification (e.g., UUID)
are known to be placed in Advertising Data.

BT_LE_SCAN_CODED_ACTIVE
Helper macro to enable active scanning to discover new devices.

Include scanning on Coded PHY in addition to 1M PHY.

BT_LE_SCAN_CODED_PASSIVE
Helper macro to enable passive scanning to discover new devices.

Include scanning on Coded PHY in addition to 1M PHY.

This macro should be used if information required for device identification (e.g., UUID)
are known to be placed in Advertising Data.

Typedefs

typedef void (*bt_ready_cb_t)(int err)
Callback for notifying that Bluetooth has been enabled.

Param err
zero on success or (negative) error code otherwise.

typedef void bt_le_scan_cb_t(const bt_addr_le_t *addr, int8_t rssi, uint8_t adv_type,
struct net_buf_simple *buf)

Callback type for reporting LE scan results.

A function of this type is given to the bt_le_scan_start() function and will be called for
any discovered LE device.

Param addr
Advertiser LE address and type.

Param rssi
Strength of advertiser signal.

Param adv_type
Type of advertising response from advertiser. Uses the
BT_GAP_ADV_TYPE_* values.

Param buf
Buffer containing advertiser data.

typedef void bt_br_discovery_cb_t(struct bt_br_discovery_result *results, size_t count)
Callback type for reporting BR/EDR discovery (inquiry) results.

A callback of this type is given to the bt_br_discovery_start() function and will be called
at the end of the discovery with information about found devices populated in the
results array.
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Param results
Storage used for discovery results

Param count
Number of valid discovery results.

Enums

Advertising options.

Values:

enumerator BT_LE_ADV_OPT_NONE = 0
Convenience value when no options are specified.

enumerator BT_LE_ADV_OPT_CONNECTABLE = BIT(0)
Advertise as connectable.

Advertise as connectable. If not connectable then the type of advertising is deter-
mined by providing scan response data. The advertiser address is determined by
the type of advertising and/or enabling privacy CONFIG_BT_PRIVACY .

enumerator BT_LE_ADV_OPT_ONE_TIME = BIT(1)
Advertise one time.

Don’t try to resume connectable advertising after a connection. This option is only
meaningful when used together with BT_LE_ADV_OPT_CONNECTABLE. If set the
advertising will be stopped when bt_le_adv_stop() is called or when an incoming
(peripheral) connection happens. If this option is not set the stack will take care of
keeping advertising enabled even as connections occur. If Advertising directed or
the advertiser was started with bt_le_ext_adv_start then this behavior is the default
behavior and this flag has no effect.

enumerator BT_LE_ADV_OPT_USE_IDENTITY = BIT(2)
Advertise using identity address.

Advertise using the identity address as the advertiser address.

Note

The address used for advertising will not be the same as returned by
bt_le_oob_get_local, instead bt_id_get should be used to get the LE address.

Warning

This will compromise the privacy of the device, so care must be taken when
using this option.

enumerator BT_LE_ADV_OPT_USE_NAME = BIT(3)
Advertise using GAP device name.
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Deprecated:
This option will be removed in the near future, see https://github.com/
zephyrproject-rtos/zephyr/issues/71686

Include the GAP device name automatically when advertising. By default the
GAP device name is put at the end of the scan response data. When advertis-
ing using BT_LE_ADV_OPT_EXT_ADV and not BT_LE_ADV_OPT_SCANNABLE then
it will be put at the end of the advertising data. If the GAP device name does
not fit into advertising data it will be converted to a shortened name if possible.
BT_LE_ADV_OPT_FORCE_NAME_IN_AD can be used to force the device name to ap-
pear in the advertising data of an advert with scan response data.

The application can set the device name itself by including the following in the
advertising data.

BT_DATA(BT_DATA_NAME_COMPLETE, name, sizeof(name) - 1)

enumerator BT_LE_ADV_OPT_DIR_MODE_LOW_DUTY = BIT(4)
Low duty cycle directed advertising.

Use low duty directed advertising mode, otherwise high duty mode will be used.

enumerator BT_LE_ADV_OPT_DIR_ADDR_RPA = BIT(5)
Directed advertising to privacy-enabled peer.

Enable use of Resolvable Private Address (RPA) as the target address in directed
advertisements. This is required if the remote device is privacy-enabled and sup-
ports address resolution of the target address in directed advertisement. It is the
responsibility of the application to check that the remote device supports address
resolution of directed advertisements by reading its Central Address Resolution
characteristic.

enumerator BT_LE_ADV_OPT_FILTER_SCAN_REQ = BIT(6)
Use filter accept list to filter devices that can request scan response data.

enumerator BT_LE_ADV_OPT_FILTER_CONN = BIT(7)
Use filter accept list to filter devices that can connect.

enumerator BT_LE_ADV_OPT_NOTIFY_SCAN_REQ = BIT(8)
Notify the application when a scan response data has been sent to an active scan-
ner.

enumerator BT_LE_ADV_OPT_SCANNABLE = BIT(9)
Support scan response data.

When used together with BT_LE_ADV_OPT_EXT_ADV then this option cannot be
used together with the BT_LE_ADV_OPT_CONNECTABLE option. When used to-
gether with BT_LE_ADV_OPT_EXT_ADV then scan response data must be set.

enumerator BT_LE_ADV_OPT_EXT_ADV = BIT(10)
Advertise with extended advertising.

This options enables extended advertising in the advertising set. In extended ad-
vertising the advertising set will send a small header packet on the three primary
advertising channels. This small header points to the advertising data packet that
will be sent on one of the 37 secondary advertising channels. The advertiser will

1966 Chapter 6. Connectivity

https://github.com/zephyrproject-rtos/zephyr/issues/71686
https://github.com/zephyrproject-rtos/zephyr/issues/71686


Zephyr Project Documentation, Release 3.7.99

send primary advertising on LE 1M PHY, and secondary advertising on LE 2M PHY.
Connections will be established on LE 2M PHY.

Without this option the advertiser will send advertising data on the three primary
advertising channels.

Note

Enabling this option requires extended advertising support in the peer devices
scanning for advertisement packets.

Note

This cannot be used with bt_le_adv_start().

enumerator BT_LE_ADV_OPT_NO_2M = BIT(11)
Disable use of LE 2M PHY on the secondary advertising channel.

Disabling the use of LE 2M PHY could be necessary if scanners don’t support the
LE 2M PHY. The advertiser will send primary advertising on LE 1M PHY, and sec-
ondary advertising on LE 1M PHY. Connections will be established on LE 1M PHY.

Note

Cannot be set if BT_LE_ADV_OPT_CODED is set.

Note

Requires BT_LE_ADV_OPT_EXT_ADV .

enumerator BT_LE_ADV_OPT_CODED = BIT(12)
Advertise on the LE Coded PHY (Long Range).

The advertiser will send both primary and secondary advertising on the LE Coded
PHY. This gives the advertiser increased range with the trade-off of lower data rate
and higher power consumption. Connections will be established on LE Coded PHY.

Note

Requires BT_LE_ADV_OPT_EXT_ADV

enumerator BT_LE_ADV_OPT_ANONYMOUS = BIT(13)
Advertise without a device address (identity or RPA).

Note

Requires BT_LE_ADV_OPT_EXT_ADV
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enumerator BT_LE_ADV_OPT_USE_TX_POWER = BIT(14)
Advertise with transmit power.

Note

Requires BT_LE_ADV_OPT_EXT_ADV

enumerator BT_LE_ADV_OPT_DISABLE_CHAN_37 = BIT(15)
Disable advertising on channel index 37.

enumerator BT_LE_ADV_OPT_DISABLE_CHAN_38 = BIT(16)
Disable advertising on channel index 38.

enumerator BT_LE_ADV_OPT_DISABLE_CHAN_39 = BIT(17)
Disable advertising on channel index 39.

enumerator BT_LE_ADV_OPT_FORCE_NAME_IN_AD = BIT(18)
Put GAP device name into advert data.

Deprecated:
This option will be removed in the near future, see https://github.com/
zephyrproject-rtos/zephyr/issues/71686

Will place the GAP device name into the advertising data rather than the scan re-
sponse data.

Note

Requires BT_LE_ADV_OPT_USE_NAME

enumerator BT_LE_ADV_OPT_USE_NRPA = BIT(19)
Advertise using a Non-Resolvable Private Address.

A new NRPA is set when updating the advertising parameters.

This is an advanced feature; most users will want to enable CONFIG_BT_EXT_ADV
instead.

Note

Not implemented when CONFIG_BT_PRIVACY .

Note

Mutually exclusive with BT_LE_ADV_OPT_USE_IDENTITY.

Periodic Advertising options.
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Values:

enumerator BT_LE_PER_ADV_OPT_NONE = 0
Convenience value when no options are specified.

enumerator BT_LE_PER_ADV_OPT_USE_TX_POWER = BIT(1)
Advertise with transmit power.

Note

Requires BT_LE_ADV_OPT_EXT_ADV

enumerator BT_LE_PER_ADV_OPT_INCLUDE_ADI = BIT(2)
Advertise with included AdvDataInfo (ADI).

Note

Requires BT_LE_ADV_OPT_EXT_ADV

Periodic advertising sync options.

Values:

enumerator BT_LE_PER_ADV_SYNC_OPT_NONE = 0
Convenience value when no options are specified.

enumerator BT_LE_PER_ADV_SYNC_OPT_USE_PER_ADV_LIST = BIT(0)
Use the periodic advertising list to sync with advertiser.

When this option is set, the address and SID of the parameters are ignored.

enumerator BT_LE_PER_ADV_SYNC_OPT_REPORTING_INITIALLY_DISABLED = BIT(1)
Disables periodic advertising reports.

No advertisement reports will be handled until enabled.

enumerator BT_LE_PER_ADV_SYNC_OPT_FILTER_DUPLICATE = BIT(2)
Filter duplicate Periodic Advertising reports.

enumerator BT_LE_PER_ADV_SYNC_OPT_DONT_SYNC_AOA = BIT(3)
Sync with Angle of Arrival (AoA) constant tone extension.

enumerator BT_LE_PER_ADV_SYNC_OPT_DONT_SYNC_AOD_1US = BIT(4)
Sync with Angle of Departure (AoD) 1 us constant tone extension.

enumerator BT_LE_PER_ADV_SYNC_OPT_DONT_SYNC_AOD_2US = BIT(5)
Sync with Angle of Departure (AoD) 2 us constant tone extension.
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enumerator BT_LE_PER_ADV_SYNC_OPT_SYNC_ONLY_CONST_TONE_EXT = BIT(6)
Do not sync to packets without a constant tone extension.

Periodic Advertising Sync Transfer options.

Values:

enumerator BT_LE_PER_ADV_SYNC_TRANSFER_OPT_NONE = 0
Convenience value when no options are specified.

enumerator BT_LE_PER_ADV_SYNC_TRANSFER_OPT_SYNC_NO_AOA = BIT(0)
No Angle of Arrival (AoA)

Do not sync with Angle of Arrival (AoA) constant tone extension

enumerator BT_LE_PER_ADV_SYNC_TRANSFER_OPT_SYNC_NO_AOD_1US = BIT(1)
No Angle of Departure (AoD) 1 us.

Do not sync with Angle of Departure (AoD) 1 us constant tone extension

enumerator BT_LE_PER_ADV_SYNC_TRANSFER_OPT_SYNC_NO_AOD_2US = BIT(2)
No Angle of Departure (AoD) 2.

Do not sync with Angle of Departure (AoD) 2 us constant tone extension

enumerator BT_LE_PER_ADV_SYNC_TRANSFER_OPT_SYNC_ONLY_CTE = BIT(3)
Only sync to packets with constant tone extension.

enumerator BT_LE_PER_ADV_SYNC_TRANSFER_OPT_REPORTING_INITIALLY_DISABLED =
BIT(4)

Sync to received PAST packets but don’t generate sync reports.

This option must not be set at the same time as
BT_LE_PER_ADV_SYNC_TRANSFER_OPT_FILTER_DUPLICATES.

enumerator BT_LE_PER_ADV_SYNC_TRANSFER_OPT_FILTER_DUPLICATES = BIT(5)
Sync to received PAST packets and generate sync reports with duplicate filtering.

This option must not be set at the same time as
BT_LE_PER_ADV_SYNC_TRANSFER_OPT_REPORTING_INITIALLY_DISABLED.

Values:

enumerator BT_LE_SCAN_OPT_NONE = 0
Convenience value when no options are specified.

enumerator BT_LE_SCAN_OPT_FILTER_DUPLICATE = BIT(0)
Filter duplicates.

enumerator BT_LE_SCAN_OPT_FILTER_ACCEPT_LIST = BIT(1)
Filter using filter accept list.
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enumerator BT_LE_SCAN_OPT_CODED = BIT(2)
Enable scan on coded PHY (Long Range).

enumerator BT_LE_SCAN_OPT_NO_1M = BIT(3)
Disable scan on 1M phy.

Note

Requires BT_LE_SCAN_OPT_CODED.

Values:

enumerator BT_LE_SCAN_TYPE_PASSIVE = 0x00
Scan without requesting additional information from advertisers.

enumerator BT_LE_SCAN_TYPE_ACTIVE = 0x01
Scan and request additional information from advertisers.

Using this scan type will automatically send scan requests to all devices. Scan re-
sponses are received in the same manner and using the same callbacks as adver-
tising reports.

Functions

int bt_enable(bt_ready_cb_t cb)
Enable Bluetooth.

Enable Bluetooth. Must be the called before any calls that require communication with
the local Bluetooth hardware.

When CONFIG_BT_SETTINGS is enabled, the application must load the Bluetooth settings
after this API call successfully completes before Bluetooth APIs can be used. Loading
the settings before calling this function is insufficient. Bluetooth settings can be loaded
with settings_load() or settings_load_subtree() with argument “bt”. The latter selec-
tively loads only Bluetooth settings and is recommended if settings_load() has been
called earlier.

Parameters
• cb – Callback to notify completion or NULL to perform the enabling syn-

chronously. The callback is called from the system workqueue.

Returns
Zero on success or (negative) error code otherwise.

int bt_disable(void)
Disable Bluetooth.

Disable Bluetooth. Can’t be called before bt_enable has completed.

This API will clear all configured identities and keys that are not persistently stored
with CONFIG_BT_SETTINGS . These can be restored with settings_load() before reen-
abling the stack.

This API does not clear previously registered callbacks like bt_le_scan_cb_register and
bt_conn_cb_register. That is, the application shall not re-register them when the Blue-
tooth subsystem is re-enabled later.
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Close and release HCI resources. Result is architecture dependent.

Returns
Zero on success or (negative) error code otherwise.

bool bt_is_ready(void)
Check if Bluetooth is ready.

Returns
true when Bluetooth is ready, false otherwise

int bt_set_name(const char *name)
Set Bluetooth Device Name.

Set Bluetooth GAP Device Name.

When advertising with device name in the advertising data the name should be up-
dated by calling bt_le_adv_update_data or bt_le_ext_adv_set_data.

See also

CONFIG_BT_DEVICE_NAME_MAX .

Note

Requires CONFIG_BT_DEVICE_NAME_DYNAMIC .

Parameters
• name – New name

Returns
Zero on success or (negative) error code otherwise.

const char *bt_get_name(void)
Get Bluetooth Device Name.

Get Bluetooth GAP Device Name.

Returns
Bluetooth Device Name

uint16_t bt_get_appearance(void)
Get local Bluetooth appearance.

Bluetooth Appearance is a description of the external appearance of a device in terms
of an Appearance Value.

See also

https://specificationrefs.bluetooth.com/assigned-values/Appearance%20Values.
pdf

Returns
Appearance Value of local Bluetooth host.
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int bt_set_appearance(uint16_t new_appearance)
Set local Bluetooth appearance.

Automatically preserves the new appearance across reboots if CONFIG_BT_SETTINGS is
enabled.

This symbol is linkable if CONFIG_BT_DEVICE_APPEARANCE_DYNAMIC is enabled.

Parameters
• new_appearance – Appearance Value

Return values
• 0 – Success.

• other – Persistent storage failed. Appearance was not updated.

void bt_id_get(bt_addr_le_t *addrs, size_t *count)
Get the currently configured identities.

Returns an array of the currently configured identity addresses. To make sure all avail-
able identities can be retrieved, the number of elements in the addrs array should be
CONFIG_BT_ID_MAX. The identity identifier that some APIs expect (such as advertising
parameters) is simply the index of the identity in the addrs array.

If addrs is passed as NULL, then returned count contains the count of all available
identities that can be retrieved with a subsequent call to this function with non-NULL
addrs parameter.

Note

Deleted identities may show up as BT_ADDR_LE_ANY in the returned array.

Parameters
• addrs – Array where to store the configured identities.

• count – Should be initialized to the array size. Once the function returns
it will contain the number of returned identities.

int bt_id_create(bt_addr_le_t *addr, uint8_t *irk)
Create a new identity.

Create a new identity using the given address and IRK. This function can be called
before calling bt_enable(). However, the new identity will only be stored persistently
in flash when this API is used after bt_enable(). The reason is that the persistent set-
tings are loaded after bt_enable() and would therefore cause potential conflicts with
the stack blindly overwriting what’s stored in flash. The identity will also not be writ-
ten to flash in case a pre-defined address is provided, since in such a situation the app
clearly has some place it got the address from and will be able to repeat the procedure
on every power cycle, i.e. it would be redundant to also store the information in flash.

Generating random static address or random IRK is not supported when calling this
function before bt_enable().

If the application wants to have the stack randomly generate identities and store them
in flash for later recovery, the way to do it would be to first initialize the stack (using
bt_enable), then call settings_load(), and after that check with bt_id_get() how many
identities were recovered. If an insufficient amount of identities were recovered the
app may then call bt_id_create() to create new ones.

If supported by the HCI driver (indicated by setting CONFIG_BT_HCI_SET_PUBLIC_ADDR ),
the first call to this function can be used to set the controller’s public identity address.
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This call must happen before calling bt_enable(). Subsequent calls always add/generate
random static addresses.

Parameters
• addr – Address to use for the new identity. If NULL or initialized to

BT_ADDR_LE_ANY the stack will generate a new random static address
for the identity and copy it to the given parameter upon return from this
function (in case the parameter was non-NULL).

• irk – Identity Resolving Key (16 bytes) to be used with this identity. If
set to all zeroes or NULL, the stack will generate a random IRK for the
identity and copy it back to the parameter upon return from this function
(in case the parameter was non-NULL). If privacy CONFIG_BT_PRIVACY is
not enabled this parameter must be NULL.

Returns
Identity identifier (>= 0) in case of success, or a negative error code on fail-
ure.

int bt_id_reset(uint8_t id, bt_addr_le_t *addr, uint8_t *irk)
Reset/reclaim an identity for reuse.

The semantics of the addr and irk parameters of this function are the same as with
bt_id_create(). The difference is the first id parameter that needs to be an existing
identity (if it doesn’t exist this function will return an error). When given an exist-
ing identity this function will disconnect any connections created using it, remove any
pairing keys or other data associated with it, and then create a new identity in the same
slot, based on the addr and irk parameters.

Note

the default identity (BT_ID_DEFAULT) cannot be reset, i.e. this API will return an
error if asked to do that.

Parameters
• id – Existing identity identifier.

• addr – Address to use for the new identity. If NULL or initialized to
BT_ADDR_LE_ANY the stack will generate a new static random address
for the identity and copy it to the given parameter upon return from this
function (in case the parameter was non-NULL).

• irk – Identity Resolving Key (16 bytes) to be used with this identity. If
set to all zeroes or NULL, the stack will generate a random IRK for the
identity and copy it back to the parameter upon return from this function
(in case the parameter was non-NULL). If privacy CONFIG_BT_PRIVACY is
not enabled this parameter must be NULL.

Returns
Identity identifier (>= 0) in case of success, or a negative error code on fail-
ure.

int bt_id_delete(uint8_t id)
Delete an identity.

When given a valid identity this function will disconnect any connections created using
it, remove any pairing keys or other data associated with it, and then flag is as deleted,
so that it can not be used for any operations. To take back into use the slot the identity
was occupying the bt_id_reset() API needs to be used.
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Note

the default identity (BT_ID_DEFAULT) cannot be deleted, i.e. this API will return an
error if asked to do that.

Parameters
• id – Existing identity identifier.

Returns
0 in case of success, or a negative error code on failure.

size_t bt_data_get_len(const struct bt_data data[], size_t data_count)
Get the total size (in bytes) of a given set of bt_data structures.

Parameters
• data – [in] Array of bt_data structures.

• data_count – [in] Number of bt_data structures in data.

Returns
Size of the concatenated data, built from the bt_data structure set.

size_t bt_data_serialize(const struct bt_data *input, uint8_t *output)
Serialize a bt_data struct into an advertising structure (a flat byte array).

The data are formatted according to the Bluetooth Core Specification v. 5.4, vol. 3, part
C, 11.

Parameters
• input – [in] Single bt_data structure to read from.

• output – [out] Buffer large enough to store the advertising structure in
input. The size of it must be at least the size of the input->data_len + 2
(for the type and the length).

Returns
Number of bytes written in output.

int bt_le_adv_start(const struct bt_le_adv_param *param, const struct bt_data *ad, size_t
ad_len, const struct bt_data *sd, size_t sd_len)

Start advertising.

Set advertisement data, scan response data, advertisement parameters and start ad-
vertising.

When the advertisement parameter peer address has been set the advertising
will be directed to the peer. In this case advertisement data and scan response
data parameters are ignored. If the mode is high duty cycle the timeout will be
BT_GAP_ADV_HIGH_DUTY_CYCLE_MAX_TIMEOUT.

This function cannot be used with BT_LE_ADV_OPT_EXT_ADV in the param.options.
For extended advertising, the bt_le_ext_adv_* functions must be used.

Parameters
• param – Advertising parameters.

• ad – Data to be used in advertisement packets.

• ad_len – Number of elements in ad

• sd – Data to be used in scan response packets.

• sd_len – Number of elements in sd
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Returns
Zero on success or (negative) error code otherwise.

Returns
-ENOMEM No free connection objects available for connectable advertiser.

Returns
-ECONNREFUSED When connectable advertising is requested and there is
already maximum number of connections established in the controller.
This error code is only guaranteed when using Zephyr controller, for other
controllers code returned in this case may be -EIO.

int bt_le_adv_update_data(const struct bt_data *ad, size_t ad_len, const struct bt_data
*sd, size_t sd_len)

Update advertising.

Update advertisement and scan response data.

Parameters
• ad – Data to be used in advertisement packets.

• ad_len – Number of elements in ad

• sd – Data to be used in scan response packets.

• sd_len – Number of elements in sd

Returns
Zero on success or (negative) error code otherwise.

int bt_le_adv_stop(void)
Stop advertising.

Stops ongoing advertising.

Returns
Zero on success or (negative) error code otherwise.

int bt_le_ext_adv_create(const struct bt_le_adv_param *param, const struct
bt_le_ext_adv_cb *cb, struct bt_le_ext_adv **adv)

Create advertising set.

Create a new advertising set and set advertising parameters. Advertising parameters
can be updated with bt_le_ext_adv_update_param.

Parameters
• param – [in] Advertising parameters.

• cb – [in] Callback struct to notify about advertiser activity. Can be NULL.
Must point to valid memory during the lifetime of the advertising set.

• adv – [out] Valid advertising set object on success.

Returns
Zero on success or (negative) error code otherwise.

int bt_le_ext_adv_start(struct bt_le_ext_adv *adv, const struct
bt_le_ext_adv_start_param *param)

Start advertising with the given advertising set.

If the advertiser is limited by either the timeout or number of advertising events the
application will be notified by the advertiser sent callback once the limit is reached.
If the advertiser is limited by both the timeout and the number of advertising events
then the limit that is reached first will stop the advertiser.

Parameters
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• adv – Advertising set object.

• param – Advertise start parameters.

int bt_le_ext_adv_stop(struct bt_le_ext_adv *adv)
Stop advertising with the given advertising set.

Stop advertising with a specific advertising set. When using this function the advertis-
ing sent callback will not be called.

Parameters
• adv – Advertising set object.

Returns
Zero on success or (negative) error code otherwise.

int bt_le_ext_adv_set_data(struct bt_le_ext_adv *adv, const struct bt_data *ad, size_t
ad_len, const struct bt_data *sd, size_t sd_len)

Set an advertising set’s advertising or scan response data.

Set advertisement data or scan response data. If the advertising set is currently adver-
tising then the advertising data will be updated in subsequent advertising events.

When both BT_LE_ADV_OPT_EXT_ADV and BT_LE_ADV_OPT_SCANNABLE are en-
abled then advertising data is ignored. When BT_LE_ADV_OPT_SCANNABLE is not en-
abled then scan response data is ignored.

If the advertising set has been configured to send advertising data on
the primary advertising channels then the maximum data length is
BT_GAP_ADV_MAX_ADV_DATA_LEN bytes. If the advertising set has been config-
ured for extended advertising, then the maximum data length is defined by the
controller with the maximum possible of BT_GAP_ADV_MAX_EXT_ADV_DATA_LEN
bytes.

Note

Not all scanners support extended data length advertising data.

Note

When updating the advertising data while advertising the advertising data and scan
response data length must be smaller or equal to what can be fit in a single adver-
tising packet. Otherwise the advertiser must be stopped.

Parameters
• adv – Advertising set object.

• ad – Data to be used in advertisement packets.

• ad_len – Number of elements in ad

• sd – Data to be used in scan response packets.

• sd_len – Number of elements in sd

Returns
Zero on success or (negative) error code otherwise.
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int bt_le_ext_adv_update_param(struct bt_le_ext_adv *adv, const struct bt_le_adv_param
*param)

Update advertising parameters.

Update the advertising parameters. The function will return an error if the advertiser
set is currently advertising. Stop the advertising set before calling this function.

Note

When changing the option BT_LE_ADV_OPT_USE_NAME then
bt_le_ext_adv_set_data needs to be called in order to update the advertising
data and scan response data.

Parameters
• adv – Advertising set object.

• param – Advertising parameters.

Returns
Zero on success or (negative) error code otherwise.

int bt_le_ext_adv_delete(struct bt_le_ext_adv *adv)
Delete advertising set.

Delete advertising set. This will free up the advertising set and make it possible to
create a new advertising set.

Returns
Zero on success or (negative) error code otherwise.

uint8_t bt_le_ext_adv_get_index(struct bt_le_ext_adv *adv)
Get array index of an advertising set.

This function is used to map bt_adv to index of an array of advertising sets. The array
has CONFIG_BT_EXT_ADV_MAX_ADV_SET elements.

Parameters
• adv – Advertising set.

Returns
Index of the advertising set object. The range of the returned value is
0..CONFIG_BT_EXT_ADV_MAX_ADV_SET-1

int bt_le_ext_adv_get_info(const struct bt_le_ext_adv *adv, struct bt_le_ext_adv_info
*info)

Get advertising set info.

Parameters
• adv – Advertising set object

• info – Advertising set info object

Returns
Zero on success or (negative) error code on failure.

int bt_le_per_adv_set_param(struct bt_le_ext_adv *adv, const struct bt_le_per_adv_param
*param)

Set or update the periodic advertising parameters.

The periodic advertising parameters can only be set or updated on an extended adver-
tisement set which is neither scannable, connectable nor anonymous.
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Parameters
• adv – Advertising set object.

• param – Advertising parameters.

Returns
Zero on success or (negative) error code otherwise.

int bt_le_per_adv_set_data(const struct bt_le_ext_adv *adv, const struct bt_data *ad,
size_t ad_len)

Set or update the periodic advertising data.

The periodic advertisement data can only be set or updated on an extended advertise-
ment set which is neither scannable, connectable nor anonymous.

Parameters
• adv – Advertising set object.

• ad – Advertising data.

• ad_len – Advertising data length.

Returns
Zero on success or (negative) error code otherwise.

int bt_le_per_adv_set_subevent_data(const struct bt_le_ext_adv *adv, uint8_t
num_subevents, const struct
bt_le_per_adv_subevent_data_params *params)

Set the periodic advertising with response subevent data.

Set the data for one or more subevents of a Periodic Advertising with Responses Ad-
vertiser in reply data request.

Parameters
• adv – The extended advertiser the PAwR train belongs to.

• num_subevents – The number of subevents to set data for.

• params – Subevent parameters.

Pre
There are num_subevents elements in params.

Pre
The controller has requested data for the subevents in params.

Returns
Zero on success or (negative) error code otherwise.

int bt_le_per_adv_start(struct bt_le_ext_adv *adv)
Starts periodic advertising.

Enabling the periodic advertising can be done independently of extended advertising,
but both periodic advertising and extended advertising shall be enabled before any
periodic advertising data is sent. The periodic advertising and extended advertising
can be enabled in any order.

Once periodic advertising has been enabled, it will continue advertising un-
til bt_le_per_adv_stop() has been called, or if the advertising set is deleted by
bt_le_ext_adv_delete(). Calling bt_le_ext_adv_stop() will not stop the periodic advertis-
ing.

Parameters
• adv – Advertising set object.
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Returns
Zero on success or (negative) error code otherwise.

int bt_le_per_adv_stop(struct bt_le_ext_adv *adv)
Stops periodic advertising.

Disabling the periodic advertising can be done independently of extended advertising.
Disabling periodic advertising will not disable extended advertising.

Parameters
• adv – Advertising set object.

Returns
Zero on success or (negative) error code otherwise.

uint8_t bt_le_per_adv_sync_get_index(struct bt_le_per_adv_sync *per_adv_sync)
Get array index of an periodic advertising sync object.

This function is get the index of an array of periodic advertising sync objects. The array
has CONFIG_BT_PER_ADV_SYNC_MAX elements.

Parameters
• per_adv_sync – The periodic advertising sync object.

Returns
Index of the periodic advertising sync object. The range of the returned
value is 0..CONFIG_BT_PER_ADV_SYNC_MAX-1

struct bt_le_per_adv_sync *bt_le_per_adv_sync_lookup_index(uint8_t index)
Get a periodic advertising sync object from the array index.

This function is to get the periodic advertising sync object from the array index. The
array has CONFIG_BT_PER_ADV_SYNC_MAX elements.

Parameters
• index – The index of the periodic advertising sync object. The range of

the index value is 0..CONFIG_BT_PER_ADV_SYNC_MAX-1

Returns
The periodic advertising sync object of the array index or NULL if invalid
index.

int bt_le_per_adv_sync_get_info(struct bt_le_per_adv_sync *per_adv_sync, struct
bt_le_per_adv_sync_info *info)

Get periodic adv sync information.

Parameters
• per_adv_sync – Periodic advertising sync object.

• info – Periodic advertising sync info object

Returns
Zero on success or (negative) error code on failure.

struct bt_le_per_adv_sync *bt_le_per_adv_sync_lookup_addr(const bt_addr_le_t
*adv_addr, uint8_t sid)

Look up an existing periodic advertising sync object by advertiser address.

Parameters
• adv_addr – Advertiser address.

• sid – The advertising set ID.
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Returns
Periodic advertising sync object or NULL if not found.

int bt_le_per_adv_sync_create(const struct bt_le_per_adv_sync_param *param, struct
bt_le_per_adv_sync **out_sync)

Create a periodic advertising sync object.

Create a periodic advertising sync object that can try to synchronize to periodic adver-
tising reports from an advertiser. Scan shall either be disabled or extended scan shall
be enabled.

This function does not timeout, and will continue to look for an advertiser until it either
finds it or bt_le_per_adv_sync_delete() is called. It is thus suggested to implement a
timeout when using this, if it is expected to find the advertiser within a reasonable
timeframe.

Parameters
• param – [in] Periodic advertising sync parameters.

• out_sync – [out] Periodic advertising sync object on.

Returns
Zero on success or (negative) error code otherwise.

int bt_le_per_adv_sync_delete(struct bt_le_per_adv_sync *per_adv_sync)
Delete periodic advertising sync.

Delete the periodic advertising sync object. Can be called regardless of the state of the
sync. If the syncing is currently syncing, the syncing is cancelled. If the sync has been
established, it is terminated. The periodic advertising sync object will be invalidated
afterwards.

If the state of the sync object is syncing, then a new periodic advertising sync object
may not be created until the controller has finished canceling this object.

Parameters
• per_adv_sync – The periodic advertising sync object.

Returns
Zero on success or (negative) error code otherwise.

int bt_le_per_adv_sync_cb_register(struct bt_le_per_adv_sync_cb *cb)
Register periodic advertising sync callbacks.

Adds the callback structure to the list of callback structures for periodic advertising
syncs.

This callback will be called for all periodic advertising sync activity, such as synced,
terminated and when data is received.

Parameters
• cb – Callback struct. Must point to memory that remains valid.

Return values
• 0 – Success.

• -EEXIST – if cb was already registered.

int bt_le_per_adv_sync_recv_enable(struct bt_le_per_adv_sync *per_adv_sync)
Enables receiving periodic advertising reports for a sync.

If the sync is already receiving the reports, -EALREADY is returned.

Parameters
• per_adv_sync – The periodic advertising sync object.
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Returns
Zero on success or (negative) error code otherwise.

int bt_le_per_adv_sync_recv_disable(struct bt_le_per_adv_sync *per_adv_sync)
Disables receiving periodic advertising reports for a sync.

If the sync report receiving is already disabled, -EALREADY is returned.

Parameters
• per_adv_sync – The periodic advertising sync object.

Returns
Zero on success or (negative) error code otherwise.

int bt_le_per_adv_sync_transfer(const struct bt_le_per_adv_sync *per_adv_sync, const
struct bt_conn *conn, uint16_t service_data)

Transfer the periodic advertising sync information to a peer device.

This will allow another device to quickly synchronize to the same periodic advertising
train that this device is currently synced to.

Parameters
• per_adv_sync – The periodic advertising sync to transfer.

• conn – The peer device that will receive the sync information.

• service_data – Application service data provided to the remote host.

Returns
Zero on success or (negative) error code otherwise.

int bt_le_per_adv_set_info_transfer(const struct bt_le_ext_adv *adv, const struct
bt_conn *conn, uint16_t service_data)

Transfer the information about a periodic advertising set.

This will allow another device to quickly synchronize to periodic advertising set from
this device.

Parameters
• adv – The periodic advertising set to transfer info of.

• conn – The peer device that will receive the information.

• service_data – Application service data provided to the remote host.

Returns
Zero on success or (negative) error code otherwise.

int bt_le_per_adv_sync_transfer_subscribe(const struct bt_conn *conn, const struct
bt_le_per_adv_sync_transfer_param
*param)

Subscribe to periodic advertising sync transfers (PASTs).

Sets the parameters and allow other devices to transfer periodic advertising syncs.

Parameters
• conn – The connection to set the parameters for. If NULL default parame-

ters for all connections will be set. Parameters set for specific connection
will always have precedence.

• param – The periodic advertising sync transfer parameters.

Returns
Zero on success or (negative) error code otherwise.
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int bt_le_per_adv_sync_transfer_unsubscribe(const struct bt_conn *conn)
Unsubscribe from periodic advertising sync transfers (PASTs).

Remove the parameters that allow other devices to transfer periodic advertising syncs.

Parameters
• conn – The connection to remove the parameters for. If NULL default pa-

rameters for all connections will be removed. Unsubscribing for a spe-
cific device, will still allow other devices to transfer periodic advertising
syncs.

Returns
Zero on success or (negative) error code otherwise.

int bt_le_per_adv_list_add(const bt_addr_le_t *addr, uint8_t sid)
Add a device to the periodic advertising list.

Add peer device LE address to the periodic advertising list. This will make it possibly
to automatically create a periodic advertising sync to this device.

Parameters
• addr – Bluetooth LE identity address.

• sid – The advertising set ID. This value is obtained from the
bt_le_scan_recv_info in the scan callback.

Returns
Zero on success or (negative) error code otherwise.

int bt_le_per_adv_list_remove(const bt_addr_le_t *addr, uint8_t sid)
Remove a device from the periodic advertising list.

Removes peer device LE address from the periodic advertising list.

Parameters
• addr – Bluetooth LE identity address.

• sid – The advertising set ID. This value is obtained from the
bt_le_scan_recv_info in the scan callback.

Returns
Zero on success or (negative) error code otherwise.

int bt_le_per_adv_list_clear(void)
Clear the periodic advertising list.

Clears the entire periodic advertising list.

Returns
Zero on success or (negative) error code otherwise.

int bt_le_scan_start(const struct bt_le_scan_param *param, bt_le_scan_cb_t cb)
Start (LE) scanning.

Start LE scanning with given parameters and provide results through the specified
callback.

Note

The LE scanner by default does not use the Identity Address of the local device when
CONFIG_BT_PRIVACY is disabled. This is to prevent the active scanner from disclosing
the identity information when requesting additional information from advertisers.
In order to enable directed advertiser reports then CONFIG_BT_SCAN_WITH_IDENTITY
must be enabled.
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Note

Setting the param.timeout parameter is not supported when CONFIG_BT_PRIVACY is
enabled, when the param.type is BT_LE_SCAN_TYPE_ACTIVE. Supplying a non-zero
timeout will result in an -EINVAL error code.

Parameters
• param – Scan parameters.

• cb – Callback to notify scan results. May be NULL if callback registration
through bt_le_scan_cb_register is preferred.

Returns
Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_le_scan_stop(void)
Stop (LE) scanning.

Stops ongoing LE scanning.

Returns
Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_le_scan_cb_register(struct bt_le_scan_cb *cb)
Register scanner packet callbacks.

Adds the callback structure to the list of callback structures that monitors scanner ac-
tivity.

This callback will be called for all scanner activity, regardless of what API was used to
start the scanner.

Parameters
• cb – Callback struct. Must point to memory that remains valid.

Return values
• 0 – Success.

• -EEXIST – if cb was already registered.

void bt_le_scan_cb_unregister(struct bt_le_scan_cb *cb)
Unregister scanner packet callbacks.

Remove the callback structure from the list of scanner callbacks.

Parameters
• cb – Callback struct. Must point to memory that remains valid.

int bt_le_filter_accept_list_add(const bt_addr_le_t *addr)
Add device (LE) to filter accept list.

Add peer device LE address to the filter accept list.

Note

The filter accept list cannot be modified when an LE role is using the filter accept
list, i.e advertiser or scanner using a filter accept list or automatic connecting to
devices using filter accept list.
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Parameters
• addr – Bluetooth LE identity address.

Returns
Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_le_filter_accept_list_remove(const bt_addr_le_t *addr)
Remove device (LE) from filter accept list.

Remove peer device LE address from the filter accept list.

Note

The filter accept list cannot be modified when an LE role is using the filter accept
list, i.e advertiser or scanner using a filter accept list or automatic connecting to
devices using filter accept list.

Parameters
• addr – Bluetooth LE identity address.

Returns
Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_le_filter_accept_list_clear(void)
Clear filter accept list.

Clear all devices from the filter accept list.

Note

The filter accept list cannot be modified when an LE role is using the filter accept
list, i.e advertiser or scanner using a filter accept list or automatic connecting to
devices using filter accept list.

Returns
Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_le_set_chan_map(uint8_t chan_map[5])
Set (LE) channel map.

Parameters
• chan_map – Channel map.

Returns
Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_le_set_rpa_timeout(uint16_t new_rpa_timeout)
Set the Resolvable Private Address timeout in runtime.

The new RPA timeout value will be used for the next RPA rotation and all subsequent
rotations until another override is scheduled with this API.

Initially, the if CONFIG_BT_RPA_TIMEOUT is used as the RPA timeout.
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This symbol is linkable if CONFIG_BT_RPA_TIMEOUT_DYNAMIC is enabled.

Parameters
• new_rpa_timeout – Resolvable Private Address timeout in seconds

Return values
• 0 – Success.

• -EINVAL – RPA timeout value is invalid. Valid range is 1s - 3600s.

void bt_data_parse(struct net_buf_simple *ad, bool (*func)(struct bt_data *data, void
*user_data), void *user_data)

Helper for parsing advertising (or EIR or OOB) data.

A helper for parsing the basic data types used for Extended Inquiry Response (EIR),
Advertising Data (AD), and OOB data blocks. The most common scenario is to
call this helper on the advertising data received in the callback that was given to
bt_le_scan_start().

Warning

This helper function will consume ad when parsing. The user should make a copy
if the original data is to be used afterwards

Parameters
• ad – Advertising data as given to the bt_le_scan_cb_t callback.

• func – Callback function which will be called for each element that’s
found in the data. The callback should return true to continue parsing,
or false to stop parsing.

• user_data – User data to be passed to the callback.

int bt_le_oob_get_local(uint8_t id, struct bt_le_oob *oob)
Get local LE Out of Band (OOB) information.

This function allows to get local information that are useful for Out of Band pairing or
connection creation.

If privacy CONFIG_BT_PRIVACY is enabled this will result in generating new Resolvable
Private Address (RPA) that is valid for CONFIG_BT_RPA_TIMEOUT seconds. This address
will be used for advertising started by bt_le_adv_start, active scanning and connection
creation.

Note

If privacy is enabled the RPA cannot be refreshed in the following cases:

• Creating a connection in progress, wait for the connected callback. In addi-
tion when extended advertising CONFIG_BT_EXT_ADV is not enabled or not sup-
ported by the controller:

• Advertiser is enabled using a Random Static Identity Address for a different
local identity.

• The local identity conflicts with the local identity used by other roles.

Parameters
• id – [in] Local identity, in most cases BT_ID_DEFAULT.
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• oob – [out] LE OOB information

Returns
Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_le_ext_adv_oob_get_local(struct bt_le_ext_adv *adv, struct bt_le_oob *oob)
Get local LE Out of Band (OOB) information.

This function allows to get local information that are useful for Out of Band pairing or
connection creation.

If privacy CONFIG_BT_PRIVACY is enabled this will result in generating new Resolvable
Private Address (RPA) that is valid for CONFIG_BT_RPA_TIMEOUT seconds. This address
will be used by the advertising set.

Note

When generating OOB information for multiple advertising set all OOB information
needs to be generated at the same time.

Note

If privacy is enabled the RPA cannot be refreshed in the following cases:

• Creating a connection in progress, wait for the connected callback.

Parameters
• adv – [in] The advertising set object

• oob – [out] LE OOB information

Returns
Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_br_discovery_start(const struct bt_br_discovery_param *param, struct
bt_br_discovery_result *results, size_t count,
bt_br_discovery_cb_t cb)

Start BR/EDR discovery.

Start BR/EDR discovery (inquiry) and provide results through the specified callback.
When bt_br_discovery_cb_t is called it indicates that discovery has completed. If more
inquiry results were received during session than fits in provided result storage, only
ones with highest RSSI will be reported.

Parameters
• param – Discovery parameters.

• results – Storage for discovery results.

• count – Number of results in storage. Valid range: 1-255.

• cb – Callback to notify discovery results.

Returns
Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error
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int bt_br_discovery_stop(void)
Stop BR/EDR discovery.

Stops ongoing BR/EDR discovery. If discovery was stopped by this call results won’t be
reported

Returns
Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_br_oob_get_local(struct bt_br_oob *oob)
Get BR/EDR local Out Of Band information.

This function allows to get local controller information that are useful for Out Of Band
pairing or connection creation process.

Parameters
• oob – Out Of Band information

int bt_br_set_discoverable(bool enable)
Enable/disable set controller in discoverable state.

Allows make local controller to listen on INQUIRY SCAN channel and responds to de-
vices making general inquiry. To enable this state it’s mandatory to first be in con-
nectable state.

Parameters
• enable – Value allowing/disallowing controller to become discoverable.

Returns
Negative if fail set to requested state or requested state has been already
set. Zero if done successfully.

int bt_br_set_connectable(bool enable)
Enable/disable set controller in connectable state.

Allows make local controller to be connectable. It means the controller start listen to
devices requests on PAGE SCAN channel. If disabled also resets discoverability if was
set.

Parameters
• enable – Value allowing/disallowing controller to be connectable.

Returns
Negative if fail set to requested state or requested state has been already
set. Zero if done successfully.

int bt_unpair(uint8_t id, const bt_addr_le_t *addr)
Clear pairing information.

Parameters
• id – Local identity (mostly just BT_ID_DEFAULT).

• addr – Remote address, NULL or BT_ADDR_LE_ANY to clear all remote
devices.

Returns
0 on success or negative error value on failure.

void bt_foreach_bond(uint8_t id, void (*func)(const struct bt_bond_info *info, void
*user_data), void *user_data)

Iterate through all existing bonds.

Parameters
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• id – Local identity (mostly just BT_ID_DEFAULT).

• func – Function to call for each bond.

• user_data – Data to pass to the callback function.

int bt_configure_data_path(uint8_t dir, uint8_t id, uint8_t vs_config_len, const uint8_t
*vs_config)

Configure vendor data path.

Request the Controller to configure the data transport path in a given direction be-
tween the Controller and the Host.

Parameters
• dir – Direction to be configured, BT_HCI_DATAPATH_DIR_HOST_TO_CTLR

or BT_HCI_DATAPATH_DIR_CTLR_TO_HOST

• id – Vendor specific logical transport channel ID, range
[BT_HCI_DATAPATH_ID_VS..BT_HCI_DATAPATH_ID_VS_END]

• vs_config_len – Length of additional vendor specific configuration data

• vs_config – Pointer to additional vendor specific configuration data

Returns
0 in case of success or negative value in case of error.

int bt_le_per_adv_sync_subevent(struct bt_le_per_adv_sync *per_adv_sync, struct
bt_le_per_adv_sync_subevent_params *params)

Synchronize with a subset of subevents.

Until this command is issued, the subevent(s) the controller is synchronized to is un-
specified.

Parameters
• per_adv_sync – The periodic advertising sync object.

• params – Parameters.

Returns
0 in case of success or negative value in case of error.

int bt_le_per_adv_set_response_data(struct bt_le_per_adv_sync *per_adv_sync, const
struct bt_le_per_adv_response_params *params,
const struct net_buf_simple *data)

Set the data for a response slot in a specific subevent of the PAwR.

This function is called by the application to set the response data. The data for a re-
sponse slot shall be transmitted only once.

Parameters
• per_adv_sync – The periodic advertising sync object.

• params – Parameters.

• data – The response data to send.

Returns
Zero on success or (negative) error code otherwise.

struct bt_le_ext_adv_sent_info
#include <bluetooth.h>
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Public Members

uint8_t num_sent
The number of advertising events completed.

struct bt_le_ext_adv_connected_info
#include <bluetooth.h>

Public Members

struct bt_conn *conn
Connection object of the new connection.

struct bt_le_ext_adv_scanned_info
#include <bluetooth.h>

Public Members

bt_addr_le_t *addr
Active scanner LE address and type.

struct bt_le_per_adv_data_request
#include <bluetooth.h>

Public Members

uint8_t start
The first subevent data can be set for.

uint8_t count
The number of subevents data can be set for.

struct bt_le_per_adv_response_info
#include <bluetooth.h>

Public Members

uint8_t subevent
The subevent the response was received in.

uint8_t tx_status
Status of the subevent indication.

0 if subevent indication was transmitted. 1 if subevent indication was not trans-
mitted. All other values RFU.
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int8_t tx_power
The TX power of the response in dBm.

int8_t rssi
The RSSI of the response in dBm.

uint8_t cte_type
The Constant Tone Extension (CTE) of the advertisement (bt_df_cte_type)

uint8_t response_slot
The slot the response was received in.

struct bt_le_ext_adv_cb
#include <bluetooth.h>

Public Members

void (*sent)(struct bt_le_ext_adv *adv, struct bt_le_ext_adv_sent_info *info)
The advertising set has finished sending adv data.

This callback notifies the application that the advertising set has finished sending
advertising data. The advertising set can either have been stopped by a timeout or
because the specified number of advertising events has been reached.

Param adv
The advertising set object.

Param info
Information about the sent event.

void (*connected)(struct bt_le_ext_adv *adv, struct bt_le_ext_adv_connected_info
*info)

The advertising set has accepted a new connection.

This callback notifies the application that the advertising set has accepted a new
connection.

Param adv
The advertising set object.

Param info
Information about the connected event.

void (*scanned)(struct bt_le_ext_adv *adv, struct bt_le_ext_adv_scanned_info *info)
The advertising set has sent scan response data.

This callback notifies the application that the advertising set has has received a
Scan Request packet, and has sent a Scan Response packet.

Param adv
The advertising set object.

Param addr
Information about the scanned event.

struct bt_data
#include <bluetooth.h> Bluetooth data.

Description of different data types that can be encoded into advertising data. Used to
form arrays that are passed to the bt_le_adv_start() function.
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struct bt_le_adv_param
#include <bluetooth.h> LE Advertising Parameters.

Public Members

uint8_t id
Local identity.

Note

When extended advertising CONFIG_BT_EXT_ADV is not enabled or not supported
by the controller it is not possible to scan and advertise simultaneously using
two different random addresses.

uint8_t sid
Advertising Set Identifier, valid range 0x00 - 0x0f.

Note

Requires BT_LE_ADV_OPT_EXT_ADV

uint8_t secondary_max_skip
Secondary channel maximum skip count.

Maximum advertising events the advertiser can skip before it must send advertis-
ing data on the secondary advertising channel.

Note

Requires BT_LE_ADV_OPT_EXT_ADV

uint32_t options
Bit-field of advertising options.

uint32_t interval_min
Minimum Advertising Interval (N * 0.625 milliseconds) Minimum Advertising In-
terval shall be less than or equal to the Maximum Advertising Interval.

The Minimum Advertising Interval and Maximum Advertising Interval should not
be the same value (as stated in Bluetooth Core Spec 5.2, section 7.8.5) Range: 0x0020
to 0x4000

uint32_t interval_max
Maximum Advertising Interval (N * 0.625 milliseconds) Minimum Advertising In-
terval shall be less than or equal to the Maximum Advertising Interval.

The Minimum Advertising Interval and Maximum Advertising Interval should not
be the same value (as stated in Bluetooth Core Spec 5.2, section 7.8.5) Range: 0x0020
to 0x4000
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const bt_addr_le_t *peer
Directed advertising to peer.

When this parameter is set the advertiser will send directed advertising to the re-
mote device.

The advertising type will either be high duty cycle, or low duty cycle if
the BT_LE_ADV_OPT_DIR_MODE_LOW_DUTY option is enabled. When using
BT_LE_ADV_OPT_EXT_ADV then only low duty cycle is allowed.

In case of connectable high duty cycle if the connection could not be established
within the timeout the connected() callback will be called with the status set to
BT_HCI_ERR_ADV_TIMEOUT.

struct bt_le_per_adv_param
#include <bluetooth.h>

Public Members

uint16_t interval_min
Minimum Periodic Advertising Interval (N * 1.25 ms)

Shall be greater or equal to BT_GAP_PER_ADV_MIN_INTERVAL and less or equal to
interval_max.

uint16_t interval_max
Maximum Periodic Advertising Interval (N * 1.25 ms)

Shall be less or equal to BT_GAP_PER_ADV_MAX_INTERVAL and greater or equal
to interval_min.

uint32_t options
Bit-field of periodic advertising options.

struct bt_le_ext_adv_start_param
#include <bluetooth.h>

Public Members

uint16_t timeout
Advertiser timeout (N * 10 ms).

Application will be notified by the advertiser sent callback. Set to zero for no time-
out.

When using high duty cycle directed connectable advertising then this param-
eters must be set to a non-zero value less than or equal to the maximum of
BT_GAP_ADV_HIGH_DUTY_CYCLE_MAX_TIMEOUT.

If privacy CONFIG_BT_PRIVACY is enabled then the timeout must be less than CON-
FIG_BT_RPA_TIMEOUT .
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uint8_t num_events
Number of advertising events.

Application will be notified by the advertiser sent callback. Set to zero for no limit.

struct bt_le_ext_adv_info
#include <bluetooth.h> Advertising set info structure.

Public Members

int8_t tx_power
Currently selected Transmit Power (dBM).

const bt_addr_le_t *addr
Current local advertising address used.

struct bt_le_per_adv_subevent_data_params
#include <bluetooth.h>

Public Members

uint8_t subevent
The subevent to set data for.

uint8_t response_slot_start
The first response slot to listen to.

uint8_t response_slot_count
The number of response slots to listen to.

const struct net_buf_simple *data
The data to send.

struct bt_le_per_adv_sync_synced_info
#include <bluetooth.h>

Public Members

const bt_addr_le_t *addr
Advertiser LE address and type.

uint8_t sid
Advertiser SID.

uint16_t interval
Periodic advertising interval (N * 1.25 ms)
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uint8_t phy
Advertiser PHY.

bool recv_enabled
True if receiving periodic advertisements, false otherwise.

uint16_t service_data
Service Data provided by the peer when sync is transferred.

Will always be 0 when the sync is locally created.

struct bt_conn *conn
Peer that transferred the periodic advertising sync.

Will always be 0 when the sync is locally created.

struct bt_le_per_adv_sync_term_info
#include <bluetooth.h>

Public Members

const bt_addr_le_t *addr
Advertiser LE address and type.

uint8_t sid
Advertiser SID.

uint8_t reason
Cause of periodic advertising termination.

struct bt_le_per_adv_sync_recv_info
#include <bluetooth.h>

Public Members

const bt_addr_le_t *addr
Advertiser LE address and type.

uint8_t sid
Advertiser SID.

int8_t tx_power
The TX power of the advertisement.

int8_t rssi
The RSSI of the advertisement excluding any CTE.
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uint8_t cte_type
The Constant Tone Extension (CTE) of the advertisement (bt_df_cte_type)

struct bt_le_per_adv_sync_state_info
#include <bluetooth.h>

Public Members

bool recv_enabled
True if receiving periodic advertisements, false otherwise.

struct bt_le_per_adv_sync_cb
#include <bluetooth.h>

Public Members

void (*synced)(struct bt_le_per_adv_sync *sync, struct bt_le_per_adv_sync_synced_info
*info)

The periodic advertising has been successfully synced.

This callback notifies the application that the periodic advertising set has been
successfully synced, and will now start to receive periodic advertising reports.

Param sync
The periodic advertising sync object.

Param info
Information about the sync event.

void (*term)(struct bt_le_per_adv_sync *sync, const struct
bt_le_per_adv_sync_term_info *info)

The periodic advertising sync has been terminated.

This callback notifies the application that the periodic advertising sync has been
terminated, either by local request, remote request or because due to missing data,
e.g. by being out of range or sync.

Param sync
The periodic advertising sync object.

void (*recv)(struct bt_le_per_adv_sync *sync, const struct
bt_le_per_adv_sync_recv_info *info, struct net_buf_simple *buf)

Periodic advertising data received.

This callback notifies the application of an periodic advertising report.
Param sync

The advertising set object.
Param info

Information about the periodic advertising event.
Param buf

Buffer containing the periodic advertising data. NULL if the con-
troller failed to receive a subevent indication. Only happens if CON-
FIG_BT_PER_ADV_SYNC_RSP is enabled.
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void (*state_changed)(struct bt_le_per_adv_sync *sync, const struct
bt_le_per_adv_sync_state_info *info)

The periodic advertising sync state has changed.

This callback notifies the application about changes to the sync state. Initialize sync
and termination is handled by their individual callbacks, and won’t be notified
here.

Param sync
The periodic advertising sync object.

Param info
Information about the state change.

void (*biginfo)(struct bt_le_per_adv_sync *sync, const struct bt_iso_biginfo *biginfo)
BIGInfo advertising report received.

This callback notifies the application of a BIGInfo advertising report. This is re-
ceived if the advertiser is broadcasting isochronous streams in a BIG. See iso.h for
more information.

Param sync
The advertising set object.

Param biginfo
The BIGInfo report.

void (*cte_report_cb)(struct bt_le_per_adv_sync *sync, struct
bt_df_per_adv_sync_iq_samples_report const *info)

Callback for IQ samples report collected when sampling CTE received with periodic
advertising PDU.

Param sync
The periodic advertising sync object.

Param info
Information about the sync event.

struct bt_le_per_adv_sync_param
#include <bluetooth.h>

Public Members

bt_addr_le_t addr
Periodic Advertiser Address.

Only valid if not using the periodic advertising list
(BT_LE_PER_ADV_SYNC_OPT_USE_PER_ADV_LIST)

uint8_t sid
Advertiser SID.

Only valid if not using the periodic advertising list
(BT_LE_PER_ADV_SYNC_OPT_USE_PER_ADV_LIST)

uint32_t options
Bit-field of periodic advertising sync options.

uint16_t skip
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Maximum event skip.

Maximum number of periodic advertising events that can be skipped after a suc-
cessful receive. Range: 0x0000 to 0x01F3

uint16_t timeout
Synchronization timeout (N * 10 ms)

Synchronization timeout for the periodic advertising sync. Range 0x000A to
0x4000 (100 ms to 163840 ms)

struct bt_le_per_adv_sync_info
#include <bluetooth.h> Advertising set info structure.

Public Members

bt_addr_le_t addr
Periodic Advertiser Address.

uint8_t sid
Advertiser SID.

uint16_t interval
Periodic advertising interval (N * 1.25 ms)

uint8_t phy
Advertiser PHY.

struct bt_le_per_adv_sync_transfer_param
#include <bluetooth.h>

Public Members

uint16_t skip
Maximum event skip.

The number of periodic advertising packets that can be skipped after a successful
receive.

uint16_t timeout
Synchronization timeout (N * 10 ms)

Synchronization timeout for the periodic advertising sync. Range 0x000A to
0x4000 (100 ms to 163840 ms)

uint32_t options
Periodic Advertising Sync Transfer options.

struct bt_le_scan_param
#include <bluetooth.h> LE scan parameters.
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Public Members

uint8_t type
Scan type (BT_LE_SCAN_TYPE_ACTIVE or BT_LE_SCAN_TYPE_PASSIVE)

uint32_t options
Bit-field of scanning options.

uint16_t interval
Scan interval (N * 0.625 ms)

uint16_t window
Scan window (N * 0.625 ms)

uint16_t timeout
Scan timeout (N * 10 ms)

Application will be notified by the scan timeout callback. Set zero to disable time-
out.

uint16_t interval_coded
Scan interval LE Coded PHY (N * 0.625 MS)

Set zero to use same as LE 1M PHY scan interval.

uint16_t window_coded
Scan window LE Coded PHY (N * 0.625 MS)

Set zero to use same as LE 1M PHY scan window.

struct bt_le_scan_recv_info
#include <bluetooth.h> LE advertisement and scan response packet information.

Public Members

const bt_addr_le_t *addr
Advertiser LE address and type.

If advertiser is anonymous then this address will be BT_ADDR_LE_ANY .

uint8_t sid
Advertising Set Identifier.

int8_t rssi
Strength of advertiser signal.

int8_t tx_power
Transmit power of the advertiser.
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uint8_t adv_type
Advertising packet type.

Uses the BT_GAP_ADV_TYPE_* value.

May indicate that this is a scan response if the type is
BT_GAP_ADV_TYPE_SCAN_RSP.

uint16_t adv_props
Advertising packet properties bitfield.

Uses the BT_GAP_ADV_PROP_* values. May indicate that this is a scan response if
the value contains the BT_GAP_ADV_PROP_SCAN_RESPONSE bit.

uint16_t interval
Periodic advertising interval (N * 1.25 ms).

If 0 there is no periodic advertising.

uint8_t primary_phy
Primary advertising channel PHY.

uint8_t secondary_phy
Secondary advertising channel PHY.

struct bt_le_scan_cb
#include <bluetooth.h> Listener context for (LE) scanning.

Public Members

void (*recv)(const struct bt_le_scan_recv_info *info, struct net_buf_simple *buf)
Advertisement packet and scan response received callback.

Param info
Advertiser packet and scan response information.

Param buf
Buffer containing advertiser data.

void (*timeout)(void)
The scanner has stopped scanning after scan timeout.

struct bt_le_oob_sc_data
#include <bluetooth.h> LE Secure Connections pairing Out of Band data.

Public Members

uint8_t r[16]
Random Number.

uint8_t c[16]
Confirm Value.
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struct bt_le_oob
#include <bluetooth.h> LE Out of Band information.

Public Members

bt_addr_le_t addr
LE address.

If privacy is enabled this is a Resolvable Private Address.

struct bt_le_oob_sc_data le_sc_data
LE Secure Connections pairing Out of Band data.

struct bt_br_discovery_result
#include <bluetooth.h> BR/EDR discovery result structure.

Public Members

bt_addr_t addr
Remote device address.

int8_t rssi
RSSI from inquiry.

uint8_t cod[3]
Class of Device.

uint8_t eir[240]
Extended Inquiry Response.

struct bt_br_discovery_param
#include <bluetooth.h> BR/EDR discovery parameters.

Public Members

uint8_t length
Maximum length of the discovery in units of 1.28 seconds.

Valid range is 0x01 - 0x30.

bool limited
True if limited discovery procedure is to be used.

struct bt_br_oob
#include <bluetooth.h>
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Public Members

bt_addr_t addr
BR/EDR address.

struct bt_bond_info
#include <bluetooth.h> Information about a bond with a remote device.

Public Members

bt_addr_le_t addr
Address of the remote device.

struct bt_le_per_adv_sync_subevent_params
#include <bluetooth.h>

Public Members

uint16_t properties
Periodic Advertising Properties.

Bit 6 is include TxPower, all others RFU.

uint8_t num_subevents
Number of subevents to sync to.

uint8_t *subevents
The subevent(s) to synchronize with.

The array must have num_subevents elements.

struct bt_le_per_adv_response_params
#include <bluetooth.h>

Public Members

uint16_t request_event
The periodic event counter of the request the response is sent to.

bt_le_per_adv_sync_recv_info

Note

The response can be sent up to one periodic interval after the request was re-
ceived.
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uint8_t request_subevent
The subevent counter of the request the response is sent to.

bt_le_per_adv_sync_recv_info

uint8_t response_subevent
The subevent the response shall be sent in.

uint8_t response_slot
The response slot the response shall be sent in.

group bt_addr
Bluetooth device address definitions and utilities.

Defines

BT_ADDR_LE_PUBLIC

BT_ADDR_LE_RANDOM

BT_ADDR_LE_PUBLIC_ID

BT_ADDR_LE_RANDOM_ID

BT_ADDR_LE_UNRESOLVED

BT_ADDR_LE_ANONYMOUS

BT_ADDR_SIZE
Length in bytes of a standard Bluetooth address.

BT_ADDR_LE_SIZE
Length in bytes of an LE Bluetooth address.

Not packed, so no sizeof()

BT_ADDR_ANY
Bluetooth device “any” address, not a valid address.

BT_ADDR_NONE
Bluetooth device “none” address, not a valid address.

BT_ADDR_LE_ANY
Bluetooth LE device “any” address, not a valid address.

BT_ADDR_LE_NONE
Bluetooth LE device “none” address, not a valid address.
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BT_ADDR_IS_RPA(a)
Check if a Bluetooth LE random address is resolvable private address.

BT_ADDR_IS_NRPA(a)
Check if a Bluetooth LE random address is a non-resolvable private address.

BT_ADDR_IS_STATIC(a)
Check if a Bluetooth LE random address is a static address.

BT_ADDR_SET_RPA(a)
Set a Bluetooth LE random address as a resolvable private address.

BT_ADDR_SET_NRPA(a)
Set a Bluetooth LE random address as a non-resolvable private address.

BT_ADDR_SET_STATIC(a)
Set a Bluetooth LE random address as a static address.

BT_ADDR_STR_LEN
Recommended length of user string buffer for Bluetooth address.

The recommended length guarantee the output of address conversion will not lose
valuable information about address being processed.

BT_ADDR_LE_STR_LEN
Recommended length of user string buffer for Bluetooth LE address.

The recommended length guarantee the output of address conversion will not lose
valuable information about address being processed.

Functions

static inline int bt_addr_cmp(const bt_addr_t *a, const bt_addr_t *b)
Compare Bluetooth device addresses.

Parameters
• a – First Bluetooth device address to compare

• b – Second Bluetooth device address to compare

Returns
negative value if a < b, 0 if a == b, else positive

static inline bool bt_addr_eq(const bt_addr_t *a, const bt_addr_t *b)
Determine equality of two Bluetooth device addresses.

Return values
• true – if the two addresses are equal

• false – otherwise

static inline int bt_addr_le_cmp(const bt_addr_le_t *a, const bt_addr_le_t *b)
Compare Bluetooth LE device addresses.

See also

bt_addr_le_eq
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Parameters
• a – First Bluetooth LE device address to compare

• b – Second Bluetooth LE device address to compare

Returns
negative value if a < b, 0 if a == b, else positive

static inline bool bt_addr_le_eq(const bt_addr_le_t *a, const bt_addr_le_t *b)
Determine equality of two Bluetooth LE device addresses.

The Bluetooth LE addresses are equal if and only if both the types and the 48-bit ad-
dresses are numerically equal.

Return values
• true – if the two addresses are equal

• false – otherwise

static inline void bt_addr_copy(bt_addr_t *dst, const bt_addr_t *src)
Copy Bluetooth device address.

Parameters
• dst – Bluetooth device address destination buffer.

• src – Bluetooth device address source buffer.

static inline void bt_addr_le_copy(bt_addr_le_t *dst, const bt_addr_le_t *src)
Copy Bluetooth LE device address.

Parameters
• dst – Bluetooth LE device address destination buffer.

• src – Bluetooth LE device address source buffer.

int bt_addr_le_create_nrpa(bt_addr_le_t *addr)
Create a Bluetooth LE random non-resolvable private address.

int bt_addr_le_create_static(bt_addr_le_t *addr)
Create a Bluetooth LE random static address.

static inline bool bt_addr_le_is_rpa(const bt_addr_le_t *addr)
Check if a Bluetooth LE address is a random private resolvable address.

Parameters
• addr – Bluetooth LE device address.

Returns
true if address is a random private resolvable address.

static inline bool bt_addr_le_is_identity(const bt_addr_le_t *addr)
Check if a Bluetooth LE address is valid identity address.

Valid Bluetooth LE identity addresses are either public address or random static ad-
dress.

Parameters
• addr – Bluetooth LE device address.

Returns
true if address is a valid identity address.
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static inline int bt_addr_to_str(const bt_addr_t *addr, char *str, size_t len)
Converts binary Bluetooth address to string.

Parameters
• addr – Address of buffer containing binary Bluetooth address.

• str – Address of user buffer with enough room to store formatted string
containing binary address.

• len – Length of data to be copied to user string buffer. Refer to
BT_ADDR_STR_LEN about recommended value.

Returns
Number of successfully formatted bytes from binary address.

static inline int bt_addr_le_to_str(const bt_addr_le_t *addr, char *str, size_t len)
Converts binary LE Bluetooth address to string.

Parameters
• addr – Address of buffer containing binary LE Bluetooth address.

• str – Address of user buffer with enough room to store formatted string
containing binary LE address.

• len – Length of data to be copied to user string buffer. Refer to
BT_ADDR_LE_STR_LEN about recommended value.

Returns
Number of successfully formatted bytes from binary address.

int bt_addr_from_str(const char *str, bt_addr_t *addr)
Convert Bluetooth address from string to binary.

Parameters
• str – [in] The string representation of a Bluetooth address.

• addr – [out] Address of buffer to store the Bluetooth address

Return values
0 – Success. The parsed address is stored in addr.

Returns
-EINVAL Invalid address string. str is not a well-formed Bluetooth address.

int bt_addr_le_from_str(const char *str, const char *type, bt_addr_le_t *addr)
Convert LE Bluetooth address from string to binary.

Parameters
• str – [in] The string representation of an LE Bluetooth address.

• type – [in] The string representation of the LE Bluetooth address type.

• addr – [out] Address of buffer to store the LE Bluetooth address

Returns
Zero on success or (negative) error code otherwise.

Variables

const bt_addr_t bt_addr_any
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const bt_addr_t bt_addr_none

const bt_addr_le_t bt_addr_le_any

const bt_addr_le_t bt_addr_le_none

struct bt_addr_t
#include <addr.h> Bluetooth Device Address.

struct bt_addr_le_t
#include <addr.h> Bluetooth LE Device Address.

group bt_gap_defines
Bluetooth Generic Access Profile defines and Assigned Numbers.

Company Identifiers (see Bluetooth Assigned Numbers)

BT_COMP_ID_LF
The Linux Foundation.

EIR/AD data type definitions

BT_DATA_FLAGS
AD flags.

BT_DATA_UUID16_SOME
16-bit UUID, more available

BT_DATA_UUID16_ALL
16-bit UUID, all listed

BT_DATA_UUID32_SOME
32-bit UUID, more available

BT_DATA_UUID32_ALL
32-bit UUID, all listed

BT_DATA_UUID128_SOME
128-bit UUID, more available

BT_DATA_UUID128_ALL
128-bit UUID, all listed

BT_DATA_NAME_SHORTENED
Shortened name.
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BT_DATA_NAME_COMPLETE
Complete name.

BT_DATA_TX_POWER
Tx Power.

BT_DATA_DEVICE_CLASS
Class of Device.

BT_DATA_SIMPLE_PAIRING_HASH_C192
Simple Pairing Hash C-192.

BT_DATA_SIMPLE_PAIRING_RAND_C192
Simple Pairing Randomizer R-192.

BT_DATA_DEVICE_ID
Device ID (Profile)

BT_DATA_SM_TK_VALUE
Security Manager TK Value.

BT_DATA_SM_OOB_FLAGS
Security Manager OOB Flags.

BT_DATA_PERIPHERAL_INT_RANGE
Peripheral Connection Interval Range.

BT_DATA_SOLICIT16
Solicit UUIDs, 16-bit.

BT_DATA_SOLICIT128
Solicit UUIDs, 128-bit.

BT_DATA_SVC_DATA16
Service data, 16-bit UUID.

BT_DATA_PUB_TARGET_ADDR
Public Target Address.

BT_DATA_RAND_TARGET_ADDR
Random Target Address.

BT_DATA_GAP_APPEARANCE
GAP appearance.

BT_DATA_ADV_INT
Advertising Interval.
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BT_DATA_LE_BT_DEVICE_ADDRESS
LE Bluetooth Device Address.

BT_DATA_LE_ROLE
LE Role.

BT_DATA_SIMPLE_PAIRING_HASH
Simple Pairing Hash C256.

BT_DATA_SIMPLE_PAIRING_RAND
Simple Pairing Randomizer R256.

BT_DATA_SOLICIT32
Solicit UUIDs, 32-bit.

BT_DATA_SVC_DATA32
Service data, 32-bit UUID.

BT_DATA_SVC_DATA128
Service data, 128-bit UUID.

BT_DATA_LE_SC_CONFIRM_VALUE
LE SC Confirmation Value.

BT_DATA_LE_SC_RANDOM_VALUE
LE SC Random Value.

BT_DATA_URI
URI.

BT_DATA_INDOOR_POS
Indoor Positioning.

BT_DATA_TRANS_DISCOVER_DATA
Transport Discovery Data.

BT_DATA_LE_SUPPORTED_FEATURES
LE Supported Features.

BT_DATA_CHANNEL_MAP_UPDATE_IND
Channel Map Update Indication.

BT_DATA_MESH_PROV
Mesh Provisioning PDU.

BT_DATA_MESH_MESSAGE
Mesh Networking PDU.
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BT_DATA_MESH_BEACON
Mesh Beacon.

BT_DATA_BIG_INFO
BIGInfo.

BT_DATA_BROADCAST_CODE
Broadcast Code.

BT_DATA_CSIS_RSI
CSIS Random Set ID type.

BT_DATA_ADV_INT_LONG
Advertising Interval long.

BT_DATA_BROADCAST_NAME
Broadcast Name.

BT_DATA_ENCRYPTED_AD_DATA
Encrypted Advertising Data.

BT_DATA_PAWR_TIMING_INFO
Periodic Advertising Response Timing Info.

BT_DATA_ESL
Electronic Shelf Label Profile.

BT_DATA_3D_INFO
3D Information Data

BT_DATA_MANUFACTURER_DATA
Manufacturer Specific Data.

BT_LE_AD_LIMITED
Limited Discoverable.

BT_LE_AD_GENERAL
General Discoverable.

BT_LE_AD_NO_BREDR
BR/EDR not supported.

Appearance Values

Last Modified on 2023-01-05

BT_APPEARANCE_UNKNOWN
Generic Unknown.
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BT_APPEARANCE_GENERIC_PHONE
Generic Phone.

BT_APPEARANCE_GENERIC_COMPUTER
Generic Computer.

BT_APPEARANCE_COMPUTER_DESKTOP_WORKSTATION
Desktop Workstation.

BT_APPEARANCE_COMPUTER_SERVER_CLASS
Server-class Computer.

BT_APPEARANCE_COMPUTER_LAPTOP
Laptop.

BT_APPEARANCE_COMPUTER_HANDHELD_PCPDA
Handheld PC/PDA (clamshell)

BT_APPEARANCE_COMPUTER_PALMSIZE_PCPDA
Palmsize PC/PDA.

BT_APPEARANCE_COMPUTER_WEARABLE_COMPUTER
Wearable computer (watch size)

BT_APPEARANCE_COMPUTER_TABLET
Tablet.

BT_APPEARANCE_COMPUTER_DOCKING_STATION
Docking Station.

BT_APPEARANCE_COMPUTER_ALL_IN_ONE
All in One.

BT_APPEARANCE_COMPUTER_BLADE_SERVER
Blade Server.

BT_APPEARANCE_COMPUTER_CONVERTIBLE
Convertible.

BT_APPEARANCE_COMPUTER_DETACHABLE
Detachable.

BT_APPEARANCE_COMPUTER_IOT_GATEWAY
IoT Gateway.

BT_APPEARANCE_COMPUTER_MINI_PC
Mini PC.
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BT_APPEARANCE_COMPUTER_STICK_PC
Stick PC.

BT_APPEARANCE_GENERIC_WATCH
Generic Watch.

BT_APPEARANCE_SPORTS_WATCH
Sports Watch.

BT_APPEARANCE_SMARTWATCH
Smartwatch.

BT_APPEARANCE_GENERIC_CLOCK
Generic Clock.

BT_APPEARANCE_GENERIC_DISPLAY
Generic Display.

BT_APPEARANCE_GENERIC_REMOTE
Generic Remote Control.

BT_APPEARANCE_GENERIC_EYEGLASSES
Generic Eye-glasses.

BT_APPEARANCE_GENERIC_TAG
Generic Tag.

BT_APPEARANCE_GENERIC_KEYRING
Generic Keyring.

BT_APPEARANCE_GENERIC_MEDIA_PLAYER
Generic Media Player.

BT_APPEARANCE_GENERIC_BARCODE_SCANNER
Generic Barcode Scanner.

BT_APPEARANCE_GENERIC_THERMOMETER
Generic Thermometer.

BT_APPEARANCE_THERMOMETER_EAR
Ear Thermometer.

BT_APPEARANCE_GENERIC_HEART_RATE
Generic Heart Rate Sensor.

BT_APPEARANCE_HEART_RATE_BELT
Heart Rate Belt.
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BT_APPEARANCE_GENERIC_BLOOD_PRESSURE
Generic Blood Pressure.

BT_APPEARANCE_BLOOD_PRESSURE_ARM
Arm Blood Pressure.

BT_APPEARANCE_BLOOD_PRESSURE_WRIST
Wrist Blood Pressure.

BT_APPEARANCE_GENERIC_HID
Generic Human Interface Device.

BT_APPEARANCE_HID_KEYBOARD
Keyboard.

BT_APPEARANCE_HID_MOUSE
Mouse.

BT_APPEARANCE_HID_JOYSTICK
Joystick.

BT_APPEARANCE_HID_GAMEPAD
Gamepad.

BT_APPEARANCE_HID_DIGITIZER_TABLET
Digitizer Tablet.

BT_APPEARANCE_HID_CARD_READER
Card Reader.

BT_APPEARANCE_HID_DIGITAL_PEN
Digital Pen.

BT_APPEARANCE_HID_BARCODE_SCANNER
Barcode Scanner.

BT_APPEARANCE_HID_TOUCHPAD
Touchpad.

BT_APPEARANCE_HID_PRESENTATION_REMOTE
Presentation Remote.

BT_APPEARANCE_GENERIC_GLUCOSE
Generic Glucose Meter.

BT_APPEARANCE_GENERIC_WALKING
Generic Running Walking Sensor.
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BT_APPEARANCE_WALKING_IN_SHOE
In-Shoe Running Walking Sensor.

BT_APPEARANCE_WALKING_ON_SHOE
On-Shoe Running Walking Sensor.

BT_APPEARANCE_WALKING_ON_HIP
On-Hip Running Walking Sensor.

BT_APPEARANCE_GENERIC_CYCLING
Generic Cycling.

BT_APPEARANCE_CYCLING_COMPUTER
Cycling Computer.

BT_APPEARANCE_CYCLING_SPEED
Speed Sensor.

BT_APPEARANCE_CYCLING_CADENCE
Cadence Sensor.

BT_APPEARANCE_CYCLING_POWER
Power Sensor.

BT_APPEARANCE_CYCLING_SPEED_CADENCE
Speed and Cadence Sensor.

BT_APPEARANCE_GENERIC_CONTROL_DEVICE
Generic Control Device.

BT_APPEARANCE_CONTROL_SWITCH
Switch.

BT_APPEARANCE_CONTROL_MULTI_SWITCH
Multi-switch.

BT_APPEARANCE_CONTROL_BUTTON
Button.

BT_APPEARANCE_CONTROL_SLIDER
Slider.

BT_APPEARANCE_CONTROL_ROTARY_SWITCH
Rotary Switch.

BT_APPEARANCE_CONTROL_TOUCH_PANEL
Touch Panel.
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BT_APPEARANCE_CONTROL_SINGLE_SWITCH
Single Switch.

BT_APPEARANCE_CONTROL_DOUBLE_SWITCH
Double Switch.

BT_APPEARANCE_CONTROL_TRIPLE_SWITCH
Triple Switch.

BT_APPEARANCE_CONTROL_BATTERY_SWITCH
Battery Switch.

BT_APPEARANCE_CONTROL_ENERGY_HARVESTING_SWITCH
Energy Harvesting Switch.

BT_APPEARANCE_CONTROL_PUSH_BUTTON
Push Button.

BT_APPEARANCE_GENERIC_NETWORK_DEVICE
Generic Network Device.

BT_APPEARANCE_NETWORK_ACCESS_POINT
Access Point.

BT_APPEARANCE_NETWORK_MESH_DEVICE
Mesh Device.

BT_APPEARANCE_NETWORK_MESH_PROXY
Mesh Network Proxy.

BT_APPEARANCE_GENERIC_SENSOR
Generic Sensor.

BT_APPEARANCE_SENSOR_MOTION
Motion Sensor.

BT_APPEARANCE_SENSOR_AIR_QUALITY
Air quality Sensor.

BT_APPEARANCE_SENSOR_TEMPERATURE
Temperature Sensor.

BT_APPEARANCE_SENSOR_HUMIDITY
Humidity Sensor.

BT_APPEARANCE_SENSOR_LEAK
Leak Sensor.
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BT_APPEARANCE_SENSOR_SMOKE
Smoke Sensor.

BT_APPEARANCE_SENSOR_OCCUPANCY
Occupancy Sensor.

BT_APPEARANCE_SENSOR_CONTACT
Contact Sensor.

BT_APPEARANCE_SENSOR_CARBON_MONOXIDE
Carbon Monoxide Sensor.

BT_APPEARANCE_SENSOR_CARBON_DIOXIDE
Carbon Dioxide Sensor.

BT_APPEARANCE_SENSOR_AMBIENT_LIGHT
Ambient Light Sensor.

BT_APPEARANCE_SENSOR_ENERGY
Energy Sensor.

BT_APPEARANCE_SENSOR_COLOR_LIGHT
Color Light Sensor.

BT_APPEARANCE_SENSOR_RAIN
Rain Sensor.

BT_APPEARANCE_SENSOR_FIRE
Fire Sensor.

BT_APPEARANCE_SENSOR_WIND
Wind Sensor.

BT_APPEARANCE_SENSOR_PROXIMITY
Proximity Sensor.

BT_APPEARANCE_SENSOR_MULTI
Multi-Sensor.

BT_APPEARANCE_SENSOR_FLUSH_MOUNTED
Flush Mounted Sensor.

BT_APPEARANCE_SENSOR_CEILING_MOUNTED
Ceiling Mounted Sensor.

BT_APPEARANCE_SENSOR_WALL_MOUNTED
Wall Mounted Sensor.
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BT_APPEARANCE_MULTISENSOR
Multisensor.

BT_APPEARANCE_SENSOR_ENERGY_METER
Energy Meter.

BT_APPEARANCE_SENSOR_FLAME_DETECTOR
Flame Detector.

BT_APPEARANCE_SENSOR_VEHICLE_TIRE_PRESSURE
Vehicle Tire Pressure Sensor.

BT_APPEARANCE_GENERIC_LIGHT_FIXTURES
Generic Light Fixtures.

BT_APPEARANCE_LIGHT_FIXTURES_WALL
Wall Light.

BT_APPEARANCE_LIGHT_FIXTURES_CEILING
Ceiling Light.

BT_APPEARANCE_LIGHT_FIXTURES_FLOOR
Floor Light.

BT_APPEARANCE_LIGHT_FIXTURES_CABINET
Cabinet Light.

BT_APPEARANCE_LIGHT_FIXTURES_DESK
Desk Light.

BT_APPEARANCE_LIGHT_FIXTURES_TROFFER
Troffer Light.

BT_APPEARANCE_LIGHT_FIXTURES_PENDANT
Pendant Light.

BT_APPEARANCE_LIGHT_FIXTURES_IN_GROUND
In-ground Light.

BT_APPEARANCE_LIGHT_FIXTURES_FLOOD
Flood Light.

BT_APPEARANCE_LIGHT_FIXTURES_UNDERWATER
Underwater Light.

BT_APPEARANCE_LIGHT_FIXTURES_BOLLARD_WITH
Bollard with Light.
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BT_APPEARANCE_LIGHT_FIXTURES_PATHWAY
Pathway Light.

BT_APPEARANCE_LIGHT_FIXTURES_GARDEN
Garden Light.

BT_APPEARANCE_LIGHT_FIXTURES_POLE_TOP
Pole-top Light.

BT_APPEARANCE_SPOT_LIGHT
Spotlight.

BT_APPEARANCE_LIGHT_FIXTURES_LINEAR
Linear Light.

BT_APPEARANCE_LIGHT_FIXTURES_STREET
Street Light.

BT_APPEARANCE_LIGHT_FIXTURES_SHELVES
Shelves Light.

BT_APPEARANCE_LIGHT_FIXTURES_BAY
Bay Light.

BT_APPEARANCE_LIGHT_FIXTURES_EMERGENCY_EXIT
Emergency Exit Light.

BT_APPEARANCE_LIGHT_FIXTURES_CONTROLLER
Light Controller.

BT_APPEARANCE_LIGHT_FIXTURES_DRIVER
Light Driver.

BT_APPEARANCE_LIGHT_FIXTURES_BULB
Bulb.

BT_APPEARANCE_LIGHT_FIXTURES_LOW_BAY
Low-bay Light.

BT_APPEARANCE_LIGHT_FIXTURES_HIGH_BAY
High-bay Light.

BT_APPEARANCE_GENERIC_FAN
Generic Fan.

BT_APPEARANCE_FAN_CEILING
Ceiling Fan.
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BT_APPEARANCE_FAN_AXIAL
Axial Fan.

BT_APPEARANCE_FAN_EXHAUST
Exhaust Fan.

BT_APPEARANCE_FAN_PEDESTAL
Pedestal Fan.

BT_APPEARANCE_FAN_DESK
Desk Fan.

BT_APPEARANCE_FAN_WALL
Wall Fan.

BT_APPEARANCE_GENERIC_HVAC
Generic HVAC.

BT_APPEARANCE_HVAC_THERMOSTAT
Thermostat.

BT_APPEARANCE_HVAC_HUMIDIFIER
Humidifier.

BT_APPEARANCE_HVAC_DEHUMIDIFIER
De-humidifier.

BT_APPEARANCE_HVAC_HEATER
Heater.

BT_APPEARANCE_HVAC_RADIATOR
Radiator.

BT_APPEARANCE_HVAC_BOILER
Boiler.

BT_APPEARANCE_HVAC_HEAT_PUMP
Heat Pump.

BT_APPEARANCE_HVAC_INFRARED_HEATER
Infrared Heater.

BT_APPEARANCE_HVAC_RADIANT_PANEL_HEATER
Radiant Panel Heater.

BT_APPEARANCE_HVAC_FAN_HEATER
Fan Heater.
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BT_APPEARANCE_HVAC_AIR_CURTAIN
Air Curtain.

BT_APPEARANCE_GENERIC_AIR_CONDITIONING
Generic Air Conditioning.

BT_APPEARANCE_GENERIC_HUMIDIFIER
Generic Humidifier.

BT_APPEARANCE_GENERIC_HEATING
Generic Heating.

BT_APPEARANCE_HEATING_RADIATOR
Radiator.

BT_APPEARANCE_HEATING_BOILER
Boiler.

BT_APPEARANCE_HEATING_HEAT_PUMP
Heat Pump.

BT_APPEARANCE_HEATING_INFRARED_HEATER
Infrared Heater.

BT_APPEARANCE_HEATING_RADIANT_PANEL_HEATER
Radiant Panel Heater.

BT_APPEARANCE_HEATING_FAN_HEATER
Fan Heater.

BT_APPEARANCE_HEATING_AIR_CURTAIN
Air Curtain.

BT_APPEARANCE_GENERIC_ACCESS_CONTROL
Generic Access Control.

BT_APPEARANCE_CONTROL_ACCESS_DOOR
Access Door.

BT_APPEARANCE_CONTROL_GARAGE_DOOR
Garage Door.

BT_APPEARANCE_CONTROL_EMERGENCY_EXIT_DOOR
Emergency Exit Door.

BT_APPEARANCE_CONTROL_ACCESS_LOCK
Access Lock.
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BT_APPEARANCE_CONTROL_ELEVATOR
Elevator.

BT_APPEARANCE_CONTROL_WINDOW
Window.

BT_APPEARANCE_CONTROL_ENTRANCE_GATE
Entrance Gate.

BT_APPEARANCE_CONTROL_DOOR_LOCK
Door Lock.

BT_APPEARANCE_CONTROL_LOCKER
Locker.

BT_APPEARANCE_GENERIC_MOTORIZED_DEVICE
Generic Motorized Device.

BT_APPEARANCE_MOTORIZED_GATE
Motorized Gate.

BT_APPEARANCE_MOTORIZED_AWNING
Awning.

BT_APPEARANCE_MOTORIZED_BLINDS_OR_SHADES
Blinds or Shades.

BT_APPEARANCE_MOTORIZED_CURTAINS
Curtains.

BT_APPEARANCE_MOTORIZED_SCREEN
Screen.

BT_APPEARANCE_GENERIC_POWER_DEVICE
Generic Power Device.

BT_APPEARANCE_POWER_OUTLET
Power Outlet.

BT_APPEARANCE_POWER_STRIP
Power Strip.

BT_APPEARANCE_POWER_PLUG
Plug.

BT_APPEARANCE_POWER_SUPPLY
Power Supply.
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BT_APPEARANCE_POWER_LED_DRIVER
LED Driver.

BT_APPEARANCE_POWER_FLUORESCENT_LAMP_GEAR
Fluorescent Lamp Gear.

BT_APPEARANCE_POWER_HID_LAMP_GEAR
HID Lamp Gear.

BT_APPEARANCE_POWER_CHARGE_CASE
Charge Case.

BT_APPEARANCE_POWER_POWER_BANK
Power Bank.

BT_APPEARANCE_GENERIC_LIGHT_SOURCE
Generic Light Source.

BT_APPEARANCE_LIGHT_SOURCE_INCANDESCENT_BULB
Incandescent Light Bulb.

BT_APPEARANCE_LIGHT_SOURCE_LED_LAMP
LED Lamp.

BT_APPEARANCE_LIGHT_SOURCE_HID_LAMP
HID Lamp.

BT_APPEARANCE_LIGHT_SOURCE_FLUORESCENT_LAMP
Fluorescent Lamp.

BT_APPEARANCE_LIGHT_SOURCE_LED_ARRAY
LED Array.

BT_APPEARANCE_LIGHT_SOURCE_MULTICOLOR_LED_ARRAY
Multi-Color LED Array.

BT_APPEARANCE_LIGHT_SOURCE_LOW_VOLTAGE_HALOGEN
Low voltage halogen.

BT_APPEARANCE_LIGHT_SOURCE_OLED
Organic light emitting diode.

BT_APPEARANCE_GENERIC_WINDOW_COVERING
Generic Window Covering.

BT_APPEARANCE_WINDOW_SHADES
Window Shades.
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BT_APPEARANCE_WINDOW_BLINDS
Window Blinds.

BT_APPEARANCE_WINDOW_AWNING
Window Awning.

BT_APPEARANCE_WINDOW_CURTAIN
Window Curtain.

BT_APPEARANCE_WINDOW_EXTERIOR_SHUTTER
Exterior Shutter.

BT_APPEARANCE_WINDOW_EXTERIOR_SCREEN
Exterior Screen.

BT_APPEARANCE_GENERIC_AUDIO_SINK
Generic Audio Sink.

BT_APPEARANCE_AUDIO_SINK_STANDALONE_SPEAKER
Standalone Speaker.

BT_APPEARANCE_AUDIO_SINK_SOUNDBAR
Soundbar.

BT_APPEARANCE_AUDIO_SINK_BOOKSHELF_SPEAKER
Bookshelf Speaker.

BT_APPEARANCE_AUDIO_SINK_STANDMOUNTED_SPEAKER
Standmounted Speaker.

BT_APPEARANCE_AUDIO_SINK_SPEAKERPHONE
Speakerphone.

BT_APPEARANCE_GENERIC_AUDIO_SOURCE
Generic Audio Source.

BT_APPEARANCE_AUDIO_SOURCE_MICROPHONE
Microphone.

BT_APPEARANCE_AUDIO_SOURCE_ALARM
Alarm.

BT_APPEARANCE_AUDIO_SOURCE_BELL
Bell.

BT_APPEARANCE_AUDIO_SOURCE_HORN
Horn.
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BT_APPEARANCE_AUDIO_SOURCE_BROADCASTING_DEVICE
Broadcasting Device.

BT_APPEARANCE_AUDIO_SOURCE_SERVICE_DESK
Service Desk.

BT_APPEARANCE_AUDIO_SOURCE_KIOSK
Kiosk.

BT_APPEARANCE_AUDIO_SOURCE_BROADCASTING_ROOM
Broadcasting Room.

BT_APPEARANCE_AUDIO_SOURCE_AUDITORIUM
Auditorium.

BT_APPEARANCE_GENERIC_MOTORIZED_VEHICLE
Generic Motorized Vehicle.

BT_APPEARANCE_VEHICLE_CAR
Car.

BT_APPEARANCE_VEHICLE_LARGE_GOODS
Large Goods Vehicle.

BT_APPEARANCE_VEHICLE_TWO_WHEELED
2-Wheeled Vehicle

BT_APPEARANCE_VEHICLE_MOTORBIKE
Motorbike.

BT_APPEARANCE_VEHICLE_SCOOTER
Scooter.

BT_APPEARANCE_VEHICLE_MOPED
Moped.

BT_APPEARANCE_VEHICLE_THREE_WHEELED
3-Wheeled Vehicle

BT_APPEARANCE_VEHICLE_LIGHT
Light Vehicle.

BT_APPEARANCE_VEHICLE_QUAD_BIKE
Quad Bike.

BT_APPEARANCE_VEHICLE_MINIBUS
Minibus.
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BT_APPEARANCE_VEHICLE_BUS
Bus.

BT_APPEARANCE_VEHICLE_TROLLEY
Trolley.

BT_APPEARANCE_VEHICLE_AGRICULTURAL
Agricultural Vehicle.

BT_APPEARANCE_VEHICLE_CAMPER_OR_CARAVAN
Camper/Caravan.

BT_APPEARANCE_VEHICLE_RECREATIONAL
Recreational Vehicle/Motor Home.

BT_APPEARANCE_GENERIC_DOMESTIC_APPLIANCE
Generic Domestic Appliance.

BT_APPEARANCE_APPLIANCE_REFRIGERATOR
Refrigerator.

BT_APPEARANCE_APPLIANCE_FREEZER
Freezer.

BT_APPEARANCE_APPLIANCE_OVEN
Oven.

BT_APPEARANCE_APPLIANCE_MICROWAVE
Microwave.

BT_APPEARANCE_APPLIANCE_TOASTER
Toaster.

BT_APPEARANCE_APPLIANCE_WASHING_MACHINE
Washing Machine.

BT_APPEARANCE_APPLIANCE_DRYER
Dryer.

BT_APPEARANCE_APPLIANCE_COFFEE_MAKER
Coffee maker.

BT_APPEARANCE_APPLIANCE_CLOTHES_IRON
Clothes iron.

BT_APPEARANCE_APPLIANCE_CURLING_IRON
Curling iron.

6.1. Bluetooth 2025



Zephyr Project Documentation, Release 3.7.99

BT_APPEARANCE_APPLIANCE_HAIR_DRYER
Hair dryer.

BT_APPEARANCE_APPLIANCE_VACUUM_CLEANER
Vacuum cleaner.

BT_APPEARANCE_APPLIANCE_ROBOTIC_VACUUM_CLEANER
Robotic vacuum cleaner.

BT_APPEARANCE_APPLIANCE_RICE_COOKER
Rice cooker.

BT_APPEARANCE_APPLIANCE_CLOTHES_STEAMER
Clothes steamer.

BT_APPEARANCE_GENERIC_WEARABLE_AUDIO_DEVICE
Generic Wearable Audio Device.

BT_APPEARANCE_WEARABLE_AUDIO_DEVICE_EARBUD
Earbud.

BT_APPEARANCE_WEARABLE_AUDIO_DEVICE_HEADSET
Headset.

BT_APPEARANCE_WEARABLE_AUDIO_DEVICE_HEADPHONES
Headphones.

BT_APPEARANCE_WEARABLE_AUDIO_DEVICE_NECK_BAND
Neck Band.

BT_APPEARANCE_GENERIC_AIRCRAFT
Generic Aircraft.

BT_APPEARANCE_AIRCRAFT_LIGHT
Light Aircraft.

BT_APPEARANCE_AIRCRAFT_MICROLIGHT
Microlight.

BT_APPEARANCE_AIRCRAFT_PARAGLIDER
Paraglider.

BT_APPEARANCE_AIRCRAFT_LARGE_PASSENGER
Large Passenger Aircraft.

BT_APPEARANCE_GENERIC_AV_EQUIPMENT
Generic AV Equipment.
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BT_APPEARANCE_AV_EQUIPMENT_AMPLIFIER
Amplifier.

BT_APPEARANCE_AV_EQUIPMENT_RECEIVER
Receiver.

BT_APPEARANCE_AV_EQUIPMENT_RADIO
Radio.

BT_APPEARANCE_AV_EQUIPMENT_TUNER
Tuner.

BT_APPEARANCE_AV_EQUIPMENT_TURNTABLE
Turntable.

BT_APPEARANCE_AV_EQUIPMENT_CD_PLAYER
CD Player.

BT_APPEARANCE_AV_EQUIPMENT_DVD_PLAYER
DVD Player.

BT_APPEARANCE_AV_EQUIPMENT_BLURAY_PLAYER
Bluray Player.

BT_APPEARANCE_AV_EQUIPMENT_OPTICAL_DISC_PLAYER
Optical Disc Player.

BT_APPEARANCE_AV_EQUIPMENT_SET_TOP_BOX
Set-Top Box.

BT_APPEARANCE_GENERIC_DISPLAY_EQUIPMENT
Generic Display Equipment.

BT_APPEARANCE_DISPLAY_EQUIPMENT_TELEVISION
Television.

BT_APPEARANCE_DISPLAY_EQUIPMENT_MONITOR
Monitor.

BT_APPEARANCE_DISPLAY_EQUIPMENT_PROJECTOR
Projector.

BT_APPEARANCE_GENERIC_HEARING_AID
Generic Hearing aid.

BT_APPEARANCE_HEARING_AID_IN_EAR
In-ear hearing aid.
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BT_APPEARANCE_HEARING_AID_BEHIND_EAR
Behind-ear hearing aid.

BT_APPEARANCE_HEARING_AID_COCHLEAR_IMPLANT
Cochlear Implant.

BT_APPEARANCE_GENERIC_GAMING
Generic Gaming.

BT_APPEARANCE_HOME_VIDEO_GAME_CONSOLE
Home Video Game Console.

BT_APPEARANCE_PORTABLE_HANDHELD_CONSOLE
Portable handheld console.

BT_APPEARANCE_GENERIC_SIGNAGE
Generic Signage.

BT_APPEARANCE_SIGNAGE_DIGITAL
Digital Signage.

BT_APPEARANCE_SIGNAGE_ELECTRONIC_LABEL
Electronic Label.

BT_APPEARANCE_GENERIC_PULSE_OXIMETER
Generic Pulse Oximeter.

BT_APPEARANCE_PULSE_OXIMETER_FINGERTIP
Fingertip Pulse Oximeter.

BT_APPEARANCE_PULSE_OXIMETER_WRIST
Wrist Worn Pulse Oximeter.

BT_APPEARANCE_GENERIC_WEIGHT_SCALE
Generic Weight Scale.

BT_APPEARANCE_GENERIC_PERSONAL_MOBILITY_DEVICE
Generic Personal Mobility Device.

BT_APPEARANCE_MOBILITY_POWERED_WHEELCHAIR
Powered Wheelchair.

BT_APPEARANCE_MOBILITY_SCOOTER
Mobility Scooter.

BT_APPEARANCE_CONTINUOUS_GLUCOSE_MONITOR
Continuous Glucose Monitor.
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BT_APPEARANCE_GENERIC_INSULIN_PUMP
Generic Insulin Pump.

BT_APPEARANCE_INSULIN_PUMP_DURABLE
Insulin Pump, durable pump.

BT_APPEARANCE_INSULIN_PUMP_PATCH
Insulin Pump, patch pump.

BT_APPEARANCE_INSULIN_PEN
Insulin Pen.

BT_APPEARANCE_GENERIC_MEDICATION_DELIVERY
Generic Medication Delivery.

BT_APPEARANCE_GENERIC_SPIROMETER
Generic Spirometer.

BT_APPEARANCE_SPIROMETER_HANDHELD
Handheld Spirometer.

BT_APPEARANCE_GENERIC_OUTDOOR_SPORTS
Generic Outdoor Sports Activity.

BT_APPEARANCE_OUTDOOR_SPORTS_LOCATION
Location Display.

BT_APPEARANCE_OUTDOOR_SPORTS_LOCATION_AND_NAV
Location and Navigation Display.

BT_APPEARANCE_OUTDOOR_SPORTS_LOCATION_POD
Location Pod.

BT_APPEARANCE_OUTDOOR_SPORTS_LOCATION_POD_AND_NAV
Location and Navigation Pod.

Defined GAP timers

BT_GAP_SCAN_FAST_INTERVAL_MIN

BT_GAP_SCAN_FAST_INTERVAL

BT_GAP_SCAN_FAST_WINDOW

BT_GAP_SCAN_SLOW_INTERVAL_1

BT_GAP_SCAN_SLOW_WINDOW_1
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BT_GAP_SCAN_SLOW_INTERVAL_2

BT_GAP_SCAN_SLOW_WINDOW_2

BT_GAP_ADV_FAST_INT_MIN_1

BT_GAP_ADV_FAST_INT_MAX_1

BT_GAP_ADV_FAST_INT_MIN_2

BT_GAP_ADV_FAST_INT_MAX_2

BT_GAP_ADV_SLOW_INT_MIN

BT_GAP_ADV_SLOW_INT_MAX

BT_GAP_PER_ADV_FAST_INT_MIN_1

BT_GAP_PER_ADV_FAST_INT_MAX_1

BT_GAP_PER_ADV_FAST_INT_MIN_2

BT_GAP_PER_ADV_FAST_INT_MAX_2

BT_GAP_PER_ADV_SLOW_INT_MIN

BT_GAP_PER_ADV_SLOW_INT_MAX

BT_GAP_INIT_CONN_INT_MIN

BT_GAP_INIT_CONN_INT_MAX

Defines

BT_GAP_ADV_MAX_ADV_DATA_LEN
Maximum advertising data length.

BT_GAP_ADV_MAX_EXT_ADV_DATA_LEN
Maximum extended advertising data length.

Note

The maximum advertising data length that can be sent by an extended advertiser
is defined by the controller.
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BT_GAP_TX_POWER_INVALID

BT_GAP_RSSI_INVALID

BT_GAP_SID_INVALID

BT_GAP_NO_TIMEOUT

BT_GAP_ADV_HIGH_DUTY_CYCLE_MAX_TIMEOUT

BT_GAP_DATA_LEN_DEFAULT
Default data length.

BT_GAP_DATA_LEN_MAX
Maximum data length.

BT_GAP_DATA_TIME_DEFAULT
Default data time.

BT_GAP_DATA_TIME_MAX
Maximum data time.

BT_GAP_SID_MAX
Maximum advertising set number.

BT_GAP_PER_ADV_MAX_SKIP
Maximum number of consecutive periodic advertisement events that can be skipped
after a successful receive.

BT_GAP_PER_ADV_MIN_TIMEOUT
Minimum Periodic Advertising Timeout (N * 10 ms)

BT_GAP_PER_ADV_MAX_TIMEOUT
Maximum Periodic Advertising Timeout (N * 10 ms)

BT_GAP_PER_ADV_MIN_INTERVAL
Minimum Periodic Advertising Interval (N * 1.25 ms)

BT_GAP_PER_ADV_MAX_INTERVAL
Maximum Periodic Advertising Interval (N * 1.25 ms)

BT_GAP_PER_ADV_INTERVAL_TO_MS(interval)
Convert periodic advertising interval (N * 1.25 ms) to milliseconds.

5 / 4 represents 1.25 ms unit.

BT_LE_SUPP_FEAT_40_ENCODE(w64)
Encode 40 least significant bits of 64-bit LE Supported Features into array values in
little-endian format.
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Helper macro to encode 40 least significant bits of 64-bit LE Supported Features value
into advertising data. The number of bits that are encoded is a number of LE Supported
Features defined by BT 5.3 Core specification.

Example of how to encode the 0x000000DFF00DF00D into advertising data.

BT_DATA_BYTES(BT_DATA_LE_SUPPORTED_FEATURES, BT_LE_SUPP_FEAT_40_
↪→ENCODE(0x000000DFF00DF00D))

Parameters
• w64 – LE Supported Features value (64-bits)

Returns
The comma separated values for LE Supported Features value that may be
used directly as an argument for BT_DATA_BYTES.

BT_LE_SUPP_FEAT_32_ENCODE(w64)
Encode 4 least significant bytes of 64-bit LE Supported Features into 4 bytes long array
of values in little-endian format.

Helper macro to encode 64-bit LE Supported Features value into advertising data. The
macro encodes 4 least significant bytes into advertising data. Other 4 bytes are not
encoded.

Example of how to encode the 0x000000DFF00DF00D into advertising data.

BT_DATA_BYTES(BT_DATA_LE_SUPPORTED_FEATURES, BT_LE_SUPP_FEAT_32_
↪→ENCODE(0x000000DFF00DF00D))

Parameters
• w64 – LE Supported Features value (64-bits)

Returns
The comma separated values for LE Supported Features value that may be
used directly as an argument for BT_DATA_BYTES.

BT_LE_SUPP_FEAT_24_ENCODE(w64)
Encode 3 least significant bytes of 64-bit LE Supported Features into 3 bytes long array
of values in little-endian format.

Helper macro to encode 64-bit LE Supported Features value into advertising data. The
macro encodes 3 least significant bytes into advertising data. Other 5 bytes are not
encoded.

Example of how to encode the 0x000000DFF00DF00D into advertising data.

BT_DATA_BYTES(BT_DATA_LE_SUPPORTED_FEATURES, BT_LE_SUPP_FEAT_24_
↪→ENCODE(0x000000DFF00DF00D))

Parameters
• w64 – LE Supported Features value (64-bits)

Returns
The comma separated values for LE Supported Features value that may be
used directly as an argument for BT_DATA_BYTES.
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BT_LE_SUPP_FEAT_16_ENCODE(w64)
Encode 2 least significant bytes of 64-bit LE Supported Features into 2 bytes long array
of values in little-endian format.

Helper macro to encode 64-bit LE Supported Features value into advertising data. The
macro encodes 3 least significant bytes into advertising data. Other 6 bytes are not
encoded.

Example of how to encode the 0x000000DFF00DF00D into advertising data.

BT_DATA_BYTES(BT_DATA_LE_SUPPORTED_FEATURES, BT_LE_SUPP_FEAT_16_
↪→ENCODE(0x000000DFF00DF00D))

Parameters
• w64 – LE Supported Features value (64-bits)

Returns
The comma separated values for LE Supported Features value that may be
used directly as an argument for BT_DATA_BYTES.

BT_LE_SUPP_FEAT_8_ENCODE(w64)
Encode the least significant byte of 64-bit LE Supported Features into single byte long
array.

Helper macro to encode 64-bit LE Supported Features value into advertising data. The
macro encodes the least significant byte into advertising data. Other 7 bytes are not
encoded.

Example of how to encode the 0x000000DFF00DF00D into advertising data.

BT_DATA_BYTES(BT_DATA_LE_SUPPORTED_FEATURES, BT_LE_SUPP_FEAT_8_
↪→ENCODE(0x000000DFF00DF00D))

Parameters
• w64 – LE Supported Features value (64-bits)

Returns
The value of least significant byte of LE Supported Features value that may
be used directly as an argument for BT_DATA_BYTES.

BT_LE_SUPP_FEAT_VALIDATE(w64)
Validate whether LE Supported Features value does not use bits that are reserved for
future use.

Helper macro to check if w64 has zeros as bits 40-63. The macro is compliant with BT
5.3 Core Specification where bits 0-40 has assigned values. In case of invalid value,
build time error is reported.

Enums

LE PHY types.

Values:

enumerator BT_GAP_LE_PHY_NONE = 0
Convenience macro for when no PHY is set.
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enumerator BT_GAP_LE_PHY_1M = BIT(0)
LE 1M PHY.

enumerator BT_GAP_LE_PHY_2M = BIT(1)
LE 2M PHY.

enumerator BT_GAP_LE_PHY_CODED = BIT(2)
LE Coded PHY.

Advertising PDU types.

Values:

enumerator BT_GAP_ADV_TYPE_ADV_IND = 0x00
Scannable and connectable advertising.

enumerator BT_GAP_ADV_TYPE_ADV_DIRECT_IND = 0x01
Directed connectable advertising.

enumerator BT_GAP_ADV_TYPE_ADV_SCAN_IND = 0x02
Non-connectable and scannable advertising.

enumerator BT_GAP_ADV_TYPE_ADV_NONCONN_IND = 0x03
Non-connectable and non-scannable advertising.

enumerator BT_GAP_ADV_TYPE_SCAN_RSP = 0x04
Additional advertising data requested by an active scanner.

enumerator BT_GAP_ADV_TYPE_EXT_ADV = 0x05
Extended advertising, see advertising properties.

Advertising PDU properties.

Values:

enumerator BT_GAP_ADV_PROP_CONNECTABLE = BIT(0)
Connectable advertising.

enumerator BT_GAP_ADV_PROP_SCANNABLE = BIT(1)
Scannable advertising.

enumerator BT_GAP_ADV_PROP_DIRECTED = BIT(2)
Directed advertising.

enumerator BT_GAP_ADV_PROP_SCAN_RESPONSE = BIT(3)
Additional advertising data requested by an active scanner.
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enumerator BT_GAP_ADV_PROP_EXT_ADV = BIT(4)
Extended advertising.

Constant Tone Extension (CTE) types.

Values:

enumerator BT_GAP_CTE_AOA = 0x00
Angle of Arrival.

enumerator BT_GAP_CTE_AOD_1US = 0x01
Angle of Departure with 1 us slots.

enumerator BT_GAP_CTE_AOD_2US = 0x02
Angle of Departure with 2 us slots.

enumerator BT_GAP_CTE_NONE = 0xFF
No extensions.

Peripheral sleep clock accuracy (SCA) in ppm (parts per million)

Values:

enumerator BT_GAP_SCA_UNKNOWN = 0
Unknown.

enumerator BT_GAP_SCA_251_500 = 0
251 ppm to 500 ppm

enumerator BT_GAP_SCA_151_250 = 1
151 ppm to 250 ppm

enumerator BT_GAP_SCA_101_150 = 2
101 ppm to 150 ppm

enumerator BT_GAP_SCA_76_100 = 3
76 ppm to 100 ppm

enumerator BT_GAP_SCA_51_75 = 4
51 ppm to 75 ppm

enumerator BT_GAP_SCA_31_50 = 5
31 ppm to 50 ppm

enumerator BT_GAP_SCA_21_30 = 6
21 ppm to 30 ppm

enumerator BT_GAP_SCA_0_20 = 7
0 ppm to 20 ppm
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Bluetooth: Isochronous Channels

Commands
iso --help
iso - Bluetooth ISO shell commands
Subcommands:

cig_create :[dir=tx,rx,txrx] [interval] [packing] [framing] [latency] [sdu]
[phy] [rtn]

cig_term :Terminate the CIG
connect :Connect ISO Channel
listen :<dir=tx,rx,txrx> [security level]
send :Send to ISO Channel [count]
disconnect :Disconnect ISO Channel
create-big :Create a BIG as a broadcaster [enc <broadcast code>]
broadcast :Broadcast on ISO channels
sync-big :Synchronize to a BIG as a receiver <BIS bitfield> [mse] [timeout]

[enc <broadcast code>]
term-big :Terminate a BIG

1. [Central] Create CIG:

Requires to be connected:

uart:~$ iso cig_create
CIG created

2. [Peripheral] Listen to ISO connections

uart:~$ iso listen txrx

3. [Central] Connect ISO channel:

uart:~$ iso connect
ISO Connect pending...
ISO Channel 0x20000f88 connected

4. Send data:

uart:~$ iso send
send: 40 bytes of data
ISO sending...

5. Disconnect ISO channel:

uart:~$ iso disconnect
ISO Disconnect pending...
ISO Channel 0x20000f88 disconnected with reason 0x16

Generic Attribute Profile (GATT) GATT layer manages the service database providing APIs
for service registration and attribute declaration.

Services can be registered using bt_gatt_service_register() API which takes the
bt_gatt_service struct that provides the list of attributes the service contains. The helper
macro BT_GATT_SERVICE() can be used to declare a service.

Attributes can be declared using the bt_gatt_attr struct or using one of the helper macros:

BT_GATT_PRIMARY_SERVICE
Declares a Primary Service.

BT_GATT_SECONDARY_SERVICE
Declares a Secondary Service.
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BT_GATT_INCLUDE_SERVICE
Declares a Include Service.

BT_GATT_CHARACTERISTIC
Declares a Characteristic.

BT_GATT_DESCRIPTOR
Declares a Descriptor.

BT_GATT_ATTRIBUTE
Declares an Attribute.

BT_GATT_CCC
Declares a Client Characteristic Configuration.

BT_GATT_CEP
Declares a Characteristic Extended Properties.

BT_GATT_CUD
Declares a Characteristic User Format.

Each attribute contain a uuid, which describes their type, a read callback, a write callback and
a set of permission. Both read and write callbacks can be set to NULL if the attribute permission
don’t allow their respective operations.

Note

32-bit UUIDs are not supported in GATT. All 32-bit UUIDs shall be converted to 128-bit UUIDs
when the UUID is contained in an ATT PDU.

Note

Attribute read and write callbacks are called directly from RX Thread thus it is not recom-
mended to block for long periods of time in them.

Attribute value changes can be notified using bt_gatt_notify() API, alternatively there is
bt_gatt_notify_cb() where it is possible to pass a callback to be called when it is necessary
to know the exact instant when the data has been transmitted over the air. Indications are sup-
ported by bt_gatt_indicate() API.

Client procedures can be enabled with the configuration option: CONFIG_BT_GATT_CLIENT
Discover procedures can be initiated with the use of bt_gatt_discover() API which takes the
bt_gatt_discover_params struct which describes the type of discovery. The parameters also
serves as a filter when setting the uuid field only attributes which matches will be discovered, in
contrast setting it to NULL allows all attributes to be discovered.

Note

Caching discovered attributes is not supported.

Read procedures are supported by bt_gatt_read() API which takes the bt_gatt_read_params
struct as parameters. In the parameters one or more attributes can be set, though setting multiple
handles requires the option: CONFIG_BT_GATT_READ_MULTIPLE
Write procedures are supported by bt_gatt_write() API and takes bt_gatt_write_params
struct as parameters. In case the write operation don’t require a response
bt_gatt_write_without_response() or bt_gatt_write_without_response_cb() APIs can
be used, with the later working similarly to bt_gatt_notify_cb().
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Subscriptions to notification and indication can be initiated with use of bt_gatt_subscribe()
API which takes bt_gatt_subscribe_params as parameters. Multiple subscriptions to the same
attribute are supported so there could be multiple notify callback being triggered for the same
attribute. Subscriptions can be removed with use of bt_gatt_unsubscribe() API.

Note

When subscriptions are removed notify callback is called with the data set to NULL.

Related code samples

BLE logging backend
Send log messages over BLE using the BLE logging backend.

API Reference

group bt_gatt
Generic Attribute Profile (GATT)

Defines

BT_GATT_ERR(_att_err)
Construct error return value for attribute read and write callbacks.

Parameters
• _att_err – ATT error code

Returns
Appropriate error code for the attribute callbacks.

BT_GATT_CHRC_BROADCAST
Characteristic Properties Bit field values.

Characteristic broadcast property.

If set, permits broadcasts of the Characteristic Value using Server Characteristic Con-
figuration Descriptor.

BT_GATT_CHRC_READ
Characteristic read property.

If set, permits reads of the Characteristic Value.

BT_GATT_CHRC_WRITE_WITHOUT_RESP
Characteristic write without response property.

If set, permits write of the Characteristic Value without response.

BT_GATT_CHRC_WRITE
Characteristic write with response property.

If set, permits write of the Characteristic Value with response.
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BT_GATT_CHRC_NOTIFY
Characteristic notify property.

If set, permits notifications of a Characteristic Value without acknowledgment.

BT_GATT_CHRC_INDICATE
Characteristic indicate property.

If set, permits indications of a Characteristic Value with acknowledgment.

BT_GATT_CHRC_AUTH
Characteristic Authenticated Signed Writes property.

If set, permits signed writes to the Characteristic Value.

BT_GATT_CHRC_EXT_PROP
Characteristic Extended Properties property.

If set, additional characteristic properties are defined in the Characteristic Extended
Properties Descriptor.

BT_GATT_CEP_RELIABLE_WRITE
Characteristic Extended Properties Bit field values.

BT_GATT_CEP_WRITABLE_AUX

BT_GATT_CCC_NOTIFY
Client Characteristic Configuration Values.

Client Characteristic Configuration Notification.

If set, changes to Characteristic Value shall be notified.

BT_GATT_CCC_INDICATE
Client Characteristic Configuration Indication.

If set, changes to Characteristic Value shall be indicated.

BT_GATT_SCC_BROADCAST
Server Characteristic Configuration Values.

Server Characteristic Configuration Broadcast

If set, the characteristic value shall be broadcast in the advertising data when the
server is advertising.

Typedefs

typedef ssize_t (*bt_gatt_attr_read_func_t)(struct bt_conn *conn, const struct
bt_gatt_attr *attr, void *buf, uint16_t len, uint16_t offset)

Attribute read callback.

The callback can also be used locally to read the contents of the attribute in which case
no connection will be set.

Param conn
The connection that is requesting to read
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Param attr
The attribute that’s being read

Param buf
Buffer to place the read result in

Param len
Length of data to read

Param offset
Offset to start reading from

Return
Number of bytes read, or in case of an error BT_GATT_ERR() with a specific
BT_ATT_ERR_* error code.

typedef ssize_t (*bt_gatt_attr_write_func_t)(struct bt_conn *conn, const struct
bt_gatt_attr *attr, const void *buf, uint16_t len, uint16_t offset, uint8_t flags)

Attribute write callback.

Param conn
The connection that is requesting to write

Param attr
The attribute that’s being written

Param buf
Buffer with the data to write

Param len
Number of bytes in the buffer

Param offset
Offset to start writing from

Param flags
Flags (BT_GATT_WRITE_FLAG_*)

Return
Number of bytes written, or in case of an error BT_GATT_ERR() with a spe-
cific BT_ATT_ERR_* error code.

Enums

enum bt_gatt_perm
GATT attribute permission bit field values.

Values:

enumerator BT_GATT_PERM_NONE = 0
No operations supported, e.g.

for notify-only

enumerator BT_GATT_PERM_READ = BIT(0)
Attribute read permission.

enumerator BT_GATT_PERM_WRITE = BIT(1)
Attribute write permission.
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enumerator BT_GATT_PERM_READ_ENCRYPT = BIT(2)
Attribute read permission with encryption.

If set, requires encryption for read access.

enumerator BT_GATT_PERM_WRITE_ENCRYPT = BIT(3)
Attribute write permission with encryption.

If set, requires encryption for write access.

enumerator BT_GATT_PERM_READ_AUTHEN = BIT(4)
Attribute read permission with authentication.

If set, requires encryption using authenticated link-key for read
access.

enumerator BT_GATT_PERM_WRITE_AUTHEN = BIT(5)
Attribute write permission with authentication.

If set, requires encryption using authenticated link-key for write
access.

enumerator BT_GATT_PERM_PREPARE_WRITE = BIT(6)
Attribute prepare write permission.

If set, allows prepare writes with use of ``BT_GATT_WRITE_FLAG_PREPARE``
passed to write callback.

enumerator BT_GATT_PERM_READ_LESC = BIT(7)
Attribute read permission with LE Secure Connection encryption.

If set, requires that LE Secure Connections is used for read access.

enumerator BT_GATT_PERM_WRITE_LESC = BIT(8)
Attribute write permission with LE Secure Connection encryption.

If set, requires that LE Secure Connections is used for write access.

GATT attribute write flags.

Values:

enumerator BT_GATT_WRITE_FLAG_PREPARE = BIT(0)
Attribute prepare write flag.

If set, write callback should only check if the device is
authorized but no data shall be written.

enumerator BT_GATT_WRITE_FLAG_CMD = BIT(1)
Attribute write command flag.
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If set, indicates that write operation is a command (Write without
response) which doesn't generate any response.

enumerator BT_GATT_WRITE_FLAG_EXECUTE = BIT(2)
Attribute write execute flag.

If set, indicates that write operation is a execute, which indicates
the end of a long write, and will come after 1 or more
@ref BT_GATT_WRITE_FLAG_PREPARE.

struct bt_gatt_attr
#include <gatt.h> GATT Attribute structure.

Public Members

const struct bt_uuid *uuid
Attribute UUID.

bt_gatt_attr_read_func_t read
Attribute read callback.

bt_gatt_attr_write_func_t write
Attribute write callback.

void *user_data
Attribute user data.

uint16_t handle
Attribute handle.

uint16_t perm
Attribute permissions.

Will be 0 if returned from bt_gatt_discover().

struct bt_gatt_service_static
#include <gatt.h> GATT Service structure.

Public Members

const struct bt_gatt_attr *attrs
Service Attributes.

size_t attr_count
Service Attribute count.

struct bt_gatt_service
#include <gatt.h> GATT Service structure.
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Public Members

struct bt_gatt_attr *attrs
Service Attributes.

size_t attr_count
Service Attribute count.

struct bt_gatt_service_val
#include <gatt.h> Service Attribute Value.

Public Members

const struct bt_uuid *uuid
Service UUID.

uint16_t end_handle
Service end handle.

struct bt_gatt_include
#include <gatt.h> Include Attribute Value.

Public Members

const struct bt_uuid *uuid
Service UUID.

uint16_t start_handle
Service start handle.

uint16_t end_handle
Service end handle.

struct bt_gatt_cb
#include <gatt.h> GATT callback structure.

Public Members

void (*att_mtu_updated)(struct bt_conn *conn, uint16_t tx, uint16_t rx)
The maximum ATT MTU on a connection has changed.

This callback notifies the application that the maximum TX or RX ATT MTU has
increased.

Param conn
Connection object.

Param tx
Updated TX ATT MTU.
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Param rx
Updated RX ATT MTU.

struct bt_gatt_authorization_cb
#include <gatt.h> GATT authorization callback structure.

Public Members

bool (*read_authorize)(struct bt_conn *conn, const struct bt_gatt_attr *attr)
Authorize the GATT read operation.

This callback allows the application to authorize the GATT read operation for the
attribute that is being read.

Param conn
Connection object.

Param attr
The attribute that is being read.

Retval true
Authorize the operation and allow it to execute.

Retval false
Reject the operation and prevent it from executing.

bool (*write_authorize)(struct bt_conn *conn, const struct bt_gatt_attr *attr)
Authorize the GATT write operation.

This callback allows the application to authorize the GATT write operation for the
attribute that is being written.

Param conn
Connection object.

Param attr
The attribute that is being written.

Retval true
Authorize the operation and allow it to execute.

Retval false
Reject the operation and prevent it from executing.

struct bt_gatt_chrc
#include <gatt.h> Characteristic Attribute Value.

Public Members

const struct bt_uuid *uuid
Characteristic UUID.

uint16_t value_handle
Characteristic Value handle.

uint8_t properties
Characteristic properties.

struct bt_gatt_cep
#include <gatt.h> Characteristic Extended Properties Attribute Value.
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Public Members

uint16_t properties
Characteristic Extended properties.

struct bt_gatt_ccc
#include <gatt.h> Client Characteristic Configuration Attribute Value.

Public Members

uint16_t flags
Client Characteristic Configuration flags.

struct bt_gatt_scc
#include <gatt.h> Server Characteristic Configuration Attribute Value.

Public Members

uint16_t flags
Server Characteristic Configuration flags.

struct bt_gatt_cpf
#include <gatt.h> GATT Characteristic Presentation Format Attribute Value.

Public Members

uint8_t format
Format of the value of the characteristic.

int8_t exponent
Exponent field to determine how the value of this characteristic is further format-
ted.

uint16_t unit
Unit of the characteristic.

uint8_t name_space
Name space of the description.

uint16_t description
Description of the characteristic as defined in a higher layer profile.

GATT Server

group bt_gatt_server
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Defines

BT_GATT_SERVICE_DEFINE(_name, ...)
Statically define and register a service.

Helper macro to statically define and register a service.

Parameters
• _name – Service name.

BT_GATT_SERVICE_INSTANCE_DEFINE(_name, _instances, _instance_num, _attrs_def)
Statically define service structure array.

Helper macro to statically define service structure array. Each element of the array
is linked to the service attribute array which is also defined in this scope using _at-
trs_def macro.

Parameters
• _name – Name of service structure array.

• _instances – Array of instances to pass as user context to the attribute
callbacks.

• _instance_num – Number of elements in instance array.

• _attrs_def – Macro provided by the user that defines attribute array for
the service. This macro should accept single parameter which is the in-
stance context.

BT_GATT_SERVICE(_attrs)
Service Structure Declaration Macro.

Helper macro to declare a service structure.

Parameters
• _attrs – Service attributes.

BT_GATT_PRIMARY_SERVICE(_service)
Primary Service Declaration Macro.

Helper macro to declare a primary service attribute.

Parameters
• _service – Service attribute value.

BT_GATT_SECONDARY_SERVICE(_service)
Secondary Service Declaration Macro.

Helper macro to declare a secondary service attribute.

Note

A secondary service is only intended to be included from a primary service or an-
other secondary service or other higher layer specification.

Parameters
• _service – Service attribute value.
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BT_GATT_INCLUDE_SERVICE(_service_incl)
Include Service Declaration Macro.

Helper macro to declare database internal include service attribute.

Parameters
• _service_incl – the first service attribute of service to include

BT_GATT_CHRC_INIT(_uuid, _handle, _props)

BT_GATT_CHARACTERISTIC(_uuid, _props, _perm, _read, _write, _user_data)
Characteristic and Value Declaration Macro.

Helper macro to declare a characteristic attribute along with its attribute value.

Parameters
• _uuid – Characteristic attribute uuid.

• _props – Characteristic attribute properties, a bitmap of BT_GATT_CHRC_*
macros.

• _perm – Characteristic Attribute access permissions, a bitmap of
bt_gatt_perm values.

• _read – Characteristic Attribute read callback (bt_gatt_attr_read_func_t).

• _write – Characteristic Attribute write callback
(bt_gatt_attr_write_func_t).

• _user_data – Characteristic Attribute user data.

BT_GATT_CCC_MAX

BT_GATT_CCC_INITIALIZER(_changed, _write, _match)
Initialize Client Characteristic Configuration Declaration Macro.

Helper macro to initialize a Managed CCC attribute value.

Parameters
• _changed – Configuration changed callback.

• _write – Configuration write callback.

• _match – Configuration match callback.

BT_GATT_CCC_MANAGED(_ccc, _perm)
Managed Client Characteristic Configuration Declaration Macro.

Helper macro to declare a Managed CCC attribute.

Parameters
• _ccc – CCC attribute user data, shall point to a _bt_gatt_ccc.

• _perm – CCC access permissions, a bitmap of bt_gatt_perm values.

BT_GATT_CCC(_changed, _perm)
Client Characteristic Configuration Declaration Macro.

Helper macro to declare a CCC attribute.

Parameters
• _changed – Configuration changed callback.

• _perm – CCC access permissions, a bitmap of bt_gatt_perm values.
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BT_GATT_CEP(_value)
Characteristic Extended Properties Declaration Macro.

Helper macro to declare a CEP attribute.

Parameters
• _value – Pointer to a struct bt_gatt_cep.

BT_GATT_CUD(_value, _perm)
Characteristic User Format Descriptor Declaration Macro.

Helper macro to declare a CUD attribute.

Parameters
• _value – User description NULL-terminated C string.

• _perm – Descriptor attribute access permissions, a bitmap of bt_gatt_perm
values.

BT_GATT_CPF(_value)
Characteristic Presentation Format Descriptor Declaration Macro.

Helper macro to declare a CPF attribute.

Parameters
• _value – Pointer to a struct bt_gatt_cpf .

BT_GATT_DESCRIPTOR(_uuid, _perm, _read, _write, _user_data)
Descriptor Declaration Macro.

Helper macro to declare a descriptor attribute.

Parameters
• _uuid – Descriptor attribute uuid.

• _perm – Descriptor attribute access permissions, a bitmap of bt_gatt_perm
values.

• _read – Descriptor attribute read callback (bt_gatt_attr_read_func_t).

• _write – Descriptor attribute write callback (bt_gatt_attr_write_func_t).

• _user_data – Descriptor attribute user data.

BT_GATT_ATTRIBUTE(_uuid, _perm, _read, _write, _user_data)
Attribute Declaration Macro.

Helper macro to declare an attribute.

Parameters
• _uuid – Attribute uuid.

• _perm – Attribute access permissions, a bitmap of bt_gatt_perm values.

• _read – Attribute read callback (bt_gatt_attr_read_func_t).

• _write – Attribute write callback (bt_gatt_attr_write_func_t).

• _user_data – Attribute user data.

Typedefs
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typedef uint8_t (*bt_gatt_attr_func_t)(const struct bt_gatt_attr *attr, uint16_t handle,
void *user_data)

Attribute iterator callback.

Param attr
Attribute found.

Param handle
Attribute handle found.

Param user_data
Data given.

Return
BT_GATT_ITER_CONTINUE if should continue to the next attribute.

Return
BT_GATT_ITER_STOP to stop.

typedef void (*bt_gatt_complete_func_t)(struct bt_conn *conn, void *user_data)
Notification complete result callback.

Param conn
Connection object.

Param user_data
Data passed in by the user.

typedef void (*bt_gatt_indicate_func_t)(struct bt_conn *conn, struct
bt_gatt_indicate_params *params, uint8_t err)

Indication complete result callback.

Param conn
Connection object.

Param params
Indication params object.

Param err
ATT error code

typedef void (*bt_gatt_indicate_params_destroy_t)(struct bt_gatt_indicate_params
*params)

Enums

Values:

enumerator BT_GATT_ITER_STOP = 0

enumerator BT_GATT_ITER_CONTINUE

Functions
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static inline const char *bt_gatt_err_to_str(int gatt_err)
Converts a GATT error to string.

The GATT errors are created with BT_GATT_ERR.

The error codes are described in the Bluetooth Core specification, Vol 3, Part F, Section
3.4.1.1.

The ATT and GATT documentation found in Vol 4, Part F and Part G describe when the
different error codes are used.

See also the defined BT_ATT_ERR_* macros.

Returns
The string representation of the GATT error code. If CON-
FIG_BT_ATT_ERR_TO_STR is not enabled, this just returns the empty
string.

void bt_gatt_cb_register(struct bt_gatt_cb *cb)
Register GATT callbacks.

Register callbacks to monitor the state of GATT. The callback struct must remain valid
for the remainder of the program.

Parameters
• cb – Callback struct.

int bt_gatt_authorization_cb_register(const struct bt_gatt_authorization_cb *cb)
Register GATT authorization callbacks.

Register callbacks to perform application-specific authorization of GATT operations on
all registered GATT attributes. The callback structure must remain valid throughout
the entire duration of the Bluetooth subsys activity.

The CONFIG_BT_GATT_AUTHORIZATION_CUSTOMKconfig must be enabled to make this API
functional.

This API allows the user to register only one callback structure concurrently. Passing
NULL unregisters the previous set of callbacks and makes it possible to register a new
one.

Parameters
• cb – Callback struct.

Returns
Zero on success or negative error code otherwise

int bt_gatt_service_register(struct bt_gatt_service *svc)
Register GATT service.

Register GATT service. Applications can make use of macros such as
BT_GATT_PRIMARY_SERVICE, BT_GATT_CHARACTERISTIC, BT_GATT_DESCRIPTOR, etc.

When using CONFIG_BT_SETTINGS then all services that should have bond configuration
loaded, i.e. CCC values, must be registered before calling settings_load.

When using CONFIG_BT_GATT_CACHING and CONFIG_BT_SETTINGS then all services that
should be included in the GATT Database Hash calculation should be added before call-
ing settings_load. All services registered after settings_load will trigger a new database
hash calculation and a new hash stored.

There are two situations where this function can be called: either before bt_init()
has been called, or after settings_load() has been called. Registering a service in the
middle is not supported and will return an error.

Parameters
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• svc – Service containing the available attributes

Returns
0 in case of success or negative value in case of error.

Returns
-EAGAIN if bt_init() has been called but settings_load() hasn’t yet.

int bt_gatt_service_unregister(struct bt_gatt_service *svc)
Unregister GATT service.

Parameters
• svc – Service to be unregistered.

Returns
0 in case of success or negative value in case of error.

bool bt_gatt_service_is_registered(const struct bt_gatt_service *svc)
Check if GATT service is registered.

Parameters
• svc – Service to be checked.

Returns
true if registered or false if not register.

void bt_gatt_foreach_attr_type(uint16_t start_handle, uint16_t end_handle, const struct
bt_uuid *uuid, const void *attr_data, uint16_t
num_matches, bt_gatt_attr_func_t func, void
*user_data)

Attribute iterator by type.

Iterate attributes in the given range matching given UUID and/or data.

Parameters
• start_handle – Start handle.

• end_handle – End handle.

• uuid – UUID to match, passing NULL skips UUID matching.

• attr_data – Attribute data to match, passing NULL skips data matching.

• num_matches – Number matches, passing 0 makes it unlimited.

• func – Callback function.

• user_data – Data to pass to the callback.

static inline void bt_gatt_foreach_attr(uint16_t start_handle, uint16_t end_handle,
bt_gatt_attr_func_t func, void *user_data)

Attribute iterator.

Iterate attributes in the given range.

Parameters
• start_handle – Start handle.

• end_handle – End handle.

• func – Callback function.

• user_data – Data to pass to the callback.
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struct bt_gatt_attr *bt_gatt_attr_next(const struct bt_gatt_attr *attr)
Iterate to the next attribute.

Iterate to the next attribute following a given attribute.

Parameters
• attr – Current Attribute.

Returns
The next attribute or NULL if it cannot be found.

struct bt_gatt_attr *bt_gatt_find_by_uuid(const struct bt_gatt_attr *attr, uint16_t
attr_count, const struct bt_uuid *uuid)

Find Attribute by UUID.

Find the attribute with the matching UUID. To limit the search to a service set the attr
to the service attributes and the attr_count to the service attribute count .

Parameters
• attr – Pointer to an attribute that serves as the starting point for the

search of a match for the UUID. Passing NULL will search the entire
range.

• attr_count – The number of attributes from the starting point to search
for a match for the UUID. Set to 0 to search until the end.

• uuid – UUID to match.

uint16_t bt_gatt_attr_get_handle(const struct bt_gatt_attr *attr)
Get Attribute handle.

Parameters
• attr – Attribute object.

Returns
Handle of the corresponding attribute or zero if the attribute could not be
found.

uint16_t bt_gatt_attr_value_handle(const struct bt_gatt_attr *attr)
Get the handle of the characteristic value descriptor.

Note

The user_data of the attribute must of type bt_gatt_chrc.

Parameters
• attr – A Characteristic Attribute.

Returns
the handle of the corresponding Characteristic Value. The value will be
zero (the invalid handle) if attr was not a characteristic attribute.

ssize_t bt_gatt_attr_read(struct bt_conn *conn, const struct bt_gatt_attr *attr, void *buf,
uint16_t buf_len, uint16_t offset, const void *value, uint16_t
value_len)

Generic Read Attribute value helper.

Read attribute value from local database storing the result into buffer.

Parameters
• conn – Connection object.
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• attr – Attribute to read.

• buf – Buffer to store the value.

• buf_len – Buffer length.

• offset – Start offset.

• value – Attribute value.

• value_len – Length of the attribute value.

Returns
number of bytes read in case of success or negative values in case of error.

ssize_t bt_gatt_attr_read_service(struct bt_conn *conn, const struct bt_gatt_attr *attr,
void *buf, uint16_t len, uint16_t offset)

Read Service Attribute helper.

Read service attribute value from local database storing the result into buffer after
encoding it.

Note

Only use this with attributes which user_data is a bt_uuid.

Parameters
• conn – Connection object.

• attr – Attribute to read.

• buf – Buffer to store the value read.

• len – Buffer length.

• offset – Start offset.

Returns
number of bytes read in case of success or negative values in case of error.

ssize_t bt_gatt_attr_read_included(struct bt_conn *conn, const struct bt_gatt_attr *attr,
void *buf, uint16_t len, uint16_t offset)

Read Include Attribute helper.

Read include service attribute value from local database storing the result into buffer
after encoding it.

Note

Only use this with attributes which user_data is a bt_gatt_include.

Parameters
• conn – Connection object.

• attr – Attribute to read.

• buf – Buffer to store the value read.

• len – Buffer length.

• offset – Start offset.

Returns
number of bytes read in case of success or negative values in case of error.
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ssize_t bt_gatt_attr_read_chrc(struct bt_conn *conn, const struct bt_gatt_attr *attr, void
*buf, uint16_t len, uint16_t offset)

Read Characteristic Attribute helper.

Read characteristic attribute value from local database storing the result into buffer
after encoding it.

Note

Only use this with attributes which user_data is a bt_gatt_chrc.

Parameters
• conn – Connection object.

• attr – Attribute to read.

• buf – Buffer to store the value read.

• len – Buffer length.

• offset – Start offset.

Returns
number of bytes read in case of success or negative values in case of error.

ssize_t bt_gatt_attr_read_ccc(struct bt_conn *conn, const struct bt_gatt_attr *attr, void
*buf, uint16_t len, uint16_t offset)

Read Client Characteristic Configuration Attribute helper.

Read CCC attribute value from local database storing the result into buffer after encod-
ing it.

Note

Only use this with attributes which user_data is a _bt_gatt_ccc.

Parameters
• conn – Connection object.

• attr – Attribute to read.

• buf – Buffer to store the value read.

• len – Buffer length.

• offset – Start offset.

Returns
number of bytes read in case of success or negative values in case of error.

ssize_t bt_gatt_attr_write_ccc(struct bt_conn *conn, const struct bt_gatt_attr *attr, const
void *buf, uint16_t len, uint16_t offset, uint8_t flags)

Write Client Characteristic Configuration Attribute helper.

Write value in the buffer into CCC attribute.

Note

Only use this with attributes which user_data is a _bt_gatt_ccc.
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Parameters
• conn – Connection object.

• attr – Attribute to read.

• buf – Buffer to store the value read.

• len – Buffer length.

• offset – Start offset.

• flags – Write flags.

Returns
number of bytes written in case of success or negative values in case of
error.

ssize_t bt_gatt_attr_read_cep(struct bt_conn *conn, const struct bt_gatt_attr *attr, void
*buf, uint16_t len, uint16_t offset)

Read Characteristic Extended Properties Attribute helper.

Read CEP attribute value from local database storing the result into buffer after encod-
ing it.

Note

Only use this with attributes which user_data is a bt_gatt_cep.

Parameters
• conn – Connection object

• attr – Attribute to read

• buf – Buffer to store the value read

• len – Buffer length

• offset – Start offset

Returns
number of bytes read in case of success or negative values in case of error.

ssize_t bt_gatt_attr_read_cud(struct bt_conn *conn, const struct bt_gatt_attr *attr, void
*buf, uint16_t len, uint16_t offset)

Read Characteristic User Description Descriptor Attribute helper.

Read CUD attribute value from local database storing the result into buffer after en-
coding it.

Note

Only use this with attributes which user_data is a NULL-terminated C string.

Parameters
• conn – Connection object

• attr – Attribute to read

• buf – Buffer to store the value read

• len – Buffer length
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• offset – Start offset

Returns
number of bytes read in case of success or negative values in case of error.

ssize_t bt_gatt_attr_read_cpf(struct bt_conn *conn, const struct bt_gatt_attr *attr, void
*buf, uint16_t len, uint16_t offset)

Read Characteristic Presentation format Descriptor Attribute helper.

Read CPF attribute value from local database storing the result into buffer after encod-
ing it.

Note

Only use this with attributes which user_data is a bt_gatt_pf.

Parameters
• conn – Connection object

• attr – Attribute to read

• buf – Buffer to store the value read

• len – Buffer length

• offset – Start offset

Returns
number of bytes read in case of success or negative values in case of error.

int bt_gatt_notify_cb(struct bt_conn *conn, struct bt_gatt_notify_params *params)
Notify attribute value change.

This function works in the same way as bt_gatt_notify. With the addition that after
sending the notification the callback function will be called.

The callback is run from System Workqueue context. When called from the System
Workqueue context this API will not wait for resources for the callback but instead
return an error. The number of pending callbacks can be increased with the CON-
FIG_BT_CONN_TX_MAX option.

Alternatively it is possible to notify by UUID by setting it on the parameters, when
using this method the attribute if provided is used as the start range when looking up
for possible matches.

Parameters
• conn – Connection object.

• params – Notification parameters.

Returns
0 in case of success or negative value in case of error.

int bt_gatt_notify_multiple(struct bt_conn *conn, uint16_t num_params, struct
bt_gatt_notify_params params[])

Send multiple notifications in a single PDU.

The GATT Server will send a single ATT_MULTIPLE_HANDLE_VALUE_NTF PDU con-
taining all the notifications passed to this API.

All paramsmust have the same func and user_data (due to implementation limitation).
But func(user_data) will be invoked for each parameter.
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As this API may block to wait for Bluetooth Host resources, it is not recommended to
call it from a cooperative thread or a Bluetooth callback.

The peer’s GATT Client must write to this device’s Client Supported Features attribute
and set the bit for Multiple Handle Value Notifications before this API can be used.

Only use this API to force the use of the ATT_MULTIPLE_HANDLE_VALUE_NTF PDU. For
standard applications, bt_gatt_notify_cb is preferred, as it will use this PDU if sup-
ported and automatically fallback to ATT_HANDLE_VALUE_NTF when not supported
by the peer.

This API has an additional limitation: it only accepts valid attribute references and not
UUIDs like bt_gatt_notify and bt_gatt_notify_cb.

Parameters
• conn – Target client. Notifying all connected clients by passing NULL is not

yet supported, please use bt_gatt_notify instead.

• num_params – Element count of params array. Has to be greater than 1.

• params – Array of notification parameters. It is okay to free this after
calling this function.

Return values
• 0 – Success. The PDU is queued for sending.

• -EINVAL –

– One of the attribute handles is invalid.

– Only one parameter was passed. This API expects 2 or more.

– Not all func were equal or not all user_data were equal.

– One of the characteristics is not notifiable.

– An UUID was passed in one of the parameters.

• -ERANGE –

– The notifications cannot all fit in a single
ATT_MULTIPLE_HANDLE_VALUE_NTF.

– They exceed the MTU of all open ATT bearers.

• -EPERM – The connection has a lower security level than required by one
of the attributes.

• -EOPNOTSUPP – The peer hasn’t yet communicated that it supports this
PDU type.

static inline int bt_gatt_notify(struct bt_conn *conn, const struct bt_gatt_attr *attr, const
void *data, uint16_t len)

Notify attribute value change.

Send notification of attribute value change, if connection is NULL notify all peer that
have notification enabled via CCC otherwise do a direct notification only the given
connection.

The attribute object on the parameters can be the so called Characteristic Declaration,
which is usually declared with BT_GATT_CHARACTERISTIC followed by BT_GATT_CCC,
or the Characteristic Value Declaration which is automatically created after the Char-
acteristic Declaration when using BT_GATT_CHARACTERISTIC.

Parameters
• conn – Connection object.

• attr – Characteristic or Characteristic Value attribute.
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• data – Pointer to Attribute data.

• len – Attribute value length.

Returns
0 in case of success or negative value in case of error.

static inline int bt_gatt_notify_uuid(struct bt_conn *conn, const struct bt_uuid *uuid,
const struct bt_gatt_attr *attr, const void *data,
uint16_t len)

Notify attribute value change by UUID.

Send notification of attribute value change, if connection is NULL notify all peer that
have notification enabled via CCC otherwise do a direct notification only on the given
connection.

The attribute object is the starting point for the search of the UUID.

Parameters
• conn – Connection object.

• uuid – The UUID. If the server contains multiple services with the same
UUID, then the first occurrence, starting from the attr given, is used.

• attr – Pointer to an attribute that serves as the starting point for the
search of a match for the UUID.

• data – Pointer to Attribute data.

• len – Attribute value length.

Returns
0 in case of success or negative value in case of error.

int bt_gatt_indicate(struct bt_conn *conn, struct bt_gatt_indicate_params *params)
Indicate attribute value change.

Send an indication of attribute value change. if connection is NULL indicate all peer
that have notification enabled via CCC otherwise do a direct indication only the given
connection.

The attribute object on the parameters can be the so called Characteristic Declaration,
which is usually declared with BT_GATT_CHARACTERISTIC followed by BT_GATT_CCC,
or the Characteristic Value Declaration which is automatically created after the Char-
acteristic Declaration when using BT_GATT_CHARACTERISTIC.

Alternatively it is possible to indicate by UUID by setting it on the parameters, when
using this method the attribute if provided is used as the start range when looking up
for possible matches.

Note

This procedure is asynchronous therefore the parameters need to remains valid
while it is active. The procedure is active until the destroy callback is run.

Parameters
• conn – Connection object.

• params – Indicate parameters.

Returns
0 in case of success or negative value in case of error.
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bool bt_gatt_is_subscribed(struct bt_conn *conn, const struct bt_gatt_attr *attr, uint16_t
ccc_type)

Check if connection have subscribed to attribute.

Check if connection has subscribed to attribute value change.

The attribute object can be the so called Characteristic Declaration, which is usually
declared with BT_GATT_CHARACTERISTIC followed by BT_GATT_CCC, or the Charac-
teristic Value Declaration which is automatically created after the Characteristic Dec-
laration when using BT_GATT_CHARACTERISTIC, or the Client Characteristic Configu-
ration Descriptor (CCCD) which is created by BT_GATT_CCC.

Parameters
• conn – Connection object.

• attr – Attribute object.

• ccc_type – The subscription type, BT_GATT_CCC_NOTIFY and/or
BT_GATT_CCC_INDICATE.

Returns
true if the attribute object has been subscribed.

uint16_t bt_gatt_get_mtu(struct bt_conn *conn)
Get ATT MTU for a connection.

Get negotiated ATT connection MTU, note that this does not equal the largest amount
of attribute data that can be transferred within a single packet.

Parameters
• conn – Connection object.

Returns
MTU in bytes

struct bt_gatt_ccc_cfg
#include <gatt.h> GATT CCC configuration entry.

Public Members

uint8_t id
Local identity, BT_ID_DEFAULT in most cases.

bt_addr_le_t peer
Remote peer address.

uint16_t value
Configuration value.

struct bt_gatt_notify_params
#include <gatt.h>

Public Members
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const struct bt_uuid *uuid
Notification Attribute UUID type.

Optional, use to search for an attribute with matching UUID when the attribute
object pointer is not known.

const struct bt_gatt_attr *attr
Notification Attribute object.

Optional if uuid is provided, in this case it will be used as start range to search for
the attribute with the given UUID.

const void *data
Notification Value data.

uint16_t len
Notification Value length.

bt_gatt_complete_func_t func
Notification Value callback.

void *user_data
Notification Value callback user data.

struct bt_gatt_indicate_params
#include <gatt.h> GATT Indicate Value parameters.

Public Members

const struct bt_uuid *uuid
Indicate Attribute UUID type.

Optional, use to search for an attribute with matching UUID when the attribute
object pointer is not known.

const struct bt_gatt_attr *attr
Indicate Attribute object.

Optional if uuid is provided, in this case it will be used as start range to search for
the attribute with the given UUID.

bt_gatt_indicate_func_t func
Indicate Value callback.

bt_gatt_indicate_params_destroy_t destroy
Indicate operation complete callback.

const void *data
Indicate Value data.

uint16_t len
Indicate Value length.
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GATT Client

group bt_gatt_client

Typedefs

typedef uint8_t (*bt_gatt_discover_func_t)(struct bt_conn *conn, const struct
bt_gatt_attr *attr, struct bt_gatt_discover_params *params)

Discover attribute callback function.

If discovery procedure has completed this callback will be called with attr set to NULL.
This will not happen if procedure was stopped by returning BT_GATT_ITER_STOP.

The attribute object as well as its UUID and value objects are temporary and must be
copied to in order to cache its information. Only the following fields of the attribute
contains valid information:

• uuid UUID representing the type of attribute.

• handle Handle in the remote database.

• user_data The value of the attribute, if the discovery type maps to an ATT operation
that provides this information. NULL otherwise. See below.

The effective type of attr->user_data is determined by params. Note that the fields
params->type and params->uuid are left unchanged by the discovery procedure.

params->type params->uuid Type of
attr->user_data

BT_GATT_DISCOVER_PRIMARY any bt_gatt_service_val
BT_GATT_DISCOVER_SECONDARY any bt_gatt_service_val
BT_GATT_DISCOVER_INCLUDE any bt_gatt_include
BT_GATT_DISCOVER_CHARACTERISTICany bt_gatt_chrc
BT_GATT_DISCOVER_STD_CHAR_DESCBT_UUID_GATT_CEP bt_gatt_cep
BT_GATT_DISCOVER_STD_CHAR_DESCBT_UUID_GATT_CCC bt_gatt_ccc
BT_GATT_DISCOVER_STD_CHAR_DESCBT_UUID_GATT_SCC bt_gatt_scc
BT_GATT_DISCOVER_STD_CHAR_DESCBT_UUID_GATT_CPF bt_gatt_cpf
BT_GATT_DISCOVER_DESCRIPTOR any NULL
BT_GATT_DISCOVER_ATTRIBUTE any NULL

Also consider if using read-by-type instead of discovery is more convenient. See
bt_gatt_read with bt_gatt_read_params::handle_count set to 0.

Param conn
Connection object.

Param attr
Attribute found, or NULL if not found.

Param params
Discovery parameters given.

Return
BT_GATT_ITER_CONTINUE to continue discovery procedure.

Return
BT_GATT_ITER_STOP to stop discovery procedure.
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typedef uint8_t (*bt_gatt_read_func_t)(struct bt_conn *conn, uint8_t err, struct
bt_gatt_read_params *params, const void *data, uint16_t length)

Read callback function.

When reading using by_uuid, params->start_handle is the attribute handle for this
data item.

Param conn
Connection object.

Param err
ATT error code.

Param params
Read parameters used.

Param data
Attribute value data. NULL means read has completed.

Param length
Attribute value length.

Return
BT_GATT_ITER_CONTINUE if should continue to the next attribute.

Return
BT_GATT_ITER_STOP to stop.

typedef void (*bt_gatt_write_func_t)(struct bt_conn *conn, uint8_t err, struct
bt_gatt_write_params *params)

Write callback function.

Param conn
Connection object.

Param err
ATT error code.

Param params
Write parameters used.

typedef uint8_t (*bt_gatt_notify_func_t)(struct bt_conn *conn, struct
bt_gatt_subscribe_params *params, const void *data, uint16_t length)

Notification callback function.

In the case of an empty notification, the data pointer will be non-NULL while the
length will be 0, which is due to the special case where a data NULL pointer means
unsubscribed.

Param conn
Connection object. May be NULL, indicating that the peer is being unpaired

Param params
Subscription parameters.

Param data
Attribute value data. If NULL then subscription was removed.

Param length
Attribute value length.

Return
BT_GATT_ITER_CONTINUE to continue receiving value notifications.
BT_GATT_ITER_STOP to unsubscribe from value notifications.
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typedef void (*bt_gatt_subscribe_func_t)(struct bt_conn *conn, uint8_t err, struct
bt_gatt_subscribe_params *params)

Subscription callback function.

Param conn
Connection object.

Param err
ATT error code.

Param params
Subscription parameters used.

Enums

GATT Discover types.

Values:

enumerator BT_GATT_DISCOVER_PRIMARY
Discover Primary Services.

enumerator BT_GATT_DISCOVER_SECONDARY
Discover Secondary Services.

enumerator BT_GATT_DISCOVER_INCLUDE
Discover Included Services.

enumerator BT_GATT_DISCOVER_CHARACTERISTIC
Discover Characteristic Values.

Discover Characteristic Value and its properties.

enumerator BT_GATT_DISCOVER_DESCRIPTOR
Discover Descriptors.

Discover Attributes which are not services or characteristics.

@note The use of this type of discover is not recommended for
discovering in ranges across multiple services/characteristics
as it may incur in extra round trips.

enumerator BT_GATT_DISCOVER_ATTRIBUTE
Discover Attributes.

Discover Attributes of any type.

@note The use of this type of discover is not recommended for
discovering in ranges across multiple services/characteristics
as it may incur in more round trips.

enumerator BT_GATT_DISCOVER_STD_CHAR_DESC
Discover standard characteristic descriptor values.
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Discover standard characteristic descriptor values and their
properties.
Supported descriptors:
- Characteristic Extended Properties
- Client Characteristic Configuration
- Server Characteristic Configuration
- Characteristic Presentation Format

Subscription flags.

Values:

enumerator BT_GATT_SUBSCRIBE_FLAG_VOLATILE
Persistence flag.

If set, indicates that the subscription is not saved
on the GATT server side. Therefore, upon disconnection,
the subscription will be automatically removed
from the client's subscriptions list and
when the client reconnects, it will have to
issue a new subscription.

enumerator BT_GATT_SUBSCRIBE_FLAG_NO_RESUB
No resubscribe flag.

By default when BT_GATT_SUBSCRIBE_FLAG_VOLATILE is unset, the
subscription will be automatically renewed when the client
reconnects, as a workaround for GATT servers that do not persist
subscriptions.

This flag will disable the automatic resubscription. It is useful
if the application layer knows that the GATT server remembers
subscriptions from previous connections and wants to avoid renewing
the subscriptions.

enumerator BT_GATT_SUBSCRIBE_FLAG_WRITE_PENDING
Write pending flag.

If set, indicates write operation is pending waiting remote end to
respond.

@note Internal use only.

enumerator BT_GATT_SUBSCRIBE_FLAG_SENT
Sent flag.

If set, indicates that a subscription request (CCC write) has
already been sent in the active connection.

Used to avoid sending subscription requests multiple times when the
\htmlonly <code>CONFIG_BT_GATT_AUTO_RESUBSCRIBE</code> \endhtmlonly \

↪→xmlonly <verbatim>embed:rst:inline :kconfig:option:`CONFIG_BT_GATT_AUTO_
↪→RESUBSCRIBE`</verbatim> \endxmlonly quirk is enabled.

@note Internal use only.
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enumerator BT_GATT_SUBSCRIBE_NUM_FLAGS

Functions

int bt_gatt_exchange_mtu(struct bt_conn *conn, struct bt_gatt_exchange_params
*params)

Exchange MTU.

This client procedure can be used to set the MTU to the maximum possible size the
buffers can hold.

The Response comes in callback params->func. The callback is run from the context
specified by ‘config BT_RECV_CONTEXT’. params must remain valid until start of call-
back.

This function will block while the ATT request queue is full, except when called from
the BT RX thread, as this would cause a deadlock.

Note

Shall only be used once per connection.

Parameters
• conn – Connection object.

• params – Exchange MTU parameters.

Return values
• 0 – Successfully queued request. Will call params->func on resolution.

• -ENOMEM – ATT request queue is full and blocking would cause deadlock.
Allow a pending request to resolve before retrying, or call this function
outside the BT RX thread to get blocking behavior. Queue size is con-
trolled by CONFIG_BT_ATT_TX_COUNT .

• -EALREADY – The MTU exchange procedure has been already performed.

int bt_gatt_discover(struct bt_conn *conn, struct bt_gatt_discover_params *params)
GATT Discover function.

This procedure is used by a client to discover attributes on a server.

Primary Service Discovery: Procedure allows to discover primary services either by
Discover All Primary Services or Discover Primary Services by Service UUID. Include
Service Discovery: Procedure allows to discover all Include Services within speci-
fied range. Characteristic Discovery: Procedure allows to discover all characteris-
tics within specified handle range as well as discover characteristics with specified
UUID. Descriptors Discovery: Procedure allows to discover all characteristic descrip-
tors within specified range.

For each attribute found the callback is called which can then decide whether to con-
tinue discovering or stop.

The Response comes in callback params->func. The callback is run from the BT RX
thread. params must remain valid until start of callback where iter attr is NULL or
callback will return BT_GATT_ITER_STOP.
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This function will block while the ATT request queue is full, except when called from
the BT RX thread, as this would cause a deadlock.

Parameters
• conn – Connection object.

• params – Discover parameters.

Return values
• 0 – Successfully queued request. Will call params->func on resolution.

• -ENOMEM – ATT request queue is full and blocking would cause deadlock.
Allow a pending request to resolve before retrying, or call this function
outside the BT RX thread to get blocking behavior. Queue size is con-
trolled by CONFIG_BT_ATT_TX_COUNT .

int bt_gatt_read(struct bt_conn *conn, struct bt_gatt_read_params *params)
Read Attribute Value by handle.

This procedure read the attribute value and return it to the callback.

When reading attributes by UUID the callback can be called multiple times depending
on how many instances of given the UUID exists with the start_handle being updated
for each instance.

To perform a GATT Long Read procedure, start with a Characteristic Value Read (by
setting offset 0 and handle_count 1) and then return BT_GATT_ITER_CONTINUE from
the callback. This is equivalent to calling bt_gatt_read again, but with the correct offset
to continue the read. This may be repeated until the procedure is complete, which is
signaled by the callback being called with data set to NULL.

Note that returning BT_GATT_ITER_CONTINUE is really starting a new ATT operation,
so this can fail to allocate resources. However, all API errors are reported as if the
server returned BT_ATT_ERR_UNLIKELY . There is no way to distinguish between this
condition and a BT_ATT_ERR_UNLIKELY response from the server itself.

Note that the effect of returning BT_GATT_ITER_CONTINUE from the callback varies
depending on the type of read operation.

The Response comes in callback params->func. The callback is run from the context
specified by ‘config BT_RECV_CONTEXT’. params must remain valid until start of call-
back.

This function will block while the ATT request queue is full, except when called from
the BT RX thread, as this would cause a deadlock.

Parameters
• conn – Connection object.

• params – Read parameters.

Return values
• 0 – Successfully queued request. Will call params->func on resolution.

• -ENOMEM – ATT request queue is full and blocking would cause deadlock.
Allow a pending request to resolve before retrying, or call this function
outside the BT RX thread to get blocking behavior. Queue size is con-
trolled by CONFIG_BT_ATT_TX_COUNT .

int bt_gatt_write(struct bt_conn *conn, struct bt_gatt_write_params *params)
Write Attribute Value by handle.

The Response comes in callback params->func. The callback is run from the context
specified by ‘config BT_RECV_CONTEXT’. params must remain valid until start of call-
back.
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This function will block while the ATT request queue is full, except when called from
Bluetooth event context. When called from Bluetooth context, this function will in-
stead instead return -ENOMEM if it would block to avoid a deadlock.

Parameters
• conn – Connection object.

• params – Write parameters.

Return values
• 0 – Successfully queued request. Will call params->func on resolution.

• -ENOMEM – ATT request queue is full and blocking would cause deadlock.
Allow a pending request to resolve before retrying, or call this function
outside Bluetooth event context to get blocking behavior. Queue size is
controlled by CONFIG_BT_ATT_TX_COUNT .

int bt_gatt_write_without_response_cb(struct bt_conn *conn, uint16_t handle, const
void *data, uint16_t length, bool sign,
bt_gatt_complete_func_t func, void *user_data)

Write Attribute Value by handle without response with callback.

This function works in the same way as bt_gatt_write_without_response. With the ad-
dition that after sending the write the callback function will be called.

The callback is run from System Workqueue context. When called from the System
Workqueue context this API will not wait for resources for the callback but instead
return an error. The number of pending callbacks can be increased with the CON-
FIG_BT_CONN_TX_MAX option.

This function will block while the ATT request queue is full, except when called from
the BT RX thread, as this would cause a deadlock.

Note

By using a callback it also disable the internal flow control which would prevent
sending multiple commands without waiting for their transmissions to complete,
so if that is required the caller shall not submit more data until the callback is called.

Parameters
• conn – Connection object.

• handle – Attribute handle.

• data – Data to be written.

• length – Data length.

• sign – Whether to sign data

• func – Transmission complete callback.

• user_data – User data to be passed back to callback.

Return values
• 0 – Successfully queued request.

• -ENOMEM – ATT request queue is full and blocking would cause deadlock.
Allow a pending request to resolve before retrying, or call this function
outside the BT RX thread to get blocking behavior. Queue size is con-
trolled by CONFIG_BT_ATT_TX_COUNT .
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static inline int bt_gatt_write_without_response(struct bt_conn *conn, uint16_t handle,
const void *data, uint16_t length, bool
sign)

Write Attribute Value by handle without response.

This procedure write the attribute value without requiring an acknowledgment that
the write was successfully performed

This function will block while the ATT request queue is full, except when called from
the BT RX thread, as this would cause a deadlock.

Parameters
• conn – Connection object.

• handle – Attribute handle.

• data – Data to be written.

• length – Data length.

• sign – Whether to sign data

Return values
• 0 – Successfully queued request.

• -ENOMEM – ATT request queue is full and blocking would cause deadlock.
Allow a pending request to resolve before retrying, or call this function
outside the BT RX thread to get blocking behavior. Queue size is con-
trolled by CONFIG_BT_ATT_TX_COUNT .

int bt_gatt_subscribe(struct bt_conn *conn, struct bt_gatt_subscribe_params *params)
Subscribe Attribute Value Notification.

This procedure subscribe to value notification using the Client Characteristic Configu-
ration handle. If notification received subscribe value callback is called to return no-
tified value. One may then decide whether to unsubscribe directly from this callback.
Notification callback with NULL data will not be called if subscription was removed by
this method.

The Response comes in callback params->subscribe. The callback is run from the con-
text specified by ‘config BT_RECV_CONTEXT’. The Notification callback params->notify
is also called from the BT RX thread.

This function will block while the ATT request queue is full, except when called from
the BT RX thread, as this would cause a deadlock.

Note

Notifications are asynchronous therefore the params must remain valid while sub-
scribed and cannot be reused for additional subscriptions whilst active.

Parameters
• conn – Connection object.

• params – Subscribe parameters.

Return values
• 0 – Successfully queued request. Will call params->write on resolution.
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• -ENOMEM – ATT request queue is full and blocking would cause deadlock.
Allow a pending request to resolve before retrying, or call this function
outside the BT RX thread to get blocking behavior. Queue size is con-
trolled by CONFIG_BT_ATT_TX_COUNT .

• -EALREADY – if there already exist a subscription using the params.

• -EBUSY – if params.ccc_handle is 0 and CON-
FIG_BT_GATT_AUTO_DISCOVER_CCC is enabled and discovery for the
params is already in progress.

int bt_gatt_resubscribe(uint8_t id, const bt_addr_le_t *peer, struct
bt_gatt_subscribe_params *params)

Resubscribe Attribute Value Notification subscription.

Resubscribe to Attribute Value Notification when already subscribed from a previous
connection. The GATT server will remember subscription from previous connections
when bonded, so resubscribing can be done without performing a new subscribe pro-
cedure after a power cycle.

Note

Notifications are asynchronous therefore the parameters need to remain valid
while subscribed.

Parameters
• id – Local identity (in most cases BT_ID_DEFAULT).

• peer – Remote address.

• params – Subscribe parameters.

Returns
0 in case of success or negative value in case of error.

int bt_gatt_unsubscribe(struct bt_conn *conn, struct bt_gatt_subscribe_params *params)
Unsubscribe Attribute Value Notification.

This procedure unsubscribe to value notification using the Client Characteristic Con-
figuration handle. Notification callback with NULL data will be called if subscription
was removed by this call, until then the parameters cannot be reused.

The Response comes in callback params->func. The callback is run from the BT RX
thread.

This function will block while the ATT request queue is full, except when called from
the BT RX thread, as this would cause a deadlock.

Parameters
• conn – Connection object.

• params – Subscribe parameters. The parameters shall be a
bt_gatt_subscribe_params from a previous call to bt_gatt_subscribe().

Return values
• 0 – Successfully queued request. Will call params->write on resolution.

• -ENOMEM – ATT request queue is full and blocking would cause deadlock.
Allow a pending request to resolve before retrying, or call this function
outside the BT RX thread to get blocking behavior. Queue size is con-
trolled by CONFIG_BT_ATT_TX_COUNT .
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void bt_gatt_cancel(struct bt_conn *conn, void *params)
Try to cancel the first pending request identified by params.

This function does not release params for reuse. The usual callbacks for the request
still apply. A successful cancel simulates a BT_ATT_ERR_UNLIKELY response from the
server.

This function can cancel the following request functions:

• bt_gatt_exchange_mtu

• bt_gatt_discover

• bt_gatt_read

• bt_gatt_write

• bt_gatt_subscribe

• bt_gatt_unsubscribe

Parameters
• conn – The connection the request was issued on.

• params – The address params used in the request function call.

struct bt_gatt_exchange_params
#include <gatt.h> GATT Exchange MTU parameters.

Public Members

void (*func)(struct bt_conn *conn, uint8_t err, struct bt_gatt_exchange_params
*params)

Response callback.

struct bt_gatt_discover_params
#include <gatt.h> GATT Discover Attributes parameters.

Public Members

const struct bt_uuid *uuid
Discover UUID type.

bt_gatt_discover_func_t func
Discover attribute callback.

uint16_t attr_handle
Include service attribute declaration handle.

uint16_t start_handle
Included service start handle.

Discover start handle.
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uint16_t end_handle
Included service end handle.

Discover end handle.

uint8_t type
Discover type.

struct bt_gatt_subscribe_params *sub_params
Only for stack-internal use, used for automatic discovery.

struct bt_gatt_read_params
#include <gatt.h> GATT Read parameters.

Public Members

bt_gatt_read_func_t func
Read attribute callback.

size_t handle_count
If equals to 1 single.handle and single.offset are used.

If greater than 1 multiple.handles are used. If equals to 0 by_uuid is used for Read
Using Characteristic UUID.

uint16_t handle
Attribute handle.

uint16_t offset
Attribute data offset.

uint16_t *handles
Attribute handles to read with Read Multiple Characteristic Values.

bool variable
If true use Read Multiple Variable Length Characteristic Values procedure.

The values of the set of attributes may be of variable or unknown length. If false
use Read Multiple Characteristic Values procedure. The values of the set of at-
tributes must be of a known fixed length, with the exception of the last value that
can have a variable length.

uint16_t start_handle
First requested handle number.

uint16_t end_handle
Last requested handle number.

const struct bt_uuid *uuid
2 or 16 octet UUID.
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struct bt_gatt_write_params
#include <gatt.h> GATT Write parameters.

Public Members

bt_gatt_write_func_t func
Response callback.

uint16_t handle
Attribute handle.

uint16_t offset
Attribute data offset.

const void *data
Data to be written.

uint16_t length
Length of the data.

struct bt_gatt_subscribe_params
#include <gatt.h> GATT Subscribe parameters.

Public Members

bt_gatt_notify_func_t notify
Notification value callback.

bt_gatt_subscribe_func_t subscribe
Subscribe CCC write request response callback If given, called with the subscrip-
tion parameters given when subscribing.

uint16_t value_handle
Subscribe value handle.

uint16_t ccc_handle
Subscribe CCC handle.

uint16_t end_handle
Subscribe End handle (for automatic discovery)

struct bt_gatt_discover_params *disc_params
Discover parameters used when ccc_handle = 0.

uint16_t value
Subscribe value.
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bt_security_t min_security
Minimum required security for received notification.

Notifications and indications received over a connection with a lower security
level are silently discarded.

atomic_t flags[ATOMIC_BITMAP_SIZE(BT_GATT_SUBSCRIBE_NUM_FLAGS)]
Subscription flags.

Attribute Protocol (ATT)

API Reference

group bt_att
Attribute Protocol (ATT)

Defines

BT_ATT_ERR_SUCCESS
The ATT operation was successful.

BT_ATT_ERR_INVALID_HANDLE
The attribute handle given was not valid on the server.

BT_ATT_ERR_READ_NOT_PERMITTED
The attribute cannot be read.

BT_ATT_ERR_WRITE_NOT_PERMITTED
The attribute cannot be written.

BT_ATT_ERR_INVALID_PDU
The attribute PDU was invalid.

BT_ATT_ERR_AUTHENTICATION
The attribute requires authentication before it can be read or written.

BT_ATT_ERR_NOT_SUPPORTED
The ATT Server does not support the request received from the client.

BT_ATT_ERR_INVALID_OFFSET
Offset specified was past the end of the attribute.

BT_ATT_ERR_AUTHORIZATION
The attribute requires authorization before it can be read or written.

BT_ATT_ERR_PREPARE_QUEUE_FULL
Too many prepare writes have been queued.
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BT_ATT_ERR_ATTRIBUTE_NOT_FOUND
No attribute found within the given attribute handle range.

BT_ATT_ERR_ATTRIBUTE_NOT_LONG
The attribute cannot be read using the ATT_READ_BLOB_REQ PDU.

BT_ATT_ERR_ENCRYPTION_KEY_SIZE
The Encryption Key Size used for encrypting this link is too short.

BT_ATT_ERR_INVALID_ATTRIBUTE_LEN
The attribute value length is invalid for the operation.

BT_ATT_ERR_UNLIKELY
The attribute request that was requested has encountered an error that was unlikely.

The attribute request could therefore not be completed as requested

BT_ATT_ERR_INSUFFICIENT_ENCRYPTION
The attribute requires encryption before it can be read or written.

BT_ATT_ERR_UNSUPPORTED_GROUP_TYPE
The attribute type is not a supported grouping attribute.

The attribute type is not a supported grouping attribute as defined by a higher layer
specification.

BT_ATT_ERR_INSUFFICIENT_RESOURCES
Insufficient Resources to complete the request.

BT_ATT_ERR_DB_OUT_OF_SYNC
The server requests the client to rediscover the database.

BT_ATT_ERR_VALUE_NOT_ALLOWED
The attribute parameter value was not allowed.

BT_ATT_ERR_WRITE_REQ_REJECTED
Write Request Rejected.

BT_ATT_ERR_CCC_IMPROPER_CONF
Client Characteristic Configuration Descriptor Improperly Configured.

BT_ATT_ERR_PROCEDURE_IN_PROGRESS
Procedure Already in Progress.

BT_ATT_ERR_OUT_OF_RANGE
Out of Range.

BT_ATT_MAX_ATTRIBUTE_LEN

BT_ATT_FIRST_ATTRIBUTE_HANDLE
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BT_ATT_LAST_ATTRIBUTE_HANDLE

Enums

enum bt_att_chan_opt
ATT channel option bit field values.

Note

BT_ATT_CHAN_OPT_UNENHANCED_ONLY andBT_ATT_CHAN_OPT_ENHANCED_ONLY
are mutually exclusive and both bits may not be set.

Values:

enumerator BT_ATT_CHAN_OPT_NONE = 0x0
Both Enhanced and Unenhanced channels can be used

enumerator BT_ATT_CHAN_OPT_UNENHANCED_ONLY = BIT(0)
Only Unenhanced channels will be used

enumerator BT_ATT_CHAN_OPT_ENHANCED_ONLY = BIT(1)
Only Enhanced channels will be used

Functions

static inline const char *bt_att_err_to_str(uint8_t att_err)
Converts a ATT error to string.

The error codes are described in the Bluetooth Core specification, Vol 3, Part F, Section
3.4.1.1 and in The Supplement to the Bluetooth Core Specification (CSS), v11, Part B,
Section 1.2.

The ATT and GATT documentation found in Vol 4, Part F and Part G describe when the
different error codes are used.

See also the defined BT_ATT_ERR_* macros.

Returns
The string representation of the ATT error code. If CON-
FIG_BT_ATT_ERR_TO_STR is not enabled, this just returns the empty
string

int bt_eatt_connect(struct bt_conn *conn, size_t num_channels)
Connect Enhanced ATT channels.

Sends a series of Credit Based Connection Requests to connect num_channels Enhanced
ATT channels. The peer may have limited resources and fewer channels may be cre-
ated.

Parameters
• conn – The connection to send the request on

• num_channels – The number of Enhanced ATT beares to request. Must be
in the range 1 - CONFIG_BT_EATT_MAX , inclusive.
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Return values
• -EINVAL – if num_channels is not in the allowed range or conn is NULL.

• -ENOMEM – if less than num_channels are allocated.

• 0 – in case of success

Returns
0 in case of success or negative value in case of error.

size_t bt_eatt_count(struct bt_conn *conn)
Get number of EATT channels connected.

Parameters
• conn – The connection to get the number of EATT channels for.

Returns
The number of EATT channels connected. Returns 0 if conn is NULL or not
connected.

Bluetooth Mesh

BluetoothMesh Profile The Bluetooth Mesh profile adds secure wireless multi-hop communi-
cation for Bluetooth Low Energy. This module implements the Bluetooth Mesh Protocol Specifi-
cation v1.1.

Read more about Bluetooth Mesh on the Bluetooth SIG Website.

Core The core provides functionality for managing the general Bluetooth Mesh state.

Low Power Node The Low Power Node (LPN) role allows battery powered devices to partici-
pate in a mesh network as a leaf node. An LPN interacts with the mesh network through a Friend
node, which is responsible for relaying any messages directed to the LPN. The LPN saves power
by keeping its radio turned off, and only wakes up to either send messages or poll the Friend
node for any incoming messages.

The radio control and polling is managed automatically by the mesh stack, but the LPN API allows
the application to trigger the polling at any time through bt_mesh_lpn_poll(). The LPN opera-
tion parameters, including poll interval, poll event timing and Friend requirements is controlled
through the CONFIG_BT_MESH_LOW_POWER option and related configuration options.

When using the LPN feature with logging, it is strongly recommended to only use the CON-
FIG_LOG_MODE_DEFERRED option. Log modes other than the deferred may cause unintended de-
lays during processing of log messages. This in turns will affect scheduling of the receive delay
and receive window. The same limitation applies for the CONFIG_BT_MESH_FRIEND option.

Replay Protection List The Replay Protection List (RPL) is used to hold recently received se-
quence numbers from elements within the mesh network to perform protection against replay
attacks.

To keep a node protected against replay attacks after reboot, it needs to store the entire RPL in
the persistent storage before it is powered off. Depending on the amount of traffic in a mesh
network, storing recently seen sequence numbers can make flash wear out sooner or later. To
mitigate this, CONFIG_BT_MESH_RPL_STORE_TIMEOUT can be used. This option postpones storing of
RPL entries in the persistent storage.

This option, however, doesn’t completely solve the issue as the node may get powered off before
the timer to store the RPL is fired. To ensure that messages can not be replayed, the node can ini-
tiate storage of the pending RPL entry (or entries) at any time (or sufficiently before power loss)
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by calling bt_mesh_rpl_pending_store(). This is up to the node to decide, which RPL entries are
to be stored in this case.

Setting CONFIG_BT_MESH_RPL_STORE_TIMEOUT to -1 allows to completely switch off the timer, which
can help to significantly reduce flash wear out. This moves the responsibility of storing RPL to
the user application and requires that sufficient power backup is available from the time this
API is called until all RPL entries are written to the flash.

Finding the right balance between CONFIG_BT_MESH_RPL_STORE_TIMEOUT and calling
bt_mesh_rpl_pending_store() may reduce a risk of security vulnerability and flash wear
out.

Persistent storage The mesh stack uses the Settings Subsystem for storing the device config-
uration persistently. When the stack configuration changes and the change needs to be stored
persistently, the stack schedules a work item. The delay between scheduling the work item and
submitting it to the workqueue is defined by the CONFIG_BT_MESH_STORE_TIMEOUT option. Once
storing of data is scheduled, it can not be rescheduled until the work item is processed. Excep-
tions are made in certain cases as described below.

When IV index, Sequence Number or CDB configuration have to be stored, the work item is
submitted to the workqueue without the delay. If the work item was previously scheduled, it
will be rescheduled without the delay.

The Replay Protection List uses the same work item to store RPL entries. If storing of RPL en-
tries is requested and no other configuration is pending to be stored, the delay is set to CON-
FIG_BT_MESH_RPL_STORE_TIMEOUT. If other stack configuration has to be stored, the delay defined
by the CONFIG_BT_MESH_STORE_TIMEOUT option is less than CONFIG_BT_MESH_RPL_STORE_TIMEOUT,
and the work item was scheduled by the Replay Protection List, the work item will be resched-
uled.

When the work item is running, the stack will store all pending configuration, including the RPL
entries.

Work item execution context The CONFIG_BT_MESH_SETTINGS_WORKQ option configures the
context from which the work item is executed. This option is enabled by default, and results
in stack using a dedicated cooperative thread to process the work item. This allows the stack
to process other incoming and outgoing messages, as well as other work items submitted to the
system workqueue, while the stack configuration is being stored.

When this option is disabled, the work item is submitted to the system workqueue. This means
that the system workqueue is blocked for the time it takes to store the stack’s configuration. It
is not recommended to disable this option as this will make the device non-responsive for a
noticeable amount of time.

Advertisement identity All mesh stack bearers advertise data with the BT_ID_DEFAULT local
identity. The value is preset in the mesh stack implementation. When Bluetooth® Low Energy
(LE) and Bluetooth Mesh coexist on the same device, the application should allocate and config-
ure another local identity for Bluetooth LE purposes before starting the communication.

API reference

group bt_mesh
Bluetooth Mesh.

Defines
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BT_MESH_NET_PRIMARY
Primary Network Key index.

BT_MESH_FEAT_RELAY
Relay feature.

BT_MESH_FEAT_PROXY
GATT Proxy feature.

BT_MESH_FEAT_FRIEND
Friend feature.

BT_MESH_FEAT_LOW_POWER
Low Power Node feature.

BT_MESH_FEAT_SUPPORTED
Supported heartbeat publication features.

BT_MESH_LPN_CB_DEFINE(_name)
Register a callback structure for Friendship events.

Parameters
• _name – Name of callback structure.

BT_MESH_FRIEND_CB_DEFINE(_name)
Register a callback structure for Friendship events.

Registers a callback structure that will be called whenever Friendship gets established
or terminated.

Parameters
• _name – Name of callback structure.

Functions

int bt_mesh_init(const struct bt_mesh_prov *prov, const struct bt_mesh_comp *comp)
Initialize Mesh support.

After calling this API, the node will not automatically advertise as unprovisioned,
rather the bt_mesh_prov_enable() API needs to be called to enable unprovisioned ad-
vertising on one or more provisioning bearers.

Parameters
• prov – Node provisioning information.

• comp – Node Composition.

Returns
Zero on success or (negative) error code otherwise.

void bt_mesh_reset(void)
Reset the state of the local Mesh node.

Resets the state of the node, which means that it needs to be reprovisioned to become
an active node in a Mesh network again.
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After calling this API, the node will not automatically advertise as unprovisioned,
rather the bt_mesh_prov_enable() API needs to be called to enable unprovisioned ad-
vertising on one or more provisioning bearers.

int bt_mesh_suspend(void)
Suspend the Mesh network temporarily.

This API can be used for power saving purposes, but the user should be aware that
leaving the local node suspended for a long period of time may cause it to become
permanently disconnected from the Mesh network. If at all possible, the Friendship
feature should be used instead, to make the node into a Low Power Node.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_resume(void)
Resume a suspended Mesh network.

This API resumes the local node, after it has been suspended using the
bt_mesh_suspend() API.

Returns
0 on success, or (negative) error code on failure.

void bt_mesh_iv_update_test(bool enable)
Toggle the IV Update test mode.

This API is only available if the IV Update test mode has been enabled in Kconfig. It is
needed for passing most of the IV Update qualification test cases.

Parameters
• enable – true to enable IV Update test mode, false to disable it.

bool bt_mesh_iv_update(void)
Toggle the IV Update state.

This API is only available if the IV Update test mode has been enabled in Kconfig. It is
needed for passing most of the IV Update qualification test cases.

Returns
true if IV Update In Progress state was entered, false otherwise.

int bt_mesh_lpn_set(bool enable)
Toggle the Low Power feature of the local device.

Enables or disables the Low Power feature of the local device. This is exposed as a run-
time feature, since the device might want to change this e.g. based on being plugged
into a stable power source or running from a battery power source.

Parameters
• enable – true to enable LPN functionality, false to disable it.

Returns
Zero on success or (negative) error code otherwise.

int bt_mesh_lpn_poll(void)
Send out a Friend Poll message.

Send a Friend Poll message to the Friend of this node. If there is no established Friend-
ship the function will return an error.

Returns
Zero on success or (negative) error code otherwise.
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int bt_mesh_friend_terminate(uint16_t lpn_addr)
Terminate Friendship.

Terminated Friendship for given LPN.

Parameters
• lpn_addr – Low Power Node address.

Returns
Zero on success or (negative) error code otherwise.

void bt_mesh_rpl_pending_store(uint16_t addr)
Store pending RPL entry(ies) in the persistent storage.

This API allows the user to store pending RPL entry(ies) in the persistent storage with-
out waiting for the timeout.

Note

When flash is used as the persistent storage, calling this API too frequently may
wear it out.

Parameters
• addr – Address of the node which RPL entry needs to be stored or
BT_MESH_ADDR_ALL_NODES to store all pending RPL entries.

const uint8_t *bt_mesh_va_uuid_get(uint16_t addr, const uint8_t *uuid, uint16_t *retaddr)
Iterate stored Label UUIDs.

When addr is BT_MESH_ADDR_UNASSIGNED, this function iterates over all available
addresses starting with uuid. In this case, use retaddr to get virtual address repre-
sentation of the returned Label UUID. When addr is a virtual address, this function
returns next Label UUID corresponding to the addr. When uuid is NULL, this func-
tion returns the first available UUID. If uuid is previously returned uuid, this function
returns following uuid.

Parameters
• addr – Virtual address to search for, or BT_MESH_ADDR_UNASSIGNED.

• uuid – Pointer to the previously returned Label UUID or NULL.

• retaddr – Pointer to a memory where virtual address representation of
the returning UUID is to be stored to.

Returns
Pointer to Label UUID, or NULL if no more entries found.

struct bt_mesh_lpn_cb
#include <main.h> Low Power Node callback functions.

Public Members

void (*established)(uint16_t net_idx, uint16_t friend_addr, uint8_t queue_size,
uint8_t recv_window)

Friendship established.

This callback notifies the application that friendship has been successfully estab-
lished.
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Param net_idx
NetKeyIndex used during friendship establishment.

Param friend_addr
Friend address.

Param queue_size
Friend queue size.

Param recv_window
Low Power Node’s listens duration for Friend response.

void (*terminated)(uint16_t net_idx, uint16_t friend_addr)
Friendship terminated.

This callback notifies the application that friendship has been terminated.
Param net_idx

NetKeyIndex used during friendship establishment.
Param friend_addr

Friend address.

void (*polled)(uint16_t net_idx, uint16_t friend_addr, bool retry)
Local Poll Request.

This callback notifies the application that the local node has polled the friend node.

This callback will be called before bt_mesh_lpn_cb::established when attempting to
establish a friendship.

Param net_idx
NetKeyIndex used during friendship establishment.

Param friend_addr
Friend address.

Param retry
Retry or first poll request for each transaction.

struct bt_mesh_friend_cb
#include <main.h> Friend Node callback functions.

Public Members

void (*established)(uint16_t net_idx, uint16_t lpn_addr, uint8_t recv_delay, uint32_t
polltimeout)

Friendship established.

This callback notifies the application that friendship has been successfully estab-
lished.

Param net_idx
NetKeyIndex used during friendship establishment.

Param lpn_addr
Low Power Node address.

Param recv_delay
Receive Delay in units of 1 millisecond.

Param polltimeout
PollTimeout in units of 1 millisecond.

void (*terminated)(uint16_t net_idx, uint16_t lpn_addr)
Friendship terminated.

This callback notifies the application that friendship has been terminated.
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Param net_idx
NetKeyIndex used during friendship establishment.

Param lpn_addr
Low Power Node address.

void (*polled)(uint16_t net_idx, uint16_t lpn_addr)
Friend Poll Request.

This callback notifies the application that the low power node has polled the friend
node.

This callback will be called before bt_mesh_friend_cb::established when attempting
to establish a friendship.

Param net_idx
NetKeyIndex used during friendship establishment.

Param lpn_addr
LPN address.

Access layer The access layer is the application’s interface to the Bluetooth Mesh network. The
access layer provides mechanisms for compartmentalizing the node behavior into elements and
models, which are implemented by the application.

Meshmodels The functionality of a mesh node is represented by models. A model implements
a single behavior the node supports, like being a light, a sensor or a thermostat. The mesh models
are grouped into elements. Each element is assigned its own unicast address, and may only
contain one of each type of model. Conventionally, each element represents a single aspect of
the mesh node behavior. For instance, a node that contains a sensor, two lights and a power
outlet would spread this functionality across four elements, with each element instantiating all
the models required for a single aspect of the supported behavior.

The node’s element and model structure is specified in the node composition data, which is
passed to bt_mesh_init() during initialization. The Bluetooth SIG have defined a set of foun-
dation models (see Mesh models) and a set of models for implementing common behavior in the
Bluetooth Mesh Model Specification. All models not specified by the Bluetooth SIG are vendor
models, and must be tied to a Company ID.

Mesh models have several parameters that can be configured either through initialization of the
mesh stack or with the Configuration Server:

Opcode list The opcode list contains all message opcodes the model can receive, as well as the
minimum acceptable payload length and the callback to pass them to. Models can support any
number of opcodes, but each opcode can only be listed by one model in each element.

The full opcode list must be passed to the model structure in the composition data, and
cannot be changed at runtime. The end of the opcode list is determined by the special
BT_MESH_MODEL_OP_END entry. This entry must always be present in the opcode list, unless the
list is empty. In that case, BT_MESH_MODEL_NO_OPS should be used in place of a proper opcode list
definition.

AppKey list The AppKey list contains all the application keys the model can receive messages
on. Only messages encrypted with application keys in the AppKey list will be passed to the model.

The maximum number of supported application keys each model can hold is configured with
the CONFIG_BT_MESH_MODEL_KEY_COUNT configuration option. The contents of the AppKey list is
managed by the Configuration Server.

2082 Chapter 6. Connectivity

https://www.bluetooth.com/specifications/mesh-specifications/


Zephyr Project Documentation, Release 3.7.99

Subscription list A model will process all messages addressed to the unicast address of their
element (given that the utilized application key is present in the AppKey list). Additionally, the
model will process packets addressed to any group or virtual address in its subscription list. This
allows nodes to address multiple nodes throughout the mesh network with a single message.

The maximum number of supported addresses in the Subscription list each model can hold is
configured with the CONFIG_BT_MESH_MODEL_GROUP_COUNT configuration option. The contents of
the subscription list is managed by the Configuration Server.

Model publication The models may send messages in two ways:

• By specifying a set of message parameters in a bt_mesh_msg_ctx, and calling
bt_mesh_model_send().

• By setting up a bt_mesh_model_pub structure and calling bt_mesh_model_publish().

When publishing messages with bt_mesh_model_publish(), the model will use the publication
parameters configured by the Configuration Server. This is the recommended way to send un-
prompted model messages, as it passes the responsibility of selecting message parameters to the
network administrator, which likely knows more about the mesh network than the individual
nodes will.

To support publishing with the publication parameters, the model must allocate a packet buffer
for publishing, and pass it to bt_mesh_model_pub.msg. The Config Server may also set up pe-
riod publication for the publication message. To support this, the model must populate the
bt_mesh_model_pub.update callback. The bt_mesh_model_pub.update callback will be called
right before the message is published, allowing the model to change the payload to reflect its
current state.

By setting bt_mesh_model_pub.retr_update to 1, the model can configure the
bt_mesh_model_pub.update callback to be triggered on every retransmission. This can, for
example, be used by models that make use of a Delay parameter, which can be adjusted for
every retransmission. The bt_mesh_model_pub_is_retransmission() function can be used
to differentiate a first publication and a retransmission. The BT_MESH_PUB_MSG_TOTAL and
BT_MESH_PUB_MSG_NUM macros can be used to return total number of transmissions and the
retransmission number within one publication interval.

Extended models The Bluetooth Mesh specification allows the mesh models to extend each
other. When a model extends another, it inherits that model’s functionality, and extension can be
used to construct complex models out of simple ones, leveraging the existing model functionality
to avoid defining new opcodes. Models may extend any number of models, from any element.
When one model extends another in the same element, the two models will share subscription
lists. The mesh stack implements this by merging the subscription lists of the two models into
one, combining the number of subscriptions the models can have in total. Models may extend
models that extend others, creating an “extension tree”. All models in an extension tree share a
single subscription list per element it spans.

Model extensions are done by calling bt_mesh_model_extend() during initialization. A model
can only be extended by one other model, and extensions cannot be circular. Note that bind-
ing of node states and other relationships between the models must be defined by the model
implementations.

The model extension concept adds some overhead in the access layer packet processing, and
must be explicitly enabled with CONFIG_BT_MESH_MODEL_EXTENSIONS to have any effect.

Model data storage Mesh models may have data associated with each model instance that
needs to be stored persistently. The access API provides a mechanism for storing this data,
leveraging the internal model instance encoding scheme. Models can store one user defined
data entry per instance by calling bt_mesh_model_data_store(). To be able to read out the data
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the next time the device reboots, the model’s bt_mesh_model_cb.settings_set callback must be
populated. This callback gets called when model specific data is found in the persistent storage.
The model can retrieve the data by calling the read_cb passed as a parameter to the callback.
See the Settings module documentation for details.

When model data changes frequently, storing it on every change may lead to increased
wear of flash. To reduce the wear, the model can postpone storing of data by calling
bt_mesh_model_data_store_schedule(). The stack will schedule a work item with delay defined
by the CONFIG_BT_MESH_STORE_TIMEOUT option. When the work item is running, the stack will
call the bt_mesh_model_cb.pending_store callback for every model that has requested storing
of data. The model can then call bt_mesh_model_data_store() to store the data.

If CONFIG_BT_MESH_SETTINGS_WORKQ is enabled, the bt_mesh_model_cb.pending_store callback
is called from a dedicated thread. This allows the stack to process other incoming and outgo-
ing messages while model data is being stored. It is recommended to use this option and the
bt_mesh_model_data_store_schedule() function when large amount of data needs to be stored.

Composition Data The Composition Data provides information about a mesh device. A de-
vice’s Composition Data holds information about the elements on the device, the models that it
supports, and other features. The Composition Data is split into different pages, where each page
contains specific feature information about the device. In order to access this information, the
user may use the Configuration Server model or, if supported, the Large Composition Data Server
model.

Composition Data Page 0 Composition Data Page 0 provides the fundamental information
about a device, and is mandatory for all mesh devices. It contains the element and model com-
position, the supported features, and manufacturer information.

Composition Data Page 1 Composition Data Page 1 provides information about the re-
lationships between models, and is mandatory for all mesh devices. A model may
extend and/or correspond to one or more models. A model can extend another
model by calling bt_mesh_model_extend(), or correspond to another model by calling
bt_mesh_model_correspond(). CONFIG_BT_MESH_MODEL_EXTENSION_LIST_SIZE specifies how
many model relations can be stored in the composition on a device, and this number should
reflect the number of bt_mesh_model_extend() and bt_mesh_model_correspond() calls.

Composition Data Page 2 Composition Data Page 2 provides information for supported mesh
profiles. Mesh profile specifications define product requirements for devices that want to sup-
port a specific Bluetooth SIG defined profile. Currently supported profiles can be found in section
3.12 in Bluetooth SIG Assigned Numbers. Composition Data Page 2 is only mandatory for devices
that claim support for one or more mesh profile(s).

Composition Data Pages 128, 129 and 130 Composition Data Pages 128, 129 and 130 mirror
Composition Data Pages 0, 1 and 2 respectively. They are used to represent the new content
of the mirrored pages when the Composition Data will change after a firmware update. See
Composition Data and Models Metadata for details.

Delayable messages The delayable message functionality is enabled with Kconfig option CON-
FIG_BT_MESH_ACCESS_DELAYABLE_MSG. This is an optional functionality that implements specifica-
tion recommendations for messages that are transmitted by a model in a response to a received
message, also called response messages.

Response messages should be sent with the following random delays:

• Between 20 and 50 milliseconds if the received message was sent to a unicast address

2084 Chapter 6. Connectivity

https://www.bluetooth.com/specifications/assigned-numbers/uri-scheme-name-string-mapping/


Zephyr Project Documentation, Release 3.7.99

• Between 20 and 500 milliseconds if the received message was sent to a group or virtual
address

The delayable message functionality is triggered if the bt_mesh_msg_ctx.rnd_delay flag is set.
The delayable message functionality stores messages in the local memory while they are waiting
for the random delay expiration.

If the transport layer doesn’t have sufficient memory to send a message at the moment the
random delay expires, the message is postponed for another 10 milliseconds. If the transport
layer cannot send a message for any other reason, the delayable message functionality raises
the bt_mesh_send_cb.start callback with a transport layer error code.

If the delayable message functionality cannot find enough free memory to store an incoming
message, it will send messages with delay close to expiration to free memory.

When the mesh stack is suspended or reset, messages not yet sent are removed and the
bt_mesh_send_cb.start callback is raised with an error code.

Note

When a model sends several messages in a row, it may happen that the messages are not
sent in the order they were passed to the access layer. This is because some messages can be
delayed for a longer time than the others.

Disable the randomization by setting the bt_mesh_msg_ctx.rnd_delay to false, when a set of
messages originated by the same model needs to be sent in a certain order.

Delayable publications The delayable publication functionality implements the specification
recommendations for message publication delays in the following cases:

• Between 20 to 500 milliseconds when the Bluetooth Mesh stack starts or when the publica-
tion is triggered by the bt_mesh_model_publish() function

• Between 20 to 50 milliseconds for periodically published messages

This feature is optional and enabled with the CONFIG_BT_MESH_DELAYABLE_PUBLICATION Kconfig
option. When enabled, each model can enable or disable the delayable publication by setting the
bt_mesh_model_pub.delayable bit field to 1 or 0 correspondingly. This bit field can be changed
at any time.

API reference

group bt_mesh_access
Access layer.

Group addresses

BT_MESH_ADDR_UNASSIGNED
unassigned

BT_MESH_ADDR_ALL_NODES
all-nodes

BT_MESH_ADDR_RELAYS
all-relays
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BT_MESH_ADDR_FRIENDS
all-friends

BT_MESH_ADDR_PROXIES
all-proxies

BT_MESH_ADDR_DFW_NODES
all-directed-forwarding-nodes

BT_MESH_ADDR_IP_NODES
all-ipt-nodes

BT_MESH_ADDR_IP_BR_ROUTERS
all-ipt-border-routers

Predefined key indexes

BT_MESH_KEY_UNUSED
Key unused.

BT_MESH_KEY_ANY
Any key index.

BT_MESH_KEY_DEV
Device key.

BT_MESH_KEY_DEV_LOCAL
Local device key.

BT_MESH_KEY_DEV_REMOTE
Remote device key.

BT_MESH_KEY_DEV_ANY
Any device key.

Foundation Models

BT_MESH_MODEL_ID_CFG_SRV
Configuration Server.

BT_MESH_MODEL_ID_CFG_CLI
Configuration Client.

BT_MESH_MODEL_ID_HEALTH_SRV
Health Server.
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BT_MESH_MODEL_ID_HEALTH_CLI
Health Client.

BT_MESH_MODEL_ID_REMOTE_PROV_SRV
Remote Provisioning Server.

BT_MESH_MODEL_ID_REMOTE_PROV_CLI
Remote Provisioning Client.

BT_MESH_MODEL_ID_PRIV_BEACON_SRV
Private Beacon Server.

BT_MESH_MODEL_ID_PRIV_BEACON_CLI
Private Beacon Client.

BT_MESH_MODEL_ID_SAR_CFG_SRV
SAR Configuration Server.

BT_MESH_MODEL_ID_SAR_CFG_CLI
SAR Configuration Client.

BT_MESH_MODEL_ID_OP_AGG_SRV
Opcodes Aggregator Server.

BT_MESH_MODEL_ID_OP_AGG_CLI
Opcodes Aggregator Client.

BT_MESH_MODEL_ID_LARGE_COMP_DATA_SRV
Large Composition Data Server.

BT_MESH_MODEL_ID_LARGE_COMP_DATA_CLI
Large Composition Data Client.

BT_MESH_MODEL_ID_SOL_PDU_RPL_SRV
Solicitation PDU RPL Configuration Client.

BT_MESH_MODEL_ID_SOL_PDU_RPL_CLI
Solicitation PDU RPL Configuration Server.

BT_MESH_MODEL_ID_ON_DEMAND_PROXY_SRV
Private Proxy Server.

BT_MESH_MODEL_ID_ON_DEMAND_PROXY_CLI
Private Proxy Client.

Models from the Mesh Model Specification
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BT_MESH_MODEL_ID_GEN_ONOFF_SRV
Generic OnOff Server.

BT_MESH_MODEL_ID_GEN_ONOFF_CLI
Generic OnOff Client.

BT_MESH_MODEL_ID_GEN_LEVEL_SRV
Generic Level Server.

BT_MESH_MODEL_ID_GEN_LEVEL_CLI
Generic Level Client.

BT_MESH_MODEL_ID_GEN_DEF_TRANS_TIME_SRV
Generic Default Transition Time Server.

BT_MESH_MODEL_ID_GEN_DEF_TRANS_TIME_CLI
Generic Default Transition Time Client.

BT_MESH_MODEL_ID_GEN_POWER_ONOFF_SRV
Generic Power OnOff Server.

BT_MESH_MODEL_ID_GEN_POWER_ONOFF_SETUP_SRV
Generic Power OnOff Setup Server.

BT_MESH_MODEL_ID_GEN_POWER_ONOFF_CLI
Generic Power OnOff Client.

BT_MESH_MODEL_ID_GEN_POWER_LEVEL_SRV
Generic Power Level Server.

BT_MESH_MODEL_ID_GEN_POWER_LEVEL_SETUP_SRV
Generic Power Level Setup Server.

BT_MESH_MODEL_ID_GEN_POWER_LEVEL_CLI
Generic Power Level Client.

BT_MESH_MODEL_ID_GEN_BATTERY_SRV
Generic Battery Server.

BT_MESH_MODEL_ID_GEN_BATTERY_CLI
Generic Battery Client.

BT_MESH_MODEL_ID_GEN_LOCATION_SRV
Generic Location Server.

BT_MESH_MODEL_ID_GEN_LOCATION_SETUPSRV
Generic Location Setup Server.
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BT_MESH_MODEL_ID_GEN_LOCATION_CLI
Generic Location Client.

BT_MESH_MODEL_ID_GEN_ADMIN_PROP_SRV
Generic Admin Property Server.

BT_MESH_MODEL_ID_GEN_MANUFACTURER_PROP_SRV
Generic Manufacturer Property Server.

BT_MESH_MODEL_ID_GEN_USER_PROP_SRV
Generic User Property Server.

BT_MESH_MODEL_ID_GEN_CLIENT_PROP_SRV
Generic Client Property Server.

BT_MESH_MODEL_ID_GEN_PROP_CLI
Generic Property Client.

BT_MESH_MODEL_ID_SENSOR_SRV
Sensor Server.

BT_MESH_MODEL_ID_SENSOR_SETUP_SRV
Sensor Setup Server.

BT_MESH_MODEL_ID_SENSOR_CLI
Sensor Client.

BT_MESH_MODEL_ID_TIME_SRV
Time Server.

BT_MESH_MODEL_ID_TIME_SETUP_SRV
Time Setup Server.

BT_MESH_MODEL_ID_TIME_CLI
Time Client.

BT_MESH_MODEL_ID_SCENE_SRV
Scene Server.

BT_MESH_MODEL_ID_SCENE_SETUP_SRV
Scene Setup Server.

BT_MESH_MODEL_ID_SCENE_CLI
Scene Client.

BT_MESH_MODEL_ID_SCHEDULER_SRV
Scheduler Server.
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BT_MESH_MODEL_ID_SCHEDULER_SETUP_SRV
Scheduler Setup Server.

BT_MESH_MODEL_ID_SCHEDULER_CLI
Scheduler Client.

BT_MESH_MODEL_ID_LIGHT_LIGHTNESS_SRV
Light Lightness Server.

BT_MESH_MODEL_ID_LIGHT_LIGHTNESS_SETUP_SRV
Light Lightness Setup Server.

BT_MESH_MODEL_ID_LIGHT_LIGHTNESS_CLI
Light Lightness Client.

BT_MESH_MODEL_ID_LIGHT_CTL_SRV
Light CTL Server.

BT_MESH_MODEL_ID_LIGHT_CTL_SETUP_SRV
Light CTL Setup Server.

BT_MESH_MODEL_ID_LIGHT_CTL_CLI
Light CTL Client.

BT_MESH_MODEL_ID_LIGHT_CTL_TEMP_SRV
Light CTL Temperature Server.

BT_MESH_MODEL_ID_LIGHT_HSL_SRV
Light HSL Server.

BT_MESH_MODEL_ID_LIGHT_HSL_SETUP_SRV
Light HSL Setup Server.

BT_MESH_MODEL_ID_LIGHT_HSL_CLI
Light HSL Client.

BT_MESH_MODEL_ID_LIGHT_HSL_HUE_SRV
Light HSL Hue Server.

BT_MESH_MODEL_ID_LIGHT_HSL_SAT_SRV
Light HSL Saturation Server.

BT_MESH_MODEL_ID_LIGHT_XYL_SRV
Light xyL Server.

BT_MESH_MODEL_ID_LIGHT_XYL_SETUP_SRV
Light xyL Setup Server.
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BT_MESH_MODEL_ID_LIGHT_XYL_CLI
Light xyL Client.

BT_MESH_MODEL_ID_LIGHT_LC_SRV
Light LC Server.

BT_MESH_MODEL_ID_LIGHT_LC_SETUPSRV
Light LC Setup Server.

BT_MESH_MODEL_ID_LIGHT_LC_CLI
Light LC Client.

Models from the Mesh Binary Large Object Transfer Model Specification

BT_MESH_MODEL_ID_BLOB_SRV
BLOB Transfer Server.

BT_MESH_MODEL_ID_BLOB_CLI
BLOB Transfer Client.

Models from the Mesh Device Firmware Update Model Specification

BT_MESH_MODEL_ID_DFU_SRV
Firmware Update Server.

BT_MESH_MODEL_ID_DFU_CLI
Firmware Update Client.

BT_MESH_MODEL_ID_DFD_SRV
Firmware Distribution Server.

BT_MESH_MODEL_ID_DFD_CLI
Firmware Distribution Client.

Defines

BT_MESH_ADDR_IS_UNICAST(addr)
Check if a Bluetooth Mesh address is a unicast address.

BT_MESH_ADDR_IS_GROUP(addr)
Check if a Bluetooth Mesh address is a group address.

BT_MESH_ADDR_IS_FIXED_GROUP(addr)
Check if a Bluetooth Mesh address is a fixed group address.

BT_MESH_ADDR_IS_VIRTUAL(addr)
Check if a Bluetooth Mesh address is a virtual address.
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BT_MESH_ADDR_IS_RFU(addr)
Check if a Bluetooth Mesh address is an RFU address.

BT_MESH_IS_DEV_KEY(key)
Check if a Bluetooth Mesh key is a device key.

BT_MESH_APP_SEG_SDU_MAX
Maximum size of an access message segment (in octets).

BT_MESH_APP_UNSEG_SDU_MAX
Maximum payload size of an unsegmented access message (in octets).

BT_MESH_RX_SEG_MAX
Maximum number of segments supported for incoming messages.

BT_MESH_TX_SEG_MAX
Maximum number of segments supported for outgoing messages.

BT_MESH_TX_SDU_MAX
Maximum possible payload size of an outgoing access message (in octets).

BT_MESH_RX_SDU_MAX
Maximum possible payload size of an incoming access message (in octets).

BT_MESH_ELEM(_loc, _mods, _vnd_mods)
Helper to define a mesh element within an array.

In case the element has no SIG or Vendor models the helper macro
BT_MESH_MODEL_NONE can be given instead.

Parameters
• _loc – Location Descriptor.

• _mods – Array of models.

• _vnd_mods – Array of vendor models.

BT_MESH_MODEL_OP_1(b0)

BT_MESH_MODEL_OP_2(b0, b1)

BT_MESH_MODEL_OP_3(b0, cid)

BT_MESH_LEN_EXACT(len)
Macro for encoding exact message length for fixed-length messages.

BT_MESH_LEN_MIN(len)
Macro for encoding minimum message length for variable-length messages.

BT_MESH_MODEL_OP_END
End of the opcode list.

Must always be present.

BT_MESH_MODEL_NO_OPS
Helper to define an empty opcode list.

This macro uses compound literal feature of C99 standard and thus is available only
from C, not C++.
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BT_MESH_MODEL_NONE
Helper to define an empty model array.

This macro uses compound literal feature of C99 standard and thus is available only
from C, not C++.

BT_MESH_MODEL_CNT_CB(_id, _op, _pub, _user_data, _keys, _grps, _cb)
Composition data SIG model entry with callback functions with specific number of
keys & groups.

This macro uses compound literal feature of C99 standard and thus is available only
from C, not C++.

Parameters
• _id – Model ID.

• _op – Array of model opcode handlers.

• _pub – Model publish parameters.

• _user_data – User data for the model.

• _keys – Number of keys that can be bound to the model. Shall not exceed
CONFIG_BT_MESH_MODEL_KEY_COUNT .

• _grps – Number of addresses that the model can be subscribed to. Shall
not exceed CONFIG_BT_MESH_MODEL_GROUP_COUNT .

• _cb – Callback structure, or NULL to keep no callbacks.

BT_MESH_MODEL_CNT_VND_CB(_company, _id, _op, _pub, _user_data, _keys, _grps, _cb)
Composition data vendor model entry with callback functions with specific number of
keys & groups.

This macro uses compound literal feature of C99 standard and thus is available only
from C, not C++.

Parameters
• _company – Company ID.

• _id – Model ID.

• _op – Array of model opcode handlers.

• _pub – Model publish parameters.

• _user_data – User data for the model.

• _keys – Number of keys that can be bound to the model. Shall not exceed
CONFIG_BT_MESH_MODEL_KEY_COUNT .

• _grps – Number of addresses that the model can be subscribed to. Shall
not exceed CONFIG_BT_MESH_MODEL_GROUP_COUNT .

• _cb – Callback structure, or NULL to keep no callbacks.

BT_MESH_MODEL_CB(_id, _op, _pub, _user_data, _cb)
Composition data SIG model entry with callback functions.

This macro uses compound literal feature of C99 standard and thus is available only
from C, not C++.

Parameters
• _id – Model ID.

• _op – Array of model opcode handlers.
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• _pub – Model publish parameters.

• _user_data – User data for the model.

• _cb – Callback structure, or NULL to keep no callbacks.

BT_MESH_MODEL_METADATA_CB(_id, _op, _pub, _user_data, _cb, _metadata)
Composition data SIG model entry with callback functions and metadata.

This macro uses compound literal feature of C99 standard and thus is available only
from C, not C++.

Parameters
• _id – Model ID.

• _op – Array of model opcode handlers.

• _pub – Model publish parameters.

• _user_data – User data for the model.

• _cb – Callback structure, or NULL to keep no callbacks.

• _metadata – Metadata structure. Used if CON-
FIG_BT_MESH_LARGE_COMP_DATA_SRV is enabled.

BT_MESH_MODEL_VND_CB(_company, _id, _op, _pub, _user_data, _cb)
Composition data vendor model entry with callback functions.

This macro uses compound literal feature of C99 standard and thus is available only
from C, not C++.

Parameters
• _company – Company ID.

• _id – Model ID.

• _op – Array of model opcode handlers.

• _pub – Model publish parameters.

• _user_data – User data for the model.

• _cb – Callback structure, or NULL to keep no callbacks.

BT_MESH_MODEL_VND_METADATA_CB(_company, _id, _op, _pub, _user_data, _cb, _metadata)
Composition data vendor model entry with callback functions and metadata.

This macro uses compound literal feature of C99 standard and thus is available only
from C, not C++.

Parameters
• _company – Company ID.

• _id – Model ID.

• _op – Array of model opcode handlers.

• _pub – Model publish parameters.

• _user_data – User data for the model.

• _cb – Callback structure, or NULL to keep no callbacks.

• _metadata – Metadata structure. Used if CON-
FIG_BT_MESH_LARGE_COMP_DATA_SRV is enabled.
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BT_MESH_MODEL(_id, _op, _pub, _user_data)
Composition data SIG model entry.

This macro uses compound literal feature of C99 standard and thus is available only
from C, not C++.

Parameters
• _id – Model ID.

• _op – Array of model opcode handlers.

• _pub – Model publish parameters.

• _user_data – User data for the model.

BT_MESH_MODEL_VND(_company, _id, _op, _pub, _user_data)
Composition data vendor model entry.

This macro uses compound literal feature of C99 standard and thus is available only
from C, not C++.

Parameters
• _company – Company ID.

• _id – Model ID.

• _op – Array of model opcode handlers.

• _pub – Model publish parameters.

• _user_data – User data for the model.

BT_MESH_TRANSMIT(count, int_ms)
Encode transmission count & interval steps.

Parameters
• count – Number of retransmissions (first transmission is excluded).

• int_ms – Interval steps in milliseconds. Must be greater than 0, less than
or equal to 320, and a multiple of 10.

Returns
Mesh transmit value that can be used e.g. for the default values of the con-
figuration model data.

BT_MESH_TRANSMIT_COUNT(transmit)
Decode transmit count from a transmit value.

Parameters
• transmit – Encoded transmit count & interval value.

Returns
Transmission count (actual transmissions is N + 1).

BT_MESH_TRANSMIT_INT(transmit)
Decode transmit interval from a transmit value.

Parameters
• transmit – Encoded transmit count & interval value.

Returns
Transmission interval in milliseconds.
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BT_MESH_PUB_TRANSMIT(count, int_ms)
Encode Publish Retransmit count & interval steps.

Parameters
• count – Number of retransmissions (first transmission is excluded).

• int_ms – Interval steps in milliseconds. Must be greater than 0 and a
multiple of 50.

Returns
Mesh transmit value that can be used e.g. for the default values of the con-
figuration model data.

BT_MESH_PUB_TRANSMIT_COUNT(transmit)
Decode Publish Retransmit count from a given value.

Parameters
• transmit – Encoded Publish Retransmit count & interval value.

Returns
Retransmission count (actual transmissions is N + 1).

BT_MESH_PUB_TRANSMIT_INT(transmit)
Decode Publish Retransmit interval from a given value.

Parameters
• transmit – Encoded Publish Retransmit count & interval value.

Returns
Transmission interval in milliseconds.

BT_MESH_PUB_MSG_TOTAL(pub)
Get total number of messages within one publication interval including initial publi-
cation.

Parameters
• pub – Model publication context.

Returns
total number of messages.

BT_MESH_PUB_MSG_NUM(pub)
Get message number within one publication interval.

Meant to be used inside bt_mesh_model_pub::update.

Parameters
• pub – Model publication context.

Returns
message number starting from 1.

BT_MESH_MODEL_PUB_DEFINE(_name, _update, _msg_len)
Define a model publication context.

Parameters
• _name – Variable name given to the context.

• _update – Optional message update callback (may be NULL).

• _msg_len – Length of the publication message.
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BT_MESH_MODELS_METADATA_ENTRY(_len, _id, _data)
Initialize a Models Metadata entry structure in a list.

Parameters
• _len – Length of the metadata entry.

• _id – ID of the Models Metadata entry.

• _data – Pointer to a contiguous memory that contains the metadata.

BT_MESH_MODELS_METADATA_NONE
Helper to define an empty Models metadata array.

BT_MESH_MODELS_METADATA_END
End of the Models Metadata list.

Must always be present.

BT_MESH_TTL_DEFAULT
Special TTL value to request using configured default TTL.

BT_MESH_TTL_MAX
Maximum allowed TTL value.

Functions

int bt_mesh_model_send(const struct bt_mesh_model *model, struct bt_mesh_msg_ctx *ctx,
struct net_buf_simple *msg, const struct bt_mesh_send_cb *cb,
void *cb_data)

Send an Access Layer message.

Parameters
• model – Mesh (client) Model that the message belongs to.

• ctx – Message context, includes keys, TTL, etc.

• msg – Access Layer payload (the actual message to be sent).

• cb – Optional “message sent” callback.

• cb_data – User data to be passed to the callback.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_model_publish(const struct bt_mesh_model *model)
Send a model publication message.

Before calling this function, the user needs to ensure that the model publication mes-
sage (bt_mesh_model_pub::msg) contains a valid message to be sent. Note that this API
is only to be used for non-period publishing. For periodic publishing the app only
needs to make sure that bt_mesh_model_pub::msg contains a valid message whenever
the bt_mesh_model_pub::update callback is called.

Parameters
• model – Mesh (client) Model that’s publishing the message.

Returns
0 on success, or (negative) error code on failure.
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static inline bool bt_mesh_model_pub_is_retransmission(const struct bt_mesh_model
*model)

Check if a message is being retransmitted.

Meant to be used inside the bt_mesh_model_pub::update callback.

Parameters
• model – Mesh Model that supports publication.

Returns
true if this is a retransmission, false if this is a first publication.

const struct bt_mesh_elem *bt_mesh_model_elem(const struct bt_mesh_model *mod)
Get the element that a model belongs to.

Parameters
• mod – Mesh model.

Returns
Pointer to the element that the given model belongs to.

const struct bt_mesh_model *bt_mesh_model_find(const struct bt_mesh_elem *elem,
uint16_t id)

Find a SIG model.

Parameters
• elem – Element to search for the model in.

• id – Model ID of the model.

Returns
A pointer to the Mesh model matching the given parameters, or NULL if no
SIG model with the given ID exists in the given element.

const struct bt_mesh_model *bt_mesh_model_find_vnd(const struct bt_mesh_elem *elem,
uint16_t company, uint16_t id)

Find a vendor model.

Parameters
• elem – Element to search for the model in.

• company – Company ID of the model.

• id – Model ID of the model.

Returns
A pointer to the Mesh model matching the given parameters, or NULL if no
vendor model with the given ID exists in the given element.

static inline bool bt_mesh_model_in_primary(const struct bt_mesh_model *mod)
Get whether the model is in the primary element of the device.

Parameters
• mod – Mesh model.

Returns
true if the model is on the primary element, false otherwise.

int bt_mesh_model_data_store(const struct bt_mesh_model *mod, bool vnd, const char
*name, const void *data, size_t data_len)

Immediately store the model’s user data in persistent storage.

Parameters
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• mod – Mesh model.

• vnd – This is a vendor model.

• name – Name/key of the settings item. Only SETTINGS_MAX_DIR_DEPTH
bytes will be used at most.

• data – Model data to store, or NULL to delete any model data.

• data_len – Length of the model data.

Returns
0 on success, or (negative) error code on failure.

void bt_mesh_model_data_store_schedule(const struct bt_mesh_model *mod)
Schedule the model’s user data store in persistent storage.

This function triggers the bt_mesh_model_cb::pending_store callback for the corre-
sponding model after delay defined by CONFIG_BT_MESH_STORE_TIMEOUT .

The delay is global for all models. Once scheduled, the callback can not be re-scheduled
until previous schedule completes.

Parameters
• mod – Mesh model.

int bt_mesh_model_extend(const struct bt_mesh_model *extending_mod, const struct
bt_mesh_model *base_mod)

Let a model extend another.

Mesh models may be extended to reuse their functionality, forming a more complex
model. A Mesh model may extend any number of models, in any element. The exten-
sions may also be nested, ie a model that extends another may itself be extended.

A set of models that extend each other form a model extension list.

All models in an extension list share one subscription list per element. The access
layer will utilize the combined subscription list of all models in an extension list and
element, giving the models extended subscription list capacity.

If CONFIG_BT_MESH_COMP_PAGE_1 is enabled, it is not allowed to call this function before
the bt_mesh_model_cb::init callback is called for both models, except if it is called as
part of the final callback.

Parameters
• extending_mod – Mesh model that is extending the base model.

• base_mod – The model being extended.

Return values
0 – Successfully extended the base_mod model.

int bt_mesh_model_correspond(const struct bt_mesh_model *corresponding_mod, const
struct bt_mesh_model *base_mod)

Let a model correspond to another.

Mesh models may correspond to each other, which means that if one is present, other
must be present too. A Mesh model may correspond to any number of models, in any
element. All models connected together via correspondence form single Correspon-
dence Group, which has it’s unique Correspondence ID. Information about Correspon-
dence is used to construct Composition Data Page 1.

This function must be called on already initialized base_mod. Because this function is
designed to be called in corresponding_mod initializer, this means that base_mod shall
be initialized before corresponding_mod is.

Parameters
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• corresponding_mod – Mesh model that is corresponding to the base
model.

• base_mod – The model being corresponded to.

Return values
• 0 – Successfully saved correspondence to the base_mod model.

• -ENOMEM – There is no more space to save this relation.

• -ENOTSUP – Composition Data Page 1 is not supported.

bool bt_mesh_model_is_extended(const struct bt_mesh_model *model)
Check if model is extended by another model.

Parameters
• model – The model to check.

Return values
true – If model is extended by another model, otherwise false

int bt_mesh_comp_change_prepare(void)
Indicate that the composition data will change on next bootup.

Tell the config server that the composition data is expected to change on the next
bootup, and the current composition data should be backed up.

Returns
Zero on success or (negative) error code otherwise.

int bt_mesh_models_metadata_change_prepare(void)
Indicate that the metadata will change on next bootup.

Tell the config server that the models metadata is expected to change on the next
bootup, and the current models metadata should be backed up.

Returns
Zero on success or (negative) error code otherwise.

int bt_mesh_comp2_register(const struct bt_mesh_comp2 *comp2)
Register composition data page 2 of the device.

Register Mesh Profiles information (Ref section 3.12 in Bluetooth SIG Assigned Num-
bers) for composition data page 2 of the device.

Note

There must be at least one record present in comp2

Parameters
• comp2 – Pointer to composition data page 2.

Returns
Zero on success or (negative) error code otherwise.

struct bt_mesh_elem
#include <access.h> Abstraction that describes a Mesh Element.
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Public Members

const uint16_t loc
Location Descriptor (GATT Bluetooth Namespace Descriptors)

const uint8_t model_count
The number of SIG models in this element.

const uint8_t vnd_model_count
The number of vendor models in this element.

const struct bt_mesh_model *const models
The list of SIG models in this element.

const struct bt_mesh_model *const vnd_models
The list of vendor models in this element.

struct bt_mesh_elem_rt_ctx
#include <access.h> Mesh Element runtime information.

Public Members

uint16_t addr
Unicast Address.

Set at runtime during provisioning.

struct bt_mesh_model_op
#include <access.h> Model opcode handler.

Public Members

const uint32_t opcode
OpCode encoded using the BT_MESH_MODEL_OP_* macros.

const ssize_t len
Message length.

If the message has variable length then this value indicates minimum message
length and should be positive. Handler function should verify precise length based
on the contents of the message. If the message has fixed length then this value
should be negative. Use BT_MESH_LEN_* macros when defining this value.

int (*const func)(const struct bt_mesh_model *model, struct bt_mesh_msg_ctx *ctx,
struct net_buf_simple *buf)

Handler function for this opcode.
Parammodel

Model instance receiving the message.
Param ctx

Message context for the message.
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Param buf
Message buffer containing the message payload, not including the op-
code.

Return
Zero on success or (negative) error code otherwise.

struct bt_mesh_model_pub
#include <access.h> Model publication context.

The context should primarily be created using the BT_MESH_MODEL_PUB_DEFINE
macro.

Public Members

const struct bt_mesh_model *mod
The model the context belongs to.

Initialized by the stack.

uint16_t addr
Publish Address.

const uint8_t *uuid
Label UUID if Publish Address is Virtual Address.

uint16_t key
Publish AppKey Index.

uint16_t cred
Friendship Credentials Flag.

uint16_t send_rel
Force reliable sending (segment acks)

uint16_t fast_period
Use FastPeriodDivisor.

uint16_t retr_update
Call update callback on every retransmission.

uint8_t ttl
Publish Time to Live.

uint8_t retransmit
Retransmit Count & Interval Steps.

uint8_t period
Publish Period.

uint8_t period_div
Divisor for the Period.
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uint8_t count
Transmissions left.

uint8_t delayable
Use random delay for publishing.

uint32_t period_start
Start of the current period.

struct net_buf_simple *msg
Publication buffer, containing the publication message.

This will get correctly created when the publication context has been defined using
the BT_MESH_MODEL_PUB_DEFINE macro.

BT_MESH_MODEL_PUB_DEFINE(name, update, size);

int (*update)(const struct bt_mesh_model *mod)
Callback for updating the publication buffer.

When set to NULL, the model is assumed not to support periodic publishing. When
set to non-NULL the callback will be called periodically and is expected to update
bt_mesh_model_pub::msg with a valid publication message.

If the callback returns non-zero, the publication is skipped and will resume on the
next periodic publishing interval.

When bt_mesh_model_pub::retr_update is set to 1, the callback will be called on
every retransmission.

Parammod
The Model the Publication Context belongs to.

Return
Zero on success or (negative) error code otherwise.

struct k_work_delayable timer
Publish Period Timer.

Only for stack-internal use.

struct bt_mesh_models_metadata_entry
#include <access.h> Models Metadata Entry struct.

The struct should primarily be created using the BT_MESH_MODELS_METADATA_ENTRY
macro.

struct bt_mesh_model_cb
#include <access.h> Model callback functions.

Public Members

int (*const settings_set)(const struct bt_mesh_model *model, const char *name,
size_t len_rd, settings_read_cb read_cb, void *cb_arg)

Set value handler of user data tied to the model.
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See also

settings_handler::h_set

Parammodel
Model to set the persistent data of.

Param name
Name/key of the settings item.

Param len_rd
The size of the data found in the backend.

Param read_cb
Function provided to read the data from the backend.

Param cb_arg
Arguments for the read function provided by the backend.

Return
0 on success, error otherwise.

int (*const start)(const struct bt_mesh_model *model)
Callback called when the mesh is started.

This handler gets called after the node has been provisioned, or after all mesh data
has been loaded from persistent storage.

When this callback fires, the mesh model may start its behavior, and all Access APIs
are ready for use.

Parammodel
Model this callback belongs to.

Return
0 on success, error otherwise.

int (*const init)(const struct bt_mesh_model *model)
Model init callback.

Called on every model instance during mesh initialization.

If any of the model init callbacks return an error, the Mesh subsystem initialization
will be aborted, and the error will be returned to the caller of bt_mesh_init.

Parammodel
Model to be initialized.

Return
0 on success, error otherwise.

void (*const reset)(const struct bt_mesh_model *model)
Model reset callback.

Called when the mesh node is reset. All model data is deleted on reset, and the
model should clear its state.

Note

If the model stores any persistent data, this needs to be erased manually.

Parammodel
Model this callback belongs to.

void (*const pending_store)(const struct bt_mesh_model *model)
Callback used to store pending model’s user data.
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Triggered by bt_mesh_model_data_store_schedule.

To store the user data, call bt_mesh_model_data_store.
Parammodel

Model this callback belongs to.

struct bt_mesh_mod_id_vnd
#include <access.h> Vendor model ID.

Public Members

uint16_t company
Vendor’s company ID.

uint16_t id
Model ID.

struct bt_mesh_model
#include <access.h> Abstraction that describes a Mesh Model instance.

Public Members

const uint16_t id
SIG model ID.

const struct bt_mesh_mod_id_vnd vnd
Vendor model ID.

struct bt_mesh_model_pub *const pub
Model Publication.

uint16_t *const keys
AppKey List.

uint16_t *const groups
Subscription List (group or virtual addresses)

const uint8_t **const uuids
List of Label UUIDs the model is subscribed to.

const struct bt_mesh_model_op *const op
Opcode handler list.

const struct bt_mesh_model_cb *const cb
Model callback structure.

struct bt_mesh_model_rt_ctx
#include <access.h>
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Public Members

void *user_data
Model-specific user data.

struct bt_mesh_send_cb
#include <access.h> Callback structure for monitoring model message sending.

Public Members

void (*start)(uint16_t duration, int err, void *cb_data)
Handler called at the start of the transmission.

Param duration
The duration of the full transmission.

Param err
Error occurring during sending.

Param cb_data
Callback data, as passed to the send API.

void (*end)(int err, void *cb_data)
Handler called at the end of the transmission.

Param err
Error occurring during sending.

Param cb_data
Callback data, as passed to the send API.

struct bt_mesh_comp
#include <access.h> Node Composition.

Public Members

uint16_t cid
Company ID.

uint16_t pid
Product ID.

uint16_t vid
Version ID.

size_t elem_count
The number of elements in this device.

const struct bt_mesh_elem *elem
List of elements.

struct bt_mesh_comp2_record
#include <access.h> Composition data page 2 record.
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Public Members

uint16_t id
Mesh profile ID.

uint8_t x
Major version.

uint8_t y
Minor version.

uint8_t z
Z version.

struct bt_mesh_comp2_record version
Mesh Profile Version.

uint8_t elem_offset_cnt
Element offset count.

const uint8_t *elem_offset
Element offset list.

uint16_t data_len
Length of additional data.

const void *data
Additional data.

struct bt_mesh_comp2
#include <access.h> Node Composition data page 2.

Public Members

size_t record_cnt
The number of Mesh Profile records on a device.

const struct bt_mesh_comp2_record *record
List of records.

Mesh models

Foundation models The Bluetooth Mesh specification defines foundation models that can be
used by network administrators to configure and diagnose mesh nodes.
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Configuration Client The Configuration Client model is a foundation model defined by the
Bluetooth Mesh specification. It provides functionality for configuring most parameters of a
mesh node, including encryption keys, model configuration and feature enabling.

The Configuration Client model communicates with a Configuration Server model using the de-
vice key of the target node. The Configuration Client model may communicate with servers on
other nodes or self-configure through the local Configuration Server model.

All configuration functions in the Configuration Client API have net_idx and addr as their first
parameters. These should be set to the network index and primary unicast address that the
target node was provisioned with.

The Configuration Client model is optional, and it must only be instantiated on the primary ele-
ment if present in the Composition Data.

API reference

group bt_mesh_cfg_cli
Configuration Client Model.

Defines

BT_MESH_MODEL_CFG_CLI(cli_data)
Generic Configuration Client model composition data entry.

Parameters
• cli_data – Pointer to a Configuration Client Model instance.

BT_MESH_PUB_PERIOD_100MS(steps)
Helper macro to encode model publication period in units of 100ms.

Parameters
• steps – Number of 100ms steps.

Returns
Encoded value that can be assigned to bt_mesh_cfg_cli_mod_pub.period

BT_MESH_PUB_PERIOD_SEC(steps)
Helper macro to encode model publication period in units of 1 second.

Parameters
• steps – Number of 1 second steps.

Returns
Encoded value that can be assigned to bt_mesh_cfg_cli_mod_pub.period

BT_MESH_PUB_PERIOD_10SEC(steps)
Helper macro to encode model publication period in units of 10 seconds.

Parameters
• steps – Number of 10 second steps.

Returns
Encoded value that can be assigned to bt_mesh_cfg_cli_mod_pub.period

BT_MESH_PUB_PERIOD_10MIN(steps)
Helper macro to encode model publication period in units of 10 minutes.

Parameters
• steps – Number of 10 minute steps.
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Returns
Encoded value that can be assigned to bt_mesh_cfg_cli_mod_pub.period

Functions

int bt_mesh_cfg_cli_node_reset(uint16_t net_idx, uint16_t addr, bool *status)
Reset the target node and remove it from the network.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• status – Status response parameter

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_comp_data_get(uint16_t net_idx, uint16_t addr, uint8_t page, uint8_t
*rsp, struct net_buf_simple *comp)

Get the target node’s composition data.

If the other device does not have the given composition data page, it will return the
largest page number it supports that is less than the requested page index. The actual
page the device responds with is returned in rsp.

This method can be used asynchronously by setting rsp and comp as NULL. This way
the method will not wait for response and will return immediately after sending the
command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• page – Composition data page, or 0xff to request the first available page.

• rsp – Return parameter for the returned page number, or NULL.

• comp – Composition data buffer to fill.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_beacon_get(uint16_t net_idx, uint16_t addr, uint8_t *status)
Get the target node’s network beacon state.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• status – Status response parameter, returns one of
BT_MESH_BEACON_DISABLED or BT_MESH_BEACON_ENABLED on
success.

Returns
0 on success, or (negative) error code on failure.
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int bt_mesh_cfg_cli_krp_get(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx,
uint8_t *status, uint8_t *phase)

Get the target node’s network key refresh phase state.

This method can be used asynchronously by setting status and phase as NULL. This
way the method will not wait for response and will return immediately after sending
the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index.

• status – Status response parameter.

• phase – Pointer to the Key Refresh variable to fill.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_krp_set(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx,
uint8_t transition, uint8_t *status, uint8_t *phase)

Set the target node’s network key refresh phase parameters.

This method can be used asynchronously by setting status and phase as NULL. This
way the method will not wait for response and will return immediately after sending
the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index.

• transition – Transition parameter.

• status – Status response parameter.

• phase – Pointer to the new Key Refresh phase. Will return the actual Key
Refresh phase after updating.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_beacon_set(uint16_t net_idx, uint16_t addr, uint8_t val, uint8_t
*status)

Set the target node’s network beacon state.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• val – New network beacon state, should be one of
BT_MESH_BEACON_DISABLED or BT_MESH_BEACON_ENABLED.

• status – Status response parameter. Returns one of
BT_MESH_BEACON_DISABLED or BT_MESH_BEACON_ENABLED on
success.

2110 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_ttl_get(uint16_t net_idx, uint16_t addr, uint8_t *ttl)
Get the target node’s Time To Live value.

This method can be used asynchronously by setting ttl as NULL. This way the method
will not wait for response and will return immediately after sending the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• ttl – TTL response buffer.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_ttl_set(uint16_t net_idx, uint16_t addr, uint8_t val, uint8_t *ttl)
Set the target node’s Time To Live value.

This method can be used asynchronously by setting ttl as NULL. This way the method
will not wait for response and will return immediately after sending the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• val – New Time To Live value.

• ttl – TTL response buffer.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_friend_get(uint16_t net_idx, uint16_t addr, uint8_t *status)
Get the target node’s Friend feature status.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• status – Status response parameter. Returns one of
BT_MESH_FRIEND_DISABLED, BT_MESH_FRIEND_ENABLED or
BT_MESH_FRIEND_NOT_SUPPORTED on success.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_friend_set(uint16_t net_idx, uint16_t addr, uint8_t val, uint8_t
*status)

Set the target node’s Friend feature state.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.
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• addr – Target node address.

• val – New Friend feature state. Should be one of
BT_MESH_FRIEND_DISABLED or BT_MESH_FRIEND_ENABLED.

• status – Status response parameter. Returns one of
BT_MESH_FRIEND_DISABLED, BT_MESH_FRIEND_ENABLED or
BT_MESH_FRIEND_NOT_SUPPORTED on success.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_gatt_proxy_get(uint16_t net_idx, uint16_t addr, uint8_t *status)
Get the target node’s Proxy feature state.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• status – Status response parameter. Returns one of
BT_MESH_GATT_PROXY_DISABLED, BT_MESH_GATT_PROXY_ENABLED
or BT_MESH_GATT_PROXY_NOT_SUPPORTED on success.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_gatt_proxy_set(uint16_t net_idx, uint16_t addr, uint8_t val, uint8_t
*status)

Set the target node’s Proxy feature state.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• val – New Proxy feature state. Must be
one of BT_MESH_GATT_PROXY_DISABLED or
BT_MESH_GATT_PROXY_ENABLED.

• status – Status response parameter. Returns one of
BT_MESH_GATT_PROXY_DISABLED, BT_MESH_GATT_PROXY_ENABLED
or BT_MESH_GATT_PROXY_NOT_SUPPORTED on success.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_net_transmit_get(uint16_t net_idx, uint16_t addr, uint8_t
*transmit)

Get the target node’s network_transmit state.

This method can be used asynchronously by setting transmit as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.
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• addr – Target node address.

• transmit – Network transmit response parameter. Returns the en-
coded network transmission parameters on success. Decoded with
BT_MESH_TRANSMIT_COUNT and BT_MESH_TRANSMIT_INT.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_net_transmit_set(uint16_t net_idx, uint16_t addr, uint8_t val,
uint8_t *transmit)

Set the target node’s network transmit parameters.

This method can be used asynchronously by setting transmit as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

See also

BT_MESH_TRANSMIT.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• val – New encoded network transmit parameters.

• transmit – Network transmit response parameter. Returns the en-
coded network transmission parameters on success. Decoded with
BT_MESH_TRANSMIT_COUNT and BT_MESH_TRANSMIT_INT.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_relay_get(uint16_t net_idx, uint16_t addr, uint8_t *status, uint8_t
*transmit)

Get the target node’s Relay feature state.

This method can be used asynchronously by setting status and transmit as NULL. This
way the method will not wait for response and will return immediately after sending
the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• status – Status response parameter. Returns one of
BT_MESH_RELAY_DISABLED, BT_MESH_RELAY_ENABLED or
BT_MESH_RELAY_NOT_SUPPORTED on success.

• transmit – Transmit response parameter. Returns the en-
coded relay transmission parameters on success. Decoded with
BT_MESH_TRANSMIT_COUNT and BT_MESH_TRANSMIT_INT.

Returns
0 on success, or (negative) error code on failure.
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int bt_mesh_cfg_cli_relay_set(uint16_t net_idx, uint16_t addr, uint8_t new_relay,
uint8_t new_transmit, uint8_t *status, uint8_t *transmit)

Set the target node’s Relay parameters.

This method can be used asynchronously by setting status and transmit as NULL. This
way the method will not wait for response and will return immediately after sending
the command.

See also

BT_MESH_TRANSMIT.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• new_relay – New relay state. Must be one ofBT_MESH_RELAY_DISABLED
or BT_MESH_RELAY_ENABLED.

• new_transmit – New encoded relay transmit parameters.

• status – Status response parameter. Returns one of
BT_MESH_RELAY_DISABLED, BT_MESH_RELAY_ENABLED or
BT_MESH_RELAY_NOT_SUPPORTED on success.

• transmit – Transmit response parameter. Returns the en-
coded relay transmission parameters on success. Decoded with
BT_MESH_TRANSMIT_COUNT and BT_MESH_TRANSMIT_INT.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_net_key_add(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx,
const uint8_t net_key[16], uint8_t *status)

Add a network key to the target node.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index.

• net_key – Network key.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_net_key_get(uint16_t net_idx, uint16_t addr, uint16_t *keys, size_t
*key_cnt)

Get a list of the target node’s network key indexes.

This method can be used asynchronously by setting keys or key_cnt as NULL. This way
the method will not wait for response and will return immediately after sending the
command.
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Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• keys – Net key index list response parameter. Will be filled with all the
returned network key indexes it can fill.

• key_cnt – Net key index list length. Should be set to the capacity of the
keys list when calling. Will return the number of returned network key
indexes upon success.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_net_key_del(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx,
uint8_t *status)

Delete a network key from the target node.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_app_key_add(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx,
uint16_t key_app_idx, const uint8_t app_key[16],
uint8_t *status)

Add an application key to the target node.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index the application key belongs to.

• key_app_idx – Application key index.

• app_key – Application key.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_app_key_get(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx,
uint8_t *status, uint16_t *keys, size_t *key_cnt)

Get a list of the target node’s application key indexes for a specific network key.

This method can be used asynchronously by setting status and ( keys or key_cnt ) as
NULL. This way the method will not wait for response and will return immediately
after sending the command.
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Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index to request the app key indexes of.

• status – Status response parameter.

• keys – App key index list response parameter. Will be filled with all the
returned application key indexes it can fill.

• key_cnt – App key index list length. Should be set to the capacity of the
keys list when calling. Will return the number of returned application
key indexes upon success.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_app_key_del(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx,
uint16_t key_app_idx, uint8_t *status)

Delete an application key from the target node.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index the application key belongs to.

• key_app_idx – Application key index.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_app_bind(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t mod_app_idx, uint16_t mod_id, uint8_t
*status)

Bind an application to a SIG model on the target node.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_app_idx – Application index to bind.

• mod_id – Model ID.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.
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int bt_mesh_cfg_cli_mod_app_unbind(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t mod_app_idx, uint16_t mod_id, uint8_t
*status)

Unbind an application from a SIG model on the target node.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_app_idx – Application index to unbind.

• mod_id – Model ID.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_app_bind_vnd(uint16_t net_idx, uint16_t addr, uint16_t
elem_addr, uint16_t mod_app_idx, uint16_t
mod_id, uint16_t cid, uint8_t *status)

Bind an application to a vendor model on the target node.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_app_idx – Application index to bind.

• mod_id – Model ID.

• cid – Company ID of the model.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_app_unbind_vnd(uint16_t net_idx, uint16_t addr, uint16_t
elem_addr, uint16_t mod_app_idx, uint16_t
mod_id, uint16_t cid, uint8_t *status)

Unbind an application from a vendor model on the target node.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.
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• mod_app_idx – Application index to unbind.

• mod_id – Model ID.

• cid – Company ID of the model.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_app_get(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t mod_id, uint8_t *status, uint16_t *apps, size_t
*app_cnt)

Get a list of all applications bound to a SIG model on the target node.

This method can be used asynchronously by setting status and ( apps or app_cnt ) as
NULL. This way the method will not wait for response and will return immediately
after sending the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• status – Status response parameter.

• apps – App index list response parameter. Will be filled with all the re-
turned application key indexes it can fill.

• app_cnt – App index list length. Should be set to the capacity of the apps
list when calling. Will return the number of returned application key
indexes upon success.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_app_get_vnd(uint16_t net_idx, uint16_t addr, uint16_t
elem_addr, uint16_t mod_id, uint16_t cid, uint8_t
*status, uint16_t *apps, size_t *app_cnt)

Get a list of all applications bound to a vendor model on the target node.

This method can be used asynchronously by setting status and ( apps or app_cnt ) as
NULL. This way the method will not wait for response and will return immediately
after sending the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• cid – Company ID of the model.

• status – Status response parameter.

• apps – App index list response parameter. Will be filled with all the re-
turned application key indexes it can fill.

• app_cnt – App index list length. Should be set to the capacity of the apps
list when calling. Will return the number of returned application key
indexes upon success.
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Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_pub_get(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t mod_id, struct bt_mesh_cfg_cli_mod_pub *pub,
uint8_t *status)

Get publish parameters for a SIG model on the target node.

This method can be used asynchronously by setting status and pub as NULL. This way
the method will not wait for response and will return immediately after sending the
command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• pub – Publication parameter return buffer.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_pub_get_vnd(uint16_t net_idx, uint16_t addr, uint16_t
elem_addr, uint16_t mod_id, uint16_t cid, struct
bt_mesh_cfg_cli_mod_pub *pub, uint8_t *status)

Get publish parameters for a vendor model on the target node.

This method can be used asynchronously by setting status and pub as NULL. This way
the method will not wait for response and will return immediately after sending the
command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• cid – Company ID of the model.

• pub – Publication parameter return buffer.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_pub_set(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t mod_id, struct bt_mesh_cfg_cli_mod_pub *pub,
uint8_t *status)

Set publish parameters for a SIG model on the target node.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

pub shall not be NULL.

Parameters
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• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• pub – Publication parameters.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_pub_set_vnd(uint16_t net_idx, uint16_t addr, uint16_t
elem_addr, uint16_t mod_id, uint16_t cid, struct
bt_mesh_cfg_cli_mod_pub *pub, uint8_t *status)

Set publish parameters for a vendor model on the target node.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

pub shall not be NULL.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• cid – Company ID of the model.

• pub – Publication parameters.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_sub_add(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t sub_addr, uint16_t mod_id, uint8_t *status)

Add a group address to a SIG model’s subscription list.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• sub_addr – Group address to add to the subscription list.

• mod_id – Model ID.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.
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int bt_mesh_cfg_cli_mod_sub_add_vnd(uint16_t net_idx, uint16_t addr, uint16_t
elem_addr, uint16_t sub_addr, uint16_t mod_id,
uint16_t cid, uint8_t *status)

Add a group address to a vendor model’s subscription list.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• sub_addr – Group address to add to the subscription list.

• mod_id – Model ID.

• cid – Company ID of the model.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_sub_del(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t sub_addr, uint16_t mod_id, uint8_t *status)

Delete a group address in a SIG model’s subscription list.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• sub_addr – Group address to add to the subscription list.

• mod_id – Model ID.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_sub_del_vnd(uint16_t net_idx, uint16_t addr, uint16_t
elem_addr, uint16_t sub_addr, uint16_t mod_id,
uint16_t cid, uint8_t *status)

Delete a group address in a vendor model’s subscription list.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• sub_addr – Group address to add to the subscription list.
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• mod_id – Model ID.

• cid – Company ID of the model.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_sub_overwrite(uint16_t net_idx, uint16_t addr, uint16_t
elem_addr, uint16_t sub_addr, uint16_t mod_id,
uint8_t *status)

Overwrite all addresses in a SIG model’s subscription list with a group address.

Deletes all subscriptions in the model’s subscription list, and adds a single group ad-
dress instead.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• sub_addr – Group address to add to the subscription list.

• mod_id – Model ID.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_sub_overwrite_vnd(uint16_t net_idx, uint16_t addr, uint16_t
elem_addr, uint16_t sub_addr, uint16_t
mod_id, uint16_t cid, uint8_t *status)

Overwrite all addresses in a vendor model’s subscription list with a group address.

Deletes all subscriptions in the model’s subscription list, and adds a single group ad-
dress instead.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• sub_addr – Group address to add to the subscription list.

• mod_id – Model ID.

• cid – Company ID of the model.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

2122 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

int bt_mesh_cfg_cli_mod_sub_va_add(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
const uint8_t label[16], uint16_t mod_id, uint16_t
*virt_addr, uint8_t *status)

Add a virtual address to a SIG model’s subscription list.

This method can be used asynchronously by setting status and virt_addr as NULL.
This way the method will not wait for response and will return immediately after send-
ing the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• label – Virtual address label to add to the subscription list.

• mod_id – Model ID.

• virt_addr – Virtual address response parameter.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_sub_va_add_vnd(uint16_t net_idx, uint16_t addr, uint16_t
elem_addr, const uint8_t label[16], uint16_t
mod_id, uint16_t cid, uint16_t *virt_addr,
uint8_t *status)

Add a virtual address to a vendor model’s subscription list.

This method can be used asynchronously by setting status and virt_addr as NULL.
This way the method will not wait for response and will return immediately after send-
ing the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• label – Virtual address label to add to the subscription list.

• mod_id – Model ID.

• cid – Company ID of the model.

• virt_addr – Virtual address response parameter.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_sub_va_del(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
const uint8_t label[16], uint16_t mod_id, uint16_t
*virt_addr, uint8_t *status)

Delete a virtual address in a SIG model’s subscription list.

This method can be used asynchronously by setting status and virt_addr as NULL.
This way the method will not wait for response and will return immediately after send-
ing the command.

Parameters
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• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• label – Virtual address parameter to add to the subscription list.

• mod_id – Model ID.

• virt_addr – Virtual address response parameter.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_sub_va_del_vnd(uint16_t net_idx, uint16_t addr, uint16_t
elem_addr, const uint8_t label[16], uint16_t
mod_id, uint16_t cid, uint16_t *virt_addr,
uint8_t *status)

Delete a virtual address in a vendor model’s subscription list.

This method can be used asynchronously by setting status and virt_addr as NULL.
This way the method will not wait for response and will return immediately after send-
ing the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• label – Virtual address label to add to the subscription list.

• mod_id – Model ID.

• cid – Company ID of the model.

• virt_addr – Virtual address response parameter.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_sub_va_overwrite(uint16_t net_idx, uint16_t addr, uint16_t
elem_addr, const uint8_t label[16], uint16_t
mod_id, uint16_t *virt_addr, uint8_t *status)

Overwrite all addresses in a SIG model’s subscription list with a virtual address.

Deletes all subscriptions in the model’s subscription list, and adds a single group ad-
dress instead.

This method can be used asynchronously by setting status and virt_addr as NULL.
This way the method will not wait for response and will return immediately after send-
ing the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• label – Virtual address label to add to the subscription list.

• mod_id – Model ID.
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• virt_addr – Virtual address response parameter.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_sub_va_overwrite_vnd(uint16_t net_idx, uint16_t addr, uint16_t
elem_addr, const uint8_t label[16],
uint16_t mod_id, uint16_t cid, uint16_t
*virt_addr, uint8_t *status)

Overwrite all addresses in a vendor model’s subscription list with a virtual address.

Deletes all subscriptions in the model’s subscription list, and adds a single group ad-
dress instead.

This method can be used asynchronously by setting status and virt_addr as NULL.
This way the method will not wait for response and will return immediately after send-
ing the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• label – Virtual address label to add to the subscription list.

• mod_id – Model ID.

• cid – Company ID of the model.

• virt_addr – Virtual address response parameter.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_sub_get(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t mod_id, uint8_t *status, uint16_t *subs, size_t
*sub_cnt)

Get the subscription list of a SIG model on the target node.

This method can be used asynchronously by setting status and ( subs or sub_cnt ) as
NULL. This way the method will not wait for response and will return immediately
after sending the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• status – Status response parameter.

• subs – Subscription list response parameter. Will be filled with all the
returned subscriptions it can fill.

• sub_cnt – Subscription list element count. Should be set to the capacity
of the subs list when calling. Will return the number of returned sub-
scriptions upon success.
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Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_sub_get_vnd(uint16_t net_idx, uint16_t addr, uint16_t
elem_addr, uint16_t mod_id, uint16_t cid, uint8_t
*status, uint16_t *subs, size_t *sub_cnt)

Get the subscription list of a vendor model on the target node.

This method can be used asynchronously by setting status and ( subs or sub_cnt ) as
NULL. This way the method will not wait for response and will return immediately
after sending the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• cid – Company ID of the model.

• status – Status response parameter.

• subs – Subscription list response parameter. Will be filled with all the
returned subscriptions it can fill.

• sub_cnt – Subscription list element count. Should be set to the capacity
of the subs list when calling. Will return the number of returned sub-
scriptions upon success.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_hb_sub_set(uint16_t net_idx, uint16_t addr, struct
bt_mesh_cfg_cli_hb_sub *sub, uint8_t *status)

Set the target node’s Heartbeat subscription parameters.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

sub shall not be null.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• sub – New Heartbeat subscription parameters.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_hb_sub_get(uint16_t net_idx, uint16_t addr, struct
bt_mesh_cfg_cli_hb_sub *sub, uint8_t *status)

Get the target node’s Heartbeat subscription parameters.

This method can be used asynchronously by setting status and sub as NULL. This way
the method will not wait for response and will return immediately after sending the
command.

Parameters
• net_idx – Network index to encrypt with.
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• addr – Target node address.

• sub – Heartbeat subscription parameter return buffer.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_hb_pub_set(uint16_t net_idx, uint16_t addr, const struct
bt_mesh_cfg_cli_hb_pub *pub, uint8_t *status)

Set the target node’s Heartbeat publication parameters.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

pub shall not be NULL;

Note

The target node must already have received the specified network key.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• pub – New Heartbeat publication parameters.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_hb_pub_get(uint16_t net_idx, uint16_t addr, struct
bt_mesh_cfg_cli_hb_pub *pub, uint8_t *status)

Get the target node’s Heartbeat publication parameters.

This method can be used asynchronously by setting status and pub as NULL. This way
the method will not wait for response and will return immediately after sending the
command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• pub – Heartbeat publication parameter return buffer.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_sub_del_all(uint16_t net_idx, uint16_t addr, uint16_t
elem_addr, uint16_t mod_id, uint8_t *status)

Delete all group addresses in a SIG model’s subscription list.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.
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Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_mod_sub_del_all_vnd(uint16_t net_idx, uint16_t addr, uint16_t
elem_addr, uint16_t mod_id, uint16_t cid,
uint8_t *status)

Delete all group addresses in a vendor model’s subscription list.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• cid – Company ID of the model.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_net_key_update(uint16_t net_idx, uint16_t addr, uint16_t
key_net_idx, const uint8_t net_key[16], uint8_t
*status)

Update a network key to the target node.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index.

• net_key – Network key.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_app_key_update(uint16_t net_idx, uint16_t addr, uint16_t
key_net_idx, uint16_t key_app_idx, const uint8_t
app_key[16], uint8_t *status)
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Update an application key to the target node.

This method can be used asynchronously by setting status as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index the application key belongs to.

• key_app_idx – Application key index.

• app_key – Application key.

• status – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_node_identity_set(uint16_t net_idx, uint16_t addr, uint16_t
key_net_idx, uint8_t new_identity, uint8_t
*status, uint8_t *identity)

Set the Node Identity parameters.

This method can be used asynchronously by setting status and identity as NULL. This
way the method will not wait for response and will return immediately after sending
the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• new_identity – New identity state. Must be
one of BT_MESH_NODE_IDENTITY_STOPPED or
BT_MESH_NODE_IDENTITY_RUNNING

• key_net_idx – Network key index the application key belongs to.

• status – Status response parameter.

• identity – Identity response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_node_identity_get(uint16_t net_idx, uint16_t addr, uint16_t
key_net_idx, uint8_t *status, uint8_t *identity)

Get the Node Identity parameters.

This method can be used asynchronously by setting status and identity as NULL. This
way the method will not wait for response and will return immediately after sending
the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index the application key belongs to.

• status – Status response parameter.
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• identity – Identity response parameter. Must
be one of BT_MESH_NODE_IDENTITY_STOPPED or
BT_MESH_NODE_IDENTITY_RUNNING

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_cfg_cli_lpn_timeout_get(uint16_t net_idx, uint16_t addr, uint16_t
unicast_addr, int32_t *polltimeout)

Get the Low Power Node Polltimeout parameters.

This method can be used asynchronously by setting polltimeout as NULL. This way
the method will not wait for response and will return immediately after sending the
command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• unicast_addr – LPN unicast address.

• polltimeout – Poll timeout response parameter.

Returns
0 on success, or (negative) error code on failure.

int32_t bt_mesh_cfg_cli_timeout_get(void)
Get the current transmission timeout value.

Returns
The configured transmission timeout in milliseconds.

void bt_mesh_cfg_cli_timeout_set(int32_t timeout)
Set the transmission timeout value.

Parameters
• timeout – The new transmission timeout.

int bt_mesh_comp_p0_get(struct bt_mesh_comp_p0 *comp, struct net_buf_simple *buf)
Create a composition data page 0 representation from a buffer.

The composition data page object will take ownership over the buffer, which should
not be manipulated directly after this call.

This function can be used in combination with bt_mesh_cfg_cli_comp_data_get to read
out composition data page 0 from other devices:

NET_BUF_SIMPLE_DEFINE(buf, BT_MESH_RX_SDU_MAX);
struct bt_mesh_comp_p0 comp;

err = bt_mesh_cfg_cli_comp_data_get(net_idx, addr, 0, &page, &buf);
if (!err) {

bt_mesh_comp_p0_get(&comp, &buf);
}

Parameters
• buf – Network buffer containing composition data.

• comp – Composition data structure to fill.

Returns
0 on success, or (negative) error code on failure.
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struct bt_mesh_comp_p0_elem *bt_mesh_comp_p0_elem_pull(const struct
bt_mesh_comp_p0 *comp,
struct
bt_mesh_comp_p0_elem
*elem)

Pull a composition data page 0 element from a composition data page 0 instance.

Each call to this function will pull out a new element from the composition data page,
until all elements have been pulled.

Parameters
• comp – Composition data page

• elem – Element to fill.

Returns
A pointer to elem on success, or NULL if no more elements could be pulled.

uint16_t bt_mesh_comp_p0_elem_mod(struct bt_mesh_comp_p0_elem *elem, int idx)
Get a SIG model from the given composition data page 0 element.

Parameters
• elem – Element to read the model from.

• idx – Index of the SIG model to read.

Returns
The Model ID of the SIG model at the given index, or 0xffff if the index is
out of bounds.

struct bt_mesh_mod_id_vnd bt_mesh_comp_p0_elem_mod_vnd(struct
bt_mesh_comp_p0_elem
*elem, int idx)

Get a vendor model from the given composition data page 0 element.

Parameters
• elem – Element to read the model from.

• idx – Index of the vendor model to read.

Returns
The model ID of the vendor model at the given index, or {0xffff, 0xffff} if
the index is out of bounds.

struct bt_mesh_comp_p1_elem *bt_mesh_comp_p1_elem_pull(struct net_buf_simple *buf,
struct
bt_mesh_comp_p1_elem
*elem)

Pull a Composition Data Page 1 Element from a composition data page 1 instance.

Each call to this function will pull out a new element from the composition data page,
until all elements have been pulled.

Parameters
• buf – Composition data page 1 buffer

• elem – Element to fill.

Returns
A pointer to elem on success, or NULL if no more elements could be pulled.
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struct bt_mesh_comp_p1_model_item *bt_mesh_comp_p1_item_pull(struct
bt_mesh_comp_p1_elem
*elem, struct
bt_mesh_comp_p1_model_item
*item)

Pull a Composition Data Page 1 Model Item from a Composition Data Page 1 Element.

Each call to this function will pull out a new item from the Composition Data Page 1
Element, until all items have been pulled.

Parameters
• elem – Composition data page 1 Element

• item – Model Item to fill.

Returns
A pointer to item on success, or NULL if no more elements could be pulled.

struct bt_mesh_comp_p1_ext_item *bt_mesh_comp_p1_pull_ext_item(struct
bt_mesh_comp_p1_model_item
*item, struct
bt_mesh_comp_p1_ext_item
*ext_item)

Pull Extended Model Item contained in Model Item.

Each call to this function will pull out a new element from the Extended Model Item,
until all elements have been pulled.

Parameters
• item – Model Item to pull Extended Model Items from

• ext_item – Extended Model Item to fill

Returns
A pointer to ext_item on success, or NULL if item could not be pulled

struct bt_mesh_comp_p2_record *bt_mesh_comp_p2_record_pull(struct net_buf_simple
*buf, struct
bt_mesh_comp_p2_record
*record)

Pull a Composition Data Page 2 Record from a composition data page 2 instance.

Each call to this function will pull out a new element from the composition data page,
until all elements have been pulled.

Parameters
• buf – Composition data page 2 buffer

• record – Record to fill.

Returns
A pointer to record on success, or NULL if no more elements could be
pulled.

int bt_mesh_key_idx_unpack_list(struct net_buf_simple *buf, uint16_t *dst_arr, size_t
*dst_cnt)

Unpack a list of key index entries from a buffer.

On success, dst_cnt is set to the amount of unpacked key index entries.

Parameters
• buf – Message buffer containing encoded AppKey or NetKey Indexes.

• dst_arr – Destination array for the unpacked list.
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• dst_cnt – Size of the destination array.

Returns
0 on success.

Returns
-EMSGSIZE if dst_arr size is to small to parse full message.

struct bt_mesh_cfg_cli_cb
#include <cfg_cli.h> Mesh Configuration Client Status messages callback.

Public Members

void (*comp_data)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t page, struct
net_buf_simple *buf)

Optional callback for Composition data messages.

Handles received Composition data messages from a server.

Note

For decoding buf, please refer to bt_mesh_comp_p0_get and
bt_mesh_comp_p1_elem_pull.

Param cli
Client that received the status message.

Param addr
Address of the sender.

Param page
Composition data page.

Param buf
Composition data buffer.

void (*mod_pub_status)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t status,
uint16_t elem_addr, uint16_t mod_id, uint16_t cid, struct bt_mesh_cfg_cli_mod_pub
*pub)

Optional callback for Model Pub status messages.

Handles received Model Pub status messages from a server.
Param cli

Client that received the status message.
Param addr

Address of the sender.
Param status

Status code for the message.
Param elem_addr

Address of the element.
Parammod_id

Model ID.
Param cid

Company ID.
Param pub

Publication configuration parameters.

void (*mod_sub_status)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t status,
uint16_t elem_addr, uint16_t sub_addr, uint32_t mod_id)
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Optional callback for Model Sub Status messages.

Handles received Model Sub Status messages from a server.
Param cli

Client that received the status message.
Param addr

Address of the sender.
Param status

Status Code for requesting message.
Param elem_addr

The unicast address of the element.
Param sub_addr

The sub address.
Parammod_id

The model ID within the element.

void (*mod_sub_list)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t status, uint16_t
elem_addr, uint16_t mod_id, uint16_t cid, struct net_buf_simple *buf)

Optional callback for Model Sub list messages.

Handles received Model Sub list messages from a server.

Note

The buf parameter should be decoded using net_buf_simple_pull_le16 in itera-
tion, as long as buf->len is greater than or equal to 2.

Param cli
Client that received the status message.

Param addr
Address of the sender.

Param status
Status code for the message.

Param elem_addr
Address of the element.

Parammod_id
Model ID.

Param cid
Company ID.

Param buf
Message buffer containing subscription addresses.

void (*node_reset_status)(struct bt_mesh_cfg_cli *cli, uint16_t addr)
Optional callback for Node Reset Status messages.

Handles received Node Reset Status messages from a server.
Param cli

Client that received the status message.
Param addr

Address of the sender.

void (*beacon_status)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t status)
Optional callback for Beacon Status messages.

Handles received Beacon Status messages from a server.
Param cli

Client that received the status message.
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Param addr
Address of the sender.

Param status
Status Code for requesting message.

void (*ttl_status)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t status)
Optional callback for Default TTL Status messages.

Handles received Default TTL Status messages from a server.
Param cli

Client that received the status message.
Param addr

Address of the sender.
Param status

Status Code for requesting message.

void (*friend_status)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t status)
Optional callback for Friend Status messages.

Handles received Friend Status messages from a server.
Param cli

Client that received the status message.
Param addr

Address of the sender.
Param status

Status Code for requesting message.

void (*gatt_proxy_status)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t status)
Optional callback for GATT Proxy Status messages.

Handles received GATT Proxy Status messages from a server.
Param cli

Client that received the status message.
Param addr

Address of the sender.
Param status

Status Code for requesting message.

void (*network_transmit_status)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t
status)

Optional callback for Network Transmit Status messages.

Handles received Network Transmit Status messages from a server.
Param cli

Client that received the status message.
Param addr

Address of the sender.
Param status

Status Code for requesting message.

void (*relay_status)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t status, uint8_t
transmit)

Optional callback for Relay Status messages.

Handles received Relay Status messages from a server.
Param cli

Client that received the status message.
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Param addr
Address of the sender.

Param status
Status Code for requesting message.

Param transmit
The relay retransmit count and interval steps.

void (*net_key_status)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t status,
uint16_t net_idx)

Optional callback for NetKey Status messages.

Handles received NetKey Status messages from a server.
Param cli

Client that received the status message.
Param addr

Address of the sender.
Param status

Status Code for requesting message.
Param net_idx

The index of the NetKey.

void (*net_key_list)(struct bt_mesh_cfg_cli *cli, uint16_t addr, struct net_buf_simple
*buf)

Optional callback for Netkey list messages.

Handles received Netkey list messages from a server.

Note

The buf parameter should be decoded using the bt_mesh_key_idx_unpack_list
helper function.

Param cli
Client that received the status message.

Param addr
Address of the sender.

Param buf
Message buffer containing key indexes.

void (*app_key_status)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t status,
uint16_t net_idx, uint16_t app_idx)

Optional callback for AppKey Status messages.

Handles received AppKey Status messages from a server.
Param cli

Client that received the status message.
Param addr

Address of the sender.
Param status

Status Code for requesting message.
Param net_idx

The index of the NetKey.
Param app_idx

The index of the AppKey.

void (*app_key_list)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t status, uint16_t
net_idx, struct net_buf_simple *buf)
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Optional callback for Appkey list messages.

Handles received Appkey list messages from a server.

Note

The buf parameter should be decoded using the bt_mesh_key_idx_unpack_list
helper function.

Param cli
Client that received the status message.

Param addr
Address of the sender.

Param status
Status code for the message.

Param net_idx
The index of the NetKey.

Param buf
Message buffer containing key indexes.

void (*mod_app_status)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t status,
uint16_t elem_addr, uint16_t app_idx, uint32_t mod_id)

Optional callback for Model App Status messages.

Handles received Model App Status messages from a server.
Param cli

Client that received the status message.
Param addr

Address of the sender.
Param status

Status Code for requesting message.
Param elem_addr

The unicast address of the element.
Param app_idx

The sub address.
Parammod_id

The model ID within the element.

void (*mod_app_list)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t status, uint16_t
elem_addr, uint16_t mod_id, uint16_t cid, struct net_buf_simple *buf)

Optional callback for Model App list messages.

Handles received Model App list messages from a server.

Note

The buf parameter should be decoded using the bt_mesh_key_idx_unpack_list
helper function.

Param cli
Client that received the status message.

Param addr
Address of the sender.

Param status
Status code for the message.
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Param elem_addr
Address of the element.

Parammod_id
Model ID.

Param cid
Company ID.

Param buf
Message buffer containing key indexes.

void (*node_identity_status)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t
status, uint16_t net_idx, uint8_t identity)

Optional callback for Node Identity Status messages.

Handles received Node Identity Status messages from a server.
Param cli

Client that received the status message.
Param addr

Address of the sender.
Param status

Status Code for requesting message.
Param net_idx

The index of the NetKey.
Param identity

The node identity state.

void (*lpn_timeout_status)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint16_t
elem_addr, uint32_t timeout)

Optional callback for LPN PollTimeout Status messages.

Handles received LPN PollTimeout Status messages from a server.
Param cli

Client that received the status message.
Param addr

Address of the sender.
Param elem_addr

The unicast address of the LPN.
Param timeout

Current value of PollTimeout timer of the LPN.

void (*krp_status)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t status, uint16_t
net_idx, uint8_t phase)

Optional callback for Key Refresh Phase status messages.

Handles received Key Refresh Phase status messages from a server.
Param cli

Client that received the status message.
Param addr

Address of the sender.
Param status

Status code for the message.
Param net_idx

The index of the NetKey.
Param phase

Phase of the KRP.

void (*hb_pub_status)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t status, struct
bt_mesh_cfg_cli_hb_pub *pub)

Optional callback for Heartbeat pub status messages.

2138 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

Handles received Heartbeat pub status messages from a server.
Param cli

Client that received the status message.
Param addr

Address of the sender.
Param status

Status code for the message.
Param pub

HB publication configuration parameters.

void (*hb_sub_status)(struct bt_mesh_cfg_cli *cli, uint16_t addr, uint8_t status, struct
bt_mesh_cfg_cli_hb_sub *sub)

Optional callback for Heartbeat Sub status messages.

Handles received Heartbeat Sub status messages from a server.
Param cli

Client that received the status message.
Param addr

Address of the sender.
Param status

Status code for the message.
Param sub

HB subscription configuration parameters.

struct bt_mesh_cfg_cli
#include <cfg_cli.h> Mesh Configuration Client Model Context.

Public Members

const struct bt_mesh_model *model
Composition data model entry pointer.

const struct bt_mesh_cfg_cli_cb *cb
Optional callback for Mesh Configuration Client Status messages.

struct bt_mesh_cfg_cli_mod_pub
#include <cfg_cli.h> Model publication configuration parameters.

Public Members

uint16_t addr
Publication destination address.

const uint8_t *uuid
Virtual address UUID, or NULL if this is not a virtual address.

uint16_t app_idx
Application index to publish with.

bool cred_flag
Friendship credential flag.
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uint8_t ttl
Time To Live to publish with.

uint8_t period
Encoded publish period.

See also

BT_MESH_PUB_PERIOD_100MS, BT_MESH_PUB_PERIOD_SEC,
BT_MESH_PUB_PERIOD_10SEC, BT_MESH_PUB_PERIOD_10MIN

uint8_t transmit
Encoded transmit parameters.

See also

BT_MESH_TRANSMIT

struct bt_mesh_cfg_cli_hb_sub
#include <cfg_cli.h> Heartbeat subscription configuration parameters.

Public Members

uint16_t src
Source address to receive Heartbeat messages from.

uint16_t dst
Destination address to receive Heartbeat messages on.

uint8_t period
Logarithmic subscription period to keep listening for.

The decoded subscription period is (1 « (period - 1)) seconds, or 0 seconds if period
is 0.

uint8_t count
Logarithmic Heartbeat subscription receive count.

The decoded Heartbeat count is (1 « (count - 1)) if count is between 1 and 0xfe, 0 if
count is 0 and 0xffff if count is 0xff.

Ignored in Heartbeat subscription set.

uint8_t min
Minimum hops in received messages, ie the shortest registered path from the pub-
lishing node to the subscribing node.
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A Heartbeat received from an immediate neighbor has hop count = 1.

Ignored in Heartbeat subscription set.

uint8_t max
Maximum hops in received messages, ie the longest registered path from the pub-
lishing node to the subscribing node.

A Heartbeat received from an immediate neighbor has hop count = 1.

Ignored in Heartbeat subscription set.

struct bt_mesh_cfg_cli_hb_pub
#include <cfg_cli.h> Heartbeat publication configuration parameters.

Public Members

uint16_t dst
Heartbeat destination address.

uint8_t count
Logarithmic Heartbeat count.

Decoded as (1 « (count - 1)) if count is between 1 and 0x11, 0 if count is 0, or “indef-
initely” if count is 0xff.

When used in Heartbeat publication set, this parameter denotes the number of
Heartbeat messages to send.

When returned from Heartbeat publication get, this parameter denotes the num-
ber of Heartbeat messages remaining to be sent.

uint8_t period
Logarithmic Heartbeat publication transmit interval in seconds.

Decoded as (1 « (period - 1)) if period is between 1 and 0x11. If period is 0, Heartbeat
publication is disabled.

uint8_t ttl
Publication message Time To Live value.

uint16_t feat
Bitmap of features that trigger Heartbeat publications.

Legal values are BT_MESH_FEAT_RELAY , BT_MESH_FEAT_PROXY ,
BT_MESH_FEAT_FRIEND and BT_MESH_FEAT_LOW_POWER

uint16_t net_idx
Network index to publish with.

struct bt_mesh_comp_p0
#include <cfg_cli.h> Parsed Composition data page 0 representation.

Should be pulled from the return buffer passed to bt_mesh_cfg_cli_comp_data_getusing
bt_mesh_comp_p0_get.
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Public Members

uint16_t cid
Company ID.

uint16_t pid
Product ID.

uint16_t vid
Version ID.

uint16_t crpl
Replay protection list size.

uint16_t feat
Supported features, see BT_MESH_FEAT_SUPPORTED.

struct bt_mesh_comp_p0_elem
#include <cfg_cli.h> Composition data page 0 element representation.

Public Members

uint16_t loc
Element location.

size_t nsig
The number of SIG models in this element.

size_t nvnd
The number of vendor models in this element.

struct bt_mesh_comp_p1_elem
#include <cfg_cli.h> Composition data page 1 element representation.

Public Members

size_t nsig
The number of SIG models in this element.

size_t nvnd
The number of vendor models in this element.

struct bt_mesh_comp_p1_model_item
#include <cfg_cli.h> Composition data page 1 model item representation.
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Public Members

bool cor_present
Corresponding_Group_ID field indicator.

bool format
Determines the format of Extended Model Item.

uint8_t ext_item_cnt
Number of items in Extended Model Items.

uint8_t cor_id
Buffer containing Extended Model Items.

If cor_present is set to 1 it starts with Corresponding_Group_ID

struct bt_mesh_comp_p1_item_short
#include <cfg_cli.h> Extended Model Item in short representation.

Public Members

uint8_t elem_offset
Element address modifier.

uint8_t mod_item_idx
Model Index.

struct bt_mesh_comp_p1_item_long
#include <cfg_cli.h> Extended Model Item in long representation.

Public Members

uint8_t elem_offset
Element address modifier.

uint8_t mod_item_idx
Model Index.

struct bt_mesh_comp_p1_ext_item
#include <cfg_cli.h> Extended Model Item.

Public Members

struct bt_mesh_comp_p1_item_short short_item
Item in short representation.
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struct bt_mesh_comp_p1_item_long long_item
Item in long representation.

struct bt_mesh_comp_p2_record
#include <cfg_cli.h> Composition data page 2 record parsing structure.

Public Members

uint16_t id
Mesh profile ID.

uint8_t x
Major version.

uint8_t y
Minor version.

uint8_t z
Z version.

struct bt_mesh_comp_p2_record version
Mesh Profile Version.

struct net_buf_simple *elem_buf
Element offset buffer.

struct net_buf_simple *data_buf
Additional data buffer.

Configuration Server The Configuration Server model is a foundation model defined by the
Bluetooth Mesh specification. The Configuration Server model controls most parameters of the
mesh node. It does not have an API of its own, but relies on a Configuration Client to control it.

The Configuration Server model is mandatory on all Bluetooth Mesh nodes, and must only be
instantiated on the primary element.

API reference

group bt_mesh_cfg_srv
Configuration Server Model.

Defines

BT_MESH_MODEL_CFG_SRV
Generic Configuration Server model composition data entry.
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Health Client The Health Client model interacts with a Health Server model to read out diag-
nostics and control the node’s attention state.

All message passing functions in the Health Client API have cli as their first parameter. This is
a pointer to the client model instance to be used in this function call. The second parameter is
the ctx or message context. Message context contains netkey index, appkey index and unicast
address that the target node uses.

The Health Client model is optional, and may be instantiated on any element. However, if a
Health Client model is instantiated on an element other than the primary, an instance must also
be present on the primary element.

See Health faults for a list of specification defined fault values.

API reference

group bt_mesh_health_cli
Health Client Model.

Defines

BT_MESH_MODEL_HEALTH_CLI(cli_data)
Generic Health Client model composition data entry.

Parameters
• cli_data – Pointer to a Health Client Model instance.

Functions

int bt_mesh_health_cli_fault_get(struct bt_mesh_health_cli *cli, struct bt_mesh_msg_ctx
*ctx, uint16_t cid, uint8_t *test_id, uint8_t *faults,
size_t *fault_count)

Get the registered fault state for the given Company ID.

This method can be used asynchronously by setting test_id and ( faults or
fault_count ) as NULL This way the method will not wait for response and will re-
turn immediately after sending the command.

To process the response arguments of an async method, register the fault_status call-
back in bt_mesh_health_cli struct.

See also

Health faults

Parameters
• cli – Client model to send on.

• ctx – Message context, or NULL to use the configured publish parame-
ters.

• cid – Company ID to get the registered faults of.

• test_id – Test ID response buffer.

• faults – Fault array response buffer.
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• fault_count – Fault count response buffer.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_health_cli_fault_clear(struct bt_mesh_health_cli *cli, struct
bt_mesh_msg_ctx *ctx, uint16_t cid, uint8_t *test_id,
uint8_t *faults, size_t *fault_count)

Clear the registered faults for the given Company ID.

This method can be used asynchronously by setting test_id and ( faults or
fault_count ) as NULL This way the method will not wait for response and will re-
turn immediately after sending the command.

To process the response arguments of an async method, register the fault_status call-
back in bt_mesh_health_cli struct.

See also

Health faults

Parameters
• cli – Client model to send on.

• ctx – Message context, or NULL to use the configured publish parame-
ters.

• cid – Company ID to clear the registered faults for.

• test_id – Test ID response buffer.

• faults – Fault array response buffer.

• fault_count – Fault count response buffer.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_health_cli_fault_clear_unack(struct bt_mesh_health_cli *cli, struct
bt_mesh_msg_ctx *ctx, uint16_t cid)

Clear the registered faults for the given Company ID (unacked).

See also

Health faults

Parameters
• cli – Client model to send on.

• ctx – Message context, or NULL to use the configured publish parame-
ters.

• cid – Company ID to clear the registered faults for.

Returns
0 on success, or (negative) error code on failure.
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int bt_mesh_health_cli_fault_test(struct bt_mesh_health_cli *cli, struct
bt_mesh_msg_ctx *ctx, uint16_t cid, uint8_t test_id,
uint8_t *faults, size_t *fault_count)

Invoke a self-test procedure for the given Company ID.

This method can be used asynchronously by setting faults or fault_count as NULL
This way the method will not wait for response and will return immediately after send-
ing the command.

To process the response arguments of an async method, register the fault_status call-
back in bt_mesh_health_cli struct.

Parameters
• cli – Client model to send on.

• ctx – Message context, or NULL to use the configured publish parame-
ters.

• cid – Company ID to invoke the test for.

• test_id – Test ID response buffer.

• faults – Fault array response buffer.

• fault_count – Fault count response buffer.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_health_cli_fault_test_unack(struct bt_mesh_health_cli *cli, struct
bt_mesh_msg_ctx *ctx, uint16_t cid, uint8_t
test_id)

Invoke a self-test procedure for the given Company ID (unacked).

Parameters
• cli – Client model to send on.

• ctx – Message context, or NULL to use the configured publish parame-
ters.

• cid – Company ID to invoke the test for.

• test_id – Test ID response buffer.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_health_cli_period_get(struct bt_mesh_health_cli *cli, struct
bt_mesh_msg_ctx *ctx, uint8_t *divisor)

Get the target node’s Health fast period divisor.

The health period divisor is used to increase the publish rate when a fault is registered.
Normally, the Health server will publish with the period in the configured publish pa-
rameters. When a fault is registered, the publish period is divided by (1 « divisor). For
example, if the target node’s Health server is configured to publish with a period of 16
seconds, and the Health fast period divisor is 5, the Health server will publish with an
interval of 500 ms when a fault is registered.

This method can be used asynchronously by setting divisor as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

To process the response arguments of an async method, register the period_status
callback in bt_mesh_health_cli struct.

Parameters
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• cli – Client model to send on.

• ctx – Message context, or NULL to use the configured publish parame-
ters.

• divisor – Health period divisor response buffer.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_health_cli_period_set(struct bt_mesh_health_cli *cli, struct
bt_mesh_msg_ctx *ctx, uint8_t divisor, uint8_t
*updated_divisor)

Set the target node’s Health fast period divisor.

The health period divisor is used to increase the publish rate when a fault is registered.
Normally, the Health server will publish with the period in the configured publish pa-
rameters. When a fault is registered, the publish period is divided by (1 « divisor). For
example, if the target node’s Health server is configured to publish with a period of 16
seconds, and the Health fast period divisor is 5, the Health server will publish with an
interval of 500 ms when a fault is registered.

This method can be used asynchronously by setting updated_divisor as NULL. This
way the method will not wait for response and will return immediately after sending
the command.

To process the response arguments of an async method, register the period_status
callback in bt_mesh_health_cli struct.

Parameters
• cli – Client model to send on.

• ctx – Message context, or NULL to use the configured publish parame-
ters.

• divisor – New Health period divisor.

• updated_divisor – Health period divisor response buffer.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_health_cli_period_set_unack(struct bt_mesh_health_cli *cli, struct
bt_mesh_msg_ctx *ctx, uint8_t divisor)

Set the target node’s Health fast period divisor (unacknowledged).

This is an unacknowledged version of this API.

Parameters
• cli – Client model to send on.

• ctx – Message context, or NULL to use the configured publish parame-
ters.

• divisor – New Health period divisor.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_health_cli_attention_get(struct bt_mesh_health_cli *cli, struct
bt_mesh_msg_ctx *ctx, uint8_t *attention)

Get the current attention timer value.

This method can be used asynchronously by setting attention as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.
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To process the response arguments of an async method, register the attention_status
callback in bt_mesh_health_cli struct.

Parameters
• cli – Client model to send on.

• ctx – Message context, or NULL to use the configured publish parame-
ters.

• attention – Attention timer response buffer, measured in seconds.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_health_cli_attention_set(struct bt_mesh_health_cli *cli, struct
bt_mesh_msg_ctx *ctx, uint8_t attention, uint8_t
*updated_attention)

Set the attention timer.

This method can be used asynchronously by setting updated_attention as NULL. This
way the method will not wait for response and will return immediately after sending
the command.

To process the response arguments of an async method, register the attention_status
callback in bt_mesh_health_cli struct.

Parameters
• cli – Client model to send on.

• ctx – Message context, or NULL to use the configured publish parame-
ters.

• attention – New attention timer time, in seconds.

• updated_attention – Attention timer response buffer, measured in sec-
onds.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_health_cli_attention_set_unack(struct bt_mesh_health_cli *cli, struct
bt_mesh_msg_ctx *ctx, uint8_t attention)

Set the attention timer (unacknowledged).

Parameters
• cli – Client model to send on.

• ctx – Message context, or NULL to use the configured publish parame-
ters.

• attention – New attention timer time, in seconds.

Returns
0 on success, or (negative) error code on failure.

int32_t bt_mesh_health_cli_timeout_get(void)
Get the current transmission timeout value.

Returns
The configured transmission timeout in milliseconds.

void bt_mesh_health_cli_timeout_set(int32_t timeout)
Set the transmission timeout value.

Parameters
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• timeout – The new transmission timeout.

struct bt_mesh_health_cli
#include <health_cli.h> Health Client Model Context.

Public Members

const struct bt_mesh_model *model
Composition data model entry pointer.

struct bt_mesh_model_pub pub
Publication structure instance.

struct net_buf_simple pub_buf
Publication buffer.

uint8_t pub_data[BT_MESH_MODEL_BUF_LEN(BT_MESH_MODEL_OP_2(0x80, 0x32),
3)]

Publication data.

void (*period_status)(struct bt_mesh_health_cli *cli, uint16_t addr, uint8_t divisor)
Optional callback for Health Period Status messages.

Handles received Health Period Status messages from a Health server. The divisor
param represents the period divisor value.

Param cli
Health client that received the status message.

Param addr
Address of the sender.

Param divisor
Health Period Divisor value.

void (*attention_status)(struct bt_mesh_health_cli *cli, uint16_t addr, uint8_t
attention)

Optional callback for Health Attention Status messages.

Handles received Health Attention Status messages from a Health server. The at-
tention param represents the current attention value.

Param cli
Health client that received the status message.

Param addr
Address of the sender.

Param attention
Current attention value.

void (*fault_status)(struct bt_mesh_health_cli *cli, uint16_t addr, uint8_t test_id,
uint16_t cid, uint8_t *faults, size_t fault_count)

Optional callback for Health Fault Status messages.

Handles received Health Fault Status messages from a Health server. The fault
array represents all faults that are currently present in the server’s element.
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See also

Health faults

Param cli
Health client that received the status message.

Param addr
Address of the sender.

Param test_id
Identifier of a most recently performed test.

Param cid
Company Identifier of the node.

Param faults
Array of faults.

Param fault_count
Number of faults in the fault array.

void (*current_status)(struct bt_mesh_health_cli *cli, uint16_t addr, uint8_t test_id,
uint16_t cid, uint8_t *faults, size_t fault_count)

Optional callback for Health Current Status messages.

Handles received Health Current Status messages from a Health server. The fault
array represents all faults that are currently present in the server’s element.

See also

Health faults

Param cli
Health client that received the status message.

Param addr
Address of the sender.

Param test_id
Identifier of a most recently performed test.

Param cid
Company Identifier of the node.

Param faults
Array of faults.

Param fault_count
Number of faults in the fault array.

Health Server The Health Server model provides attention callbacks and node diagnostics for
Health Client models. It is primarily used to report faults in the mesh node and map the mesh
nodes to their physical location.

If present, the Health Server model must be instantiated on the primary element.

Faults The Health Server model may report a list of faults that have occurred in the device’s
lifetime. Typically, the faults are events or conditions that may alter the behavior of the node,
like power outages or faulty peripherals. Faults are split into warnings and errors. Warnings
indicate conditions that are close to the limits of what the node is designed to withstand, but
not necessarily damaging to the device. Errors indicate conditions that are outside of the node’s
design limits, and may have caused invalid behavior or permanent damage to the device.
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Fault values 0x01 to 0x7f are reserved for the Bluetooth Mesh specification, and the full list of
specification defined faults are available in Health faults. Fault values 0x80 to 0xff are vendor
specific. The list of faults are always reported with a company ID to help interpreting the vendor
specific faults.

Attention state The attention state is used to make the device call attention to itself through
some physical behavior like blinking, playing a sound or vibrating. The attention state may
be used during provisioning to let the user know which device they’re provisioning, as well as
through the Health models at runtime.

The attention state is always assigned a timeout in the range of one to 255 seconds when enabled.
The Health Server API provides two callbacks for the application to run their attention calling
behavior: bt_mesh_health_srv_cb.attn_on is called at the beginning of the attention period,
bt_mesh_health_srv_cb.attn_off is called at the end.

The remaining time for the attention period may be queried through bt_mesh_health_srv.
attn_timer.

API reference

group bt_mesh_health_srv
Health Server Model.

Defines

BT_MESH_HEALTH_PUB_DEFINE(_name, _max_faults)
A helper to define a health publication context.

Parameters
• _name – Name given to the publication context variable.

• _max_faults – Maximum number of faults the element can have.

BT_MESH_MODEL_HEALTH_SRV(srv, pub, ...)
Define a new health server model.

Note that this API needs to be repeated for each element that the application wants to
have a health server model on. Each instance also needs a unique bt_mesh_health_srv
and bt_mesh_model_pub context.

Parameters
• srv – Pointer to a unique struct bt_mesh_health_srv.

• pub – Pointer to a unique struct bt_mesh_model_pub.

• ... – Optional Health Server metadata if application is compiled with
Large Composition Data Server support, otherwise this parameter is ig-
nored.

Returns
New mesh model instance.

BT_MESH_HEALTH_TEST_INFO_METADATA_ID
Health Test Information Metadata ID.

BT_MESH_HEALTH_TEST_INFO_METADATA(tests)
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BT_MESH_HEALTH_TEST_INFO(cid, tests...)
Define a Health Test Info Metadata array.

Parameters
• cid – Company ID of the Health Test suite.

• tests – A comma separated list of tests.

Returns
A comma separated list of values that make Health Test Info Metadata

Functions

int bt_mesh_health_srv_fault_update(const struct bt_mesh_elem *elem)
Notify the stack that the fault array state of the given element has changed.

This prompts the Health server on this element to publish the current fault array if
periodic publishing is disabled.

Parameters
• elem – Element to update the fault state of.

Returns
0 on success, or (negative) error code otherwise.

struct bt_mesh_health_srv_cb
#include <health_srv.h> Callback function for the Health Server model.

Public Members

int (*fault_get_cur)(const struct bt_mesh_model *model, uint8_t *test_id, uint16_t
*company_id, uint8_t *faults, uint8_t *fault_count)

Callback for fetching current faults.

Fault values may either be defined by the specification, or by a vendor. Vendor
specific faults should be interpreted in the context of the accompanying Company
ID. Specification defined faults may be reported for any Company ID, and the same
fault may be presented for multiple Company IDs.

All faults shall be associated with at least one Company ID, representing the device
vendor or some other vendor whose vendor specific fault values are used.

If there are multiple Company IDs that have active faults, return only the faults
associated with one of them at the time. To report faults for multiple Company
IDs, interleave which Company ID is reported for each call.

Parammodel
Health Server model instance to get faults of.

Param test_id
Test ID response buffer.

Param company_id
Company ID response buffer.

Param faults
Array to fill with current faults.

Param fault_count
The number of faults the fault array can fit. Should be updated to reflect
the number of faults copied into the array.

Return
0 on success, or (negative) error code otherwise.
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int (*fault_get_reg)(const struct bt_mesh_model *model, uint16_t company_id,
uint8_t *test_id, uint8_t *faults, uint8_t *fault_count)

Callback for fetching all registered faults.

Registered faults are all past and current faults since the last call to fault_clear.
Only faults associated with the given Company ID should be reported.

Fault values may either be defined by the specification, or by a vendor. Vendor
specific faults should be interpreted in the context of the accompanying Company
ID. Specification defined faults may be reported for any Company ID, and the same
fault may be presented for multiple Company IDs.

Parammodel
Health Server model instance to get faults of.

Param company_id
Company ID to get faults for.

Param test_id
Test ID response buffer.

Param faults
Array to fill with registered faults.

Param fault_count
The number of faults the fault array can fit. Should be updated to reflect
the number of faults copied into the array.

Return
0 on success, or (negative) error code otherwise.

int (*fault_clear)(const struct bt_mesh_model *model, uint16_t company_id)
Clear all registered faults associated with the given Company ID.

Parammodel
Health Server model instance to clear faults of.

Param company_id
Company ID to clear faults for.

Return
0 on success, or (negative) error code otherwise.

int (*fault_test)(const struct bt_mesh_model *model, uint8_t test_id, uint16_t
company_id)

Run a self-test.

The Health server may support up to 256 self-tests for each Company ID. The be-
havior for all test IDs are vendor specific, and should be interpreted based on the
accompanying Company ID. Test failures should result in changes to the fault ar-
ray.

Parammodel
Health Server model instance to run test for.

Param test_id
Test ID to run.

Param company_id
Company ID to run test for.

Return
0 if the test execution was started successfully, or (negative) error code
otherwise. Note that the fault array will not be reported back to the client
if the test execution didn’t start.

void (*attn_on)(const struct bt_mesh_model *model)
Start calling attention to the device.

The attention state is used to map an element address to a physical device. When
this callback is called, the device should start some physical procedure meant to
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call attention to itself, like blinking, buzzing, vibrating or moving. If there are
multiple Health server instances on the device, the attention state should also help
identify the specific element the server is in.

The attention calling behavior should continue until the attn_off callback is
called.

Parammodel
Health Server model to start the attention state of.

void (*attn_off)(const struct bt_mesh_model *model)
Stop the attention state.

Any physical activity started to call attention to the device should be stopped.
Parammodel

struct bt_mesh_health_srv
#include <health_srv.h> Mesh Health Server Model Context.

Public Members

const struct bt_mesh_model *model
Composition data model entry pointer.

const struct bt_mesh_health_srv_cb *cb
Optional callback struct.

struct k_work_delayable attn_timer
Attention Timer state.

Health faults Fault values defined by the Bluetooth Mesh specification.

group bt_mesh_health_faults
List of specification defined Health fault values.

Defines

BT_MESH_HEALTH_FAULT_NO_FAULT
No fault has occurred.

BT_MESH_HEALTH_FAULT_BATTERY_LOW_WARNING

BT_MESH_HEALTH_FAULT_BATTERY_LOW_ERROR

BT_MESH_HEALTH_FAULT_SUPPLY_VOLTAGE_TOO_LOW_WARNING

BT_MESH_HEALTH_FAULT_SUPPLY_VOLTAGE_TOO_LOW_ERROR

BT_MESH_HEALTH_FAULT_SUPPLY_VOLTAGE_TOO_HIGH_WARNING
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BT_MESH_HEALTH_FAULT_SUPPLY_VOLTAGE_TOO_HIGH_ERROR

BT_MESH_HEALTH_FAULT_POWER_SUPPLY_INTERRUPTED_WARNING

BT_MESH_HEALTH_FAULT_POWER_SUPPLY_INTERRUPTED_ERROR

BT_MESH_HEALTH_FAULT_NO_LOAD_WARNING

BT_MESH_HEALTH_FAULT_NO_LOAD_ERROR

BT_MESH_HEALTH_FAULT_OVERLOAD_WARNING

BT_MESH_HEALTH_FAULT_OVERLOAD_ERROR

BT_MESH_HEALTH_FAULT_OVERHEAT_WARNING

BT_MESH_HEALTH_FAULT_OVERHEAT_ERROR

BT_MESH_HEALTH_FAULT_CONDENSATION_WARNING

BT_MESH_HEALTH_FAULT_CONDENSATION_ERROR

BT_MESH_HEALTH_FAULT_VIBRATION_WARNING

BT_MESH_HEALTH_FAULT_VIBRATION_ERROR

BT_MESH_HEALTH_FAULT_CONFIGURATION_WARNING

BT_MESH_HEALTH_FAULT_CONFIGURATION_ERROR

BT_MESH_HEALTH_FAULT_ELEMENT_NOT_CALIBRATED_WARNING

BT_MESH_HEALTH_FAULT_ELEMENT_NOT_CALIBRATED_ERROR

BT_MESH_HEALTH_FAULT_MEMORY_WARNING

BT_MESH_HEALTH_FAULT_MEMORY_ERROR

BT_MESH_HEALTH_FAULT_SELF_TEST_WARNING

BT_MESH_HEALTH_FAULT_SELF_TEST_ERROR

BT_MESH_HEALTH_FAULT_INPUT_TOO_LOW_WARNING

BT_MESH_HEALTH_FAULT_INPUT_TOO_LOW_ERROR
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BT_MESH_HEALTH_FAULT_INPUT_TOO_HIGH_WARNING

BT_MESH_HEALTH_FAULT_INPUT_TOO_HIGH_ERROR

BT_MESH_HEALTH_FAULT_INPUT_NO_CHANGE_WARNING

BT_MESH_HEALTH_FAULT_INPUT_NO_CHANGE_ERROR

BT_MESH_HEALTH_FAULT_ACTUATOR_BLOCKED_WARNING

BT_MESH_HEALTH_FAULT_ACTUATOR_BLOCKED_ERROR

BT_MESH_HEALTH_FAULT_HOUSING_OPENED_WARNING

BT_MESH_HEALTH_FAULT_HOUSING_OPENED_ERROR

BT_MESH_HEALTH_FAULT_TAMPER_WARNING

BT_MESH_HEALTH_FAULT_TAMPER_ERROR

BT_MESH_HEALTH_FAULT_DEVICE_MOVED_WARNING

BT_MESH_HEALTH_FAULT_DEVICE_MOVED_ERROR

BT_MESH_HEALTH_FAULT_DEVICE_DROPPED_WARNING

BT_MESH_HEALTH_FAULT_DEVICE_DROPPED_ERROR

BT_MESH_HEALTH_FAULT_OVERFLOW_WARNING

BT_MESH_HEALTH_FAULT_OVERFLOW_ERROR

BT_MESH_HEALTH_FAULT_EMPTY_WARNING

BT_MESH_HEALTH_FAULT_EMPTY_ERROR

BT_MESH_HEALTH_FAULT_INTERNAL_BUS_WARNING

BT_MESH_HEALTH_FAULT_INTERNAL_BUS_ERROR

BT_MESH_HEALTH_FAULT_MECHANISM_JAMMED_WARNING

BT_MESH_HEALTH_FAULT_MECHANISM_JAMMED_ERROR
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BT_MESH_HEALTH_FAULT_VENDOR_SPECIFIC_START
Start of the vendor specific fault values.

All values below this are reserved for the Bluetooth Specification.

Large Composition Data Client The Large Composition Data Client model is a foundation
model defined by the Bluetooth Mesh specification. The model is optional, and is enabled
through the CONFIG_BT_MESH_LARGE_COMP_DATA_CLI option.

The Large Composition Data Client model was introduced in the Bluetooth Mesh Protocol Spec-
ification version 1.1, and supports the functionality of reading pages of Composition Data that
do not fit in a Config Composition Data Status message and reading the metadata of the model
instances on a node that supports the Large Composition Data Server model.

The Large Composition Data Client model communicates with a Large Composition Data Server
model using the device key of the node containing the target Large Composition Data Server
model instance.

If present, the Large Composition Data Client model must only be instantiated on the primary
element.

API reference

group bt_mesh_large_comp_data_cli

Defines

BT_MESH_MODEL_LARGE_COMP_DATA_CLI(cli_data)
Large Composition Data Client model Composition Data entry.

Parameters
• cli_data – Pointer to a Large Composition Data Client model instance.

Functions

int bt_mesh_large_comp_data_get(uint16_t net_idx, uint16_t addr, uint8_t page, size_t
offset, struct bt_mesh_large_comp_data_rsp *rsp)

Send Large Composition Data Get message.

This API is used to read a portion of a Composition Data Page.

This API can be used asynchronously by setting rsp as NULL. This way, the method will
not wait for a response and will return immediately after sending the command.

When rsp is set, the user is responsible for providing a buffer for the Composition Data
in bt_mesh_large_comp_data_rsp::data. If a buffer is not provided, the metadata won’t
be copied.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node element address.

• page – Composition Data Page to read.

• offset – Offset within the Composition Data Page.
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• rsp – Pointer to a struct storing the received response from the server, or
NULL to not wait for a response.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_models_metadata_get(uint16_t net_idx, uint16_t addr, uint8_t page, size_t
offset, struct bt_mesh_large_comp_data_rsp *rsp)

Send Models Metadata Get message.

This API is used to read a portion of a Models Metadata Page.

This API can be used asynchronously by setting rsp as NULL. This way, the method will
not wait for a response and will return immediately after sending the command.

When rsp is set, a user is responsible for providing a buffer for metadata in
bt_mesh_large_comp_data_rsp::data. If a buffer is not provided, the metadata won’t
be copied.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node element address.

• page – Models Metadata Page to read.

• offset – Offset within the Models Metadata Page.

• rsp – Pointer to a struct storing the received response from the server, or
NULL to not wait for a response.

Returns
0 on success, or (negative) error code on failure.

struct bt_mesh_large_comp_data_rsp
#include <large_comp_data_cli.h> Large Composition Data response.

Public Members

uint8_t page
Page number.

uint16_t offset
Offset within the page.

uint16_t total_size
Total size of the page.

struct net_buf_simple *data
Pointer to allocated buffer for storing received data.

struct bt_mesh_large_comp_data_cli_cb
#include <large_comp_data_cli.h> Large Composition Data Status messages callbacks.
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Public Members

void (*large_comp_data_status)(struct bt_mesh_large_comp_data_cli *cli, uint16_t
addr, struct bt_mesh_large_comp_data_rsp *rsp)

Optional callback for Large Composition Data Status message.

Handles received Large Composition Data Status messages from a Large Composi-
tion Data Server.

If the content of rsp is needed after exiting this callback, a user should deep copy
it.

Param cli
Large Composition Data Client context.

Param addr
Address of the sender.

Param rsp
Response received from the server.

void (*models_metadata_status)(struct bt_mesh_large_comp_data_cli *cli, uint16_t
addr, struct bt_mesh_large_comp_data_rsp *rsp)

Optional callback for Models Metadata Status message.

Handles received Models Metadata Status messages from a Large Composition
Data Server.

If the content of rsp is needed after exiting this callback, a user should deep copy
it.

Param cli
Large Composition Data Client context.

Param addr
Address of the sender.

Param rsp
Response received from the server.

struct bt_mesh_large_comp_data_cli
#include <large_comp_data_cli.h> Large Composition Data Client model context.

Public Members

const struct bt_mesh_model *model
Model entry pointer.

struct bt_mesh_msg_ack_ctx ack_ctx
Internal parameters for tracking message responses.

const struct bt_mesh_large_comp_data_cli_cb *cb
Optional callback for Large Composition Data Status messages.

Large Composition Data Server The Large Composition Data Server model is a foundation
model defined by the Bluetooth Mesh specification. The model is optional, and is enabled
through the CONFIG_BT_MESH_LARGE_COMP_DATA_SRV option.

The Large Composition Data Server model was introduced in the Bluetooth Mesh Protocol Spec-
ification version 1.1, and is used to support the functionality of exposing pages of Composition
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Data that do not fit in a Config Composition Data Status message and to expose metadata of the
model instances.

The Large Composition Data Server does not have an API of its own and relies on a Large Com-
position Data Client to control it. The model only accepts messages encrypted with the node’s
device key.

If present, the Large Composition Data Server model must only be instantiated on the primary
element.

Models metadata The Large Composition Data Server model allows each model to have
a list of model’s specific metadata that can be read by the Large Composition Data
Client model. The metadata list can be associated with the bt_mesh_model through the
bt_mesh_model.metadata field. The metadata list consists of one or more entries defined
by the bt_mesh_models_metadata_entry structure. Each entry contains the length and
ID of the metadata, and a pointer to the raw data. Entries can be created using the
BT_MESH_MODELS_METADATA_ENTRY macro. The BT_MESH_MODELS_METADATA_END macro marks the
end of the metadata list and must always be present. If the model has no metadata, the helper
macro BT_MESH_MODELS_METADATA_NONE can be used instead.

API reference

group bt_mesh_large_comp_data_srv

Defines

BT_MESH_MODEL_LARGE_COMP_DATA_SRV
Large Composition Data Server model composition data entry.

On-Demand Private Proxy Client The On-Demand Private Proxy Client model is a foundation
model defined by the Bluetooth Mesh specification. The model is optional, and is enabled with
the CONFIG_BT_MESH_OD_PRIV_PROXY_CLI option.

The On-Demand Private Proxy Client model was introduced in the Bluetooth Mesh Protocol Spec-
ification version 1.1, and is used to set and retrieve the On-Demand Private GATT Proxy state. The
state defines how long a node will advertise Mesh Proxy Service with Private Network Identity
type after it receives a Solicitation PDU.

The On-Demand Private Proxy Client model communicates with an On-Demand Private Proxy
Server model using the device key of the node containing the target On-Demand Private Proxy
Server model instance.

If present, the On-Demand Private Proxy Client model must only be instantiated on the primary
element.

Configurations The On-Demand Private Proxy Client model behavior can be configured
with the transmission timeout option CONFIG_BT_MESH_OD_PRIV_PROXY_CLI_TIMEOUT. The CON-
FIG_BT_MESH_OD_PRIV_PROXY_CLI_TIMEOUT controls how long the Client waits for a state re-
sponse message to arrive in milliseconds. This value can be changed at runtime using
bt_mesh_od_priv_proxy_cli_timeout_set().

API reference

group bt_mesh_od_priv_proxy_cli
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Defines

BT_MESH_MODEL_OD_PRIV_PROXY_CLI(cli_data)
On-Demand Private Proxy Client model composition data entry.

Functions

int bt_mesh_od_priv_proxy_cli_get(uint16_t net_idx, uint16_t addr, uint8_t *val_rsp)
Get the target’s On-Demand Private GATT Proxy state.

This method can be used asynchronously by setting val_rsp as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

To process the response arguments of an async method, register the od_status callback
in bt_mesh_od_priv_proxy_cli struct.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• val_rsp – Response buffer for On-Demand Private GATT Proxy value.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_od_priv_proxy_cli_set(uint16_t net_idx, uint16_t addr, uint8_t val, uint8_t
*val_rsp)

Set the target’s On-Demand Private GATT Proxy state.

This method can be used asynchronously by setting val_rsp as NULL. This way the
method will not wait for response and will return immediately after sending the com-
mand.

To process the response arguments of an async method, register the od_status callback
in bt_mesh_od_priv_proxy_cli struct.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• val – On-Demand Private GATT Proxy state to be set

• val_rsp – Response buffer for On-Demand Private GATT Proxy value.

Returns
0 on success, or (negative) error code otherwise.

void bt_mesh_od_priv_proxy_cli_timeout_set(int32_t timeout)
Set the transmission timeout value.

Parameters
• timeout – The new transmission timeout in milliseconds.

struct bt_mesh_od_priv_proxy_cli
#include <od_priv_proxy_cli.h> On-Demand Private Proxy Client Model Context.
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Public Members

const struct bt_mesh_model *model
Solicitation PDU RPL model entry pointer.

void (*od_status)(struct bt_mesh_od_priv_proxy_cli *cli, uint16_t addr, uint8_t state)
Optional callback for On-Demand Private Proxy Status messages.

Handles received On-Demand Private Proxy Status messages from a On-Demand
Private Proxy server.The state param represents state of On-Demand Private
Proxy server.

Param cli
On-Demand Private Proxy client that received the status message.

Param addr
Address of the sender.

Param state
State value.

On-Demand Private Proxy Server The On-Demand Private Proxy Server model is a foun-
dation model defined by the Bluetooth Mesh specification. It is enabled with the CON-
FIG_BT_MESH_OD_PRIV_PROXY_SRV option.

The On-Demand Private Proxy Server model was introduced in the Bluetooth Mesh Protocol
Specification version 1.1, and supports the configuration of advertising with Private Network
Identity type of a node that is a recipient of Solicitation PDUs by managing its On-Demand Pri-
vate GATT Proxy state.

When enabled, the Solicitation PDU RPL Configuration Server is also enabled. The On-Demand
Private Proxy Server is dependent on the Private Beacon Server to be present on the node.

The On-Demand Private Proxy Server does not have an API of its own, and relies on aOn-Demand
Private Proxy Client to control it. The On-Demand Private Proxy Server model only accepts mes-
sages encrypted with the node’s device key.

If present, the On-Demand Private Proxy Server model must only be instantiated on the primary
element.

API reference

group bt_mesh_od_priv_proxy_srv

Defines

BT_MESH_MODEL_OD_PRIV_PROXY_SRV
On-Demand Private Proxy Server model composition data entry.

Opcodes Aggregator Client The Opcodes Aggregator Client model is a foundation model de-
fined by the Bluetooth Mesh specification. It is an optional model, enabled with the CON-
FIG_BT_MESH_OP_AGG_CLI option.

The Opcodes Aggregator Client model is introduced in the Bluetooth Mesh Protocol Specification
version 1.1, and is used to support the functionality of dispatching a sequence of access layer
messages to nodes supporting the Opcodes Aggregator Server model.

6.1. Bluetooth 2163



Zephyr Project Documentation, Release 3.7.99

The Opcodes Aggregator Client model communicates with an Opcodes Aggregator Server model
using the device key of the target node or the application keys configured by the Configuration
Client.

If present, the Opcodes Aggregator Client model must only be instantiated on the primary ele-
ment.

The Opcodes Aggregator Client model is implicitly bound to the device key on initialization. It
should be bound to the same application keys as the client models that are used to produce the
sequence of messages.

To be able to aggregate a message from a client model, it should support an asynchronous API,
for example through callbacks.

API reference

group bt_mesh_op_agg_cli

Defines

BT_MESH_MODEL_OP_AGG_CLI
Opcodes Aggregator Client model composition data entry.

Functions

int bt_mesh_op_agg_cli_seq_start(uint16_t net_idx, uint16_t app_idx, uint16_t dst,
uint16_t elem_addr)

Configure Opcodes Aggregator context.

Parameters
• net_idx – NetKey index to encrypt with.

• app_idx – AppKey index to encrypt with.

• dst – Target Opcodes Aggregator Server address.

• elem_addr – Target node element address for the sequence message.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_op_agg_cli_seq_send(void)
Opcodes Aggregator message send.

Uses previously configured context and sends aggregated message to target node.

Returns
0 on success, or (negative) error code on failure.

void bt_mesh_op_agg_cli_seq_abort(void)
Abort Opcodes Aggregator context.

bool bt_mesh_op_agg_cli_seq_is_started(void)
Check if Opcodes Aggregator Sequence context is started.

Returns
true if it is started, otherwise false.
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size_t bt_mesh_op_agg_cli_seq_tailroom(void)
Get Opcodes Aggregator context tailroom.

Returns
Remaining tailroom of Opcodes Aggregator SDU.

int32_t bt_mesh_op_agg_cli_timeout_get(void)
Get the current transmission timeout value.

Returns
The configured transmission timeout in milliseconds.

void bt_mesh_op_agg_cli_timeout_set(int32_t timeout)
Set the transmission timeout value.

Parameters
• timeout – The new transmission timeout.

Opcodes Aggregator Server The Opcodes Aggregator Server model is a foundation model
defined by the Bluetooth mesh specification. It is an optional model, enabled with the CON-
FIG_BT_MESH_OP_AGG_SRV option.

The Opcodes Aggregator Server model is introduced in the Bluetooth Mesh Protocol Specification
version 1.1, and is used to support the functionality of processing a sequence of access layer
messages.

The Opcodes Aggregator Server model accepts messages encrypted with the node’s device key
or the application keys.

If present, the Opcodes Aggregator Server model must only be instantiated on the primary ele-
ment.

The targeted server models should be bound to the same application key that is used to encrypt
the sequence of access layer messages sent to the Opcodes Aggregator Server.

The Opcodes Aggregator Server handles aggregated messages and dispatches them to the re-
spective models and their message handlers. Current implementation assumes that responses
are sent from the same execution context as the received message and doesn’t allow to send a
postponed response, for example from a work queue.

API reference

group bt_mesh_op_agg_srv

Defines

BT_MESH_MODEL_OP_AGG_SRV
Opcodes Aggretator Server model composition data entry.

Note

The Opcodes Aggregator Server handles aggregated messages and dispatches them
to the respective models and their message handlers. Current implementation as-
sumes that responses are sent from the same execution context as the received mes-
sage and doesn’t allow to send a postponed response, e.g. from workqueue.

6.1. Bluetooth 2165



Zephyr Project Documentation, Release 3.7.99

Private Beacon Client The Private Beacon Client model is a foundation model defined by the
Bluetooth mesh specification. It is enabled with the CONFIG_BT_MESH_PRIV_BEACON_CLI option.

The Private Beacon Client model is introduced in the Bluetooth Mesh Protocol Specification ver-
sion 1.1, and provides functionality for configuring the Private Beacon Server models.

The Private Beacons feature adds privacy to the different Bluetooth Mesh beacons by periodically
randomizing the beacon input data. This protects the mesh node from being tracked by devices
outside the mesh network, and hides the network’s IV index, IV update and the Key Refresh state.

The Private Beacon Client model communicates with a Private Beacon Server model using the
device key of the target node. The Private Beacon Client model may communicate with servers
on other nodes or self-configure through the local Private Beacon Server model.

All configuration functions in the Private Beacon Client API have net_idx and addr as their first
parameters. These should be set to the network index and the primary unicast address the target
node was provisioned with.

If present, the Private Beacon Client model must only be instantiated on the primary element.

API reference

group bt_mesh_priv_beacon_cli

Defines

BT_MESH_MODEL_PRIV_BEACON_CLI(cli_data)
Private Beacon Client model composition data entry.

Parameters
• cli_data – Pointer to a Bluetooth Mesh Private Beacon Client instance.

Functions

int bt_mesh_priv_beacon_cli_set(uint16_t net_idx, uint16_t addr, struct
bt_mesh_priv_beacon *val, struct bt_mesh_priv_beacon
*rsp)

Set the target’s Private Beacon state.

This method can be used asynchronously by setting rsp as NULL. This way the method
will not wait for response and will return immediately after sending the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• val – New Private Beacon value.

• rsp – If set, returns response status on success.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_priv_beacon_cli_get(uint16_t net_idx, uint16_t addr, struct
bt_mesh_priv_beacon *val)

Get the target’s Private Beacon state.

Parameters
• net_idx – Network index to encrypt with.
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• addr – Target node address.

• val – Response buffer for Private Beacon value.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_priv_beacon_cli_gatt_proxy_set(uint16_t net_idx, uint16_t addr, uint8_t
val, uint8_t *rsp)

Set the target’s Private GATT Proxy state.

This method can be used asynchronously by setting rsp as NULL. This way the method
will not wait for response and will return immediately after sending the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• val – New Private GATT Proxy value.

• rsp – If set, returns response status on success.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_priv_beacon_cli_gatt_proxy_get(uint16_t net_idx, uint16_t addr, uint8_t
*val)

Get the target’s Private GATT Proxy state.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• val – Response buffer for Private GATT Proxy value.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_priv_beacon_cli_node_id_set(uint16_t net_idx, uint16_t addr, struct
bt_mesh_priv_node_id *val, struct
bt_mesh_priv_node_id *rsp)

Set the target’s Private Node Identity state.

This method can be used asynchronously by setting rsp as NULL. This way the method
will not wait for response and will return immediately after sending the command.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• val – New Private Node Identity value.

• rsp – If set, returns response status on success.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_priv_beacon_cli_node_id_get(uint16_t net_idx, uint16_t addr, uint16_t
key_net_idx, struct bt_mesh_priv_node_id
*val)

Get the target’s Private Node Identity state.

Parameters
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• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network index to get the Private Node Identity state of.

• val – Response buffer for Private Node Identity value.

Returns
0 on success, or (negative) error code otherwise.

struct bt_mesh_priv_beacon
#include <priv_beacon_cli.h> Private Beacon.

Public Members

uint8_t enabled
Private beacon is enabled.

uint8_t rand_interval
Random refresh interval (in 10 second steps), or 0 to keep current value.

struct bt_mesh_priv_node_id
#include <priv_beacon_cli.h> Private Node Identity.

Public Members

uint16_t net_idx
Index of the NetKey.

uint8_t state
Private Node Identity state.

uint8_t status
Response status code.

struct bt_mesh_priv_beacon_cli_cb
#include <priv_beacon_cli.h> Private Beacon Client Status messages callbacks.

Public Members

void (*priv_beacon_status)(struct bt_mesh_priv_beacon_cli *cli, uint16_t addr, struct
bt_mesh_priv_beacon *priv_beacon)

Optional callback for Private Beacon Status message.

Handles received Private Beacon Status messages from a Private Beacon server.
Param cli

Private Beacon client context.
Param addr

Address of the sender.
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Param priv_beacon
Mesh Private Beacon state received from the server.

void (*priv_gatt_proxy_status)(struct bt_mesh_priv_beacon_cli *cli, uint16_t addr,
uint8_t gatt_proxy)

Optional callback for Private GATT Proxy Status message.

Handles received Private GATT Proxy Status messages from a Private Beacon
server.

Param cli
Private Beacon client context.

Param addr
Address of the sender.

Param gatt_proxy
Private GATT Proxy state received from the server.

void (*priv_node_id_status)(struct bt_mesh_priv_beacon_cli *cli, uint16_t addr, struct
bt_mesh_priv_node_id *priv_node_id)

Optional callback for Private Node Identity Status message.

Handles received Private Node Identity Status messages from a Private Beacon
server.

Param cli
Private Beacon client context.

Param addr
Address of the sender.

Param priv_node_id
Private Node Identity state received from the server.

struct bt_mesh_priv_beacon_cli
#include <priv_beacon_cli.h> Mesh Private Beacon Client model.

Public Members

const struct bt_mesh_priv_beacon_cli_cb *cb
Optional callback for Private Beacon Client Status messages.

Private Beacon Server The Private Beacon Server model is a foundation model defined by the
Bluetooth mesh specification. It is enabled with CONFIG_BT_MESH_PRIV_BEACON_SRV option.

The Private Beacon Server model is introduced in the Bluetooth Mesh Protocol Specification ver-
sion 1.1, and controls the mesh node’s Private Beacon state, Private GATT Proxy state and Private
Node Identity state.

The Private Beacons feature adds privacy to the different Bluetooth Mesh beacons by periodically
randomizing the beacon input data. This protects the mesh node from being tracked by devices
outside the mesh network, and hides the network’s IV index, IV update and the Key Refresh state.
The Private Beacon Server must be instantiated for the device to support sending of the private
beacons, but the node will process received private beacons without it.

The Private Beacon Server does not have an API of its own, but relies on a Private Beacon Client
to control it. The Private Beacon Server model only accepts messages encrypted with the node’s
device key.

The application can configure the initial parameters of the Private Beacon Server model through
the bt_mesh_priv_beacon_srv instance passed to BT_MESH_MODEL_PRIV_BEACON_SRV. Note that if
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the mesh node stored changes to this configuration in the settings subsystem, the initial values
may be overwritten upon loading.

If present, the Private Beacon Server model must only be instantiated on the primary element.

API reference

group bt_mesh_priv_beacon_srv

Defines

BT_MESH_MODEL_PRIV_BEACON_SRV
Private Beacon Server model composition data entry.

Remote Provisioning Client The Remote Provisioning Client model is a foundation model de-
fined by the Bluetooth mesh specification. It is enabled with the CONFIG_BT_MESH_RPR_CLI option.

The Remote Provisioning Client model is introduced in the Bluetooth Mesh Protocol Specification
version 1.1. This model provides functionality to remotely provision devices into a mesh net-
work, and perform Node Provisioning Protocol Interface procedures by interacting with mesh
nodes that support the Remote Provisioning Server model.

The Remote Provisioning Client model communicates with a Remote Provisioning Server model
using the device key of the node containing the target Remote Provisioning Server model in-
stance.

If present, the Remote Provisioning Client model must be instantiated on the primary element.

Scanning The scanning procedure is used to scan for unprovisioned devices located nearby the
Remote Provisioning Server. The Remote Provisioning Client starts a scan procedure by using the
bt_mesh_rpr_scan_start() call:

static void rpr_scan_report(struct bt_mesh_rpr_cli *cli,
const struct bt_mesh_rpr_node *srv,
struct bt_mesh_rpr_unprov *unprov,
struct net_buf_simple *adv_data)

{

}

struct bt_mesh_rpr_cli rpr_cli = {
.scan_report = rpr_scan_report,

};

const struct bt_mesh_rpr_node srv = {
.addr = 0x0004,
.net_idx = 0,
.ttl = BT_MESH_TTL_DEFAULT,

};

struct bt_mesh_rpr_scan_status status;
uint8_t *uuid = NULL;
uint8_t timeout = 10;
uint8_t max_devs = 3;

bt_mesh_rpr_scan_start(&rpr_cli, &srv, uuid, timeout, max_devs, &status);
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The above example shows pseudo code for starting a scan procedure on the target Remote Provi-
sioning Server node. This procedure will start a ten-second, multiple-device scanning where the
generated scan report will contain a maximum of three unprovisioned devices. If the UUID argu-
ment was specified, the same procedure would only scan for the device with the corresponding
UUID. After the procedure completes, the server sends the scan report that will be handled in
the client’s bt_mesh_rpr_cli.scan_report callback.

Additionally, the Remote Provisioning Client model also supports extended scanning with the
bt_mesh_rpr_scan_start_ext() call. Extended scanning supplements regular scanning by al-
lowing the Remote Provisioning Server to report additional data for a specific device. The Re-
mote Provisioning Server will use active scanning to request a scan response from the unprovi-
sioned device if it is supported by the unprovisioned device.

Provisioning The Remote Provisioning Client starts a provisioning procedure by using the
bt_mesh_provision_remote() call:

struct bt_mesh_rpr_cli rpr_cli;

const struct bt_mesh_rpr_node srv = {
.addr = 0x0004,
.net_idx = 0,
.ttl = BT_MESH_TTL_DEFAULT,

};

uint8_t uuid[16] = { 0xaa };
uint16_t addr = 0x0006;
uint16_t net_idx = 0;

bt_mesh_provision_remote(&rpr_cli, &srv, uuid, net_idx, addr);

The above example shows pseudo code for remotely provisioning a device through a Remote
Provisioning Server node. This procedure will attempt to provision the device with the corre-
sponding UUID, and assign the address 0x0006 to its primary element using the network key
located at index zero.

Note

During the remote provisioning, the same bt_mesh_prov callbacks are triggered as for ordi-
nary provisioning. See section Provisioning for further details.

Re-provisioning In addition to scanning and provisioning functionality, the Remote Provision-
ing Client also provides means to reconfigure node addresses, device keys and Composition Data
on devices that support theRemote Provisioning Servermodel. This is provided through the Node
Provisioning Protocol Interface (NPPI) which supports the following three procedures:

• Device Key Refresh procedure: Used to change the device key of the Target node without a
need to reconfigure the node.

• Node Address Refresh procedure: Used to change the node’s device key and unicast address.

• Node Composition Refresh procedure: Used to change the device key of the node, and to
add or delete models or features of the node.

The three NPPI procedures can be initiated with the bt_mesh_reprovision_remote() call:

struct bt_mesh_rpr_cli rpr_cli;
struct bt_mesh_rpr_node srv = {

.addr = 0x0006,

.net_idx = 0,
(continues on next page)
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(continued from previous page)
.ttl = BT_MESH_TTL_DEFAULT,

};

bool composition_changed = false;
uint16_t new_addr = 0x0009;

bt_mesh_reprovision_remote(&rpr_cli, &srv, new_addr, composition_changed);

The above example shows pseudo code for triggering a Node Address Refresh procedure on the
Target node. The specific procedure is not chosen directly, but rather through the other param-
eters that are inputted. In the example we can see that the current unicast address of the Target
is 0x0006, while the new address is set to 0x0009. If the two addresses were the same, and the
composition_changed flag was set to true, this code would instead trigger a Node Composition
Refresh procedure. If the two addresses were the same, and the composition_changed flag was
set to false, this code would trigger a Device Key Refresh procedure.

API reference

group bt_mesh_rpr_cli

Defines

BT_MESH_RPR_SCAN_MAX_DEVS_ANY
Special value for the max_devs parameter of bt_mesh_rpr_scan_start.

Tells the Remote Provisioning Server not to put restrictions on the max number of
devices reported to the Client.

BT_MESH_MODEL_RPR_CLI(_cli)
Remote Provisioning Client model composition data entry.

Parameters
• _cli – Pointer to a Remote Provisioning Client model instance.

Functions

int bt_mesh_rpr_scan_caps_get(struct bt_mesh_rpr_cli *cli, const struct
bt_mesh_rpr_node *srv, struct bt_mesh_rpr_caps *caps)

Get scanning capabilities of Remote Provisioning Server.

Parameters
• cli – Remote Provisioning Client.

• srv – Remote Provisioning Server.

• caps – Capabilities response buffer.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_rpr_scan_get(struct bt_mesh_rpr_cli *cli, const struct bt_mesh_rpr_node *srv,
struct bt_mesh_rpr_scan_status *status)

Get current scanning state of Remote Provisioning Server.

Parameters
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• cli – Remote Provisioning Client.

• srv – Remote Provisioning Server.

• status – Scan status response buffer.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_rpr_scan_start(struct bt_mesh_rpr_cli *cli, const struct bt_mesh_rpr_node
*srv, const uint8_t uuid[16], uint8_t timeout, uint8_t
max_devs, struct bt_mesh_rpr_scan_status *status)

Start scanning for unprovisioned devices.

Tells the Remote Provisioning Server to start scanning for unprovisioned devices. The
Server will report back the results through the bt_mesh_rpr_cli::scan_report callback.

Use the uuid parameter to scan for a specific device, or leave it as NULL to report all
unprovisioned devices.

The Server will ignore duplicates, and report up to max_devs number of devices. Re-
questing a max_devs number that’s higher than the Server’s capability will result in an
error.

Parameters
• cli – Remote Provisioning Client.

• srv – Remote Provisioning Server.

• uuid – Device UUID to scan for, or NULL to report all devices.

• timeout – Scan timeout in seconds. Must be at least 1 second.

• max_devs – Max number of devices to report, or 0 to report as many as
possible.

• status – Scan status response buffer.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_rpr_scan_start_ext(struct bt_mesh_rpr_cli *cli, const struct
bt_mesh_rpr_node *srv, const uint8_t uuid[16], uint8_t
timeout, const uint8_t *ad_types, size_t ad_count)

Start extended scanning for unprovisioned devices.

Extended scanning supplements regular unprovisioned scanning, by allowing the
Server to report additional data for a specific device. The Remote Provisioning Server
will use active scanning to request a scan response from the unprovisioned device,
if supported. If no UUID is provided, the Server will report a scan on its own OOB
information and advertising data.

Use the ad_types array to specify which AD types to include in the scan report. Some
AD types invoke special behavior:

• BT_DATA_NAME_COMPLETE Will report both the complete and the shortened
name.

• BT_DATA_URI If the unprovisioned beacon contains a URI hash, the Server will
extend the scanning to include packets other than the scan response, to look for
URIs matching the URI hash. Only matching URIs will be reported.

The following AD types should not be used:

• BT_DATA_NAME_SHORTENED

• BT_DATA_UUID16_SOME
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• BT_DATA_UUID32_SOME

• BT_DATA_UUID128_SOME

Additionally, each AD type should only occur once.

Parameters
• cli – Remote Provisioning Client.

• srv – Remote Provisioning Server.

• uuid – Device UUID to start extended scanning for, or NULL to scan the
remote server.

• timeout – Scan timeout in seconds. Valid val-
ues from BT_MESH_RPR_EXT_SCAN_TIME_MIN to
BT_MESH_RPR_EXT_SCAN_TIME_MAX. Ignored if UUID is NULL.

• ad_types – List of AD types to include in the scan report. Must contain 1
to CONFIG_BT_MESH_RPR_AD_TYPES_MAX entries.

• ad_count – Number of AD types in ad_types.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_rpr_scan_stop(struct bt_mesh_rpr_cli *cli, const struct bt_mesh_rpr_node
*srv, struct bt_mesh_rpr_scan_status *status)

Stop any ongoing scanning on the Remote Provisioning Server.

Parameters
• cli – Remote Provisioning Client.

• srv – Remote Provisioning Server.

• status – Scan status response buffer.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_rpr_link_get(struct bt_mesh_rpr_cli *cli, const struct bt_mesh_rpr_node *srv,
struct bt_mesh_rpr_link *rsp)

Get the current link status of the Remote Provisioning Server.

Parameters
• cli – Remote Provisioning Client.

• srv – Remote Provisioning Server.

• rsp – Link status response buffer.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_rpr_link_close(struct bt_mesh_rpr_cli *cli, const struct bt_mesh_rpr_node
*srv, struct bt_mesh_rpr_link *rsp)

Close any open link on the Remote Provisioning Server.

Parameters
• cli – Remote Provisioning Client.

• srv – Remote Provisioning Server.

• rsp – Link status response buffer.

Returns
0 on success, or (negative) error code otherwise.
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int32_t bt_mesh_rpr_cli_timeout_get(void)
Get the current transmission timeout value.

Returns
The configured transmission timeout in milliseconds.

void bt_mesh_rpr_cli_timeout_set(int32_t timeout)
Set the transmission timeout value.

The transmission timeout controls the amount of time the Remote Provisioning Client
models will wait for a response from the Server.

Parameters
• timeout – The new transmission timeout.

struct bt_mesh_rpr_scan_status
#include <rpr_cli.h> Scan status response.

Public Members

enum bt_mesh_rpr_status status
Current scan status.

enum bt_mesh_rpr_scan scan
Current scan state.

uint8_t max_devs
Max number of devices to report in current scan.

uint8_t timeout
Seconds remaining of the scan.

struct bt_mesh_rpr_caps
#include <rpr_cli.h> Remote Provisioning Server scanning capabilities.

Public Members

uint8_t max_devs
Max number of scannable devices.

bool active_scan
Supports active scan.

struct bt_mesh_rpr_cli
#include <rpr_cli.h> Remote Provisioning Client model instance.

Public Members
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void (*scan_report)(struct bt_mesh_rpr_cli *cli, const struct bt_mesh_rpr_node *srv,
struct bt_mesh_rpr_unprov *unprov, struct net_buf_simple *adv_data)

Scan report callback.
Param cli

Remote Provisioning Client.
Param srv

Remote Provisioning Server.
Param unprov

Unprovisioned device.
Param adv_data

Advertisement data for the unprovisioned device, or NULL if extended
scanning hasn’t been enabled. An empty buffer indicates that the ex-
tended scanning finished without collecting additional information.

Remote Provisioning Server The Remote Provisioning Server model is a foundation model
defined by the Bluetooth mesh specification. It is enabled with the CONFIG_BT_MESH_RPR_SRV
option.

The Remote Provisioning Server model is introduced in the Bluetooth Mesh Protocol Specifica-
tion version 1.1, and is used to support the functionality of remotely provisioning devices into a
mesh network.

The Remote Provisioning Server does not have an API of its own, but relies on aRemote Provision-
ing Client to control it. The Remote Provisioning Server model only accepts messages encrypted
with the node’s device key.

If present, the Remote Provisioning Server model must be instantiated on the primary element.

Note that after refreshing the device key, node address or Composition Data through a Node
Provisioning Protocol Interface (NPPI) procedure, the bt_mesh_prov.reprovisioned callback is
triggered. See section Remote Provisioning Client for further details.

Limitations The following limitations apply to Remote Provisioning Server model:

• Provisioning of unprovisioned device using PB-GATT is not supported.

• All Node Provisioning Protocol Interface (NPPI) procedures are supported. However, if
the composition data of a device gets changed after device firmware update (see firmware
effect), it is not possible for the device to remain provisioned. The device should be unpro-
visioned if its composition data is expected to change.

API reference

group bt_mesh_rpr_srv

Defines

BT_MESH_MODEL_RPR_SRV
Remote Provisioning Server model composition data entry.

SAR Configuration Client The SAR Configuration Client model is a foundation model de-
fined by the Bluetooth Mesh specification. It is an optional model, enabled with the CON-
FIG_BT_MESH_SAR_CFG_CLI configuration option.
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The SAR Configuration Client model is introduced in the Bluetooth Mesh Protocol Specification
version 1.1, and it supports the configuration of the lower transport layer behavior of a node
that supports the SAR Configuration Server model.

The model can send messages to query or change the states supported by the SAR Configuration
Server (SAR Transmitter and SAR Receiver) using SAR Configuration messages.

The SAR Transmitter procedure is used to determine and configure the SAR Transmitter state
of a SAR Configuration Server. Function calls bt_mesh_sar_cfg_cli_transmitter_get() and
bt_mesh_sar_cfg_cli_transmitter_set() are used to get and set the SAR Transmitter state of
the Target node respectively.

The SAR Receiver procedure is used to determine and configure the SAR Receiver state
of a SAR Configuration Server. Function calls bt_mesh_sar_cfg_cli_receiver_get() and
bt_mesh_sar_cfg_cli_receiver_set() are used to get and set the SAR Receiver state of the Tar-
get node respectively.

For more information about the two states, see SAR states.

An element can send any SAR Configuration Client message at any time to query or change the
states supported by the SAR Configuration Server model of a peer node. The SAR Configuration
Client model only accepts messages encrypted with the device key of the node supporting the
SAR Configuration Server model.

If present, the SAR Configuration Client model must only be instantiated on the primary element.

API reference

group bt_mesh_sar_cfg_cli
Bluetooth Mesh.

Defines

BT_MESH_MODEL_SAR_CFG_CLI(_cli)
SAR Configuration Client model composition data entry.

Parameters
• _cli – [in] Pointer to a Bluetooth Mesh SAR Configuration Client Model

instance.

Functions

int bt_mesh_sar_cfg_cli_transmitter_get(uint16_t net_idx, uint16_t addr, struct
bt_mesh_sar_tx *rsp)

Get the SAR Transmitter state of the target node.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• rsp – Status response parameter.

Returns
0 on success, or (negative) error code on failure.
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int bt_mesh_sar_cfg_cli_transmitter_set(uint16_t net_idx, uint16_t addr, const struct
bt_mesh_sar_tx *set, struct bt_mesh_sar_tx
*rsp)

Set the SAR Transmitter state of the target node.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• set – New SAR Transmitter state to set on the target node.

• rsp – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_sar_cfg_cli_receiver_get(uint16_t net_idx, uint16_t addr, struct
bt_mesh_sar_rx *rsp)

Get the SAR Receiver state of the target node.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• rsp – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_sar_cfg_cli_receiver_set(uint16_t net_idx, uint16_t addr, const struct
bt_mesh_sar_rx *set, struct bt_mesh_sar_rx *rsp)

Set the SAR Receiver state of the target node.

Parameters
• net_idx – Network index to encrypt with.

• addr – Target node address.

• set – New SAR Receiver state to set on the target node.

• rsp – Status response parameter.

Returns
0 on success, or (negative) error code on failure.

int32_t bt_mesh_sar_cfg_cli_timeout_get(void)
Get the current transmission timeout value.

Returns
The configured transmission timeout in milliseconds.

void bt_mesh_sar_cfg_cli_timeout_set(int32_t timeout)
Set the transmission timeout value.

Parameters
• timeout – The new transmission timeout.

struct bt_mesh_sar_cfg_cli
#include <sar_cfg_cli.h> Mesh SAR Configuration Client Model Context.
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Public Members

const struct bt_mesh_model *model
Access model pointer.

SAR Configuration Server The SAR Configuration Server model is a foundation model de-
fined by the Bluetooth Mesh specification. It is an optional model, enabled with the CON-
FIG_BT_MESH_SAR_CFG_SRV configuration option.

The SAR Configuration Server model is introduced in the Bluetooth Mesh Protocol Specification
version 1.1, and it supports the configuration of the segmentation and reassembly (SAR) behavior
of a Bluetooth Mesh node. The model defines a set of states and messages for the SAR configura-
tion.

The SAR Configuration Server model defines two states, SAR Transmitter state and SAR Receiver
state. For more information about the two states, see SAR states.

The model also supports the SAR Transmitter and SAR Receiver get and set messages.

The SAR Configuration Server model does not have an API of its own, but relies on a SAR Configu-
ration Client to control it. The SAR Configuration Server model only accepts messages encrypted
with the node’s device key.

If present, the SAR Configuration Server model must only be instantiated on the primary element.

API reference

group bt_mesh_sar_cfg_srv
Bluetooth Mesh.

Defines

BT_MESH_MODEL_SAR_CFG_SRV
Transport SAR Configuration Server model composition data entry.

Solicitation PDU RPL Configuration Client The Solicitation PDU RPL Configuration Client
model is a foundation model defined by the Bluetooth mesh specification. The model is optional,
and is enabled through the CONFIG_BT_MESH_SOL_PDU_RPL_CLI option.

The Solicitation PDU RPL Configuration Client model was introduced in the Bluetooth Mesh Pro-
tocol Specification version 1.1, and supports the functionality of removing addresses from the
solicitation replay protection list (SRPL) of a node that supports the Solicitation PDU RPL Config-
uration Server model.

The Solicitation PDU RPL Configuration Client model communicates with a Solicitation PDU RPL
Configuration Server model using the application keys configured by the Configuration Client.

If present, the Solicitation PDU RPL Configuration Client model must only be instantiated on the
primary element.

Configurations The Solicitation PDU RPL Configuration Client model behavior can be config-
ured with the transmission timeout option CONFIG_BT_MESH_SOL_PDU_RPL_CLI_TIMEOUT. The CON-
FIG_BT_MESH_SOL_PDU_RPL_CLI_TIMEOUT controls how long the Solicitation PDU RPL Configura-
tion Client waits for a response message to arrive in milliseconds. This value can be changed at
runtime using bt_mesh_sol_pdu_rpl_cli_timeout_set().
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API reference

group bt_mesh_sol_pdu_rpl_cli

Defines

BT_MESH_MODEL_SOL_PDU_RPL_CLI(cli_data)
Solicitation PDU RPL Client model composition data entry.

Functions

int bt_mesh_sol_pdu_rpl_clear(struct bt_mesh_msg_ctx *ctx, uint16_t range_start,
uint8_t range_len, uint16_t *start_rsp, uint8_t *len_rsp)

Remove entries from Solicitation PDU RPL of addresses in given range.

This method can be used asynchronously by setting start_rsp or len_rsp as NULL.
This way the method will not wait for response and will return immediately after send-
ing the command.

To process the response arguments of an async method, register the srpl_status call-
back in bt_mesh_sol_pdu_rpl_cli struct.

Parameters
• ctx – Message context for the message.

• range_start – Start of Unicast address range.

• range_len – Length of Unicast address range. Valid values are 0x00 and
0x02 to 0xff.

• start_rsp – Range start response buffer.

• len_rsp – Range length response buffer.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_sol_pdu_rpl_clear_unack(struct bt_mesh_msg_ctx *ctx, uint16_t range_start,
uint8_t range_len)

Remove entries from Solicitation PDU RPL of addresses in given range (unacked).

Parameters
• ctx – Message context for the message.

• range_start – Start of Unicast address range.

• range_len – Length of Unicast address range. Valid values are 0x00 and
0x02 to 0xff.

Returns
0 on success, or (negative) error code otherwise.

void bt_mesh_sol_pdu_rpl_cli_timeout_set(int32_t timeout)
Set the transmission timeout value.

Parameters
• timeout – The new transmission timeout in milliseconds.

struct bt_mesh_sol_pdu_rpl_cli
#include <sol_pdu_rpl_cli.h> Solicitation PDU RPL Client Model Context.
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Public Members

const struct bt_mesh_model *model
Solicitation PDU RPL model entry pointer.

void (*srpl_status)(struct bt_mesh_sol_pdu_rpl_cli *cli, uint16_t addr, uint16_t
range_start, uint8_t range_length)

Optional callback for Solicitation PDU RPL Status messages.

Handles received Solicitation PDU RPL Status messages from a Solicitation PDU
RPL server.The start param represents the start of range that server has cleared.
The length param represents length of range cleared by server.

Param cli
Solicitation PDU RPL client that received the status message.

Param addr
Address of the sender.

Param range_start
Range start value.

Param range_length
Range length value.

Solicitation PDU RPL Configuration Server The Solicitation PDU RPL Configuration Server
model is a foundation model defined by the Bluetooth mesh specification. The model is enabled
if the node has the On-Demand Private Proxy Server enabled.

The Solicitation PDU RPL Configuration Server model was introduced in the Bluetooth Mesh Pro-
tocol Specification version 1.1, and manages the Solicitation Replay Protection List (SRPL) saved
on the device. The SRPL is used to reject Solicitation PDUs that are already processed by a node.
When a valid Solicitation PDU message is successfully processed by a node, the SSRC field and
SSEQ field of the message are stored in the node’s SRPL.

The Solicitation PDU RPL Configuration Server does not have an API of its own, and relies on a So-
licitation PDU RPL Configuration Client to control it. The model only accepts messages encrypted
with an application key as configured by the Configuration Client.

If present, the Solicitation PDU RPL Configuration Server model must only be instantiated on the
primary element.

Configurations For the Solicitation PDU RPL Configuration Server model, the CON-
FIG_BT_MESH_PROXY_SRPL_SIZE option can be configured to set the size of the SRPL.

API reference

group bt_mesh_sol_pdu_rpl_srv

Defines

BT_MESH_MODEL_SOL_PDU_RPL_SRV
Solicitation PDU RPL Server model composition data entry.

Model specification models In addition to the foundation models defined in the Bluetooth
Mesh specification, the Bluetooth Mesh Model Specification defines several models, some of
which are implemented in Zephyr:
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BLOB Transfer models The Binary Large Object (BLOB) Transfer models implement the Blue-
tooth Mesh Binary Large Object Transfer Model specification version 1.0 and provide functional-
ity for sending large binary objects from a single source to many Target nodes over the Bluetooth
Mesh network. It is the underlying transport method for the Device Firmware Update (DFU), but
may be used for other object transfer purposes. The implementation is in experimental state.

The BLOB Transfer models support transfers of continuous binary objects of up to 4 GB (2 32

bytes). The BLOB transfer protocol has built-in recovery procedures for packet losses, and sets up
checkpoints to ensure that all targets have received all the data before moving on. Data transfer
order is not guaranteed.

BLOB transfers are constrained by the transfer speed and reliability of the underlying mesh net-
work. Under ideal conditions, the BLOBs can be transferred at a rate of up to 1 kbps, allowing a
100 kB BLOB to be transferred in 10-15 minutes. However, network conditions, transfer capabil-
ities and other limiting factors can easily degrade the data rate by several orders of magnitude.
Tuning the parameters of the transfer according to the application and network configuration,
as well as scheduling it to periods with low network traffic, will offer significant improvements
on the speed and reliability of the protocol. However, achieving transfer rates close to the ideal
rate is unlikely in actual deployments.

There are two BLOB Transfer models:

BLOB Transfer Server The Binary Large Object (BLOB) Transfer Server model implements
reliable receiving of large binary objects. It serves as the backend of the Firmware Update Server,
but can also be used for receiving other binary images.

BLOBs As described in BLOB Transfer models, the binary objects transferred by the BLOB
Transfer models are divided into blocks, which are divided into chunks. As the transfer is con-
trolled by the BLOB Transfer Client model, the BLOB Transfer Server must allow blocks to come
in any order. The chunks within a block may also come in any order, but all chunks in a block
must be received before the next block is started.

The BLOB Transfer Server keeps track of the received blocks and chunks, and will process each
block and chunk only once. The BLOB Transfer Server also ensures that any missing chunks are
resent by the BLOB Transfer Client.

Usage The BLOB Transfer Server is instantiated on an element with a set of event handler
callbacks:

static const struct bt_mesh_blob_srv_cb blob_cb = {
/* Callbacks */

};

static struct bt_mesh_blob_srv blob_srv = {
.cb = &blob_cb,

};

static const struct bt_mesh_model models[] = {
BT_MESH_MODEL_BLOB_SRV(&blob_srv),

};

A BLOB Transfer Server is capable of receiving a single BLOB transfer at a time. Before the
BLOB Transfer Server can receive a transfer, it must be prepared by the user. The transfer ID
must be passed to the BLOB Transfer Server through the bt_mesh_blob_srv_recv() function
before the transfer is started by the BLOB Transfer Client. The ID must be shared between the
BLOB Transfer Client and the BLOB Transfer Server through some higher level procedure, like
a vendor specific transfer management model.
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Once the transfer has been set up on the BLOB Transfer Server, it’s ready for receiving the BLOB.
The application is notified of the transfer progress through the event handler callbacks, and the
BLOB data is sent to the BLOB stream.

The interaction between the BLOB Transfer Server, BLOB stream and application is shown below:

BLOB Transfer Client BLOB Transfer Server BLOB stream Application

Transfer start(ID)

recv(ID, stream)

Success

Open

Start

Success Success

Block start Block start

Chunk wr(block, chunk)

Chunk wr(block, chunk)

Chunk wr(block, chunk)

Block complete

Close

Completed

Block start Block start

Chunk wr(block, chunk)

Chunk wr(block, chunk)

Chunk wr(block, chunk)

Block complete

Viewer does not support full SVG 1.1

Fig. 8: BLOB Transfer Server model interaction

Transfer suspension The BLOB Transfer Server keeps a running timer during the transfer,
that is reset on every received message. If the BLOB Transfer Client does not send a message
before the transfer timer expires, the transfer is suspended by the BLOB Transfer Server.

The BLOB Transfer Server notifies the user of the suspension by calling the suspended callback.
If the BLOB Transfer Server is in the middle of receiving a block, this block is discarded.

The BLOB Transfer Client may resume a suspended transfer by starting a new block transfer.
The BLOB Transfer Server notifies the user by calling the resume callback.

Transfer recovery The state of the BLOB transfer is stored persistently. If a reboot occurs, the
BLOB Transfer Server will attempt to recover the transfer. When the Bluetooth Mesh subsys-
tem is started (for instance by calling bt_mesh_init()), the BLOB Transfer Server will check for
aborted transfers, and call the recover callback if there is any. In the recover callback, the user
must provide a BLOB stream to use for the rest of the transfer. If the recover callback doesn’t
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return successfully or does not provide a BLOB stream, the transfer is abandoned. If no recover
callback is implemented, transfers are always abandoned after a reboot.

After a transfer is successfully recovered, the BLOB Transfer Server enters the suspended state.
It will stay suspended until the BLOB Transfer Client resumes the transfer, or the user cancels it.

Note

The BLOB Transfer Client sending the transfer must support transfer recovery for the transfer
to complete. If the BLOB Transfer Client has already given up the transfer, the BLOB Transfer
Server will stay suspended until the application calls bt_mesh_blob_srv_cancel().

API reference

group bt_mesh_blob_srv

Defines

BT_MESH_BLOB_BLOCKS_MAX
Max number of blocks in a single transfer.

BT_MESH_MODEL_BLOB_SRV(_srv)
BLOB Transfer Server model composition data entry.

Parameters
• _srv – Pointer to a Bluetooth Mesh BLOB Transfer Server model API in-

stance.

Functions

int bt_mesh_blob_srv_recv(struct bt_mesh_blob_srv *srv, uint64_t id, const struct
bt_mesh_blob_io *io, uint8_t ttl, uint16_t timeout_base)

Prepare BLOB Transfer Server for an incoming transfer.

Before a BLOB Transfer Server can receive a transfer, the transfer must be prepared
through some application level mechanism. The BLOB Transfer Server will only accept
incoming transfers with a matching BLOB ID.

Parameters
• srv – BLOB Transfer Server instance.

• id – BLOB ID to accept.

• io – BLOB stream to write the incoming BLOB to.

• ttl – Time to live value to use in responses to the BLOB Transfer Client.

• timeout_base – Extra time for the Client to respond in addition to the
base 10 seconds, in 10-second increments.

Returns
0 on success, or (negative) error code on failure.
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int bt_mesh_blob_srv_cancel(struct bt_mesh_blob_srv *srv)
Cancel the current BLOB transfer.

Tells the BLOB Transfer Client to drop this device from the list of Targets for the current
transfer. Note that the client may continue sending the transfer to other Targets.

Parameters
• srv – BLOB Transfer Server instance.

Returns
0 on success, or (negative) error code on failure.

bool bt_mesh_blob_srv_is_busy(const struct bt_mesh_blob_srv *srv)
Get the current state of the BLOB Transfer Server.

Parameters
• srv – BLOB Transfer Server instance.

Returns
true if the BLOB Transfer Server is currently participating in a transfer,
false otherwise.

uint8_t bt_mesh_blob_srv_progress(const struct bt_mesh_blob_srv *srv)
Get the current progress of the active transfer in percent.

Parameters
• srv – BLOB Transfer Server instance.

Returns
The current transfer progress, or 0 if no transfer is active.

struct bt_mesh_blob_srv_cb
#include <blob_srv.h> BLOB Transfer Server model event handlers.

All callbacks are optional.

Public Members

int (*start)(struct bt_mesh_blob_srv *srv, struct bt_mesh_msg_ctx *ctx, struct
bt_mesh_blob_xfer *xfer)

Transfer start callback.

Called when the transfer has started with the prepared BLOB ID.
Param srv

BLOB Transfer Server instance.
Param ctx

Message context for the incoming start message. The entire transfer will
be sent from the same source address.

Param xfer
Transfer parameters.

Return
0 on success, or (negative) error code to reject the transfer.

void (*end)(struct bt_mesh_blob_srv *srv, uint64_t id, bool success)
Transfer end callback.

Called when the transfer ends, either because it was cancelled, or because it fin-
ished successfully. A new transfer may be prepared.
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Note

The transfer may end before it’s started if the start parameters are invalid.

Param srv
BLOB Transfer Server instance.

Param id
BLOB ID of the cancelled transfer.

Param success
Whether the transfer was successful.

void (*suspended)(struct bt_mesh_blob_srv *srv)
Transfer suspended callback.

Called if the Server timed out while waiting for a transfer packet. A suspended
transfer may resume later from the start of the current block. Any received chunks
in the current block should be discarded, they will be received again if the transfer
resumes.

The transfer will call resumed again when resuming.

Note

The BLOB Transfer Server does not run a timer in the suspended state, and it’s
up to the application to determine whether the transfer should be permanently
cancelled. Without interaction, the transfer will be suspended indefinitely, and
the BLOB Transfer Server will not accept any new transfers.

Param srv
BLOB Transfer Server instance.

void (*resume)(struct bt_mesh_blob_srv *srv)
Transfer resume callback.

Called if the transfer is resumed after being suspended.
Param srv

BLOB Transfer Server instance.

int (*recover)(struct bt_mesh_blob_srv *srv, struct bt_mesh_blob_xfer *xfer, const
struct bt_mesh_blob_io **io)

Transfer recovery callback.

Called when the Bluetooth Mesh subsystem is started if the device is rebooted in
the middle of a transfer.

Transfers will not be resumed after a reboot if this callback is not defined.
Param srv

BLOB Transfer Server instance.
Param xfer

Transfer to resume.
Param io

BLOB stream return parameter. Must be set to a valid BLOB stream by
the callback.

Return
0 on success, or (negative) error code to abandon the transfer.

struct bt_mesh_blob_srv
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#include <blob_srv.h> BLOB Transfer Server instance.

Public Members

const struct bt_mesh_blob_srv_cb *cb
Event handler callbacks.

struct bt_mesh_blob_srv_state
#include <blob_srv.h>

BLOB Transfer Client The Binary Large Object (BLOB) Transfer Client is the sender of the
BLOB transfer. It supports sending BLOBs of any size to any number of Target nodes, in both
Push BLOB Transfer Mode and Pull BLOB Transfer Mode.

Usage

Initialization The BLOB Transfer Client is instantiated on an element with a set of event han-
dler callbacks:

static const struct bt_mesh_blob_cli_cb blob_cb = {
/* Callbacks */

};

static struct bt_mesh_blob_cli blob_cli = {
.cb = &blob_cb,

};

static const struct bt_mesh_model models[] = {
BT_MESH_MODEL_BLOB_CLI(&blob_cli),

};

Transfer context Both the transfer capabilities retrieval procedure and the BLOB transfer uses
an instance of a bt_mesh_blob_cli_inputs to determine how to perform the transfer. The BLOB
Transfer Client Inputs structure must at least be initialized with a list of targets, an application
key and a time to live (TTL) value before it is used in a procedure:

static struct bt_mesh_blob_target targets[3] = {
{ .addr = 0x0001 },
{ .addr = 0x0002 },
{ .addr = 0x0003 },

};
static struct bt_mesh_blob_cli_inputs inputs = {

.app_idx = MY_APP_IDX,

.ttl = BT_MESH_TTL_DEFAULT,
};

sys_slist_init(&inputs.targets);
sys_slist_append(&inputs.targets, &targets[0].n);
sys_slist_append(&inputs.targets, &targets[1].n);
sys_slist_append(&inputs.targets, &targets[2].n);

Note that all BLOB Transfer Servers in the transfer must be bound to the chosen application key.
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Group address The application may additionally specify a group address in the context struc-
ture. If the group is not BT_MESH_ADDR_UNASSIGNED, the messages in the transfer will be sent to
the group address, instead of being sent individually to each Target node. Mesh Manager must
ensure that all Target nodes having the BLOB Transfer Server model subscribe to this group
address.

Using group addresses for transferring the BLOBs can generally increase the transfer speed, as
the BLOB Transfer Client sends each message to all Target nodes at the same time. However,
sending large, segmented messages to group addresses in Bluetooth Mesh is generally less re-
liable than sending them to unicast addresses, as there is no transport layer acknowledgment
mechanism for groups. This can lead to longer recovery periods at the end of each block, and
increases the risk of losing Target nodes. Using group addresses for BLOB transfers will gener-
ally only pay off if the list of Target nodes is extensive, and the effectiveness of each addressing
strategy will vary heavily between different deployments and the size of the chunks.

Transfer timeout If a Target node fails to respond to an acknowledged message within the
BLOB Transfer Client’s time limit, the Target node is dropped from the transfer. The application
can reduce the chances of this by giving the BLOB Transfer Client extra time through the context
structure. The extra time may be set in 10-second increments, up to 182 hours, in addition to the
base time of 20 seconds. The wait time scales automatically with the transfer TTL.

Note that the BLOB Transfer Client only moves forward with the transfer in following cases:

• All Target nodes have responded.

• A node has been removed from the list of Target nodes.

• The BLOB Transfer Client times out.

Increasing the wait time will increase this delay.

BLOB transfer capabilities retrieval It is generally recommended to retrieve BLOB transfer
capabilities before starting a transfer. The procedure populates the transfer capabilities from all
Target nodes with the most liberal set of parameters that allows all Target nodes to participate
in the transfer. Any Target nodes that fail to respond, or respond with incompatible transfer
parameters, will be dropped.

Target nodes are prioritized according to their order in the list of Target nodes. If a Target node
is found to be incompatible with any of the previous Target nodes, for instance by reporting a
non-overlapping block size range, it will be dropped. Lost Target nodes will be reported through
the lost_target callback.

The end of the procedure is signalled through the caps callback, and the resulting capabilities
can be used to determine the block and chunk sizes required for the BLOB transfer.

BLOB transfer The BLOB transfer is started by calling bt_mesh_blob_cli_send() function,
which (in addition to the aforementioned transfer inputs) requires a set of transfer parameters
and a BLOB stream instance. The transfer parameters include the 64-bit BLOB ID, the BLOB size,
the transfer mode, the block size in logarithmic representation and the chunk size. The BLOB ID
is application defined, but must match the BLOB ID the BLOB Transfer Servers have been started
with.

The transfer runs until it either completes successfully for at least one Target node, or it is can-
celled. The end of the transfer is communicated to the application through the end callback. Lost
Target nodes will be reported through the lost_target callback.

API reference

group bt_mesh_blob_cli

2188 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

Defines

BT_MESH_MODEL_BLOB_CLI(_cli)
BLOB Transfer Client model Composition Data entry.

Parameters
• _cli – Pointer to a Bluetooth Mesh BLOB Transfer Client model API in-

stance.

Enums

enum bt_mesh_blob_cli_state
BLOB Transfer Client state.

Values:

enumerator BT_MESH_BLOB_CLI_STATE_NONE
No transfer is active.

enumerator BT_MESH_BLOB_CLI_STATE_CAPS_GET
Retrieving transfer capabilities.

enumerator BT_MESH_BLOB_CLI_STATE_START
Sending transfer start.

enumerator BT_MESH_BLOB_CLI_STATE_BLOCK_START
Sending block start.

enumerator BT_MESH_BLOB_CLI_STATE_BLOCK_SEND
Sending block chunks.

enumerator BT_MESH_BLOB_CLI_STATE_BLOCK_CHECK
Checking block status.

enumerator BT_MESH_BLOB_CLI_STATE_XFER_CHECK
Checking transfer status.

enumerator BT_MESH_BLOB_CLI_STATE_CANCEL
Cancelling transfer.

enumerator BT_MESH_BLOB_CLI_STATE_SUSPENDED
Transfer is suspended.

enumerator BT_MESH_BLOB_CLI_STATE_XFER_PROGRESS_GET
Checking transfer progress.

Functions

6.1. Bluetooth 2189



Zephyr Project Documentation, Release 3.7.99

int bt_mesh_blob_cli_caps_get(struct bt_mesh_blob_cli *cli, const struct
bt_mesh_blob_cli_inputs *inputs)

Retrieve transfer capabilities for a list of Target nodes.

Queries the availability and capabilities of all Target nodes, producing a cumula-
tive set of transfer capabilities for the Target nodes, and returning it through the
bt_mesh_blob_cli_cb::caps callback.

Retrieving the capabilities may take several seconds, depending on the number of Tar-
get nodes and mesh network performance. The end of the procedure is indicated
through the bt_mesh_blob_cli_cb::caps callback.

This procedure is not required, but strongly recommended as a preparation for a trans-
fer to maximize performance and the chances of success.

Parameters
• cli – BLOB Transfer Client instance.

• inputs – Statically allocated BLOB Transfer Client transfer inputs.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_blob_cli_send(struct bt_mesh_blob_cli *cli, const struct
bt_mesh_blob_cli_inputs *inputs, const struct
bt_mesh_blob_xfer *xfer, const struct bt_mesh_blob_io *io)

Perform a BLOB transfer.

Starts sending the transfer to the Target nodes. Only Target nodes with a status of
BT_MESH_BLOB_SUCCESS will be considered.

The transfer will keep going either until all Target nodes have been dropped, or the
full BLOB has been sent.

The BLOB transfer may take several minutes, depending on the number of Target
nodes, size of the BLOB and mesh network performance. The end of the transfer is
indicated through the bt_mesh_blob_cli_cb::end callback.

A Client only supports one transfer at the time.

Parameters
• cli – BLOB Transfer Client instance.

• inputs – Statically allocated BLOB Transfer Client transfer inputs.

• xfer – Statically allocated transfer parameters.

• io – BLOB stream to read the transfer from.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_blob_cli_suspend(struct bt_mesh_blob_cli *cli)
Suspend the active transfer.

Parameters
• cli – BLOB Transfer Client instance.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_blob_cli_resume(struct bt_mesh_blob_cli *cli)
Resume the suspended transfer.

Parameters
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• cli – BLOB Transfer Client instance.

Returns
0 on success, or (negative) error code otherwise.

void bt_mesh_blob_cli_cancel(struct bt_mesh_blob_cli *cli)
Cancel an ongoing transfer.

Parameters
• cli – BLOB Transfer Client instance.

int bt_mesh_blob_cli_xfer_progress_get(struct bt_mesh_blob_cli *cli, const struct
bt_mesh_blob_cli_inputs *inputs)

Get the progress of BLOB transfer.

This function can only be used if the BLOB Transfer Client is currently not per-
forming a BLOB transfer. To get progress of the active BLOB transfer, use the
bt_mesh_blob_cli_xfer_progress_active_get function.

Parameters
• cli – BLOB Transfer Client instance.

• inputs – Statically allocated BLOB Transfer Client transfer inputs.

Returns
0 on success, or (negative) error code otherwise.

uint8_t bt_mesh_blob_cli_xfer_progress_active_get(struct bt_mesh_blob_cli *cli)
Get the current progress of the active transfer in percent.

Parameters
• cli – BLOB Transfer Client instance.

Returns
The current transfer progress, or 0 if no transfer is active.

bool bt_mesh_blob_cli_is_busy(struct bt_mesh_blob_cli *cli)
Get the current state of the BLOB Transfer Client.

Parameters
• cli – BLOB Transfer Client instance.

Returns
true if the BLOB Transfer Client is currently participating in a transfer or
retrieving the capabilities and false otherwise.

struct bt_mesh_blob_target_pull
#include <blob_cli.h> Target node’s Pull mode (Pull BLOB Transfer Mode) context used
while sending chunks to the Target node.

Public Members

int64_t block_report_timestamp
Timestamp when the Block Report Timeout Timer expires for this Target node.

uint8_t missing[DIV_ROUND_UP(CONFIG_BT_MESH_BLOB_CHUNK_COUNT_MAX, 8)]
Missing chunks reported by this Target node.
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struct bt_mesh_blob_target
#include <blob_cli.h> BLOB Transfer Client Target node.

Public Members

sys_snode_t n
Linked list node.

uint16_t addr
Target node address.

struct bt_mesh_blob_target_pull *pull
Target node’s Pull mode context.

Needs to be initialized when sending a BLOB in Pull mode.

uint8_t status
BLOB transfer status, see bt_mesh_blob_status.

struct bt_mesh_blob_xfer_info
#include <blob_cli.h> BLOB transfer information.

If phase is BT_MESH_BLOB_XFER_PHASE_INACTIVE, the fields below phase are not
initialized. If phase is BT_MESH_BLOB_XFER_PHASE_WAITING_FOR_START, the fields
below id are not initialized.

Public Members

enum bt_mesh_blob_status status
BLOB transfer status.

enum bt_mesh_blob_xfer_mode mode
BLOB transfer mode.

enum bt_mesh_blob_xfer_phase phase
BLOB transfer phase.

uint64_t id
BLOB ID.

uint32_t size
BLOB size in octets.

uint8_t block_size_log
Logarithmic representation of the block size.

uint16_t mtu_size
MTU size in octets.
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const uint8_t *missing_blocks
Bit field indicating blocks that were not received.

struct bt_mesh_blob_cli_inputs
#include <blob_cli.h> BLOB Transfer Client transfer inputs.

Public Members

sys_slist_t targets
Linked list of Target nodes.

Each node should point to bt_mesh_blob_target::n.

uint16_t app_idx
AppKey index to send with.

uint16_t group
Group address destination for the BLOB transfer, or
BT_MESH_ADDR_UNASSIGNED to send every message to each Target node
individually.

uint8_t ttl
Time to live value of BLOB transfer messages.

uint16_t timeout_base
Additional response time for the Target nodes, in 10-second increments.

The extra time can be used to give the Target nodes more time to respond to mes-
sages from the Client. The actual timeout will be calculated according to the fol-
lowing formula:

* timeout = 20 seconds + (10 seconds * timeout_base) + (100 ms * TTL)
*

If a Target node fails to respond to a message from the Client within the configured
transfer timeout, the Target node is dropped.

struct bt_mesh_blob_cli_caps
#include <blob_cli.h> Transfer capabilities of a Target node.

Public Members

size_t max_size
Max BLOB size.

uint8_t min_block_size_log
Logarithmic representation of the minimum block size.

uint8_t max_block_size_log
Logarithmic representation of the maximum block size.

6.1. Bluetooth 2193



Zephyr Project Documentation, Release 3.7.99

uint16_t max_chunks
Max number of chunks per block.

uint16_t max_chunk_size
Max chunk size.

uint16_t mtu_size
Max MTU size.

enum bt_mesh_blob_xfer_mode modes
Supported transfer modes.

struct bt_mesh_blob_cli_cb
#include <blob_cli.h> Event handler callbacks for the BLOB Transfer Client model.

All handlers are optional.

Public Members

void (*caps)(struct bt_mesh_blob_cli *cli, const struct bt_mesh_blob_cli_caps *caps)
Capabilities retrieval completion callback.

Called when the capabilities retrieval procedure completes, indicating that a
common set of acceptable transfer parameters have been established for the
given list of Target nodes. All compatible Target nodes have status code
BT_MESH_BLOB_SUCCESS.

Param cli
BLOB Transfer Client instance.

Param caps
Safe transfer capabilities if the transfer capabilities of at least one Target
node has satisfied the Client, or NULL otherwise.

void (*lost_target)(struct bt_mesh_blob_cli *cli, struct bt_mesh_blob_target *target,
enum bt_mesh_blob_status reason)

Target node loss callback.

Called whenever a Target node has been lost due to some error in the transfer.
Losing a Target node is not considered a fatal error for the Client until all Target
nodes have been lost.

Param cli
BLOB Transfer Client instance.

Param target
Target node that was lost.

Param reason
Reason for the Target node loss.

void (*suspended)(struct bt_mesh_blob_cli *cli)
Transfer is suspended.

Called when the transfer is suspended due to response timeout from all Target
nodes.

Param cli
BLOB Transfer Client instance.
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void (*end)(struct bt_mesh_blob_cli *cli, const struct bt_mesh_blob_xfer *xfer, bool
success)

Transfer end callback.

Called when the transfer ends.
Param cli

BLOB Transfer Client instance.
Param xfer

Completed transfer.
Param success

Status of the transfer. Is true if at least one Target node received the
whole transfer.

void (*xfer_progress)(struct bt_mesh_blob_cli *cli, struct bt_mesh_blob_target *target,
const struct bt_mesh_blob_xfer_info *info)

Transfer progress callback.

The content of info is invalidated upon exit from the callback. Therefore it needs
to be copied if it is planned to be used later.

Param cli
BLOB Transfer Client instance.

Param target
Target node that responded to the request.

Param info
BLOB transfer information.

void (*xfer_progress_complete)(struct bt_mesh_blob_cli *cli)
End of Get Transfer Progress procedure.

Called when all Target nodes have responded or the procedure timed-out.
Param cli

BLOB Transfer Client instance.

struct bt_mesh_blob_cli
#include <blob_cli.h> BLOB Transfer Client model instance.

Public Members

const struct bt_mesh_blob_cli_cb *cb
Event handler callbacks.

The BLOB Transfer Client is instantiated on the sender node, and the BLOB Transfer Server is
instantiated on the receiver nodes.

Concepts The BLOB transfer protocol introduces several new concepts to implement the BLOB
transfer.

BLOBs BLOBs are binary objects up to 4 GB in size, that can contain any data the application
would like to transfer through the mesh network. The BLOBs are continuous data objects, di-
vided into blocks and chunks to make the transfers reliable and easy to process. No limitations
are put on the contents or structure of the BLOB, and applications are free to define any encoding
or compression they’d like on the data itself.

The BLOB transfer protocol does not provide any built-in integrity checks, encryption or authen-
tication of the BLOB data. However, the underlying encryption of the Bluetooth Mesh protocol
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provides data integrity checks and protects the contents of the BLOB from third parties using
network and application level encryption.

Blocks The binary objects are divided into blocks, typically from a few hundred to several thou-
sand bytes in size. Each block is transmitted separately, and the BLOB Transfer Client ensures
that all BLOB Transfer Servers have received the full block before moving on to the next. The
block size is determined by the transfer’s block_size_log parameter, and is the same for all
blocks in the transfer except the last, which may be smaller. For a BLOB stored in flash memory,
the block size is typically a multiple of the flash page size of the Target devices.

Chunks Each block is divided into chunks. A chunk is the smallest data unit in the BLOB trans-
fer, and must fit inside a single Bluetooth Mesh access message excluding the opcode (379 bytes
or less). The mechanism for transferring chunks depends on the transfer mode.

When operating in Push BLOB Transfer Mode, the chunks are sent as unacknowledged packets
from the BLOB Transfer Client to all targeted BLOB Transfer Servers. Once all chunks in a block
have been sent, the BLOB Transfer Client asks each BLOB Transfer Server if they’re missing any
chunks, and resends them. This is repeated until all BLOB Transfer Servers have received all
chunks, or the BLOB Transfer Client gives up.

When operating in Pull BLOB Transfer Mode, the BLOB Transfer Server will request a small
number of chunks from the BLOB Transfer Client at a time, and wait for the BLOB Transfer
Client to send them before requesting more chunks. This repeats until all chunks have been
transferred, or the BLOB Transfer Server gives up.

Read more about the transfer modes in Transfer modes section.

BLOB streams In the BLOB Transfer models’ APIs, the BLOB data handling is separated from
the high-level transfer handling. This split allows reuse of different BLOB storage and transfer
strategies for different applications. While the high level transfer is controlled directly by the
application, the BLOB data itself is accessed through a BLOB stream.

The BLOB stream is comparable to a standard library file stream. Through opening, closing,
reading and writing, the BLOB Transfer model gets full access to the BLOB data, whether it’s
kept in flash, RAM, or on a peripheral. The BLOB stream is opened with an access mode (read or
write) before it’s used, and the BLOB Transfer models will move around inside the BLOB’s data
in blocks and chunks, using the BLOB stream as an interface.

Interaction Before the BLOB is read or written, the stream is opened by calling its open call-
back. When used with a BLOB Transfer Server, the BLOB stream is always opened in write mode,
and when used with a BLOB Transfer Client, it’s always opened in read mode.

For each block in the BLOB, the BLOB Transfer model starts by calling block_start. Then, de-
pending on the access mode, the BLOB stream’s wr or rd callback is called repeatedly to move
data to or from the BLOB. When the model is done processing the block, it calls block_end. When
the transfer is complete, the BLOB stream is closed by calling close.

Implementations The application may implement their own BLOB stream, or use the imple-
mentations provided by Zephyr:

BLOBFlash The BLOB Flash Readers and Writers implement BLOB reading to and writing from
flash partitions defined in the flash map.
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BLOB Flash Reader The BLOB Flash Reader interacts with the BLOB Transfer Client to read
BLOB data directly from flash. It must be initialized by calling bt_mesh_blob_flash_rd_init()
before being passed to the BLOB Transfer Client. Each BLOB Flash Reader only supports one
transfer at the time.

BLOB Flash Writer The BLOB Flash Writer interacts with the BLOB Transfer Server to write
BLOB data directly to flash. It must be initialized by calling bt_mesh_blob_flash_rd_init() be-
fore being passed to the BLOB Transfer Server. Each BLOB Flash Writer only supports one trans-
fer at the time, and requires a block size that is a multiple of the flash page size. If a transfer is
started with a block size lower than the flash page size, the transfer will be rejected.

The BLOB Flash Writer copies chunk data into a buffer to accommodate chunks that are un-
aligned with the flash write block size. The buffer data is padded with 0xff if either the start or
length of the chunk is unaligned.

API Reference

group bt_mesh_blob_io_flash

Functions

int bt_mesh_blob_io_flash_init(struct bt_mesh_blob_io_flash *flash, uint8_t area_id,
off_t offset)

Initialize a flash stream.

Parameters
• flash – Flash stream.

• area_id – Flash partition identifier. See flash_area_open.

• offset – Offset into the flash area, in bytes.

Returns
0 on success or (negative) error code otherwise.

struct bt_mesh_blob_io_flash
#include <blob_io_flash.h> BLOB flash stream.

Public Members

uint8_t area_id
Flash area ID to write the BLOB to.

enum bt_mesh_blob_io_mode mode
Active stream mode.

off_t offset
Offset into the flash area to place the BLOB at (in bytes).
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Transfer capabilities Each BLOB Transfer Server may have different transfer capabilities. The
transfer capabilities of each device are controlled through the following configuration options:

• CONFIG_BT_MESH_BLOB_SIZE_MAX
• CONFIG_BT_MESH_BLOB_BLOCK_SIZE_MIN
• CONFIG_BT_MESH_BLOB_BLOCK_SIZE_MAX
• CONFIG_BT_MESH_BLOB_CHUNK_COUNT_MAX

The CONFIG_BT_MESH_BLOB_CHUNK_COUNT_MAX option is also used by the BLOB Transfer Client and
affects memory consumption by the BLOB Transfer Client model structure.

To ensure that the transfer can be received by as many servers as possible, the BLOB Transfer
Client can retrieve the capabilities of each BLOB Transfer Server before starting the transfer. The
client will transfer the BLOB with the highest possible block and chunk size.

Transfer modes BLOBs can be transferred using two transfer modes, Push BLOB Transfer
Mode and Pull BLOB Transfer Mode. In most cases, the transfer should be conducted in Push
BLOB Transfer Mode.

In Push BLOB Transfer Mode, the send rate is controlled by the BLOB Transfer Client, which will
push all the chunks of each block without any high level flow control. Push BLOB Transfer Mode
supports any number of Target nodes, and should be the default transfer mode.

In Pull BLOB Transfer Mode, the BLOB Transfer Server will “pull” the chunks from the BLOB
Transfer Client at its own rate. Pull BLOB Transfer Mode can be conducted with multiple Target
nodes, and is intended for transferring BLOBs to Target nodes acting as Low Power Node. When
operating in Pull BLOB Transfer Mode, the BLOB Transfer Server will request chunks from the
BLOB Transfer Client in small batches, and wait for them all to arrive before requesting more
chunks. This process is repeated until the BLOB Transfer Server has received all chunks in a
block. Then, the BLOB Transfer Client starts the next block, and the BLOB Transfer Server re-
quests all chunks of that block.

Transfer timeout The timeout of the BLOB transfer is based on a Timeout Base value. Both
client and server use the same Timeout Base value, but they calculate timeout differently.

The BLOB Transfer Server uses the following formula to calculate the BLOB transfer timeout:

10 * (Timeout Base + 1) seconds

For the BLOB Transfer Client, the following formula is used:

(10000 * (Timeout Base + 2)) + (100 * TTL) milliseconds

where TTL is time to live value set in the transfer.

API reference This section contains types and defines common to the BLOB Transfer models.

group bt_mesh_blob

Defines

CONFIG_BT_MESH_BLOB_CHUNK_COUNT_MAX
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Enums

enum bt_mesh_blob_xfer_mode
BLOB transfer mode.

Values:

enumerator BT_MESH_BLOB_XFER_MODE_NONE
No valid transfer mode.

enumerator BT_MESH_BLOB_XFER_MODE_PUSH
Push mode (Push BLOB Transfer Mode).

enumerator BT_MESH_BLOB_XFER_MODE_PULL
Pull mode (Pull BLOB Transfer Mode).

enumerator BT_MESH_BLOB_XFER_MODE_ALL
Both modes are valid.

enum bt_mesh_blob_xfer_phase
Transfer phase.

Values:

enumerator BT_MESH_BLOB_XFER_PHASE_INACTIVE
The BLOB Transfer Server is awaiting configuration.

enumerator BT_MESH_BLOB_XFER_PHASE_WAITING_FOR_START
The BLOB Transfer Server is ready to receive a BLOB transfer.

enumerator BT_MESH_BLOB_XFER_PHASE_WAITING_FOR_BLOCK
The BLOB Transfer Server is waiting for the next block of data.

enumerator BT_MESH_BLOB_XFER_PHASE_WAITING_FOR_CHUNK
The BLOB Transfer Server is waiting for the next chunk of data.

enumerator BT_MESH_BLOB_XFER_PHASE_COMPLETE
The BLOB was transferred successfully.

enumerator BT_MESH_BLOB_XFER_PHASE_SUSPENDED
The BLOB transfer is paused.

enum bt_mesh_blob_status
BLOB model status codes.

Values:

enumerator BT_MESH_BLOB_SUCCESS
The message was processed successfully.
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enumerator BT_MESH_BLOB_ERR_INVALID_BLOCK_NUM
The Block Number field value is not within the range of blocks being transferred.

enumerator BT_MESH_BLOB_ERR_INVALID_BLOCK_SIZE
The block size is smaller than the size indicated by the Min Block Size Log state or
is larger than the size indicated by the Max Block Size Log state.

enumerator BT_MESH_BLOB_ERR_INVALID_CHUNK_SIZE
The chunk size exceeds the size indicated by the Max Chunk Size state, or the num-
ber of chunks exceeds the number specified by the Max Total Chunks state.

enumerator BT_MESH_BLOB_ERR_WRONG_PHASE
The operation cannot be performed while the server is in the current phase.

enumerator BT_MESH_BLOB_ERR_INVALID_PARAM
A parameter value in the message cannot be accepted.

enumerator BT_MESH_BLOB_ERR_WRONG_BLOB_ID
The message contains a BLOB ID value that is not expected.

enumerator BT_MESH_BLOB_ERR_BLOB_TOO_LARGE
There is not enough space available in memory to receive the BLOB.

enumerator BT_MESH_BLOB_ERR_UNSUPPORTED_MODE
The transfer mode is not supported by the BLOB Transfer Server model.

enumerator BT_MESH_BLOB_ERR_INTERNAL
An internal error occurred on the node.

enumerator BT_MESH_BLOB_ERR_INFO_UNAVAILABLE
The requested information cannot be provided while the server is in the current
phase.

enum bt_mesh_blob_io_mode
BLOB stream interaction mode.

Values:

enumerator BT_MESH_BLOB_READ
Read data from the stream.

enumerator BT_MESH_BLOB_WRITE
Write data to the stream.

struct bt_mesh_blob_block
#include <blob.h> BLOB transfer data block.

Public Members
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size_t size
Block size in bytes.

off_t offset
Offset in bytes from the start of the BLOB.

uint16_t number
Block number.

uint16_t chunk_count
Number of chunks in block.

uint8_t missing[DIV_ROUND_UP(0, 8)]
Bitmap of missing chunks.

struct bt_mesh_blob_chunk
#include <blob.h> BLOB data chunk.

Public Members

off_t offset
Offset of the chunk data from the start of the block.

size_t size
Chunk data size.

uint8_t *data
Chunk data.

struct bt_mesh_blob_xfer
#include <blob.h> BLOB transfer.

Public Members

uint64_t id
BLOB ID.

size_t size
Total BLOB size in bytes.

enum bt_mesh_blob_xfer_mode mode
BLOB transfer mode.

uint16_t chunk_size
Base chunk size.

May be smaller for the last chunk.
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struct bt_mesh_blob_io
#include <blob.h> BLOB stream.

Public Members

int (*open)(const struct bt_mesh_blob_io *io, const struct bt_mesh_blob_xfer *xfer,
enum bt_mesh_blob_io_mode mode)

Open callback.

Called when the reader is opened for reading.
Param io

BLOB stream.
Param xfer

BLOB transfer.
Parammode

Direction of the stream (read/write).
Return

0 on success, or (negative) error code otherwise.

void (*close)(const struct bt_mesh_blob_io *io, const struct bt_mesh_blob_xfer *xfer)
Close callback.

Called when the reader is closed.
Param io

BLOB stream.
Param xfer

BLOB transfer.

int (*block_start)(const struct bt_mesh_blob_io *io, const struct bt_mesh_blob_xfer
*xfer, const struct bt_mesh_blob_block *block)

Block start callback.

Called when a new block is opened for sending. Each block is only sent once, and
are always sent in increasing order. The data chunks inside a single block may be
requested out of order and multiple times.

Param io
BLOB stream.

Param xfer
BLOB transfer.

Param block
Block that was started.

void (*block_end)(const struct bt_mesh_blob_io *io, const struct bt_mesh_blob_xfer
*xfer, const struct bt_mesh_blob_block *block)

Block end callback.

Called when the current block has been transmitted in full. No data from this block
will be requested again, and the application data associated with this block may
be discarded.

Param io
BLOB stream.

Param xfer
BLOB transfer.

Param block
Block that finished sending.

2202 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

int (*wr)(const struct bt_mesh_blob_io *io, const struct bt_mesh_blob_xfer *xfer, const
struct bt_mesh_blob_block *block, const struct bt_mesh_blob_chunk *chunk)

Chunk data write callback.

Used by the BLOB Transfer Server on incoming data.

Each block is divided into chunks of data. This callback is called when a new chunk
of data is received. Chunks may be received in any order within their block.

If the callback returns successfully, this chunk will be marked as received, and will
not be received again unless the block is restarted due to a transfer suspension.
If the callback returns a non-zero value, the chunk remains unreceived, and the
BLOB Transfer Client will attempt to resend it later.

Note that the Client will only perform a limited number of attempts at delivering
a chunk before dropping a Target node from the transfer. The number of retries
performed by the Client is implementation specific.

Param io
BLOB stream.

Param xfer
BLOB transfer.

Param block
Block the chunk is part of.

Param chunk
Received chunk.

Return
0 on success, or (negative) error code otherwise.

int (*rd)(const struct bt_mesh_blob_io *io, const struct bt_mesh_blob_xfer *xfer, const
struct bt_mesh_blob_block *block, const struct bt_mesh_blob_chunk *chunk)

Chunk data read callback.

Used by the BLOB Transfer Client to fetch outgoing data.

The Client calls the chunk data request callback to populate a chunk message going
out to the Target nodes. The data request callback may be called out of order and
multiple times for each offset, and cannot be used as an indication of progress.

Returning a non-zero status code on the chunk data request callback results in
termination of the transfer.

Param io
BLOB stream.

Param xfer
BLOB transfer.

Param block
Block the chunk is part of.

Param chunk
Chunk to get the data of. The buffer pointer to by the datamember should
be filled by the callback.

Return
0 on success, or (negative) error code otherwise.

Device FirmwareUpdate (DFU) Bluetooth Mesh supports the distribution of firmware images
across a mesh network. The Bluetooth mesh DFU subsystem implements the Bluetooth Mesh
Device Firmware Update Model specification version 1.0.

Bluetooth Mesh DFU implements a distribution mechanism for firmware images, and does not
put any restrictions on the size, format or usage of the images. The primary design goal of the
subsystem is to provide the qualifiable parts of the Bluetooth Mesh DFU specification, and leave
the usage, firmware validation and deployment to the application.
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The DFU specification is implemented in the Zephyr Bluetooth Mesh DFU subsystem as three
separate models:

Firmware Update Server The Firmware Update Server model implements the Target node
functionality of the Device Firmware Update (DFU) subsystem. It extends the BLOB Transfer
Server, which it uses to receive the firmware image binary from the Distributor node.

Together with the extended BLOB Transfer Server model, the Firmware Update Server model im-
plements all the required functionality for receiving firmware updates over the mesh network,
but does not provide any functionality for storing, applying or verifying the images.

Firmware images The Firmware Update Server holds a list of all the updatable firmware im-
ages on the device. The full list shall be passed to the server through the _imgs parameter in
BT_MESH_DFU_SRV_INIT, and must be populated before the Bluetooth Mesh subsystem is started.
Each firmware image in the image list must be independently updatable, and should have its
own firmware ID.

For instance, a device with an upgradable bootloader, an application and a peripheral chip with
firmware update capabilities could have three entries in the firmware image list, each with their
own separate firmware ID.

Receiving transfers The Firmware Update Server model uses a BLOB Transfer Server model
on the same element to transfer the binary image. The interaction between the Firmware Update
Server, BLOB Transfer Server and application is described below:

Transfer check The transfer check is an optional pre-transfer check the application can per-
form on incoming firmware image metadata. The Firmware Update Server performs the trans-
fer check by calling the check callback.

The result of the transfer check is a pass/fail status return and the expected bt_mesh_dfu_effect.
The DFU effect return parameter will be communicated back to the Distributor, and should in-
dicate what effect the firmware update will have on the mesh state of the device.

Composition Data and Models Metadata If the transfer will cause the device to change its
Composition Data or become unprovisioned, this should be communicated through the effect
parameter of the metadata check.

When the transfer will cause the Composition Data to change, and theRemote Provisioning Server
is supported, the Composition Data of the new firmware image will be represented by Compo-
sition Data Pages 128, 129, and 130. The Models Metadata of the new firmware image will be
represented by Models Metadata Page 128. Composition Data Pages 0, 1 and 2, and Models Meta-
data Page 0, will represent the Composition Data and the Models Metadata of the old firmware
image until the device is reprovisioned with Node Provisioning Protocol Interface (NPPI) proce-
dures using the Remote Provisioning Client.

The application must call functions bt_mesh_comp_change_prepare() and
bt_mesh_models_metadata_change_prepare() to store the existing Composition Data and
Models Metadata pages before booting into the firmware with the updated Composition Data
and Models Metadata. The old Composition Data will then be loaded into Composition Data
Pages 0, 1 and 2, while the Composition Data in the new firmware will be loaded into Compo-
sition Data Pages 128, 129 and 130. The Models Metadata for the old image will be loaded into
Models Metadata Page 0, and the Models Metadata for the new image will be loaded into Models
Metadata Page 128.

Limitation:
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Fig. 9: Bluetooth Mesh Firmware Update Server transfer
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• It is not possible to change the Composition Data of the device and keep the device provi-
sioned and working with the old firmware after the new firmware image is applied.

Start The Start procedure prepares the application for the incoming transfer. It’ll contain in-
formation about which image is being updated, as well as the update metadata.

The Firmware Update Server start callback must return a pointer to the BLOB Writer the BLOB
Transfer Server will send the BLOB to.

BLOB transfer After the setup stage, the Firmware Update Server prepares the BLOB Transfer
Server for the incoming transfer. The entire firmware image is transferred to the BLOB Transfer
Server, which passes the image to its assigned BLOB Writer.

At the end of the BLOB transfer, the Firmware Update Server calls its end callback.

Image verification After the BLOB transfer has finished, the application should verify the im-
age in any way it can to ensure that it is ready for being applied. Once the image has been
verified, the application calls bt_mesh_dfu_srv_verified().

If the image can’t be verified, the application calls bt_mesh_dfu_srv_rejected().

Applying the image Finally, if the image was verified, the Distributor may instruct the
Firmware Update Server to apply the transfer. This is communicated to the application through
the apply callback. The application should swap the image and start running with the new
firmware. The firmware image table should be updated to reflect the new firmware ID of the
updated image.

When the transfer applies to the mesh application itself, the device might have to reboot as part of
the swap. This restart can be performed from inside the apply callback, or done asynchronously.
After booting up with the new firmware, the firmware image table should be updated before the
Bluetooth Mesh subsystem is started.

The Distributor will read out the firmware image table to confirm that the transfer was success-
fully applied. If the metadata check indicated that the device would become unprovisioned, the
Target node is not required to respond to this check.

API reference

group bt_mesh_dfu_srv
API for the Bluetooth Mesh Firmware Update Server model.

Defines

BT_MESH_DFU_SRV_INIT(_handlers, _imgs, _img_count)
Initialization parameters for Firmware Update Server model.

Parameters
• _handlers – DFU handler function structure.

• _imgs – List of bt_mesh_dfu_img managed by this Server.

• _img_count – Number of DFU images managed by this Server.
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BT_MESH_MODEL_DFU_SRV(_srv)
Firmware Update Server model entry.

Parameters
• _srv – Pointer to a Firmware Update Server model instance.

Functions

void bt_mesh_dfu_srv_verified(struct bt_mesh_dfu_srv *srv)
Accept the received DFU transfer.

Should be called at the end of a successful DFU transfer.

If the DFU transfer completes successfully, the application should verify the image va-
lidity (including any image authentication or integrity checks), and call this function
if the image is ready to be applied.

Parameters
• srv – Firmware Update Server instance.

void bt_mesh_dfu_srv_rejected(struct bt_mesh_dfu_srv *srv)
Reject the received DFU transfer.

Should be called at the end of a successful DFU transfer.

If the DFU transfer completes successfully, the application should verify the image va-
lidity (including any image authentication or integrity checks), and call this function
if one of the checks fail.

Parameters
• srv – Firmware Update Server instance.

void bt_mesh_dfu_srv_cancel(struct bt_mesh_dfu_srv *srv)
Cancel the ongoing DFU transfer.

Parameters
• srv – Firmware Update Server instance.

void bt_mesh_dfu_srv_applied(struct bt_mesh_dfu_srv *srv)
Confirm that the received DFU transfer was applied.

Should be called as a result of the bt_mesh_dfu_srv_cb::apply callback.

Parameters
• srv – Firmware Update Server instance.

bool bt_mesh_dfu_srv_is_busy(const struct bt_mesh_dfu_srv *srv)
Check if the Firmware Update Server is busy processing a transfer.

Parameters
• srv – Firmware Update Server instance.

Returns
true if a DFU procedure is in progress, false otherwise.

uint8_t bt_mesh_dfu_srv_progress(const struct bt_mesh_dfu_srv *srv)
Get the progress of the current DFU procedure, in percent.

Parameters
• srv – Firmware Update Server instance.
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Returns
The current transfer progress in percent.

struct bt_mesh_dfu_srv_cb
#include <dfu_srv.h> Firmware Update Server event callbacks.

Public Members

int (*check)(struct bt_mesh_dfu_srv *srv, const struct bt_mesh_dfu_img *img, struct
net_buf_simple *metadata, enum bt_mesh_dfu_effect *effect)

Transfer check callback.

The transfer check can be used to validate the incoming transfer before it starts.
The contents of the metadata is implementation specific, and should contain all
the information the application needs to determine whether this image should be
accepted, and what the effect of the transfer would be.

If applying the image will have an effect on the provisioning state of the mesh stack,
this can be communicated through the effect return parameter.

The metadata check can be performed both as part of starting a new transfer and
as a separate procedure.

This handler is optional.
Param srv

Firmware Update Server instance.
Param img

DFU image the metadata check is performed on.
Parammetadata

Image metadata.
Param effect

Return parameter for the image effect on the provisioning state of the
mesh stack.

Return
0 on success, or (negative) error code otherwise.

int (*start)(struct bt_mesh_dfu_srv *srv, const struct bt_mesh_dfu_img *img, struct
net_buf_simple *metadata, const struct bt_mesh_blob_io **io)

Transfer start callback.

Called when the Firmware Update Server is ready to start a new DFU transfer. The
application must provide an initialized BLOB stream to be used during the DFU
transfer.

The following error codes are treated specially, and should be used to communi-
cate these issues:

• -ENOMEM: The device cannot fit this image.
• -EBUSY: The application is temporarily unable to accept the transfer.
• -EALREADY: The device has already received and verified this image, and

there’s no need to transfer it again. The Firmware Update model will skip the
transfer phase, and mark the image as verified.

This handler is mandatory.
Param srv

Firmware Update Server instance.
Param img

DFU image being updated.
Parammetadata

Image metadata.
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Param io
BLOB stream return parameter. Must be set to a valid BLOB stream by
the callback.

Return
0 on success, or (negative) error code otherwise. Return codes -ENOMEM,
-EBUSY -EALREADY will be passed to the updater, other error codes are
reported as internal errors.

void (*end)(struct bt_mesh_dfu_srv *srv, const struct bt_mesh_dfu_img *img, bool
success)

Transfer end callback.

This handler is optional.

If the transfer is successful, the application should verify the firmware image, and
call either bt_mesh_dfu_srv_verified or bt_mesh_dfu_srv_rejected depending on the
outcome.

If the transfer fails, the Firmware Update Server will be available for new transfers
immediately after this function returns.

Param srv
Firmware Update Server instance.

Param img
DFU image that failed the update.

Param success
Whether the DFU transfer was successful.

int (*recover)(struct bt_mesh_dfu_srv *srv, const struct bt_mesh_dfu_img *img, const
struct bt_mesh_blob_io **io)

Transfer recovery callback.

If the device reboots in the middle of a transfer, the Firmware Update Server calls
this function when the Bluetooth Mesh subsystem is started.

This callback is optional, but transfers will not be recovered after a reboot without
it.

Param srv
Firmware Update Server instance.

Param img
DFU image being updated.

Param io
BLOB stream return parameter. Must be set to a valid BLOB stream by
the callback.

Return
0 on success, or (negative) error code to abandon the transfer.

int (*apply)(struct bt_mesh_dfu_srv *srv, const struct bt_mesh_dfu_img *img)
Transfer apply callback.

Called after a transfer has been validated, and the updater sends an apply message
to the Target nodes.

This handler is optional.
Param srv

Firmware Update Server instance.
Param img

DFU image that should be applied.
Return

0 on success, or (negative) error code otherwise.
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struct bt_mesh_dfu_srv
#include <dfu_srv.h> Firmware Update Server instance.

Should be initialized with BT_MESH_DFU_SRV_INIT.

Public Members

struct bt_mesh_blob_srv blob
Underlying BLOB Transfer Server.

const struct bt_mesh_dfu_srv_cb *cb
Callback structure.

const struct bt_mesh_dfu_img *imgs
List of updatable images.

size_t img_count
Number of updatable images.

Firmware Update Client The Firmware Update Client is responsible for distributing firmware
updates through the mesh network. The Firmware Update Client uses the BLOB Transfer Client
as a transport for its transfers.

API reference

group bt_mesh_dfu_cli
API for the Bluetooth Mesh Firmware Update Client model.

Defines

BT_MESH_DFU_CLI_INIT(_handlers)
Initialization parameters for the Firmware Uppdate Client model.

See also

bt_mesh_dfu_cli_cb.

Parameters
• _handlers – Handler callback structure.

BT_MESH_MODEL_DFU_CLI(_cli)
Firmware Update Client model Composition Data entry.

Parameters
• _cli – Pointer to a Firmware Uppdate Client model instance.
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Typedefs

typedef enum bt_mesh_dfu_iter (*bt_mesh_dfu_img_cb_t)(struct bt_mesh_dfu_cli *cli,
struct bt_mesh_msg_ctx *ctx, uint8_t idx, uint8_t total, const struct bt_mesh_dfu_img *img,
void *cb_data)

DFU image callback.

The image callback is called for every DFU image on the Target node when calling
bt_mesh_dfu_cli_imgs_get.

Param cli
Firmware Update Client model instance.

Param ctx
Message context of the received message.

Param idx
Image index.

Param total
Total number of images on the Target node.

Param img
Image information for the given image index.

Param cb_data
Callback data.

Retval BT_MESH_DFU_ITER_STOP
Stop iterating through the image list and return from
bt_mesh_dfu_cli_imgs_get.

Retval BT_MESH_DFU_ITER_CONTINUE
Continue iterating through the image list if any images remain.

Functions

int bt_mesh_dfu_cli_send(struct bt_mesh_dfu_cli *cli, const struct bt_mesh_blob_cli_inputs
*inputs, const struct bt_mesh_blob_io *io, const struct
bt_mesh_dfu_cli_xfer *xfer)

Start distributing a DFU.

Starts distribution of the firmware in the given slot to the list of DFU Target nodes
in ctx. The transfer runs in the background, and its end is signalled through the
bt_mesh_dfu_cli_cb::ended callback.

Note

The BLOB Transfer Client transfer inputs targets list must point to a list of
bt_mesh_dfu_target nodes.

Parameters
• cli – Firmware Update Client model instance.

• inputs – BLOB Transfer Client transfer inputs.

• io – BLOB stream to read BLOB from.

• xfer – Firmware Update Client transfer parameters.
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Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_dfu_cli_suspend(struct bt_mesh_dfu_cli *cli)
Suspend a DFU transfer.

Parameters
• cli – Firmware Update Client instance.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_dfu_cli_resume(struct bt_mesh_dfu_cli *cli)
Resume the suspended transfer.

Parameters
• cli – Firmware Update Client instance.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_dfu_cli_cancel(struct bt_mesh_dfu_cli *cli, struct bt_mesh_msg_ctx *ctx)
Cancel a DFU transfer.

Will cancel the ongoing DFU transfer, or the transfer on a specific Target node if ctx is
valid.

Parameters
• cli – Firmware Update Client model instance.

• ctx – Message context, or NULL to cancel the ongoing DFU transfer.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_dfu_cli_apply(struct bt_mesh_dfu_cli *cli)
Apply the completed DFU transfer.

A transfer can only be applied after it has ended successfully. The Firmware Update
Client’s applied callback is called at the end of the apply procedure.

Parameters
• cli – Firmware Update Client model instance.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_dfu_cli_confirm(struct bt_mesh_dfu_cli *cli)
Confirm that the active transfer has been applied on the Target nodes.

A transfer can only be confirmed after it has been applied. The Firmware Update
Client’s confirmed callback is called at the end of the confirm procedure.

Target nodes that have reported the effect as BT_MESH_DFU_EFFECT_UNPROV are ex-
pected to not respond to the query, and will fail if they do.

Parameters
• cli – Firmware Update Client model instance.

Returns
0 on success, or (negative) error code otherwise.
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uint8_t bt_mesh_dfu_cli_progress(struct bt_mesh_dfu_cli *cli)
Get progress as a percentage of completion.

Parameters
• cli – Firmware Update Client model instance.

Returns
The progress of the current transfer in percent, or 0 if no transfer is active.

bool bt_mesh_dfu_cli_is_busy(struct bt_mesh_dfu_cli *cli)
Check whether a DFU transfer is in progress.

Parameters
• cli – Firmware Update Client model instance.

Returns
true if the BLOB Transfer Client is currently participating in a transfer, false
otherwise.

int bt_mesh_dfu_cli_imgs_get(struct bt_mesh_dfu_cli *cli, struct bt_mesh_msg_ctx *ctx,
bt_mesh_dfu_img_cb_t cb, void *cb_data, uint8_t
max_count)

Perform a DFU image list request.

Requests the full list of DFU images on a Target node, and iterates through them, calling
the cb for every image.

The DFU image list request can be used to determine which image index the Target
node holds its different firmwares in.

Waits for a response until the procedure timeout expires.

Parameters
• cli – Firmware Update Client model instance.

• ctx – Message context.

• cb – Callback to call for each image index.

• cb_data – Callback data to pass to cb.

• max_count – Max number of images to return.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_dfu_cli_metadata_check(struct bt_mesh_dfu_cli *cli, struct bt_mesh_msg_ctx
*ctx, uint8_t img_idx, const struct bt_mesh_dfu_slot
*slot, struct bt_mesh_dfu_metadata_status *rsp)

Perform a metadata check for the given DFU image slot.

The metadata check procedure allows the Firmware Update Client to check if a Target
node will accept a transfer of this DFU image slot, and what the effect would be.

Waits for a response until the procedure timeout expires.

Parameters
• cli – Firmware Update Client model instance.

• ctx – Message context.

• img_idx – Target node’s image index to check.

• slot – DFU image slot to check for.

• rsp – Metadata status response buffer.
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Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_dfu_cli_status_get(struct bt_mesh_dfu_cli *cli, struct bt_mesh_msg_ctx *ctx,
struct bt_mesh_dfu_target_status *rsp)

Get the status of a Target node.

Parameters
• cli – Firmware Update Client model instance.

• ctx – Message context.

• rsp – Response data buffer.

Returns
0 on success, or (negative) error code otherwise.

int32_t bt_mesh_dfu_cli_timeout_get(void)
Get the current procedure timeout value.

Returns
The configured procedure timeout.

void bt_mesh_dfu_cli_timeout_set(int32_t timeout)
Set the procedure timeout value.

Parameters
• timeout – The new procedure timeout.

struct bt_mesh_dfu_target
#include <dfu_cli.h> DFU Target node.

Public Members

struct bt_mesh_blob_target blob
BLOB Target node.

uint8_t img_idx
Image index on the Target node.

uint8_t effect
Expected DFU effect, see bt_mesh_dfu_effect.

uint8_t status
Current DFU status, see bt_mesh_dfu_status.

uint8_t phase
Current DFU phase, see bt_mesh_dfu_phase.

struct bt_mesh_dfu_metadata_status
#include <dfu_cli.h> Metadata status response.
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Public Members

uint8_t idx
Image index.

enum bt_mesh_dfu_status status
Status code.

enum bt_mesh_dfu_effect effect
Effect of transfer.

struct bt_mesh_dfu_target_status
#include <dfu_cli.h> DFU Target node status parameters.

Public Members

enum bt_mesh_dfu_status status
Status of the previous operation.

enum bt_mesh_dfu_phase phase
Phase of the current DFU transfer.

enum bt_mesh_dfu_effect effect
The effect the update will have on the Target device’s state.

uint64_t blob_id
BLOB ID used in the transfer.

uint8_t img_idx
Image index to transfer.

uint8_t ttl
TTL used in the transfer.

uint16_t timeout_base
Additional response time for the Target nodes, in 10-second increments.

The extra time can be used to give the Target nodes more time to respond to mes-
sages from the Client. The actual timeout will be calculated according to the fol-
lowing formula:

* timeout = 20 seconds + (10 seconds * timeout_base) + (100 ms * TTL)
*

If a Target node fails to respond to a message from the Client within the configured
transfer timeout, the Target node is dropped.

struct bt_mesh_dfu_cli_cb
#include <dfu_cli.h> Firmware Update Client event callbacks.
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Public Members

void (*suspended)(struct bt_mesh_dfu_cli *cli)
BLOB transfer is suspended.

Called when the BLOB transfer is suspended due to response timeout from all Tar-
get nodes.

Param cli
Firmware Update Client model instance.

void (*ended)(struct bt_mesh_dfu_cli *cli, enum bt_mesh_dfu_status reason)
DFU ended.

Called when the DFU transfer ends, either because all Target nodes were lost or
because the transfer was completed successfully.

Param cli
Firmware Update Client model instance.

Param reason
Reason for ending.

void (*applied)(struct bt_mesh_dfu_cli *cli)
DFU transfer applied on all active Target nodes.

Called at the end of the apply procedure started by bt_mesh_dfu_cli_apply.
Param cli

Firmware Update Client model instance.

void (*confirmed)(struct bt_mesh_dfu_cli *cli)
DFU transfer confirmed on all active Target nodes.

Called at the end of the apply procedure started by bt_mesh_dfu_cli_confirm.
Param cli

Firmware Update Client model instance.

void (*lost_target)(struct bt_mesh_dfu_cli *cli, struct bt_mesh_dfu_target *target)
DFU Target node was lost.

A DFU Target node was dropped from the receivers list. The Target node’s status
is set to reflect the reason for the failure.

Param cli
Firmware Update Client model instance.

Param target
DFU Target node that was lost.

struct bt_mesh_dfu_cli
#include <dfu_cli.h> Firmware Update Client model instance.

Should be initialized with BT_MESH_DFU_CLI_INIT.

Public Members

const struct bt_mesh_dfu_cli_cb *cb
Callback structure.
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struct bt_mesh_blob_cli blob
Underlying BLOB Transfer Client.

struct bt_mesh_dfu_cli_xfer_blob_params
#include <dfu_cli.h> BLOB parameters for Firmware Update Client transfer:

Public Members

uint16_t chunk_size
Base chunk size.

May be smaller for the last chunk.

struct bt_mesh_dfu_cli_xfer
#include <dfu_cli.h> Firmware Update Client transfer parameters:

Public Members

uint64_t blob_id
BLOB ID to use for this transfer, or 0 to set it randomly.

const struct bt_mesh_dfu_slot *slot
DFU image slot to transfer.

enum bt_mesh_blob_xfer_mode mode
Transfer mode (Push (Push BLOB Transfer Mode) or Pull (Pull BLOB Transfer
Mode))

const struct bt_mesh_dfu_cli_xfer_blob_params *blob_params
BLOB parameters to be used for the transfer, or NULL to retrieve Target nodes’
capabilities before sending a firmware.

Firmware Distribution Server The Firmware Distribution Server model implements the Dis-
tributor role for the Device Firmware Update (DFU) subsystem. It extends the BLOB Transfer
Server, which it uses to receive the firmware image binary from the Initiator node. It also in-
stantiates a Firmware Update Client, which it uses to distribute firmware updates throughout
the mesh network.

Note

Currently, the Firmware Distribution Server supports out-of-band (OOB) retrieval of
firmware images over SMP service only.

The Firmware Distribution Server does not have an API of its own, but relies on a Firmware Dis-
tribution Client model on a different device to give it information and trigger image distribution
and upload.
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Firmware slots The Firmware Distribution Server is capable of storing multiple firmware im-
ages for distribution. Each slot contains a separate firmware image with metadata, and can be
distributed to other mesh nodes in the network in any order. The contents, format and size of the
firmware images are vendor specific, and may contain data from other vendors. The application
should never attempt to execute or modify them.

The slots are managed remotely by a Firmware Distribution Client, which can both upload new
slots and delete old ones. The application is notified of changes to the slots through the Firmware
Distribution Server’s callbacks (bt_mesh_fd_srv_cb). While the metadata for each firmware slot
is stored internally, the application must provide a BLOB streams for reading and writing the
firmware image.

API reference

group bt_mesh_dfd_srv
API for the Firmware Distribution Server model.

Defines

CONFIG_BT_MESH_DFD_SRV_TARGETS_MAX

CONFIG_BT_MESH_DFD_SRV_SLOT_MAX_SIZE

CONFIG_BT_MESH_DFD_SRV_SLOT_SPACE

BT_MESH_DFD_SRV_INIT(_cb)
Initialization parameters for the Firmware Distribution Server model.

Parameters
• _cb – [in] Pointer to a bt_mesh_dfd_srv_cb instance.

BT_MESH_MODEL_DFD_SRV(_srv)
Firmware Distribution Server model Composition Data entry.

Parameters
• _srv – Pointer to a Firmware Distribution Server model instance.

struct bt_mesh_dfd_srv_cb
#include <dfd_srv.h> Firmware Distribution Server callbacks:

Public Members

int (*recv)(struct bt_mesh_dfd_srv *srv, const struct bt_mesh_dfu_slot *slot, const
struct bt_mesh_blob_io **io)

Slot receive callback.

Called at the start of an upload procedure. The callback must fill io with a pointer
to a writable BLOB stream for the Firmware Distribution Server to write the
firmware image to.

Param srv
Firmware Distribution Server model instance.

Param slot
DFU image slot being received.
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Param io
BLOB stream response pointer.

Return
0 on success, or (negative) error code otherwise.

void (*del)(struct bt_mesh_dfd_srv *srv, const struct bt_mesh_dfu_slot *slot)
Slot delete callback.

Called when the Firmware Distribution Server is about to delete a DFU image slot.
All allocated data associated with the firmware slot should be deleted.

Param srv
Firmware Update Server instance.

Param slot
DFU image slot being deleted.

int (*send)(struct bt_mesh_dfd_srv *srv, const struct bt_mesh_dfu_slot *slot, const
struct bt_mesh_blob_io **io)

Slot send callback.

Called at the start of a distribution procedure. The callback must fill io with a
pointer to a readable BLOB stream for the Firmware Distribution Server to read
the firmware image from.

Param srv
Firmware Distribution Server model instance.

Param slot
DFU image slot being sent.

Param io
BLOB stream response pointer.

Return
0 on success, or (negative) error code otherwise.

void (*phase)(struct bt_mesh_dfd_srv *srv, enum bt_mesh_dfd_phase phase)
Phase change callback (Optional).

Called whenever the phase of the Firmware Distribution Server changes.
Param srv

Firmware Distribution Server model instance.
Param phase

New Firmware Distribution phase.

struct bt_mesh_dfd_srv
#include <dfd_srv.h> Firmware Distribution Server instance.

Overview

DFU roles The Bluetooth Mesh DFU subsystem defines three different roles the mesh nodes
have to assume in the distribution of firmware images:

Target node
Target node is the receiver and user of the transferred firmware images. All its functionality
is implemented by the Firmware Update Server model. A transfer may be targeting any
number of Target nodes, and they will all be updated concurrently.

Distributor
The Distributor role serves two purposes in the DFU process. First, it’s acting as the Target
node in the Upload Firmware procedure, then it distributes the uploaded image to other
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Target nodes as the Distributor. The Distributor does not select the parameters of the trans-
fer, but relies on an Initiator to give it a list of Target nodes and transfer parameters. The
Distributor functionality is implemented in two models, Firmware Distribution Server and
Firmware Update Client. The Firmware Distribution Server is responsible for communicat-
ing with the Initiator, and the Firmware Update Client is responsible for distributing the
image to the Target nodes.

Initiator
The Initiator role is typically implemented by the same device that implements the Blue-
tooth Mesh Provisioner and Configurator roles. The Initiator needs a full overview of the
potential Target nodes and their firmware, and will control (and initiate) all firmware up-
dates. The Initiator role is not implemented in the Zephyr Bluetooth Mesh DFU subsystem.

Initiator Distributor Target

BLOB Transfer Client
BLOB Transfer 

Server

BLOB Transfer Client
BLOB Transfer 

Server

Firmware Distribution 
Client

Firmware Update 
Client

Firmware Distribution 
Server

Firmware Update 
Client

Firmware Update 
Server

Fig. 10: DFU roles and the associated Bluetooth Mesh models

Bluetooth Mesh applications may combine the DFU roles in any way they’d like, and even take
on multiple instances of the same role by instantiating the models on separate elements. For
instance, the Distributor and Initiator role can be combined by instantiating theFirmwareUpdate
Client on the Initiator node and calling its API directly.

It’s also possible to combine the Initiator and Distributor devices into a single device, and re-
place the Firmware Distribution Server model with a proprietary mechanism that will access
the Firmware Update Client model directly, e.g. over a serial protocol.

Note

All DFU models instantiate one or more BLOB Transfer models, and may need to be spread
over multiple elements for certain role combinations.

Stages The Bluetooth Mesh DFU process is designed to act in three stages:

Upload stage
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First, the image is uploaded to a Distributor in a mesh network by an external entity, such
as a phone or gateway (the Initiator). During the Upload stage, the Initiator transfers the
firmware image and all its metadata to the Distributor node inside the mesh network. The
Distributor stores the firmware image and its metadata persistently, and awaits further
instructions from the Initiator. The time required to complete the upload process depends
on the size of the image. After the upload completes, the Initiator can disconnect from
the network during the much more time-consuming Distribution stage. Once the firmware
has been uploaded to the Distributor, the Initiator may trigger the Distribution stage at any
time.

Firmware Capability Check stage (optional)
Before starting the Distribution stage, the Initiator may optionally check if Target nodes can
accept the new firmware. Nodes that do not respond, or respond that they can’t receive the
new firmware, are excluded from the firmware distribution process.

Distribution stage
Before the firmware image can be distributed, the Initiator transfers the list of Target nodes
and their designated firmware image index to the Distributor. Next, it tells the Distrib-
utor to start the firmware distributon process, which runs in the background while the
Initiator and the mesh network perform other duties. Once the firmware image has been
transferred to the Target nodes, the Distributor may ask them to apply the firmware image
immediately and report back with their status and new firmware IDs.

Firmware images All updatable parts of a mesh node’s firmware should be represented as a
firmware image. Each Target node holds a list of firmware images, each of which should be
independently updatable and identifiable.

Firmware images are represented as a BLOB (the firmware itself) with the following additional
information attached to it:

Firmware ID
The firmware ID is used to identify a firmware image. The Initiator node may ask the Target
nodes for a list of its current firmware IDs to determine whether a newer version of the
firmware is available. The format of the firmware ID is vendor specific, but generally, it
should include enough information for an Initiator node with knowledge of the format to
determine the type of image as well as its version. The firmware ID is optional, and its max
length is determined by CONFIG_BT_MESH_DFU_FWID_MAXLEN.

Firmware metadata
The firmware metadata is used by the Target node to determine whether it should accept an
incoming firmware update, and what the effect of the update would be. The metadata for-
mat is vendor specific, and should contain all information the Target node needs to verify
the image, as well as any preparation the Target node has to make before the image is ap-
plied. Typical metadata information can be image signatures, changes to the node’s Compo-
sition Data and the format of the BLOB. The Target node may perform a metadata check be-
fore accepting incoming transfers to determine whether the transfer should be started. The
firmware metadata can be discarded by the Target node after the metadata check, as other
nodes will never request the metadata from the Target node. The firmware metadata is op-
tional, and its maximum length is determined by CONFIG_BT_MESH_DFU_METADATA_MAXLEN.

The Bluetooth Mesh DFU subsystem in Zephyr provides its own metadata format
(bt_mesh_dfu_metadata) together with a set of related functions that can be used by an
end product. The support for it is enabled using the CONFIG_BT_MESH_DFU_METADATA option.
The format of the metadata is presented in the table below.
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Field Size
(Bytes)

Description

New firmware
version

8 B 1 B: Major version 1 B: Minor version 2 B: Revision 4 B: Build
number

New firmware
size

3 B Size in bytes for a new firmware

New firmware
core type

1 B Bit field: Bit 0: Application core Bit 1: Network core Bit 2: Ap-
plications specific BLOB. Other bits: RFU

Hash of incoming
composition data

4 B (Op-
tional)

Lower 4 octets of AES-CMAC (app-specific-key, composition
data). This field is present, if Bit 0 is set in the New firmware
core type field.

New number of
elements

2 B (Op-
tional)

Number of elements on the node after firmware is applied.
This field is present, if Bit 0 is set in the New firmware core
type field.

Application-
specific data for
new firmware

<vari-
able>
(Op-
tional)

Application-specific data to allow application to execute some
vendor-specific behaviors using this data before it can re-
spond with a status message.

Note

The AES-CMAC algorithm serves as a hashing function with a fixed key and is not
used for encryption in Bluetooth Mesh DFU metadata. The resulting hash is not
secure since the key is known.

Firmware URI
The firmware URI gives the Initiator information about where firmware updates for the
image can be found. The URI points to an online resource the Initiator can interact with
to get new versions of the firmware. This allows Initiators to perform updates for any
node in the mesh network by interacting with the web server pointed to in the URI. The
URI must point to a resource using the http or https schemes, and the targeted web
server must behave according to the Firmware Check Over HTTPS procedure defined by
the specification. The firmware URI is optional, and its max length is determined by CON-
FIG_BT_MESH_DFU_URI_MAXLEN.

Note

The out-of-band distribution mechanism is not supported.

Firmware effect A new image may have the Composition Data Page 0 different from the one
allocated on a Target node. This may have an effect on the provisioning data of the node and
how the Distributor finalizes the DFU. Depending on the availability of the Remote Provisioning
Server model on the old and new image, the device may either boot up unprovisioned after
applying the new firmware or require to be re-provisioned. The complete list of available options
is defined in bt_mesh_dfu_effect:

BT_MESH_DFU_EFFECT_NONE
The device stays provisioned after the new firmware is programmed. This effect is chosen
if the composition data of the new firmware doesn’t change.

BT_MESH_DFU_EFFECT_COMP_CHANGE_NO_RPR
This effect is chosen when the composition data changes and the device doesn’t support the
remote provisioning. The new composition data takes place only after re-provisioning.
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BT_MESH_DFU_EFFECT_COMP_CHANGE
This effect is chosen when the composition data changes and the device supports the remote
provisioning. In this case, the device stays provisioned and the new composition data takes
place after re-provisioning using the Remote Provisioning models.

BT_MESH_DFU_EFFECT_UNPROV
This effect is chosen if the composition data in the new firmware changes, the device doesn’t
support the remote provisioning, and the new composition data takes effect after applying
the firmware.

When the Target node receives the Firmware Update Firmware Metadata Check mes-
sage, the Firmware Update Server model calls the bt_mesh_dfu_srv_cb.check call-
back, the application can then process the metadata and provide the effect value.
If the effect is BT_MESH_DFU_EFFECT_COMP_CHANGE, the application must call functions
bt_mesh_comp_change_prepare() and bt_mesh_models_metadata_change_prepare() to pre-
pare the Composition Data Page and Models Metadata Page contents before applying the new
firmware image. See Composition Data and Models Metadata for more information.

DFU procedures The DFU protocol is implemented as a set of procedures that must be per-
formed in a certain order.

The Initiator controls the Upload stage of the DFU protocol, and all Distributor side handling of
the upload subprocedures is implemented in the Firmware Distribution Server.

The Distribution stage is controlled by the Distributor, as implemented by the Firmware Update
Client. The Target node implements all handling of these procedures in the Firmware Update
Server, and notifies the application through a set of callbacks.

Uploading the firmware The Upload Firmware procedure uses the BLOB Transfer models to
transfer the firmware image from the Initiator to the Distributor. The Upload Firmware proce-
dure works in two steps:

1. The Initiator generates a BLOB ID, and sends it to the Distributor’s Firmware Distribution
Server along with the firmware information and other input parameters of the BLOB trans-
fer. The Firmware Distribution Server stores the information, and prepares its BLOB Trans-
fer Server for the incoming transfer before it responds with a status message to the Initiator.

2. The Initiator’s BLOB Transfer Client model transfers the firmware image to the Distributor’s
BLOB Transfer Server, which stores the image in a predetermined flash partition.

When the BLOB transfer finishes, the firmware image is ready for distribution. The Initiator may
upload several firmware images to the Distributor, and ask it to distribute them in any order or at
any time. Additional procedures are available for querying and deleting firmware images from
the Distributor.

The following Distributor’s capabilities related to firmware images can be configured using the
configuration options:

• CONFIG_BT_MESH_DFU_SLOT_CNT: Amount of image slots available on the device.

• CONFIG_BT_MESH_DFD_SRV_SLOT_MAX_SIZE: Maximum allowed size for each image.

• CONFIG_BT_MESH_DFD_SRV_SLOT_SPACE: Available space for all images.

Populating the Distributor’s receivers list Before the Distributor can start distributing the
firmware image, it needs a list of Target nodes to send the image to. The Initiator gets the full
list of Target nodes either by querying the potential targets directly, or through some external
authority. The Initiator uses this information to populate the Distributor’s receivers list with the
address and relevant firmware image index of each Target node. The Initiator may send one
or more Firmware Distribution Receivers Add messages to build the Distributor’s receivers list,
and a Firmware Distribution Receivers Delete All message to clear it.
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Fig. 11: DFU stages and procedures as seen from the Distributor
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The maximum number of receivers that can be added to the Distributor is configured through
the CONFIG_BT_MESH_DFD_SRV_TARGETS_MAX configuration option.

Initiating the distribution Once the Distributor has stored a firmware image and received
a list of Target nodes, the Initiator may initiate the distribution procedure. The BLOB transfer
parameters for the distribution are passed to the Distributor along with an update policy. The
update policy decides whether the Distributor should request that the firmware is applied on
the Target nodes or not. The Distributor stores the transfer parameters and starts distributing
the firmware image to its list of Target nodes.

Firmware distribution The Distributor’s Firmware Update Client model uses its BLOB Trans-
fer Client model’s broadcast subsystem to communicate with all Target nodes. The firmware
distribution is performed with the following steps:

1. The Distributor’s Firmware Update Client model generates a BLOB ID and sends it to each
Target node’s Firmware Update Server model, along with the other BLOB transfer parame-
ters, the Target node firmware image index and the firmware image metadata. Each Target
node performs a metadata check and prepares their BLOB Transfer Server model for the
transfer, before sending a status response to the Firmware Update Client, indicating if the
firmware update will have any effect on the Bluetooth Mesh state of the node.

2. The Distributor’s BLOB Transfer Client model transfers the firmware image to all Target
nodes.

3. Once the BLOB transfer has been received, the Target nodes’ applications verify that the
firmware is valid by performing checks such as signature verification or image checksums
against the image metadata.

4. The Distributor’s Firmware Update Client model queries all Target nodes to ensure that
they’ve all verified the firmware image.

If the distribution procedure completed with at least one Target node reporting that the image
has been received and verified, the distribution procedure is considered successful.

Note

The firmware distribution procedure only fails if all Target nodes are lost. It is up to the
Initiator to request a list of failed Target nodes from the Distributor and initiate additional
attempts to update the lost Target nodes after the current attempt is finished.

Suspending the distribution The Initiator can also request the Distributor to suspend the
firmware distribution. In this case, the Distributor will stop sending any messages to Target
nodes. When the firmware distribution is resumed, the Distributor will continue sending the
firmware from the last successfully transferred block.

Applying the firmware image If the Initiator requested it, the Distributor can initiate the Ap-
ply Firmware on Target Node procedure on all Target nodes that successfully received and ver-
ified the firmware image. The Apply Firmware on Target Node procedure takes no parameters,
and to avoid ambiguity, it should be performed before a new transfer is initiated. The Apply
Firmware on Target Node procedure consists of the following steps:

1. The Distributor’s Firmware Update Client model instructs all Target nodes that have ver-
ified the firmware image to apply it. The Target nodes’ Firmware Update Server models
respond with a status message before calling their application’s apply callback.

2. The Target node’s application performs any preparations needed before applying the trans-
fer, such as storing a snapshot of the Composition Data or clearing its configuration.
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3. The Target node’s application swaps the current firmware with the new image and updates
its firmware image list with the new firmware ID.

4. The Distributor’s Firmware Update Client model requests the full list of firmware images
from each Target node, and scans through the list to make sure that the new firmware ID
has replaced the old.

Note

During the metadata check in the distribution procedure, the Target node may have reported
that it will become unprovisioned after the firmware image is applied. In this case, the Dis-
tributor’s Firmware Update Client model will send a request for the full firmware image list,
and expect no response.

Cancelling the distribution The firmware distribution can be cancelled at any time by the Ini-
tiator. In this case, the Distributor starts the cancelling procedure by sending a cancelling mes-
sage to all Target nodes. The Distributor waits for the response from all Target nodes. Once all
Target nodes have replied, or the request has timed out, the distribution procedure is cancelled.
After this the distribution procedure can be started again from the Firmware distribution sec-
tion.

API reference This section lists the types common to the Device Firmware Update mesh mod-
els.

group bt_mesh_dfd

Enums

enum bt_mesh_dfd_status
Firmware distribution status.

Values:

enumerator BT_MESH_DFD_SUCCESS
The message was processed successfully.

enumerator BT_MESH_DFD_ERR_INSUFFICIENT_RESOURCES
Insufficient resources on the node.

enumerator BT_MESH_DFD_ERR_WRONG_PHASE
The operation cannot be performed while the Server is in the current phase.

enumerator BT_MESH_DFD_ERR_INTERNAL
An internal error occurred on the node.

enumerator BT_MESH_DFD_ERR_FW_NOT_FOUND
The requested firmware image is not stored on the Distributor.

enumerator BT_MESH_DFD_ERR_INVALID_APPKEY_INDEX
The AppKey identified by the AppKey Index is not known to the node.
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enumerator BT_MESH_DFD_ERR_RECEIVERS_LIST_EMPTY
There are no Target nodes in the Distribution Receivers List state.

enumerator BT_MESH_DFD_ERR_BUSY_WITH_DISTRIBUTION
Another firmware image distribution is in progress.

enumerator BT_MESH_DFD_ERR_BUSY_WITH_UPLOAD
Another upload is in progress.

enumerator BT_MESH_DFD_ERR_URI_NOT_SUPPORTED
The URI scheme name indicated by the Update URI is not supported.

enumerator BT_MESH_DFD_ERR_URI_MALFORMED
The format of the Update URI is invalid.

enumerator BT_MESH_DFD_ERR_URI_UNREACHABLE
The URI is currently unreachable.

enumerator BT_MESH_DFD_ERR_NEW_FW_NOT_AVAILABLE
The Check Firmware OOB procedure did not find any new firmware.

enumerator BT_MESH_DFD_ERR_SUSPEND_FAILED
The suspension of the Distribute Firmware procedure failed.

enum bt_mesh_dfd_phase
Firmware distribution phases.

Values:

enumerator BT_MESH_DFD_PHASE_IDLE
No firmware distribution is in progress.

enumerator BT_MESH_DFD_PHASE_TRANSFER_ACTIVE
Firmware distribution is in progress.

enumerator BT_MESH_DFD_PHASE_TRANSFER_SUCCESS
The Transfer BLOB procedure has completed successfully.

enumerator BT_MESH_DFD_PHASE_APPLYING_UPDATE
The Apply Firmware on Target Nodes procedure is being executed.

enumerator BT_MESH_DFD_PHASE_COMPLETED
The Distribute Firmware procedure has completed successfully.

enumerator BT_MESH_DFD_PHASE_FAILED
The Distribute Firmware procedure has failed.

enumerator BT_MESH_DFD_PHASE_CANCELING_UPDATE
The Cancel Firmware Update procedure is being executed.
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enumerator BT_MESH_DFD_PHASE_TRANSFER_SUSPENDED
The Transfer BLOB procedure is suspended.

enum bt_mesh_dfd_upload_phase
Firmware upload phases.

Values:

enumerator BT_MESH_DFD_UPLOAD_PHASE_IDLE
No firmware upload is in progress.

enumerator BT_MESH_DFD_UPLOAD_PHASE_TRANSFER_ACTIVE
The Store Firmware procedure is being executed.

enumerator BT_MESH_DFD_UPLOAD_PHASE_TRANSFER_ERROR
The Store Firmware procedure or Store Firmware OOB procedure failed.

enumerator BT_MESH_DFD_UPLOAD_PHASE_TRANSFER_SUCCESS
The Store Firmware procedure or the Store Firmware OOB procedure completed
successfully.

group bt_mesh_dfu

Defines

CONFIG_BT_MESH_DFU_FWID_MAXLEN

CONFIG_BT_MESH_DFU_METADATA_MAXLEN

CONFIG_BT_MESH_DFU_URI_MAXLEN

CONFIG_BT_MESH_DFU_SLOT_CNT

Enums

enum bt_mesh_dfu_phase
DFU transfer phase.

Values:

enumerator BT_MESH_DFU_PHASE_IDLE
Ready to start a Receive Firmware procedure.

enumerator BT_MESH_DFU_PHASE_TRANSFER_ERR
The Transfer BLOB procedure failed.
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enumerator BT_MESH_DFU_PHASE_TRANSFER_ACTIVE
The Receive Firmware procedure is being executed.

enumerator BT_MESH_DFU_PHASE_VERIFY
The Verify Firmware procedure is being executed.

enumerator BT_MESH_DFU_PHASE_VERIFY_OK
The Verify Firmware procedure completed successfully.

enumerator BT_MESH_DFU_PHASE_VERIFY_FAIL
The Verify Firmware procedure failed.

enumerator BT_MESH_DFU_PHASE_APPLYING
The Apply New Firmware procedure is being executed.

enumerator BT_MESH_DFU_PHASE_TRANSFER_CANCELED
Firmware transfer has been canceled.

enumerator BT_MESH_DFU_PHASE_APPLY_SUCCESS
Firmware applying succeeded.

enumerator BT_MESH_DFU_PHASE_APPLY_FAIL
Firmware applying failed.

enumerator BT_MESH_DFU_PHASE_UNKNOWN
Phase of a node was not yet retrieved.

enum bt_mesh_dfu_status
DFU status.

Values:

enumerator BT_MESH_DFU_SUCCESS
The message was processed successfully.

enumerator BT_MESH_DFU_ERR_RESOURCES
Insufficient resources on the node.

enumerator BT_MESH_DFU_ERR_WRONG_PHASE
The operation cannot be performed while the Server is in the current phase.

enumerator BT_MESH_DFU_ERR_INTERNAL
An internal error occurred on the node.

enumerator BT_MESH_DFU_ERR_FW_IDX
The message contains a firmware index value that is not expected.

enumerator BT_MESH_DFU_ERR_METADATA
The metadata check failed.
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enumerator BT_MESH_DFU_ERR_TEMPORARILY_UNAVAILABLE
The Server cannot start a firmware update.

enumerator BT_MESH_DFU_ERR_BLOB_XFER_BUSY
Another BLOB transfer is in progress.

enum bt_mesh_dfu_effect
Expected effect of a DFU transfer.

Values:

enumerator BT_MESH_DFU_EFFECT_NONE
No changes to node Composition Data.

enumerator BT_MESH_DFU_EFFECT_COMP_CHANGE_NO_RPR
Node Composition Data changed and the node does not support remote provision-
ing.

enumerator BT_MESH_DFU_EFFECT_COMP_CHANGE
Node Composition Data changed, and remote provisioning is supported.

The node supports remote provisioning and Composition Data Page 0x80. Page
0x80 contains different Composition Data than Page 0x0.

enumerator BT_MESH_DFU_EFFECT_UNPROV
Node will be unprovisioned after the update.

enum bt_mesh_dfu_iter
Action for DFU iteration callbacks.

Values:

enumerator BT_MESH_DFU_ITER_STOP
Stop iterating.

enumerator BT_MESH_DFU_ITER_CONTINUE
Continue iterating.

struct bt_mesh_dfu_img
#include <dfu.h> DFU image instance.

Each DFU image represents a single updatable firmware image.

Public Members

const void *fwid
Firmware ID.

size_t fwid_len
Length of the firmware ID.

2230 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

const char *uri
Update URI, or NULL.

struct bt_mesh_dfu_slot
#include <dfu.h> DFU image slot for DFU distribution.

Public Members

size_t size
Size of the firmware in bytes.

size_t fwid_len
Length of the firmware ID.

size_t metadata_len
Length of the metadata.

uint8_t fwid[0]
Firmware ID.

uint8_t metadata[0]
Metadata.

group bt_mesh_dfu_metadata
Common types and functions for the Bluetooth Mesh DFU metadata.

Enums

enum bt_mesh_dfu_metadata_fw_core_type
Firmware core type.

Values:

enumerator BT_MESH_DFU_FW_CORE_TYPE_APP = BIT(0)
Application core.

enumerator BT_MESH_DFU_FW_CORE_TYPE_NETWORK = BIT(1)
Network core.

enumerator BT_MESH_DFU_FW_CORE_TYPE_APP_SPECIFIC_BLOB = BIT(2)
Application-specific BLOB.

Functions
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int bt_mesh_dfu_metadata_decode(struct net_buf_simple *buf, struct
bt_mesh_dfu_metadata *metadata)

Decode a firmware metadata from a network buffer.

Parameters
• buf – Buffer containing a raw metadata to be decoded.

• metadata – Pointer to a metadata structure to be filled.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_dfu_metadata_encode(const struct bt_mesh_dfu_metadata *metadata, struct
net_buf_simple *buf)

Encode a firmware metadata into a network buffer.

Parameters
• metadata – Firmware metadata to be encoded.

• buf – Buffer to store the encoded metadata.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_dfu_metadata_comp_hash_get(struct net_buf_simple *buf, uint8_t *key,
uint32_t *hash)

Compute hash of the Composition Data state.

The format of the Composition Data is defined in MshPRTv1.1: 4.2.2.1.

Parameters
• buf – Pointer to buffer holding Composition Data.

• key – 128-bit key to be used in the hash computation.

• hash – Pointer to a memory location to which the hash will be stored.

Returns
0 on success, or (negative) error code otherwise.

int bt_mesh_dfu_metadata_comp_hash_local_get(uint8_t *key, uint32_t *hash)
Compute hash of the Composition Data Page 0 of this device.

Parameters
• key – 128-bit key to be used in the hash computation.

• hash – Pointer to a memory location to which the hash will be stored.

Returns
0 on success, or (negative) error code otherwise.

struct bt_mesh_dfu_metadata_fw_ver
#include <dfu_metadata.h> Firmware version.

Public Members

uint8_t major
Firmware major version.
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uint8_t minor
Firmware minor version.

uint16_t revision
Firmware revision.

uint32_t build_num
Firmware build number.

struct bt_mesh_dfu_metadata
#include <dfu_metadata.h> Firmware metadata.

Public Members

struct bt_mesh_dfu_metadata_fw_ver fw_ver
New firmware version.

uint32_t fw_size
New firmware size.

enum bt_mesh_dfu_metadata_fw_core_type fw_core_type
New firmware core type.

uint32_t comp_hash
Hash of incoming Composition Data.

uint16_t elems
New number of node elements.

uint8_t *user_data
Application-specific data for new firmware.

This field is optional.

uint32_t user_data_len
Length of the application-specific field.

Message The Bluetooth Mesh message provides set of structures, macros and functions used
for preparing message buffers, managing message and acknowledged message contexts.

API reference

group bt_mesh_msg
Message.
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Defines

BT_MESH_MIC_SHORT
Length of a short Mesh MIC.

BT_MESH_MIC_LONG
Length of a long Mesh MIC.

BT_MESH_MODEL_OP_LEN(_op)
Helper to determine the length of an opcode.

Parameters
• _op – Opcode.

BT_MESH_MODEL_BUF_LEN(_op, _payload_len)
Helper for model message buffer length.

Returns the length of a Mesh model message buffer, including the opcode length and a
short MIC.

Parameters
• _op – Opcode of the message.

• _payload_len – Length of the model payload.

BT_MESH_MODEL_BUF_LEN_LONG_MIC(_op, _payload_len)
Helper for model message buffer length.

Returns the length of a Mesh model message buffer, including the opcode length and a
long MIC.

Parameters
• _op – Opcode of the message.

• _payload_len – Length of the model payload.

BT_MESH_MODEL_BUF_DEFINE(_buf, _op, _payload_len)
Define a Mesh model message buffer using NET_BUF_SIMPLE_DEFINE.

Parameters
• _buf – Buffer name.

• _op – Opcode of the message.

• _payload_len – Length of the model message payload.

BT_MESH_MSG_CTX_INIT(net_key_idx, app_key_idx, dst, ttl)
Helper for bt_mesh_msg_ctx structure initialization.

Note

If dst is a Virtual Address, Label UUID shall be initialized separately.

Parameters
• net_key_idx – NetKey Index of the subnet to send the message on. Only

used if app_key_idx points to devkey.

• app_key_idx – AppKey Index to encrypt the message with.

• dst – Remote addr.
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• ttl – Time To Live.

BT_MESH_MSG_CTX_INIT_APP(app_key_idx, dst)
Helper for bt_mesh_msg_ctx structure initialization secured with Application Key.

Parameters
• app_key_idx – AppKey Index to encrypt the message with.

• dst – Remote addr.

BT_MESH_MSG_CTX_INIT_DEV(net_key_idx, dst)
Helper for bt_mesh_msg_ctx structure initialization secured with Device Key of a re-
mote device.

Parameters
• net_key_idx – NetKey Index of the subnet to send the message on.

• dst – Remote addr.

BT_MESH_MSG_CTX_INIT_PUB(pub)
Helper for bt_mesh_msg_ctx structure initialization using Model Publication context.

Parameters
• pub – Pointer to a model publication context.

Functions

void bt_mesh_model_msg_init(struct net_buf_simple *msg, uint32_t opcode)
Initialize a model message.

Clears the message buffer contents, and encodes the given opcode. The message buffer
will be ready for filling in payload data.

Parameters
• msg – Message buffer.

• opcode – Opcode to encode.

static inline void bt_mesh_msg_ack_ctx_init(struct bt_mesh_msg_ack_ctx *ack)
Initialize an acknowledged message context.

Initializes semaphore used for synchronization between bt_mesh_msg_ack_ctx_wait
and bt_mesh_msg_ack_ctx_rx calls. Call this function before using
bt_mesh_msg_ack_ctx.

Parameters
• ack – Acknowledged message context to initialize.

static inline void bt_mesh_msg_ack_ctx_reset(struct bt_mesh_msg_ack_ctx *ack)
Reset the synchronization semaphore in an acknowledged message context.

This function aborts call to bt_mesh_msg_ack_ctx_wait.

Parameters
• ack – Acknowledged message context to be reset.

void bt_mesh_msg_ack_ctx_clear(struct bt_mesh_msg_ack_ctx *ack)
Clear parameters of an acknowledged message context.

This function clears the opcode, remote address and user data set by
bt_mesh_msg_ack_ctx_prepare.
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Parameters
• ack – Acknowledged message context to be cleared.

int bt_mesh_msg_ack_ctx_prepare(struct bt_mesh_msg_ack_ctx *ack, uint32_t op, uint16_t
dst, void *user_data)

Prepare an acknowledged message context for the incoming message to wait.

This function sets the opcode, remote address of the incoming message and stores the
user data. Use this function before calling bt_mesh_msg_ack_ctx_wait.

Parameters
• ack – Acknowledged message context to prepare.

• op – The message OpCode.

• dst – Destination address of the message.

• user_data – User data for the acknowledged message context.

Returns
0 on success, or (negative) error code on failure.

static inline bool bt_mesh_msg_ack_ctx_busy(struct bt_mesh_msg_ack_ctx *ack)
Check if the acknowledged message context is initialized with an opcode.

Parameters
• ack – Acknowledged message context.

Returns
true if the acknowledged message context is initialized with an opcode,
false otherwise.

int bt_mesh_msg_ack_ctx_wait(struct bt_mesh_msg_ack_ctx *ack, k_timeout_t timeout)
Wait for a message acknowledge.

This function blocks execution until bt_mesh_msg_ack_ctx_rx is called or by timeout.

Parameters
• ack – Acknowledged message context of the message to wait for.

• timeout – Wait timeout.

Returns
0 on success, or (negative) error code on failure.

static inline void bt_mesh_msg_ack_ctx_rx(struct bt_mesh_msg_ack_ctx *ack)
Mark a message as acknowledged.

This function unblocks call to bt_mesh_msg_ack_ctx_wait.

Parameters
• ack – Context of a message to be acknowledged.

bool bt_mesh_msg_ack_ctx_match(const struct bt_mesh_msg_ack_ctx *ack, uint32_t op,
uint16_t addr, void **user_data)

Check if an opcode and address of a message matches the expected one.

Parameters
• ack – Acknowledged message context to be checked.

• op – OpCode of the incoming message.

• addr – Source address of the incoming message.

2236 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

• user_data – If not NULL, returns a user data stored in the acknowledged
message context by bt_mesh_msg_ack_ctx_prepare.

Returns
true if the incoming message matches the expected one, false otherwise.

struct bt_mesh_msg_ctx
#include <msg.h> Message sending context.

Public Members

uint16_t net_idx
NetKey Index of the subnet to send the message on.

uint16_t app_idx
AppKey Index to encrypt the message with.

uint16_t addr
Remote address.

uint16_t recv_dst
Destination address of a received message.

Not used for sending.

const uint8_t *uuid
Label UUID if Remote address is Virtual address, or NULL otherwise.

int8_t recv_rssi
RSSI of received packet.

Not used for sending.

uint8_t recv_ttl
Received TTL value.

Not used for sending.

bool send_rel
Force sending reliably by using segment acknowledgment.

bool rnd_delay
Send message with a random delay according to the Access layer transmitting
rules.

uint8_t send_ttl
TTL, or BT_MESH_TTL_DEFAULT for default TTL.

struct bt_mesh_msg_ack_ctx
#include <msg.h> Acknowledged message context for tracking the status of model mes-
sages pending a response.
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Public Members

struct k_sem sem
Sync semaphore.

uint32_t op
Opcode we’re waiting for.

uint16_t dst
Address of the node that should respond.

void *user_data
User specific parameter.

Segmentation and reassembly (SAR) Segmentation and reassembly (SAR) provides a way of
handling larger upper transport layer messages in a mesh network, with a purpose of enhancing
the Bluetooth Mesh throughput. The segmentation and reassembly mechanism is used by the
lower transport layer.

The lower transport layer defines how the upper transport layer PDUs are segmented and re-
assembled into multiple Lower Transport PDUs, and sends them to the lower transport layer on
a peer device. If the Upper Transport PDU fits, it is sent in a single Lower Transport PDU. For
longer packets, which do not fit into a single Lower Transport PDU, the lower transport layer
performs segmentation, splitting the Upper Transport PDU into multiple segments.

The lower transport layer on the receiving device reassembles the segments into a single Upper
Transport PDU before passing it up the stack. Delivery of a segmented message is acknowledged
by the lower transport layer of the receiving node, while an unsegmented message delivery is not
acknowledged. However, an Upper Transport PDU that fits into one Lower Transport PDU can
also be sent as a single-segment segmented message when acknowledgment by the lower trans-
port layer is required. Set the send rel flag (see bt_mesh_msg_ctx) to use the reliable message
transmission and acknowledge single-segment segmented messages.

The transport layer is able to transport up to 32 segments with its SAR mechanism, with a maxi-
mum message (PDU) size of 384 octets. To configure message size for the Bluetooth Mesh stack,
use the following Kconfig options:

• CONFIG_BT_MESH_RX_SEG_MAX to set the maximum number of segments in an incoming mes-
sage.

• CONFIG_BT_MESH_TX_SEG_MAX to set the maximum number of segments in an outgoing mes-
sage.

The Kconfig options CONFIG_BT_MESH_TX_SEG_MSG_COUNT and CON-
FIG_BT_MESH_RX_SEG_MSG_COUNT define how many outgoing and incoming segmented messages
can be processed simultaneously. When more than one segmented message is sent to the same
destination, the messages are queued and sent one at a time.

Incoming and outgoing segmented messages share the same pool for allocation of their seg-
ments. This pool size is configured through the CONFIG_BT_MESH_SEG_BUFS Kconfig option. Both
incoming and outgoing messages allocate segments at the start of the transaction. The outgo-
ing segmented message releases its segments one by one as soon as they are acknowledged by
the receiver, while the incoming message releases the segments first after the message is fully
received. Keep this in mind when defining the size of the buffers.

SAR does not impose extra overhead on the access layer payload per segment.
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Segmentation and reassembly (SAR) Configuration models With Bluetooth Mesh Protocol
Specification version 1.1, it became possible to configure SAR behavior, such as intervals, timers
and retransmission counters, over a mesh network using SAR Configuration models:

• SAR Configuration Client

• SAR Configuration Server

The following SAR behavior applies regardless of the presence of a SAR Configuration Server on
a node.

Transmission of segments is separated by a segment transmission interval (see the SAR Segment
Interval Step state). Other configurable time intervals and delays available for the segmentation
and reassembly are:

• Interval between unicast retransmissions (see the states SAR Unicast Retransmissions In-
terval Step and SAR Unicast Retransmissions Interval Increment).

• Interval between multicast retransmissions (see the SARMulticast Retransmissions Interval
Step state).

• Segment reception interval (see the SAR Receiver Segment Interval Step state).

• Acknowledgment delay increment (see the SAR Acknowledgment Delay Increment state).

When the last segment marked as unacknowledged is transmitted, the lower transport layer
starts a retransmissions timer. The initial value of the SAR Unicast Retransmissions timer de-
pends on the value of the TTL field of the message. If the TTL field value is greater than 0, the
initial value for the timer is set according to the following formula:

unicast retransmissions interval step + unicast retransmissions interval increment × (TTL− 1)

If the TTL field value is 0, the initial value of the timer is set to the unicast retransmissions interval
step.

The initial value of the SAR Multicast Retransmissions timer is set to the multicast retransmis-
sions interval.

When the lower transport layer receives a message segment, it starts a SAR Discard timer. The
discard timer tells how long the lower transport layer waits before discarding the segmented
message the segment belongs to. The initial value of the SAR Discard timer is the discard timeout
value indicated by the SAR Discard Timeout state.

SAR Acknowledgment timer holds the time before a Segment Acknowledgment message is sent
for a received segment. The initial value of the SAR Acknowledgment timer is calculated using
the following formula:

min(SegN + 0.5, acknowledgment delay increment)× segment reception interval

The SegN field value identifies the total number of segments the Upper Transport PDU is seg-
mented into.

Four counters are related to SAR behavior:

• Two unicast retransmissions counts (see SAR Unicast Retransmissions Count state and SAR
Unicast Retransmissions Without Progress Count state)

• Multicast retransmissions count (see SAR Multicast Retransmissions Count state)

• Acknowledgment retransmissions count (see SAR Acknowledgment Retransmissions Count
state)

If the number of segments in the transmission is higher than the value of the SAR Segments
Threshold state, Segment Acknowledgment messages are retransmitted using the value of the
SAR Acknowledgment Retransmissions Count state.
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SAR states There are two states defined related to segmentation and reassembly:

• SAR Transmitter state

• SAR Receiver state

The SAR Transmitter state is a composite state that controls the number and timing of transmis-
sions of segmented messages. It includes the following states:

• SAR Segment Interval Step

• SAR Unicast Retransmissions Count

• SAR Unicast Retransmissions Without Progress Count

• SAR Unicast Retransmissions Interval Step

• SAR Unicast Retransmissions Interval Increment

• SAR Multicast Retransmissions Count

• SAR Multicast Retransmissions Interval Step

The SAR Receiver state is a composite state that controls the number and timing of Segment
Acknowledgment transmissions and the discarding of reassembly of a segmented message. It
includes the following states:

• SAR Segments Threshold

• SAR Discard Timeout

• SAR Acknowledgment Delay Increment

• SAR Acknowledgment Retransmissions Count

• SAR Receiver Segment Interval Step

SAR Segment Interval Step SAR Segment Interval Step state holds a value that controls the
interval between transmissions of segments of a segmented message. The interval is measured
in milliseconds.

Use the CONFIG_BT_MESH_SAR_TX_SEG_INT_STEP Kconfig option to set the default value. Segment
transmission interval is then calculated using the following formula:

(CONFIG_BT_MESH_SAR_TX_SEG_INT_STEP + 1)× 10 ms

SAR Unicast Retransmissions Count SAR Unicast Retransmissions Count holds a value that
defines the maximum number of retransmissions of a segmented message to a unicast destina-
tion. Use the CONFIG_BT_MESH_SAR_TX_UNICAST_RETRANS_COUNT Kconfig option to set the default
value for this state.

SAR Unicast Retransmissions Without Progress Count This state holds a value that de-
fines the maximum number of retransmissions of a segmented message to a unicast ad-
dress that will be sent if no acknowledgment was received during the timeout, or if an ac-
knowledgment with already confirmed segments was received. Use the Kconfig option CON-
FIG_BT_MESH_SAR_TX_UNICAST_RETRANS_WITHOUT_PROG_COUNT to set the maximum number of re-
transmissions.

SAR Unicast Retransmissions Interval Step The value of this state controls the interval step
used for delaying the retransmissions of unacknowledged segments of a segmented message to
a unicast address. The interval step is measured in milliseconds.
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Use the CONFIG_BT_MESH_SAR_TX_UNICAST_RETRANS_INT_STEP Kconfig option to set the default
value. This value is then used to calculate the interval step using the following formula:

(CONFIG_BT_MESH_SAR_TX_UNICAST_RETRANS_INT_STEP + 1)× 25 ms

SAR Unicast Retransmissions Interval Increment SAR Unicast Retransmissions Interval In-
crement holds a value that controls the interval increment used for delaying the retransmissions
of unacknowledged segments of a segmented message to a unicast address. The increment is
measured in milliseconds.

Use the Kconfig option CONFIG_BT_MESH_SAR_TX_UNICAST_RETRANS_INT_INC to set the default
value. The Kconfig option value is used to calculate the increment using the following formula:

(CONFIG_BT_MESH_SAR_TX_UNICAST_RETRANS_INT_INC + 1)× 25 ms

SAR Multicast Retransmissions Count The state holds a value that controls the total num-
ber of retransmissions of a segmented message to a multicast address. Use the Kconfig option
CONFIG_BT_MESH_SAR_TX_MULTICAST_RETRANS_COUNT to set the total number of retransmissions.

SARMulticast Retransmissions Interval Step This state holds a value that controls the inter-
val between retransmissions of all segments in a segmented message to a multicast address. The
interval is measured in milliseconds.

Use the Kconfig option CONFIG_BT_MESH_SAR_TX_MULTICAST_RETRANS_INT to set the default value
that is used to calculate the interval using the following formula:

(CONFIG_BT_MESH_SAR_TX_MULTICAST_RETRANS_INT + 1)× 25 ms

SAR Discard Timeout The value of this state defines the time in seconds that the lower trans-
port layer waits after receiving segments of a segmented message before discarding that seg-
mented message. Use the Kconfig option CONFIG_BT_MESH_SAR_RX_DISCARD_TIMEOUT to set the
default value. The discard timeout will be calculated using the following formula:

(CONFIG_BT_MESH_SAR_RX_DISCARD_TIMEOUT + 1)× 5 seconds

SAR Acknowledgment Delay Increment This state holds a value that controls the delay in-
crement of an interval used for delaying the transmission of an acknowledgment message after
receiving a new segment. The increment is measured in segments.

Use the Kconfig option CONFIG_BT_MESH_SAR_RX_ACK_DELAY_INC to set the default value. The in-
crement value is calculated to be CONFIG_BT_MESH_SAR_RX_ACK_DELAY_INC+ 1.5.

SAR Segments Threshold SAR Segments Threshold state holds a value that defines a threshold
in number of segments of a segmented message for acknowledgment retransmissions. Use the
Kconfig option CONFIG_BT_MESH_SAR_RX_SEG_THRESHOLD to set the threshold.

When the number of segments of a segmented message is above this threshold, the stack will
additionally retransmit every acknowledgment message the number of times given by the value
of CONFIG_BT_MESH_SAR_RX_ACK_RETRANS_COUNT.
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SAR Acknowledgment Retransmissions Count The SAR Acknowledgment Retransmissions
Count state controls the number of retransmissions of Segment Acknowledgment messages sent
by the lower transport layer. It gives the total number of retranmissions of an acknowledgment
message that the stack will additionally send when the size of segments in a segmented message
is above the CONFIG_BT_MESH_SAR_RX_SEG_THRESHOLD value.

Use the Kconfig option CONFIG_BT_MESH_SAR_RX_ACK_RETRANS_COUNT to set the default value for
this state. The maximum number of transmissions of a Segment Acknowledgment message is
CONFIG_BT_MESH_SAR_RX_ACK_RETRANS_COUNT+ 1.

SAR Receiver Segment Interval Step The SAR Receiver Segment Interval Step defines the seg-
ments reception interval step used for delaying the transmission of an acknowledgment message
after receiving a new segment. The interval is measured in milliseconds.

Use the Kconfig option CONFIG_BT_MESH_SAR_RX_SEG_INT_STEP to set the default value and calcu-
late the interval using the following formula:

(CONFIG_BT_MESH_SAR_RX_SEG_INT_STEP + 1)× 10 ms

Provisioning Provisioning is the process of adding devices to a mesh network. It requires two
devices operating in the following roles:

• The provisioner represents the network owner, and is responsible for adding new nodes to
the mesh network.

• The provisionee is the device that gets added to the network through the Provisioning pro-
cess. Before the provisioning process starts, the provisionee is an unprovisioned device.

The Provisioning module in the Zephyr Bluetooth Mesh stack supports both the Advertising
and GATT Provisioning bearers for the provisionee role, as well as the Advertising Provision-
ing bearer for the provisioner role.

The Provisioning process All Bluetooth Mesh nodes must be provisioned before they can par-
ticipate in a Bluetooth Mesh network. The Provisioning API provides all the functionality neces-
sary for a device to become a provisioned mesh node. Provisioning is a five-step process, involv-
ing the following steps:

• Beaconing

• Invitation

• Public key exchange

• Authentication

• Provisioning data transfer

Beaconing To start the provisioning process, the unprovisioned device must first start broad-
casting the Unprovisioned Beacon. This makes it visible to nearby provisioners, which
can initiate the provisioning. To indicate that the device needs to be provisioned, call
bt_mesh_prov_enable(). The device starts broadcasting the Unprovisioned Beacon with the
device UUID and the OOB information field, as specified in the prov parameter passed to
bt_mesh_init(). Additionally, a Uniform Resource Identifier (URI) may be specified, which can
point the provisioner to the location of some Out Of Band information, such as the device’s public
key or an authentication value database. The URI is advertised in a separate beacon, with a URI
hash included in the unprovisioned beacon, to tie the two together.
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Uniform Resource Identifier The Uniform Resource Identifier shall follow the format spec-
ified in the Bluetooth Core Specification Supplement. The URI must start with a URI scheme,
encoded as a single utf-8 data point, or the special none scheme, encoded as 0x01. The available
schemes are listed on the Bluetooth website.

Examples of encoded URIs:

Table 28: URI encoding examples

URI Encoded
http://example.com \x16//example.com
https://www.zephyrproject.org/ \x17//www.zephyrproject.org/
just a string \x01just a string

Provisioning invitation The provisioner initiates the Provisioning process by sending a Pro-
visioning invitation. The invitations prompts the provisionee to call attention to itself using the
Health Server Attention state, if available.

The Unprovisioned device automatically responds to the invite by presenting a list of its capabil-
ities, including the supported Out of Band Authentication methods and algorithms.

Public key exchange Before the provisioning process can begin, the provisioner and the un-
provisioned device exchange public keys, either in-band or Out of Band (OOB).

In-band public key exchange is a part of the provisioning process and always supported by the
unprovisioned device and provisioner.

If the application wants to support public key exchange via OOB, it needs to provide public and
private keys to the mesh stack. The unprovisioned device will reflect this in its capabilities.
The provisioner obtains the public key via any available OOB mechanism (e.g. the device may
advertise a packet containing the public key or it can be encoded in a QR code printed on the
device packaging). Note that even if the unprovisioned device has specified the public key for
the Out of Band exchange, the provisioner may choose to exchange the public key in-band if it
can’t retrieve the public key via OOB mechanism. In this case, a new key pair will be generated
by the mesh stack for each Provisioning process.

To enable support of OOB public key on the unprovisioned device side, CON-
FIG_BT_MESH_PROV_OOB_PUBLIC_KEY needs to be enabled. The application must provide
public and private keys before the Provisioning process is started by initializing pointers
to bt_mesh_prov.public_key_be and bt_mesh_prov.private_key_be. The keys needs to be
provided in big-endian bytes order.

To provide the device’s public key obtained via OOB, call bt_mesh_prov_remote_pub_key_set()
on the provisioner side.

Authentication After the initial exchange, the provisioner selects an Out of Band (OOB) Au-
thentication method. This allows the user to confirm that the device the provisioner connected
to is actually the device they intended, and not a malicious third party.

The Provisioning API supports the following authentication methods for the provisionee:

• Static OOB: An authentication value is assigned to the device in production, which the
provisioner can query in some application specific way.

• Input OOB: The user inputs the authentication value. The available input actions are listed
in bt_mesh_input_action_t.

• Output OOB: Show the user the authentication value. The available output actions are
listed in bt_mesh_output_action_t.
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The application must provide callbacks for the supported authentication methods in
bt_mesh_prov, as well as enabling the supported actions in bt_mesh_prov.output_actions and
bt_mesh_prov.input_actions.

When an Output OOB action is selected, the authentication value should be presented to the
user when the output callback is called, and remain until the bt_mesh_prov.input_complete or
bt_mesh_prov.complete callback is called. If the action is blink, beep or vibrate, the sequence
should be repeated after a delay of three seconds or more.

When an Input OOB action is selected, the user should be prompted when the application re-
ceives the bt_mesh_prov.input callback. The user response should be fed back to the Provision-
ing API through bt_mesh_input_string() or bt_mesh_input_number(). If no user response is
recorded within 60 seconds, the Provisioning process is aborted.

If Provisionee wants to mandate OOB authentication, it is mandatory to use the
BT_MESH_ECDH_P256_HMAC_SHA256_AES_CCM algorithm.

Data transfer After the device has been successfully authenticated, the provisioner transfers
the Provisioning data:

• Unicast address

• A network key

• IV index

• Network flags

– Key refresh

– IV update

Additionally, a device key is generated for the node. All this data is stored by the mesh stack, and
the provisioning bt_mesh_prov.complete callback gets called.

Provisioning security Depending on the choice of public key exchange mechanism and au-
thentication method, the provisioning process can be secure or insecure.

On May 24th 2021, ANSSI disclosed a set of vulnerabilities in the Bluetooth Mesh provisioning
protocol that showcased how the low entropy provided by the Blink, Vibrate, Push, Twist and
Input/Output numeric OOB methods could be exploited in impersonation and MITM attacks. In
response, the Bluetooth SIG has reclassified these OOB methods as insecure in the Bluetooth
Mesh Profile Specification v1.0.1 erratum 16350, as AuthValue may be brute forced in real time.
To ensure secure provisioning, applications should use a static OOB value and OOB public key
transfer.

API reference

group bt_mesh_prov
Provisioning.

Enums

Available authentication algorithms.

Values:
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enumerator BT_MESH_PROV_AUTH_CMAC_AES128_AES_CCM

enumerator BT_MESH_PROV_AUTH_HMAC_SHA256_AES_CCM

OOB Type field values.

Values:

enumerator BT_MESH_STATIC_OOB_AVAILABLE = BIT(0)
Static OOB information available.

enumerator BT_MESH_OOB_AUTH_REQUIRED = BIT(1)
OOB authentication required.

enum bt_mesh_output_action_t
Available Provisioning output authentication actions.

Values:

enumerator BT_MESH_NO_OUTPUT = 0

enumerator BT_MESH_BLINK = BIT(0)
Blink.

enumerator BT_MESH_BEEP = BIT(1)
Beep.

enumerator BT_MESH_VIBRATE = BIT(2)
Vibrate.

enumerator BT_MESH_DISPLAY_NUMBER = BIT(3)
Output numeric.

enumerator BT_MESH_DISPLAY_STRING = BIT(4)
Output alphanumeric.

enum bt_mesh_input_action_t
Available Provisioning input authentication actions.

Values:

enumerator BT_MESH_NO_INPUT = 0

enumerator BT_MESH_PUSH = BIT(0)
Push.

enumerator BT_MESH_TWIST = BIT(1)
Twist.
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enumerator BT_MESH_ENTER_NUMBER = BIT(2)
Input number.

enumerator BT_MESH_ENTER_STRING = BIT(3)
Input alphanumeric.

enum bt_mesh_prov_bearer_t
Available Provisioning bearers.

Values:

enumerator BT_MESH_PROV_ADV = BIT(0)
PB-ADV bearer.

enumerator BT_MESH_PROV_GATT = BIT(1)
PB-GATT bearer.

enumerator BT_MESH_PROV_REMOTE = BIT(2)
PB-Remote bearer.

enum bt_mesh_prov_oob_info_t
Out of Band information location.

Values:

enumerator BT_MESH_PROV_OOB_OTHER = BIT(0)
Other.

enumerator BT_MESH_PROV_OOB_URI = BIT(1)
Electronic / URI.

enumerator BT_MESH_PROV_OOB_2D_CODE = BIT(2)
2D machine-readable code

enumerator BT_MESH_PROV_OOB_BAR_CODE = BIT(3)
Bar Code.

enumerator BT_MESH_PROV_OOB_NFC = BIT(4)
Near Field Communication (NFC)

enumerator BT_MESH_PROV_OOB_NUMBER = BIT(5)
Number.

enumerator BT_MESH_PROV_OOB_STRING = BIT(6)
String.

enumerator BT_MESH_PROV_OOB_CERTIFICATE = BIT(7)
Support for certificate-based provisioning.
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enumerator BT_MESH_PROV_OOB_RECORDS = BIT(8)
Support for provisioning records.

enumerator BT_MESH_PROV_OOB_ON_BOX = BIT(11)
On box.

enumerator BT_MESH_PROV_OOB_IN_BOX = BIT(12)
Inside box.

enumerator BT_MESH_PROV_OOB_ON_PAPER = BIT(13)
On piece of paper.

enumerator BT_MESH_PROV_OOB_IN_MANUAL = BIT(14)
Inside manual.

enumerator BT_MESH_PROV_OOB_ON_DEV = BIT(15)
On device.

Functions

int bt_mesh_input_string(const char *str)
Provide provisioning input OOB string.

This is intended to be called after the bt_mesh_prov input callback has been called with
BT_MESH_ENTER_STRING as the action.

Parameters
• str – String.

Returns
Zero on success or (negative) error code otherwise.

int bt_mesh_input_number(uint32_t num)
Provide provisioning input OOB number.

This is intended to be called after the bt_mesh_prov input callback has been called with
BT_MESH_ENTER_NUMBER as the action.

Parameters
• num – Number.

Returns
Zero on success or (negative) error code otherwise.

int bt_mesh_prov_remote_pub_key_set(const uint8_t public_key[64])
Provide Device public key.

Parameters
• public_key – Device public key in big-endian.

Returns
Zero on success or (negative) error code otherwise.
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int bt_mesh_auth_method_set_input(bt_mesh_input_action_t action, uint8_t size)
Use Input OOB authentication.

Provisioner only.

Instruct the unprovisioned device to use the specified Input OOB authentication ac-
tion. When using BT_MESH_PUSH, BT_MESH_TWIST or BT_MESH_ENTER_NUMBER,
the bt_mesh_prov::output_number callback is called with a random number that has to
be entered on the unprovisioned device.

When using BT_MESH_ENTER_STRING, the bt_mesh_prov::output_string callback is
called with a random string that has to be entered on the unprovisioned device.

Parameters
• action – Authentication action used by the unprovisioned device.

• size – Authentication size.

Returns
Zero on success or (negative) error code otherwise.

int bt_mesh_auth_method_set_output(bt_mesh_output_action_t action, uint8_t size)
Use Output OOB authentication.

Provisioner only.

Instruct the unprovisioned device to use the specified Output OOB authentication ac-
tion. The bt_mesh_prov::input callback will be called.

When using BT_MESH_BLINK, BT_MESH_BEEP, BT_MESH_VIBRATE or
BT_MESH_DISPLAY_NUMBER, and the application has to call bt_mesh_input_number
with the random number indicated by the unprovisioned device.

When using BT_MESH_DISPLAY_STRING, the application has to call
bt_mesh_input_string with the random string displayed by the unprovisioned de-
vice.

Parameters
• action – Authentication action used by the unprovisioned device.

• size – Authentication size.

Returns
Zero on success or (negative) error code otherwise.

int bt_mesh_auth_method_set_static(const uint8_t *static_val, uint8_t size)
Use static OOB authentication.

Provisioner only.

Instruct the unprovisioned device to use static OOB authentication, and use the given
static authentication value when provisioning.

Parameters
• static_val – Static OOB value.

• size – Static OOB value size.

Returns
Zero on success or (negative) error code otherwise.

int bt_mesh_auth_method_set_none(void)
Don’t use OOB authentication.

Provisioner only.
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Don’t use any authentication when provisioning new devices. This is the default be-
havior.

Warning

Not using any authentication exposes the mesh network to impersonation attacks,
where attackers can pretend to be the unprovisioned device to gain access to the
network. Authentication is strongly encouraged.

Returns
Zero on success or (negative) error code otherwise.

int bt_mesh_prov_enable(bt_mesh_prov_bearer_t bearers)
Enable specific provisioning bearers.

Enable one or more provisioning bearers.

Parameters
• bearers – Bit-wise or of provisioning bearers.

Returns
Zero on success or (negative) error code otherwise.

int bt_mesh_prov_disable(bt_mesh_prov_bearer_t bearers)
Disable specific provisioning bearers.

Disable one or more provisioning bearers.

Parameters
• bearers – Bit-wise or of provisioning bearers.

Returns
Zero on success or (negative) error code otherwise.

int bt_mesh_provision(const uint8_t net_key[16], uint16_t net_idx, uint8_t flags, uint32_t
iv_index, uint16_t addr, const uint8_t dev_key[16])

Provision the local Mesh Node.

This API should normally not be used directly by the application. The only exception is
for testing purposes where manual provisioning is desired without an actual external
provisioner.

Parameters
• net_key – Network Key

• net_idx – Network Key Index

• flags – Provisioning Flags

• iv_index – IV Index

• addr – Primary element address

• dev_key – Device Key

Returns
Zero on success or (negative) error code otherwise.

int bt_mesh_provision_adv(const uint8_t uuid[16], uint16_t net_idx, uint16_t addr, uint8_t
attention_duration)

Provision a Mesh Node using PB-ADV.

Parameters
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• uuid – UUID

• net_idx – Network Key Index

• addr – Address to assign to remote device. If addr is 0, the lowest avail-
able address will be chosen.

• attention_duration – The attention duration to be send to remote device

Returns
Zero on success or (negative) error code otherwise.

int bt_mesh_provision_gatt(const uint8_t uuid[16], uint16_t net_idx, uint16_t addr,
uint8_t attention_duration)

Provision a Mesh Node using PB-GATT.

Parameters
• uuid – UUID

• net_idx – Network Key Index

• addr – Address to assign to remote device. If addr is 0, the lowest avail-
able address will be chosen.

• attention_duration – The attention duration to be send to remote device

Returns
Zero on success or (negative) error code otherwise.

int bt_mesh_provision_remote(struct bt_mesh_rpr_cli *cli, const struct bt_mesh_rpr_node
*srv, const uint8_t uuid[16], uint16_t net_idx, uint16_t
addr)

Provision a Mesh Node using PB-Remote.

Parameters
• cli – Remote Provisioning Client Model to provision with.

• srv – Remote Provisioning Server that should be used to tunnel the pro-
visioning.

• uuid – UUID of the unprovisioned node

• net_idx – Network Key Index to give to the unprovisioned node.

• addr – Address to assign to remote device. If addr is 0, the lowest avail-
able address will be chosen.

Returns
Zero on success or (negative) error code otherwise.

int bt_mesh_reprovision_remote(struct bt_mesh_rpr_cli *cli, struct bt_mesh_rpr_node
*srv, uint16_t addr, bool comp_change)

Reprovision a Mesh Node using PB-Remote.

Reprovisioning can be used to change the device key, unicast address and composi-
tion data of another device. The reprovisioning procedure uses the same protocol as
normal provisioning, with the same level of security.

There are three tiers of reprovisioning:

a. Refreshing the device key

b. Refreshing the device key and node address. Composition data may change, in-
cluding the number of elements.

c. Refreshing the device key and composition data, in case the composition data of
the target node changed due to a firmware update or a similar procedure.
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The target node indicates that its composition data changed by instantiating its com-
position data page 128. If the number of elements have changed, it may be necessary
to move the unicast address of the target node as well, to avoid overlapping addresses.

Note

Changing the unicast addresses of the target node requires changes to all nodes that
publish directly to any of the target node’s models.

Parameters
• cli – Remote Provisioning Client Model to provision on

• srv – Remote Provisioning Server to reprovision

• addr – Address to assign to remote device. If addr is 0, the lowest avail-
able address will be chosen.

• comp_change – The target node has indicated that its composition data
has changed. Note that the target node will reject the update if this isn’t
true.

Returns
Zero on success or (negative) error code otherwise.

bool bt_mesh_is_provisioned(void)
Check if the local node has been provisioned.

This API can be used to check if the local node has been provisioned or not. It can e.g.
be helpful to determine if there was a stored network in flash, i.e. if the network was
restored after calling settings_load().

Returns
True if the node is provisioned. False otherwise.

struct bt_mesh_dev_capabilities
#include <main.h> Device Capabilities.

Public Members

uint8_t elem_count
Number of elements supported by the device.

uint16_t algorithms
Supported algorithms and other capabilities.

uint8_t pub_key_type
Supported public key types.

uint8_t oob_type
Supported OOB Types.

bt_mesh_output_action_t output_actions
Supported Output OOB Actions.
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bt_mesh_input_action_t input_actions
Supported Input OOB Actions.

uint8_t output_size
Maximum size of Output OOB supported.

uint8_t input_size
Maximum size in octets of Input OOB supported.

struct bt_mesh_prov
#include <main.h> Provisioning properties & capabilities.

Public Members

const uint8_t *uuid
The UUID that’s used when advertising as unprovisioned.

const char *uri
Optional URI.

This will be advertised separately from the unprovisioned beacon, however the
unprovisioned beacon will contain a hash of it so the two can be associated by the
provisioner.

bt_mesh_prov_oob_info_t oob_info
Out of Band information field.

const uint8_t *public_key_be
Pointer to Public Key in big-endian for OOB public key type support.

Remember to enable CONFIG_BT_MESH_PROV_OOB_PUBLIC_KEYwhen initializing this
parameter.

Must be used together with bt_mesh_prov::private_key_be.

const uint8_t *private_key_be
Pointer to Private Key in big-endian for OOB public key type support.

Remember to enable CONFIG_BT_MESH_PROV_OOB_PUBLIC_KEYwhen initializing this
parameter.

Must be used together with bt_mesh_prov::public_key_be.

const uint8_t *static_val
Static OOB value.

uint8_t static_val_len
Static OOB value length.

uint8_t output_size
Maximum size of Output OOB supported.
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uint16_t output_actions
Supported Output OOB Actions.

uint8_t input_size
Maximum size of Input OOB supported.

uint16_t input_actions
Supported Input OOB Actions.

void (*capabilities)(const struct bt_mesh_dev_capabilities *cap)
Provisioning Capabilities.

This callback notifies the application that the provisioning capabilities of the un-
provisioned device has been received.

The application can consequently call bt_mesh_auth_method_set_<*> to select suit-
able provisioning oob authentication method.

When this callback returns, the provisioner will start authentication with the cho-
sen method.

Param cap
capabilities supported by device.

int (*output_number)(bt_mesh_output_action_t act, uint32_t num)
Output of a number is requested.

This callback notifies the application that it should output the given number using
the given action.

Param act
Action for outputting the number.

Param num
Number to be outputted.

Return
Zero on success or negative error code otherwise

int (*output_string)(const char *str)
Output of a string is requested.

This callback notifies the application that it should display the given string to the
user.

Param str
String to be displayed.

Return
Zero on success or negative error code otherwise

int (*input)(bt_mesh_input_action_t act, uint8_t size)
Input is requested.

This callback notifies the application that it should request input from the user
using the given action. The requested input will either be a string or a num-
ber, and the application needs to consequently call the bt_mesh_input_string() or
bt_mesh_input_number() functions once the data has been acquired from the user.

Param act
Action for inputting data.

Param num
Maximum size of the inputted data.
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Return
Zero on success or negative error code otherwise

void (*input_complete)(void)
The other device finished their OOB input.

This callback notifies the application that it should stop displaying its output OOB
value, as the other party finished their OOB input.

void (*unprovisioned_beacon)(uint8_t uuid[16], bt_mesh_prov_oob_info_t oob_info,
uint32_t *uri_hash)

Unprovisioned beacon has been received.

This callback notifies the application that an unprovisioned beacon has been re-
ceived.

Param uuid
UUID

Param oob_info
OOB Information

Param uri_hash
Pointer to URI Hash value. NULL if no hash was present in the beacon.

void (*unprovisioned_beacon_gatt)(uint8_t uuid[16], bt_mesh_prov_oob_info_t
oob_info)

PB-GATT Unprovisioned Advertising has been received.

This callback notifies the application that an PB-GATT unprovisioned Advertising
has been received.

Param uuid
UUID

Param oob_info
OOB Information

void (*link_open)(bt_mesh_prov_bearer_t bearer)
Provisioning link has been opened.

This callback notifies the application that a provisioning link has been opened on
the given provisioning bearer.

Param bearer
Provisioning bearer.

void (*link_close)(bt_mesh_prov_bearer_t bearer)
Provisioning link has been closed.

This callback notifies the application that a provisioning link has been closed on
the given provisioning bearer.

Param bearer
Provisioning bearer.

void (*complete)(uint16_t net_idx, uint16_t addr)
Provisioning is complete.

This callback notifies the application that provisioning has been successfully com-
pleted, and that the local node has been assigned the specified NetKeyIndex and
primary element address.

Param net_idx
NetKeyIndex given during provisioning.
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Param addr
Primary element address.

void (*reprovisioned)(uint16_t addr)
Local node has been reprovisioned.

This callback notifies the application that reprovisioning has been successfully
completed.

Param addr
New primary element address.

void (*node_added)(uint16_t net_idx, uint8_t uuid[16], uint16_t addr, uint8_t
num_elem)

A new node has been added to the provisioning database.

This callback notifies the application that provisioning has been successfully com-
pleted, and that a node has been assigned the specified NetKeyIndex and primary
element address.

Param net_idx
NetKeyIndex given during provisioning.

Param uuid
UUID of the added node

Param addr
Primary element address.

Param num_elem
Number of elements that this node has.

void (*reset)(void)
Node has been reset.

This callback notifies the application that the local node has been reset and needs to
be provisioned again. The node will not automatically advertise as unprovisioned,
rather the bt_mesh_prov_enable() API needs to be called to enable unprovisioned
advertising on one or more provisioning bearers.

Proxy The Proxy feature allows legacy devices like phones to access the Bluetooth Mesh net-
work through GATT. The Proxy feature is only compiled in if the CONFIG_BT_MESH_GATT_PROXY
option is set. The Proxy feature state is controlled by the Configuration Server, and the initial
value can be set with bt_mesh_cfg_srv.gatt_proxy.

Nodes with the Proxy feature enabled can advertise with Network Identity and Node Identity,
which is controlled by the Configuration Client.

The GATT Proxy state indicates if the Proxy feature is supported.

Private Proxy A node supporting the Proxy feature and the Private Beacon Server model can
advertise with Private Network Identity and Private Node Identity types, which is controlled by
the Private Beacon Client. By advertising with this set of identification types, the node allows the
legacy device to connect to the network over GATT while maintaining the privacy of the network.

The Private GATT Proxy state indicates whether the Private Proxy functionality is supported.

Proxy Solicitation In the case where both GATT Proxy and Private GATT Proxy states are dis-
abled on a node, a legacy device cannot connect to it. A node supporting the On-Demand Private
Proxy Server may however be solicited to advertise connectable advertising events without en-
abling the Private GATT Proxy state. To solicit the node, the legacy device can send a Solicitation
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PDU by calling the bt_mesh_proxy_solicit() function. To enable this feature, the device must
to be compiled with the CONFIG_BT_MESH_PROXY_SOLICITATION option set.

Solicitation PDUs are non-mesh, non-connectable, undirected advertising messages containing
Proxy Solicitation UUID, encrypted with the network key of the subnet that the legacy device
wants to connect to. The PDU contains the source address of the legacy device and a sequence
number. The sequence number is maintained by the legacy device and is incremented for every
new Solicitation PDU sent.

Each node supporting the Solicitation PDU reception holds its own Solicitation Replay Protection
List (SRPL). The SRPL protects the solicitation mechanism from replay attacks by storing solic-
itation sequence number (SSEQ) and solicitation source (SSRC) pairs of valid Solicitation PDUs
processed by the node. The delay between updating the SRPL and storing the change to the per-
sistent storage is defined by CONFIG_BT_MESH_RPL_STORE_TIMEOUT.

The Solicitation PDU RPL Configuration models, Solicitation PDU RPL Configuration Client and
Solicitation PDU RPL Configuration Server, provide the functionality of saving and clearing SRPL
entries. A node that supports the Solicitation PDU RPL Configuration Client model can clear
a section of the SRPL on the target by calling the bt_mesh_sol_pdu_rpl_clear() function. Com-
munication between the Solicitation PDU RPL Configuration Client and Server is encrypted using
the application key, therefore, the Solicitation PDU RPL Configuration Client can be instantiated
on any device in the network.

When the node receives the Solicitation PDU and successfully authenticates it, it will start adver-
tising connectable advertisements with the Private Network Identity type. The duration of the
advertisement can be configured by the On-Demand Private Proxy Client model.

API reference

group bt_mesh_proxy
Proxy.

Defines

BT_MESH_PROXY_CB_DEFINE(_name)
Register a callback structure for Proxy events.

Registers a structure with callback functions that gets called on various Proxy events.

Parameters
• _name – Name of callback structure.

Functions

int bt_mesh_proxy_identity_enable(void)
Enable advertising with Node Identity.

This API requires that GATT Proxy support has been enabled. Once called each subnet
will start advertising using Node Identity for the next 60 seconds.

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_proxy_private_identity_enable(void)
Enable advertising with Private Node Identity.

This API requires that GATT Proxy support has been enabled. Once called each subnet
will start advertising using Private Node Identity for the next 60 seconds.
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Returns
0 on success, or (negative) error code on failure.

int bt_mesh_proxy_connect(uint16_t net_idx)
Allow Proxy Client to auto connect to a network.

This API allows a proxy client to auto-connect a given network.

Parameters
• net_idx – Network Key Index

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_proxy_disconnect(uint16_t net_idx)
Disallow Proxy Client to auto connect to a network.

This API disallows a proxy client to connect a given network.

Parameters
• net_idx – Network Key Index

Returns
0 on success, or (negative) error code on failure.

int bt_mesh_proxy_solicit(uint16_t net_idx)
Schedule advertising of Solicitation PDUs.

Once called, the device will schedule advertising Solicitation PDUs for the amount of
time defined by adv_int * (CONFIG_BT_MESH_SOL_ADV_XMIT + 1), where adv_int is 20ms
for Bluetooth v5.0 or higher, or 100ms otherwise.

If the number of advertised Solicitation PDUs reached 0xFFFFFF, the advertisements
will no longer be started until the node is reprovisioned.

Parameters
• net_idx – Network Key Index

Returns
0 on success, or (negative) error code on failure.

struct bt_mesh_proxy_cb
#include <proxy.h> Callbacks for the Proxy feature.

Should be instantiated with BT_MESH_PROXY_CB_DEFINE.

Public Members

void (*identity_enabled)(uint16_t net_idx)
Started sending Node Identity beacons on the given subnet.

Param net_idx
Network index the Node Identity beacons are running on.

void (*identity_disabled)(uint16_t net_idx)
Stopped sending Node Identity beacons on the given subnet.

Param net_idx
Network index the Node Identity beacons were running on.
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Heartbeat The Heartbeat feature provides functionality for monitoring Bluetooth Mesh nodes
and determining the distance between nodes.

The Heartbeat feature is configured through the Configuration Server model.

Heartbeat messages Heartbeat messages are sent as transport control packets through the
network, and are only encrypted with a network key. Heartbeat messages contain the original
Time To Live (TTL) value used to send the message and a bitfield of the active features on the
node. Through this, a receiving node can determine how many relays the message had to go
through to arrive at the receiver, and what features the node supports.

Available Heartbeat feature flags:

• BT_MESH_FEAT_RELAY
• BT_MESH_FEAT_PROXY
• BT_MESH_FEAT_FRIEND
• BT_MESH_FEAT_LOW_POWER

Heartbeat publication Heartbeat publication is controlled through the Configuration models,
and can be triggered in two ways:

Periodic publication
The node publishes a new Heartbeat message at regular intervals. The publication can be
configured to stop after a certain number of messages, or continue indefinitely.

Triggered publication
The node publishes a new Heartbeat message every time a feature changes. The set of
features that can trigger the publication is configurable.

The two publication types can be combined.

Heartbeat subscription A node can be configured to subscribe to Heartbeat messages from
one node at the time. To receive a Heartbeat message, both the source and destination must
match the configured subscription parameters.

Heartbeat subscription is always time limited, and throughout the subscription period, the node
keeps track of the number of received Heartbeats as well as the minimum and maximum re-
ceived hop count.

All Heartbeats received with the configured subscription parameters are passed to the
bt_mesh_hb_cb::recv event handler.

When the Heartbeat subscription period ends, the bt_mesh_hb_cb::sub_end callback gets called.

API reference

group bt_mesh_heartbeat
Heartbeat.

Defines

BT_MESH_HB_CB_DEFINE(_name)
Register a callback structure for Heartbeat events.

Registers a callback structure that will be called whenever Heartbeat events occur

Parameters
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• _name – Name of callback structure.

Functions

void bt_mesh_hb_pub_get(struct bt_mesh_hb_pub *get)
Get the current Heartbeat publication parameters.

Parameters
• get – Heartbeat publication parameters return buffer.

void bt_mesh_hb_sub_get(struct bt_mesh_hb_sub *get)
Get the current Heartbeat subscription parameters.

Parameters
• get – Heartbeat subscription parameters return buffer.

struct bt_mesh_hb_pub
#include <heartbeat.h> Heartbeat Publication parameters.

Public Members

uint16_t dst
Destination address.

uint16_t count
Remaining publish count.

uint8_t ttl
Time To Live value.

uint16_t feat
Bitmap of features that trigger a Heartbeat publication if they change.

Legal values are BT_MESH_FEAT_RELAY , BT_MESH_FEAT_PROXY ,
BT_MESH_FEAT_FRIEND and BT_MESH_FEAT_LOW_POWER.

uint16_t net_idx
Network index used for publishing.

uint32_t period
Publication period in seconds.

struct bt_mesh_hb_sub
#include <heartbeat.h> Heartbeat Subscription parameters.

Public Members

uint32_t period
Subscription period in seconds.

6.1. Bluetooth 2259



Zephyr Project Documentation, Release 3.7.99

uint32_t remaining
Remaining subscription time in seconds.

uint16_t src
Source address to receive Heartbeats from.

uint16_t dst
Destination address to received Heartbeats on.

uint16_t count
The number of received Heartbeat messages so far.

uint8_t min_hops
Minimum hops in received messages, ie the shortest registered path from the pub-
lishing node to the subscribing node.

A Heartbeat received from an immediate neighbor has hop count = 1.

uint8_t max_hops
Maximum hops in received messages, ie the longest registered path from the pub-
lishing node to the subscribing node.

A Heartbeat received from an immediate neighbor has hop count = 1.

struct bt_mesh_hb_cb
#include <heartbeat.h> Heartbeat callback structure.

Public Members

void (*recv)(const struct bt_mesh_hb_sub *sub, uint8_t hops, uint16_t feat)
Receive callback for heartbeats.

Gets called on every received Heartbeat that matches the current Heartbeat sub-
scription parameters.

Param sub
Current Heartbeat subscription parameters.

Param hops
The number of hops the Heartbeat was received with.

Param feat
The feature set of the publishing node. The value is a
bitmap of BT_MESH_FEAT_RELAY , BT_MESH_FEAT_PROXY ,
BT_MESH_FEAT_FRIEND and BT_MESH_FEAT_LOW_POWER.

void (*sub_end)(const struct bt_mesh_hb_sub *sub)
Subscription end callback for heartbeats.

Gets called when the subscription period ends, providing a summary of the re-
ceived heartbeat messages.

Param sub
Current Heartbeat subscription parameters.
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void (*pub_sent)(const struct bt_mesh_hb_pub *pub)
Publication sent callback for heartbeats.

Gets called when the heartbeat is successfully published.
Param pub

Current Heartbeat publication parameters.

Runtime Configuration The runtime configuration API allows applications to change their
runtime configuration directly, without going through the Configuration models.

Bluetooth Mesh nodes should generally be configured by a central network configurator device
with aConfiguration Clientmodel. Each mesh node instantiates aConfiguration Servermodel that
the Configuration Client can communicate with to change the node configuration. In some cases,
the mesh node can’t rely on the Configuration Client to detect or determine local constraints, such
as low battery power or changes in topology. For these scenarios, this API can be used to change
the configuration locally.

Note

Runtime configuration changes before the node is provisioned will not be stored in the per-
sistent storage.

API reference

group bt_mesh_cfg
Runtime Configuration.

Defines

BT_MESH_KR_NORMAL

BT_MESH_KR_PHASE_1

BT_MESH_KR_PHASE_2

BT_MESH_KR_PHASE_3

BT_MESH_RELAY_DISABLED

BT_MESH_RELAY_ENABLED

BT_MESH_RELAY_NOT_SUPPORTED

BT_MESH_BEACON_DISABLED

BT_MESH_BEACON_ENABLED

BT_MESH_PRIV_BEACON_DISABLED
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BT_MESH_PRIV_BEACON_ENABLED

BT_MESH_GATT_PROXY_DISABLED

BT_MESH_GATT_PROXY_ENABLED

BT_MESH_GATT_PROXY_NOT_SUPPORTED

BT_MESH_PRIV_GATT_PROXY_DISABLED

BT_MESH_PRIV_GATT_PROXY_ENABLED

BT_MESH_PRIV_GATT_PROXY_NOT_SUPPORTED

BT_MESH_FRIEND_DISABLED

BT_MESH_FRIEND_ENABLED

BT_MESH_FRIEND_NOT_SUPPORTED

BT_MESH_NODE_IDENTITY_STOPPED

BT_MESH_NODE_IDENTITY_RUNNING

BT_MESH_NODE_IDENTITY_NOT_SUPPORTED

Enums

enum bt_mesh_feat_state
Bluetooth Mesh feature states.

Values:

enumerator BT_MESH_FEATURE_DISABLED
Feature is supported, but disabled.

enumerator BT_MESH_FEATURE_ENABLED
Feature is supported and enabled.

enumerator BT_MESH_FEATURE_NOT_SUPPORTED
Feature is not supported, and cannot be enabled.

Functions
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void bt_mesh_beacon_set(bool beacon)
Enable or disable sending of the Secure Network Beacon.

Parameters
• beacon – New Secure Network Beacon state.

bool bt_mesh_beacon_enabled(void)
Get the current Secure Network Beacon state.

Returns
Whether the Secure Network Beacon feature is enabled.

int bt_mesh_priv_beacon_set(enum bt_mesh_feat_state priv_beacon)
Enable or disable sending of the Mesh Private beacon.

Support for the Private beacon state must be enabled with CON-
FIG_BT_MESH_PRIV_BEACONS.

Parameters
• priv_beacon – New Mesh Private beacon state. Must be one of
BT_MESH_FEATURE_ENABLED and BT_MESH_FEATURE_DISABLED.

Return values
• 0 – Successfully changed the Mesh Private beacon feature state.

• -ENOTSUP – The Mesh Private beacon feature is not supported.

• -EINVAL – Invalid parameter.

• -EALREADY – Already in the given state.

enum bt_mesh_feat_state bt_mesh_priv_beacon_get(void)
Get the current Mesh Private beacon state.

Returns
The Mesh Private beacon feature state.

void bt_mesh_priv_beacon_update_interval_set(uint8_t interval)
Set the current Mesh Private beacon update interval.

The Mesh Private beacon’s randomization value is updated regularly to maintain the
node’s privacy. The update interval controls how often the beacon is updated, in 10
second increments.

Parameters
• interval – Private beacon update interval in 10 second steps, or 0 to up-

date on every beacon transmission.

uint8_t bt_mesh_priv_beacon_update_interval_get(void)
Get the current Mesh Private beacon update interval.

The Mesh Private beacon’s randomization value is updated regularly to maintain the
node’s privacy. The update interval controls how often the beacon is updated, in 10
second increments.

Returns
The Private beacon update interval in 10 second steps, or 0 if the beacon is
updated every time it’s transmitted.

int bt_mesh_default_ttl_set(uint8_t default_ttl)
Set the default TTL value.

The default TTL value is used when no explicit TTL value is set. Models will use the
default TTL value when bt_mesh_msg_ctx::send_ttl is BT_MESH_TTL_DEFAULT.
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Parameters
• default_ttl – The new default TTL value. Valid values are 0x00 and 0x02

to BT_MESH_TTL_MAX.

Return values
• 0 – Successfully set the default TTL value.

• -EINVAL – Invalid TTL value.

uint8_t bt_mesh_default_ttl_get(void)
Get the current default TTL value.

Returns
The current default TTL value.

int bt_mesh_od_priv_proxy_get(void)
Get the current Mesh On-Demand Private Proxy state.

Return values
• 0 – or positive value represents On-Demand Private Proxy feature state

• -ENOTSUP – The On-Demand Private Proxy feature is not supported.

int bt_mesh_od_priv_proxy_set(uint8_t on_demand_proxy)
Set state of Mesh On-Demand Private Proxy.

Support for the On-Demand Private Proxy state must be enabled with
BT_MESH_OD_PRIV_PROXY_SRV.

Parameters
• on_demand_proxy – New Mesh On-Demand Private Proxy state. Value of

0x00 means that advertising with Private Network Identity cannot be en-
abled on demand. Values in range 0x01 - 0xFF set interval of this adver-
tising after valid Solicitation PDU is received or client disconnects.

Return values
• 0 – Successfully changed the Mesh On-Demand Private Proxy feature

state.

• -ENOTSUP – The On-Demand Private Proxy feature is not supported.

• -EINVAL – Invalid parameter.

• -EALREADY – Already in the given state.

void bt_mesh_net_transmit_set(uint8_t xmit)
Set the Network Transmit parameters.

The Network Transmit parameters determine the parameters local messages are trans-
mitted with.

See also

BT_MESH_TRANSMIT

Parameters
• xmit – New Network Transmit parameters. UseBT_MESH_TRANSMIT for

encoding.
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uint8_t bt_mesh_net_transmit_get(void)
Get the current Network Transmit parameters.

The BT_MESH_TRANSMIT_COUNT and BT_MESH_TRANSMIT_INT macros can be used
to decode the Network Transmit parameters.

Returns
The current Network Transmit parameters.

int bt_mesh_relay_set(enum bt_mesh_feat_state relay, uint8_t xmit)
Configure the Relay feature.

Enable or disable the Relay feature, and configure the parameters to transmit relayed
messages with.

Support for the Relay feature must be enabled through the CONFIG_BT_MESH_RELAY con-
figuration option.

See also

BT_MESH_TRANSMIT

Parameters
• relay – New Relay feature state. Must be one of
BT_MESH_FEATURE_ENABLED and BT_MESH_FEATURE_DISABLED.

• xmit – New Relay retransmit parameters. Use BT_MESH_TRANSMIT for
encoding.

Return values
• 0 – Successfully changed the Relay configuration.

• -ENOTSUP – The Relay feature is not supported.

• -EINVAL – Invalid parameter.

• -EALREADY – Already using the given parameters.

enum bt_mesh_feat_state bt_mesh_relay_get(void)
Get the current Relay feature state.

Returns
The Relay feature state.

uint8_t bt_mesh_relay_retransmit_get(void)
Get the current Relay Retransmit parameters.

The BT_MESH_TRANSMIT_COUNT and BT_MESH_TRANSMIT_INT macros can be used
to decode the Relay Retransmit parameters.

Returns
The current Relay Retransmit parameters, or 0 if relay is not supported.

int bt_mesh_gatt_proxy_set(enum bt_mesh_feat_state gatt_proxy)
Enable or disable the GATT Proxy feature.

Support for the GATT Proxy feature must be enabled through the CON-
FIG_BT_MESH_GATT_PROXY configuration option.
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Note

The GATT Proxy feature only controls a Proxy node’s ability to relay messages to the
mesh network. A node that supports GATT Proxy will still advertise Connectable
Proxy beacons, even if the feature is disabled. The Proxy feature can only be fully
disabled through compile time configuration.

Parameters
• gatt_proxy – New GATT Proxy state. Must be one of
BT_MESH_FEATURE_ENABLED and BT_MESH_FEATURE_DISABLED.

Return values
• 0 – Successfully changed the GATT Proxy feature state.

• -ENOTSUP – The GATT Proxy feature is not supported.

• -EINVAL – Invalid parameter.

• -EALREADY – Already in the given state.

enum bt_mesh_feat_state bt_mesh_gatt_proxy_get(void)
Get the current GATT Proxy state.

Returns
The GATT Proxy feature state.

int bt_mesh_priv_gatt_proxy_set(enum bt_mesh_feat_state priv_gatt_proxy)
Enable or disable the Private GATT Proxy feature.

Support for the Private GATT Proxy feature must be enabled through the CON-
FIG_BT_MESH_PRIV_BEACONS and CONFIG_BT_MESH_GATT_PROXY configuration options.

Parameters
• priv_gatt_proxy – New Private GATT Proxy state. Must be one of
BT_MESH_FEATURE_ENABLED and BT_MESH_FEATURE_DISABLED.

Return values
• 0 – Successfully changed the Private GATT Proxy feature state.

• -ENOTSUP – The Private GATT Proxy feature is not supported.

• -EINVAL – Invalid parameter.

• -EALREADY – Already in the given state.

enum bt_mesh_feat_state bt_mesh_priv_gatt_proxy_get(void)
Get the current Private GATT Proxy state.

Returns
The Private GATT Proxy feature state.

int bt_mesh_friend_set(enum bt_mesh_feat_state friendship)
Enable or disable the Friend feature.

Any active friendships will be terminated immediately if the Friend feature is disabled.

Support for the Friend feature must be enabled through the CONFIG_BT_MESH_FRIEND
configuration option.

Parameters
• friendship – New Friend feature state. Must be one of
BT_MESH_FEATURE_ENABLED and BT_MESH_FEATURE_DISABLED.
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Return values
• 0 – Successfully changed the Friend feature state.

• -ENOTSUP – The Friend feature is not supported.

• -EINVAL – Invalid parameter.

• -EALREADY – Already in the given state.

enum bt_mesh_feat_state bt_mesh_friend_get(void)
Get the current Friend state.

Returns
The Friend feature state.

Frame statistic The frame statistic API allows monitoring the number of received frames over
different interfaces, and the number of planned and succeeded transmission and relaying at-
tempts.

The API helps the user to estimate the efficiency of the advertiser configuration parameters and
the scanning ability of the device. The number of the monitored parameters can be easily ex-
tended by customer values.

An application can read out and clean up statistics at any time.

API reference

group bt_mesh_stat
Statistic.

Functions

void bt_mesh_stat_get(struct bt_mesh_statistic *st)
Get mesh frame handling statistic.

Parameters
• st – BLE mesh statistic.

void bt_mesh_stat_reset(void)
Reset mesh frame handling statistic.

struct bt_mesh_statistic
#include <statistic.h> The structure that keeps statistics of mesh frames handling.

Public Members

uint32_t rx_adv
All received frames passed basic validation and decryption.

Received frames over advertiser.

uint32_t rx_loopback
Received frames over loopback.
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uint32_t rx_proxy
Received frames over proxy.

uint32_t rx_uknown
Received over unknown interface.

uint32_t tx_adv_relay_planned
Counter of frames that were initiated to relay over advertiser bearer.

uint32_t tx_adv_relay_succeeded
Counter of frames that succeeded relaying over advertiser bearer.

uint32_t tx_local_planned
Counter of frames that were initiated to send over advertiser bearer locally.

uint32_t tx_local_succeeded
Counter of frames that succeeded to send over advertiser bearer locally.

uint32_t tx_friend_planned
Counter of frames that were initiated to send over friend bearer.

uint32_t tx_friend_succeeded
Counter of frames that succeeded to send over friend bearer.

Bluetooth Mesh Shell The Bluetooth Mesh shell subsystem provides a set of Bluetooth Mesh
shell commands for the Shell module. It allows for testing and exploring the Bluetooth Mesh API
through an interactive interface, without having to write an application.

The Bluetooth Mesh shell interface provides access to most Bluetooth Mesh features, including
provisioning, configuration, and message sending.

Prerequisites The Bluetooth Mesh shell subsystem depends on the application to create the
composition data and do the mesh initialization.

Application The Bluetooth Mesh shell subsystem is most easily used through the Bluetooth
Mesh shell application under tests/bluetooth/mesh_shell. See Shell for information on how to
connect and interact with the Bluetooth Mesh shell application.

Basic usage The Bluetooth Mesh shell subsystem adds a single mesh command, which holds a
set of sub-commands. Every time the device boots up, make sure to call mesh init before any of
the other Bluetooth Mesh shell commands can be called:

uart:~$ mesh init

This is done to ensure that all available log will be printed to the shell output.
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Provisioning The mesh node must be provisioned to become part of the network. This is only
necessary the first time the device boots up, as the device will remember its provisioning data
between reboots.

The simplest way to provision the device is through self-provisioning. To do this the user must
provision the device with the default network key and address 0x0001, execute:

uart:~$ mesh prov local 0 0x0001

Since all mesh nodes use the same values for the default network key, this can be done on mul-
tiple devices, as long as they’re assigned non-overlapping unicast addresses. Alternatively, to
provision the device into an existing network, the unprovisioned beacon can be enabled with
mesh prov pb-adv on or mesh prov pb-gatt on. The beacons can be picked up by an external
provisioner, which can provision the node into its network.

Once the mesh node is part of a network, its transmission parameters can be controlled by the
general configuration commands:

• To set the destination address, call mesh target dst <Addr>.

• To set the network key index, call mesh target net <NetKeyIdx>.

• To set the application key index, call mesh target app <AppKeyIdx>.

By default, the transmission parameters are set to send messages to the provisioned address and
network key.

Configuration By setting the destination address to the local unicast address (0x0001 in the
mesh prov local command above), we can perform self-configuration through any of theModels
commands.

A good first step is to read out the node’s own composition data:

uart:~$ mesh models cfg get-comp

This prints a list of the composition data of the node, including a list of its model IDs.

Next, since the device has no application keys by default, it’s a good idea to add one:

uart:~$ mesh models cfg appkey add 0 0

Message sending With an application key added (see above), the mesh node’s transition pa-
rameters are all valid, and the Bluetooth Mesh shell can send raw mesh messages through the
network.

For example, to send a Generic OnOff Set message, call:

uart:~$ mesh test net-send 82020100

Note

All multibyte fields model messages are in little endian, except the opcode.

The message will be sent to the current destination address, using the current network and ap-
plication key indexes. As the destination address points to the local unicast address by default,
the device will only send packets to itself. To change the destination address to the All Nodes
broadcast address, call:

uart:~$ mesh target dst 0xffff
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With the destination address set to 0xffff, any other mesh nodes in the network with the con-
figured network and application keys will receive and process the messages we send.

Note

To change the configuration of the device, the destination address must be set back to the
local unicast address before issuing any configuration commands.

Sending raw mesh packets is a good way to test model message handler implementations during
development, as it can be done without having to implement the sending model. By default, only
the reception of the model messages can be tested this way, as the Bluetooth Mesh shell only
includes the foundation models. To receive a packet in the mesh node, you have to add a model
with a valid opcode handler list to the composition data in subsys/bluetooth/mesh/shell.c, and
print the incoming message to the shell in the handler callback.

Parameter formats The Bluetooth Mesh shell commands are parsed with a variety of formats:

Table 29: Parameter formats

Type Description Example
Integers The default format unless something else is speci-

fied. Can be either decimal or hexadecimal.
1234, 0xabcd01234

Hexstrings For raw byte arrays, like UUIDs, key values and mes-
sage payloads, the parameters should be formatted
as an unbroken string of hexadecimal values with-
out any prefix.

deadbeef01234

Booleans Boolean values are denoted in the API documenta-
tion as <val(off, on)>.

on, off, enabled, dis-
abled, 1, 0

Commands The Bluetooth Mesh shell implements a large set of commands. Some of the com-
mands accept parameters, which are mentioned in brackets after the command name. For ex-
ample, mesh lpn set <value: off, on>. Mandatory parameters are marked with angle brackets
(e.g. <NetKeyIdx>), and optional parameters are marked with square brackets (e.g. [DstAddr]).

The Bluetooth Mesh shell commands are divided into the following groups:

• General configuration

• Target

• Low Power Node

• Testing

• Provisioning

• Proxy

• Models

• Configuration database

• Frame statistic
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Note

Some commands depend on specific features being enabled in the compile time configuration
of the application. Not all features are enabled by default. The list of available Bluetooth mesh
shell commands can be shown in the shell by calling mesh without any arguments.

General configuration

mesh init
Initialize the mesh shell. This command must be run before any other mesh com-
mand.

mesh reset-local
Reset the local mesh node to its initial unprovisioned state. This command will also
clear the Configuration Database (CDB) if present.

Target The target commands enables the user to monitor and set the target destination ad-
dress, network index and application index for the shell. These parameters are used by several
commands, like provisioning, Configuration Client, etc.

mesh target dst [DstAddr]
Get or set the message destination address. The destination address determines where
mesh packets are sent with the shell, but has no effect on modules outside the shell’s
control.

• DstAddr: If present, sets the new 16-bit mesh destination address. If omitted, the
current destination address is printed.

mesh target net [NetKeyIdx]
Get or set the message network index. The network index determines which network
key is used to encrypt mesh packets that are sent with the shell, but has no effect on
modules outside the shell’s control. The network key must already be added to the
device, either through provisioning or by a Configuration Client.

• NetKeyIdx: If present, sets the new network index. If omitted, the current net-
work index is printed.

mesh target app [AppKeyIdx]
Get or set the message application index. The application index determines which
application key is used to encrypt mesh packets that are sent with the shell, but has
no effect on modules outside the shell’s control. The application key must already
be added to the device by a Configuration Client, and must be bound to the current
network index.

• AppKeyIdx: If present, sets the new application index. If omitted, the current
application index is printed.

Low Power Node
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mesh lpn set <Val(off, on)>
Enable or disable Low Power operation. Once enabled, the device will turn off its
radio and start polling for friend nodes.

• Val: Sets whether Low Power operation is enabled.

mesh lpn poll
Perform a poll to the friend node, to receive any pending messages. Only available
when LPN is enabled.

Testing

mesh test net-send <HexString>
Send a raw mesh message with the current destination address, network and appli-
cation index. The message opcode must be encoded manually.

• HexString Raw hexadecimal representation of the message to send.

mesh test iv-update
Force an IV update.

mesh test iv-update-test <Val(off, on)>
Set the IV update test mode. In test mode, the IV update timing requirements are
bypassed.

• Val: Enable or disable the IV update test mode.

mesh test rpl-clear
Clear the replay protection list, forcing the node to forget all received messages.

Warning

Clearing the replay protection list breaks the security mechanisms of the mesh node, making
it susceptible to message replay attacks. This should never be performed in a real deployment.

Health Server Test

mesh test health-srv add-fault <FaultID>
Register a new Health Server Fault for the Linux Foundation Company ID.

• FaultID: ID of the fault to register (0x0001 to 0xFFFF)

mesh test health-srv del-fault [FaultID]
Remove registered Health Server faults for the Linux Foundation Company ID.

• FaultID: If present, the given fault ID will be deleted. If omitted, all registered
faults will be cleared.
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Provisioning To allow a device to broadcast connectable unprovisioned beacons, the
CONFIG_BT_MESH_PROVISIONEE configuration option must be enabled, along with the CON-
FIG_BT_MESH_PB_GATT option.

mesh prov pb-gatt <Val(off, on)>
Start or stop advertising a connectable unprovisioned beacon. The connectable un-
provisioned beacon allows the mesh node to be discovered by nearby GATT based
provisioners, and provisioned through the GATT bearer.

• Val: Enable or disable provisioning with GATT

To allow a device to broadcast unprovisioned beacons, the CONFIG_BT_MESH_PROVISIONEE config-
uration option must be enabled, along with the CONFIG_BT_MESH_PB_ADV option.

mesh prov pb-adv <Val(off, on)>
Start or stop advertising the unprovisioned beacon. The unprovisioned beacon al-
lows the mesh node to be discovered by nearby advertising-based provisioners, and
provisioned through the advertising bearer.

• Val: Enable or disable provisioning with advertiser

To allow a device to provision devices, the CONFIG_BT_MESH_PROVISIONER and CON-
FIG_BT_MESH_PB_ADV configuration options must be enabled.

mesh prov remote-adv <UUID(1-16 hex)> <NetKeyIdx> <Addr> <AttDur(s)>
Provision a nearby device into the mesh. The mesh node starts scanning for unpro-
visioned beacons with the given UUID. Once found, the unprovisioned device will be
added to the mesh network with the given unicast address, and given the network key
indicated by NetKeyIdx.

• UUID: UUID of the unprovisioned device. Providing a hex-string shorter than 16
bytes will populate the N most significant bytes of the array and zero-pad the rest.

• NetKeyIdx: Index of the network key to pass to the device.

• Addr: First unicast address to assign to the unprovisioned device. The device will
occupy as many addresses as it has elements, and all must be available.

• AttDur: The duration in seconds the unprovisioned device will identify itself for,
if supported. See Attention state for details.

To allow a device to provision devices over GATT, the CONFIG_BT_MESH_PROVISIONER and CON-
FIG_BT_MESH_PB_GATT_CLIENT configuration options must be enabled.

mesh prov remote-gatt <UUID(1-16 hex)> <NetKeyIdx> <Addr> <AttDur(s)>
Provision a nearby device into the mesh. The mesh node starts scanning for con-
nectable advertising for PB-GATT with the given UUID. Once found, the unprovisioned
device will be added to the mesh network with the given unicast address, and given
the network key indicated by NetKeyIdx.

• UUID: UUID of the unprovisioned device. Providing a hex-string shorter than 16
bytes will populate the N most significant bytes of the array and zero-pad the rest.

• NetKeyIdx: Index of the network key to pass to the device.

• Addr: First unicast address to assign to the unprovisioned device. The device will
occupy as many addresses as it has elements, and all must be available.
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• AttDur: The duration in seconds the unprovisioned device will identify itself for,
if supported. See Attention state for details.

mesh prov uuid [UUID(1-16 hex)]
Get or set the mesh node’s UUID, used in the unprovisioned beacons.

• UUID: If present, new 128-bit UUID value. Providing a hex-string shorter than 16
bytes will populate the N most significant bytes of the array and zero-pad the
rest. If omitted, the current UUID will be printed. To enable this command, the
CONFIG_BT_MESH_SHELL_PROV_CTX_INSTANCE option must be enabled.

mesh prov input-num <Number>
Input a numeric OOB authentication value. Only valid when prompted by the shell
during provisioning. The input number must match the number presented by the
other participant in the provisioning.

• Number: Decimal authentication number.

mesh prov input-str <String>
Input an alphanumeric OOB authentication value. Only valid when prompted by the
shell during provisioning. The input string must match the string presented by the
other participant in the provisioning.

• String: Unquoted alphanumeric authentication string.

mesh prov static-oob [Val(1-32 hex)]
Set or clear the static OOB authentication value. The static OOB authentication value
must be set before provisioning starts to have any effect. The static OOB value must
be same on both participants in the provisioning. To enable this command, the CON-
FIG_BT_MESH_SHELL_PROV_CTX_INSTANCE option must be enabled.

• Val: If present, indicates the new hexadecimal value of the static OOB. Providing
a hex-string shorter than 16 bytes will populate the N most significant bytes of
the array and zero-pad the rest. If omitted, the static OOB value is cleared.

mesh prov local <NetKeyIdx> <Addr> [IVI]
Provision the mesh node itself. If the Configuration database is enabled, the network
key must be created. Otherwise, the default key value is used.

• NetKeyIdx: Index of the network key to provision.

• Addr: First unicast address to assign to the device. The device will occupy as many
addresses as it has elements, and all must be available.

• IVI: Indicates the current network IV index. Defaults to 0 if omitted.

mesh prov beacon-listen <Val(off, on)>
Enable or disable printing of incoming unprovisioned beacons. Allows a provisioner
device to detect nearby unprovisioned devices and provision them. To enable this
command, the CONFIG_BT_MESH_SHELL_PROV_CTX_INSTANCE option must be enabled.

• Val: Whether to enable the unprovisioned beacon printing.

2274 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

mesh prov remote-pub-key <PubKey>
Provide Device public key.

• PubKey - Device public key in big-endian.

mesh prov auth-method input <Action> <Size>
From the provisioner device, instruct the unprovisioned device to use the specified
Input OOB authentication action.

• Action - Input action. Allowed values:

– 0 - No input action.

– 1 - Push action set.

– 2 - Twist action set.

– 4 - Enter number action set.

– 8 - Enter String action set.

• Size - Authentication size.

mesh prov auth-method output <Action> <Size>
From the provisioner device, instruct the unprovisioned device to use the specified
Output OOB authentication action.

• Action - Output action. Allowed values:

– 0 - No output action.

– 1 - Blink action set.

– 2 - Vibrate action set.

– 4 - Display number action set.

– 8 - Display String action set.

• Size - Authentication size.

mesh prov auth-method static <Val(1-16 hex)>
From the provisioner device, instruct the unprovisioned device to use static OOB au-
thentication, and use the given static authentication value when provisioning.

• Val - Static OOB value. Providing a hex-string shorter than 32 bytes will populate
the N most significant bytes of the array and zero-pad the rest.

mesh prov auth-method none
From the provisioner device, don’t use any authentication when provisioning new
devices. This is the default behavior.

Proxy The Proxy Server module is an optional mesh subsystem that can be enabled through
the CONFIG_BT_MESH_GATT_PROXY configuration option.
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mesh proxy identity-enable
Enable the Proxy Node Identity beacon, allowing Proxy devices to connect explicitly
to this device. The beacon will run for 60 seconds before the node returns to normal
Proxy beacons.

The Proxy Client module is an optional mesh subsystem that can be enabled through the CON-
FIG_BT_MESH_PROXY_CLIENT configuration option.

mesh proxy connect <NetKeyIdx>
Auto-Connect a nearby proxy server into the mesh.

• NetKeyIdx: Index of the network key to connect.

mesh proxy disconnect <NetKeyIdx>
Disconnect the existing proxy connection.

• NetKeyIdx: Index of the network key to disconnect.

mesh proxy solicit <NetKeyIdx>
Begin Proxy Solicitation of a subnet. Support of this feature can be enabled through
the CONFIG_BT_MESH_PROXY_SOLICITATION configuration option.

• NetKeyIdx: Index of the network key to send Solicitation PDUs to.

Models

Configuration Client The Configuration Client model is an optional mesh subsystem that can
be enabled through the CONFIG_BT_MESH_CFG_CLI configuration option. This is implemented as
a separate module (mesh models cfg) inside the mesh models subcommand list. This module
will work on any instance of the Configuration Client model if the mentioned shell configuration
options is enabled, and as long as the Configuration Client model is present in the model compo-
sition of the application. This shell module can be used for configuring itself and other nodes in
the mesh network.

The Configuration Client uses general message parameters set by mesh target dst and mesh
target net to target specific nodes. When the Bluetooth Mesh shell node is provisioned, given
that the CONFIG_BT_MESH_SHELL_PROV_CTX_INSTANCE option is enabled with the shell provision-
ing context initialized, the Configuration Client model targets itself by default. Similarly, when
another node has been provisioned by the Bluetooth Mesh shell, the Configuration Client model
targets the new node. In most common use-cases, the Configuration Client is depending on the
provisioning features and the Configuration database to be fully functional. The Configuration
Client always sends messages using the Device key bound to the destination address, so it will
only be able to configure itself and the mesh nodes it provisioned. The following steps are an
example of how you can set up a device to start using the Configuration Client commands:

• Initialize the client node (mesh init).

• Create the CDB (mesh cdb create).

• Provision the local device (mesh prov local).

• The shell module should now target itself.

• Monitor the composition data of the local node (mesh models cfg get-comp).

• Configure the local node as desired with the Configuration Client commands.
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• Provision other devices (mesh prov beacon-listen) (mesh prov remote-adv) (mesh prov
remote-gatt).

• The shell module should now target the newly added node.

• Monitor the newly provisioned nodes and their addresses (mesh cdb show).

• Monitor the composition data of the target device (mesh models cfg get-comp).

• Configure the node as desired with the Configuration Client commands.

mesh models cfg target get
Get the target Configuration server for the Configuration Client model.

mesh models cfg help
Print information for the Configuration Client shell module.

mesh models cfg reset
Reset the target device.

mesh models cfg timeout [Timeout(s)]
Get and set the Config Client model timeout used during message sending.

• Timeout: If present, set the Config Client model timeout in seconds. If omitted,
the current timeout is printed.

mesh models cfg get-comp [Page]
Read a composition data page. The full composition data page will be printed. If the
target does not have the given page, it will return the last page before it.

• Page: The composition data page to request. Defaults to 0 if omitted.

mesh models cfg beacon [Val(off, on)]
Get or set the network beacon transmission.

• Val: If present, enables or disables sending of the network beacon. If omitted,
the current network beacon state is printed.

mesh models cfg ttl [TTL]
Get or set the default TTL value.

• TTL: If present, sets the new default TTL value. Legal TTL values are 0x00 and
0x02-0x7f. If omitted, the current default TTL value is printed.
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mesh models cfg friend [Val(off, on)]
Get or set the Friend feature.

• Val: If present, enables or disables the Friend feature. If omitted, the current
Friend feature state is printed:

– 0x00: The feature is supported, but disabled.

– 0x01: The feature is enabled.

– 0x02: The feature is not supported.

mesh models cfg gatt-proxy [Val(off, on)]
Get or set the GATT Proxy feature.

• Val: If present, enables or disables the GATT Proxy feature. If omitted, the current
GATT Proxy feature state is printed:

– 0x00: The feature is supported, but disabled.

– 0x01: The feature is enabled.

– 0x02: The feature is not supported.

mesh models cfg relay [<Val(off, on)> [<Count> [Int(ms)]]]
Get or set the Relay feature and its parameters.

• Val: If present, enables or disables the Relay feature. If omitted, the current Relay
feature state is printed:

– 0x00: The feature is supported, but disabled.

– 0x01: The feature is enabled.

– 0x02: The feature is not supported.

• Count: Sets the new relay retransmit count if val is on. Ignored if val is off. Legal
retransmit count is 0-7. Defaults to 2 if omitted.

• Int: Sets the new relay retransmit interval in milliseconds if val is on. Legal in-
terval range is 10-320 milliseconds. Ignored if val is off. Defaults to 20 if omitted.

mesh models cfg node-id <NetKeyIdx> [Identity]
Get or Set of current Node Identity state of a subnet.

• NetKeyIdx: The network key index to Get/Set.

• Identity: If present, sets the identity of Node Identity state.

mesh models cfg polltimeout-get <LPNAddr>
Get current value of the PollTimeout timer of the LPN within a Friend node.

• LPNAddr Address of Low Power node.
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mesh models cfg net-transmit-param [<Count> <Int(ms)>]
Get or set the network transmit parameters.

• Count: Sets the number of additional network transmits for every sent message.
Legal retransmit count is 0-7.

• Int: Sets the new network retransmit interval in milliseconds. Legal interval
range is 10-320 milliseconds.

mesh models cfg netkey add <NetKeyIdx> [Key(1-16 hex)]
Add a network key to the target node. Adds the key to the Configuration Database if
enabled.

• NetKeyIdx: The network key index to add.

• Key: If present, sets the key value as a 128-bit hexadecimal value. Providing a
hex-string shorter than 16 bytes will populate the N most significant bytes of the
array and zero-pad the rest. Only valid if the key does not already exist in the
Configuration Database. If omitted, the default key value is used.

mesh models cfg netkey upd <NetKeyIdx> [Key(1-16 hex)]
Update a network key to the target node.

• NetKeyIdx: The network key index to updated.

• Key: If present, sets the key value as a 128-bit hexadecimal value. Providing a
hex-string shorter than 16 bytes will populate the N most significant bytes of the
array and zero-pad the rest. If omitted, the default key value is used.

mesh models cfg netkey get
Get a list of known network key indexes.

mesh models cfg netkey del <NetKeyIdx>
Delete a network key from the target node.

• NetKeyIdx: The network key index to delete.

mesh models cfg appkey add <NetKeyIdx> <AppKeyIdx> [Key(1-16 hex)]
Add an application key to the target node. Adds the key to the Configuration Database
if enabled.

• NetKeyIdx: The network key index the application key is bound to.

• AppKeyIdx: The application key index to add.

• Key: If present, sets the key value as a 128-bit hexadecimal value. Providing a
hex-string shorter than 16 bytes will populate the N most significant bytes of the
array and zero-pad the rest. Only valid if the key does not already exist in the
Configuration Database. If omitted, the default key value is used.
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mesh models cfg appkey upd <NetKeyIdx> <AppKeyIdx> [Key(1-16 hex)]
Update an application key to the target node.

• NetKeyIdx: The network key index the application key is bound to.

• AppKeyIdx: The application key index to update.

• Key: If present, sets the key value as a 128-bit hexadecimal value. Providing a
hex-string shorter than 16 bytes will populate the N most significant bytes of the
array and zero-pad the rest. If omitted, the default key value is used.

mesh models cfg appkey get <NetKeyIdx>
Get a list of known application key indexes bound to the given network key index.

• NetKeyIdx: Network key indexes to get a list of application key indexes from.

mesh models cfg appkey del <NetKeyIdx> <AppKeyIdx>
Delete an application key from the target node.

• NetKeyIdx: The network key index the application key is bound to.

• AppKeyIdx: The application key index to delete.

mesh models cfg model app-bind <Addr> <AppKeyIdx> <MID> [CID]
Bind an application key to a model. Models can only encrypt and decrypt messages
sent with application keys they are bound to.

• Addr: Address of the element the model is on.

• AppKeyIdx: The application key to bind to the model.

• MID: The model ID of the model to bind the key to.

• CID: If present, determines the Company ID of the model. If omitted, the model is
a Bluetooth SIG defined model.

mesh models cfg model app-unbind <Addr> <AppKeyIdx> <MID> [CID]
Unbind an application key from a model.

• Addr: Address of the element the model is on.

• AppKeyIdx: The application key to unbind from the model.

• MID: The model ID of the model to unbind the key from.

• CID: If present, determines the Company ID of the model. If omitted, the model is
a Bluetooth SIG defined model.

mesh models cfg model app-get <ElemAddr> <MID> [CID]
Get a list of application keys bound to a model.

• ElemAddr: Address of the element the model is on.

• MID: The model ID of the model to get the bound keys of.

• CID: If present, determines the Company ID of the model. If omitted, the model is
a Bluetooth SIG defined model.
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mesh models cfg model pub <Addr> <MID> [CID] [<PubAddr> <AppKeyIdx> <Cred(off, on)>
<TTL> <PerRes> <PerSteps> <Count> <Int(ms)>]

Get or set the publication parameters of a model. If all publication parameters are
included, they become the new publication parameters of the model. If all publication
parameters are omitted, print the current publication parameters of the model.

• Addr: Address of the element the model is on.

• MID: The model ID of the model to get the bound keys of.

• CID: If present, determines the Company ID of the model. If omitted, the model is
a Bluetooth SIG defined model.

Publication parameters:

• PubAddr: The destination address to publish to.

• AppKeyIdx: The application key index to publish with.

• Cred: Whether to publish with Friendship credentials when acting as a Low
Power Node.

• TTL: TTL value to publish with (0x00 to 0x07f).

• PerRes: Resolution of the publication period steps:

– 0x00: The Step Resolution is 100 milliseconds

– 0x01: The Step Resolution is 1 second

– 0x02: The Step Resolution is 10 seconds

– 0x03: The Step Resolution is 10 minutes

• PerSteps: Number of publication period steps, or 0 to disable periodic publica-
tion.

• Count: Number of retransmission for each published message (0 to 7).

• Int The interval between each retransmission, in milliseconds. Must be a multi-
ple of 50.

mesh models cfg model pub-va <Addr> <UUID(1-16 hex)> <AppKeyIdx> <Cred(off, on)>
<TTL> <PerRes> <PerSteps> <Count> <Int(ms)> <MID> [CID]

Set the publication parameters of a model.

• Addr: Address of the element the model is on.

• MID: The model ID of the model to get the bound keys of.

• CID: If present, determines the Company ID of the model. If omitted, the model is
a Bluetooth SIG defined model.

Publication parameters:

• UUID: The destination virtual address to publish to. Providing a hex-string shorter
than 16 bytes will populate the N most significant bytes of the array and zero-pad
the rest.

• AppKeyIdx: The application key index to publish with.

• Cred: Whether to publish with Friendship credentials when acting as a Low
Power Node.

• TTL: TTL value to publish with (0x00 to 0x07f).

• PerRes: Resolution of the publication period steps:

– 0x00: The Step Resolution is 100 milliseconds
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– 0x01: The Step Resolution is 1 second

– 0x02: The Step Resolution is 10 seconds

– 0x03: The Step Resolution is 10 minutes

• PerSteps: Number of publication period steps, or 0 to disable periodic publica-
tion.

• Count: Number of retransmission for each published message (0 to 7).

• Int The interval between each retransmission, in milliseconds. Must be a multi-
ple of 50.

mesh models cfg model sub-add <ElemAddr> <SubAddr> <MID> [CID]
Subscription the model to a group address. Models only receive messages sent to their
unicast address or a group or virtual address they subscribe to. Models may subscribe
to multiple group and virtual addresses.

• ElemAddr: Address of the element the model is on.

• SubAddr: 16-bit group address the model should subscribe to (0xc000 to 0xFEFF).

• MID: The model ID of the model to add the subscription to.

• CID: If present, determines the Company ID of the model. If omitted, the model is
a Bluetooth SIG defined model.

mesh models cfg model sub-del <ElemAddr> <SubAddr> <MID> [CID]
Unsubscribe a model from a group address.

• ElemAddr: Address of the element the model is on.

• SubAddr: 16-bit group address the model should remove from its subscription list
(0xc000 to 0xFEFF).

• MID: The model ID of the model to add the subscription to.

• CID: If present, determines the Company ID of the model. If omitted, the model is
a Bluetooth SIG defined model.

mesh models cfg model sub-add-va <ElemAddr> <LabelUUID(1-16 hex)> <MID> [CID]
Subscribe the model to a virtual address. Models only receive messages sent to their
unicast address or a group or virtual address they subscribe to. Models may subscribe
to multiple group and virtual addresses.

• ElemAddr: Address of the element the model is on.

• LabelUUID: 128-bit label UUID of the virtual address to subscribe to. Providing a
hex-string shorter than 16 bytes will populate the N most significant bytes of the
array and zero-pad the rest.

• MID: The model ID of the model to add the subscription to.

• CID: If present, determines the Company ID of the model. If omitted, the model is
a Bluetooth SIG defined model.
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mesh models cfg model sub-del-va <ElemAddr> <LabelUUID(1-16 hex)> <MID> [CID]
Unsubscribe a model from a virtual address.

• ElemAddr: Address of the element the model is on.

• LabelUUID: 128-bit label UUID of the virtual address to remove the subscription of.
Providing a hex-string shorter than 16 bytes will populate the N most significant
bytes of the array and zero-pad the rest.

• MID: The model ID of the model to add the subscription to.

• CID: If present, determines the Company ID of the model. If omitted, the model is
a Bluetooth SIG defined model.

mesh models cfg model sub-ow <ElemAddr> <SubAddr> <MID> [CID]
Overwrite all model subscriptions with a single new group address.

• ElemAddr: Address of the element the model is on.

• SubAddr: 16-bit group address the model should added to the subscription list
(0xc000 to 0xFEFF).

• MID: The model ID of the model to add the subscription to.

• CID: If present, determines the Company ID of the model. If omitted, the model is
a Bluetooth SIG defined model.

mesh models cfg model sub-ow-va <ElemAddr> <LabelUUID(1-16 hex)> <MID> [CID]
Overwrite all model subscriptions with a single new virtual address. Models only
receive messages sent to their unicast address or a group or virtual address they sub-
scribe to. Models may subscribe to multiple group and virtual addresses.

• ElemAddr: Address of the element the model is on.

• LabelUUID: 128-bit label UUID of the virtual address as the new Address to be
added to the subscription list. Providing a hex-string shorter than 16 bytes will
populate the N most significant bytes of the array and zero-pad the rest.

• MID: The model ID of the model to add the subscription to.

• CID: If present, determines the Company ID of the model. If omitted, the model is
a Bluetooth SIG defined model.

mesh models cfg model sub-del-all <ElemAddr> <MID> [CID]
Remove all group and virtual address subscriptions from of a model.

• ElemAddr: Address of the element the model is on.

• MID: The model ID of the model to Unsubscribe all.

• CID: If present, determines the Company ID of the model. If omitted, the model is
a Bluetooth SIG defined model.

mesh models cfg model sub-get <ElemAddr> <MID> [CID]
Get a list of addresses the model subscribes to.

• ElemAddr: Address of the element the model is on.

• MID: The model ID of the model to get the subscription list of.
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• CID: If present, determines the Company ID of the model. If omitted, the model is
a Bluetooth SIG defined model.

mesh models cfg krp <NetKeyIdx> [Phase]
Get or set the key refresh phase of a subnet.

• NetKeyIdx: The identified network key used to Get/Set the current Key Refresh
Phase state.

• Phase: New Key Refresh Phase. Valid phases are:

– 0x00: Normal operation; Key Refresh procedure is not active

– 0x01: First phase of Key Refresh procedure

– 0x02: Second phase of Key Refresh procedure

mesh models cfg hb-sub [<Src> <Dst> <Per>]
Get or set the Heartbeat subscription parameters. A node only receives Heartbeat mes-
sages matching the Heartbeat subscription parameters. Sets the Heartbeat subscrip-
tion parameters if present, or prints the current Heartbeat subscription parameters if
called with no parameters.

• Src: Unicast source address to receive Heartbeat messages from.

• Dst: Destination address to receive Heartbeat messages on.

• Per: Logarithmic representation of the Heartbeat subscription period:

– 0: Heartbeat subscription will be disabled.

– 1 to 17: The node will subscribe to Heartbeat messages for 2(period - 1) seconds.

mesh models cfg hb-pub [<Dst> <Count> <Per> <TTL> <Features> <NetKeyIdx>]
Get or set the Heartbeat publication parameters. Sets the Heartbeat publication pa-
rameters if present, or prints the current Heartbeat publication parameters if called
with no parameters.

• Dst: Destination address to publish Heartbeat messages to.

• Count: Logarithmic representation of the number of Heartbeat messages to pub-
lish periodically:

– 0: Heartbeat messages are not published periodically.

– 1 to 17: The node will periodically publish 2(count - 1) Heartbeat messages.

– 255: Heartbeat messages will be published periodically indefinitely.

• Per: Logarithmic representation of the Heartbeat publication period:

– 0: Heartbeat messages are not published periodically.

– 1 to 17: The node will publish Heartbeat messages every 2(period - 1) seconds.

• TTL: The TTL value to publish Heartbeat messages with (0x00 to 0x7f).

• Features: Bitfield of features that should trigger a Heartbeat publication when
changed:

– Bit 0: Relay feature.

– Bit 1: Proxy feature.

– Bit 2: Friend feature.
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– Bit 3: Low Power feature.

• NetKeyIdx: Index of the network key to publish Heartbeat messages with.

Health Client The Health Client model is an optional mesh subsystem that can be enabled
through the CONFIG_BT_MESH_HEALTH_CLI configuration option. This is implemented as a sep-
arate module (mesh models health) inside the mesh models subcommand list. This module will
work on any instance of the Health Client model if the mentioned shell configuration options is
enabled, and as long as one or more Health Client model(s) is present in the model composition
of the application. This shell module can be used to trigger interaction between Health Clients
and Servers on devices in a Mesh network.

By default, the module will choose the first Health Client instance in the model composition when
using the Health Client commands. To choose a specific Health Client instance the user can utilize
the commands mesh models health instance set and mesh models health instance get-all.

The Health Client may use the general messages parameters set by mesh target dst, mesh target
net and mesh target app to target specific nodes. If the shell target destination address is set to
zero, the targeted Health Client will attempt to publish messages using its configured publication
parameters.

mesh models health instance set <ElemIdx>
Set the Health Client model instance to use.

• ElemIdx: Element index of Health Client model.

mesh models health instance get-all
Prints all available Health Client model instances on the device.

mesh models health fault-get <CID>
Get a list of registered faults for a Company ID.

• CID: Company ID to get faults for.

mesh models health fault-clear <CID>
Clear the list of faults for a Company ID.

• CID: Company ID to clear the faults for.

mesh models health fault-clear-unack <CID>
Clear the list of faults for a Company ID without requesting a response.

• CID: Company ID to clear the faults for.

mesh models health fault-test <CID> <TestID>
Invoke a self-test procedure, and show a list of triggered faults.

• CID: Company ID to perform self-tests for.

• TestID: Test to perform.
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mesh models health fault-test-unack <CID> <TestID>
Invoke a self-test procedure without requesting a response.

• CID: Company ID to perform self-tests for.

• TestID: Test to perform.

mesh models health period-get
Get the current Health Server publish period divisor.

mesh models health period-set <Divisor>
Set the current Health Server publish period divisor. When a fault is detected, the
Health Server will start publishing is fault status with a reduced interval. The reduced
interval is determined by the Health Server publish period divisor: Fault publish pe-
riod = Publish period / 2divisor.

• Divisor: The new Health Server publish period divisor.

mesh models health period-set-unack <Divisor>
Set the current Health Server publish period divisor. When a fault is detected, the
Health Server will start publishing is fault status with a reduced interval. The reduced
interval is determined by the Health Server publish period divisor: Fault publish pe-
riod = Publish period / 2divisor.

• Divisor: The new Health Server publish period divisor.

mesh models health attention-get
Get the current Health Server attention state.

mesh models health attention-set <Time(s)>
Enable the Health Server attention state for some time.

• Time: Duration of the attention state, in seconds (0 to 255)

mesh models health attention-set-unack <Time(s)>
Enable the Health Server attention state for some time without requesting a response.

• Time: Duration of the attention state, in seconds (0 to 255)

Binary Large Object (BLOB) Transfer Client model The BLOB Transfer Client can be added
to the mesh shell by enabling the CONFIG_BT_MESH_BLOB_CLI option, and disabling the CON-
FIG_BT_MESH_DFU_CLI option.

mesh models blob cli target <Addr>
Add a Target node for the next BLOB transfer.

• Addr: Unicast address of the Target node’s BLOB Transfer Server model.
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mesh models blob cli bounds [<Group>]
Get the total boundary parameters of all Target nodes.

• Group: Optional group address to use when communicating with Target nodes. If
omitted, the BLOB Transfer Client will address each Target node individually.

mesh models blob cli tx <Id> <Size> <BlockSizeLog> <ChunkSize> [<Group> [<Mode(push,
pull)>]]

Perform a BLOB transfer to Target nodes. The BLOB Transfer Client will send a dummy
BLOB to all Target nodes, then post a message when the transfer is completed. Note
that all Target nodes must first be configured to receive the transfer using the mesh
models blob srv rx command.

• Id: 64-bit BLOB transfer ID.

• Size: Size of the BLOB in bytes.

• BlockSizeLog: Logarithmic representation of the BLOB’s block size. The final
block size will be 1 << block size log bytes.

• ChunkSize: Chunk size in bytes.

• Group: Optional group address to use when communicating with Target nodes.
If omitted or set to 0, the BLOB Transfer Client will address each Target node
individually.

• Mode: BLOB transfer mode to use. Must be either push (Push BLOB Transfer Mode)
or pull (Pull BLOB Transfer Mode). If omitted, push will be used by default.

mesh models blob cli tx-cancel
Cancel an ongoing BLOB transfer.

mesh models blob cli tx-get [Group]
Determine the progress of a previously running BLOB transfer. Can be used when not
performing a BLOB transfer.

• Group: Optional group address to use when communicating with Target nodes.
If omitted or set to 0, the BLOB Transfer Client will address each Target node
individually.

mesh models blob cli tx-suspend
Suspend the ongoing BLOB transfer.

mesh models blob cli tx-resume
Resume the suspended BLOB transfer.

mesh models blob cli instance-set <ElemIdx>
Use the BLOB Transfer Client model instance on the specified element when using the
other BLOB Transfer Client model commands.

• ElemIdx: The element on which to find the BLOB Transfer Client model instance
to use.
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mesh models blob cli instance-get-all
Get a list of all BLOB Transfer Client model instances on the node.

BLOB Transfer Server model The BLOB Transfer Server can be added to the mesh shell by
enabling the CONFIG_BT_MESH_BLOB_SRV option. The BLOB Transfer Server model is capable of
receiving any BLOB data, but the implementation in the mesh shell will discard the incoming
data.

mesh models blob srv rx <ID> [<TimeoutBase(10s steps)>]
Prepare to receive a BLOB transfer.

• ID: 64-bit BLOB transfer ID to receive.

• TimeoutBase: Optional additional time to wait for client messages, in 10-second
increments.

mesh models blob srv rx-cancel
Cancel an ongoing BLOB transfer.

mesh models blob srv instance-set <ElemIdx>
Use the BLOB Transfer Server model instance on the specified element when using
the other BLOB Transfer Server model commands.

• ElemIdx: The element on which to find the BLOB Transfer Server model instance
to use.

mesh models blob srv instance-get-all
Get a list of all BLOB Transfer Server model instances on the node.

Firmware Update Client model The Firmware Update Client model can be added to
the mesh shell by enabling configuration options CONFIG_BT_MESH_BLOB_CLI and CON-
FIG_BT_MESH_DFU_CLI. The Firmware Update Client demonstrates the firmware update Distrib-
utor role by transferring a dummy firmware update to a set of Target nodes.

mesh models dfu slot add <Size> <FwID> [<Metadata>]
Add a virtual DFU image slot that can be transferred as a DFU image. The image slot
will be assigned an image slot index, which is printed as a response, and can be used
to reference the slot in other commands. To update the image slot, remove it using
the mesh models dfu slot del shell command and then add it again.

• Size: DFU image slot size in bytes.

• FwID: Firmware ID, formatted as a hexstring.

• Metadata: Optional firmware metadata, formatted as a hexstring.

mesh models dfu slot del <SlotIdx>
Delete the DFU image slot at the given index.

• SlotIdx: Index of the slot to delete.
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mesh models dfu slot get <SlotIdx>
Get all available information about a DFU image slot.

• SlotIdx: Index of the slot to get.

mesh models dfu cli target <Addr> <ImgIdx>
Add a Target node.

• Addr: Unicast address of the Target node.

• ImgIdx: Image index to address on the Target node.

mesh models dfu cli target-state
Check the DFU Target state of the device at the configured destination address.

mesh models dfu cli target-imgs [<MaxCount>]
Get a list of DFU images on the device at the configured destination address.

• MaxCount: Optional maximum number of images to return. If omitted, there’s no
limit on the number of returned images.

mesh models dfu cli target-check <SlotIdx> <TargetImgIdx>
Check whether the device at the configured destination address will accept a DFU
transfer from the given DFU image slot to the Target node’s DFU image at the given
index, and what the effect would be.

• SlotIdx: Index of the local DFU image slot to check.

• TargetImgIdx: Index of the Target node’s DFU image to check.

mesh models dfu cli send <SlotIdx> [<Group>]
Start a DFU transfer to all added Target nodes.

• SlotIdx: Index of the local DFU image slot to send.

• Group: Optional group address to use when communicating with the Target
nodes. If omitted, the Firmware Update Client will address each Target node in-
dividually.

mesh models dfu cli cancel [<Addr>]
Cancel the DFU procedure at any state on a specific Target node or on all Target nodes.
When a Target node address is provided, the Firmware Update Client model will try
to cancel the DFU procedure on the provided Target node. Otherwise, the Firmware
Update Client model will try to cancel the ongoing DFU procedure on all Target nodes.

• Addr: Optional unicast address of a Target node on which to cancel the DFU pro-
cedure.

mesh models dfu cli apply
Apply the most recent DFU transfer on all Target nodes. Can only be called after a DFU
transfer is completed.
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mesh models dfu cli confirm
Confirm that the most recent DFU transfer was successfully applied on all Target
nodes. Can only be called after a DFU transfer is completed and applied.

mesh models dfu cli suspend
Suspend the ongoing DFU transfer.

mesh models dfu cli resume
Resume the suspended DFU transfer.

mesh models dfu cli progress
Check the progress of the current transfer.

mesh models dfu cli instance-set <ElemIdx>
Use the Firmware Update Client model instance on the specified element when using
the other Firmware Update Client model commands.

• ElemIdx: The element on which to find the Firmware Update Client model in-
stance to use.

mesh models dfu cli instance-get-all
Get a list of all Firmware Update Client model instances on the node.

Firmware Update Server model The Firmware Update Server model can be added
to the mesh shell by enabling configuration options CONFIG_BT_MESH_BLOB_SRV and CON-
FIG_BT_MESH_DFU_SRV. The Firmware Update Server demonstrates the firmware update Target
role by accepting any firmware update. The mesh shell Firmware Update Server will discard the
incoming firmware data, but otherwise behave as a proper firmware update Target node.

mesh models dfu srv applied
Mark the most recent DFU transfer as applied. Can only be called after a DFU transfer
is completed, and the Distributor has requested that the transfer is applied.

As the mesh shell Firmware Update Server doesn’t actually apply the incoming
firmware image, this command can be used to emulate an applied status, to notify
the Distributor that the transfer was successful.

mesh models dfu srv progress
Check the progress of the current transfer.

mesh models dfu srv rx-cancel
Cancel incoming DFU transfer.
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mesh models dfu srv instance-set <ElemIdx>
Use the Firmware Update Server model instance on the specified element when using
the other Firmware Update Server model commands.

• ElemIdx: The element on which to find the Firmware Update Server model in-
stance to use.

mesh models dfu srv instance-get-all
Get a list of all Firmware Update Server model instances on the node.

Firmware Distribution Server model The Firmware Distribution Server model commands
can be added to the mesh shell by enabling the CONFIG_BT_MESH_DFD_SRV configuration option.
The shell commands for this model mirror the messages sent to the server by a Firmware Distri-
bution Client model. To use these commands, a Firmware Distribution Server must be instanti-
ated by the application.

mesh models dfd receivers-add <Addr>,<FwIdx>[;<Addr>,<FwIdx>]...
Add receivers to the Firmware Distribution Server. Supply receivers as a list of
comma-separated addr,fw_idx pairs, separated by semicolons, for example, 0x0001,
0;0x0002,0;0x0004,1. Do not use spaces in the receiver list. Repeated calls to
this command will continue populating the receivers list until mesh models dfd
receivers-delete-all is called.

• Addr: Address of the receiving node(s).

• FwIdx: Index of the firmware slot to send to Addr.

mesh models dfd receivers-delete-all
Delete all receivers from the server.

mesh models dfd receivers-get <First> <Count>
Get a list of info about firmware receivers.

• First: Index of the first receiver to get from the receiver list.

• Count: The number of receivers for which to get info.

mesh models dfd capabilities-get
Get the capabilities of the server.

mesh models dfd get
Get information about the current distribution state, phase and the transfer parame-
ters.
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mesh models dfd start <AppKeyIdx> <SlotIdx> [<Group> [<PolicyApply> [<TTL>
[<TimeoutBase> [<XferMode>]]]]]

Start the firmware distribution.

• AppKeyIdx: Application index to use for sending. The common application key
should be bound to the Firmware Update and BLOB Transfer models on the Dis-
tributor and Target nodes.

• SlotIdx: Index of the local image slot to send.

• Group: Optional group address to use when communicating with the Target
nodes. If omitted, the Firmware Distribution Server will address each Tar-
get node individually. To keep addressing each Target node individually while
changing other arguments, set this argument value to 0.

• PolicyApply: Optional field that corresponds to the update policy. Setting this to
true will make the Firmware Distribution Server apply the image immediately
after the transfer is completed.

• TTL: Optional. TTL value to use when sending. Defaults to configured default TTL.

• TimeoutBase: Optional additional value used to calculate timeout values in the
firmware distribution process, in 10-second increments.. See Transfer timeout
for information about how timeout_base is used to calculate the transfer timeout.
Defaults to 0.

• XferMode: Optional BLOB transfer mode. 1 = Push mode (Push BLOB Transfer
Mode), 2 = Pull mode (Pull BLOB Transfer Mode). Defaults to Push mode.

mesh models dfd suspend
Suspends the ongoing distribution.

mesh models dfd cancel
Cancel the ongoing distribution.

mesh models dfd apply
Apply the distributed firmware.

mesh models dfd fw-get <FwID>
Get information about the firmware image uploaded to the server.

• FwID: Firmware ID of the image to get.

mesh models dfd fw-get-by-idx <Idx>
Get information about the firmware image uploaded to the server in a specific slot.

• Idx: Index of the slot to get the image from.

mesh models dfd fw-delete <FwID>
Delete a firmware image from the server.

• FwID: Firmware ID of the image to delete.
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mesh models dfd fw-delete-all
Delete all firmware images from the server.

mesh models dfd instance-set <ElemIdx>
Use the Firmware Distribution Server model instance on the specified element when
using the other Firmware Distribution Server model commands.

• ElemIdx: The element on which to find the Firmware Distribution Server model
instance to use.

mesh models dfd instance-get-all
Get a list of all Firmware Distribution Server model instances on the node.

DFUmetadata The DFU metadata commands allow generating metadata that can be used by a
Target node to check the firmware before accepting it. The commands are enabled through the
CONFIG_BT_MESH_DFU_METADATA configuration option.

mesh models dfu metadata comp-clear
Clear the stored composition data to be used for the Target node.

mesh models dfu metadata comp-add <CID> <ProductID> <VendorID> <Crpl> <Features>
Create a header of the Composition Data Page 0.

• CID: Company identifier assigned by Bluetooth SIG.

• ProductID: Vendor-assigned product identifier.

• VendorID: Vendor-assigned version identifier.

• Crpl: The size of the replay protection list.

• Features: Features supported by the node in bit field format:

– 0: Relay.

– 1: Proxy.

– 2: Friend.

– 3: Low Power.

mesh models dfu metadata comp-elem-add <Loc> <NumS> <NumV> {<SigMID>|<VndCID>
<VndMID>}...

Add element description of the Target node.

• Loc: Element location.

• NumS: Number of SIG models instantiated on the element.

• NumV: Number of vendor models instantiated on the element.

• SigMID: SIG Model ID.

• VndCID: Vendor model company identifier.

• VndMID: Vendor model identifier.

6.1. Bluetooth 2293



Zephyr Project Documentation, Release 3.7.99

mesh models dfu metadata comp-hash-get [<Key(16 hex)>]
Generate a hash of the stored Composition Data to be used in metadata.

• Key: Optional 128-bit key to be used to generate the hash. Providing a hex-string
shorter than 16 bytes will populate the N most significant bytes of the array and
zero-pad the rest.

mesh models dfu metadata encode <Major> <Minor> <Rev> <BuildNum> <Size> <CoreType>
<Hash> <Elems> [<UserData>]

Encode metadata for the DFU.

• Major: Major version of the firmware.

• Minor: Minor version of the firmware.

• Rev: Revision number of the firmware.

• BuildNum: Build number.

• Size: Size of the signed bin file.

• CoreType: New firmware core type:

– 1: Application core.

– 2: Network core.

– 4: Applications specific BLOB.

• Hash: Hash of the composition data generated using mesh models dfu metadata
comp-hash-get command.

• Elems: Number of elements on the new firmware.

• UserData: User data supplied with the metadata.

Segmentation and Reassembly (SAR) Configuration Client The SAR Configuration client is
an optional mesh model that can be enabled through the CONFIG_BT_MESH_SAR_CFG_CLI config-
uration option. The SAR Configuration Client model is used to support the functionality of con-
figuring the behavior of the lower transport layer of a node that supports the SAR Configuration
Server model.

mesh models sar tx-get
Send SAR Configuration Transmitter Get message.

mesh models sar tx-set <SegIntStep> <UniRetransCnt> <UniRetransWithoutProgCnt>
<UniRetransIntStep> <UniRetransIntInc> <MultiRetransCnt> <MultiRetransInt>

Send SAR Configuration Transmitter Set message.

• SegIntStep: SAR Segment Interval Step state.

• UniRetransCnt: SAR Unicast Retransmissions Count state.

• UniRetransWithoutProgCnt: SAR Unicast Retransmissions Without Progress
Count state.

• UniRetransIntStep: SAR Unicast Retransmissions Interval Step state.

• UniRetransIntInc: SAR Unicast Retransmissions Interval Increment state.

• MultiRetransCnt: SAR Multicast Retransmissions Count state.

• MultiRetransInt: SAR Multicast Retransmissions Interval state.
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mesh models sar rx-get
Send SAR Configuration Receiver Get message.

mesh models sar rx-set <SegThresh> <AckDelayInc> <DiscardTimeout> <RxSegIntStep>
<AckRetransCount>

Send SAR Configuration Receiver Set message.

• SegThresh: SAR Segments Threshold state.

• AckDelayInc: SAR Acknowledgment Delay Increment state.

• DiscardTimeout: SAR Discard Timeout state.

• RxSegIntStep: SAR Receiver Segment Interval Step state.

• AckRetransCount: SAR Acknowledgment Retransmissions Count state.

Private Beacon Client The Private Beacon Client model is an optional mesh subsystem that
can be enabled through the CONFIG_BT_MESH_PRIV_BEACON_CLI configuration option.

mesh models prb priv-beacon-get
Get the target’s Private Beacon state. Possible values:

• 0x00: The node doesn’t broadcast Private beacons.

• 0x01: The node broadcasts Private beacons.

mesh models prb priv-beacon-set <Val(off, on)> <RandInt(10s steps)>
Set the target’s Private Beacon state.

• Val: Control Private Beacon state.

• RandInt: Random refresh interval (in 10-second steps), or 0 to keep current value.

mesh models prb priv-gatt-proxy-get
Get the target’s Private GATT Proxy state. Possible values:

• 0x00: The Private Proxy functionality is supported, but disabled.

• 0x01: The Private Proxy functionality is enabled.

• 0x02: The Private Proxy functionality is not supported.

mesh models prb priv-gatt-proxy-set <Val(off, on)>
Set the target’s Private GATT Proxy state.

• Val: New Private GATT Proxy value:

– 0x00: Disable the Private Proxy functionality.

– 0x01: Enable the Private Proxy functionality.
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mesh models prb priv-node-id-get <NetKeyIdx>
Get the target’s Private Node Identity state. Possible values:

• 0x00: The node does not adverstise with the Private Node Identity.

• 0x01: The node advertises with the Private Node Identity.

• 0x02: The node doesn’t support advertising with the Private Node Identity.

• NetKeyIdx: Network index to get the Private Node Identity state of.

mesh models prb priv-node-id-set <NetKeyIdx> <State>
Set the target’s Private Node Identity state.

• NetKeyIdx: Network index to set the Private Node Identity state of.

• State: New Private Node Identity value:

– 0x00: Stop advertising with the Private Node Identity.

– 0x01: Start advertising with the Private Node Identity.

Opcodes Aggregator Client The Opcodes Aggregator client is an optional Bluetooth Mesh
model that can be enabled through the CONFIG_BT_MESH_OP_AGG_CLI configuration option. The
Opcodes Aggregator Client model is used to support the functionality of dispatching a sequence
of access layer messages to nodes supporting the Opcodes Aggregator Server model.

mesh models opagg seq-start <ElemAddr>
Start the Opcodes Aggregator Sequence message. This command initiates the context
for aggregating messages and sets the destination address for next shell commands to
elem_addr.

• ElemAddr: Element address that will process the aggregated opcodes.

mesh models opagg seq-send
Send the Opcodes Aggregator Sequence message. This command completes the proce-
dure, sends the aggregated sequence message to the target node and clears the context.

mesh models opagg seq-abort
Abort the Opcodes Aggregator Sequence message. This command clears the Opcodes
Aggregator Client context.

Remote Provisioning Client The Remote Provisioning Client is an optional Bluetooth Mesh
model enabled through the CONFIG_BT_MESH_RPR_CLI configuration option. The Remote Provi-
sioning Client model provides support for remote provisioning of devices into a mesh network
by using the Remote Provisioning Server model.

This shell module can be used to trigger interaction between Remote Provisioning Clients and
Remote Provisioning Servers on devices in a mesh network.
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mesh models rpr scan <Timeout(s)> [<UUID(1-16 hex)>]
Start scanning for unprovisioned devices.

• Timeout: Scan timeout in seconds. Must be at least 1 second.

• UUID: Device UUID to scan for. Providing a hex-string shorter than 16 bytes will
populate the N most significant bytes of the array and zero-pad the rest. If omit-
ted, all devices will be reported.

mesh models rpr scan-ext <Timeout(s)> <UUID(1-16 hex)> [<ADType> ... ]
Start the extended scanning for unprovisioned devices.

• Timeout: Scan timeout in seconds. Valid values from
BT_MESH_RPR_EXT_SCAN_TIME_MIN to BT_MESH_RPR_EXT_SCAN_TIME_MAX.

• UUID: Device UUID to start extended scanning for. Providing a hex-string shorter
than 16 bytes will populate the N most significant bytes of the array and zero-pad
the rest.

• ADType: List of AD types to include in the scan report. Must contain 1 to CON-
FIG_BT_MESH_RPR_AD_TYPES_MAX entries.

mesh models rpr scan-srv [<ADType> ... ]
Start the extended scanning for the Remote Provisioning Server.

• ADType: List of AD types to include in the scan report. Must contain 1 to CON-
FIG_BT_MESH_RPR_AD_TYPES_MAX entries.

mesh models rpr scan-caps
Get the scanning capabilities of the Remote Provisioning Server.

mesh models rpr scan-get
Get the current scanning state of the Remote Provisioning Server.

mesh models rpr scan-stop
Stop any ongoing scanning on the Remote Provisioning Server.

mesh models rpr link-get
Get the current link status of the Remote Provisioning Server.

mesh models rpr link-close
Close any open links on the Remote Provisioning Server.
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mesh models rpr provision-remote <UUID(1-16 hex)> <NetKeyIdx> <Addr>
Provision a mesh node using the PB-Remote provisioning bearer.

• UUID: UUID of the unprovisioned node. Providing a hex-string shorter than 16
bytes will populate the N most significant bytes of the array and zero-pad the
rest.

• NetKeyIdx: Network Key Index to give to the unprovisioned node.

• Addr: Address to assign to remote device. If addr is 0, the lowest available address
will be chosen.

mesh models rpr reprovision-remote <Addr> [<CompChanged(false, true)>]
Reprovision a mesh node using the PB-Remote provisioning bearer.

• Addr: Address to assign to remote device. If addr is 0, the lowest available address
will be chosen.

• CompChanged: The Target node has indicated that its Composition Data has
changed. Defaults to false.

mesh models rpr instance-set <ElemIdx>
Use the Remote Provisioning Client model instance on the specified element when
using the other Remote Provisioning Client model commands.

• ElemIdx: The element on which to find the Remote Provisioning Client model
instance to use.

mesh models rpr instance-get-all
Get a list of all Remote Provisioning Client model instances on the node.

Large Composition Data Client The Large Composition Data Client is an optional Bluetooth
Mesh model enabled through the CONFIG_BT_MESH_LARGE_COMP_DATA_CLI configuration option.
The Large Composition Data Client model is used to support the functionality of reading pages
of Composition Data that do not fit in a Config Composition Data Status message, and reading the
metadata of the model instances.

mesh models lcd large-comp-data-get <Page> <Offset>
Send the Large Composition Data Get message to query a portion of the Composition
Data state of a node.

• Page: Page number of the Composition Data.

• Offset: Offset within the page.

mesh models lcd models-metadata-get <Page> <Offset>
Send the Models Metadata Get message to query a portion of a page of the Models
Metadata state.

• Page: Page number of the Models Metadata.

• Offset: Offset within the page.
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Configuration database The Configuration database is an optional mesh subsystem that can
be enabled through the CONFIG_BT_MESH_CDB configuration option. The Configuration database
is only available on provisioner devices, and allows them to store all information about the mesh
network. To avoid conflicts, there should only be one mesh node in the network with the Con-
figuration database enabled. This node is the Configurator, and is responsible for adding new
nodes to the network and configuring them.

mesh cdb create [NetKey(1-16 hex)]
Create a Configuration database.

• NetKey: Optional network key value of the primary network key (NetKeyIn-
dex=0). Providing a hex-string shorter than 16 bytes will populate the N most
significant bytes of the array and zero-pad the rest. Defaults to the default key
value if omitted.

mesh cdb clear
Clear all data from the Configuration database.

mesh cdb show
Show all data in the Configuration database.

mesh cdb node-add <UUID(1-16 hex)> <Addr> <ElemCnt> <NetKeyIdx> [DevKey(1-16 hex)]
Manually add a mesh node to the configuration database. Note that devices provi-
sioned with mesh provision and mesh provision-adv will be added automatically if
the Configuration Database is enabled and created.

• UUID: 128-bit hexadecimal UUID of the node. Providing a hex-string shorter than
16 bytes will populate the N most significant bytes of the array and zero-pad the
rest.

• Addr: Unicast address of the node, or 0 to automatically choose the lowest avail-
able address.

• ElemCnt: Number of elements on the node.

• NetKeyIdx: The network key the node was provisioned with.

• DevKey: Optional 128-bit device key value for the device. Providing a hex-string
shorter than 16 bytes will populate the N most significant bytes of the array and
zero-pad the rest. If omitted, a random value will be generated.

mesh cdb node-del <Addr>
Delete a mesh node from the Configuration database. If possible, the node should be
reset with mesh reset before it is deleted from the Configuration database, to avoid
unexpected behavior and uncontrolled access to the network.

• Addr Address of the node to delete.

mesh cdb subnet-add <NetKeyIdx> [<NetKey(1-16 hex)>]
Add a network key to the Configuration database. The network key can later be passed
to mesh nodes in the network. Note that adding a key to the Configuration database
does not automatically add it to the local node’s list of known network keys.
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• NetKeyIdx: Key index of the network key to add.

• NetKey: Optional 128-bit network key value. Providing a hex-string shorter than
16 bytes will populate the N most significant bytes of the array and zero-pad the
rest. If omitted, a random value will be generated.

mesh cdb subnet-del <NetKeyIdx>
Delete a network key from the Configuration database.

• NetKeyIdx: Key index of the network key to delete.

mesh cdb app-key-add <NetKeyIdx> <AppKeyIdx> [<AppKey(1-16 hex)>]
Add an application key to the Configuration database. The application key can later
be passed to mesh nodes in the network. Note that adding a key to the Configuration
database does not automatically add it to the local node’s list of known application
keys.

• NetKeyIdx: Network key index the application key is bound to.

• AppKeyIdx: Key index of the application key to add.

• AppKey: Optional 128-bit application key value. Providing a hex-string shorter
than 16 bytes will populate the N most significant bytes of the array and zero-pad
the rest. If omitted, a random value will be generated.

mesh cdb app-key-del <AppKeyIdx>
Delete an application key from the Configuration database.

• AppKeyIdx: Key index of the application key to delete.

On-Demand Private GATT Proxy Client The On-Demand Private GATT Proxy
Client model is an optional mesh subsystem that can be enabled through the CON-
FIG_BT_MESH_OD_PRIV_PROXY_CLI configuration option.

mesh models od_priv_proxy od-priv-gatt-proxy [Dur(s)]
Set the On-Demand Private GATT Proxy state on active target, or fetch the value of this
state from it.

• Dur: If given, set the state of On-Demand Private GATT Proxy to this value in
seconds. Fetch this value otherwise.

Solicitation PDU RPL Client The Solicitation PDU RPL Client model is an optional mesh sub-
system that can be enabled through the CONFIG_BT_MESH_SOL_PDU_RPL_CLI configuration option.

mesh models sol_pdu_rpl sol-pdu-rpl-clear <RngStart> <Ackd> [RngLen]
Clear active target’s solicitation replay protection list (SRPL) in given range of solici-
tation source (SSRC) addresses.

• RngStart: Start address of the SSRC range.

• Ackd: This argument decides on whether an acknowledged or unacknowledged
message will be sent.
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• RngLen: Range length for the SSRC addresses to be cleared from the solicitiation
RPL list. This parameter is optional; if absent, only a single SSRC address will be
cleared.

Frame statistic

mesh stat get
Get the frame statistic. The command prints numbers of received frames, as well as
numbers of planned and succeeded transmission attempts.

mesh stat clear
Clear all statistics collected before.

Core Host and drivers

Logical Link Control and Adaptation Protocol (L2CAP) L2CAP layer enables
connection-oriented channels which can be enable with the configuration option: CON-
FIG_BT_L2CAP_DYNAMIC_CHANNEL. This channels support segmentation and reassembly transpar-
ently, they also support credit based flow control making it suitable for data streams.

Channels instances are represented by the bt_l2cap_chan struct which contains the callbacks in
the bt_l2cap_chan_ops struct to inform when the channel has been connected, disconnected or
when the encryption has changed. In addition to that it also contains the recv callback which
is called whenever an incoming data has been received. Data received this way can be marked
as processed by returning 0 or using bt_l2cap_chan_recv_complete() API if processing is asyn-
chronous.

Note

The recv callback is called directly from RX Thread thus it is not recommended to block for
long periods of time.

For sending data the bt_l2cap_chan_send()API can be used noting that it may block if no credits
are available, and resuming as soon as more credits are available.

Servers can be registered using bt_l2cap_server_register() API passing the bt_l2cap_server
struct which informs what psm it should listen to, the required security level sec_level, and the
callback accept which is called to authorize incoming connection requests and allocate channel
instances.

Client channels can be initiated with use of bt_l2cap_chan_connect() API and can be discon-
nected with the bt_l2cap_chan_disconnect() API. Note that the later can also disconnect chan-
nel instances created by servers.

API Reference

group bt_l2cap
L2CAP.
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Defines

BT_L2CAP_HDR_SIZE
L2CAP PDU header size, used for buffer size calculations.

BT_L2CAP_TX_MTU
Maximum Transmission Unit (MTU) for an outgoing L2CAP PDU.

BT_L2CAP_RX_MTU
Maximum Transmission Unit (MTU) for an incoming L2CAP PDU.

BT_L2CAP_BUF_SIZE(mtu)
Helper to calculate needed buffer size for L2CAP PDUs.

Useful for creating buffer pools.

Parameters
• mtu – Needed L2CAP PDU MTU.

Returns
Needed buffer size to match the requested L2CAP PDU MTU.

BT_L2CAP_SDU_HDR_SIZE
L2CAP SDU header size, used for buffer size calculations.

BT_L2CAP_SDU_TX_MTU
Maximum Transmission Unit for an unsegmented outgoing L2CAP SDU.

The Maximum Transmission Unit for an outgoing L2CAP SDU when sent without seg-
mentation, i.e. a single L2CAP SDU will fit inside a single L2CAP PDU.

The MTU for outgoing L2CAP SDUs with segmentation is defined by the size of the
application buffer pool.

BT_L2CAP_SDU_RX_MTU
Maximum Transmission Unit for an unsegmented incoming L2CAP SDU.

The Maximum Transmission Unit for an incoming L2CAP SDU when sent without seg-
mentation, i.e. a single L2CAP SDU will fit inside a single L2CAP PDU.

The MTU for incoming L2CAP SDUs with segmentation is defined by the size of the
application buffer pool. The application will have to define an alloc_buf callback for
the channel in order to support receiving segmented L2CAP SDUs.

BT_L2CAP_SDU_BUF_SIZE(mtu)
Helper to calculate needed buffer size for L2CAP SDUs.

Useful for creating buffer pools.

Parameters
• mtu – Required BT_L2CAP_*_SDU.

Returns
Needed buffer size to match the requested L2CAP SDU MTU.

BT_L2CAP_LE_CHAN(_ch)
Helper macro getting container object of type bt_l2cap_le_chan address having the
same container chan member address as object in question.

Parameters
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• _ch – Address of object of bt_l2cap_chan type

Returns
Address of in memory bt_l2cap_le_chan object type containing the address
of in question object.

BT_L2CAP_CHAN_SEND_RESERVE
Headroom needed for outgoing L2CAP PDUs.

BT_L2CAP_SDU_CHAN_SEND_RESERVE
Headroom needed for outgoing L2CAP SDUs.

Typedefs

typedef void (*bt_l2cap_chan_destroy_t)(struct bt_l2cap_chan *chan)
Channel destroy callback.

Param chan
Channel object.

typedef enum bt_l2cap_chan_state bt_l2cap_chan_state_t
Life-span states of L2CAP CoC channel.

Used only by internal APIs dealing with setting channel to proper state depending on
operational context.

A channel enters the BT_L2CAP_CONNECTING state upon bt_l2cap_chan_connect,
bt_l2cap_ecred_chan_connect or upon returning from bt_l2cap_server::accept.

When a channel leaves the BT_L2CAP_CONNECTING state,
bt_l2cap_chan_ops::connected is called.

typedef enum bt_l2cap_chan_status bt_l2cap_chan_status_t
Status of L2CAP channel.

Enums

enum bt_l2cap_chan_state
Life-span states of L2CAP CoC channel.

Used only by internal APIs dealing with setting channel to proper state depending on
operational context.

A channel enters the BT_L2CAP_CONNECTING state upon bt_l2cap_chan_connect,
bt_l2cap_ecred_chan_connect or upon returning from bt_l2cap_server::accept.

When a channel leaves the BT_L2CAP_CONNECTING state,
bt_l2cap_chan_ops::connected is called.

Values:

enumerator BT_L2CAP_DISCONNECTED
Channel disconnected.
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enumerator BT_L2CAP_CONNECTING
Channel in connecting state.

enumerator BT_L2CAP_CONFIG
Channel in config state, BR/EDR specific.

enumerator BT_L2CAP_CONNECTED
Channel ready for upper layer traffic on it.

enumerator BT_L2CAP_DISCONNECTING
Channel in disconnecting state.

enum bt_l2cap_chan_status
Status of L2CAP channel.

Values:

enumerator BT_L2CAP_STATUS_OUT
Channel can send at least one PDU.

enumerator BT_L2CAP_STATUS_SHUTDOWN
Channel shutdown status.

Once this status is notified it means the channel will no longer be
able to transmit or receive data.

enumerator BT_L2CAP_STATUS_ENCRYPT_PENDING
Channel encryption pending status.

enumerator BT_L2CAP_NUM_STATUS

Functions

int bt_l2cap_server_register(struct bt_l2cap_server *server)
Register L2CAP server.

Register L2CAP server for a PSM, each new connection is authorized using the accept()
callback which in case of success shall allocate the channel structure to be used by the
new connection.

For fixed, SIG-assigned PSMs (in the range 0x0001-0x007f) the PSM should be assigned
to server->psm before calling this API. For dynamic PSMs (in the range 0x0080-0x00ff)
server->psm may be pre-set to a given value (this is however not recommended) or be
left as 0, in which case upon return a newly allocated value will have been assigned
to it. For dynamically allocated values the expectation is that it’s exposed through a
GATT service, and that’s how L2CAP clients discover how to connect to the server.

Parameters
• server – Server structure.

Returns
0 in case of success or negative value in case of error.
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int bt_l2cap_br_server_register(struct bt_l2cap_server *server)
Register L2CAP server on BR/EDR oriented connection.

Register L2CAP server for a PSM, each new connection is authorized using the accept()
callback which in case of success shall allocate the channel structure to be used by the
new connection.

Parameters
• server – Server structure.

Returns
0 in case of success or negative value in case of error.

int bt_l2cap_ecred_chan_connect(struct bt_conn *conn, struct bt_l2cap_chan **chans,
uint16_t psm)

Connect Enhanced Credit Based L2CAP channels.

Connect up to 5 L2CAP channels by PSM, once the connection is completed each chan-
nel connected() callback will be called. If the connection is rejected disconnected()
callback is called instead.

Parameters
• conn – Connection object.

• chans – Array of channel objects.

• psm – Channel PSM to connect to.

Returns
0 in case of success or negative value in case of error.

int bt_l2cap_ecred_chan_reconfigure(struct bt_l2cap_chan **chans, uint16_t mtu)
Reconfigure Enhanced Credit Based L2CAP channels.

Reconfigure up to 5 L2CAP channels. Channels must be from the same bt_conn. Once
reconfiguration is completed each channel reconfigured() callback will be called. MTU
cannot be decreased on any of provided channels.

Parameters
• chans – Array of channel objects. Null-terminated. Elements after the

first 5 are silently ignored.

• mtu – Channel MTU to reconfigure to.

Returns
0 in case of success or negative value in case of error.

int bt_l2cap_chan_connect(struct bt_conn *conn, struct bt_l2cap_chan *chan, uint16_t
psm)

Connect L2CAP channel.

Connect L2CAP channel by PSM, once the connection is completed channel con-
nected() callback will be called. If the connection is rejected disconnected() callback
is called instead. Channel object passed (over an address of it) as second parameter
shouldn’t be instantiated in application as standalone. Instead of, application should
create transport dedicated L2CAP objects, i.e. type of bt_l2cap_le_chan for LE and/or
type of bt_l2cap_br_chan for BR/EDR. Then pass to this API the location (address) of
bt_l2cap_chan type object which is a member of both transport dedicated objects.

Parameters
• conn – Connection object.

• chan – Channel object.
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• psm – Channel PSM to connect to.

Returns
0 in case of success or negative value in case of error.

int bt_l2cap_chan_disconnect(struct bt_l2cap_chan *chan)
Disconnect L2CAP channel.

Disconnect L2CAP channel, if the connection is pending it will be canceled and as a
result the channel disconnected() callback is called. Regarding to input parameter, to
get details see reference description to bt_l2cap_chan_connect() API above.

Parameters
• chan – Channel object.

Returns
0 in case of success or negative value in case of error.

int bt_l2cap_chan_send(struct bt_l2cap_chan *chan, struct net_buf *buf)
Send data to L2CAP channel.

Send data from buffer to the channel. If credits are not available, buf will be queued
and sent as and when credits are received from peer. Regarding to first input param-
eter, to get details see reference description to bt_l2cap_chan_connect() API above.

Network buffer fragments (ie buf->frags) are not supported.

When sending L2CAP data over an BR/EDR connection the application
is sending L2CAP PDUs. The application is required to have reserved
BT_L2CAP_CHAN_SEND_RESERVE bytes in the buffer before sending. The appli-
cation should use the BT_L2CAP_BUF_SIZE() helper to correctly size the buffers for
the for the outgoing buffer pool.

When sending L2CAP data over an LE connection the application is sending L2CAP
SDUs. The application shall reserve BT_L2CAP_SDU_CHAN_SEND_RESERVE bytes in
the buffer before sending.

The application can use the BT_L2CAP_SDU_BUF_SIZE() helper to correctly size the
buffer to account for the reserved headroom.

When segmenting an L2CAP SDU into L2CAP PDUs the stack will first attempt to al-
locate buffers from the channel’s alloc_seg callback and will fallback on the stack’s
global buffer pool (sized CONFIG_BT_L2CAP_TX_BUF_COUNT ).

Note

Buffer ownership is transferred to the stack in case of success, in case of an error
the caller retains the ownership of the buffer.

Returns
0 in case of success or negative value in case of error.

Returns
-EINVAL if buf or chan is NULL.

Returns
-EINVAL if chan is not either BR/EDR or LE credit-based.

Returns
-EINVAL if buffer doesn’t have enough bytes reserved to fit header.

Returns
-EINVAL if buffer’s reference counter != 1
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Returns
-EMSGSIZE if buf is larger than chan’s MTU.

Returns
-ENOTCONN if underlying conn is disconnected.

Returns
-ESHUTDOWN if L2CAP channel is disconnected.

Returns
-other (from lower layers) if chan is BR/EDR.

int bt_l2cap_chan_give_credits(struct bt_l2cap_chan *chan, uint16_t additional_credits)
Give credits to the remote.

Only available for channels using bt_l2cap_chan_ops::seg_recv. CON-
FIG_BT_L2CAP_SEG_RECV must be enabled to make this function available.

Each credit given allows the peer to send one segment.

This function depends on a valid chan object. Make sure to default-initialize or memset
chan when allocating or reusing it for new connections.

Adding zero credits is not allowed.

Credits can be given before entering the BT_L2CAP_CONNECTING state. Doing so will
adjust the ‘initial credits’ sent in the connection PDU.

Must not be called while the channel is in BT_L2CAP_CONNECTING state.

Returns
0 in case of success or negative value in case of error.

int bt_l2cap_chan_recv_complete(struct bt_l2cap_chan *chan, struct net_buf *buf)
Complete receiving L2CAP channel data.

Complete the reception of incoming data. This shall only be called if the channel recv
callback has returned -EINPROGRESS to process some incoming data. The buffer shall
contain the original user_data as that is used for storing the credits/segments used by
the packet.

Parameters
• chan – Channel object.

• buf – Buffer containing the data.

Returns
0 in case of success or negative value in case of error.

struct bt_l2cap_chan
#include <l2cap.h> L2CAP Channel structure.

Public Members

struct bt_conn *conn
Channel connection reference.

const struct bt_l2cap_chan_ops *ops
Channel operations reference.
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struct bt_l2cap_le_endpoint
#include <l2cap.h> LE L2CAP Endpoint structure.

Public Members

uint16_t cid
Endpoint Channel Identifier (CID)

uint16_t mtu
Endpoint Maximum Transmission Unit.

uint16_t mps
Endpoint Maximum PDU payload Size.

atomic_t credits
Endpoint credits.

struct bt_l2cap_le_chan
#include <l2cap.h> LE L2CAP Channel structure.

Public Members

struct bt_l2cap_chan chan
Common L2CAP channel reference object.

struct bt_l2cap_le_endpoint rx
Channel Receiving Endpoint.

If the application has set an alloc_buf channel callback for the channel to support
receiving segmented L2CAP SDUs the application should initialize the MTU of the
Receiving Endpoint. Otherwise the MTU of the receiving endpoint will be initial-
ized to BT_L2CAP_SDU_RX_MTU by the stack.

This is the source of the MTU, MPS and credit values when
sending L2CAP_LE_CREDIT_BASED_CONNECTION_REQ/RSP and
L2CAP_CONFIGURATION_REQ.

uint16_t pending_rx_mtu
Pending RX MTU on ECFC reconfigure, used internally by stack.

struct bt_l2cap_le_endpoint tx
Channel Transmission Endpoint.

This is an image of the remote’s rx.

The MTU and MPS is controlled by the remote
by L2CAP_LE_CREDIT_BASED_CONNECTION_REQ/RSP or
L2CAP_CONFIGURATION_REQ.
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struct k_fifo tx_queue
Channel Transmission queue (for SDUs)

struct bt_l2cap_br_endpoint
#include <l2cap.h> BREDR L2CAP Endpoint structure.

Public Members

uint16_t cid
Endpoint Channel Identifier (CID)

uint16_t mtu
Endpoint Maximum Transmission Unit.

struct bt_l2cap_br_chan
#include <l2cap.h> BREDR L2CAP Channel structure.

Public Members

struct bt_l2cap_chan chan
Common L2CAP channel reference object.

struct bt_l2cap_br_endpoint rx
Channel Receiving Endpoint.

struct bt_l2cap_br_endpoint tx
Channel Transmission Endpoint.

uint16_t psm
Remote PSM to be connected.

uint8_t ident
Helps match request context during CoC.

struct bt_l2cap_chan_ops
#include <l2cap.h> L2CAP Channel operations structure.

Public Members

void (*connected)(struct bt_l2cap_chan *chan)
Channel connected callback.

If this callback is provided it will be called whenever the connection completes.
Param chan

The channel that has been connected
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void (*disconnected)(struct bt_l2cap_chan *chan)
Channel disconnected callback.

If this callback is provided it will be called whenever the channel is disconnected,
including when a connection gets rejected.

Param chan
The channel that has been Disconnected

void (*encrypt_change)(struct bt_l2cap_chan *chan, uint8_t hci_status)
Channel encrypt_change callback.

If this callback is provided it will be called whenever the security level changed
(indirectly link encryption done) or authentication procedure fails. In both cases
security initiator and responder got the final status (HCI status) passed by related
to encryption and authentication events from local host’s controller.

Param chan
The channel which has made encryption status changed.

Param status
HCI status of performed security procedure caused by channel secu-
rity requirements. The value is populated by HCI layer and set to 0
when success and to non-zero (reference to HCI Error Codes) when se-
curity/authentication failed.

struct net_buf *(*alloc_seg)(struct bt_l2cap_chan *chan)
Channel alloc_seg callback.

If this callback is provided the channel will use it to allocate buffers to store seg-
ments. This avoids wasting big SDU buffers with potentially much smaller PDUs.
If this callback is supplied, it must return a valid buffer.

Param chan
The channel requesting a buffer.

Return
Allocated buffer.

struct net_buf *(*alloc_buf)(struct bt_l2cap_chan *chan)
Channel alloc_buf callback.

If this callback is provided the channel will use it to allocate buffers to store
incoming data. Channels that requires segmentation must set this callback. If
the application has not set a callback the L2CAP SDU MTU will be truncated to
BT_L2CAP_SDU_RX_MTU.

Param chan
The channel requesting a buffer.

Return
Allocated buffer.

int (*recv)(struct bt_l2cap_chan *chan, struct net_buf *buf)
Channel recv callback.

Param chan
The channel receiving data.

Param buf
Buffer containing incoming data.

Return
0 in case of success or negative value in case of error.

Return
-EINPROGRESS in case where user has to confirm once the data has been
processed by calling bt_l2cap_chan_recv_completepassing back the buffer
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received with its original user_data which contains the number of seg-
ments/credits used by the packet.

void (*sent)(struct bt_l2cap_chan *chan)
Channel sent callback.

This callback will be called once the controller marks the SDU as completed. When
the controller does so is implementation dependent. It could be after the SDU is
enqueued for transmission, or after it is sent on air.

Param chan
The channel which has sent data.

void (*status)(struct bt_l2cap_chan *chan, atomic_t *status)
Channel status callback.

If this callback is provided it will be called whenever the channel status changes.
Param chan

The channel which status changed
Param status

The channel status

void (*reconfigured)(struct bt_l2cap_chan *chan)
Channel reconfigured callback.

If this callback is provided it will be called whenever peer or local device requested
reconfiguration. Application may check updated MTU and MPS values by inspect-
ing chan->le endpoints.

Param chan
The channel which was reconfigured

void (*seg_recv)(struct bt_l2cap_chan *chan, size_t sdu_len, off_t seg_offset, struct
net_buf_simple *seg)

Handle L2CAP segments directly.

This is an alternative to bt_l2cap_chan_ops::recv. They cannot be used together.

This is called immediately for each received segment.

Unlike with bt_l2cap_chan_ops::recv, flow control is explicit. Each time this
handler is invoked, the remote has permanently used up one credit. Use
bt_l2cap_chan_give_credits to give credits.

The start of an SDU is marked by seg_offset == 0. The end of an SDU is marked
by seg_offset + seg->len == sdu_len.

The stack guarantees that:
• The sender had the credit.
• The SDU length does not exceed MTU.
• The segment length does not exceed MPS.

Additionally, the L2CAP protocol is such that:
• Segments come in order.
• SDUs cannot be interleaved or aborted halfway.

Note

With this alternative API, the application is responsible for setting the RX MTU
and MPS. The MPS must not exceed BT_L2CAP_RX_MTU.

Param chan
The receiving channel.
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Param sdu_len
Byte length of the SDU this segment is part of.

Param seg_offset
The byte offset of this segment in the SDU.

Param seg
The segment payload.

struct bt_l2cap_server
#include <l2cap.h> L2CAP Server structure.

Public Members

uint16_t psm
Server PSM.

Possible values: 0 A dynamic value will be auto-allocated when
bt_l2cap_server_register() is called.

0x0001-0x007f Standard, Bluetooth SIG-assigned fixed values.

0x0080-0x00ff Dynamically allocated. May be pre-set by the application before
server registration (not recommended however), or auto-allocated by the stack if
the app gave 0 as the value.

bt_security_t sec_level
Required minimum security level.

int (*accept)(struct bt_conn *conn, struct bt_l2cap_server *server, struct
bt_l2cap_chan **chan)

Server accept callback.

This callback is called whenever a new incoming connection requires authoriza-
tion.

Param conn
The connection that is requesting authorization

Param server
Pointer to the server structure this callback relates to

Param chan
Pointer to received the allocated channel

Return
0 in case of success or negative value in case of error.

Return
-ENOMEM if no available space for new channel.

Return
-EACCES if application did not authorize the connection.

Return
-EPERM if encryption key size is too short.

Connection Management The Zephyr Bluetooth stack uses an abstraction called bt_conn to
represent connections to other devices. The internals of this struct are not exposed to the appli-
cation, but a limited amount of information (such as the remote address) can be acquired using
the bt_conn_get_info() API. Connection objects are reference counted, and the application is
expected to use the bt_conn_ref() API whenever storing a connection pointer for a longer pe-
riod of time, since this ensures that the object remains valid (even if the connection would get
disconnected). Similarly the bt_conn_unref() API is to be used when releasing a reference to a
connection.
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An application may track connections by registering a bt_conn_cb struct using the
bt_conn_cb_register() or BT_CONN_CB_DEFINE APIs. This struct lets the application define
callbacks for connection & disconnection events, as well as other events related to a connection
such as a change in the security level or the connection parameters. When acting as a central
the application will also get hold of the connection object through the return value of the
bt_conn_le_create() API.

API Reference

group bt_conn
Connection management.

Defines

BT_LE_CONN_PARAM_INIT(int_min, int_max, lat, to)
Initialize connection parameters.

Parameters
• int_min – Minimum Connection Interval (N * 1.25 ms)

• int_max – Maximum Connection Interval (N * 1.25 ms)

• lat – Connection Latency

• to – Supervision Timeout (N * 10 ms)

BT_LE_CONN_PARAM(int_min, int_max, lat, to)
Helper to declare connection parameters inline.

Parameters
• int_min – Minimum Connection Interval (N * 1.25 ms)

• int_max – Maximum Connection Interval (N * 1.25 ms)

• lat – Connection Latency

• to – Supervision Timeout (N * 10 ms)

BT_LE_CONN_PARAM_DEFAULT
Default LE connection parameters: Connection Interval: 30-50 ms Latency: 0 Timeout:
4 s.

BT_CONN_LE_PHY_PARAM_INIT(_pref_tx_phy, _pref_rx_phy)
Initialize PHY parameters.

Parameters
• _pref_tx_phy – Bitmask of preferred transmit PHYs.

• _pref_rx_phy – Bitmask of preferred receive PHYs.

BT_CONN_LE_PHY_PARAM(_pref_tx_phy, _pref_rx_phy)
Helper to declare PHY parameters inline.

Parameters
• _pref_tx_phy – Bitmask of preferred transmit PHYs.

• _pref_rx_phy – Bitmask of preferred receive PHYs.
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BT_CONN_LE_PHY_PARAM_1M
Only LE 1M PHY.

BT_CONN_LE_PHY_PARAM_2M
Only LE 2M PHY.

BT_CONN_LE_PHY_PARAM_CODED
Only LE Coded PHY.

BT_CONN_LE_PHY_PARAM_ALL
All LE PHYs.

BT_CONN_LE_DATA_LEN_PARAM_INIT(_tx_max_len, _tx_max_time)
Initialize transmit data length parameters.

Parameters
• _tx_max_len – Maximum Link Layer transmission payload size in bytes.

• _tx_max_time – Maximum Link Layer transmission payload time in us.

BT_CONN_LE_DATA_LEN_PARAM(_tx_max_len, _tx_max_time)
Helper to declare transmit data length parameters inline.

Parameters
• _tx_max_len – Maximum Link Layer transmission payload size in bytes.

• _tx_max_time – Maximum Link Layer transmission payload time in us.

BT_LE_DATA_LEN_PARAM_DEFAULT
Default LE data length parameters.

BT_LE_DATA_LEN_PARAM_MAX
Maximum LE data length parameters.

BT_CONN_INTERVAL_TO_MS(interval)
Convert connection interval to milliseconds.

Multiply by 1.25 to get milliseconds.

Note that this may be inaccurate, as something like 7.5 ms cannot be accurately pre-
sented with integers.

BT_CONN_INTERVAL_TO_US(interval)
Convert connection interval to microseconds.

Multiply by 1250 to get microseconds.

BT_CONN_LE_CREATE_PARAM_INIT(_options, _interval, _window)
Initialize create connection parameters.

Parameters
• _options – Create connection options.

• _interval – Create connection scan interval (N * 0.625 ms).

• _window – Create connection scan window (N * 0.625 ms).
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BT_CONN_LE_CREATE_PARAM(_options, _interval, _window)
Helper to declare create connection parameters inline.

Parameters
• _options – Create connection options.

• _interval – Create connection scan interval (N * 0.625 ms).

• _window – Create connection scan window (N * 0.625 ms).

BT_CONN_LE_CREATE_CONN
Default LE create connection parameters.

Scan continuously by setting scan interval equal to scan window.

BT_CONN_LE_CREATE_CONN_AUTO
Default LE create connection using filter accept list parameters.

Scan window: 30 ms. Scan interval: 60 ms.

BT_CONN_CB_DEFINE(_name)
Register a callback structure for connection events.

Parameters
• _name – Name of callback structure.

BT_PASSKEY_INVALID
Special passkey value that can be used to disable a previously set fixed passkey.

BT_BR_CONN_PARAM_INIT(role_switch)
Initialize BR/EDR connection parameters.

Parameters
• role_switch – True if role switch is allowed

BT_BR_CONN_PARAM(role_switch)
Helper to declare BR/EDR connection parameters inline.

Parameters
• role_switch – True if role switch is allowed

BT_BR_CONN_PARAM_DEFAULT
Default BR/EDR connection parameters: Role switch allowed.

Enums

Connection PHY options.

Values:

enumerator BT_CONN_LE_PHY_OPT_NONE = 0
Convenience value when no options are specified.

enumerator BT_CONN_LE_PHY_OPT_CODED_S2 = BIT(0)
LE Coded using S=2 coding preferred when transmitting.
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enumerator BT_CONN_LE_PHY_OPT_CODED_S8 = BIT(1)
LE Coded using S=8 coding preferred when transmitting.

enum bt_conn_type
Connection Type.

Values:

enumerator BT_CONN_TYPE_LE = BIT(0)
LE Connection Type.

enumerator BT_CONN_TYPE_BR = BIT(1)
BR/EDR Connection Type.

enumerator BT_CONN_TYPE_SCO = BIT(2)
SCO Connection Type.

enumerator BT_CONN_TYPE_ISO = BIT(3)
ISO Connection Type.

enumerator BT_CONN_TYPE_ALL = BT_CONN_TYPE_LE | BT_CONN_TYPE_BR |
BT_CONN_TYPE_SCO | BT_CONN_TYPE_ISO

All Connection Type.

Values:

enumerator BT_CONN_ROLE_CENTRAL = 0

enumerator BT_CONN_ROLE_PERIPHERAL = 1

enum bt_conn_state
Values:

enumerator BT_CONN_STATE_DISCONNECTED
Channel disconnected.

enumerator BT_CONN_STATE_CONNECTING
Channel in connecting state.

enumerator BT_CONN_STATE_CONNECTED
Channel connected and ready for upper layer traffic on it.

enumerator BT_CONN_STATE_DISCONNECTING
Channel in disconnecting state.

enum bt_security_t
Security level.

Values:
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enumerator BT_SECURITY_L0
Level 0: Only for BR/EDR special cases, like SDP.

enumerator BT_SECURITY_L1
Level 1: No encryption and no authentication.

enumerator BT_SECURITY_L2
Level 2: Encryption and no authentication (no MITM).

enumerator BT_SECURITY_L3
Level 3: Encryption and authentication (MITM).

enumerator BT_SECURITY_L4
Level 4: Authenticated Secure Connections and 128-bit key.

enumerator BT_SECURITY_FORCE_PAIR = BIT(7)
Bit to force new pairing procedure, bit-wise OR with requested security level.

enum bt_security_flag
Security Info Flags.

Values:

enumerator BT_SECURITY_FLAG_SC = BIT(0)
Paired with Secure Connections.

enumerator BT_SECURITY_FLAG_OOB = BIT(1)
Paired with Out of Band method.

enum bt_conn_le_tx_power_phy
Values:

enumerator BT_CONN_LE_TX_POWER_PHY_NONE
Convenience macro for when no PHY is set.

enumerator BT_CONN_LE_TX_POWER_PHY_1M
LE 1M PHY.

enumerator BT_CONN_LE_TX_POWER_PHY_2M
LE 2M PHY.

enumerator BT_CONN_LE_TX_POWER_PHY_CODED_S8
LE Coded PHY using S=8 coding.

enumerator BT_CONN_LE_TX_POWER_PHY_CODED_S2
LE Coded PHY using S=2 coding.
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enum bt_conn_le_path_loss_zone
Path Loss zone that has been entered.

The path loss zone that has been entered in the most recent LE Path Loss Monitor-
ing Threshold Change event as documented in Core Spec. Version 5.4 Vol.4, Part E,
7.7.65.32.

Note

BT_CONN_LE_PATH_LOSS_ZONE_UNAVAILABLE has been added to notify when
path loss becomes unavailable.

Values:

enumerator BT_CONN_LE_PATH_LOSS_ZONE_ENTERED_LOW
Low path loss zone entered.

enumerator BT_CONN_LE_PATH_LOSS_ZONE_ENTERED_MIDDLE
Middle path loss zone entered.

enumerator BT_CONN_LE_PATH_LOSS_ZONE_ENTERED_HIGH
High path loss zone entered.

enumerator BT_CONN_LE_PATH_LOSS_ZONE_UNAVAILABLE
Path loss has become unavailable.

enum bt_conn_auth_keypress
Passkey Keypress Notification type.

The numeric values are the same as in the Core specification for Pairing Keypress No-
tification PDU.

Values:

enumerator BT_CONN_AUTH_KEYPRESS_ENTRY_STARTED = 0x00

enumerator BT_CONN_AUTH_KEYPRESS_DIGIT_ENTERED = 0x01

enumerator BT_CONN_AUTH_KEYPRESS_DIGIT_ERASED = 0x02

enumerator BT_CONN_AUTH_KEYPRESS_CLEARED = 0x03

enumerator BT_CONN_AUTH_KEYPRESS_ENTRY_COMPLETED = 0x04

Values:

enumerator BT_CONN_LE_OPT_NONE = 0
Convenience value when no options are specified.
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enumerator BT_CONN_LE_OPT_CODED = BIT(0)
Enable LE Coded PHY.

Enable scanning on the LE Coded PHY.

enumerator BT_CONN_LE_OPT_NO_1M = BIT(1)
Disable LE 1M PHY.

Disable scanning on the LE 1M PHY.

@note Requires @ref BT_CONN_LE_OPT_CODED.

enum bt_security_err
Values:

enumerator BT_SECURITY_ERR_SUCCESS
Security procedure successful.

enumerator BT_SECURITY_ERR_AUTH_FAIL
Authentication failed.

enumerator BT_SECURITY_ERR_PIN_OR_KEY_MISSING
PIN or encryption key is missing.

enumerator BT_SECURITY_ERR_OOB_NOT_AVAILABLE
OOB data is not available.

enumerator BT_SECURITY_ERR_AUTH_REQUIREMENT
The requested security level could not be reached.

enumerator BT_SECURITY_ERR_PAIR_NOT_SUPPORTED
Pairing is not supported.

enumerator BT_SECURITY_ERR_PAIR_NOT_ALLOWED
Pairing is not allowed.

enumerator BT_SECURITY_ERR_INVALID_PARAM
Invalid parameters.

enumerator BT_SECURITY_ERR_KEY_REJECTED
Distributed Key Rejected.

enumerator BT_SECURITY_ERR_UNSPECIFIED
Pairing failed but the exact reason could not be specified.

Functions
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struct bt_conn *bt_conn_ref(struct bt_conn *conn)
Increment a connection’s reference count.

Increment the reference count of a connection object.

Note

Will return NULL if the reference count is zero.

Parameters
• conn – Connection object.

Returns
Connection object with incremented reference count, or NULL if the refer-
ence count is zero.

void bt_conn_unref(struct bt_conn *conn)
Decrement a connection’s reference count.

Decrement the reference count of a connection object.

Parameters
• conn – Connection object.

void bt_conn_foreach(enum bt_conn_type type, void (*func)(struct bt_conn *conn, void
*data), void *data)

Iterate through all bt_conn objects.

Iterates through all bt_conn objects that are alive in the Host allocator.

To find established connections, combine this with bt_conn_get_info. Check that
bt_conn_info::state is BT_CONN_STATE_CONNECTED.

Thread safety: This API is thread safe, but it does not guarantee a sequentially-
consistent view for objects allocated during the current invocation of this API. E.g. If
preempted while allocations A then B then C happen then results may include A and C
but miss B.

Parameters
• type – Connection Type

• func – Function to call for each connection.

• data – Data to pass to the callback function.

struct bt_conn *bt_conn_lookup_addr_le(uint8_t id, const bt_addr_le_t *peer)
Look up an existing connection by address.

Look up an existing connection based on the remote address.

The caller gets a new reference to the connection object which must be released with
bt_conn_unref() once done using the object.

Parameters
• id – Local identity (in most cases BT_ID_DEFAULT).

• peer – Remote address.

Returns
Connection object or NULL if not found.
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const bt_addr_le_t *bt_conn_get_dst(const struct bt_conn *conn)
Get destination (peer) address of a connection.

Parameters
• conn – Connection object.

Returns
Destination address.

uint8_t bt_conn_index(const struct bt_conn *conn)
Get array index of a connection.

This function is used to map bt_conn to index of an array of connections. The array
has CONFIG_BT_MAX_CONN elements.

Parameters
• conn – Connection object.

Returns
Index of the connection object. The range of the returned value is
0..CONFIG_BT_MAX_CONN-1

int bt_conn_get_info(const struct bt_conn *conn, struct bt_conn_info *info)
Get connection info.

Parameters
• conn – Connection object.

• info – Connection info object.

Returns
Zero on success or (negative) error code on failure.

int bt_conn_get_remote_info(struct bt_conn *conn, struct bt_conn_remote_info
*remote_info)

Get connection info for the remote device.

Note

In order to retrieve the remote version (version, manufacturer and subversion)
CONFIG_BT_REMOTE_VERSION must be enabled

Note

The remote information is exchanged directly after the connection has been es-
tablished. The application can be notified about when the remote information is
available through the remote_info_available callback.

Parameters
• conn – Connection object.

• remote_info – Connection remote info object.

Returns
Zero on success or (negative) error code on failure.

Returns
-EBUSY The remote information is not yet available.
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int bt_conn_le_get_tx_power_level(struct bt_conn *conn, struct bt_conn_le_tx_power
*tx_power_level)

Get connection transmit power level.

Parameters
• conn – Connection object.

• tx_power_level – Transmit power level descriptor.

Returns
Zero on success or (negative) error code on failure.

Returns
-ENOBUFS HCI command buffer is not available.

int bt_conn_le_enhanced_get_tx_power_level(struct bt_conn *conn, struct
bt_conn_le_tx_power *tx_power)

Get local enhanced connection transmit power level.

Parameters
• conn – Connection object.

• tx_power – Transmit power level descriptor.

Return values
-ENOBUFS – HCI command buffer is not available.

Returns
Zero on success or (negative) error code on failure.

int bt_conn_le_get_remote_tx_power_level(struct bt_conn *conn, enum
bt_conn_le_tx_power_phy phy)

Get remote (peer) transmit power level.

Parameters
• conn – Connection object.

• phy – PHY information.

Return values
-ENOBUFS – HCI command buffer is not available.

Returns
Zero on success or (negative) error code on failure.

int bt_conn_le_set_tx_power_report_enable(struct bt_conn *conn, bool local_enable,
bool remote_enable)

Enable transmit power reporting.

Parameters
• conn – Connection object.

• local_enable – Enable/disable reporting for local.

• remote_enable – Enable/disable reporting for remote.

Return values
-ENOBUFS – HCI command buffer is not available.

Returns
Zero on success or (negative) error code on failure.
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int bt_conn_le_set_path_loss_mon_param(struct bt_conn *conn, const struct
bt_conn_le_path_loss_reporting_param
*param)

Set Path Loss Monitoring Parameters.

Change the configuration for path loss threshold change events for a given conn han-
dle.

Note

To use this API CONFIG_BT_PATH_LOSS_MONITORING must be set.

Parameters
• conn – Connection object.

• param – Path Loss Monitoring parameters

Returns
Zero on success or (negative) error code on failure.

int bt_conn_le_set_path_loss_mon_enable(struct bt_conn *conn, bool enable)
Enable or Disable Path Loss Monitoring.

Enable or disable Path Loss Monitoring, which will decide whether Path Loss Thresh-
old events are sent from the controller to the host.

Note

To use this API CONFIG_BT_PATH_LOSS_MONITORING must be set.

Parameters
• conn – Connection Object.

• enable – Enable/disable path loss reporting.

Returns
Zero on success or (negative) error code on failure.

int bt_conn_le_param_update(struct bt_conn *conn, const struct bt_le_conn_param
*param)

Update the connection parameters.

If the local device is in the peripheral role then updating the connection pa-
rameters will be delayed. This delay can be configured by through the CON-
FIG_BT_CONN_PARAM_UPDATE_TIMEOUT option.

Parameters
• conn – Connection object.

• param – Updated connection parameters.

Returns
Zero on success or (negative) error code on failure.

int bt_conn_le_data_len_update(struct bt_conn *conn, const struct
bt_conn_le_data_len_param *param)

Update the connection transmit data length parameters.

Parameters
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• conn – Connection object.

• param – Updated data length parameters.

Returns
Zero on success or (negative) error code on failure.

int bt_conn_le_phy_update(struct bt_conn *conn, const struct bt_conn_le_phy_param
*param)

Update the connection PHY parameters.

Update the preferred transmit and receive PHYs of the connection. Use
BT_GAP_LE_PHY_NONE to indicate no preference.

Parameters
• conn – Connection object.

• param – Updated connection parameters.

Returns
Zero on success or (negative) error code on failure.

int bt_conn_disconnect(struct bt_conn *conn, uint8_t reason)
Disconnect from a remote device or cancel pending connection.

Disconnect an active connection with the specified reason code or cancel pending out-
going connection.

The disconnect reason for a normal disconnect should be:
BT_HCI_ERR_REMOTE_USER_TERM_CONN.

The following disconnect reasons are accepted:

• BT_HCI_ERR_AUTH_FAIL

• BT_HCI_ERR_REMOTE_USER_TERM_CONN

• BT_HCI_ERR_REMOTE_LOW_RESOURCES

• BT_HCI_ERR_REMOTE_POWER_OFF

• BT_HCI_ERR_UNSUPP_REMOTE_FEATURE

• BT_HCI_ERR_PAIRING_NOT_SUPPORTED

• BT_HCI_ERR_UNACCEPT_CONN_PARAM

Parameters
• conn – Connection to disconnect.

• reason – Reason code for the disconnection.

Returns
Zero on success or (negative) error code on failure.

int bt_conn_le_create(const bt_addr_le_t *peer, const struct bt_conn_le_create_param
*create_param, const struct bt_le_conn_param *conn_param,
struct bt_conn **conn)

Initiate an LE connection to a remote device.

Allows initiate new LE link to remote peer using its address.

The caller gets a new reference to the connection object which must be released with
bt_conn_unref() once done using the object.

This uses the General Connection Establishment procedure.
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The application must disable explicit scanning before initiating a new LE connection
if CONFIG_BT_SCAN_AND_INITIATE_IN_PARALLEL is not enabled.

Parameters
• peer – [in] Remote address.

• create_param – [in] Create connection parameters.

• conn_param – [in] Initial connection parameters.

• conn – [out] Valid connection object on success.

Returns
Zero on success or (negative) error code on failure.

int bt_conn_le_create_synced(const struct bt_le_ext_adv *adv, const struct
bt_conn_le_create_synced_param *synced_param, const
struct bt_le_conn_param *conn_param, struct bt_conn
**conn)

Create a connection to a synced device.

Initiate a connection to a synced device from a Periodic Advertising with Responses
(PAwR) train.

The caller gets a new reference to the connection object which must be released with
bt_conn_unref() once done using the object.

This uses the Periodic Advertising Connection Procedure.

Parameters
• adv – [in] The adverting set the PAwR advertiser belongs to.

• synced_param – [in] Create connection parameters.

• conn_param – [in] Initial connection parameters.

• conn – [out] Valid connection object on success.

Returns
Zero on success or (negative) error code on failure.

int bt_conn_le_create_auto(const struct bt_conn_le_create_param *create_param, const
struct bt_le_conn_param *conn_param)

Automatically connect to remote devices in the filter accept list.

This uses the Auto Connection Establishment procedure. The procedure will con-
tinue until a single connection is established or the procedure is stopped through
bt_conn_create_auto_stop. To establish connections to all devices in the filter accept
list the procedure should be started again in the connected callback after a new con-
nection has been established.

Parameters
• create_param – Create connection parameters

• conn_param – Initial connection parameters.

Returns
Zero on success or (negative) error code on failure.

Returns
-ENOMEM No free connection object available.

int bt_conn_create_auto_stop(void)
Stop automatic connect creation.

Returns
Zero on success or (negative) error code on failure.
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int bt_le_set_auto_conn(const bt_addr_le_t *addr, const struct bt_le_conn_param
*param)

Automatically connect to remote device if it’s in range.

This function enables/disables automatic connection initiation. Every time the device
loses the connection with peer, this connection will be re-established if connectable
advertisement from peer is received.

Note

Auto connect is disabled during explicit scanning.

Parameters
• addr – Remote Bluetooth address.

• param – If non-NULL, auto connect is enabled with the given parameters.
If NULL, auto connect is disabled.

Returns
Zero on success or error code otherwise.

int bt_conn_set_security(struct bt_conn *conn, bt_security_t sec)
Set security level for a connection.

This function enable security (encryption) for a connection. If the device has bond
information for the peer with sufficiently strong key encryption will be enabled. If the
connection is already encrypted with sufficiently strong key this function does nothing.

If the device has no bond information for the peer and is not already paired then the
pairing procedure will be initiated. Note that sec has no effect on the security level
selected for the pairing process. The selection is instead controlled by the values of the
registered bt_conn_auth_cb. If the device has bond information or is already paired
and the keys are too weak then the pairing procedure will be initiated.

This function may return an error if the required level of security defined using sec
is not possible to achieve due to local or remote device limitation (e.g., input output
capabilities), or if the maximum number of paired devices has been reached.

This function may return an error if the pairing procedure has already been initiated
by the local device or the peer device.

Note

When CONFIG_BT_SMP_SC_ONLY is enabled then the security level will always be level
4.

Note

When CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY is enabled then the security level will
always be level 3.

Note

When BT_SECURITY_FORCE_PAIRwithin sec is enabled then the pairing procedure
will always be initiated.
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Parameters
• conn – Connection object.

• sec – Requested minimum security level.

Returns
0 on success or negative error

bt_security_t bt_conn_get_security(const struct bt_conn *conn)
Get security level for a connection.

Returns
Connection security level

uint8_t bt_conn_enc_key_size(const struct bt_conn *conn)
Get encryption key size.

This function gets encryption key size. If there is no security (encryption) enabled 0
will be returned.

Parameters
• conn – Existing connection object.

Returns
Encryption key size.

int bt_conn_cb_register(struct bt_conn_cb *cb)
Register connection callbacks.

Register callbacks to monitor the state of connections.

Parameters
• cb – Callback struct. Must point to memory that remains valid.

Return values
• 0 – Success.

• -EEXIST – if cb was already registered.

int bt_conn_cb_unregister(struct bt_conn_cb *cb)
Unregister connection callbacks.

Unregister the state of connections callbacks.

Parameters
• cb – Callback struct point to memory that remains valid.

Return values
• 0 – Success

• -EINVAL – If cb is NULL

• -ENOENT – if cb was not registered

static inline const char *bt_security_err_to_str(enum bt_security_err err)
Converts a security error to string.

Returns
The string representation of the security error code. If CON-
FIG_BT_SECURITY_ERR_TO_STR is not enabled, this just returns the empty
string
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void bt_set_bondable(bool enable)
Enable/disable bonding.

Set/clear the Bonding flag in the Authentication Requirements of SMP Pairing Re-
quest/Response data. The initial value of this flag depends on BT_BONDABLE Kconfig
setting. For the vast majority of applications calling this function shouldn’t be needed.

Parameters
• enable – Value allowing/disallowing to be bondable.

int bt_conn_set_bondable(struct bt_conn *conn, bool enable)
Set/clear the bonding flag for a given connection.

Set/clear the Bonding flag in the Authentication Requirements of SMP Pairing Re-
quest/Response data for a given connection.

The bonding flag for a given connection cannot be set/cleared if security procedures
in the SMP module have already started. This function can be called only once per
connection.

If the bonding flag is not set/cleared for a given connection, the value will depend on
global configuration which is set using bt_set_bondable. The default value of the global
configuration is defined using CONFIG_BT_BONDABLE Kconfig option.

Parameters
• conn – Connection object.

• enable – Value allowing/disallowing to be bondable.

void bt_le_oob_set_sc_flag(bool enable)
Allow/disallow remote LE SC OOB data to be used for pairing.

Set/clear the OOB data flag for LE SC SMP Pairing Request/Response data.

Parameters
• enable – Value allowing/disallowing remote LE SC OOB data.

void bt_le_oob_set_legacy_flag(bool enable)
Allow/disallow remote legacy OOB data to be used for pairing.

Set/clear the OOB data flag for legacy SMP Pairing Request/Response data.

Parameters
• enable – Value allowing/disallowing remote legacy OOB data.

int bt_le_oob_set_legacy_tk(struct bt_conn *conn, const uint8_t *tk)
Set OOB Temporary Key to be used for pairing.

This function allows to set OOB data for the LE legacy pairing procedure. The function
should only be called in response to the oob_data_request() callback provided that the
legacy method is user pairing.

Parameters
• conn – Connection object

• tk – Pointer to 16 byte long TK array

Returns
Zero on success or -EINVAL if NULL

int bt_le_oob_set_sc_data(struct bt_conn *conn, const struct bt_le_oob_sc_data
*oobd_local, const struct bt_le_oob_sc_data *oobd_remote)
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Set OOB data during LE Secure Connections (SC) pairing procedure.

This function allows to set OOB data during the LE SC pairing procedure. The function
should only be called in response to the oob_data_request() callback provided that LE
SC method is used for pairing.

The user should submit OOB data according to the information received in the callback.
This may yield three different configurations: with only local OOB data present, with
only remote OOB data present or with both local and remote OOB data present.

Parameters
• conn – Connection object

• oobd_local – Local OOB data or NULL if not present

• oobd_remote – Remote OOB data or NULL if not present

Returns
Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_le_oob_get_sc_data(struct bt_conn *conn, const struct bt_le_oob_sc_data
**oobd_local, const struct bt_le_oob_sc_data **oobd_remote)

Get OOB data used for LE Secure Connections (SC) pairing procedure.

This function allows to get OOB data during the LE SC pairing procedure that were set
by the bt_le_oob_set_sc_data() API.

Note

The OOB data will only be available as long as the connection object associated with
it is valid.

Parameters
• conn – Connection object

• oobd_local – Local OOB data or NULL if not set

• oobd_remote – Remote OOB data or NULL if not set

Returns
Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_passkey_set(unsigned int passkey)
Set a fixed passkey to be used for pairing.

This API is only available when the CONFIG_BT_FIXED_PASSKEY configuration option
has been enabled.

Sets a fixed passkey to be used for pairing. If set, the pairing_confirm() callback will
be called for all incoming pairings.

Parameters
• passkey – A valid passkey (0 - 999999) or BT_PASSKEY_INVALID to disable

a previously set fixed passkey.

Returns
0 on success or a negative error code on failure.
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int bt_conn_auth_cb_register(const struct bt_conn_auth_cb *cb)
Register authentication callbacks.

Register callbacks to handle authenticated pairing. Passing NULL unregisters a previ-
ous callbacks structure.

Parameters
• cb – Callback struct.

Returns
Zero on success or negative error code otherwise

int bt_conn_auth_cb_overlay(struct bt_conn *conn, const struct bt_conn_auth_cb *cb)
Overlay authentication callbacks used for a given connection.

This function can be used only for Bluetooth LE connections. The CONFIG_BT_SMP must
be enabled for this function.

The authentication callbacks for a given connection cannot be overlaid if security pro-
cedures in the SMP module have already started. This function can be called only once
per connection.

Parameters
• conn – Connection object.

• cb – Callback struct.

Returns
Zero on success or negative error code otherwise

int bt_conn_auth_info_cb_register(struct bt_conn_auth_info_cb *cb)
Register authentication information callbacks.

Register callbacks to get authenticated pairing information. Multiple registrations can
be done.

Parameters
• cb – Callback struct.

Returns
Zero on success or negative error code otherwise

int bt_conn_auth_info_cb_unregister(struct bt_conn_auth_info_cb *cb)
Unregister authentication information callbacks.

Unregister callbacks to stop getting authenticated pairing information.

Parameters
• cb – Callback struct.

Returns
Zero on success or negative error code otherwise

int bt_conn_auth_passkey_entry(struct bt_conn *conn, unsigned int passkey)
Reply with entered passkey.

This function should be called only after passkey_entry callback from bt_conn_auth_cb
structure was called.

Parameters
• conn – Connection object.

• passkey – Entered passkey.
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Returns
Zero on success or negative error code otherwise

int bt_conn_auth_keypress_notify(struct bt_conn *conn, enum bt_conn_auth_keypress
type)

Send Passkey Keypress Notification during pairing.

This function may be called only after passkey_entry callback from bt_conn_auth_cb
structure was called.

Requires CONFIG_BT_PASSKEY_KEYPRESS .

See also

bt_conn_auth_keypress.

Parameters
• conn – Destination for the notification.

• type – What keypress event type to send.

Return values
• 0 – Success

• -EINVAL – Improper use of the API.

• -ENOMEM – Failed to allocate.

• -ENOBUFS – Failed to allocate.

int bt_conn_auth_cancel(struct bt_conn *conn)
Cancel ongoing authenticated pairing.

This function allows to cancel ongoing authenticated pairing.

Parameters
• conn – Connection object.

Returns
Zero on success or negative error code otherwise

int bt_conn_auth_passkey_confirm(struct bt_conn *conn)
Reply if passkey was confirmed to match by user.

This function should be called only after passkey_confirm callback from
bt_conn_auth_cb structure was called.

Parameters
• conn – Connection object.

Returns
Zero on success or negative error code otherwise

int bt_conn_auth_pairing_confirm(struct bt_conn *conn)
Reply if incoming pairing was confirmed by user.

This function should be called only after pairing_confirm callback from
bt_conn_auth_cb structure was called if user confirmed incoming pairing.

Parameters
• conn – Connection object.
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Returns
Zero on success or negative error code otherwise

int bt_conn_auth_pincode_entry(struct bt_conn *conn, const char *pin)
Reply with entered PIN code.

This function should be called only after PIN code callback from bt_conn_auth_cb struc-
ture was called. It’s for legacy 2.0 devices.

Parameters
• conn – Connection object.

• pin – Entered PIN code.

Returns
Zero on success or negative error code otherwise

struct bt_conn *bt_conn_create_br(const bt_addr_t *peer, const struct bt_br_conn_param
*param)

Initiate an BR/EDR connection to a remote device.

Allows initiate new BR/EDR link to remote peer using its address.

The caller gets a new reference to the connection object which must be released with
bt_conn_unref() once done using the object.

Parameters
• peer – Remote address.

• param – Initial connection parameters.

Returns
Valid connection object on success or NULL otherwise.

struct bt_le_conn_param
#include <conn.h> Connection parameters for LE connections.

struct bt_conn_le_phy_info
#include <conn.h> Connection PHY information for LE connections.

Public Members

uint8_t rx_phy
Connection transmit PHY.

struct bt_conn_le_phy_param
#include <conn.h> Preferred PHY parameters for LE connections.

Public Members

uint16_t options
Connection PHY options.

uint8_t pref_tx_phy
Bitmask of preferred transmit PHYs.
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uint8_t pref_rx_phy
Bitmask of preferred receive PHYs.

struct bt_conn_le_data_len_info
#include <conn.h> Connection data length information for LE connections.

Public Members

uint16_t tx_max_len
Maximum Link Layer transmission payload size in bytes.

uint16_t tx_max_time
Maximum Link Layer transmission payload time in us.

uint16_t rx_max_len
Maximum Link Layer reception payload size in bytes.

uint16_t rx_max_time
Maximum Link Layer reception payload time in us.

struct bt_conn_le_data_len_param
#include <conn.h> Connection data length parameters for LE connections.

Public Members

uint16_t tx_max_len
Maximum Link Layer transmission payload size in bytes.

uint16_t tx_max_time
Maximum Link Layer transmission payload time in us.

struct bt_conn_le_info
#include <conn.h> LE Connection Info Structure.

Public Members

const bt_addr_le_t *src
Source (Local) Identity Address.

const bt_addr_le_t *dst
Destination (Remote) Identity Address or remote Resolvable Private Address (RPA)
before identity has been resolved.

const bt_addr_le_t *local
Local device address used during connection setup.
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const bt_addr_le_t *remote
Remote device address used during connection setup.

uint16_t interval
Connection interval.

uint16_t latency
Connection peripheral latency.

uint16_t timeout
Connection supervision timeout.

struct bt_conn_br_info
#include <conn.h> BR/EDR Connection Info Structure.

Public Members

const bt_addr_t *dst
Destination (Remote) BR/EDR address.

struct bt_security_info
#include <conn.h> Security Info Structure.

Public Members

bt_security_t level
Security Level.

uint8_t enc_key_size
Encryption Key Size.

enum bt_security_flag flags
Flags.

struct bt_conn_info
#include <conn.h> Connection Info Structure.

Public Members

enum bt_conn_type type
Connection Type.

uint8_t role
Connection Role.
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uint8_t id
Which local identity the connection was created with.

struct bt_conn_le_info le
LE Connection specific Info.

struct bt_conn_br_info br
BR/EDR Connection specific Info.

union bt_conn_info
Connection Type specific Info.

enum bt_conn_state state
Connection state.

struct bt_security_info security
Security specific info.

struct bt_conn_le_remote_info
#include <conn.h> LE Connection Remote Info Structure.

Public Members

const uint8_t *features
Remote LE feature set (bitmask).

struct bt_conn_br_remote_info
#include <conn.h> BR/EDR Connection Remote Info structure.

Public Members

const uint8_t *features
Remote feature set (pages of bitmasks).

uint8_t num_pages
Number of pages in the remote feature set.

struct bt_conn_remote_info
#include <conn.h> Connection Remote Info Structure.

Note

The version, manufacturer and subversion fields will only contain valid data if CON-
FIG_BT_REMOTE_VERSION is enabled.
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Public Members

uint8_t type
Connection Type.

uint8_t version
Remote Link Layer version.

uint16_t manufacturer
Remote manufacturer identifier.

uint16_t subversion
Per-manufacturer unique revision.

struct bt_conn_le_remote_info le
LE connection remote info.

struct bt_conn_br_remote_info br
BR/EDR connection remote info.

struct bt_conn_le_tx_power
#include <conn.h> LE Transmit Power Level Structure.

Public Members

uint8_t phy
Input: 1M, 2M, Coded S2 or Coded S8.

int8_t current_level
Output: current transmit power level.

int8_t max_level
Output: maximum transmit power level.

struct bt_conn_le_tx_power_report
#include <conn.h> LE Transmit Power Reporting Structure.

Public Members

uint8_t reason
Reason for Transmit power reporting, as documented in Core Spec.

Version 5.4 Vol. 4, Part E, 7.7.65.33.

enum bt_conn_le_tx_power_phy phy
Phy of Transmit power reporting.
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int8_t tx_power_level
Transmit power level.

• 0xXX - Transmit power level
– Range: -127 to 20
– Units: dBm

• 0x7E - Remote device is not managing power levels on this PHY.
• 0x7F - Transmit power level is not available

uint8_t tx_power_level_flag
Bit 0: Transmit power level is at minimum level.

Bit 1: Transmit power level is at maximum level.

int8_t delta
Change in transmit power level.

• 0xXX - Change in transmit power level (positive indicates increased power, neg-
ative indicates decreased power, zero indicates unchanged) Units: dB

• 0x7F - Change is not available or is out of range.

struct bt_conn_le_path_loss_threshold_report
#include <conn.h> LE Path Loss Monitoring Threshold Change Report Structure.

Public Members

enum bt_conn_le_path_loss_zone zone
Path Loss zone as documented in Core Spec.

Version 5.4 Vol.4, Part E, 7.7.65.32.

uint8_t path_loss
Current path loss (dB).

struct bt_conn_le_path_loss_reporting_param
#include <conn.h> LE Path Loss Monitoring Parameters Structure as defined in Core
Spec.

Version 5.4 Vol.4, Part E, 7.8.119 LE Set Path Loss Reporting Parameters command.

Public Members

uint8_t high_threshold
High threshold for the path loss (dB).

uint8_t high_hysteresis
Hysteresis value for the high threshold (dB).
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uint8_t low_threshold
Low threshold for the path loss (dB).

uint8_t low_hysteresis
Hysteresis value for the low threshold (dB).

uint16_t min_time_spent
Minimum time in number of connection events to be observed once the path loss
crosses the threshold before an event is generated.

struct bt_conn_le_create_param
#include <conn.h>

Public Members

uint32_t options
Bit-field of create connection options.

uint16_t interval
Scan interval (N * 0.625 ms)

uint16_t window
Scan window (N * 0.625 ms)

uint16_t interval_coded
Scan interval LE Coded PHY (N * 0.625 MS)

Set zero to use same as LE 1M PHY scan interval

uint16_t window_coded
Scan window LE Coded PHY (N * 0.625 MS)

Set zero to use same as LE 1M PHY scan window.

uint16_t timeout
Connection initiation timeout (N * 10 MS)

Set zero to use the default CONFIG_BT_CREATE_CONN_TIMEOUT timeout.

Note

Unused in bt_conn_le_create_auto

struct bt_conn_le_create_synced_param
#include <conn.h>

Public Members

2338 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

const bt_addr_le_t *peer
Remote address.

The peer must be synchronized to the PAwR train.

uint8_t subevent
The subevent where the connection will be initiated.

struct bt_conn_cb
#include <conn.h> Connection callback structure.

This structure is used for tracking the state of a connection. It is registered with the
help of the bt_conn_cb_register() API. It’s permissible to register multiple instances of
this bt_conn_cb type, in case different modules of an application are interested in track-
ing the connection state. If a callback is not of interest for an instance, it may be set to
NULL and will as a consequence not be used for that instance.

Public Members

void (*connected)(struct bt_conn *conn, uint8_t err)
A new connection has been established.

This callback notifies the application of a new connection. In case the err param-
eter is non-zero it means that the connection establishment failed.

err can mean either of the following:
• BT_HCI_ERR_UNKNOWN_CONN_ID Creating the connection started by
bt_conn_le_create was canceled either by the user through bt_conn_disconnect
or by the timeout in the host through bt_conn_le_create_param timeout
parameter, which defaults to CONFIG_BT_CREATE_CONN_TIMEOUT seconds.

• BT_HCI_ERR_ADV_TIMEOUT High duty cycle directed connectable advertiser
started by bt_le_adv_start failed to be connected within the timeout.

Note

If the connection was established from an advertising set then the advertising
set cannot be restarted directly from this callback. Instead use the connected
callback of the advertising set.

Param conn
New connection object.

Param err
HCI error. Zero for success, non-zero otherwise.

void (*disconnected)(struct bt_conn *conn, uint8_t reason)
A connection has been disconnected.

This callback notifies the application that a connection has been disconnected.

When this callback is called the stack still has one reference to the connection ob-
ject. If the application in this callback tries to start either a connectable adver-
tiser or create a new connection this might fail because there are no free connec-
tion objects available. To avoid this issue it is recommended to either start con-
nectable advertise or create a new connection using k_work_submit or increase
CONFIG_BT_MAX_CONN .
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Param conn
Connection object.

Param reason
BT_HCI_ERR_* reason for the disconnection.

void (*recycled)(void)
A connection object has been returned to the pool.

This callback notifies the application that it might be able to allocate a connection
object. No guarantee, first come, first serve.

Use this to e.g. re-start connectable advertising or scanning.

Treat this callback as an ISR, as it originates from bt_conn_unref which is used by
the BT stack. Making Bluetooth API calls in this context is error-prone and strongly
discouraged.

bool (*le_param_req)(struct bt_conn *conn, struct bt_le_conn_param *param)
LE connection parameter update request.

This callback notifies the application that a remote device is requesting to update
the connection parameters. The application accepts the parameters by returning
true, or rejects them by returning false. Before accepting, the application may also
adjust the parameters to better suit its needs.

It is recommended for an application to have just one of these callbacks for sim-
plicity. However, if an application registers multiple it needs to manage the poten-
tially different requirements for each callback. Each callback gets the parameters
as returned by previous callbacks, i.e. they are not necessarily the same ones as
the remote originally sent.

If the application does not have this callback then the default is to accept the pa-
rameters.

Param conn
Connection object.

Param param
Proposed connection parameters.

Return
true to accept the parameters, or false to reject them.

void (*le_param_updated)(struct bt_conn *conn, uint16_t interval, uint16_t latency,
uint16_t timeout)

The parameters for an LE connection have been updated.

This callback notifies the application that the connection parameters for an LE
connection have been updated.

Param conn
Connection object.

Param interval
Connection interval.

Param latency
Connection latency.

Param timeout
Connection supervision timeout.

void (*identity_resolved)(struct bt_conn *conn, const bt_addr_le_t *rpa, const
bt_addr_le_t *identity)

Remote Identity Address has been resolved.
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This callback notifies the application that a remote Identity Address has been re-
solved

Param conn
Connection object.

Param rpa
Resolvable Private Address.

Param identity
Identity Address.

void (*security_changed)(struct bt_conn *conn, bt_security_t level, enum
bt_security_err err)

The security level of a connection has changed.

This callback notifies the application that the security of a connection has changed.

The security level of the connection can either have been increased or remain un-
changed. An increased security level means that the pairing procedure has been
performed or the bond information from a previous connection has been applied.
If the security level remains unchanged this means that the encryption key has
been refreshed for the connection.

Param conn
Connection object.

Param level
New security level of the connection.

Param err
Security error. Zero for success, non-zero otherwise.

void (*remote_info_available)(struct bt_conn *conn, struct bt_conn_remote_info
*remote_info)

Remote information procedures has completed.

This callback notifies the application that the remote information has been re-
trieved from the remote peer.

Param conn
Connection object.

Param remote_info
Connection information of remote device.

void (*le_phy_updated)(struct bt_conn *conn, struct bt_conn_le_phy_info *param)
The PHY of the connection has changed.

This callback notifies the application that the PHY of the connection has changed.
Param conn

Connection object.
Param info

Connection LE PHY information.

void (*le_data_len_updated)(struct bt_conn *conn, struct bt_conn_le_data_len_info
*info)

The data length parameters of the connection has changed.

This callback notifies the application that the maximum Link Layer payload length
or transmission time has changed.

Param conn
Connection object.

Param info
Connection data length information.
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struct bt_conn_oob_info
#include <conn.h> Info Structure for OOB pairing.

Public Types

Type of OOB pairing method.

Values:

enumerator BT_CONN_OOB_LE_LEGACY
LE legacy pairing.

enumerator BT_CONN_OOB_LE_SC
LE SC pairing.

Public Members

enum bt_conn_oob_info type
Type of OOB pairing method.

enum bt_conn_oob_info oob_config
OOB data configuration.

struct bt_conn_oob_info lesc
LE Secure Connections OOB pairing parameters.

struct bt_conn_pairing_feat
#include <conn.h> Pairing request and pairing response info structure.

This structure is the same for both smp_pairing_req and smp_pairing_rsp and a subset
of the packet data, except for the initial Code octet. It is documented in Core Spec. Vol.
3, Part H, 3.5.1 and 3.5.2.

Public Members

uint8_t io_capability
IO Capability, Core Spec.

Vol 3, Part H, 3.5.1, Table 3.4

uint8_t oob_data_flag
OOB data flag, Core Spec.

Vol 3, Part H, 3.5.1, Table 3.5

uint8_t auth_req
AuthReq, Core Spec.

Vol 3, Part H, 3.5.1, Fig. 3.3
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uint8_t max_enc_key_size
Maximum Encryption Key Size, Core Spec.

Vol 3, Part H, 3.5.1

uint8_t init_key_dist
Initiator Key Distribution/Generation, Core Spec.

Vol 3, Part H, 3.6.1, Fig. 3.11

uint8_t resp_key_dist
Responder Key Distribution/Generation, Core Spec.

Vol 3, Part H 3.6.1, Fig. 3.11

struct bt_conn_auth_cb
#include <conn.h> Authenticated pairing callback structure.

Public Members

enum bt_security_err (*pairing_accept)(struct bt_conn *conn, const struct
bt_conn_pairing_feat *const feat)

Query to proceed incoming pairing or not.

On any incoming pairing req/rsp this callback will be called for the application to
decide whether to allow for the pairing to continue.

The pairing info received from the peer is passed to assist making the decision.

As this callback is synchronous the application should return a response value
immediately. Otherwise it may affect the timing during pairing. Hence, this infor-
mation should not be conveyed to the user to take action.

The remaining callbacks are not affected by this, but do notice that other callbacks
can be called during the pairing. Eg. if pairing_confirm is registered both will be
called for Just-Works pairings.

This callback may be unregistered in which case pairing continues as if the Kconfig
flag was not set.

This callback is not called for BR/EDR Secure Simple Pairing (SSP).
Param conn

Connection where pairing is initiated.
Param feat

Pairing req/resp info.

void (*passkey_display)(struct bt_conn *conn, unsigned int passkey)
Display a passkey to the user.

When called the application is expected to display the given passkey to the user,
with the expectation that the passkey will then be entered on the peer device. The
passkey will be in the range of 0 - 999999, and is expected to be padded with zeroes
so that six digits are always shown. E.g. the value 37 should be shown as 000037.

This callback may be set to NULL, which means that the local device lacks the abil-
ity do display a passkey. If set to non-NULL the cancel callback must also be pro-
vided, since this is the only way the application can find out that it should stop
displaying the passkey.
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Param conn
Connection where pairing is currently active.

Param passkey
Passkey to show to the user.

void (*passkey_entry)(struct bt_conn *conn)
Request the user to enter a passkey.

When called the user is expected to enter a passkey. The passkey must be in the
range of 0 - 999999, and should be expected to be zero-padded, as that’s how the
peer device will typically be showing it (e.g. 37 would be shown as 000037).

Once the user has entered the passkey its value should be given to the stack using
the bt_conn_auth_passkey_entry() API.

This callback may be set to NULL, which means that the local device lacks the abil-
ity to enter a passkey. If set to non-NULL the cancel callback must also be provided,
since this is the only way the application can find out that it should stop requesting
the user to enter a passkey.

Param conn
Connection where pairing is currently active.

void (*passkey_confirm)(struct bt_conn *conn, unsigned int passkey)
Request the user to confirm a passkey.

When called the user is expected to confirm that the given passkey is also shown
on the peer device.. The passkey will be in the range of 0 - 999999, and should be
zero-padded to always be six digits (e.g. 37 would be shown as 000037).

Once the user has confirmed the passkey to match, the
bt_conn_auth_passkey_confirm() API should be called. If the user concluded
that the passkey doesn’t match the bt_conn_auth_cancel() API should be called.

This callback may be set to NULL, which means that the local device lacks the abil-
ity to confirm a passkey. If set to non-NULL the cancel callback must also be pro-
vided, since this is the only way the application can find out that it should stop
requesting the user to confirm a passkey.

Param conn
Connection where pairing is currently active.

Param passkey
Passkey to be confirmed.

void (*oob_data_request)(struct bt_conn *conn, struct bt_conn_oob_info *info)
Request the user to provide Out of Band (OOB) data.

When called the user is expected to provide OOB data. The required data are indi-
cated by the information structure.

For LE Secure Connections OOB pairing, the user should provide local OOB data,
remote OOB data or both depending on their availability. Their value should be
given to the stack using the bt_le_oob_set_sc_data() API.

This callback must be set to non-NULL in order to support OOB pairing.
Param conn

Connection where pairing is currently active.
Param info

OOB pairing information.

void (*cancel)(struct bt_conn *conn)
Cancel the ongoing user request.
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This callback will be called to notify the application that it should cancel any pre-
vious user request (passkey display, entry or confirmation).

This may be set to NULL, but must always be provided whenever the
passkey_display, passkey_entry passkey_confirm or pairing_confirm callback has
been provided.

Param conn
Connection where pairing is currently active.

void (*pairing_confirm)(struct bt_conn *conn)
Request confirmation for an incoming pairing.

This callback will be called to confirm an incoming pairing request where none of
the other user callbacks is applicable.

If the user decides to accept the pairing the bt_conn_auth_pairing_confirm() API
should be called. If the user decides to reject the pairing the bt_conn_auth_cancel()
API should be called.

This callback may be set to NULL, which means that the local device lacks the abil-
ity to confirm a pairing request. If set to non-NULL the cancel callback must also
be provided, since this is the only way the application can find out that it should
stop requesting the user to confirm a pairing request.

Param conn
Connection where pairing is currently active.

void (*pincode_entry)(struct bt_conn *conn, bool highsec)
Request the user to enter a passkey.

This callback will be called for a BR/EDR (Bluetooth Classic) connection where pair-
ing is being performed. Once called the user is expected to enter a PIN code with a
length between 1 and 16 digits. If the highsec parameter is set to true the PIN code
must be 16 digits long.

Once entered, the PIN code should be given to the stack using the
bt_conn_auth_pincode_entry() API.

This callback may be set to NULL, however in that case pairing over BR/EDR will
not be possible. If provided, the cancel callback must be provided as well.

Param conn
Connection where pairing is currently active.

Param highsec
true if 16 digit PIN is required.

struct bt_conn_auth_info_cb
#include <conn.h> Authenticated pairing information callback structure.

Public Members

void (*pairing_complete)(struct bt_conn *conn, bool bonded)
notify that pairing procedure was complete.

This callback notifies the application that the pairing procedure has been com-
pleted.

Param conn
Connection object.

Param bonded
Bond information has been distributed during the pairing procedure.
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void (*pairing_failed)(struct bt_conn *conn, enum bt_security_err reason)
notify that pairing process has failed.

Param conn
Connection object.

Param reason
Pairing failed reason

void (*bond_deleted)(uint8_t id, const bt_addr_le_t *peer)
Notify that bond has been deleted.

This callback notifies the application that the bond information for the remote peer
has been deleted

Param id
Which local identity had the bond.

Param peer
Remote address.

sys_snode_t node
Internally used field for list handling.

struct bt_br_conn_param
#include <conn.h> Connection parameters for BR/EDR connections.

Data Buffers

API Reference

group bt_buf
Data buffers.

Defines

BT_BUF_RESERVE

BT_BUF_SIZE(size)
Helper to include reserved HCI data in buffer calculations.

BT_BUF_ACL_SIZE(size)
Helper to calculate needed buffer size for HCI ACL packets.

BT_BUF_EVT_SIZE(size)
Helper to calculate needed buffer size for HCI Event packets.

BT_BUF_CMD_SIZE(size)
Helper to calculate needed buffer size for HCI Command packets.

BT_BUF_ISO_SIZE(size)
Helper to calculate needed buffer size for HCI ISO packets.

BT_BUF_ACL_RX_SIZE
Data size needed for HCI ACL RX buffers.
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BT_BUF_EVT_RX_SIZE
Data size needed for HCI Event RX buffers.

BT_BUF_ISO_RX_SIZE

BT_BUF_ISO_RX_COUNT

BT_BUF_RX_SIZE
Data size needed for HCI ACL, HCI ISO or Event RX buffers.

BT_BUF_RX_COUNT
Buffer count needed for HCI ACL, HCI ISO or Event RX buffers.

BT_BUF_CMD_TX_SIZE
Data size needed for HCI Command buffers.

Enums

enum bt_buf_type
Possible types of buffers passed around the Bluetooth stack.

Values:

enumerator BT_BUF_CMD
HCI command.

enumerator BT_BUF_EVT
HCI event.

enumerator BT_BUF_ACL_OUT
Outgoing ACL data.

enumerator BT_BUF_ACL_IN
Incoming ACL data.

enumerator BT_BUF_ISO_OUT
Outgoing ISO data.

enumerator BT_BUF_ISO_IN
Incoming ISO data.

enumerator BT_BUF_H4
H:4 data.

Functions
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struct net_buf *bt_buf_get_rx(enum bt_buf_type type, k_timeout_t timeout)
Allocate a buffer for incoming data.

This will set the buffer type so bt_buf_set_type() does not need to be explicitly called.

Parameters
• type – Type of buffer. Only BT_BUF_EVT, BT_BUF_ACL_IN and

BT_BUF_ISO_IN are allowed.

• timeout – Non-negative waiting period to obtain a buffer or one of the
special values K_NO_WAIT and K_FOREVER.

Returns
A new buffer.

struct net_buf *bt_buf_get_tx(enum bt_buf_type type, k_timeout_t timeout, const void
*data, size_t size)

Allocate a buffer for outgoing data.

This will set the buffer type so bt_buf_set_type() does not need to be explicitly called.

Parameters
• type – Type of buffer. Only BT_BUF_CMD, BT_BUF_ACL_OUT or

BT_BUF_H4, when operating on H:4 mode, are allowed.

• timeout – Non-negative waiting period to obtain a buffer or one of the
special values K_NO_WAIT and K_FOREVER.

• data – Initial data to append to buffer.

• size – Initial data size.

Returns
A new buffer.

struct net_buf *bt_buf_get_evt(uint8_t evt, bool discardable, k_timeout_t timeout)
Allocate a buffer for an HCI Event.

This will set the buffer type so bt_buf_set_type() does not need to be explicitly called.

Parameters
• evt – HCI event code

• discardable – Whether the driver considers the event discardable.

• timeout – Non-negative waiting period to obtain a buffer or one of the
special values K_NO_WAIT and K_FOREVER.

Returns
A new buffer.

static inline void bt_buf_set_type(struct net_buf *buf, enum bt_buf_type type)
Set the buffer type.

Parameters
• buf – Bluetooth buffer

• type – The BT_* type to set the buffer to

static inline enum bt_buf_type bt_buf_get_type(struct net_buf *buf)
Get the buffer type.

Parameters
• buf – Bluetooth buffer
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Returns
The BT_* type to of the buffer

struct bt_buf_data
#include <buf.h> This is a base type for bt_buf user data.

HCI Drivers

API Reference

group bt_hci_driver
HCI drivers.

Deprecated:
This is the old HCI driver API. Drivers should use Bluetooth HCI APIs instead.

Enums

Values:

enumerator BT_QUIRK_NO_RESET = BIT(0)

enumerator BT_QUIRK_NO_AUTO_DLE = BIT(1)

enum bt_hci_driver_bus
Possible values for the ‘bus’ member of the bt_hci_driver struct.

Values:

enumerator BT_HCI_DRIVER_BUS_VIRTUAL = 0

enumerator BT_HCI_DRIVER_BUS_USB = 1

enumerator BT_HCI_DRIVER_BUS_PCCARD = 2

enumerator BT_HCI_DRIVER_BUS_UART = 3

enumerator BT_HCI_DRIVER_BUS_RS232 = 4

enumerator BT_HCI_DRIVER_BUS_PCI = 5

enumerator BT_HCI_DRIVER_BUS_SDIO = 6

enumerator BT_HCI_DRIVER_BUS_SPI = 7

enumerator BT_HCI_DRIVER_BUS_I2C = 8
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enumerator BT_HCI_DRIVER_BUS_IPM = 9

Functions

int bt_recv(struct net_buf *buf)
Receive data from the controller/HCI driver.

This is the main function through which the HCI driver provides the host with
data from the controller. The buffer needs to have its type set with the help of
bt_buf_set_type() before calling this API.

Deprecated:
Use the new HCI driver interface instead: Bluetooth HCI APIs

Parameters
• buf – Network buffer containing data from the controller.

Returns
0 on success or negative error number on failure.

int bt_hci_driver_register(const struct bt_hci_driver *drv)
Register a new HCI driver to the Bluetooth stack.

This needs to be called before any application code runs. The bt_enable() API will fail
if there is no driver registered.

Deprecated:
Use the new HCI driver interface instead: Bluetooth HCI APIs

Parameters
• drv – A bt_hci_driver struct representing the driver.

Returns
0 on success or negative error number on failure.

int bt_hci_transport_setup(const struct device *dev)
Setup the HCI transport, which usually means to reset the Bluetooth IC.

Note

A weak version of this function is included in the H4 driver, so defining it is optional
per board.

Parameters
• dev – The device structure for the bus connecting to the IC

Returns
0 on success, negative error value on failure
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int bt_hci_transport_teardown(const struct device *dev)
Teardown the HCI transport.

Note

A weak version of this function is included in the IPC driver, so defining it is op-
tional. NRF5340 includes support to put network core in reset state.

Parameters
• dev – The device structure for the bus connecting to the IC

Returns
0 on success, negative error value on failure

struct net_buf *bt_hci_evt_create(uint8_t evt, uint8_t len)
Allocate an HCI event buffer.

This function allocates a new buffer for an HCI event. It is given the event code and
the total length of the parameters. Upon successful return the buffer is ready to have
the parameters encoded into it.

Parameters
• evt – Event OpCode.

• len – Length of event parameters.

Returns
Newly allocated buffer.

struct net_buf *bt_hci_cmd_complete_create(uint16_t op, uint8_t plen)
Allocate an HCI Command Complete event buffer.

This function allocates a new buffer for HCI Command Complete event. It is given the
OpCode (encoded e.g. using the BT_OP macro) and the total length of the parameters.
Upon successful return the buffer is ready to have the parameters encoded into it.

Parameters
• op – Command OpCode.

• plen – Length of command parameters.

Returns
Newly allocated buffer.

struct net_buf *bt_hci_cmd_status_create(uint16_t op, uint8_t status)
Allocate an HCI Command Status event buffer.

This function allocates a new buffer for HCI Command Status event. It is given the
OpCode (encoded e.g. using the BT_OP macro) and the status code. Upon successful
return the buffer is ready to have the parameters encoded into it.

Parameters
• op – Command OpCode.

• status – Status code.

Returns
Newly allocated buffer.

struct bt_hci_setup_params
#include <bluetooth.h>
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Public Members

bt_addr_t public_addr
The public identity address to give to the controller.

This field is used when the driver selects CONFIG_BT_HCI_SET_PUBLIC_ADDR to indi-
cate that it supports setting the controller’s public address.

struct bt_hci_driver
#include <hci_driver.h> Abstraction which represents the HCI transport to the con-
troller.

This struct is used to represent the HCI transport to the Bluetooth controller.

Public Members

const char *name
Name of the driver.

enum bt_hci_driver_bus bus
Bus of the transport (BT_HCI_DRIVER_BUS_*)

uint32_t quirks
Specific controller quirks.

These are set by the HCI driver and acted upon by the host. They can either be
statically set at buildtime, or set at runtime before the HCI driver’s open() callback
returns.

int (*open)(void)
Open the HCI transport.

Opens the HCI transport for operation. This function must not return until the
transport is ready for operation, meaning it is safe to start calling the send() han-
dler.

Return
0 on success or negative error number on failure.

int (*close)(void)
Close the HCI transport.

Closes the HCI transport. This function must not return until the transport is
closed.

Return
0 on success or negative error number on failure.

int (*send)(struct net_buf *buf)
Send HCI buffer to controller.

Send an HCI command or ACL data to the controller. The exact type of the data can
be checked with the help of bt_buf_get_type().
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Note

This function must only be called from a cooperative thread.

Param buf
Buffer containing data to be sent to the controller.

Return
0 on success or negative error number on failure.

int (*setup)(const struct bt_hci_setup_params *params)
HCI vendor-specific setup.

Executes vendor-specific commands sequence to initialize BT Controller before BT
Host executes Reset sequence.

Note

CONFIG_BT_HCI_SETUP must be selected for this field to be available.

Return
0 on success or negative error number on failure.

HCI RAW channel

Overview HCI RAW channel API is intended to expose HCI interface to the remote entity. The
local Bluetooth controller gets owned by the remote entity and host Bluetooth stack is not used.
RAW API provides direct access to packets which are sent and received by the Bluetooth HCI
driver.

API Reference

group hci_raw
HCI RAW channel.

Defines

BT_HCI_ERR_EXT_HANDLED

BT_HCI_RAW_CMD_EXT(_op, _min_len, _func)
Helper macro to define a command extension.

Parameters
• _op – Opcode of the command.

• _min_len – Minimal length of the command.

• _func – Handler function to be called.
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Enums

Values:

enumerator BT_HCI_RAW_MODE_PASSTHROUGH = 0x00
Passthrough mode.

While in this mode the buffers are passed as is between the stack
and the driver.

enumerator BT_HCI_RAW_MODE_H4 = 0x01
H:4 mode.

While in this mode H:4 headers will added into the buffers
according to the buffer type when coming from the stack and will be
removed and used to set the buffer type.

Functions

int bt_send(struct net_buf *buf)
Send packet to the Bluetooth controller.

Send packet to the Bluetooth controller. Caller needs to implement netbuf pool.

Parameters
• buf – netbuf packet to be send

Returns
Zero on success or (negative) error code otherwise.

int bt_hci_raw_set_mode(uint8_t mode)
Set Bluetooth RAW channel mode.

Set access mode of Bluetooth RAW channel.

Parameters
• mode – Access mode.

Returns
Zero on success or (negative) error code otherwise.

uint8_t bt_hci_raw_get_mode(void)
Get Bluetooth RAW channel mode.

Get access mode of Bluetooth RAW channel.

Returns
Access mode.

void bt_hci_raw_cmd_ext_register(struct bt_hci_raw_cmd_ext *cmds, size_t size)
Register Bluetooth RAW command extension table.

Register Bluetooth RAW channel command extension table, opcodes in this table are
intercepted to sent to the handler function.

Parameters
• cmds – Pointer to the command extension table.

• size – Size of the command extension table.
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int bt_enable_raw(struct k_fifo *rx_queue)
Enable Bluetooth RAW channel:

Enable Bluetooth RAW HCI channel.

Parameters
• rx_queue – netbuf queue where HCI packets received from the Bluetooth

controller are to be queued. The queue is defined in the caller while the
available buffers pools are handled in the stack.

Returns
Zero on success or (negative) error code otherwise.

struct bt_hci_raw_cmd_ext
#include <hci_raw.h>

Public Members

uint16_t op
Opcode of the command.

size_t min_len
Minimal length of the command.

uint8_t (*func)(struct net_buf *buf)
Handler function.

Handler function to be called when a command is intercepted.
Param buf

Buffer containing the command.
Return

HCI Status code or BT_HCI_ERR_EXT_HANDLED if command has
been handled already and a response has been sent as oppose to
BT_HCI_ERR_SUCCESS which just indicates that the command can be sent
to the controller to be processed.

Cryptography

API Reference

group bt_crypto
Cryptography.

Functions

int bt_rand(void *buf, size_t len)
Generate random data.

A random number generation helper which utilizes the Bluetooth controller’s own
RNG.

Parameters
• buf – Buffer to insert the random data
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• len – Length of random data to generate

Returns
Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error

int bt_encrypt_le(const uint8_t key[16], const uint8_t plaintext[16], uint8_t enc_data[16])
AES encrypt little-endian data.

An AES encrypt helper is used to request the Bluetooth controller’s own hardware to
encrypt the plaintext using the key and returns the encrypted data.

Parameters
• key – 128 bit LS byte first key for the encryption of the plaintext

• plaintext – 128 bit LS byte first plaintext data block to be encrypted

• enc_data – 128 bit LS byte first encrypted data block

Returns
Zero on success or error code otherwise.

int bt_encrypt_be(const uint8_t key[16], const uint8_t plaintext[16], uint8_t enc_data[16])
AES encrypt big-endian data.

An AES encrypt helper is used to request the Bluetooth controller’s own hardware to
encrypt the plaintext using the key and returns the encrypted data.

Parameters
• key – 128 bit MS byte first key for the encryption of the plaintext

• plaintext – 128 bit MS byte first plaintext data block to be encrypted

• enc_data – 128 bit MS byte first encrypted data block

Returns
Zero on success or error code otherwise.

int bt_ccm_decrypt(const uint8_t key[16], uint8_t nonce[13], const uint8_t *enc_data,
size_t len, const uint8_t *aad, size_t aad_len, uint8_t *plaintext, size_t
mic_size)

Decrypt big-endian data with AES-CCM.

Decrypts and authorizes enc_data with AES-CCM, as described in https://tools.ietf.org/
html/rfc3610.

Assumes that the MIC follows directly after the encrypted data.

Parameters
• key – 128 bit MS byte first key

• nonce – 13 byte MS byte first nonce

• enc_data – Encrypted data

• len – Length of the encrypted data

• aad – Additional authenticated data

• aad_len – Additional authenticated data length

• plaintext – Plaintext buffer to place result in

• mic_size – Size of the trailing MIC (in bytes)

Return values
• 0 – Successfully decrypted the data.
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• -EINVAL – Invalid parameters.

• -EBADMSG – Authentication failed.

int bt_ccm_encrypt(const uint8_t key[16], uint8_t nonce[13], const uint8_t *plaintext,
size_t len, const uint8_t *aad, size_t aad_len, uint8_t *enc_data, size_t
mic_size)

Encrypt big-endian data with AES-CCM.

Encrypts and generates a MIC from plaintext with AES-CCM, as described in https:
//tools.ietf.org/html/rfc3610.

Places the MIC directly after the encrypted data.

Parameters
• key – 128 bit MS byte first key

• nonce – 13 byte MS byte first nonce

• plaintext – Plaintext buffer to encrypt

• len – Length of the encrypted data

• aad – Additional authenticated data

• aad_len – Additional authenticated data length

• enc_data – Buffer to place encrypted data in

• mic_size – Size of the trailing MIC (in bytes)

Return values
• 0 – Successfully encrypted the data.

• -EINVAL – Invalid parameters.

Other

Bluetooth Controller

API Reference

group bt_ctrl
Bluetooth Controller.

Functions

void bt_ctlr_set_public_addr(const uint8_t *addr)
Set public address for controller.

Should be called before bt_enable().

Parameters
• addr – Public address

Universal Unique Identifiers (UUIDs)
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API Reference

group bt_uuid
UUIDs.

Defines

BT_UUID_SIZE_16
Size in octets of a 16-bit UUID.

BT_UUID_SIZE_32
Size in octets of a 32-bit UUID.

BT_UUID_SIZE_128
Size in octets of a 128-bit UUID.

BT_UUID_INIT_16(value)
Initialize a 16-bit UUID.

Parameters
• value – 16-bit UUID value in host endianness.

BT_UUID_INIT_32(value)
Initialize a 32-bit UUID.

Parameters
• value – 32-bit UUID value in host endianness.

BT_UUID_INIT_128(value...)
Initialize a 128-bit UUID.

Parameters
• value – 128-bit UUID array values in little-endian format. Can be com-

bined with BT_UUID_128_ENCODE to initialize a UUID from the readable
form of UUIDs.

BT_UUID_DECLARE_16(value)
Helper to declare a 16-bit UUID inline.

Parameters
• value – 16-bit UUID value in host endianness.

Returns
Pointer to a generic UUID.

BT_UUID_DECLARE_32(value)
Helper to declare a 32-bit UUID inline.

Parameters
• value – 32-bit UUID value in host endianness.

Returns
Pointer to a generic UUID.
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BT_UUID_DECLARE_128(value...)
Helper to declare a 128-bit UUID inline.

Parameters
• value – 128-bit UUID array values in little-endian format. Can be com-

bined with BT_UUID_128_ENCODE to declare a UUID from the readable
form of UUIDs.

Returns
Pointer to a generic UUID.

BT_UUID_16(__u)
Helper macro to access the 16-bit UUID from a generic UUID.

BT_UUID_32(__u)
Helper macro to access the 32-bit UUID from a generic UUID.

BT_UUID_128(__u)
Helper macro to access the 128-bit UUID from a generic UUID.

BT_UUID_128_ENCODE(w32, w1, w2, w3, w48)
Encode 128 bit UUID into array values in little-endian format.

Helper macro to initialize a 128-bit UUID array value from the readable form of
UUIDs, or encode 128-bit UUID values into advertising data Can be combined with
BT_UUID_DECLARE_128 to declare a 128-bit UUID.

Example of how to declare the UUID 6E400001-B5A3-F393-E0A9-E50E24DCCA9E

BT_UUID_DECLARE_128(
BT_UUID_128_ENCODE(0x6E400001, 0xB5A3, 0xF393, 0xE0A9, 0xE50E24DCCA9E))

Example of how to encode the UUID 6E400001-B5A3-F393-E0A9-E50E24DCCA9E into ad-
vertising data.

BT_DATA_BYTES(BT_DATA_UUID128_ALL,
BT_UUID_128_ENCODE(0x6E400001, 0xB5A3, 0xF393, 0xE0A9, 0xE50E24DCCA9E))

Just replace the hyphen by the comma and add 0x prefixes.

Parameters
• w32 – First part of the UUID (32 bits)

• w1 – Second part of the UUID (16 bits)

• w2 – Third part of the UUID (16 bits)

• w3 – Fourth part of the UUID (16 bits)

• w48 – Fifth part of the UUID (48 bits)

Returns
The comma separated values for UUID 128 initializer that may be used di-
rectly as an argument for BT_UUID_INIT_128 or BT_UUID_DECLARE_128

BT_UUID_16_ENCODE(w16)
Encode 16-bit UUID into array values in little-endian format.

Helper macro to encode 16-bit UUID values into advertising data.

Example of how to encode the UUID 0x180a into advertising data.

BT_DATA_BYTES(BT_DATA_UUID16_ALL, BT_UUID_16_ENCODE(0x180a))

Parameters
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• w16 – UUID value (16-bits)

Returns
The comma separated values for UUID 16 value that may be used directly
as an argument for BT_DATA_BYTES.

BT_UUID_32_ENCODE(w32)
Encode 32-bit UUID into array values in little-endian format.

Helper macro to encode 32-bit UUID values into advertising data.

Example of how to encode the UUID 0x180a01af into advertising data.

BT_DATA_BYTES(BT_DATA_UUID32_ALL, BT_UUID_32_ENCODE(0x180a01af))

Parameters
• w32 – UUID value (32-bits)

Returns
The comma separated values for UUID 32 value that may be used directly
as an argument for BT_DATA_BYTES.

BT_UUID_STR_LEN
Recommended length of user string buffer for Bluetooth UUID.

The recommended length guarantee the output of UUID conversion will not lose valu-
able information about the UUID being processed. If the length of the UUID is known
the string can be shorter.

BT_UUID_GAP_VAL
Generic Access UUID value.

BT_UUID_GAP
Generic Access.

BT_UUID_GATT_VAL
Generic attribute UUID value.

BT_UUID_GATT
Generic Attribute.

BT_UUID_IAS_VAL
Immediate Alert Service UUID value.

BT_UUID_IAS
Immediate Alert Service.

BT_UUID_LLS_VAL
Link Loss Service UUID value.

BT_UUID_LLS
Link Loss Service.
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BT_UUID_TPS_VAL
Tx Power Service UUID value.

BT_UUID_TPS
Tx Power Service.

BT_UUID_CTS_VAL
Current Time Service UUID value.

BT_UUID_CTS
Current Time Service.

BT_UUID_RTUS_VAL
Reference Time Update Service UUID value.

BT_UUID_RTUS
Reference Time Update Service.

BT_UUID_NDSTS_VAL
Next DST Change Service UUID value.

BT_UUID_NDSTS
Next DST Change Service.

BT_UUID_GS_VAL
Glucose Service UUID value.

BT_UUID_GS
Glucose Service.

BT_UUID_HTS_VAL
Health Thermometer Service UUID value.

BT_UUID_HTS
Health Thermometer Service.

BT_UUID_DIS_VAL
Device Information Service UUID value.

BT_UUID_DIS
Device Information Service.

BT_UUID_NAS_VAL
Network Availability Service UUID value.

BT_UUID_NAS
Network Availability Service.
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BT_UUID_WDS_VAL
Watchdog Service UUID value.

BT_UUID_WDS
Watchdog Service.

BT_UUID_HRS_VAL
Heart Rate Service UUID value.

BT_UUID_HRS
Heart Rate Service.

BT_UUID_PAS_VAL
Phone Alert Service UUID value.

BT_UUID_PAS
Phone Alert Service.

BT_UUID_BAS_VAL
Battery Service UUID value.

BT_UUID_BAS
Battery Service.

BT_UUID_BPS_VAL
Blood Pressure Service UUID value.

BT_UUID_BPS
Blood Pressure Service.

BT_UUID_ANS_VAL
Alert Notification Service UUID value.

BT_UUID_ANS
Alert Notification Service.

BT_UUID_HIDS_VAL
HID Service UUID value.

BT_UUID_HIDS
HID Service.

BT_UUID_SPS_VAL
Scan Parameters Service UUID value.

BT_UUID_SPS
Scan Parameters Service.
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BT_UUID_RSCS_VAL
Running Speed and Cadence Service UUID value.

BT_UUID_RSCS
Running Speed and Cadence Service.

BT_UUID_AIOS_VAL
Automation IO Service UUID value.

BT_UUID_AIOS
Automation IO Service.

BT_UUID_CSC_VAL
Cycling Speed and Cadence Service UUID value.

BT_UUID_CSC
Cycling Speed and Cadence Service.

BT_UUID_CPS_VAL
Cycling Power Service UUID value.

BT_UUID_CPS
Cycling Power Service.

BT_UUID_LNS_VAL
Location and Navigation Service UUID value.

BT_UUID_LNS
Location and Navigation Service.

BT_UUID_ESS_VAL
Environmental Sensing Service UUID value.

BT_UUID_ESS
Environmental Sensing Service.

BT_UUID_BCS_VAL
Body Composition Service UUID value.

BT_UUID_BCS
Body Composition Service.

BT_UUID_UDS_VAL
User Data Service UUID value.

BT_UUID_UDS
User Data Service.
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BT_UUID_WSS_VAL
Weight Scale Service UUID value.

BT_UUID_WSS
Weight Scale Service.

BT_UUID_BMS_VAL
Bond Management Service UUID value.

BT_UUID_BMS
Bond Management Service.

BT_UUID_CGMS_VAL
Continuous Glucose Monitoring Service UUID value.

BT_UUID_CGMS
Continuous Glucose Monitoring Service.

BT_UUID_IPSS_VAL
IP Support Service UUID value.

BT_UUID_IPSS
IP Support Service.

BT_UUID_IPS_VAL
Indoor Positioning Service UUID value.

BT_UUID_IPS
Indoor Positioning Service.

BT_UUID_POS_VAL
Pulse Oximeter Service UUID value.

BT_UUID_POS
Pulse Oximeter Service.

BT_UUID_HPS_VAL
HTTP Proxy Service UUID value.

BT_UUID_HPS
HTTP Proxy Service.

BT_UUID_TDS_VAL
Transport Discovery Service UUID value.

BT_UUID_TDS
Transport Discovery Service.
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BT_UUID_OTS_VAL
Object Transfer Service UUID value.

BT_UUID_OTS
Object Transfer Service.

BT_UUID_FMS_VAL
Fitness Machine Service UUID value.

BT_UUID_FMS
Fitness Machine Service.

BT_UUID_MESH_PROV_VAL
Mesh Provisioning Service UUID value.

BT_UUID_MESH_PROV
Mesh Provisioning Service.

BT_UUID_MESH_PROXY_VAL
Mesh Proxy Service UUID value.

BT_UUID_MESH_PROXY
Mesh Proxy Service.

BT_UUID_MESH_PROXY_SOLICITATION_VAL
Proxy Solicitation UUID value.

BT_UUID_RCSRV_VAL
Reconnection Configuration Service UUID value.

BT_UUID_RCSRV
Reconnection Configuration Service.

BT_UUID_IDS_VAL
Insulin Delivery Service UUID value.

BT_UUID_IDS
Insulin Delivery Service.

BT_UUID_BSS_VAL
Binary Sensor Service UUID value.

BT_UUID_BSS
Binary Sensor Service.

BT_UUID_ECS_VAL
Emergency Configuration Service UUID value.

6.1. Bluetooth 2365



Zephyr Project Documentation, Release 3.7.99

BT_UUID_ECS
Emergency Configuration Service.

BT_UUID_ACLS_VAL
Authorization Control Service UUID value.

BT_UUID_ACLS
Authorization Control Service.

BT_UUID_PAMS_VAL
Physical Activity Monitor Service UUID value.

BT_UUID_PAMS
Physical Activity Monitor Service.

BT_UUID_AICS_VAL
Audio Input Control Service UUID value.

BT_UUID_AICS
Audio Input Control Service.

BT_UUID_VCS_VAL
Volume Control Service UUID value.

BT_UUID_VCS
Volume Control Service.

BT_UUID_VOCS_VAL
Volume Offset Control Service UUID value.

BT_UUID_VOCS
Volume Offset Control Service.

BT_UUID_CSIS_VAL
Coordinated Set Identification Service UUID value.

BT_UUID_CSIS
Coordinated Set Identification Service.

BT_UUID_DTS_VAL
Device Time Service UUID value.

BT_UUID_DTS
Device Time Service.

BT_UUID_MCS_VAL
Media Control Service UUID value.
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BT_UUID_MCS
Media Control Service.

BT_UUID_GMCS_VAL
Generic Media Control Service UUID value.

BT_UUID_GMCS
Generic Media Control Service.

BT_UUID_CTES_VAL
Constant Tone Extension Service UUID value.

BT_UUID_CTES
Constant Tone Extension Service.

BT_UUID_TBS_VAL
Telephone Bearer Service UUID value.

BT_UUID_TBS
Telephone Bearer Service.

BT_UUID_GTBS_VAL
Generic Telephone Bearer Service UUID value.

BT_UUID_GTBS
Generic Telephone Bearer Service.

BT_UUID_MICS_VAL
Microphone Control Service UUID value.

BT_UUID_MICS
Microphone Control Service.

BT_UUID_ASCS_VAL
Audio Stream Control Service UUID value.

BT_UUID_ASCS
Audio Stream Control Service.

BT_UUID_BASS_VAL
Broadcast Audio Scan Service UUID value.

BT_UUID_BASS
Broadcast Audio Scan Service.

BT_UUID_PACS_VAL
Published Audio Capabilities Service UUID value.
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BT_UUID_PACS
Published Audio Capabilities Service.

BT_UUID_BASIC_AUDIO_VAL
Basic Audio Announcement Service UUID value.

BT_UUID_BASIC_AUDIO
Basic Audio Announcement Service.

BT_UUID_BROADCAST_AUDIO_VAL
Broadcast Audio Announcement Service UUID value.

BT_UUID_BROADCAST_AUDIO
Broadcast Audio Announcement Service.

BT_UUID_CAS_VAL
Common Audio Service UUID value.

BT_UUID_CAS
Common Audio Service.

BT_UUID_HAS_VAL
Hearing Access Service UUID value.

BT_UUID_HAS
Hearing Access Service.

BT_UUID_TMAS_VAL
Telephony and Media Audio Service UUID value.

BT_UUID_TMAS
Telephony and Media Audio Service.

BT_UUID_PBA_VAL
Public Broadcast Announcement Service UUID value.

BT_UUID_PBA
Public Broadcast Announcement Service.

BT_UUID_GATT_PRIMARY_VAL
GATT Primary Service UUID value.

BT_UUID_GATT_PRIMARY
GATT Primary Service.

BT_UUID_GATT_SECONDARY_VAL
GATT Secondary Service UUID value.

2368 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

BT_UUID_GATT_SECONDARY
GATT Secondary Service.

BT_UUID_GATT_INCLUDE_VAL
GATT Include Service UUID value.

BT_UUID_GATT_INCLUDE
GATT Include Service.

BT_UUID_GATT_CHRC_VAL
GATT Characteristic UUID value.

BT_UUID_GATT_CHRC
GATT Characteristic.

BT_UUID_GATT_CEP_VAL
GATT Characteristic Extended Properties UUID value.

BT_UUID_GATT_CEP
GATT Characteristic Extended Properties.

BT_UUID_GATT_CUD_VAL
GATT Characteristic User Description UUID value.

BT_UUID_GATT_CUD
GATT Characteristic User Description.

BT_UUID_GATT_CCC_VAL
GATT Client Characteristic Configuration UUID value.

BT_UUID_GATT_CCC
GATT Client Characteristic Configuration.

BT_UUID_GATT_SCC_VAL
GATT Server Characteristic Configuration UUID value.

BT_UUID_GATT_SCC
GATT Server Characteristic Configuration.

BT_UUID_GATT_CPF_VAL
GATT Characteristic Presentation Format UUID value.

BT_UUID_GATT_CPF
GATT Characteristic Presentation Format.

BT_UUID_GATT_CAF_VAL
GATT Characteristic Aggregated Format UUID value.
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BT_UUID_GATT_CAF
GATT Characteristic Aggregated Format.

BT_UUID_VALID_RANGE_VAL
Valid Range Descriptor UUID value.

BT_UUID_VALID_RANGE
Valid Range Descriptor.

BT_UUID_HIDS_EXT_REPORT_VAL
HID External Report Descriptor UUID value.

BT_UUID_HIDS_EXT_REPORT
HID External Report Descriptor.

BT_UUID_HIDS_REPORT_REF_VAL
HID Report Reference Descriptor UUID value.

BT_UUID_HIDS_REPORT_REF
HID Report Reference Descriptor.

BT_UUID_VAL_TRIGGER_SETTING_VAL
Value Trigger Setting Descriptor UUID value.

BT_UUID_VAL_TRIGGER_SETTING
Value Trigger Setting Descriptor.

BT_UUID_ES_CONFIGURATION_VAL
Environmental Sensing Configuration Descriptor UUID value.

BT_UUID_ES_CONFIGURATION
Environmental Sensing Configuration Descriptor.

BT_UUID_ES_MEASUREMENT_VAL
Environmental Sensing Measurement Descriptor UUID value.

BT_UUID_ES_MEASUREMENT
Environmental Sensing Measurement Descriptor.

BT_UUID_ES_TRIGGER_SETTING_VAL
Environmental Sensing Trigger Setting Descriptor UUID value.

BT_UUID_ES_TRIGGER_SETTING
Environmental Sensing Trigger Setting Descriptor.

BT_UUID_TM_TRIGGER_SETTING_VAL
Time Trigger Setting Descriptor UUID value.
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BT_UUID_TM_TRIGGER_SETTING
Time Trigger Setting Descriptor.

BT_UUID_GAP_DEVICE_NAME_VAL
GAP Characteristic Device Name UUID value.

BT_UUID_GAP_DEVICE_NAME
GAP Characteristic Device Name.

BT_UUID_GAP_APPEARANCE_VAL
GAP Characteristic Appearance UUID value.

BT_UUID_GAP_APPEARANCE
GAP Characteristic Appearance.

BT_UUID_GAP_PPF_VAL
GAP Characteristic Peripheral Privacy Flag UUID value.

BT_UUID_GAP_PPF
GAP Characteristic Peripheral Privacy Flag.

BT_UUID_GAP_RA_VAL
GAP Characteristic Reconnection Address UUID value.

BT_UUID_GAP_RA
GAP Characteristic Reconnection Address.

BT_UUID_GAP_PPCP_VAL
GAP Characteristic Peripheral Preferred Connection Parameters UUID value.

BT_UUID_GAP_PPCP
GAP Characteristic Peripheral Preferred Connection Parameters.

BT_UUID_GATT_SC_VAL
GATT Characteristic Service Changed UUID value.

BT_UUID_GATT_SC
GATT Characteristic Service Changed.

BT_UUID_ALERT_LEVEL_VAL
GATT Characteristic Alert Level UUID value.

BT_UUID_ALERT_LEVEL
GATT Characteristic Alert Level.

BT_UUID_TPS_TX_POWER_LEVEL_VAL
TPS Characteristic Tx Power Level UUID value.
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BT_UUID_TPS_TX_POWER_LEVEL
TPS Characteristic Tx Power Level.

BT_UUID_GATT_DT_VAL
GATT Characteristic Date Time UUID value.

BT_UUID_GATT_DT
GATT Characteristic Date Time.

BT_UUID_GATT_DW_VAL
GATT Characteristic Day of Week UUID value.

BT_UUID_GATT_DW
GATT Characteristic Day of Week.

BT_UUID_GATT_DDT_VAL
GATT Characteristic Day Date Time UUID value.

BT_UUID_GATT_DDT
GATT Characteristic Day Date Time.

BT_UUID_GATT_ET256_VAL
GATT Characteristic Exact Time 256 UUID value.

BT_UUID_GATT_ET256
GATT Characteristic Exact Time 256.

BT_UUID_GATT_DST_VAL
GATT Characteristic DST Offset UUID value.

BT_UUID_GATT_DST
GATT Characteristic DST Offset.

BT_UUID_GATT_TZ_VAL
GATT Characteristic Time Zone UUID value.

BT_UUID_GATT_TZ
GATT Characteristic Time Zone.

BT_UUID_GATT_LTI_VAL
GATT Characteristic Local Time Information UUID value.

BT_UUID_GATT_LTI
GATT Characteristic Local Time Information.

BT_UUID_GATT_TDST_VAL
GATT Characteristic Time with DST UUID value.
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BT_UUID_GATT_TDST
GATT Characteristic Time with DST.

BT_UUID_GATT_TA_VAL
GATT Characteristic Time Accuracy UUID value.

BT_UUID_GATT_TA
GATT Characteristic Time Accuracy.

BT_UUID_GATT_TS_VAL
GATT Characteristic Time Source UUID value.

BT_UUID_GATT_TS
GATT Characteristic Time Source.

BT_UUID_GATT_RTI_VAL
GATT Characteristic Reference Time Information UUID value.

BT_UUID_GATT_RTI
GATT Characteristic Reference Time Information.

BT_UUID_GATT_TUCP_VAL
GATT Characteristic Time Update Control Point UUID value.

BT_UUID_GATT_TUCP
GATT Characteristic Time Update Control Point.

BT_UUID_GATT_TUS_VAL
GATT Characteristic Time Update State UUID value.

BT_UUID_GATT_TUS
GATT Characteristic Time Update State.

BT_UUID_GATT_GM_VAL
GATT Characteristic Glucose Measurement UUID value.

BT_UUID_GATT_GM
GATT Characteristic Glucose Measurement.

BT_UUID_BAS_BATTERY_LEVEL_VAL
BAS Characteristic Battery Level UUID value.

BT_UUID_BAS_BATTERY_LEVEL
BAS Characteristic Battery Level.

BT_UUID_BAS_BATTERY_POWER_STATE_VAL
BAS Characteristic Battery Power State UUID value.
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BT_UUID_BAS_BATTERY_POWER_STATE
BAS Characteristic Battery Power State.

BT_UUID_BAS_BATTERY_LEVEL_STATE_VAL
BAS Characteristic Battery Level StateUUID value.

BT_UUID_BAS_BATTERY_LEVEL_STATE
BAS Characteristic Battery Level State.

BT_UUID_HTS_MEASUREMENT_VAL
HTS Characteristic Temperature Measurement UUID value.

BT_UUID_HTS_MEASUREMENT
HTS Characteristic Temperature Measurement Value.

BT_UUID_HTS_TEMP_TYP_VAL
HTS Characteristic Temperature Type UUID value.

BT_UUID_HTS_TEMP_TYP
HTS Characteristic Temperature Type.

BT_UUID_HTS_TEMP_INT_VAL
HTS Characteristic Intermediate Temperature UUID value.

BT_UUID_HTS_TEMP_INT
HTS Characteristic Intermediate Temperature.

BT_UUID_HTS_TEMP_C_VAL
HTS Characteristic Temperature Celsius UUID value.

BT_UUID_HTS_TEMP_C
HTS Characteristic Temperature Celsius.

BT_UUID_HTS_TEMP_F_VAL
HTS Characteristic Temperature Fahrenheit UUID value.

BT_UUID_HTS_TEMP_F
HTS Characteristic Temperature Fahrenheit.

BT_UUID_HTS_INTERVAL_VAL
HTS Characteristic Measurement Interval UUID value.

BT_UUID_HTS_INTERVAL
HTS Characteristic Measurement Interval.

BT_UUID_HIDS_BOOT_KB_IN_REPORT_VAL
HID Characteristic Boot Keyboard Input Report UUID value.
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BT_UUID_HIDS_BOOT_KB_IN_REPORT
HID Characteristic Boot Keyboard Input Report.

BT_UUID_DIS_SYSTEM_ID_VAL
DIS Characteristic System ID UUID value.

BT_UUID_DIS_SYSTEM_ID
DIS Characteristic System ID.

BT_UUID_DIS_MODEL_NUMBER_VAL
DIS Characteristic Model Number String UUID value.

BT_UUID_DIS_MODEL_NUMBER
DIS Characteristic Model Number String.

BT_UUID_DIS_SERIAL_NUMBER_VAL
DIS Characteristic Serial Number String UUID value.

BT_UUID_DIS_SERIAL_NUMBER
DIS Characteristic Serial Number String.

BT_UUID_DIS_FIRMWARE_REVISION_VAL
DIS Characteristic Firmware Revision String UUID value.

BT_UUID_DIS_FIRMWARE_REVISION
DIS Characteristic Firmware Revision String.

BT_UUID_DIS_HARDWARE_REVISION_VAL
DIS Characteristic Hardware Revision String UUID value.

BT_UUID_DIS_HARDWARE_REVISION
DIS Characteristic Hardware Revision String.

BT_UUID_DIS_SOFTWARE_REVISION_VAL
DIS Characteristic Software Revision String UUID value.

BT_UUID_DIS_SOFTWARE_REVISION
DIS Characteristic Software Revision String.

BT_UUID_DIS_MANUFACTURER_NAME_VAL
DIS Characteristic Manufacturer Name String UUID Value.

BT_UUID_DIS_MANUFACTURER_NAME
DIS Characteristic Manufacturer Name String.

BT_UUID_GATT_IEEE_RCDL_VAL
GATT Characteristic IEEE Regulatory Certification Data List UUID Value.
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BT_UUID_GATT_IEEE_RCDL
GATT Characteristic IEEE Regulatory Certification Data List.

BT_UUID_CTS_CURRENT_TIME_VAL
CTS Characteristic Current Time UUID value.

BT_UUID_CTS_CURRENT_TIME
CTS Characteristic Current Time.

BT_UUID_MAGN_DECLINATION_VAL
Magnetic Declination Characteristic UUID value.

BT_UUID_MAGN_DECLINATION
Magnetic Declination Characteristic.

BT_UUID_GATT_LLAT_VAL
GATT Characteristic Legacy Latitude UUID Value.

BT_UUID_GATT_LLAT
GATT Characteristic Legacy Latitude.

BT_UUID_GATT_LLON_VAL
GATT Characteristic Legacy Longitude UUID Value.

BT_UUID_GATT_LLON
GATT Characteristic Legacy Longitude.

BT_UUID_GATT_POS_2D_VAL
GATT Characteristic Position 2D UUID Value.

BT_UUID_GATT_POS_2D
GATT Characteristic Position 2D.

BT_UUID_GATT_POS_3D_VAL
GATT Characteristic Position 3D UUID Value.

BT_UUID_GATT_POS_3D
GATT Characteristic Position 3D.

BT_UUID_GATT_SR_VAL
GATT Characteristic Scan Refresh UUID Value.

BT_UUID_GATT_SR
GATT Characteristic Scan Refresh.

BT_UUID_HIDS_BOOT_KB_OUT_REPORT_VAL
HID Boot Keyboard Output Report Characteristic UUID value.
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BT_UUID_HIDS_BOOT_KB_OUT_REPORT
HID Boot Keyboard Output Report Characteristic.

BT_UUID_HIDS_BOOT_MOUSE_IN_REPORT_VAL
HID Boot Mouse Input Report Characteristic UUID value.

BT_UUID_HIDS_BOOT_MOUSE_IN_REPORT
HID Boot Mouse Input Report Characteristic.

BT_UUID_GATT_GMC_VAL
GATT Characteristic Glucose Measurement Context UUID Value.

BT_UUID_GATT_GMC
GATT Characteristic Glucose Measurement Context.

BT_UUID_GATT_BPM_VAL
GATT Characteristic Blood Pressure Measurement UUID Value.

BT_UUID_GATT_BPM
GATT Characteristic Blood Pressure Measurement.

BT_UUID_GATT_ICP_VAL
GATT Characteristic Intermediate Cuff Pressure UUID Value.

BT_UUID_GATT_ICP
GATT Characteristic Intermediate Cuff Pressure.

BT_UUID_HRS_MEASUREMENT_VAL
HRS Characteristic Measurement Interval UUID value.

BT_UUID_HRS_MEASUREMENT
HRS Characteristic Measurement Interval.

BT_UUID_HRS_BODY_SENSOR_VAL
HRS Characteristic Body Sensor Location.

BT_UUID_HRS_BODY_SENSOR
HRS Characteristic Control Point.

BT_UUID_HRS_CONTROL_POINT_VAL
HRS Characteristic Control Point UUID value.

BT_UUID_HRS_CONTROL_POINT
HRS Characteristic Control Point.

BT_UUID_GATT_REM_VAL
GATT Characteristic Removable UUID Value.
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BT_UUID_GATT_REM
GATT Characteristic Removable.

BT_UUID_GATT_SRVREQ_VAL
GATT Characteristic Service Required UUID Value.

BT_UUID_GATT_SRVREQ
GATT Characteristic Service Required.

BT_UUID_GATT_SC_TEMP_C_VAL
GATT Characteristic Scientific Temperature in Celsius UUID Value.

BT_UUID_GATT_SC_TEMP_C
GATT Characteristic Scientific Temperature in Celsius.

BT_UUID_GATT_STRING_VAL
GATT Characteristic String UUID Value.

BT_UUID_GATT_STRING
GATT Characteristic String.

BT_UUID_GATT_NETA_VAL
GATT Characteristic Network Availability UUID Value.

BT_UUID_GATT_NETA
GATT Characteristic Network Availability.

BT_UUID_GATT_ALRTS_VAL
GATT Characteristic Alert Status UUID Value.

BT_UUID_GATT_ALRTS
GATT Characteristic Alert Status.

BT_UUID_GATT_RCP_VAL
GATT Characteristic Ringer Control Point UUID Value.

BT_UUID_GATT_RCP
GATT Characteristic Ringer Control Point.

BT_UUID_GATT_RS_VAL
GATT Characteristic Ringer Setting UUID Value.

BT_UUID_GATT_RS
GATT Characteristic Ringer Setting.

BT_UUID_GATT_ALRTCID_MASK_VAL
GATT Characteristic Alert Category ID Bit Mask UUID Value.
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BT_UUID_GATT_ALRTCID_MASK
GATT Characteristic Alert Category ID Bit Mask.

BT_UUID_GATT_ALRTCID_VAL
GATT Characteristic Alert Category ID UUID Value.

BT_UUID_GATT_ALRTCID
GATT Characteristic Alert Category ID.

BT_UUID_GATT_ALRTNCP_VAL
GATT Characteristic Alert Notification Control Point Value.

BT_UUID_GATT_ALRTNCP
GATT Characteristic Alert Notification Control Point.

BT_UUID_GATT_UALRTS_VAL
GATT Characteristic Unread Alert Status UUID Value.

BT_UUID_GATT_UALRTS
GATT Characteristic Unread Alert Status.

BT_UUID_GATT_NALRT_VAL
GATT Characteristic New Alert UUID Value.

BT_UUID_GATT_NALRT
GATT Characteristic New Alert.

BT_UUID_GATT_SNALRTC_VAL
GATT Characteristic Supported New Alert Category UUID Value.

BT_UUID_GATT_SNALRTC
GATT Characteristic Supported New Alert Category.

BT_UUID_GATT_SUALRTC_VAL
GATT Characteristic Supported Unread Alert Category UUID Value.

BT_UUID_GATT_SUALRTC
GATT Characteristic Supported Unread Alert Category.

BT_UUID_GATT_BPF_VAL
GATT Characteristic Blood Pressure Feature UUID Value.

BT_UUID_GATT_BPF
GATT Characteristic Blood Pressure Feature.

BT_UUID_HIDS_INFO_VAL
HID Information Characteristic UUID value.
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BT_UUID_HIDS_INFO
HID Information Characteristic.

BT_UUID_HIDS_REPORT_MAP_VAL
HID Report Map Characteristic UUID value.

BT_UUID_HIDS_REPORT_MAP
HID Report Map Characteristic.

BT_UUID_HIDS_CTRL_POINT_VAL
HID Control Point Characteristic UUID value.

BT_UUID_HIDS_CTRL_POINT
HID Control Point Characteristic.

BT_UUID_HIDS_REPORT_VAL
HID Report Characteristic UUID value.

BT_UUID_HIDS_REPORT
HID Report Characteristic.

BT_UUID_HIDS_PROTOCOL_MODE_VAL
HID Protocol Mode Characteristic UUID value.

BT_UUID_HIDS_PROTOCOL_MODE
HID Protocol Mode Characteristic.

BT_UUID_GATT_SIW_VAL
GATT Characteristic Scan Interval Windows UUID Value.

BT_UUID_GATT_SIW
GATT Characteristic Scan Interval Windows.

BT_UUID_DIS_PNP_ID_VAL
DIS Characteristic PnP ID UUID value.

BT_UUID_DIS_PNP_ID
DIS Characteristic PnP ID.

BT_UUID_GATT_GF_VAL
GATT Characteristic Glucose Feature UUID Value.

BT_UUID_GATT_GF
GATT Characteristic Glucose Feature.

BT_UUID_RECORD_ACCESS_CONTROL_POINT_VAL
Record Access Control Point Characteristic value.
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BT_UUID_RECORD_ACCESS_CONTROL_POINT
Record Access Control Point.

BT_UUID_RSC_MEASUREMENT_VAL
RSC Measurement Characteristic UUID value.

BT_UUID_RSC_MEASUREMENT
RSC Measurement Characteristic.

BT_UUID_RSC_FEATURE_VAL
RSC Feature Characteristic UUID value.

BT_UUID_RSC_FEATURE
RSC Feature Characteristic.

BT_UUID_SC_CONTROL_POINT_VAL
SC Control Point Characteristic UUID value.

BT_UUID_SC_CONTROL_POINT
SC Control Point Characteristic.

BT_UUID_GATT_DI_VAL
GATT Characteristic Digital Input UUID Value.

BT_UUID_GATT_DI
GATT Characteristic Digital Input.

BT_UUID_GATT_DO_VAL
GATT Characteristic Digital Output UUID Value.

BT_UUID_GATT_DO
GATT Characteristic Digital Output.

BT_UUID_GATT_AI_VAL
GATT Characteristic Analog Input UUID Value.

BT_UUID_GATT_AI
GATT Characteristic Analog Input.

BT_UUID_GATT_AO_VAL
GATT Characteristic Analog Output UUID Value.

BT_UUID_GATT_AO
GATT Characteristic Analog Output.

BT_UUID_GATT_AGGR_VAL
GATT Characteristic Aggregate UUID Value.
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BT_UUID_GATT_AGGR
GATT Characteristic Aggregate.

BT_UUID_CSC_MEASUREMENT_VAL
CSC Measurement Characteristic UUID value.

BT_UUID_CSC_MEASUREMENT
CSC Measurement Characteristic.

BT_UUID_CSC_FEATURE_VAL
CSC Feature Characteristic UUID value.

BT_UUID_CSC_FEATURE
CSC Feature Characteristic.

BT_UUID_SENSOR_LOCATION_VAL
Sensor Location Characteristic UUID value.

BT_UUID_SENSOR_LOCATION
Sensor Location Characteristic.

BT_UUID_GATT_PLX_SCM_VAL
GATT Characteristic PLX Spot-Check Measurement UUID Value.

BT_UUID_GATT_PLX_SCM
GATT Characteristic PLX Spot-Check Measurement.

BT_UUID_GATT_PLX_CM_VAL
GATT Characteristic PLX Continuous Measurement UUID Value.

BT_UUID_GATT_PLX_CM
GATT Characteristic PLX Continuous Measurement.

BT_UUID_GATT_PLX_F_VAL
GATT Characteristic PLX Features UUID Value.

BT_UUID_GATT_PLX_F
GATT Characteristic PLX Features.

BT_UUID_GATT_POPE_VAL
GATT Characteristic Pulse Oximetry Pulastile Event UUID Value.

BT_UUID_GATT_POPE
GATT Characteristic Pulse Oximetry Pulsatile Event.

BT_UUID_GATT_POCP_VAL
GATT Characteristic Pulse Oximetry Control Point UUID Value.
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BT_UUID_GATT_POCP
GATT Characteristic Pulse Oximetry Control Point.

BT_UUID_GATT_CPS_CPM_VAL
GATT Characteristic Cycling Power Measurement UUID Value.

BT_UUID_GATT_CPS_CPM
GATT Characteristic Cycling Power Measurement.

BT_UUID_GATT_CPS_CPV_VAL
GATT Characteristic Cycling Power Vector UUID Value.

BT_UUID_GATT_CPS_CPV
GATT Characteristic Cycling Power Vector.

BT_UUID_GATT_CPS_CPF_VAL
GATT Characteristic Cycling Power Feature UUID Value.

BT_UUID_GATT_CPS_CPF
GATT Characteristic Cycling Power Feature.

BT_UUID_GATT_CPS_CPCP_VAL
GATT Characteristic Cycling Power Control Point UUID Value.

BT_UUID_GATT_CPS_CPCP
GATT Characteristic Cycling Power Control Point.

BT_UUID_GATT_LOC_SPD_VAL
GATT Characteristic Location and Speed UUID Value.

BT_UUID_GATT_LOC_SPD
GATT Characteristic Location and Speed.

BT_UUID_GATT_NAV_VAL
GATT Characteristic Navigation UUID Value.

BT_UUID_GATT_NAV
GATT Characteristic Navigation.

BT_UUID_GATT_PQ_VAL
GATT Characteristic Position Quality UUID Value.

BT_UUID_GATT_PQ
GATT Characteristic Position Quality.

BT_UUID_GATT_LNF_VAL
GATT Characteristic LN Feature UUID Value.
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BT_UUID_GATT_LNF
GATT Characteristic LN Feature.

BT_UUID_GATT_LNCP_VAL
GATT Characteristic LN Control Point UUID Value.

BT_UUID_GATT_LNCP
GATT Characteristic LN Control Point.

BT_UUID_ELEVATION_VAL
Elevation Characteristic UUID value.

BT_UUID_ELEVATION
Elevation Characteristic.

BT_UUID_PRESSURE_VAL
Pressure Characteristic UUID value.

BT_UUID_PRESSURE
Pressure Characteristic.

BT_UUID_TEMPERATURE_VAL
Temperature Characteristic UUID value.

BT_UUID_TEMPERATURE
Temperature Characteristic.

BT_UUID_HUMIDITY_VAL
Humidity Characteristic UUID value.

BT_UUID_HUMIDITY
Humidity Characteristic.

BT_UUID_TRUE_WIND_SPEED_VAL
True Wind Speed Characteristic UUID value.

BT_UUID_TRUE_WIND_SPEED
True Wind Speed Characteristic.

BT_UUID_TRUE_WIND_DIR_VAL
True Wind Direction Characteristic UUID value.

BT_UUID_TRUE_WIND_DIR
True Wind Direction Characteristic.

BT_UUID_APPARENT_WIND_SPEED_VAL
Apparent Wind Speed Characteristic UUID value.
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BT_UUID_APPARENT_WIND_SPEED
Apparent Wind Speed Characteristic.

BT_UUID_APPARENT_WIND_DIR_VAL
Apparent Wind Direction Characteristic UUID value.

BT_UUID_APPARENT_WIND_DIR
Apparent Wind Direction Characteristic.

BT_UUID_GUST_FACTOR_VAL
Gust Factor Characteristic UUID value.

BT_UUID_GUST_FACTOR
Gust Factor Characteristic.

BT_UUID_POLLEN_CONCENTRATION_VAL
Pollen Concentration Characteristic UUID value.

BT_UUID_POLLEN_CONCENTRATION
Pollen Concentration Characteristic.

BT_UUID_UV_INDEX_VAL
UV Index Characteristic UUID value.

BT_UUID_UV_INDEX
UV Index Characteristic.

BT_UUID_IRRADIANCE_VAL
Irradiance Characteristic UUID value.

BT_UUID_IRRADIANCE
Irradiance Characteristic.

BT_UUID_RAINFALL_VAL
Rainfall Characteristic UUID value.

BT_UUID_RAINFALL
Rainfall Characteristic.

BT_UUID_WIND_CHILL_VAL
Wind Chill Characteristic UUID value.

BT_UUID_WIND_CHILL
Wind Chill Characteristic.

BT_UUID_HEAT_INDEX_VAL
Heat Index Characteristic UUID value.
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BT_UUID_HEAT_INDEX
Heat Index Characteristic.

BT_UUID_DEW_POINT_VAL
Dew Point Characteristic UUID value.

BT_UUID_DEW_POINT
Dew Point Characteristic.

BT_UUID_GATT_TREND_VAL
GATT Characteristic Trend UUID Value.

BT_UUID_GATT_TREND
GATT Characteristic Trend.

BT_UUID_DESC_VALUE_CHANGED_VAL
Descriptor Value Changed Characteristic UUID value.

BT_UUID_DESC_VALUE_CHANGED
Descriptor Value Changed Characteristic.

BT_UUID_GATT_AEHRLL_VAL
GATT Characteristic Aerobic Heart Rate Low Limit UUID Value.

BT_UUID_GATT_AEHRLL
GATT Characteristic Aerobic Heart Rate Lower Limit.

BT_UUID_GATT_AETHR_VAL
GATT Characteristic Aerobic Threshold UUID Value.

BT_UUID_GATT_AETHR
GATT Characteristic Aerobic Threshold.

BT_UUID_GATT_AGE_VAL
GATT Characteristic Age UUID Value.

BT_UUID_GATT_AGE
GATT Characteristic Age.

BT_UUID_GATT_ANHRLL_VAL
GATT Characteristic Anaerobic Heart Rate Lower Limit UUID Value.

BT_UUID_GATT_ANHRLL
GATT Characteristic Anaerobic Heart Rate Lower Limit.

BT_UUID_GATT_ANHRUL_VAL
GATT Characteristic Anaerobic Heart Rate Upper Limit UUID Value.
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BT_UUID_GATT_ANHRUL
GATT Characteristic Anaerobic Heart Rate Upper Limit.

BT_UUID_GATT_ANTHR_VAL
GATT Characteristic Anaerobic Threshold UUID Value.

BT_UUID_GATT_ANTHR
GATT Characteristic Anaerobic Threshold.

BT_UUID_GATT_AEHRUL_VAL
GATT Characteristic Aerobic Heart Rate Upper Limit UUID Value.

BT_UUID_GATT_AEHRUL
GATT Characteristic Aerobic Heart Rate Upper Limit.

BT_UUID_GATT_DATE_BIRTH_VAL
GATT Characteristic Date of Birth UUID Value.

BT_UUID_GATT_DATE_BIRTH
GATT Characteristic Date of Birth.

BT_UUID_GATT_DATE_THRASS_VAL
GATT Characteristic Date of Threshold Assessment UUID Value.

BT_UUID_GATT_DATE_THRASS
GATT Characteristic Date of Threshold Assessment.

BT_UUID_GATT_EMAIL_VAL
GATT Characteristic Email Address UUID Value.

BT_UUID_GATT_EMAIL
GATT Characteristic Email Address.

BT_UUID_GATT_FBHRLL_VAL
GATT Characteristic Fat Burn Heart Rate Lower Limit UUID Value.

BT_UUID_GATT_FBHRLL
GATT Characteristic Fat Burn Heart Rate Lower Limit.

BT_UUID_GATT_FBHRUL_VAL
GATT Characteristic Fat Burn Heart Rate Upper Limit UUID Value.

BT_UUID_GATT_FBHRUL
GATT Characteristic Fat Burn Heart Rate Upper Limit.

BT_UUID_GATT_FIRST_NAME_VAL
GATT Characteristic First Name UUID Value.
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BT_UUID_GATT_FIRST_NAME
GATT Characteristic First Name.

BT_UUID_GATT_5ZHRL_VAL
GATT Characteristic Five Zone Heart Rate Limits UUID Value.

BT_UUID_GATT_5ZHRL
GATT Characteristic Five Zone Heart Rate Limits.

BT_UUID_GATT_GENDER_VAL
GATT Characteristic Gender UUID Value.

BT_UUID_GATT_GENDER
GATT Characteristic Gender.

BT_UUID_GATT_HR_MAX_VAL
GATT Characteristic Heart Rate Max UUID Value.

BT_UUID_GATT_HR_MAX
GATT Characteristic Heart Rate Max.

BT_UUID_GATT_HEIGHT_VAL
GATT Characteristic Height UUID Value.

BT_UUID_GATT_HEIGHT
GATT Characteristic Height.

BT_UUID_GATT_HC_VAL
GATT Characteristic Hip Circumference UUID Value.

BT_UUID_GATT_HC
GATT Characteristic Hip Circumference.

BT_UUID_GATT_LAST_NAME_VAL
GATT Characteristic Last Name UUID Value.

BT_UUID_GATT_LAST_NAME
GATT Characteristic Last Name.

BT_UUID_GATT_MRHR_VAL
GATT Characteristic Maximum Recommended Heart Rate> UUID Value.

BT_UUID_GATT_MRHR
GATT Characteristic Maximum Recommended Heart Rate.

BT_UUID_GATT_RHR_VAL
GATT Characteristic Resting Heart Rate UUID Value.
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BT_UUID_GATT_RHR
GATT Characteristic Resting Heart Rate.

BT_UUID_GATT_AEANTHR_VAL
GATT Characteristic Sport Type for Aerobic and Anaerobic Thresholds UUID Value.

BT_UUID_GATT_AEANTHR
GATT Characteristic Sport Type for Aerobic and Anaerobic Threshold.

BT_UUID_GATT_3ZHRL_VAL
GATT Characteristic Three Zone Heart Rate Limits UUID Value.

BT_UUID_GATT_3ZHRL
GATT Characteristic Three Zone Heart Rate Limits.

BT_UUID_GATT_2ZHRL_VAL
GATT Characteristic Two Zone Heart Rate Limits UUID Value.

BT_UUID_GATT_2ZHRL
GATT Characteristic Two Zone Heart Rate Limits.

BT_UUID_GATT_VO2_MAX_VAL
GATT Characteristic VO2 Max UUID Value.

BT_UUID_GATT_VO2_MAX
GATT Characteristic VO2 Max.

BT_UUID_GATT_WC_VAL
GATT Characteristic Waist Circumference UUID Value.

BT_UUID_GATT_WC
GATT Characteristic Waist Circumference.

BT_UUID_GATT_WEIGHT_VAL
GATT Characteristic Weight UUID Value.

BT_UUID_GATT_WEIGHT
GATT Characteristic Weight.

BT_UUID_GATT_DBCHINC_VAL
GATT Characteristic Database Change Increment UUID Value.

BT_UUID_GATT_DBCHINC
GATT Characteristic Database Change Increment.

BT_UUID_GATT_USRIDX_VAL
GATT Characteristic User Index UUID Value.
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BT_UUID_GATT_USRIDX
GATT Characteristic User Index.

BT_UUID_GATT_BCF_VAL
GATT Characteristic Body Composition Feature UUID Value.

BT_UUID_GATT_BCF
GATT Characteristic Body Composition Feature.

BT_UUID_GATT_BCM_VAL
GATT Characteristic Body Composition Measurement UUID Value.

BT_UUID_GATT_BCM
GATT Characteristic Body Composition Measurement.

BT_UUID_GATT_WM_VAL
GATT Characteristic Weight Measurement UUID Value.

BT_UUID_GATT_WM
GATT Characteristic Weight Measurement.

BT_UUID_GATT_WSF_VAL
GATT Characteristic Weight Scale Feature UUID Value.

BT_UUID_GATT_WSF
GATT Characteristic Weight Scale Feature.

BT_UUID_GATT_USRCP_VAL
GATT Characteristic User Control Point UUID Value.

BT_UUID_GATT_USRCP
GATT Characteristic User Control Point.

BT_UUID_MAGN_FLUX_DENSITY_2D_VAL
Magnetic Flux Density - 2D Characteristic UUID value.

BT_UUID_MAGN_FLUX_DENSITY_2D
Magnetic Flux Density - 2D Characteristic.

BT_UUID_MAGN_FLUX_DENSITY_3D_VAL
Magnetic Flux Density - 3D Characteristic UUID value.

BT_UUID_MAGN_FLUX_DENSITY_3D
Magnetic Flux Density - 3D Characteristic.

BT_UUID_GATT_LANG_VAL
GATT Characteristic Language UUID Value.
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BT_UUID_GATT_LANG
GATT Characteristic Language.

BT_UUID_BAR_PRESSURE_TREND_VAL
Barometric Pressure Trend Characteristic UUID value.

BT_UUID_BAR_PRESSURE_TREND
Barometric Pressure Trend Characteristic.

BT_UUID_BMS_CONTROL_POINT_VAL
Bond Management Control Point UUID value.

BT_UUID_BMS_CONTROL_POINT
Bond Management Control Point.

BT_UUID_BMS_FEATURE_VAL
Bond Management Feature UUID value.

BT_UUID_BMS_FEATURE
Bond Management Feature.

BT_UUID_CENTRAL_ADDR_RES_VAL
Central Address Resolution Characteristic UUID value.

BT_UUID_CENTRAL_ADDR_RES
Central Address Resolution Characteristic.

BT_UUID_CGM_MEASUREMENT_VAL
CGM Measurement Characteristic value.

BT_UUID_CGM_MEASUREMENT
CGM Measurement Characteristic.

BT_UUID_CGM_FEATURE_VAL
CGM Feature Characteristic value.

BT_UUID_CGM_FEATURE
CGM Feature Characteristic.

BT_UUID_CGM_STATUS_VAL
CGM Status Characteristic value.

BT_UUID_CGM_STATUS
CGM Status Characteristic.

BT_UUID_CGM_SESSION_START_TIME_VAL
CGM Session Start Time Characteristic value.
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BT_UUID_CGM_SESSION_START_TIME
CGM Session Start Time.

BT_UUID_CGM_SESSION_RUN_TIME_VAL
CGM Session Run Time Characteristic value.

BT_UUID_CGM_SESSION_RUN_TIME
CGM Session Run Time.

BT_UUID_CGM_SPECIFIC_OPS_CONTROL_POINT_VAL
CGM Specific Ops Control Point Characteristic value.

BT_UUID_CGM_SPECIFIC_OPS_CONTROL_POINT
CGM Specific Ops Control Point.

BT_UUID_GATT_IPC_VAL
GATT Characteristic Indoor Positioning Configuration UUID Value.

BT_UUID_GATT_IPC
GATT Characteristic Indoor Positioning Configuration.

BT_UUID_GATT_LAT_VAL
GATT Characteristic Latitude UUID Value.

BT_UUID_GATT_LAT
GATT Characteristic Latitude.

BT_UUID_GATT_LON_VAL
GATT Characteristic Longitude UUID Value.

BT_UUID_GATT_LON
GATT Characteristic Longitude.

BT_UUID_GATT_LNCOORD_VAL
GATT Characteristic Local North Coordinate UUID Value.

BT_UUID_GATT_LNCOORD
GATT Characteristic Local North Coordinate.

BT_UUID_GATT_LECOORD_VAL
GATT Characteristic Local East Coordinate UUID Value.

BT_UUID_GATT_LECOORD
GATT Characteristic Local East Coordinate.

BT_UUID_GATT_FN_VAL
GATT Characteristic Floor Number UUID Value.
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BT_UUID_GATT_FN
GATT Characteristic Floor Number.

BT_UUID_GATT_ALT_VAL
GATT Characteristic Altitude UUID Value.

BT_UUID_GATT_ALT
GATT Characteristic Altitude.

BT_UUID_GATT_UNCERTAINTY_VAL
GATT Characteristic Uncertainty UUID Value.

BT_UUID_GATT_UNCERTAINTY
GATT Characteristic Uncertainty.

BT_UUID_GATT_LOC_NAME_VAL
GATT Characteristic Location Name UUID Value.

BT_UUID_GATT_LOC_NAME
GATT Characteristic Location Name.

BT_UUID_URI_VAL
URI UUID value.

BT_UUID_URI
URI.

BT_UUID_HTTP_HEADERS_VAL
HTTP Headers UUID value.

BT_UUID_HTTP_HEADERS
HTTP Headers.

BT_UUID_HTTP_STATUS_CODE_VAL
HTTP Status Code UUID value.

BT_UUID_HTTP_STATUS_CODE
HTTP Status Code.

BT_UUID_HTTP_ENTITY_BODY_VAL
HTTP Entity Body UUID value.

BT_UUID_HTTP_ENTITY_BODY
HTTP Entity Body.

BT_UUID_HTTP_CONTROL_POINT_VAL
HTTP Control Point UUID value.

6.1. Bluetooth 2393



Zephyr Project Documentation, Release 3.7.99

BT_UUID_HTTP_CONTROL_POINT
HTTP Control Point.

BT_UUID_HTTPS_SECURITY_VAL
HTTPS Security UUID value.

BT_UUID_HTTPS_SECURITY
HTTPS Security.

BT_UUID_GATT_TDS_CP_VAL
GATT Characteristic TDS Control Point UUID Value.

BT_UUID_GATT_TDS_CP
GATT Characteristic TDS Control Point.

BT_UUID_OTS_FEATURE_VAL
OTS Feature Characteristic UUID value.

BT_UUID_OTS_FEATURE
OTS Feature Characteristic.

BT_UUID_OTS_NAME_VAL
OTS Object Name Characteristic UUID value.

BT_UUID_OTS_NAME
OTS Object Name Characteristic.

BT_UUID_OTS_TYPE_VAL
OTS Object Type Characteristic UUID value.

BT_UUID_OTS_TYPE
OTS Object Type Characteristic.

BT_UUID_OTS_SIZE_VAL
OTS Object Size Characteristic UUID value.

BT_UUID_OTS_SIZE
OTS Object Size Characteristic.

BT_UUID_OTS_FIRST_CREATED_VAL
OTS Object First-Created Characteristic UUID value.

BT_UUID_OTS_FIRST_CREATED
OTS Object First-Created Characteristic.

BT_UUID_OTS_LAST_MODIFIED_VAL
OTS Object Last-Modified Characteristic UUI value.
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BT_UUID_OTS_LAST_MODIFIED
OTS Object Last-Modified Characteristic.

BT_UUID_OTS_ID_VAL
OTS Object ID Characteristic UUID value.

BT_UUID_OTS_ID
OTS Object ID Characteristic.

BT_UUID_OTS_PROPERTIES_VAL
OTS Object Properties Characteristic UUID value.

BT_UUID_OTS_PROPERTIES
OTS Object Properties Characteristic.

BT_UUID_OTS_ACTION_CP_VAL
OTS Object Action Control Point Characteristic UUID value.

BT_UUID_OTS_ACTION_CP
OTS Object Action Control Point Characteristic.

BT_UUID_OTS_LIST_CP_VAL
OTS Object List Control Point Characteristic UUID value.

BT_UUID_OTS_LIST_CP
OTS Object List Control Point Characteristic.

BT_UUID_OTS_LIST_FILTER_VAL
OTS Object List Filter Characteristic UUID value.

BT_UUID_OTS_LIST_FILTER
OTS Object List Filter Characteristic.

BT_UUID_OTS_CHANGED_VAL
OTS Object Changed Characteristic UUID value.

BT_UUID_OTS_CHANGED
OTS Object Changed Characteristic.

BT_UUID_GATT_RPAO_VAL
GATT Characteristic Resolvable Private Address Only UUID Value.

BT_UUID_GATT_RPAO
GATT Characteristic Resolvable Private Address Only.

BT_UUID_OTS_TYPE_UNSPECIFIED_VAL
OTS Unspecified Object Type UUID value.
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BT_UUID_OTS_TYPE_UNSPECIFIED
OTS Unspecified Object Type.

BT_UUID_OTS_DIRECTORY_LISTING_VAL
OTS Directory Listing UUID value.

BT_UUID_OTS_DIRECTORY_LISTING
OTS Directory Listing.

BT_UUID_GATT_FMF_VAL
GATT Characteristic Fitness Machine Feature UUID Value.

BT_UUID_GATT_FMF
GATT Characteristic Fitness Machine Feature.

BT_UUID_GATT_TD_VAL
GATT Characteristic Treadmill Data UUID Value.

BT_UUID_GATT_TD
GATT Characteristic Treadmill Data.

BT_UUID_GATT_CTD_VAL
GATT Characteristic Cross Trainer Data UUID Value.

BT_UUID_GATT_CTD
GATT Characteristic Cross Trainer Data.

BT_UUID_GATT_STPCD_VAL
GATT Characteristic Step Climber Data UUID Value.

BT_UUID_GATT_STPCD
GATT Characteristic Step Climber Data.

BT_UUID_GATT_STRCD_VAL
GATT Characteristic Stair Climber Data UUID Value.

BT_UUID_GATT_STRCD
GATT Characteristic Stair Climber Data.

BT_UUID_GATT_RD_VAL
GATT Characteristic Rower Data UUID Value.

BT_UUID_GATT_RD
GATT Characteristic Rower Data.

BT_UUID_GATT_IBD_VAL
GATT Characteristic Indoor Bike Data UUID Value.
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BT_UUID_GATT_IBD
GATT Characteristic Indoor Bike Data.

BT_UUID_GATT_TRSTAT_VAL
GATT Characteristic Training Status UUID Value.

BT_UUID_GATT_TRSTAT
GATT Characteristic Training Status.

BT_UUID_GATT_SSR_VAL
GATT Characteristic Supported Speed Range UUID Value.

BT_UUID_GATT_SSR
GATT Characteristic Supported Speed Range.

BT_UUID_GATT_SIR_VAL
GATT Characteristic Supported Inclination Range UUID Value.

BT_UUID_GATT_SIR
GATT Characteristic Supported Inclination Range.

BT_UUID_GATT_SRLR_VAL
GATT Characteristic Supported Resistance Level Range UUID Value.

BT_UUID_GATT_SRLR
GATT Characteristic Supported Resistance Level Range.

BT_UUID_GATT_SHRR_VAL
GATT Characteristic Supported Heart Rate Range UUID Value.

BT_UUID_GATT_SHRR
GATT Characteristic Supported Heart Rate Range.

BT_UUID_GATT_SPR_VAL
GATT Characteristic Supported Power Range UUID Value.

BT_UUID_GATT_SPR
GATT Characteristic Supported Power Range.

BT_UUID_GATT_FMCP_VAL
GATT Characteristic Fitness Machine Control Point UUID Value.

BT_UUID_GATT_FMCP
GATT Characteristic Fitness Machine Control Point.

BT_UUID_GATT_FMS_VAL
GATT Characteristic Fitness Machine Status UUID Value.
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BT_UUID_GATT_FMS
GATT Characteristic Fitness Machine Status.

BT_UUID_MESH_PROV_DATA_IN_VAL
Mesh Provisioning Data In UUID value.

BT_UUID_MESH_PROV_DATA_IN
Mesh Provisioning Data In.

BT_UUID_MESH_PROV_DATA_OUT_VAL
Mesh Provisioning Data Out UUID value.

BT_UUID_MESH_PROV_DATA_OUT
Mesh Provisioning Data Out.

BT_UUID_MESH_PROXY_DATA_IN_VAL
Mesh Proxy Data In UUID value.

BT_UUID_MESH_PROXY_DATA_IN
Mesh Proxy Data In.

BT_UUID_MESH_PROXY_DATA_OUT_VAL
Mesh Proxy Data Out UUID value.

BT_UUID_MESH_PROXY_DATA_OUT
Mesh Proxy Data Out.

BT_UUID_GATT_NNN_VAL
GATT Characteristic New Number Needed UUID Value.

BT_UUID_GATT_NNN
GATT Characteristic New Number Needed.

BT_UUID_GATT_AC_VAL
GATT Characteristic Average Current UUID Value.

BT_UUID_GATT_AC
GATT Characteristic Average Current.

BT_UUID_GATT_AV_VAL
GATT Characteristic Average Voltage UUID Value.

BT_UUID_GATT_AV
GATT Characteristic Average Voltage.

BT_UUID_GATT_BOOLEAN_VAL
GATT Characteristic Boolean UUID Value.
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BT_UUID_GATT_BOOLEAN
GATT Characteristic Boolean.

BT_UUID_GATT_CRDFP_VAL
GATT Characteristic Chromatic Distance From Planckian UUID Value.

BT_UUID_GATT_CRDFP
GATT Characteristic Chromatic Distance From Planckian.

BT_UUID_GATT_CRCOORDS_VAL
GATT Characteristic Chromaticity Coordinates UUID Value.

BT_UUID_GATT_CRCOORDS
GATT Characteristic Chromaticity Coordinates.

BT_UUID_GATT_CRCCT_VAL
GATT Characteristic Chromaticity In CCT And Duv Values UUID Value.

BT_UUID_GATT_CRCCT
GATT Characteristic Chromaticity In CCT And Duv Values.

BT_UUID_GATT_CRT_VAL
GATT Characteristic Chromaticity Tolerance UUID Value.

BT_UUID_GATT_CRT
GATT Characteristic Chromaticity Tolerance.

BT_UUID_GATT_CIEIDX_VAL
GATT Characteristic CIE 13.3-1995 Color Rendering Index UUID Value.

BT_UUID_GATT_CIEIDX
GATT Characteristic CIE 13.3-1995 Color Rendering Index.

BT_UUID_GATT_COEFFICIENT_VAL
GATT Characteristic Coefficient UUID Value.

BT_UUID_GATT_COEFFICIENT
GATT Characteristic Coefficient.

BT_UUID_GATT_CCTEMP_VAL
GATT Characteristic Correlated Color Temperature UUID Value.

BT_UUID_GATT_CCTEMP
GATT Characteristic Correlated Color Temperature.

BT_UUID_GATT_COUNT16_VAL
GATT Characteristic Count 16 UUID Value.
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BT_UUID_GATT_COUNT16
GATT Characteristic Count 16.

BT_UUID_GATT_COUNT24_VAL
GATT Characteristic Count 24 UUID Value.

BT_UUID_GATT_COUNT24
GATT Characteristic Count 24.

BT_UUID_GATT_CNTRCODE_VAL
GATT Characteristic Country Code UUID Value.

BT_UUID_GATT_CNTRCODE
GATT Characteristic Country Code.

BT_UUID_GATT_DATEUTC_VAL
GATT Characteristic Date UTC UUID Value.

BT_UUID_GATT_DATEUTC
GATT Characteristic Date UTC.

BT_UUID_GATT_EC_VAL
GATT Characteristic Electric Current UUID Value.

BT_UUID_GATT_EC
GATT Characteristic Electric Current.

BT_UUID_GATT_ECR_VAL
GATT Characteristic Electric Current Range UUID Value.

BT_UUID_GATT_ECR
GATT Characteristic Electric Current Range.

BT_UUID_GATT_ECSPEC_VAL
GATT Characteristic Electric Current Specification UUID Value.

BT_UUID_GATT_ECSPEC
GATT Characteristic Electric Current Specification.

BT_UUID_GATT_ECSTAT_VAL
GATT Characteristic Electric Current Statistics UUID Value.

BT_UUID_GATT_ECSTAT
GATT Characteristic Electric Current Statistics.

BT_UUID_GATT_ENERGY_VAL
GATT Characteristic Energy UUID Value.
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BT_UUID_GATT_ENERGY
GATT Characteristic Energy.

BT_UUID_GATT_EPOD_VAL
GATT Characteristic Energy In A Period Of Day UUID Value.

BT_UUID_GATT_EPOD
GATT Characteristic Energy In A Period Of Day.

BT_UUID_GATT_EVTSTAT_VAL
GATT Characteristic Event Statistics UUID Value.

BT_UUID_GATT_EVTSTAT
GATT Characteristic Event Statistics.

BT_UUID_GATT_FSTR16_VAL
GATT Characteristic Fixed String 16 UUID Value.

BT_UUID_GATT_FSTR16
GATT Characteristic Fixed String 16.

BT_UUID_GATT_FSTR24_VAL
GATT Characteristic Fixed String 24 UUID Value.

BT_UUID_GATT_FSTR24
GATT Characteristic Fixed String 24.

BT_UUID_GATT_FSTR36_VAL
GATT Characteristic Fixed String 36 UUID Value.

BT_UUID_GATT_FSTR36
GATT Characteristic Fixed String 36.

BT_UUID_GATT_FSTR8_VAL
GATT Characteristic Fixed String 8 UUID Value.

BT_UUID_GATT_FSTR8
GATT Characteristic Fixed String 8.

BT_UUID_GATT_GENLVL_VAL
GATT Characteristic Generic Level UUID Value.

BT_UUID_GATT_GENLVL
GATT Characteristic Generic Level.

BT_UUID_GATT_GTIN_VAL
GATT Characteristic Global Trade Item Number UUID Value.
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BT_UUID_GATT_GTIN
GATT Characteristic Global Trade Item Number.

BT_UUID_GATT_ILLUM_VAL
GATT Characteristic Illuminance UUID Value.

BT_UUID_GATT_ILLUM
GATT Characteristic Illuminance.

BT_UUID_GATT_LUMEFF_VAL
GATT Characteristic Luminous Efficacy UUID Value.

BT_UUID_GATT_LUMEFF
GATT Characteristic Luminous Efficacy.

BT_UUID_GATT_LUMNRG_VAL
GATT Characteristic Luminous Energy UUID Value.

BT_UUID_GATT_LUMNRG
GATT Characteristic Luminous Energy.

BT_UUID_GATT_LUMEXP_VAL
GATT Characteristic Luminous Exposure UUID Value.

BT_UUID_GATT_LUMEXP
GATT Characteristic Luminous Exposure.

BT_UUID_GATT_LUMFLX_VAL
GATT Characteristic Luminous Flux UUID Value.

BT_UUID_GATT_LUMFLX
GATT Characteristic Luminous Flux.

BT_UUID_GATT_LUMFLXR_VAL
GATT Characteristic Luminous Flux Range UUID Value.

BT_UUID_GATT_LUMFLXR
GATT Characteristic Luminous Flux Range.

BT_UUID_GATT_LUMINT_VAL
GATT Characteristic Luminous Intensity UUID Value.

BT_UUID_GATT_LUMINT
GATT Characteristic Luminous Intensity.

BT_UUID_GATT_MASSFLOW_VAL
GATT Characteristic Mass Flow UUID Value.
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BT_UUID_GATT_MASSFLOW
GATT Characteristic Mass Flow.

BT_UUID_GATT_PERLGHT_VAL
GATT Characteristic Perceived Lightness UUID Value.

BT_UUID_GATT_PERLGHT
GATT Characteristic Perceived Lightness.

BT_UUID_GATT_PER8_VAL
GATT Characteristic Percentage 8 UUID Value.

BT_UUID_GATT_PER8
GATT Characteristic Percentage 8.

BT_UUID_GATT_PWR_VAL
GATT Characteristic Power UUID Value.

BT_UUID_GATT_PWR
GATT Characteristic Power.

BT_UUID_GATT_PWRSPEC_VAL
GATT Characteristic Power Specification UUID Value.

BT_UUID_GATT_PWRSPEC
GATT Characteristic Power Specification.

BT_UUID_GATT_RRICR_VAL
GATT Characteristic Relative Runtime In A Current Range UUID Value.

BT_UUID_GATT_RRICR
GATT Characteristic Relative Runtime In A Current Range.

BT_UUID_GATT_RRIGLR_VAL
GATT Characteristic Relative Runtime In A Generic Level Range UUID Value.

BT_UUID_GATT_RRIGLR
GATT Characteristic Relative Runtime In A Generic Level Range.

BT_UUID_GATT_RVIVR_VAL
GATT Characteristic Relative Value In A Voltage Range UUID Value.

BT_UUID_GATT_RVIVR
GATT Characteristic Relative Value In A Voltage Range.

BT_UUID_GATT_RVIIR_VAL
GATT Characteristic Relative Value In A Illuminance Range UUID Value.
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BT_UUID_GATT_RVIIR
GATT Characteristic Relative Value In A Illuminance Range.

BT_UUID_GATT_RVIPOD_VAL
GATT Characteristic Relative Value In A Period Of Day UUID Value.

BT_UUID_GATT_RVIPOD
GATT Characteristic Relative Value In A Period Of Day.

BT_UUID_GATT_RVITR_VAL
GATT Characteristic Relative Value In A Temperature Range UUID Value.

BT_UUID_GATT_RVITR
GATT Characteristic Relative Value In A Temperature Range.

BT_UUID_GATT_TEMP8_VAL
GATT Characteristic Temperature 8 UUID Value.

BT_UUID_GATT_TEMP8
GATT Characteristic Temperature 8.

BT_UUID_GATT_TEMP8_IPOD_VAL
GATT Characteristic Temperature 8 In A Period Of Day UUID Value.

BT_UUID_GATT_TEMP8_IPOD
GATT Characteristic Temperature 8 In A Period Of Day.

BT_UUID_GATT_TEMP8_STAT_VAL
GATT Characteristic Temperature 8 Statistics UUID Value.

BT_UUID_GATT_TEMP8_STAT
GATT Characteristic Temperature 8 Statistics.

BT_UUID_GATT_TEMP_RNG_VAL
GATT Characteristic Temperature Range UUID Value.

BT_UUID_GATT_TEMP_RNG
GATT Characteristic Temperature Range.

BT_UUID_GATT_TEMP_STAT_VAL
GATT Characteristic Temperature Statistics UUID Value.

BT_UUID_GATT_TEMP_STAT
GATT Characteristic Temperature Statistics.

BT_UUID_GATT_TIM_DC8_VAL
GATT Characteristic Time Decihour 8 UUID Value.
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BT_UUID_GATT_TIM_DC8
GATT Characteristic Time Decihour 8.

BT_UUID_GATT_TIM_EXP8_VAL
GATT Characteristic Time Exponential 8 UUID Value.

BT_UUID_GATT_TIM_EXP8
GATT Characteristic Time Exponential 8.

BT_UUID_GATT_TIM_H24_VAL
GATT Characteristic Time Hour 24 UUID Value.

BT_UUID_GATT_TIM_H24
GATT Characteristic Time Hour 24.

BT_UUID_GATT_TIM_MS24_VAL
GATT Characteristic Time Millisecond 24 UUID Value.

BT_UUID_GATT_TIM_MS24
GATT Characteristic Time Millisecond 24.

BT_UUID_GATT_TIM_S16_VAL
GATT Characteristic Time Second 16 UUID Value.

BT_UUID_GATT_TIM_S16
GATT Characteristic Time Second 16.

BT_UUID_GATT_TIM_S8_VAL
GATT Characteristic Time Second 8 UUID Value.

BT_UUID_GATT_TIM_S8
GATT Characteristic Time Second 8.

BT_UUID_GATT_V_VAL
GATT Characteristic Voltage UUID Value.

BT_UUID_GATT_V
GATT Characteristic Voltage.

BT_UUID_GATT_V_SPEC_VAL
GATT Characteristic Voltage Specification UUID Value.

BT_UUID_GATT_V_SPEC
GATT Characteristic Voltage Specification.

BT_UUID_GATT_V_STAT_VAL
GATT Characteristic Voltage Statistics UUID Value.
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BT_UUID_GATT_V_STAT
GATT Characteristic Voltage Statistics.

BT_UUID_GATT_VOLF_VAL
GATT Characteristic Volume Flow UUID Value.

BT_UUID_GATT_VOLF
GATT Characteristic Volume Flow.

BT_UUID_GATT_CRCOORD_VAL
GATT Characteristic Chromaticity Coordinate (not Coordinates) UUID Value.

BT_UUID_GATT_CRCOORD
GATT Characteristic Chromaticity Coordinate (not Coordinates)

BT_UUID_GATT_RCF_VAL
GATT Characteristic RC Feature UUID Value.

BT_UUID_GATT_RCF
GATT Characteristic RC Feature.

BT_UUID_GATT_RCSET_VAL
GATT Characteristic RC Settings UUID Value.

BT_UUID_GATT_RCSET
GATT Characteristic RC Settings.

BT_UUID_GATT_RCCP_VAL
GATT Characteristic Reconnection Configuration Control Point UUID Value.

BT_UUID_GATT_RCCP
GATT Characteristic Reconnection Configuration Control Point.

BT_UUID_GATT_IDD_SC_VAL
GATT Characteristic IDD Status Changed UUID Value.

BT_UUID_GATT_IDD_SC
GATT Characteristic IDD Status Changed.

BT_UUID_GATT_IDD_S_VAL
GATT Characteristic IDD Status UUID Value.

BT_UUID_GATT_IDD_S
GATT Characteristic IDD Status.

BT_UUID_GATT_IDD_AS_VAL
GATT Characteristic IDD Annunciation Status UUID Value.
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BT_UUID_GATT_IDD_AS
GATT Characteristic IDD Annunciation Status.

BT_UUID_GATT_IDD_F_VAL
GATT Characteristic IDD Features UUID Value.

BT_UUID_GATT_IDD_F
GATT Characteristic IDD Features.

BT_UUID_GATT_IDD_SRCP_VAL
GATT Characteristic IDD Status Reader Control Point UUID Value.

BT_UUID_GATT_IDD_SRCP
GATT Characteristic IDD Status Reader Control Point.

BT_UUID_GATT_IDD_CCP_VAL
GATT Characteristic IDD Command Control Point UUID Value.

BT_UUID_GATT_IDD_CCP
GATT Characteristic IDD Command Control Point.

BT_UUID_GATT_IDD_CD_VAL
GATT Characteristic IDD Command Data UUID Value.

BT_UUID_GATT_IDD_CD
GATT Characteristic IDD Command Data.

BT_UUID_GATT_IDD_RACP_VAL
GATT Characteristic IDD Record Access Control Point UUID Value.

BT_UUID_GATT_IDD_RACP
GATT Characteristic IDD Record Access Control Point.

BT_UUID_GATT_IDD_HD_VAL
GATT Characteristic IDD History Data UUID Value.

BT_UUID_GATT_IDD_HD
GATT Characteristic IDD History Data.

BT_UUID_GATT_CLIENT_FEATURES_VAL
GATT Characteristic Client Supported Features UUID value.

BT_UUID_GATT_CLIENT_FEATURES
GATT Characteristic Client Supported Features.

BT_UUID_GATT_DB_HASH_VAL
GATT Characteristic Database Hash UUID value.
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BT_UUID_GATT_DB_HASH
GATT Characteristic Database Hash.

BT_UUID_GATT_BSS_CP_VAL
GATT Characteristic BSS Control Point UUID Value.

BT_UUID_GATT_BSS_CP
GATT Characteristic BSS Control Point.

BT_UUID_GATT_BSS_R_VAL
GATT Characteristic BSS Response UUID Value.

BT_UUID_GATT_BSS_R
GATT Characteristic BSS Response.

BT_UUID_GATT_EMG_ID_VAL
GATT Characteristic Emergency ID UUID Value.

BT_UUID_GATT_EMG_ID
GATT Characteristic Emergency ID.

BT_UUID_GATT_EMG_TXT_VAL
GATT Characteristic Emergency Text UUID Value.

BT_UUID_GATT_EMG_TXT
GATT Characteristic Emergency Text.

BT_UUID_GATT_ACS_S_VAL
GATT Characteristic ACS Status UUID Value.

BT_UUID_GATT_ACS_S
GATT Characteristic ACS Status.

BT_UUID_GATT_ACS_DI_VAL
GATT Characteristic ACS Data In UUID Value.

BT_UUID_GATT_ACS_DI
GATT Characteristic ACS Data In.

BT_UUID_GATT_ACS_DON_VAL
GATT Characteristic ACS Data Out Notify UUID Value.

BT_UUID_GATT_ACS_DON
GATT Characteristic ACS Data Out Notify.

BT_UUID_GATT_ACS_DOI_VAL
GATT Characteristic ACS Data Out Indicate UUID Value.
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BT_UUID_GATT_ACS_DOI
GATT Characteristic ACS Data Out Indicate.

BT_UUID_GATT_ACS_CP_VAL
GATT Characteristic ACS Control Point UUID Value.

BT_UUID_GATT_ACS_CP
GATT Characteristic ACS Control Point.

BT_UUID_GATT_EBPM_VAL
GATT Characteristic Enhanced Blood Pressure Measurement UUID Value.

BT_UUID_GATT_EBPM
GATT Characteristic Enhanced Blood Pressure Measurement.

BT_UUID_GATT_EICP_VAL
GATT Characteristic Enhanced Intermediate Cuff Pressure UUID Value.

BT_UUID_GATT_EICP
GATT Characteristic Enhanced Intermediate Cuff Pressure.

BT_UUID_GATT_BPR_VAL
GATT Characteristic Blood Pressure Record UUID Value.

BT_UUID_GATT_BPR
GATT Characteristic Blood Pressure Record.

BT_UUID_GATT_RU_VAL
GATT Characteristic Registered User UUID Value.

BT_UUID_GATT_RU
GATT Characteristic Registered User.

BT_UUID_GATT_BR_EDR_HD_VAL
GATT Characteristic BR-EDR Handover Data UUID Value.

BT_UUID_GATT_BR_EDR_HD
GATT Characteristic BR-EDR Handover Data.

BT_UUID_GATT_BT_SIG_D_VAL
GATT Characteristic Bluetooth SIG Data UUID Value.

BT_UUID_GATT_BT_SIG_D
GATT Characteristic Bluetooth SIG Data.

BT_UUID_GATT_SERVER_FEATURES_VAL
GATT Characteristic Server Supported Features UUID value.
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BT_UUID_GATT_SERVER_FEATURES
GATT Characteristic Server Supported Features.

BT_UUID_GATT_PHY_AMF_VAL
GATT Characteristic Physical Activity Monitor Features UUID Value.

BT_UUID_GATT_PHY_AMF
GATT Characteristic Physical Activity Monitor Features.

BT_UUID_GATT_GEN_AID_VAL
GATT Characteristic General Activity Instantaneous Data UUID Value.

BT_UUID_GATT_GEN_AID
GATT Characteristic General Activity Instantaneous Data.

BT_UUID_GATT_GEN_ASD_VAL
GATT Characteristic General Activity Summary Data UUID Value.

BT_UUID_GATT_GEN_ASD
GATT Characteristic General Activity Summary Data.

BT_UUID_GATT_CR_AID_VAL
GATT Characteristic CardioRespiratory Activity Instantaneous Data UUID Value.

BT_UUID_GATT_CR_AID
GATT Characteristic CardioRespiratory Activity Instantaneous Data.

BT_UUID_GATT_CR_ASD_VAL
GATT Characteristic CardioRespiratory Activity Summary Data UUID Value.

BT_UUID_GATT_CR_ASD
GATT Characteristic CardioRespiratory Activity Summary Data.

BT_UUID_GATT_SC_ASD_VAL
GATT Characteristic Step Counter Activity Summary Data UUID Value.

BT_UUID_GATT_SC_ASD
GATT Characteristic Step Counter Activity Summary Data.

BT_UUID_GATT_SLP_AID_VAL
GATT Characteristic Sleep Activity Instantaneous Data UUID Value.

BT_UUID_GATT_SLP_AID
GATT Characteristic Sleep Activity Instantaneous Data.

BT_UUID_GATT_SLP_ASD_VAL
GATT Characteristic Sleep Activity Summary Data UUID Value.

2410 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

BT_UUID_GATT_SLP_ASD
GATT Characteristic Sleep Activity Summary Data.

BT_UUID_GATT_PHY_AMCP_VAL
GATT Characteristic Physical Activity Monitor Control Point UUID Value.

BT_UUID_GATT_PHY_AMCP
GATT Characteristic Physical Activity Monitor Control Point.

BT_UUID_GATT_ACS_VAL
GATT Characteristic Activity Current Session UUID Value.

BT_UUID_GATT_ACS
GATT Characteristic Activity Current Session.

BT_UUID_GATT_PHY_ASDESC_VAL
GATT Characteristic Physical Activity Session Descriptor UUID Value.

BT_UUID_GATT_PHY_ASDESC
GATT Characteristic Physical Activity Session Descriptor.

BT_UUID_GATT_PREF_U_VAL
GATT Characteristic Preferred Units UUID Value.

BT_UUID_GATT_PREF_U
GATT Characteristic Preferred Units.

BT_UUID_GATT_HRES_H_VAL
GATT Characteristic High Resolution Height UUID Value.

BT_UUID_GATT_HRES_H
GATT Characteristic High Resolution Height.

BT_UUID_GATT_MID_NAME_VAL
GATT Characteristic Middle Name UUID Value.

BT_UUID_GATT_MID_NAME
GATT Characteristic Middle Name.

BT_UUID_GATT_STRDLEN_VAL
GATT Characteristic Stride Length UUID Value.

BT_UUID_GATT_STRDLEN
GATT Characteristic Stride Length.

BT_UUID_GATT_HANDEDNESS_VAL
GATT Characteristic Handedness UUID Value.
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BT_UUID_GATT_HANDEDNESS
GATT Characteristic Handedness.

BT_UUID_GATT_DEVICE_WP_VAL
GATT Characteristic Device Wearing Position UUID Value.

BT_UUID_GATT_DEVICE_WP
GATT Characteristic Device Wearing Position.

BT_UUID_GATT_4ZHRL_VAL
GATT Characteristic Four Zone Heart Rate Limit UUID Value.

BT_UUID_GATT_4ZHRL
GATT Characteristic Four Zone Heart Rate Limit.

BT_UUID_GATT_HIET_VAL
GATT Characteristic High Intensity Exercise Threshold UUID Value.

BT_UUID_GATT_HIET
GATT Characteristic High Intensity Exercise Threshold.

BT_UUID_GATT_AG_VAL
GATT Characteristic Activity Goal UUID Value.

BT_UUID_GATT_AG
GATT Characteristic Activity Goal.

BT_UUID_GATT_SIN_VAL
GATT Characteristic Sedentary Interval Notification UUID Value.

BT_UUID_GATT_SIN
GATT Characteristic Sedentary Interval Notification.

BT_UUID_GATT_CI_VAL
GATT Characteristic Caloric Intake UUID Value.

BT_UUID_GATT_CI
GATT Characteristic Caloric Intake.

BT_UUID_GATT_TMAPR_VAL
GATT Characteristic TMAP Role UUID Value.

BT_UUID_GATT_TMAPR
GATT Characteristic TMAP Role.

BT_UUID_AICS_STATE_VAL
Audio Input Control Service State value.
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BT_UUID_AICS_STATE
Audio Input Control Service State.

BT_UUID_AICS_GAIN_SETTINGS_VAL
Audio Input Control Service Gain Settings Properties value.

BT_UUID_AICS_GAIN_SETTINGS
Audio Input Control Service Gain Settings Properties.

BT_UUID_AICS_INPUT_TYPE_VAL
Audio Input Control Service Input Type value.

BT_UUID_AICS_INPUT_TYPE
Audio Input Control Service Input Type.

BT_UUID_AICS_INPUT_STATUS_VAL
Audio Input Control Service Input Status value.

BT_UUID_AICS_INPUT_STATUS
Audio Input Control Service Input Status.

BT_UUID_AICS_CONTROL_VAL
Audio Input Control Service Control Point value.

BT_UUID_AICS_CONTROL
Audio Input Control Service Control Point.

BT_UUID_AICS_DESCRIPTION_VAL
Audio Input Control Service Input Description value.

BT_UUID_AICS_DESCRIPTION
Audio Input Control Service Input Description.

BT_UUID_VCS_STATE_VAL
Volume Control Setting value.

BT_UUID_VCS_STATE
Volume Control Setting.

BT_UUID_VCS_CONTROL_VAL
Volume Control Control point value.

BT_UUID_VCS_CONTROL
Volume Control Control point.

BT_UUID_VCS_FLAGS_VAL
Volume Control Flags value.
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BT_UUID_VCS_FLAGS
Volume Control Flags.

BT_UUID_VOCS_STATE_VAL
Volume Offset State value.

BT_UUID_VOCS_STATE
Volume Offset State.

BT_UUID_VOCS_LOCATION_VAL
Audio Location value.

BT_UUID_VOCS_LOCATION
Audio Location.

BT_UUID_VOCS_CONTROL_VAL
Volume Offset Control Point value.

BT_UUID_VOCS_CONTROL
Volume Offset Control Point.

BT_UUID_VOCS_DESCRIPTION_VAL
Volume Offset Audio Output Description value.

BT_UUID_VOCS_DESCRIPTION
Volume Offset Audio Output Description.

BT_UUID_CSIS_SIRK_VAL
Set Identity Resolving Key value.

BT_UUID_CSIS_SIRK
Set Identity Resolving Key.

BT_UUID_CSIS_SET_SIZE_VAL
Set size value.

BT_UUID_CSIS_SET_SIZE
Set size.

BT_UUID_CSIS_SET_LOCK_VAL
Set lock value.

BT_UUID_CSIS_SET_LOCK
Set lock.

BT_UUID_CSIS_RANK_VAL
Rank value.
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BT_UUID_CSIS_RANK
Rank.

BT_UUID_GATT_EDKM_VAL
GATT Characteristic Encrypted Data Key Material UUID Value.

BT_UUID_GATT_EDKM
GATT Characteristic Encrypted Data Key Material.

BT_UUID_GATT_AE32_VAL
GATT Characteristic Apparent Energy 32 UUID Value.

BT_UUID_GATT_AE32
GATT Characteristic Apparent Energy 32.

BT_UUID_GATT_AP_VAL
GATT Characteristic Apparent Power UUID Value.

BT_UUID_GATT_AP
GATT Characteristic Apparent Power.

BT_UUID_GATT_CO2CONC_VAL
GATT Characteristic CO2 Concentration UUID Value.

BT_UUID_GATT_CO2CONC
GATT Characteristic CO2 Concentration.

BT_UUID_GATT_COS_VAL
GATT Characteristic Cosine of the Angle UUID Value.

BT_UUID_GATT_COS
GATT Characteristic Cosine of the Angle.

BT_UUID_GATT_DEVTF_VAL
GATT Characteristic Device Time Feature UUID Value.

BT_UUID_GATT_DEVTF
GATT Characteristic Device Time Feature.

BT_UUID_GATT_DEVTP_VAL
GATT Characteristic Device Time Parameters UUID Value.

BT_UUID_GATT_DEVTP
GATT Characteristic Device Time Parameters.

BT_UUID_GATT_DEVT_VAL
GATT Characteristic Device Time UUID Value.
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BT_UUID_GATT_DEVT
GATT Characteristic String.

BT_UUID_GATT_DEVTCP_VAL
GATT Characteristic Device Time Control Point UUID Value.

BT_UUID_GATT_DEVTCP
GATT Characteristic Device Time Control Point.

BT_UUID_GATT_TCLD_VAL
GATT Characteristic Time Change Log Data UUID Value.

BT_UUID_GATT_TCLD
GATT Characteristic Time Change Log Data.

BT_UUID_MCS_PLAYER_NAME_VAL
Media player name value.

BT_UUID_MCS_PLAYER_NAME
Media player name.

BT_UUID_MCS_ICON_OBJ_ID_VAL
Media Icon Object ID value.

BT_UUID_MCS_ICON_OBJ_ID
Media Icon Object ID.

BT_UUID_MCS_ICON_URL_VAL
Media Icon URL value.

BT_UUID_MCS_ICON_URL
Media Icon URL.

BT_UUID_MCS_TRACK_CHANGED_VAL
Track Changed value.

BT_UUID_MCS_TRACK_CHANGED
Track Changed.

BT_UUID_MCS_TRACK_TITLE_VAL
Track Title value.

BT_UUID_MCS_TRACK_TITLE
Track Title.

BT_UUID_MCS_TRACK_DURATION_VAL
Track Duration value.
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BT_UUID_MCS_TRACK_DURATION
Track Duration.

BT_UUID_MCS_TRACK_POSITION_VAL
Track Position value.

BT_UUID_MCS_TRACK_POSITION
Track Position.

BT_UUID_MCS_PLAYBACK_SPEED_VAL
Playback Speed value.

BT_UUID_MCS_PLAYBACK_SPEED
Playback Speed.

BT_UUID_MCS_SEEKING_SPEED_VAL
Seeking Speed value.

BT_UUID_MCS_SEEKING_SPEED
Seeking Speed.

BT_UUID_MCS_TRACK_SEGMENTS_OBJ_ID_VAL
Track Segments Object ID value.

BT_UUID_MCS_TRACK_SEGMENTS_OBJ_ID
Track Segments Object ID.

BT_UUID_MCS_CURRENT_TRACK_OBJ_ID_VAL
Current Track Object ID value.

BT_UUID_MCS_CURRENT_TRACK_OBJ_ID
Current Track Object ID.

BT_UUID_MCS_NEXT_TRACK_OBJ_ID_VAL
Next Track Object ID value.

BT_UUID_MCS_NEXT_TRACK_OBJ_ID
Next Track Object ID.

BT_UUID_MCS_PARENT_GROUP_OBJ_ID_VAL
Parent Group Object ID value.

BT_UUID_MCS_PARENT_GROUP_OBJ_ID
Parent Group Object ID.

BT_UUID_MCS_CURRENT_GROUP_OBJ_ID_VAL
Group Object ID value.
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BT_UUID_MCS_CURRENT_GROUP_OBJ_ID
Group Object ID.

BT_UUID_MCS_PLAYING_ORDER_VAL
Playing Order value.

BT_UUID_MCS_PLAYING_ORDER
Playing Order.

BT_UUID_MCS_PLAYING_ORDERS_VAL
Playing Orders supported value.

BT_UUID_MCS_PLAYING_ORDERS
Playing Orders supported.

BT_UUID_MCS_MEDIA_STATE_VAL
Media State value.

BT_UUID_MCS_MEDIA_STATE
Media State.

BT_UUID_MCS_MEDIA_CONTROL_POINT_VAL
Media Control Point value.

BT_UUID_MCS_MEDIA_CONTROL_POINT
Media Control Point.

BT_UUID_MCS_MEDIA_CONTROL_OPCODES_VAL
Media control opcodes supported value.

BT_UUID_MCS_MEDIA_CONTROL_OPCODES
Media control opcodes supported.

BT_UUID_MCS_SEARCH_RESULTS_OBJ_ID_VAL
Search result object ID value.

BT_UUID_MCS_SEARCH_RESULTS_OBJ_ID
Search result object ID.

BT_UUID_MCS_SEARCH_CONTROL_POINT_VAL
Search control point value.

BT_UUID_MCS_SEARCH_CONTROL_POINT
Search control point.

BT_UUID_GATT_E32_VAL
GATT Characteristic Energy 32 UUID Value.
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BT_UUID_GATT_E32
GATT Characteristic Energy 32.

BT_UUID_OTS_TYPE_MPL_ICON_VAL
Media Player Icon Object Type value.

BT_UUID_OTS_TYPE_MPL_ICON
Media Player Icon Object Type.

BT_UUID_OTS_TYPE_TRACK_SEGMENT_VAL
Track Segments Object Type value.

BT_UUID_OTS_TYPE_TRACK_SEGMENT
Track Segments Object Type.

BT_UUID_OTS_TYPE_TRACK_VAL
Track Object Type value.

BT_UUID_OTS_TYPE_TRACK
Track Object Type.

BT_UUID_OTS_TYPE_GROUP_VAL
Group Object Type value.

BT_UUID_OTS_TYPE_GROUP
Group Object Type.

BT_UUID_GATT_CTEE_VAL
GATT Characteristic Constant Tone Extension Enable UUID Value.

BT_UUID_GATT_CTEE
GATT Characteristic Constant Tone Extension Enable.

BT_UUID_GATT_ACTEML_VAL
GATT Characteristic Advertising Constant Tone Extension Minimum Length UUID
Value.

BT_UUID_GATT_ACTEML
GATT Characteristic Advertising Constant Tone Extension Minimum Length.

BT_UUID_GATT_ACTEMTC_VAL
GATT Characteristic Advertising Constant Tone Extension Minimum Transmit Count
UUID Value.

BT_UUID_GATT_ACTEMTC
GATT Characteristic Advertising Constant Tone Extension Minimum Transmit Count.

BT_UUID_GATT_ACTETD_VAL
GATT Characteristic Advertising Constant Tone Extension Transmit Duration UUID
Value.
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BT_UUID_GATT_ACTETD
GATT Characteristic Advertising Constant Tone Extension Transmit Duration.

BT_UUID_GATT_ACTEI_VAL
GATT Characteristic Advertising Constant Tone Extension Interval UUID Value.

BT_UUID_GATT_ACTEI
GATT Characteristic Advertising Constant Tone Extension Interval.

BT_UUID_GATT_ACTEP_VAL
GATT Characteristic Advertising Constant Tone Extension PHY UUID Value.

BT_UUID_GATT_ACTEP
GATT Characteristic Advertising Constant Tone Extension PHY.

BT_UUID_TBS_PROVIDER_NAME_VAL
Bearer Provider Name value.

BT_UUID_TBS_PROVIDER_NAME
Bearer Provider Name.

BT_UUID_TBS_UCI_VAL
Bearer UCI value.

BT_UUID_TBS_UCI
Bearer UCI.

BT_UUID_TBS_TECHNOLOGY_VAL
Bearer Technology value.

BT_UUID_TBS_TECHNOLOGY
Bearer Technology.

BT_UUID_TBS_URI_LIST_VAL
Bearer URI Prefixes Supported List value.

BT_UUID_TBS_URI_LIST
Bearer URI Prefixes Supported List.

BT_UUID_TBS_SIGNAL_STRENGTH_VAL
Bearer Signal Strength value.

BT_UUID_TBS_SIGNAL_STRENGTH
Bearer Signal Strength.

BT_UUID_TBS_SIGNAL_INTERVAL_VAL
Bearer Signal Strength Reporting Interval value.
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BT_UUID_TBS_SIGNAL_INTERVAL
Bearer Signal Strength Reporting Interval.

BT_UUID_TBS_LIST_CURRENT_CALLS_VAL
Bearer List Current Calls value.

BT_UUID_TBS_LIST_CURRENT_CALLS
Bearer List Current Calls.

BT_UUID_CCID_VAL
Content Control ID value.

BT_UUID_CCID
Content Control ID.

BT_UUID_TBS_STATUS_FLAGS_VAL
Status flags value.

BT_UUID_TBS_STATUS_FLAGS
Status flags.

BT_UUID_TBS_INCOMING_URI_VAL
Incoming Call Target Caller ID value.

BT_UUID_TBS_INCOMING_URI
Incoming Call Target Caller ID.

BT_UUID_TBS_CALL_STATE_VAL
Call State value.

BT_UUID_TBS_CALL_STATE
Call State.

BT_UUID_TBS_CALL_CONTROL_POINT_VAL
Call Control Point value.

BT_UUID_TBS_CALL_CONTROL_POINT
Call Control Point.

BT_UUID_TBS_OPTIONAL_OPCODES_VAL
Optional Opcodes value.

BT_UUID_TBS_OPTIONAL_OPCODES
Optional Opcodes.

BT_UUID_TBS_TERMINATE_REASON_VAL
BT_UUID_TBS_TERMINATE_REASON_VAL.

Terminate reason value
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BT_UUID_TBS_TERMINATE_REASON
BT_UUID_TBS_TERMINATE_REASON.

Terminate reason

BT_UUID_TBS_INCOMING_CALL_VAL
Incoming Call value.

BT_UUID_TBS_INCOMING_CALL
Incoming Call.

BT_UUID_TBS_FRIENDLY_NAME_VAL
Incoming Call Friendly name value.

BT_UUID_TBS_FRIENDLY_NAME
Incoming Call Friendly name.

BT_UUID_MICS_MUTE_VAL
Microphone Control Service Mute value.

BT_UUID_MICS_MUTE
Microphone Control Service Mute.

BT_UUID_ASCS_ASE_SNK_VAL
Audio Stream Endpoint Sink Characteristic value.

BT_UUID_ASCS_ASE_SNK
Audio Stream Endpoint Sink Characteristic.

BT_UUID_ASCS_ASE_SRC_VAL
Audio Stream Endpoint Source Characteristic value.

BT_UUID_ASCS_ASE_SRC
Audio Stream Endpoint Source Characteristic.

BT_UUID_ASCS_ASE_CP_VAL
Audio Stream Endpoint Control Point Characteristic value.

BT_UUID_ASCS_ASE_CP
Audio Stream Endpoint Control Point Characteristic.

BT_UUID_BASS_CONTROL_POINT_VAL
Broadcast Audio Scan Service Scan State value.

BT_UUID_BASS_CONTROL_POINT
Broadcast Audio Scan Service Scan State.

BT_UUID_BASS_RECV_STATE_VAL
Broadcast Audio Scan Service Receive State value.
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BT_UUID_BASS_RECV_STATE
Broadcast Audio Scan Service Receive State.

BT_UUID_PACS_SNK_VAL
Sink PAC Characteristic value.

BT_UUID_PACS_SNK
Sink PAC Characteristic.

BT_UUID_PACS_SNK_LOC_VAL
Sink PAC Locations Characteristic value.

BT_UUID_PACS_SNK_LOC
Sink PAC Locations Characteristic.

BT_UUID_PACS_SRC_VAL
Source PAC Characteristic value.

BT_UUID_PACS_SRC
Source PAC Characteristic.

BT_UUID_PACS_SRC_LOC_VAL
Source PAC Locations Characteristic value.

BT_UUID_PACS_SRC_LOC
Source PAC Locations Characteristic.

BT_UUID_PACS_AVAILABLE_CONTEXT_VAL
Available Audio Contexts Characteristic value.

BT_UUID_PACS_AVAILABLE_CONTEXT
Available Audio Contexts Characteristic.

BT_UUID_PACS_SUPPORTED_CONTEXT_VAL
Supported Audio Context Characteristic value.

BT_UUID_PACS_SUPPORTED_CONTEXT
Supported Audio Context Characteristic.

BT_UUID_GATT_NH4CONC_VAL
GATT Characteristic Ammonia Concentration UUID Value.

BT_UUID_GATT_NH4CONC
GATT Characteristic Ammonia Concentration.

BT_UUID_GATT_COCONC_VAL
GATT Characteristic Carbon Monoxide Concentration UUID Value.
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BT_UUID_GATT_COCONC
GATT Characteristic Carbon Monoxide Concentration.

BT_UUID_GATT_CH4CONC_VAL
GATT Characteristic Methane Concentration UUID Value.

BT_UUID_GATT_CH4CONC
GATT Characteristic Methane Concentration.

BT_UUID_GATT_NO2CONC_VAL
GATT Characteristic Nitrogen Dioxide Concentration UUID Value.

BT_UUID_GATT_NO2CONC
GATT Characteristic Nitrogen Dioxide Concentration.

BT_UUID_GATT_NONCH4CONC_VAL
GATT Characteristic Non-Methane Volatile Organic Compounds Concentration UUID
Value.

BT_UUID_GATT_NONCH4CONC
GATT Characteristic Non-Methane Volatile Organic Compounds Concentration.

BT_UUID_GATT_O3CONC_VAL
GATT Characteristic Ozone Concentration UUID Value.

BT_UUID_GATT_O3CONC
GATT Characteristic Ozone Concentration.

BT_UUID_GATT_PM1CONC_VAL
GATT Characteristic Particulate Matter - PM1 Concentration UUID Value.

BT_UUID_GATT_PM1CONC
GATT Characteristic Particulate Matter - PM1 Concentration.

BT_UUID_GATT_PM25CONC_VAL
GATT Characteristic Particulate Matter - PM2.5 Concentration UUID Value.

BT_UUID_GATT_PM25CONC
GATT Characteristic Particulate Matter - PM2.5 Concentration.

BT_UUID_GATT_PM10CONC_VAL
GATT Characteristic Particulate Matter - PM10 Concentration UUID Value.

BT_UUID_GATT_PM10CONC
GATT Characteristic Particulate Matter - PM10 Concentration.

BT_UUID_GATT_SO2CONC_VAL
GATT Characteristic Sulfur Dioxide Concentration UUID Value.
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BT_UUID_GATT_SO2CONC
GATT Characteristic Sulfur Dioxide Concentration.

BT_UUID_GATT_SF6CONC_VAL
GATT Characteristic Sulfur Hexafluoride Concentration UUID Value.

BT_UUID_GATT_SF6CONC
GATT Characteristic Sulfur Hexafluoride Concentration.

BT_UUID_HAS_HEARING_AID_FEATURES_VAL
Hearing Aid Features Characteristic value.

BT_UUID_HAS_HEARING_AID_FEATURES
Hearing Aid Features Characteristic.

BT_UUID_HAS_PRESET_CONTROL_POINT_VAL
Hearing Aid Preset Control Point Characteristic value.

BT_UUID_HAS_PRESET_CONTROL_POINT
Hearing Aid Preset Control Point Characteristic.

BT_UUID_HAS_ACTIVE_PRESET_INDEX_VAL
Active Preset Index Characteristic value.

BT_UUID_HAS_ACTIVE_PRESET_INDEX
Active Preset Index Characteristic.

BT_UUID_GATT_FSTR64_VAL
GATT Characteristic Fixed String 64 UUID Value.

BT_UUID_GATT_FSTR64
GATT Characteristic Fixed String 64.

BT_UUID_GATT_HITEMP_VAL
GATT Characteristic High Temperature UUID Value.

BT_UUID_GATT_HITEMP
GATT Characteristic High Temperature.

BT_UUID_GATT_HV_VAL
GATT Characteristic High Voltage UUID Value.

BT_UUID_GATT_HV
GATT Characteristic High Voltage.

BT_UUID_GATT_LD_VAL
GATT Characteristic Light Distribution UUID Value.

6.1. Bluetooth 2425



Zephyr Project Documentation, Release 3.7.99

BT_UUID_GATT_LD
GATT Characteristic Light Distribution.

BT_UUID_GATT_LO_VAL
GATT Characteristic Light Output UUID Value.

BT_UUID_GATT_LO
GATT Characteristic Light Output.

BT_UUID_GATT_LST_VAL
GATT Characteristic Light Source Type UUID Value.

BT_UUID_GATT_LST
GATT Characteristic Light Source Type.

BT_UUID_GATT_NOISE_VAL
GATT Characteristic Noise UUID Value.

BT_UUID_GATT_NOISE
GATT Characteristic Noise.

BT_UUID_GATT_RRCCTP_VAL
GATT Characteristic Relative Runtime in a Correlated Color Temperature Range UUID
Value.

BT_UUID_GATT_RRCCTR
GATT Characteristic Relative Runtime in a Correlated Color Temperature Range.

BT_UUID_GATT_TIM_S32_VAL
GATT Characteristic Time Second 32 UUID Value.

BT_UUID_GATT_TIM_S32
GATT Characteristic Time Second 32.

BT_UUID_GATT_VOCCONC_VAL
GATT Characteristic VOC Concentration UUID Value.

BT_UUID_GATT_VOCCONC
GATT Characteristic VOC Concentration.

BT_UUID_GATT_VF_VAL
GATT Characteristic Voltage Frequency UUID Value.

BT_UUID_GATT_VF
GATT Characteristic Voltage Frequency.

BT_UUID_BAS_BATTERY_CRIT_STATUS_VAL
BAS Characteristic Battery Critical Status UUID Value.
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BT_UUID_BAS_BATTERY_CRIT_STATUS
BAS Characteristic Battery Critical Status.

BT_UUID_BAS_BATTERY_HEALTH_STATUS_VAL
BAS Characteristic Battery Health Status UUID Value.

BT_UUID_BAS_BATTERY_HEALTH_STATUS
BAS Characteristic Battery Health Status.

BT_UUID_BAS_BATTERY_HEALTH_INF_VAL
BAS Characteristic Battery Health Information UUID Value.

BT_UUID_BAS_BATTERY_HEALTH_INF
BAS Characteristic Battery Health Information.

BT_UUID_BAS_BATTERY_INF_VAL
BAS Characteristic Battery Information UUID Value.

BT_UUID_BAS_BATTERY_INF
BAS Characteristic Battery Information.

BT_UUID_BAS_BATTERY_LEVEL_STATUS_VAL
BAS Characteristic Battery Level Status UUID Value.

BT_UUID_BAS_BATTERY_LEVEL_STATUS
BAS Characteristic Battery Level Status.

BT_UUID_BAS_BATTERY_TIME_STATUS_VAL
BAS Characteristic Battery Time Status UUID Value.

BT_UUID_BAS_BATTERY_TIME_STATUS
BAS Characteristic Battery Time Status.

BT_UUID_GATT_ESD_VAL
GATT Characteristic Estimated Service Date UUID Value.

BT_UUID_GATT_ESD
GATT Characteristic Estimated Service Date.

BT_UUID_BAS_BATTERY_ENERGY_STATUS_VAL
BAS Characteristic Battery Energy Status UUID Value.

BT_UUID_BAS_BATTERY_ENERGY_STATUS
BAS Characteristic Battery Energy Status.

BT_UUID_GATT_SL_VAL
GATT Characteristic LE GATT Security Levels UUID Value.
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BT_UUID_GATT_SL
GATT Characteristic LE GATT Security Levels.

BT_UUID_GMAS_VAL
Gaming Service UUID value.

BT_UUID_GMAS
Common Audio Service.

BT_UUID_GMAP_ROLE_VAL
Gaming Audio Profile Role UUID value.

BT_UUID_GMAP_ROLE
Gaming Audio Profile Role.

BT_UUID_GMAP_UGG_FEAT_VAL
Gaming Audio Profile Unicast Game Gateway Features UUID value.

BT_UUID_GMAP_UGG_FEAT
Gaming Audio Profile Unicast Game Gateway Features.

BT_UUID_GMAP_UGT_FEAT_VAL
Gaming Audio Profile Unicast Game Terminal Features UUID value.

BT_UUID_GMAP_UGT_FEAT
Gaming Audio Profile Unicast Game Terminal Features.

BT_UUID_GMAP_BGS_FEAT_VAL
Gaming Audio Profile Broadcast Game Sender Features UUID value.

BT_UUID_GMAP_BGS_FEAT
Gaming Audio Profile Broadcast Game Sender Features.

BT_UUID_GMAP_BGR_FEAT_VAL
Gaming Audio Profile Broadcast Game Receiver Features UUID value.

BT_UUID_GMAP_BGR_FEAT
Gaming Audio Profile Broadcast Game Receiver Features.

BT_UUID_SDP_VAL

BT_UUID_SDP

BT_UUID_UDP_VAL

BT_UUID_UDP

BT_UUID_RFCOMM_VAL
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BT_UUID_RFCOMM

BT_UUID_TCP_VAL

BT_UUID_TCP

BT_UUID_TCS_BIN_VAL

BT_UUID_TCS_BIN

BT_UUID_TCS_AT_VAL

BT_UUID_TCS_AT

BT_UUID_ATT_VAL

BT_UUID_ATT

BT_UUID_OBEX_VAL

BT_UUID_OBEX

BT_UUID_IP_VAL

BT_UUID_IP

BT_UUID_FTP_VAL

BT_UUID_FTP

BT_UUID_HTTP_VAL

BT_UUID_HTTP

BT_UUID_WSP_VAL

BT_UUID_WSP

BT_UUID_BNEP_VAL

BT_UUID_BNEP

BT_UUID_UPNP_VAL

BT_UUID_UPNP
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BT_UUID_HIDP_VAL

BT_UUID_HIDP

BT_UUID_HCRP_CTRL_VAL

BT_UUID_HCRP_CTRL

BT_UUID_HCRP_DATA_VAL

BT_UUID_HCRP_DATA

BT_UUID_HCRP_NOTE_VAL

BT_UUID_HCRP_NOTE

BT_UUID_AVCTP_VAL

BT_UUID_AVCTP

BT_UUID_AVDTP_VAL

BT_UUID_AVDTP

BT_UUID_CMTP_VAL

BT_UUID_CMTP

BT_UUID_UDI_VAL

BT_UUID_UDI

BT_UUID_MCAP_CTRL_VAL

BT_UUID_MCAP_CTRL

BT_UUID_MCAP_DATA_VAL

BT_UUID_MCAP_DATA

BT_UUID_L2CAP_VAL

BT_UUID_L2CAP
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Enums

Bluetooth UUID types.

Values:

enumerator BT_UUID_TYPE_16
UUID type 16-bit.

enumerator BT_UUID_TYPE_32
UUID type 32-bit.

enumerator BT_UUID_TYPE_128
UUID type 128-bit.

Functions

int bt_uuid_cmp(const struct bt_uuid *u1, const struct bt_uuid *u2)
Compare Bluetooth UUIDs.

Compares 2 Bluetooth UUIDs, if the types are different both UUIDs are first converted
to 128 bits format before comparing.

Parameters
• u1 – First Bluetooth UUID to compare

• u2 – Second Bluetooth UUID to compare

Returns
negative value if u1 < u2, 0 if u1 == u2, else positive

bool bt_uuid_create(struct bt_uuid *uuid, const uint8_t *data, uint8_t data_len)
Create a bt_uuid from a little-endian data buffer.

Create a bt_uuid from a little-endian data buffer. The data_len parameter is used to
determine whether the UUID is in 16, 32 or 128 bit format (length 2, 4 or 16). Note: 32
bit format is not allowed over the air.

Parameters
• uuid – Pointer to the bt_uuid variable

• data – pointer to UUID stored in little-endian data buffer

• data_len – length of the UUID in the data buffer

Returns
true if the data was valid and the UUID was successfully created.

void bt_uuid_to_str(const struct bt_uuid *uuid, char *str, size_t len)
Convert Bluetooth UUID to string.

Converts Bluetooth UUID to string. UUID can be in any format, 16-bit, 32-bit or 128-bit.

Parameters
• uuid – Bluetooth UUID

• str – pointer where to put converted string

• len – length of str
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struct bt_uuid
#include <uuid.h> This is a ‘tentative’ type and should be used as a pointer only.

struct bt_uuid_16
#include <uuid.h>

Public Members

struct bt_uuid uuid
UUID generic type.

uint16_t val
UUID value, 16-bit in host endianness.

struct bt_uuid_32
#include <uuid.h>

Public Members

struct bt_uuid uuid
UUID generic type.

uint32_t val
UUID value, 32-bit in host endianness.

struct bt_uuid_128
#include <uuid.h>

Public Members

struct bt_uuid uuid
UUID generic type.

uint8_t val[16]
UUID value, 128-bit in little-endian format.

6.1.10 Tools

This page lists and describes tools that can be used to assist during Bluetooth stack or application
development in order to help, simplify and speed up the development process.

• Mobile applications

• Using BlueZ with Zephyr
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• Running on QEMU or native_sim

– Using the Host System Bluetooth Controller

– Using a Zephyr-based BLE Controller

– HCI Tracing

• Running on a Virtual Controller and native_sim

– Android Emulator

• Using Zephyr-based Controllers with BlueZ

Mobile applications

It is often useful to make use of existing mobile applications to interact with hardware running
Zephyr, to test functionality without having to write any additional code or requiring extra hard-
ware.

The recommended mobile applications for interacting with Zephyr are:

• Android:

– nRF Connect for Android

– nRF Mesh for Android

– LightBlue for Android

• iOS:

– nRF Connect for iOS

– nRF Mesh for iOS

– LightBlue for iOS

Using BlueZ with Zephyr

The Linux Bluetooth Protocol Stack, BlueZ, comes with a very useful set of tools that can be used
to debug and interact with Zephyr’s BLE Host and Controller. In order to benefit from these tools
you will need to make sure that you are running a recent version of the Linux Kernel and BlueZ:

• Linux Kernel 4.10+

• BlueZ 4.45+

Additionally, some of the BlueZ tools might not be bundled by default by your Linux distribution.
If you need to build BlueZ from scratch to update to a recent version or to obtain all of its tools
you can follow the steps below:

git clone git://git.kernel.org/pub/scm/bluetooth/bluez.git
cd bluez
./bootstrap-configure --disable-android --disable-midi
make

You can then find btattach, btmgt and btproxy in the tools/ folder and btmon in the monitor/
folder.

You’ll need to enable BlueZ’s experimental features so you can access its most recent BLE func-
tionality. Do this by editing the file /lib/systemd/system/bluetooth.service and making sure
to include the -E option in the daemon’s execution start line:
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ExecStart=/usr/libexec/bluetooth/bluetoothd -E

Finally, reload and restart the daemon:

sudo systemctl daemon-reload
sudo systemctl restart bluetooth

Running on QEMU or native_sim

It’s possible to run Bluetooth applications using either the QEMU emulator or native_sim.

In either case, a Bluetooth controller needs to be exported from the host OS (Linux) to the emula-
tor. For this purpose you will need some tools described in the Using BlueZ with Zephyr section.

Using the Host System Bluetooth Controller The host OS’s Bluetooth controller is connected
in the following manner:

• To the second QEMU serial line using a UNIX socket. This socket gets used with the help of
the QEMU option -serial unix:/tmp/bt-server-bredr. This option gets passed to QEMU
through QEMU_EXTRA_FLAGS automatically whenever an application has enabled Bluetooth
support.

• To native_sim’s BT User Channel driver through the use of a command-line option passed
to the native_sim executable: --bt-dev=hci0

On the host side, BlueZ allows you to export its Bluetooth controller through a so-called user
channel for QEMU and native_sim to use.

Note

You only need to run btproxy when using QEMU. native_sim handles the UNIX socket proxy-
ing automatically

If you are using QEMU, in order to make the Controller available you will need one additional
step using btproxy:

1. Make sure that the Bluetooth controller is down

2. Use the btproxy tool to open the listening UNIX socket, type:

sudo tools/btproxy -u -i 0
Listening on /tmp/bt-server-bredr

You might need to replace -i 0 with the index of the Controller you wish to proxy.

If you see Received unknown host packet type 0x00 when running QEMU, then add -z to
the btproxy command line to ignore any null bytes transmitted at startup.

Once the hardware is connected and ready to use, you can then proceed to building and running
a sample:

• Choose one of the Bluetooth sample applications located in samples/bluetooth.

• To run a Bluetooth application in QEMU, type:

west build -b qemu_x86 samples/bluetooth/<sample>
west build -t run

Running QEMU now results in a connection with the second serial line to the
bt-server-bredr UNIX socket, letting the application access the Bluetooth controller.
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• To run a Bluetooth application in native_sim, first build it:

west build -b native_sim samples/bluetooth/<sample>

And then run it with:

$ sudo ./build/zephyr/zephyr.exe --bt-dev=hci0

Using a Zephyr-based BLE Controller Depending on which hardware you have available, you
can choose between two transports when building a single-mode, Zephyr-based BLE Controller:

• UART: Use the hci_uart sample and follow the instructions in bluetooth-hci-uart-qemu-
posix.

• USB: Use the hci_usb sample and then treat it as a Host System Bluetooth Controller (see
previous section)

HCI Tracing When running the Host on a computer connected to an external Controller, it is
very useful to be able to see the full log of exchanges between the two, in the format of a Host
Controller Interface log. In order to see those logs, you can use the built-in btmon tool from BlueZ:

$ btmon

The output looks like this:

= New Index: 00:00:00:00:00:00 (Primary,Virtual,Control) 0.274200
= Open Index: 00:00:00:00:00:00 0.274500
< HCI Command: Reset (0x03|0x0003) plen 0 #1 0.274600
> HCI Event: Command Complete (0x0e) plen 4 #2 0.274700

Reset (0x03|0x0003) ncmd 1
Status: Success (0x00)

< HCI Command: Read Local Supported Features (0x04|0x0003) plen 0 #3 0.274800
> HCI Event: Command Complete (0x0e) plen 12 #4 0.274900

Read Local Supported Features (0x04|0x0003) ncmd 1
Status: Success (0x00)
Features: 0x00 0x00 0x00 0x00 0x60 0x00 0x00 0x00

BR/EDR Not Supported
LE Supported (Controller)

Embedded HCI tracing When running both Host and Controller in actual Integrated Circuits,
you will only see normal log messages on the console by default, without any way of accessing
the HCI traffic between the Host and the Controller. However, there is a special Bluetooth log-
ging mode that converts the console to use a binary protocol that interleaves both normal log
messages as well as the HCI traffic.

Set the following Kconfig options to enable this protocol before building your application:

CONFIG_BT_DEBUG_MONITOR_UART=y
CONFIG_UART_CONSOLE=n

• Setting CONFIG_BT_DEBUG_MONITOR_UART activates the formatting

• Clearing CONFIG_UART_CONSOLEmakes the UART unavailable for the system console. E.g. for
printk and the boot banner

To decode the binary protocol that will now be sent to the console UART you need to use the
btmon tool from BlueZ:

$ btmon --tty <console TTY> --tty-speed 115200
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If UART is not available (or you still want non-binary logs), you can set CON-
FIG_BT_DEBUG_MONITOR_RTT instead, which will use Segger RTT. For example, if trying to
connect to a nRF52840DK with S/N 683578642:

$ btmon --jlink nRF52840_xxAA,683578642

Running on a Virtual Controller and native_sim

An alternative to a Bluetooth physical controller is the use of a virtual controller. This controller
can be connected over an HCI TCP server. This TCP server must support the HCI H4 protocol.
In comparison to the physical controller variant, the virtual controller allows to test a Zephyr
application running on the native boards without a physical Bluetooth controller.

The main use case for a virtual controller is to do Bluetooth connectivity tests without the need
of Bluetooth hardware. This allows to automate Bluetooth integration tests with external appli-
cations such as a Bluetooth gateway or a mobile application.

To demonstrate this functionality an example is given to interact with a virtual controller. For
this purpose, the experimental python module Bumble from Google is used as it allows to create
a TCP Bluetooth virtual controller and connect with the Zephyr Bluetooth host. To install bumble
follow the Bumble Getting Started Guide.

Note

If your Zephyr application requires the use of the HCI LE Set extended commands, install the
branch controller-extended-advertising from Bumble.

Android Emulator You can test the virtual controller by connecting a Bluetooth Zephyr appli-
cation to the Android Emulator.

To connect your application to the Android Emulator follow the next steps:

1. Build your Zephyr application and disable the HCI ACL flow control (i.e. CON-
FIG_BT_HCI_ACL_FLOW_CONTROL=n) as the virtual controller from android does not support
it at the moment.

2. Install Android Emulator version >= 33.1.4.0. The easiest way to do this is by installing the
latest Android Studio Preview version.

3. Create a new Android Virtual Device (AVD) with the Android Device Manager. The AVD
should use at least SDK API 34.

4. Run the Android Emulator via terminal as follows:

emulator avd YOUR_AVD -packet-streamer-endpoint default
5. Create a Bluetooth bridge between the Zephyr application and the virtual controller from

Android Emulator with the Bumble utility hci-bridge.

bumble-hci-bridge tcp-server:_:1234 android-netsim
This command will create a TCP server bridge on the local host IP address 127.0.0.1 and
port number 1234.

6. Run the Zephyr application and connect to the TCP server created in the last step.

./zephyr.exe --bt-dev=127.0.0.1:1234
After following these steps the Zephyr application will be available to the Android Emulator over
the virtual Bluetooth controller that was bridged with Bumble. You can verify that the Zephyr
application can communicate over Bluetooth by opening the Bluetooth settings in your AVD and
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scanning for your Zephyr application device. To test this you can build the Bluetooth peripheral
samples such as Peripheral HR or Peripheral DIS

Using Zephyr-based Controllers with BlueZ

If you want to test a Zephyr-powered BLE Controller using BlueZ’s Bluetooth Host, you will need
a few tools described in the Using BlueZ with Zephyr section. Once you have installed the tools
you can then use them to interact with your Zephyr-based controller:

sudo tools/btmgmt --index 0
[hci0]# auto-power
[hci0]# find -l

You might need to replace --index 0 with the index of the Controller you wish to manage. Ad-
ditional information about btmgmt can be found in its manual pages.

6.1.11 Shell

The Bluetooth Shell is an application based on the Shellmodule. It offer a collection of commands
made to easily interact with the Bluetooth stack.

Bluetooth Shell Setup and Usage

First you need to build and flash your board with the Bluetooth shell. For how to do that, see the
Getting Started Guide. The Bluetooth shell itself is located in tests/bluetooth/shell/.

When it’s done, connect to the CLI using your favorite serial terminal application. You should
see the following prompt:

uart:~$

For more details on general usage of the shell, see Shell.

The first step is enabling Bluetooth. To do so, use the bt init command. The following message
is printed to confirm Bluetooth has been initialized.

uart:~$ bt init
Bluetooth initialized
Settings Loaded
[00:02:26.771,148] <inf> fs_nvs: nvs_mount: 8 Sectors of 4096 bytes
[00:02:26.771,148] <inf> fs_nvs: nvs_mount: alloc wra: 0, fe8
[00:02:26.771,179] <inf> fs_nvs: nvs_mount: data wra: 0, 0
[00:02:26.777,984] <inf> bt_hci_core: hci_vs_init: HW Platform: Nordic Semiconductor␣
↪→(0x0002)
[00:02:26.778,015] <inf> bt_hci_core: hci_vs_init: HW Variant: nRF52x (0x0002)
[00:02:26.778,045] <inf> bt_hci_core: hci_vs_init: Firmware: Standard Bluetooth controller␣
↪→(0x00) Version 3.2 Build 99
[00:02:26.778,656] <inf> bt_hci_core: bt_init: No ID address. App must call settings_load()
[00:02:26.794,738] <inf> bt_hci_core: bt_dev_show_info: Identity: EB:BF:36:26:42:09 (random)
[00:02:26.794,769] <inf> bt_hci_core: bt_dev_show_info: HCI: version 5.3 (0x0c) revision␣
↪→0x0000, manufacturer 0x05f1
[00:02:26.794,799] <inf> bt_hci_core: bt_dev_show_info: LMP: version 5.3 (0x0c) subver␣
↪→0xffff
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Identities

Identities are a Zephyr host concept, allowing a single physical device to behave like multiple
logical Bluetooth devices.

The shell allows the creation of multiple identities, to a maximum that is set by the Kconfig sym-
bol CONFIG_BT_ID_MAX. To create a new identity, use bt id-create command. You can then use
it by selecting it with its ID bt id-select <id>. Finally, you can list all the available identities
with id-show.

Scan for devices

Start scanning by using the bt scan on command. Depending on the environment you’re in, you
may see a lot of lines printed on the shell. To stop the scan, run bt scan off, the scrolling should
stop.

Here is an example of what you can expect:

uart:~$ bt scan on
Bluetooth active scan enabled
[DEVICE]: CB:01:1A:2D:6E:AE (random), AD evt type 0, RSSI -78 C:1 S:1 D:0 SR:0 E:0 Prim:␣
↪→LE 1M, Secn: No packets, Interval: 0x0000 (0 us), SID: 0xff
[DEVICE]: 20:C2:EE:59:85:5B (random), AD evt type 3, RSSI -62 C:0 S:0 D:0 SR:0 E:0 Prim:␣
↪→LE 1M, Secn: No packets, Interval: 0x0000 (0 us), SID: 0xff
[DEVICE]: E3:72:76:87:2F:E8 (random), AD evt type 3, RSSI -74 C:0 S:0 D:0 SR:0 E:0 Prim:␣
↪→LE 1M, Secn: No packets, Interval: 0x0000 (0 us), SID: 0xff
[DEVICE]: 1E:19:25:8A:CB:84 (random), AD evt type 3, RSSI -67 C:0 S:0 D:0 SR:0 E:0 Prim:␣
↪→LE 1M, Secn: No packets, Interval: 0x0000 (0 us), SID: 0xff
[DEVICE]: 26:42:F3:D5:A0:86 (random), AD evt type 3, RSSI -73 C:0 S:0 D:0 SR:0 E:0 Prim:␣
↪→LE 1M, Secn: No packets, Interval: 0x0000 (0 us), SID: 0xff
[DEVICE]: 0C:61:D1:B9:5D:9E (random), AD evt type 3, RSSI -87 C:0 S:0 D:0 SR:0 E:0 Prim:␣
↪→LE 1M, Secn: No packets, Interval: 0x0000 (0 us), SID: 0xff
[DEVICE]: 20:C2:EE:59:85:5B (random), AD evt type 3, RSSI -66 C:0 S:0 D:0 SR:0 E:0 Prim:␣
↪→LE 1M, Secn: No packets, Interval: 0x0000 (0 us), SID: 0xff
[DEVICE]: 25:3F:7A:EE:0F:55 (random), AD evt type 3, RSSI -83 C:0 S:0 D:0 SR:0 E:0 Prim:␣
↪→LE 1M, Secn: No packets, Interval: 0x0000 (0 us), SID: 0xff
uart:~$ bt scan off
Scan successfully stopped

As you can see, this can lead to a high number of results. To reduce that number and easily find
a specific device, you can enable scan filters. There are four types of filters: by name, by RSSI,
by address and by periodic advertising interval. To apply a filter, use the bt scan-set-filter
command followed by the type of filters. You can add multiple filters by using the commands
again.

For example, if you want to look only for devices with the name test shell:

uart:~$ bt scan-filter-set name "test shell"

Or if you want to look for devices at a very close range:

uart:~$ bt scan-filter-set rssi -40
RSSI cutoff set at -40 dB

Finally, if you want to remove all filters:

uart:~$ bt scan-filter-clear all

You can use the command bt scan on to create an active scanner, meaning that the scanner will
ask the advertisers for more information by sending a scan request packet. Alternatively, you
can create a passive scanner by using the bt scan passive command, so the scanner will not ask
the advertiser for more information.
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Connecting to a device

To connect to a device, you need to know its address and type of address and use the bt connect
command with the address and the type as arguments.

Here is an example:

uart:~$ bt connect 52:84:F6:BD:CE:48 random
Connection pending
Connected: 52:84:F6:BD:CE:48 (random)
Remote LMP version 5.3 (0x0c) subversion 0xffff manufacturer 0x05f1
LE Features: 0x000000000001412f
LE PHY updated: TX PHY LE 2M, RX PHY LE 2M
LE conn param req: int (0x0018, 0x0028) lat 0 to 42
LE conn param updated: int 0x0028 lat 0 to 42

You can list the active connections of the shell using the bt connections command. The shell
maximum number of connections is defined by CONFIG_BT_MAX_CONN. You can disconnect from a
connection with the bt disconnect <address: XX:XX:XX:XX:XX:XX> <type: (public|random)>
command.

Note

If you were scanning just before, you can connect to the last scanned device by simply running
the bt connect command.

Alternatively, you can use the bt connect-name <name> command to automatically enable
scanning with a name filter and connect to the first match.

Advertising

Begin advertising by using the bt advertise on command. This will use the default parame-
ters and advertise a resolvable private address with the name of the device. You can choose to
use the identity address instead by running the bt advertise on identity command. To stop
advertising use the bt advertise off command.

To enable more advanced features of advertising, you should create an advertiser using the bt
adv-create command. Parameters for the advertiser can be passed either at the creation of it or
by using the bt adv-param command. To begin advertising with this newly created advertiser,
use the bt adv-start command, and then the bt adv-stop command to stop advertising.

When using the custom advertisers, you can choose if it will be connectable or scannable. This
leads to four options: conn-scan, conn-nscan, nconn-scan and nconn-nscan. Those parameters
are mandatory when creating an advertiser or updating its parameters.

For example, if you want to create a connectable and scannable advertiser and start it:

uart:~$ bt adv-create conn-scan
Created adv id: 0, adv: 0x200022f0
uart:~$ bt adv-start
Advertiser[0] 0x200022f0 set started

You may notice that with this, the custom advertiser does not advertise the device name; you
need to add it. Continuing from the previous example:

uart:~$ bt adv-stop
Advertiser set stopped
uart:~$ bt adv-data dev-name
uart:~$ bt adv-start
Advertiser[0] 0x200022f0 set started
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You should now see the name of the device in the advertising data. You can also set a custom
name by using name <custom name> instead of dev-name. It is also possible to set the advertising
data manually with the bt adv-data command. The following example shows how to set the
advertiser name with it using raw advertising data:

uart:~$ bt adv-create conn-scan
Created adv id: 0, adv: 0x20002348
uart:~$ bt adv-data 1009426C7565746F6F74682D5368656C6C
uart:~$ bt adv-start
Advertiser[0] 0x20002348 set started

The data must be formatted according to the Bluetooth Core Specification (see version 5.3, vol.
3, part C, 11). In this example, the first octet is the size of the data (the data and one octet for the
data type), the second one is the type of data, 0x09 is the Complete Local Name and the remaining
data are the name in ASCII. So, on the other device you should see the name Bluetooth-Shell.

When advertising, if others devices use an active scanner, you may receive scan request packets.
To visualize those packets, you can add scan-reports to the parameters of your advertiser.

Directed Advertising It is possible to use directed advertising on the shell if you want to re-
connect to a device. The following example demonstrates how to create a directed advertiser
with the address specified right after the parameter directed. The low parameter indicates that
we want to use the low duty cycle mode, and the dir-rpa parameter is required if the remote
device is privacy-enabled and supports address resolution of the target address in directed ad-
vertisement.

uart:~$ bt adv-create conn-scan directed D7:54:03:CE:F3:B4 random low dir-rpa
Created adv id: 0, adv: 0x20002348

After that, you can start the advertiser and then the target device will be able to reconnect.

Extended Advertising Let’s now have a look at some extended advertising features. To enable
extended advertising, use the ext-adv parameter.

uart:~$ bt adv-create conn-nscan ext-adv name-ad
Created adv id: 0, adv: 0x200022f0
uart:~$ bt adv-start
Advertiser[0] 0x200022f0 set started

This will create an extended advertiser, that is connectable and non-scannable.

Encrypted Advertising Data Zephyr has support for the Encrypted Advertising Data feature.
The bt encrypted-ad sub-commands allow managing the advertising data of a given advertiser.

To encrypt the advertising data, key materials need to be provided, that can be done with bt
encrypted-ad set-keys <session key> <init vector>. The session key is 16 bytes long and
the initialisation vector is 8 bytes long.

You can add advertising data by using bt encrypted-ad add-ad and bt encrypted-ad add-ead.
The former will take add one advertising data structure (as defined in the Core Specification),
when the later will read the given data, encrypt them and then add the generated encrypted
advertising data structure. It’s possible to mix encrypted and non-encrypted data, when done
adding advertising data, bt encrypted-ad commit-ad can be used to apply the change to the data
to the selected advertiser. After that the advertiser can be started as described previously. It’s
possible to clear the advertising data by using bt encrypted-ad clear-ad.

On the Central side, it’s possible to decrypt the received encrypted advertising data by setting the
correct keys material as described earlier and then enabling the decrypting of the data with bt
encrypted-ad decrypt-scan on.
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Note

To see the advertising data in the scan report bt scan-verbose-output need to be enabled.

Note

It’s possible to increase the length of the advertising data by increasing the value of CON-
FIG_BT_CTLR_ADV_DATA_LEN_MAX and CONFIG_BT_CTLR_SCAN_DATA_LEN_MAX.

Here is a simple example demonstrating the usage of EAD:

Peripheral

uart:~$ bt init
...
uart:~$ bt adv-create conn-nscan ext-adv
Created adv id: 0, adv: 0x81769a0
uart:~$ bt encrypted-ad set-keys 9ba22d3824efc70feb800c80294cba38 2e83f3d4d47695b6
session key set to:
00000000: 9b a2 2d 38 24 ef c7 0f eb 80 0c 80 29 4c ba 38 |..-8$... ....)L.8|
initialisation vector set to:
00000000: 2e 83 f3 d4 d4 76 95 b6 |.....v.. |
uart:~$ bt encrypted-ad add-ad 06097368656C6C
uart:~$ bt encrypted-ad add-ead 03ffdead03ffbeef
uart:~$ bt encrypted-ad commit-ad
Advertising data for Advertiser[0] 0x81769a0 updated.
uart:~$ bt adv-start
Advertiser[0] 0x81769a0 set started

Central

uart:~$ bt init
...
uart:~$ bt scan-verbose-output on
uart:~$ bt encrypted-ad set-keys 9ba22d3824efc70feb800c80294cba38 2e83f3d4d47695b6
session key set to:
00000000: 9b a2 2d 38 24 ef c7 0f eb 80 0c 80 29 4c ba 38 |..-8$... ....)L.8|
initialisation vector set to:
00000000: 2e 83 f3 d4 d4 76 95 b6 |.....v.. |
uart:~$ bt encrypted-ad decrypt-scan on
Received encrypted advertising data will now be decrypted using provided key materials.
uart:~$ bt scan on
Bluetooth active scan enabled
[DEVICE]: 68:49:30:68:49:30 (random), AD evt type 5, RSSI -59 shell C:1 S:0 D:0 SR:0 E:1␣
↪→Prim: LE 1M, Secn: LE 2M, Interval: 0x0000 (0 us), SID: 0x0

[SCAN DATA START - EXT_ADV]
Type 0x09: shell
Type 0x31: Encrypted Advertising Data: 0xe2, 0x17, 0xed, 0x04, 0xe7, 0x02, 0x1d,␣

↪→0xc9, 0x40, 0x07, uart:~0x18, 0x90, 0x6c, 0x4b, 0xfe, 0x34, 0xad
[START DECRYPTED DATA]
Type 0xff: 0xde, 0xad
Type 0xff: 0xbe, 0xef
[END DECRYPTED DATA]
[SCAN DATA END]

...
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Filter Accept List

It’s possible to create a list of allowed addresses that can be used to connect to those addresses
automatically. Here is how to do it:

uart:~$ bt fal-add 47:38:76:EA:29:36 random
uart:~$ bt fal-add 66:C8:80:2A:05:73 random
uart:~$ bt fal-connect on

The shell will then connect to the first available device. In the example, if both devices are ad-
vertising at the same time, we will connect to the first address added to the list.

The Filter Accept List can also be used for scanning or advertising by using the option fal. For
example, if we want to scan for a bunch of selected addresses, we can set up a Filter Accept List:

uart:~$ bt fal-add 65:4B:9E:83:AF:73 random
uart:~$ bt fal-add 73:72:82:B4:8F:B9 random
uart:~$ bt fal-add 5D:85:50:1C:72:64 random
uart:~$ bt scan on fal

You should see only those three addresses reported by the scanner.

Enabling security

When connected to a device, you can enable multiple levels of security, here is the list for Blue-
tooth LE:

• 1 No encryption and no authentication;

• 2 Encryption and no authentication;

• 3 Encryption and authentication;

• 4 Bluetooth LE Secure Connection.

To enable security, use the bt security <level> command. For levels requiring authentication
(level 3 and above), you must first set the authentication method. To do it, you can use the bt auth
all command. After that, when you will set the security level, you will be asked to confirm the
passkey on both devices. On the shell side, do it with the command bt auth-passkey-confirm.

Pairing Enabling authentication requires the devices to be bondable. By default the shell is
bondable. You can make the shell not bondable using bt bondable off. You can list all the
devices you are paired with using the command bt bonds.

The maximum number of paired devices is set using CONFIG_BT_MAX_PAIRED. You can remove a
paired device using bt clear <address: XX:XX:XX:XX:XX:XX> <type: (public|random)> or
remove all paired devices with the command bt clear all.

GATT

The following examples assume that you have two devices already connected.

To perform service discovery on the client side, use the gatt discover command. This should
print all the services that are available on the GATT server.

On the server side, you can register pre-defined test services using the gatt register command.
When done, you should see the newly added services on the client side when running the dis-
covery command.

You can now subscribe to those new services on the client side. Here is an example on how to
subscribe to the test service:
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uart:~$ gatt subscribe 26 25
Subscribed

The server can now notify the client with the command gatt notify.

Another option available through the GATT command is initiating the MTU exchange. To
do it, use the gatt exchange-mtu command. To update the shell maximum MTU, you need
to update Kconfig symbols in the configuration file of the shell. For more details, see blue-
tooth_mtu_update_sample.

L2CAP

The l2cap command exposes parts of the L2CAP API. The following example shows how to reg-
ister a LE PSM, connect to it from another device and send 3 packets of 14 octets each.

The example assumes that the two devices are already connected.

On device A, register the LE PSM:

uart:~$ l2cap register 29
L2CAP psm 41 sec_level 1 registered

On device B, connect to the registered LE PSM and send data:

uart:~$ l2cap connect 29
Chan sec: 1
L2CAP connection pending
Channel 0x20000210 connected
Channel 0x20000210 status 1
uart:~$ l2cap send 3 14
Rem 2
Rem 1
Rem 0
Outgoing data channel 0x20000210 transmitted
Outgoing data channel 0x20000210 transmitted
Outgoing data channel 0x20000210 transmitted

On device A, you should have received the data:

Incoming conn 0x20002398
Channel 0x20000210 status 1
Channel 0x20000210 connected
Channel 0x20000210 requires buffer
Incoming data channel 0x20000210 len 14
00000000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff |........ ...... |
Channel 0x20000210 requires buffer
Incoming data channel 0x20000210 len 14
00000000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff |........ ...... |
Channel 0x20000210 requires buffer
Incoming data channel 0x20000210 len 14
00000000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff |........ ...... |

A2DP

The a2dp command exposes parts of the A2DP API.

The following examples assume that you have two devices already connected.

Here is a example connecting two devices:
• Source and Sink sides register a2dp callbacks. using a2dp register_cb.
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• Source and Sink sides register stream endpoints. using a2dp register_ep source sbc
and a2dp register_ep sink sbc.

• Source establish A2dp connection. It will create the AVDTP Signaling and Media L2CAP
channels. using a2dp connect.

• Source and Sink side can discover remote device’s stream endpoints. using a2dp dis-
cover_peer_eps

• Source or Sink configure the stream to create the stream after discover remote’s end-
points. using a2dp configure.

• Source or Sink establish the stream. using a2dp establish.

• Source or Sink start the media. using a2dp start.

• Source test the media sending. using a2dp send_media to send one test packet data.

Device A (Audio Source Side)

uart:~$ a2dp register_cb
success
uart:~$ a2dp register_ep source sbc
SBC source endpoint is registered
uart:~$ a2dp connect
Bonded with XX:XX:XX:XX:XX:XX
Security changed: XX:XX:XX:XX:XX:XX level 2
a2dp connected
uart:~$ a2dp discover_peer_eps
endpoint id: 1, (sink), (idle):
codec type: SBC
sample frequency:

44100
48000

channel mode:
Mono
Stereo
Joint-Stereo

Block Length:
16

Subbands:
8

Allocation Method:
Loudness

Bitpool Range: 18 - 35
uart:~$ a2dp configure
success to configure
stream configured
uart:~$ a2dp establish
success to establish
stream established
uart:~$ a2dp start
success to start
stream started
uart:~$ a2dp send_media
frames num: 1, data length: 160
data: 1, 2, 3, 4, 5, 6 ......

Device B (Audio Sink Side)

uart:~$ a2dp register_cb
success
uart:~$ a2dp register_ep sink sbc
SBC sink endpoint is registered
<after a2dp connect>

(continues on next page)
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(continued from previous page)
Connected: XX:XX:XX:XX:XX:XX
Bonded with XX:XX:XX:XX:XX:XX
Security changed: XX:XX:XX:XX:XX:XX level 2
a2dp connected
<after a2dp configure of source side>
receive requesting config and accept
SBC configure success
sample rate 44100Hz
stream configured
<after a2dp establish of source side>
receive requesting establishment and accept
stream established
<after a2dp start of source side>
receive requesting start and accept
stream started
<after a2dp send_media of source side>
received, num of frames: 1, data length: 160
data: 1, 2, 3, 4, 5, 6 ......
...

Logging

You can configure the logging level per module at runtime. This depends on the maximum log-
ging level that is compiled in. To configure, use the log command. Here are some examples:

• List the available modules and their current logging level

uart:~$ log status

• Disable logging for bt_hci_core

uart:~$ log disable bt_hci_core

• Enable error logs for bt_att and bt_smp

uart:~$ log enable err bt_att bt_smp

• Disable logging for all modules

uart:~$ log disable

• Enable warning logs for all modules

uart:~$ log enable wrn

6.2 Controller Area Network (CAN) Bus Protocols

6.2.1 ISO-TP Transport Protocol

• Overview

• API Reference
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Overview

ISO-TP is a transport protocol defined in the ISO-Standard ISO15765-2 Road vehicles - Diagnostic
communication over Controller Area Network (DoCAN). Part2: Transport protocol and network
layer services. As its name already implies, it is originally designed, and still used in road vehicle
diagnostic over Controller Area Networks. Nevertheless, it’s not limited to applications in road
vehicles or the automotive domain.

This transport protocol extends the limited payload data size for classical CAN (8 bytes) and CAN
FD (64 bytes) to theoretically four gigabytes. Additionally, it adds a flow control mechanism
to influence the sender’s behavior. ISO-TP segments packets into small fragments depending
on the payload size of the CAN frame. The header of those segments is called Protocol Control
Information (PCI).

Packets smaller or equal to seven bytes on Classical CAN are called single-frames (SF). They don’t
need to fragment and do not have any flow-control.

Packets larger than that are segmented into a first-frame (FF) and as many consecutive-frames
(CF) as required. The FF contains information about the length of the entire payload data and
additionally, the first few bytes of payload data. The receiving peer sends back a flow-control-
frame (FC) to either deny, postpone, or accept the following consecutive frames. The FC also
defines the conditions of sending, namely the block-size (BS) and the minimum separation time
between frames (STmin). The block size defines how many CF the sender is allowed to send,
before he has to wait for another FC.

API Reference

Related code samples

ISO-TP library
Use ISO-TP library to exchange messages between two boards.

group can_isotp
CAN ISO-TP Protocol.

ISO-TP message ID flags

ISOTP_MSG_EXT_ADDR
Message uses ISO-TP extended addressing (first payload byte of CAN frame)

ISOTP_MSG_FIXED_ADDR
Message uses ISO-TP fixed addressing (according to SAE J1939).

Only valid in combination with ISOTP_MSG_IDE.
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ISOTP_MSG_IDE
Message uses extended (29-bit) CAN ID.

ISOTP_MSG_FDF
Message uses CAN FD format (FDF)

ISOTP_MSG_BRS
Message uses CAN FD Baud Rate Switch (BRS).

Only valid in combination with ISOTP_MSG_FDF.

Defines

ISOTP_N_OK
Completed successfully.

ISOTP_N_TIMEOUT_A
Ar/As has timed out.

ISOTP_N_TIMEOUT_BS
Reception of next FC has timed out.

ISOTP_N_TIMEOUT_CR
Cr has timed out.

ISOTP_N_WRONG_SN
Unexpected sequence number.

ISOTP_N_INVALID_FS
Invalid flow status received.

ISOTP_N_UNEXP_PDU
Unexpected PDU received.

ISOTP_N_WFT_OVRN
Maximum number of WAIT flowStatus PDUs exceeded.

ISOTP_N_BUFFER_OVERFLW
FlowStatus OVFLW PDU was received.

ISOTP_N_ERROR
General error.

ISOTP_NO_FREE_FILTER
Implementation specific errors.

Can’t bind or send because the CAN device has no filter left
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ISOTP_NO_NET_BUF_LEFT
No net buffer left to allocate.

ISOTP_NO_BUF_DATA_LEFT
Not sufficient space in the buffer left for the data.

ISOTP_NO_CTX_LEFT
No context buffer left to allocate.

ISOTP_RECV_TIMEOUT
Timeout for recv.

ISOTP_FIXED_ADDR_SA_POS
Position of fixed source address (SA)

ISOTP_FIXED_ADDR_SA_MASK
Mask to obtain fixed source address (SA)

ISOTP_FIXED_ADDR_TA_POS
Position of fixed target address (TA)

ISOTP_FIXED_ADDR_TA_MASK
Mask to obtain fixed target address (TA)

ISOTP_FIXED_ADDR_PRIO_POS
Position of priority in fixed addressing mode.

ISOTP_FIXED_ADDR_PRIO_MASK
Mask for priority in fixed addressing mode.

ISOTP_FIXED_ADDR_RX_MASK
CAN filter RX mask to match any priority and source address (SA)

Typedefs

typedef void (*isotp_tx_callback_t)(int error_nr, void *arg)
Transmission callback.

This callback is called when a transmission is completed.

Param error_nr
ISOTP_N_OK on success, ISOTP_N_* on error

Param arg
Callback argument passed to the send function

Functions
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int isotp_bind(struct isotp_recv_ctx *rctx, const struct device *can_dev, const struct
isotp_msg_id *rx_addr, const struct isotp_msg_id *tx_addr, const struct
isotp_fc_opts *opts, k_timeout_t timeout)

Bind an address to a receiving context.

This function binds an RX and TX address combination to an RX context. When data
arrives from the specified address, it is buffered and can be read by calling isotp_recv.
When calling this routine, a filter is applied in the CAN device, and the context is ini-
tialized. The context must be valid until calling unbind.

Parameters
• rctx – Context to store the internal states.

• can_dev – The CAN device to be used for sending and receiving.

• rx_addr – Identifier for incoming data.

• tx_addr – Identifier for FC frames.

• opts – Flow control options.

• timeout – Timeout for FF SF buffer allocation.

Return values
• ISOTP_N_OK – on success

• ISOTP_NO_FREE_FILTER – if CAN device has no filters left.

void isotp_unbind(struct isotp_recv_ctx *rctx)
Unbind a context from the interface.

This function removes the binding from isotp_bind. The filter is detached from the
CAN device, and if a transmission is ongoing, buffers are freed. The context can be
discarded safely after calling this function.

Parameters
• rctx – Context that should be unbound.

int isotp_recv(struct isotp_recv_ctx *rctx, uint8_t *data, size_t len, k_timeout_t timeout)
Read out received data from fifo.

This function reads the data from the receive FIFO of the context. It blocks if the FIFO
is empty. If an error occurs, the function returns a negative number and leaves the
data buffer unchanged.

Parameters
• rctx – Context that is already bound.

• data – Pointer to a buffer where the data is copied to.

• len – Size of the buffer.

• timeout – Timeout for incoming data.

Return values
• Number – of bytes copied on success

• ISOTP_RECV_TIMEOUT – when “timeout” timed out

• ISOTP_N_* – on error

int isotp_recv_net(struct isotp_recv_ctx *rctx, struct net_buf **buffer, k_timeout_t
timeout)
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Get the net buffer on data reception.

This function reads incoming data into net-buffers. It blocks until the entire packet is
received, BS is reached, or an error occurred. If BS was zero, the data is in a single
net_buf . Otherwise, the data is fragmented in chunks of BS size. The net-buffers are
referenced and must be freed with net_buf_unref after the data is processed.

Parameters
• rctx – Context that is already bound.

• buffer – Pointer where the net_buf pointer is written to.

• timeout – Timeout for incoming data.

Return values
• Remaining – data length for this transfer if BS > 0, 0 for BS = 0

• ISOTP_RECV_TIMEOUT – when “timeout” timed out

• ISOTP_N_* – on error

int isotp_send(struct isotp_send_ctx *sctx, const struct device *can_dev, const uint8_t
*data, size_t len, const struct isotp_msg_id *tx_addr, const struct
isotp_msg_id *rx_addr, isotp_tx_callback_t complete_cb, void *cb_arg)

Send data.

This function is used to send data to a peer that listens to the tx_addr. An internal work-
queue is used to transfer the segmented data. Data and context must be valid until the
transmission has finished. If a complete_cb is given, this function is non-blocking, and
the callback is called on completion with the return value as a parameter.

Parameters
• sctx – Context to store the internal states.

• can_dev – The CAN device to be used for sending and receiving.

• data – Data to be sent.

• len – Length of the data to be sent.

• rx_addr – Identifier for FC frames.

• tx_addr – Identifier for outgoing frames the receiver listens on.

• complete_cb – Function called on completion or NULL.

• cb_arg – Argument passed to the complete callback.

Return values
• ISOTP_N_OK – on success

• ISOTP_N_* – on error

struct isotp_msg_id
#include <isotp.h> ISO-TP message id struct.

Used to pass addresses to the bind and send functions.

Public Members
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union isotp_msg_id
CAN identifier.

If ISO-TP fixed addressing is used, isotp_bind ignores SA and priority sections and
modifies TA section in flow control frames.

uint8_t ext_addr
ISO-TP extended address (if used)

uint8_t dl
ISO-TP frame data length (TX_DL for TX address or RX_DL for RX address).

Valid values are 8 for classical CAN or 8, 12, 16, 20, 24, 32, 48 and 64 for CAN FD.

0 will be interpreted as 8 or 64 (if ISOTP_MSG_FDF is set).

The value for incoming transmissions (RX_DL) is determined automatically based
on the received first frame and does not need to be set during initialization.

uint8_t flags
Flags.

See also

ISOTP_MSG_FLAGS.

struct isotp_fc_opts
#include <isotp.h> ISO-TP frame control options struct.

Used to pass the options to the bind and send functions.

Public Members

uint8_t bs
Block size.

Number of CF PDUs before next CF is sent

uint8_t stmin
Minimum separation time.

Min time between frames

6.3 Networking

The networking section contains information regarding the network stack of the Zephyr kernel.
Use the information to understand the principles behind the operation of the stacks and how
they were implemented.
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6.3.1 Overview

• Supported Features

• Source Tree Layout

Supported Features

The networking IP stack is modular and highly configurable via build-time configuration op-
tions. You can minimize system memory consumption by enabling only those network features
required by your application. Almost all features can be disabled if not needed.

• IPv6 The support for IPv6 is enabled by default. Various IPv6 sub-options can be enabled
or disabled depending on networking needs.

– Developer can set the number of unicast and multicast IPv6 addresses that are active
at the same time.

– The IPv6 address for the device can be set either statically or dynamically using SLAAC
(Stateless Address Auto Configuration) (RFC 4862).

– The system also supports multiple IPv6 prefixes and the maximum IPv6 prefix count
can be configured at build time.

– The IPv6 neighbor cache can be disabled if not needed, and its size can be configured
at build time.

– The IPv6 neighbor discovery support (RFC 4861) is enabled by default.

– Multicast Listener Discovery v2 support (RFC 3810) is enabled by default.

– IPv6 header compression (6lo) is available for IPv6 connectivity for IEEE 802.15.4 net-
works (RFC 4944).

• IPv4 The legacy IPv4 is supported by the networking stack. It cannot be used by IEEE
802.15.4 as this network technology supports only IPv6. IPv4 can be used in Ethernet based
networks. By default IPv4 support is disabled.

– DHCP (Dynamic Host Configuration Protocol) client is supported (RFC 2131).

– The IPv4 address can also be configured manually. Static IPv4 addresses are supported
by default.

• Dual stack support. The networking stack allows a developer to configure the system to
use both IPv6 and IPv4 at the same time.

• UDP User Datagram Protocol (RFC 768) is supported. The developer can send UDP data-
grams (client side support) or create a listener to receive UDP packets destined to certain
port (server side support).

• TCP Transmission Control Protocol (RFC 793) is supported. Both server and client roles can
be used the application. The amount of TCP sockets that are available to applications can
be configured at build time.

• BSD Sockets API Support for a subset of aBSD sockets compatible API is implemented. Both
blocking and non-blocking datagram (UDP) and stream (TCP) sockets are supported.

• Secure SocketsAPIExperimental support for TLS/DTLS secure protocols and configuration
options for sockets API. Secure functions for the implementation are provided by mbedTLS
library.

• MQTT Message Queue Telemetry Transport (ISO/IEC PRF 20922) is supported. A sample
mqtt-publisher client application for MQTT v3.1.1 is implemented.

2452 Chapter 6. Connectivity

https://tools.ietf.org/html/rfc4862
https://tools.ietf.org/html/rfc4861
https://tools.ietf.org/html/rfc3810
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc793


Zephyr Project Documentation, Release 3.7.99

• CoAP Constrained Application Protocol (RFC 7252) is supported. Both coap-client and coap-
server sample applications are implemented.

• LWM2M OMA Lightweight Machine-to-Machine Protocol (LwM2M specification 1.0.2) is
supported via the “Bootstrap”, “Client Registration”, “Device Management & Service En-
ablement” and “Information Reporting” interfaces. The required core LwM2M objects are
implemented as well as several IPSO Smart Objects. (LwM2M specification 1.1.1) is sup-
ported in similar manner when enabled with a Kconfig option. lwm2m-client sample im-
plements the library as an example.

• HTTPHypertext Transfer Protocol client and server are supported. HTTPClient library sup-
ports HTTP/1.1 (RFC 2616). HTTP Server library supports HTTP/1.1 (RFC 2616) and HTTP/2
(RFC 9113). sockets-http-client and sockets-http-server samples are provided.

• DNS Domain Name Service (RFC 1035) client functionality is supported. Applications can
use the DNS API to query domain name information or IP addresses from the DNS server.
Both IPv4 (A) and IPv6 (AAAA) records can be queried. Both multicast DNS (mDNS) (RFC
6762) and link-local multicast name resolution (LLMNR) (RFC 4795) are supported.

• NetworkManagement API. Applications can use network management API to listen man-
agement events generated by core stack when for example IP address is added to the device,
or network interface is coming up etc.

• Wi-Fi Management API. Applications can use Wi-Fi management API to manage the inter-
face, in example to connect to Wi-Fi network and to scan available Wi-Fi networks.

• Wi-Fi NetworkManager API.Wi-Fi Network Managers can now register themselves to the
Wi-Fi stack. The Network Managers can then implement the Wi-Fi Management API and
manage the Wi-Fi interface.

• Multiple Network Technologies. The Zephyr OS can be configured to support multiple
network technologies at the same time simply by enabling them in Kconfig: for example,
Ethernet, Wi-Fi and 802.15.4 support. Note that no automatic IP routing functionality is
provided between these technologies. Applications can send data according to their needs
to desired network interface.

• Minimal Copy Network BufferManagement. It is possible to have minimal copy network
data path. This means that the system tries to avoid copying application data when it is sent
to the network.

• Virtual LAN support. Virtual LANs (VLANs) allow partitioning of physical ethernet net-
works into logical networks. See VLAN support for more details.

• Network traffic classification. The sent and received network packets can be prioritized
depending on application needs. See traffic classification for more details.

• Time Sensitive Networking. The gPTP (generalized Precision Time Protocol) is supported.
See gPTP support for more details.

• Network shell. The network shell provides helpers for figuring out network status, en-
abling/disabling features, and issuing commands like ping or DNS resolving. The net-shell
is useful when developing network software. See network shell for more details.

Additionally these network technologies (link layers) are supported in Zephyr OS v1.7 and later:

• IEEE 802.15.4

• Bluetooth

• Ethernet

• SLIP (IP over serial line). Used for testing with QEMU. It provides ethernet interface to host
system (like Linux) and test applications can be run in Linux host and send network data
to Zephyr OS device.
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Source Tree Layout

The networking stack source code tree is organized as follows:

subsys/net/ip/
This is where the IP stack code is located.

subsys/net/l2/
This is where the IP stack layer 2 code is located. This includes generic support for Ethernet,
IEEE 802.15.4 and Wi-Fi.

subsys/net/lib/
Application-level protocols (DNS, MQTT, etc.) and additional stack components (BSD Sock-
ets, etc.).

include/net/
Public API header files. These are the header files applications need to include to use IP
networking functionality.

samples/net/
Sample networking code. This is a good reference to get started with network application
development.

tests/net/
Test applications. These applications are used to verify the functionality of the IP stack, but
are not the best source for sample code (see samples/net instead).

6.3.2 Network Stack Architecture

Network Packet Processing Statistics

This page describes how to get information about network packet processing statistics inside
network stack.

Network stack contains infrastructure to figure out how long the network packet processing
takes either in sending or receiving path. There are two Kconfig options that control this. For
transmit (TX) path the option is called CONFIG_NET_PKT_TXTIME_STATS and for receive (RX) path
the options is called CONFIG_NET_PKT_RXTIME_STATS. Note that for TX, all kind of network packet
statistics is collected. For RX, only UDP, TCP or raw packet type network packet statistics is col-
lected.

After enabling these options, the net stats network shell command will show this information:

Avg TX net_pkt (11484) time 67 us
Avg RX net_pkt (11474) time 43 us

Note

The values above and below are from emulated qemu_x86 board and UDP traffic

The TX time tells how long it took for network packet from its creation to when it was sent to
the network. The RX time tells the time from its creation to when it was passed to the appli-
cation. The values are in microseconds. The statistics will be collected per traffic class if there
are more than one transmit or receive queues defined in the system. These are controlled by
CONFIG_NET_TC_TX_COUNT and CONFIG_NET_TC_RX_COUNT options.

If you enable CONFIG_NET_PKT_TXTIME_STATS_DETAIL or CONFIG_NET_PKT_RXTIME_STATS_DETAIL
options, then additional information for TX or RX network packets are collected when the net-
work packet traverses the IP stack.
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After enabling these options, the net stats will show this information:

Avg TX net_pkt (18902) time 63 us [0->22->15->23=60 us]
Avg RX net_pkt (18892) time 42 us [0->9->6->11->13=39 us]

The numbers inside the brackets contain information how many microseconds it took for a net-
work packet to go from previous state to next.

In the TX example above, the values are averages over 18902 packets and contain this informa-
tion:

• Packet was created by application so the time is 0.

• Packet is about to be placed to transmit queue. The time it took from network packet cre-
ation to this state, is 22 microseconds in this example.

• The correct TX thread is invoked, and the packet is read from the transmit queue. It took
15 microseconds from previous state.

• The network packet was just sent and the network stack is about to free the network packet.
It took 23 microseconds from previous state.

• In total it took on average 60microseconds to get the network packet sent. The value 63 tells
also the same information, but is calculated differently so there is slight difference because
of rounding errors.

In the RX example above, the values are averages over 18892 packets and contain this informa-
tion:

• Packet was created network device driver so the time is 0.

• Packet is about to be placed to receive queue. The time it took from network packet creation
to this state, is 9 microseconds in this example.

• The correct RX thread is invoked, and the packet is read from the receive queue. It took 6
microseconds from previous state.

• The network packet is then processed and placed to correct socket queue. It took 11 mi-
croseconds from previous state.

• The last value tells how long it took from there to the application. Here the value is 13
microseconds.

• In total it took on average 39microseconds to get the network packet sent. The value 42 tells
also the same information, but is calculated differently so there is slight difference because
of rounding errors.

The Zephyr network stack is a native network stack specifically designed for Zephyr OS. It con-
sists of layers, each meant to provide certain services to other layers. Network stack functionality
is highly configurable via Kconfig options.

• High level overview of the network stack

• Network data flow

– Data receiving (RX)

– Data sending (TX)

• Network packet processing statistics

High level overview of the network stack

The network stack is layered and consists of the following parts:
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• Network Application. The network application can either use the provided application-
level protocol libraries or access theBSD socket API directly to create a network connection,
send or receive data, and close a connection. The application can also use the network
management API to configure the network and set related parameters such as network
link options, starting a scan (when applicable), listen network configuration events, etc.
The network interface API can be used to set IP address to a network interface, taking the
network interface down, etc.

• Network Protocols. This provides implementations for various protocols such as

– Application-level network protocols like CoAP, LWM2M, and MQTT. See application
protocols chapter for information about them.

– Core network protocols like IPv6, IPv4, UDP, TCP, ICMPv4, and ICMPv6. You access
these protocols by using the BSD socket API.

• Network Interface Abstraction. This provides functionality that is common in all the
network interfaces, such as setting network interface down, etc. There can be multiple
network interfaces in the system. See network interface overview for more details.

• L2 Network Technologies. This provides a common API for sending and receiving data
to and from an actual network device. See L2 overview for more details. These network
technologies include Ethernet, IEEE 802.15.4, Bluetooth, CANBUS, etc. Some of these tech-
nologies support IPv6 header compression (6Lo), see RFC 6282 for details. For example ARP
for IPv4 is done by the Ethernet component.

• Network Device Drivers. The actual low-level device drivers handle the physical sending
or receiving of network packets.

Network data flow

An application typically consists of one or more threads that execute the application logic. When
using the BSD socket API, the following things will happen.

Data receiving (RX)
1. A network data packet is received by a device driver.

2. The device driver allocates enough network buffers to store the received data. The network
packet is placed in the proper RX queue (implemented by k_fifo). By default there is only
one receive queue in the system, but it is possible to have up to 8 receive queues. These
queues will process incoming packets with different priority. See Traffic Classification for
more details. The receive queues also act as a way to separate the data processing pipeline
(bottom-half) as the device driver is running in an interrupt context and it must do its
processing as fast as possible.

3. The network packet is then passed to the correct L2 driver. The L2 driver can check if the
packet is proper and modify it if needed, e.g. strip L2 header and frame check sequence,
etc.

4. The packet is processed by a network interface. The network statistics are collected if en-
abled by CONFIG_NET_STATISTICS.

5. The packet is then passed to L3 processing. If the packet is IP based, then the L3 layer checks
if the packet is a proper IPv6 or IPv4 packet.

6. A socket handler then finds an active socket to which the network packet belongs and puts
it in a queue for that socket, in order to separate the networking code from the application.
Typically the application is run in userspace context and the network stack is run in kernel
context.

7. The application will then receive the data and can process it as needed. The application
should have used the BSD socket API to create a socket that will receive the data.
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Data sending (TX)
1. The application should use the BSD socket API when sending the data.

2. The application data is prepared for sending to kernel space and then copied to internal
net_buf structures.

3. Depending on the socket type, a protocol header is added in front of the data. For example,
if the socket is a UDP socket, then a UDP header is constructed and placed in front of the
data.

4. An IP header is added to the network packet for a UDP or TCP packet.

5. The network stack will check that the network interface is properly set for the network
packet, and also will make sure that the network interface is enabled before the data is
queued to be sent.

6. The network packet is then classified and placed to the proper transmit queue (imple-
mented by k_fifo). By default there is only one transmit queue in the system, but it is possible
to have up to 8 transmit queues. These queues will process the sent packets with different
priority. See Traffic Classification for more details. After the transmit packet classification,
the packet is checked by the correct L2 layer module. The L2 module will do additional
checks for the data and it will also create any L2 headers for the network packet. If every-
thing is ok, the data is given to the network device driver to be sent out.

7. The device driver will send the packet to the network.

Note that in both the TX and RX data paths, the queues (k_fifo’s) form separation points where
data is passed from one thread to another. These threads might run in different contexts (kernel
vs. userspace) and with different priorities.

Network packet processing statistics

See information about network processing statistics here.

6.3.3 Network Configuration Guide

• Network Buffer Configuration Options

• Connection Options

• Socket Options

• TLS Options

• IPv4/6 Options

• TCP Options

• Traffic Class Options

• Stack Size Options

This document describes how various network configuration options can be set according to
available resources in the system.

Network Buffer Configuration Options

The network buffer configuration options control how much data we are able to either send or
receive at the same time.
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CONFIG_NET_PKT_RX_COUNT
Maximum amount of network packets we can receive at the same time.

CONFIG_NET_PKT_TX_COUNT
Maximum amount of network packet sends pending at the same time.

CONFIG_NET_BUF_RX_COUNT
How many network buffers are allocated for receiving data. Each net_buf contains a small
header and either a fixed or variable length data buffer. The CONFIG_NET_BUF_DATA_SIZE is
used when CONFIG_NET_BUF_FIXED_DATA_SIZE is set. This is the default setting. The default
size of the buffer is 128 bytes.

The CONFIG_NET_BUF_VARIABLE_DATA_SIZE is an experimental setting. There each net_buf
data portion is allocated from a memory pool and can be the amount of data we have
received from the network. When data is received from the network, it is placed into
net_buf data portion. Depending on device resources and desired network usage, user
can tweak the size of the fixed buffer by setting CONFIG_NET_BUF_DATA_SIZE, and the
size of the data pool size by setting CONFIG_NET_PKT_BUF_RX_DATA_POOL_SIZE and CON-
FIG_NET_PKT_BUF_TX_DATA_POOL_SIZE if variable size buffers are used.

When using the fixed size data buffers, the memory consumption of network buffers can be
tweaked by selecting the size of the data part according to what kind of network data we are
receiving. If one sets the data size to 256, but only receives packets that are 32 bytes long,
then we are “wasting” 224 bytes for each packet because we cannot utilize the remaining
data. One should not set the data size too low because there is some overhead involved for
each net_buf. For these reasons the default network buffer size is set to 128 bytes.

The variable size data buffer feature is marked as experimental as it has not received as
much testing as the fixed size buffers. Using variable size data buffers tries to improve
memory utilization by allocating minimum amount of data we need for the network data.
The extra cost here is the amount of time that is needed when dynamically allocating the
buffer from the memory pool.

For example, in Ethernet the maximum transmission unit (MTU) size is 1500 bytes. If one
wants to receive two full frames, then the net_pkt RX count should be set to 2, and net_buf
RX count to (1500 / 128) * 2 which is 24. If TCP is being used, then these values need to be
higher because we can queue the packets internally before delivering to the application.

CONFIG_NET_BUF_TX_COUNT
How many network buffers are allocated for sending data. This is similar setting as the
receive buffer count but for sending.

Connection Options

CONFIG_NET_MAX_CONN
This option tells how many network connection endpoints are supported. For example
each TCP connection requires one connection endpoint. Similarly each listening UDP con-
nection requires one connection endpoint. Also various system services like DHCP and DNS
need connection endpoints to work. The network shell command net conn can be used at
runtime to see the network connection information.

CONFIG_NET_MAX_CONTEXTS
Number of network contexts to allocate. Each network context describes a network 5-tuple
that is used when listening or sending network traffic. Each BSD socket in the system uses
one network context.

Socket Options

CONFIG_NET_SOCKETS_POLL_MAX
Maximum number of supported poll() entries. One needs to select proper value here de-
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pending on how many BSD sockets are polled in the system.

CONFIG_ZVFS_OPEN_MAX
Maximum number of open file descriptors, this includes files, sockets, special devices, etc.
One needs to select proper value here depending on how many BSD sockets are created in
the system.

CONFIG_NET_SOCKETPAIR_BUFFER_SIZE
This option is used by socketpair() function. It sets the size of the internal intermediate
buffer, in bytes. This sets the limit how large messages can be passed between two socket-
pair endpoints.

TLS Options

CONFIG_NET_SOCKETS_TLS_MAX_CONTEXTS
Maximum number of TLS/DTLS contexts. Each TLS/DTLS connection needs one context.

CONFIG_NET_SOCKETS_TLS_MAX_CREDENTIALS
This variable sets maximum number of TLS/DTLS credentials that can be used with a spe-
cific socket.

CONFIG_NET_SOCKETS_TLS_MAX_CIPHERSUITES
Maximum number of TLS/DTLS ciphersuites per socket. This variable sets maximum num-
ber of TLS/DTLS ciphersuites that can be used with specific socket, if set explicitly by socket
option. By default, all ciphersuites that are available in the system are available to the
socket.

CONFIG_NET_SOCKETS_TLS_MAX_APP_PROTOCOLS
Maximum number of supported application layer protocols. This variable sets maximum
number of supported application layer protocols over TLS/DTLS that can be set explicitly
by a socket option. By default, no supported application layer protocol is set.

CONFIG_NET_SOCKETS_TLS_MAX_CLIENT_SESSION_COUNT
This variable specifies maximum number of stored TLS/DTLS sessions, used for TLS/DTLS
session resumption.

CONFIG_TLS_MAX_CREDENTIALS_NUMBER
Maximum number of TLS credentials that can be registered. Make sure that this value is
high enough so that all the certificates can be loaded to the store.

IPv4/6 Options

CONFIG_NET_IF_MAX_IPV4_COUNT
Maximum number of IPv4 network interfaces in the system. This tells how many network
interfaces there will be in the system that will have IPv4 enabled. For example if you have
two network interfaces, but only one of them can use IPv4 addresses, then this value can
be set to 1. If both network interface could use IPv4, then the setting should be set to 2.

CONFIG_NET_IF_MAX_IPV6_COUNT
Maximum number of IPv6 network interfaces in the system. This is similar setting as the
IPv4 count option but for IPv6.

TCP Options

CONFIG_NET_TCP_TIME_WAIT_DELAY
How long to wait in TCP TIME_WAIT state (in milliseconds). To avoid a (low-probability)
issue when delayed packets from previous connection get delivered to next connection
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reusing the same local/remote ports, RFC 793 (TCP) suggests to keep an old, closed connec-
tion in a special TIME_WAIT state for the duration of 2*MSL (Maximum Segment Lifetime).
The RFC suggests to use MSL of 2 minutes, but notes

This is an engineering choice, and may be changed if experience indicates it is desirable to do
so.

For low-resource systems, having large MSL may lead to quick resource exhaustion (and
related DoS attacks). At the same time, the issue of packet misdelivery is largely alleviated in
the modern TCP stacks by using random, non-repeating port numbers and initial sequence
numbers. Due to this, Zephyr uses much lower value of 1500ms by default. Value of 0
disables TIME_WAIT state completely.

CONFIG_NET_TCP_RETRY_COUNT
Maximum number of TCP segment retransmissions. The following formula can be used to
determine the time (in ms) that a segment will be buffered awaiting retransmission:

NET_TCP_RETRY_COUNT∑
n=0

(
1 ≪ n

)
× NET_TCP_INIT_RETRANSMISSION_TIMEOUT

With the default value of 9, the IP stack will try to retransmit for up to 1:42 minutes. This is
as close as possible to the minimum value recommended by RFC 1122 (1:40 minutes). Only
5 bits are dedicated for the retransmission count, so accepted values are in the 0-31 range.
It’s highly recommended to not go below 9, though.

Should a retransmission timeout occur, the receive callback is called with -ETIMEDOUT error
code and the context is dereferenced.

CONFIG_NET_TCP_MAX_SEND_WINDOW_SIZE
Maximum sending window size to use. This value affects how the TCP selects the maximum
sending window size. The default value 0 lets the TCP stack select the value according
to amount of network buffers configured in the system. Note that if there are multiple
active TCP connections in the system, then this value might require finetuning (lowering),
otherwise multiple TCP connections could easily exhaust net_buf pool for the queued TX
data.

CONFIG_NET_TCP_MAX_RECV_WINDOW_SIZE
Maximum receive window size to use. This value defines the maximum TCP receive win-
dow size. Increasing this value can improve connection throughput, but requires more
receive buffers available in the system for efficient operation. The default value 0 lets the
TCP stack select the value according to amount of network buffers configured in the system.

CONFIG_NET_TCP_RECV_QUEUE_TIMEOUT
How long to queue received data (in ms). If we receive out-of-order TCP data, we queue it.
This value tells how long the data is kept before it is discarded if we have not been able to
pass the data to the application. If set to 0, then receive queueing is not enabled. The value
is in milliseconds.

Note that we only queue data sequentially in current version i.e., there should be no holes
in the queue. For example, if we receive SEQs 5,4,3,6 and are waiting SEQ 2, the data in
segments 3,4,5,6 is queued (in this order), and then given to application when we receive
SEQ 2. But if we receive SEQs 5,4,3,7 then the SEQ 7 is discarded because the list would not
be sequential as number 6 is be missing.

Traffic Class Options

It is possible to configure multiple traffic classes (queues) when receiving or sending network
data. Each traffic class queue is implemented as a thread with different priority. This means
that higher priority network packet can be placed to a higher priority network queue in order to
send or receive it faster or slower. Because of thread scheduling latencies, in practice the fastest
way to send a packet out, is to directly send the packet without using a dedicated traffic class
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thread. This is why by default the CONFIG_NET_TC_TX_COUNT option is set to 0 if userspace is not
enabled. If userspace is enabled, then the minimum TX traffic class count is 1. Reason for this is
that the userspace application does not have enough permissions to deliver the message directly.

In receiving side, it is recommended to have at least one receiving traffic class queue. Reason is
that typically the network device driver is running in IRQ context when it receives the packet,
in which case it should not try to deliver the network packet directly to the upper layers, but
to place the packet to the traffic class queue. If the network device driver is not running in IRQ
context when it gets the packet, then the RX traffic class option CONFIG_NET_TC_RX_COUNT could
be set to 0.

Stack Size Options

There several network specific threads in a network enabled system. Some of the threads might
depend on a configure option which can be used to enable or disable a feature. Each thread stack
size is optimized to allow normal network operations.

The network management API is using a dedicated thread by default. The thread is responsible
to deliver network management events to the event listeners that are setup in the system if the
CONFIG_NET_MGMT and CONFIG_NET_MGMT_EVENT options are enabled. If the options are enabled,
the user is able to register a callback function that the net_mgmt thread is calling for each net-
work management event. By default the net_mgmt event thread stack size is rather small. The
idea is that the callback function does minimal things so that new events can be delivered to
listeners as fast as possible and they are not lost. The net_mgmt event thread stack size is con-
trolled by CONFIG_NET_MGMT_EVENT_QUEUE_SIZE option. It is recommended to not do any blocking
operations in the callback function.

The network thread stack utilization can be monitored from kernel shell by the kernel threads
command.

6.3.4 Networking with the host system

Networking with native_sim board

• Using virtual/TAP Ethernet driver

– Prerequisites

– Basic Setup

• Using offloaded sockets

– Step 1 - Start app in native_sim board

– Step 2 - run echo-client from net-tools

• Setting interface name from command line

Using virtual/TAP Ethernet driver This paragraph describes how to set up a virtual network
between a (Linux) host and a Zephyr application running in a native_sim board.

In this example, the sockets-echo-server sample application from the Zephyr source distribution
is run in native_sim board. The Zephyr native_sim board instance is connected to a Linux host
using a tuntap device which is modeled in Linux as an Ethernet network interface.
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Prerequisites On the Linux Host, fetch the Zephyr net-tools project, which is located in a
separate Git repository:

git clone https://github.com/zephyrproject-rtos/net-tools

Basic Setup For the steps below, you will need three terminal windows:

• Terminal #1 is terminal window with net-tools being the current directory (cd net-tools)

• Terminal #2 is your usual Zephyr development terminal, with the Zephyr environment ini-
tialized.

• Terminal #3 is the console to the running Zephyr native_sim instance (optional).

Step 1 - Create Ethernet interface Before starting native_sim with network emulation, a net-
work interface should be created.

In terminal #1, type:

./net-setup.sh

You can tweak the behavior of the net-setup.sh script. See various options by running net-setup.
sh like this:

./net-setup.sh --help

Step 2 - Start app in native_sim board Build and start the echo_server sample application.

In terminal #2, type:

west build -b native_sim samples/net/sockets/echo_server
west build -t run

Step 3 - Connect to console (optional) The console window should be launched automatically
when the Zephyr instance is started but if it does not show up, you can manually connect to the
console. The native_sim board will print a string like this when it starts:

UART connected to pseudotty: /dev/pts/5

You can manually connect to it like this:

screen /dev/pts/5

Using offloaded sockets The main advantage over Using virtual/TAP Ethernet driver is not
needing to setup a virtual network interface on the host machine. This means that no leveraged
(root) privileges are needed.

Step 1 - Start app in native_sim board Build and start the echo_server sample application:

west build -b native_sim samples/net/sockets/echo_server -- -DEXTRA_CONF_FILE=overlay-nsos.
↪→conf
west build -t run
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Step 2 - run echo-client fromnet-tools On the Linux Host, fetch the Zephyr net-tools project,
which is located in a separate Git repository:

git clone https://github.com/zephyrproject-rtos/net-tools

Note

Native Simulator with the offloaded sockets network driver is using the same network inter-
face/namespace as any other (Linux) application that uses BSD sockets API. This means that
sockets-echo-server and echo-client applications will communicate over localhost/loopback
interface (address 127.0.0.1).

To run UDP test, type:

./echo-client 127.0.0.1

For TCP test, type:

./echo-client -t 127.0.0.1

Setting interface name from command line By default the Ethernet interface name used by
native_sim is determined by CONFIG_ETH_NATIVE_POSIX_DRV_NAME, but is also possible to set it
from the command line using --eth-if=<interface_name>. This can be useful if the application
has to be run in multiple instances and recompiling it for each instance would be troublesome.

./zephyr.exe --eth-if=zeth2

Networking with QEMU Ethernet

• Prerequisites

• Basic Setup

– Step 1 - Create Ethernet interface

– Step 2 - Start app in QEMU board

This page describes how to set up a virtual network between a (Linux) host and a Zephyr appli-
cation running in QEMU.

In this example, the sockets-echo-server sample application from the Zephyr source distribution
is run in QEMU. The Zephyr instance is connected to a Linux host using a tuntap device which is
modeled in Linux as an Ethernet network interface.

Prerequisites On the Linux Host, fetch the Zephyr net-tools project, which is located in a
separate Git repository:

git clone https://github.com/zephyrproject-rtos/net-tools

Basic Setup For the steps below, you will need two terminal windows:

• Terminal #1 is terminal window with net-tools being the current directory (cd net-tools)
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• Terminal #2 is your usual Zephyr development terminal, with the Zephyr environment ini-
tialized.

When configuring the Zephyr instance, you must select the correct Ethernet driver for QEMU
connectivity:

• For qemu_x86, select Intel(R) PRO/1000 Gigabit Ethernet driver Ethernet driver. Driver
is called e1000 in Zephyr source tree.

• For qemu_cortex_m3, select TI Stellaris MCU family ethernet driver Ethernet driver.
Driver is called stellaris in Zephyr source tree.

• For mps2_an385, select SMSC911x/9220 Ethernet driver Ethernet driver. Driver is called
smsc911x in Zephyr source tree.

• For qemu_cortex_a53, Intel(R) PRO/1000 Gigabit Ethernet driver Ethernet driver is
selected by default.

Step 1 - CreateEthernet interface Before starting QEMU with network connectivity, a network
interface should be created in the host system.

In terminal #1, type:

./net-setup.sh

You can tweak the behavior of the net-setup.sh script. See various options by running
net-setup.sh like this:

./net-setup.sh --help

Step 2 - Start app in QEMU board Build and start the sockets-echo-server sample application.
In this example, the qemu_x86 board is used.

In terminal #2, type:

west build -b qemu_x86 samples/net/sockets/echo_server -- -DEXTRA_CONF_FILE=overlay-e1000.
↪→conf
west build -t run

Exit QEMU by pressing CTRL+A x.

Networking with QEMU

• Prerequisites

• Basic Setup

– Step 1 - Create helper socket

– Step 2 - Start TAP device routing daemon

– Step 3 - Start app in QEMU

– Step 4 - Run apps on host

– Step 5 - Stop supporting daemons

• Setting up Zephyr and NAT/masquerading on host to access Internet

• Network connection between two QEMU VMs

6.3. Networking 2467



Zephyr Project Documentation, Release 3.7.99

– Terminal #1:

– Terminal #2:

• Running multiple QEMU VMs of the same sample

– Terminal #1:

– Terminal #2:

This page describes how to set up a virtual network between a (Linux) host and a Zephyr ap-
plication running in a QEMU virtual machine (built for Zephyr targets such as qemu_x86 and
qemu_cortex_m3). Some virtual ARM boards (such as qemu_cortex_a53) only support a single
UART, in this case QEMU Ethernet is preferred, see Networking with QEMU Ethernet for details.

In this example, the sockets-echo-server sample application from the Zephyr source distribu-
tion is run in QEMU. The QEMU instance is connected to a Linux host using a serial port, and
SLIP is used to transfer data between the Zephyr application and Linux (over a chain of virtual
connections).

Prerequisites On the Linux Host, fetch the Zephyr net-tools project, which is located in a
separate Git repository:

git clone https://github.com/zephyrproject-rtos/net-tools
cd net-tools
make

Note

If you get an error about AX_CHECK_COMPILE_FLAG, install package autoconf-archivepack-
age on Debian/Ubuntu.

Basic Setup For the steps below, you will need at least 4 terminal windows:

• Terminal #1 is your usual Zephyr development terminal, with the Zephyr environment ini-
tialized.

• Terminals #2, #3, and #4 are terminal windows with net-tools being the current directory
(cd net-tools)

Step 1 - Create helper socket Before starting QEMU with network emulation, a Unix socket
for the emulation should be created.

In terminal #2, type:

./loop-socat.sh

Step 2 - Start TAP device routing daemon In terminal #3, type:

sudo ./loop-slip-tap.sh

For applications requiring DNS, you may need to restart the host’s DNS server at this point, as
described in Setting up Zephyr and NAT/masquerading on host to access Internet.
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Step 3 - Start app in QEMU Build and start the echo_server sample application.

In terminal #1, type:

west build -b qemu_x86 samples/net/sockets/echo_server
west build -t run

If you see an error from QEMU about unix:/tmp/slip.sock, it means you missed Step 1 above.

Step 4 - Run apps on host Now in terminal #4, you can run various tools to communicate with
the application running in QEMU.

You can start with pings:

ping 192.0.2.1
ping6 2001:db8::1

You can use the netcat (“nc”) utility, connecting using UDP:

echo foobar | nc -6 -u 2001:db8::1 4242
foobar

echo foobar | nc -u 192.0.2.1 4242
foobar

If echo_server is compiled with TCP support (now enabled by default for the echo_server sample,
CONFIG_NET_TCP=y):

echo foobar | nc -6 -q2 2001:db8::1 4242
foobar

Note

Use Ctrl+C to exit.

You can also use the telnet command to achieve the above.

Step 5 - Stop supporting daemons When you are finished with network testing using QEMU,
you should stop any daemons or helpers started in the initial steps, to avoid possible networking
or routing problems such as address conflicts in local network interfaces. For example, stop them
if you switch from testing networking with QEMU to using real hardware, or to return your host
laptop to normal Wi-Fi use.

To stop the daemons, press Ctrl+C in the corresponding terminal windows (you need to stop both
loop-slip-tap.sh and loop-socat.sh).

Exit QEMU by pressing CTRL+A x.

Setting up Zephyr and NAT/masquerading on host to access Internet To access the internet
from a Zephyr application, some additional setup on the host may be required. This setup is
common for both application running in QEMU and on real hardware, assuming that a develop-
ment board is connected to the development host. If a board is connected to a dedicated router,
it should not be needed.

To access the internet from a Zephyr application using IPv4, a gateway should be set via DHCP
or configured manually. For applications using the “Settings” facility (with the config option
CONFIG_NET_CONFIG_SETTINGS enabled), set the CONFIG_NET_CONFIG_MY_IPV4_GW option to the IP
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address of the gateway. For apps not using the “Settings” facility, set up the gateway by calling the
net_if_ipv4_set_gw() at runtime. For example: CONFIG_NET_CONFIG_MY_IPV4_GW="192.0.2.2"
To access the internet from a custom application running in QEMU, NAT (masquerading) should
be set up for QEMU’s source address. Assuming 192.0.2.1 is used and the Zephyr network in-
terface is zeth, the following command should be run as root:

iptables -t nat -A POSTROUTING -j MASQUERADE -s 192.0.2.1/24
iptables -I FORWARD 1 -i zeth -j ACCEPT
iptables -I FORWARD 1 -o zeth -m state --state RELATED,ESTABLISHED -j ACCEPT

Additionally, IPv4 forwarding should be enabled on the host, and you may need to check that
other firewall (iptables) rules don’t interfere with masquerading. To enable IPv4 forwarding the
following command should be run as root:

sysctl -w net.ipv4.ip_forward=1

Some applications may also require a DNS server. A number of Zephyr-provided samples assume
by default that the DNS server is available on the host (IP 192.0.2.2), which, in modern Linux
distributions, usually runs at least a DNS proxy. When running with QEMU, it may be required to
restart the host’s DNS, so it can serve requests on the newly created TAP interface. For example,
on Debian-based systems:

service dnsmasq restart

An alternative to relying on the host’s DNS server is to use one in the network. For example, 8.
8.8.8 is a publicly available DNS server. You can configure it using CONFIG_DNS_SERVER1 option.

Network connection between two QEMU VMs Unlike the VM-to-Host setup described above,
VM-to-VM setup is automatic. For sample applications that support this mode (such as the
echo_server and echo_client samples), you will need two terminal windows, set up for Zephyr
development.

Terminal #1:
west build -b qemu_x86 samples/net/sockets/echo_server

This will start QEMU, waiting for a connection from a client QEMU.

Terminal #2:
west build -b qemu_x86 samples/net/sockets/echo_client

This will start a second QEMU instance, where you should see logging of data sent and received
in both.

RunningmultipleQEMUVMsof the same sample If you find yourself wanting to run multiple
instances of the same Zephyr sample application, which do not need to talk to each other, use
the QEMU_INSTANCE argument.

Start socat and tunslip6 manually (instead of using the loop-xxx.sh scripts) for as many in-
stances as you want. Use the following as a guide, replacing MAIN or OTHER.

Terminal #1:
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socat PTY,link=/tmp/slip.devMAIN UNIX-LISTEN:/tmp/slip.sockMAIN
$ZEPHYR_BASE/../net-tools/tunslip6 -t tapMAIN -T -s /tmp/slip.devMAIN \

2001:db8::1/64
# Now run Zephyr
make -Cbuild run QEMU_INSTANCE=MAIN

Terminal #2:
socat PTY,link=/tmp/slip.devOTHER UNIX-LISTEN:/tmp/slip.sockOTHER
$ZEPHYR_BASE/../net-tools/tunslip6 -t tapOTHER -T -s /tmp/slip.devOTHER \

2001:db8::1/64
make -Cbuild run QEMU_INSTANCE=OTHER

USB Device Networking

• Basic Setup

– Choosing IP addresses

– Setting IPv4 address and routing

– Setting IPv6 address and routing

• Testing connection

This page describes how to set up networking between a Linux host and a Zephyr application
running on USB supported devices.

The board is connected to Linux host using USB cable and provides an Ethernet interface to the
host. The sockets-echo-server application from the Zephyr source distribution is run on sup-
ported board. The board is connected to a Linux host using a USB cable providing an Ethernet
interface to the host.

Basic Setup To communicate with the Zephyr application over a newly created Ethernet inter-
face, we need to assign IP addresses and set up a routing table for the Linux host. After plugging
a USB cable from the board to the Linux host, the cdc_ether driver registers a new Ethernet
device with a provided MAC address.

You can check that network device is created and MAC address assigned by running dmesg from
the Linux host.

cdc_ether 1-2.7:1.0 eth0: register 'cdc_ether' at usb-0000:00:01.2-2.7, CDC Ethernet Device,
↪→ 00:00:5e:00:53:01

We need to set it up and assign IP addresses as explained in the following section.

Choosing IP addresses To establish network connection to the board we need to choose IP
address for the interface on the Linux host.

It make sense to choose addresses in the same subnet we have in Zephyr application. IP ad-
dresses usually set in the project configuration files and may be checked also from the shell with
following commands. Connect a serial console program (such as puTTY) to the board, and enter
this command to the Zephyr shell:
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shell> net iface

Interface 0xa800e580 (Ethernet)
===============================
Link addr : 00:00:5E:00:53:00
MTU : 1500
IPv6 unicast addresses (max 2):

fe80::200:5eff:fe00:5300 autoconf preferred infinite
2001:db8::1 manual preferred infinite

...
IPv4 unicast addresses (max 1):

192.0.2.1 manual preferred infinite

This command shows that one IPv4 address and two IPv6 addresses have been assigned to the
board. We can use either IPv4 or IPv6 for network connection depending on the board network
configuration.

Next step is to assign IP addresses to the new Linux host interface, in the following steps
enx00005e005301 is the name of the interface on my Linux system.

Setting IPv4 address and routing
# ip address add dev enx00005e005301 192.0.2.2
# ip link set enx00005e005301 up
# ip route add 192.0.2.0/24 dev enx00005e005301

Setting IPv6 address and routing
# ip address add dev enx00005e005301 2001:db8::2
# ip link set enx00005e005301 up
# ip -6 route add 2001:db8::/64 dev enx00005e005301

Testing connection From the host we can test the connection by pinging Zephyr IP address of
the board with:

$ ping 192.0.2.1
PING 192.0.2.1 (192.0.2.1) 56(84) bytes of data.
64 bytes from 192.0.2.1: icmp_seq=1 ttl=64 time=2.30 ms
64 bytes from 192.0.2.1: icmp_seq=2 ttl=64 time=1.43 ms
64 bytes from 192.0.2.1: icmp_seq=3 ttl=64 time=2.45 ms
...

Networking with QEMU User

• Introduction

• Using SLIRP with Zephyr

• Limitations

This page is intended to serve as a starting point for anyone interested in using QEMU SLIRP with
Zephyr.
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Introduction SLIRP is a network backend which provides the complete TCP/IP stack within
QEMU and uses that stack to implement a virtual NAT’d network. As there are no dependencies
on the host, SLIRP is simple to setup.

By default, QEMU uses the 10.0.2.X/24 network and runs a gateway at 10.0.2.2. All traffic
intended for the host network has to travel through this gateway, which will filter out packets
based on the QEMU command line parameters. This gateway also functions as a DHCP server for
all GOS, allowing them to be automatically assigned with an IP address starting from 10.0.2.15.

More details about User Networking can be obtained from here: https://wiki.qemu.org/
Documentation/Networking#User_Networking_.28SLIRP.29

Using SLIRP with Zephyr In order to use SLIRP with Zephyr, the user has to set the Kconfig
option to enable User Networking.

CONFIG_NET_QEMU_USER=y

Once this configuration option is enabled, all QEMU launches will use SLIRP. In the default con-
figuration, Zephyr only enables User Networking, and does not pass any arguments to it. This
means that the Guest will only be able to communicate to the QEMU gateway, and any data in-
tended for the host machine will be dropped by QEMU.

In general, QEMU User Networking can take in a lot of arguments including,

• Information about host/guest port forwarding. This must be provided to create a commu-
nication channel between the guest and host.

• Information about network to use. This may be valuable if the user does not want to use
the default 10.0.2.X network.

• Tell QEMU to start DHCP server at user-defined IP address.

• ID and other information.

As this information varies with every use case, it is difficult to come up with good defaults that
work for all. Therefore, Zephyr Implementation offloads this to the user, and expects that they
will provide arguments based on requirements. For this, there is a Kconfig string which can be
populated by the user.

CONFIG_NET_QEMU_USER_EXTRA_ARGS="net=192.168.0.0/24,hostfwd=tcp::8080-:8080"

This option is appended as-is to the QEMU command line. Therefore, any problems with this
command line will be reported by QEMU only. Here’s what this particular example will do,

• Make QEMU use the 192.168.0.0/24 network instead of the default.

• Enable forwarding of any TCP data received from port 8080 of host to port 8080 of guest,
and vice versa.

Limitations If the user does not have any specific networking requirements other than the
ability to access a web page from the guest, user networking (slirp) is a good choice. However, it
has several limitations

• There is a lot of overhead so the performance is poor.

• The guest is not directly accessible from the host or the external network.

• In general, ICMP traffic does not work (so you cannot use ping within a guest).

• As port mappings need to be defined before launching qemu, clients which use dynamically
generated ports cannot communicate with external network.

• There is a bug in the SLIRP implementation which filters out all IPv6 packets from the
guest. See https://bugs.launchpad.net/qemu/+bug/1724590 for details. Therefore, IPv6 will
not work with User Networking.
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Networking with multiple Zephyr instances

• Prerequisites

• Basic Setup

– Step 1 - Create configuration files

– Step 2 - Create Ethernet interfaces

– Step 3 - Setup network bridging

– Step 4 - Start Zephyr instances

This page describes how to set up a virtual network between multiple Zephyr instances. The
Zephyr instances could be running inside QEMU or could be native_sim board processes. The
Linux host can be used to route network traffic between these systems.

Prerequisites On the Linux Host, fetch the Zephyr net-tools project, which is located in a
separate Git repository:

git clone https://github.com/zephyrproject-rtos/net-tools

Basic Setup For the steps below, you will need five terminal windows:

• Terminal #1 and #2 are terminal windows with net-tools being the current directory (cd
net-tools)

• Terminal #3, where you setup bridging in Linux host

• Terminal #4 and #5 are your usual Zephyr development terminal, with the Zephyr environ-
ment initialized.

As there are multiple ways to setup the Zephyr network, the example below uses qemu_x86 board
with e1000 Ethernet controller and native_sim board to simplify the setup instructions. You can
use other QEMU boards and drivers if needed, see Networking with QEMU Ethernet for details.
You can also use two or more native_sim board Zephyr instances and connect them together.

Step 1 - Create configurationfiles Before starting QEMU with network connectivity, a network
interfaces for each Zephyr instance should be created in the host system. The default setup for
creating network interface cannot be used here as that is for connecting one Zephyr instance to
Linux host.

For Zephyr instance #1, create file called zephyr1.conf to net-tools project, or to some other
suitable directory.

# Configuration file for setting IP addresses for a network interface.
INTERFACE="$1"
HWADDR="00:00:5e:00:53:11"
IPV6_ADDR_1="2001:db8:100::2"
IPV6_ROUTE_1="2001:db8:100::/64"
IPV4_ADDR_1="198.51.100.2/24"
IPV4_ROUTE_1="198.51.100.0/24"
ip link set dev $INTERFACE up
ip link set dev $INTERFACE address $HWADDR
ip -6 address add $IPV6_ADDR_1 dev $INTERFACE nodad
ip -6 route add $IPV6_ROUTE_1 dev $INTERFACE

(continues on next page)
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(continued from previous page)
ip address add $IPV4_ADDR_1 dev $INTERFACE
ip route add $IPV4_ROUTE_1 dev $INTERFACE > /dev/null 2>&1

For Zephyr instance #2, create file called zephyr2.conf to net-tools project, or to some other
suitable directory.

# Configuration file for setting IP addresses for a network interface.
INTERFACE="$1"
HWADDR="00:00:5e:00:53:22"
IPV6_ADDR_1="2001:db8:200::2"
IPV6_ROUTE_1="2001:db8:200::/64"
IPV4_ADDR_1="203.0.113.2/24"
IPV4_ROUTE_1="203.0.113.0/24"
ip link set dev $INTERFACE up
ip link set dev $INTERFACE address $HWADDR
ip -6 address add $IPV6_ADDR_1 dev $INTERFACE nodad
ip -6 route add $IPV6_ROUTE_1 dev $INTERFACE
ip address add $IPV4_ADDR_1 dev $INTERFACE
ip route add $IPV4_ROUTE_1 dev $INTERFACE > /dev/null 2>&1

Step 2 - Create Ethernet interfaces The following net-setup.sh commands should be typed
in net-tools directory (cd net-tools).

In terminal #1, type:

./net-setup.sh -c zephyr1.conf -i zeth.1

In terminal #2, type:

./net-setup.sh -c zephyr2.conf -i zeth.2

Step 3 - Setup network bridging In terminal #3, type:

sudo brctl addbr zeth-br
sudo brctl addif zeth-br zeth.1
sudo brctl addif zeth-br zeth.2
sudo ifconfig zeth-br up

Step 4 - Start Zephyr instances In this example we start sockets-echo-server and sockets-echo-
client sample applications. You can use other applications too as needed.

In terminal #4, if you are using QEMU, type this:

west build -d build/server -b qemu_x86 -t run \
samples/net/sockets/echo_server -- \
-DEXTRA_CONF_FILE=overlay-e1000.conf \
-DCONFIG_NET_CONFIG_MY_IPV4_ADDR=\"198.51.100.1\" \
-DCONFIG_NET_CONFIG_PEER_IPV4_ADDR=\"203.0.113.1\" \
-DCONFIG_NET_CONFIG_MY_IPV6_ADDR=\"2001:db8:100::1\" \
-DCONFIG_NET_CONFIG_PEER_IPV6_ADDR=\"2001:db8:200::1\" \
-DCONFIG_NET_CONFIG_MY_IPV4_GW=\"203.0.113.1\" \
-DCONFIG_ETH_QEMU_IFACE_NAME=\"zeth.1\" \
-DCONFIG_ETH_QEMU_EXTRA_ARGS=\"mac=00:00:5e:00:53:01\"

or if you want to use native_sim board, type this:
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west build -d build/server -b native_sim -t run \
samples/net/sockets/echo_server -- \
-DCONFIG_NET_CONFIG_MY_IPV4_ADDR=\"198.51.100.1\" \
-DCONFIG_NET_CONFIG_PEER_IPV4_ADDR=\"203.0.113.1\" \
-DCONFIG_NET_CONFIG_MY_IPV6_ADDR=\"2001:db8:100::1\" \
-DCONFIG_NET_CONFIG_PEER_IPV6_ADDR=\"2001:db8:200::1\" \
-DCONFIG_NET_CONFIG_MY_IPV4_GW=\"203.0.113.1\" \
-DCONFIG_ETH_NATIVE_POSIX_DRV_NAME=\"zeth.1\" \
-DCONFIG_ETH_NATIVE_POSIX_MAC_ADDR=\"00:00:5e:00:53:01\" \
-DCONFIG_ETH_NATIVE_POSIX_RANDOM_MAC=n

In terminal #5, if you are using QEMU, type this:

west build -d build/client -b qemu_x86 -t run \
samples/net/sockets/echo_client -- \
-DEXTRA_CONF_FILE=overlay-e1000.conf \
-DCONFIG_NET_CONFIG_MY_IPV4_ADDR=\"203.0.113.1\" \
-DCONFIG_NET_CONFIG_PEER_IPV4_ADDR=\"198.51.100.1\" \
-DCONFIG_NET_CONFIG_MY_IPV6_ADDR=\"2001:db8:200::1\" \
-DCONFIG_NET_CONFIG_PEER_IPV6_ADDR=\"2001:db8:100::1\" \
-DCONFIG_NET_CONFIG_MY_IPV4_GW=\"198.51.100.1\" \
-DCONFIG_ETH_QEMU_IFACE_NAME=\"zeth.2\" \
-DCONFIG_ETH_QEMU_EXTRA_ARGS=\"mac=00:00:5e:00:53:02\"

or if you want to use native_sim board, type this:

west build -d build/client -b native_sim -t run \
samples/net/sockets/echo_client -- \
-DCONFIG_NET_CONFIG_MY_IPV4_ADDR=\"203.0.113.1\" \
-DCONFIG_NET_CONFIG_PEER_IPV4_ADDR=\"198.51.100.1\" \
-DCONFIG_NET_CONFIG_MY_IPV6_ADDR=\"2001:db8:200::1\" \
-DCONFIG_NET_CONFIG_PEER_IPV6_ADDR=\"2001:db8:100::1\" \
-DCONFIG_NET_CONFIG_MY_IPV4_GW=\"198.51.100.1\" \
-DCONFIG_ETH_NATIVE_POSIX_DRV_NAME=\"zeth.2\" \
-DCONFIG_ETH_NATIVE_POSIX_MAC_ADDR=\"00:00:5e:00:53:02\" \
-DCONFIG_ETH_NATIVE_POSIX_RANDOM_MAC=n

Also if you have firewall enabled in your host, you need to allow traffic between zeth.1, zeth.2
and zeth-br interfaces.

Networking with QEMU and IEEE 802.15.4

• Basic Setup

– Step 1 - Compile and start echo-server

– Step 2 - Compile and start echo-client

This page describes how to set up a virtual network between two QEMUs that are connected
together via UART and are running IEEE 802.15.4 link layer between them. Note that this only
works in Linux host.

Basic Setup For the steps below, you will need two terminal windows:

• Terminal #1 is terminal window with echo-server Zephyr sample application.

• Terminal #2 is terminal window with echo-client Zephyr sample application.
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If you want to capture the transferred network data, you must compile the monitor_15_4 pro-
gram in net-tools directory.

Open a terminal window and type:

cd $ZEPHYR_BASE/../net-tools
make monitor_15_4

Step 1 - Compile and start echo-server In terminal #1, type:

west build -b qemu_x86 -d build/server samples/net/sockets/echo_server -- -DEXTRA_CONF_
↪→FILE=overlay-qemu_802154.conf
west build -t server -d build/server

If you want to capture the network traffic between the two QEMUs, type:

west build -b qemu_x86 -d build/server samples/net/sockets/echo_server -- -G'Unix Makefiles
↪→' -DEXTRA_CONF_FILE=overlay-qemu_802154.conf -DPCAP=capture.pcap
west build -t server -d build/server

Note that the make must be used for server target if packet capture option is set in command line.
The build/server/capture.pcap file will contain the transferred data.

Step 2 - Compile and start echo-client In terminal #2, type:

west build -b qemu_x86 -d build/client samples/net/sockets/echo_client -- -DEXTRA_CONF_
↪→FILE=overlay-qemu_802154.conf
west build -t client -d build/client

You should see data passed between the two QEMUs. Exit QEMU by pressing CTRL+A x.

Networking with Arm FVP User Mode

• Introduction

• Using Arm FVP User Mode Networking with Zephyr

• Limitations

This page is intended to serve as a starting point for anyone interested in using Arm FVP user
mode networking with Zephyr.

Introduction User mode networking emulates a built-in IP router and DHCP server, and routes
TCP and UDP traffic between the guest and host. It uses the user mode socket layer of the host to
communicate with other hosts. This allows the use of a significant number of IP network services
without requiring administrative privileges, or the installation of a separate driver on the host
on which the model is running.

By default, Arm FVP uses the 172.20.51.0/24 network and runs a gateway at 172.20.51.254.
This gateway also functions as a DHCP server for the GOS, allowing it to be automatically assigned
with an IP address 172.20.51.1.

More details about Arm FVP user mode networking can be obtained from here: https://developer.
arm.com/documentation/100964/latest/Introduction-to-Fast-Models/User-mode-networking
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Using Arm FVP User Mode Networking with Zephyr Arm FVP user mode networking can
be enabled in any applications and it doesn’t need any configurations on the host system. This
feature has been enabled in DHCPv4 client sample. See dhcpv4-client sample application.

Limitations
• You can use TCP and UDP over IP, but not ICMP (ping).

• User mode networking does not support forwarding UDP ports on the host to the model.

• You can only use DHCP within the private network.

• You can only make inward connections by mapping TCP ports on the host to the model. This
is common to all implementations that provide host connectivity using NAT.

• Operations that require privileged source ports, for example NFS in its default configura-
tion, do not work.

• If setup fails, or the parameter syntax is incorrect, there is no error reporting.

While developing networking software, it is usually necessary to connect and exchange data
with the host system like a Linux desktop computer. Depending on what board is used for de-
velopment, the following options are possible:

• QEMU using SLIP (Serial Line Internet Protocol).

– Here IP packets are exchanged between Zephyr and the host system via serial port.
This is the legacy way of transferring data. It is also quite slow so use it only when
necessary. See Networking with QEMU for details.

• QEMU using built-in Ethernet driver.

– Here IP packets are exchanged between Zephyr and the host system via QEMU’s built-
in Ethernet driver. Not all QEMU boards support built-in Ethernet so in some cases, you
might need to use the SLIP method for host connectivity. See Networking with QEMU
Ethernet for details.

• QEMU using SLIRP (Qemu User Networking).

– QEMU User Networking is implemented using “slirp”, which provides a full TCP/IP
stack within QEMU and uses that stack to implement a virtual NAT’d network. As this
support is built into QEMU, it can be used with any model and requires no admin priv-
ileges on the host machine, unlike TAP. However, it has several limitations including
performance which makes it less valuable for practical purposes. See Networking with
QEMU User for details.

• Arm FVP (User Mode Networking).

– User mode networking emulates a built-in IP router and DHCP server, and routes TCP
and UDP traffic between the guest and host. It uses the user mode socket layer of the
host to communicate with other hosts. This allows the use of a significant number of
IP network services without requiring administrative privileges, or the installation of
a separate driver on the host on which the model is running. See Networking with Arm
FVP User Mode for details.

• native_sim board.

– The Zephyr instance can be executed as a user space process in the host system. This
is the most convenient way to debug the Zephyr system as one can attach host debug-
ger directly to the running Zephyr instance. This requires that there is an adaptation
driver in Zephyr for interfacing with the host system. Two possible network drivers
can be used for this purpose, a TAP virtual Ethernet driver and an offloaded sockets
driver. See Networking with native_sim board for details.

• USB device networking.
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– Here, the Zephyr instance is run on a real board and the connectivity to the host system
is done via USB. See USB Device Networking for details.

• Connecting multiple Zephyr instances together.

– If you have multiple Zephyr instances, either QEMU or native_sim ones, and want to
create a connection between them, see Networking with multiple Zephyr instances for
details.

• Simulating IEEE 802.15.4 network between two QEMUs.

– Here, two Zephyr instances are running and there is IEEE 802.15.4 link layer run over
an UART between them. See Networking with QEMU and IEEE 802.15.4 for details.

6.3.5 Monitor Network Traffic

• Host Configuration

• Zephyr Configuration

• Wireshark Configuration

It is useful to be able to monitor the network traffic especially when debugging a connectivity
issues or when developing new protocol support in Zephyr. This page describes how to set up
a way to capture network traffic so that user is able to use Wireshark or similar tool in remote
host to see the network packets sent or received by a Zephyr device.

See also the net-capture sample application from the Zephyr source distribution for configura-
tion options that need to be enabled.

Host Configuration

The instructions here describe how to setup a Linux host to capture Zephyr network RX and TX
traffic. Similar instructions should work also in other operating systems. On the Linux Host,
fetch the Zephyr net-tools project, which is located in a separate Git repository:

git clone https://github.com/zephyrproject-rtos/net-tools

The net-tools project provides a configure file to setup IP-to-IP tunnel interface so that we can
transfer monitoring data from Zephyr to host.

In terminal #1, type:

./net-setup.sh -c zeth-tunnel.conf

This script will create following IPIP tunnel interfaces:

Interface name Description
zeth-ip6ip IPv6-over-IPv4 tunnel
zeth-ipip IPv4-over-IPv4 tunnel
zeth-ipip6 IPv4-over-IPv6 tunnel
zeth-ip6ip6 IPv6-over-IPv6 tunnel

Zephyr will send captured network packets to one of these interfaces. The actual interface will
depend on how the capturing is configured. You can then use Wireshark to monitor the proper
network interface.
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After the tunneling interfaces have been created, you can use for example net-capture.py script
from net-tools project to print or save the captured network packets. The net-capture.py pro-
vides an UDP listener, it can print the captured data to screen and optionally can also save the
data to a pcap file.

$ ./net-capture.py -i zeth-ip6ip -w capture.pcap
[20210408Z14:33:08.959589] Ether / IP / ICMP 192.0.2.1 > 192.0.2.2 echo-request 0 / Raw
[20210408Z14:33:08.976178] Ether / IP / ICMP 192.0.2.2 > 192.0.2.1 echo-reply 0 / Raw
[20210408Z14:33:16.176303] Ether / IPv6 / ICMPv6 Echo Request (id: 0x9feb seq: 0x0)
[20210408Z14:33:16.195326] Ether / IPv6 / ICMPv6 Echo Reply (id: 0x9feb seq: 0x0)
[20210408Z14:33:21.194979] Ether / IPv6 / ICMPv6ND_NS / ICMPv6 Neighbor Discovery Option -␣
↪→Source Link-Layer Address 02:00:5e:00:53:3b
[20210408Z14:33:21.217528] Ether / IPv6 / ICMPv6ND_NA / ICMPv6 Neighbor Discovery Option -␣
↪→Destination Link-Layer Address 00:00:5e:00:53:ff
[20210408Z14:34:10.245408] Ether / IPv6 / UDP 2001:db8::2:47319 > 2001:db8::1:4242 / Raw
[20210408Z14:34:10.266542] Ether / IPv6 / UDP 2001:db8::1:4242 > 2001:db8::2:47319 / Raw

The net-capture.py has following command line options:

Listen captured network data from Zephyr and save it optionally to pcap file.
./net-capture.py \

-i | --interface <network interface>
Listen this interface for the data

[-p | --port <UDP port>]
UDP port (default is 4242) where the capture data is received

[-q | --quiet]
Do not print packet information

[-t | --type <L2 type of the data>]
Scapy L2 type name of the UDP payload, default is Ether

[-w | --write <pcap file name>]
Write the received data to file in PCAP format

Instead of the net-capture.py script, you can for example use netcat to provide an UDP listener
so that the host will not send port unreachable message to Zephyr:

nc -l -u 2001:db8:200::2 4242 > /dev/null

The IP address above is the inner tunnel endpoint, and can be changed and it depends on how
the Zephyr is configured. Zephyr will send UDP packets containing the captured network packets
to the configured IP tunnel, so we need to terminate the network connection like this.

Zephyr Configuration

In this example, we use the native_sim board. You can also use any other board that supports
networking.

In terminal #3, type:

west build -b native_sim samples/net/capture -- -DCONFIG_NATIVE_UART_AUTOATTACH_DEFAULT_
↪→CMD=\""gnome-terminal -- screen %s"\"

To see the Zephyr console and shell, start Zephyr instance like this:

build/zephyr/zephyr.exe -attach_uart

Any other application can be used too, just make sure that suitable configuration options are
enabled (see samples/net/capture/prj.conf file for examples).

The network capture can be configured automatically if needed, but currently the capture sam-
ple application does not do that. User has to use net-shell to setup and enable the monitoring.
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The network packet monitoring needs to be setup first. The net-shell has net capture setup
command for doing that. The command syntax is

net capture setup <remote-ip-addr> <local-ip-addr> <peer-ip-addr>
<remote> is the (outer) endpoint IP address
<local> is the (inner) local IP address
<peer> is the (inner) peer IP address
Local and Peer IP addresses can have UDP port number in them (optional)
like 198.0.51.2:9000 or [2001:db8:100::2]:4242

In Zephyr console, type:

net capture setup 192.0.2.2 2001:db8:200::1 2001:db8:200::2

This command will create the tunneling interface. The 192.0.2.2 is the remote host where the
tunnel is terminated. The address is used to select the local network interface where the tun-
neling interface is attached to. The 2001:db8:200::1 tells the local IP address for the tunnel, the
2001:db8:200::2 is the peer IP address where the captured network packets are sent. The port
numbers for UDP packet can be given in the setup command like this for IPv6-over-IPv4 tunnel

net capture setup 192.0.2.2 [2001:db8:200::1]:9999 [2001:db8:200::2]:9998

and like this for IPv4-over-IPv4 tunnel

net capture setup 192.0.2.2 198.51.100.1:9999 198.51.100.2:9998

If the port number is omitted, then 4242 UDP port is used as a default.

The current monitoring configuration can be checked like this:

uart:~$ net capture
Network packet capture disabled

Capture Tunnel
Device iface iface Local Peer
NET_CAPTURE0 - 1 [2001:db8:200::1]:4242 [2001:db8:200::2]:4242

which will print the current configuration. As we have not yet enabled monitoring, the Capture
iface is not set.

Then we need to enable the network packet monitoring like this:

net capture enable 2

The 2 tells the network interface which traffic we want to capture. In this example, the 2 is the
native_sim board Ethernet interface. Note that we send the network traffic to the same inter-
face that we are monitoring in this example. The monitoring system avoids to capture already
captured network traffic as that would lead to recursion. You can use net iface command to
see what network interfaces are available. Note that you cannot capture traffic from the tunnel
interface as that would cause recursion loop. The captured network traffic can be sent to some
other network interface if configured so. Just set the <remote-ip-addr> option properly in net
capture setup so that the IP tunnel is attached to desired network interface. The capture status
can be checked again like this:

uart:~$ net capture
Network packet capture enabled

Capture Tunnel
Device iface iface Local Peer
NET_CAPTURE0 2 1 [2001:db8:200::1]:4242 [2001:db8:200::2]:4242

After enabling the monitoring, the system will send captured (either received or sent) network
packets to the tunnel interface for further processing.

The monitoring can be disabled like this:
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net capture disable

which will turn currently running monitoring off. The monitoring setup can be cleared like this:

net capture cleanup

It is not necessary to use net-shell for configuring the monitoring. The network capture API
functions can be called by the application if needed.

Wireshark Configuration

The Wireshark tool can be used to monitor the captured network traffic in a useful way.

You can monitor either the tunnel interfaces or the zeth interface. In order to see the actual
captured data inside an UDP packet, see Wireshark decapsulate UDP document for instructions.

6.3.6 Networking APIs

Zephyr provides support for the standard BSD socket APIs (defined in in-
clude/zephyr/net/socket.h) for the applications to use. See BSD socket API for more details.

Apart of the standard API, Zephyr provides a set of custom networking APIs and libraries for the
application to use. See the list below for details.

Note

The legacy connectivity API in include/zephyr/net/net_context.h should not be used by appli-
cations.

Network APIs

BSD Sockets

• Overview

• Secure Sockets

– TLS credentials subsystem

– Secure Socket Creation

– Secure Sockets options

• Socket offloading

– Offloaded socket creation

– Dealing with multiple offloaded interfaces

• API Reference

– BSD Sockets

– TLS Credentials
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Overview Zephyr offers an implementation of a subset of the BSD Sockets API (a part of the
POSIX standard). This API allows to reuse existing programming experience and port existing
simple networking applications to Zephyr.

Here are the key requirements and concepts which governed BSD Sockets compatible API im-
plementation for Zephyr:

• Has minimal overhead, similar to the requirement for other Zephyr subsystems.

• Is namespaced by default, to avoid name conflicts with well-known names like close(),
which may be part of libc or other POSIX compatibility libraries. If enabled by CON-
FIG_POSIX_API, it will also expose native POSIX names.

BSD Sockets compatible API is enabled using CONFIG_NET_SOCKETS config option and implements
the following operations: socket(), close(), recv(), recvfrom(), send(), sendto(), connect(),
bind(), listen(), accept(), fcntl() (to set non-blocking mode), getsockopt(), setsockopt(),
poll(), select(), getaddrinfo(), getnameinfo().

Based on the namespacing requirements above, these operations are by default exposed as func-
tions with zsock_ prefix, e.g. zsock_socket() and zsock_close(). If the config option CON-
FIG_POSIX_API is defined, all the functions will be also exposed as aliases without the prefix.
This includes the functions like close() and fcntl() (which may conflict with functions in libc
or other libraries, for example, with the filesystem libraries).

Another entailment of the design requirements above is that the Zephyr API aggressively em-
ploys the short-read/short-write property of the POSIX API whenever possible (to minimize com-
plexity and overheads). POSIX allows for calls like recv() and send() to actually process (receive
or send) less data than requested by the user (on SOCK_STREAM type sockets). For example, a call
recv(sock, 1000, 0) may return 100, meaning that only 100 bytes were read (short read), and
the application needs to retry call(s) to receive the remaining 900 bytes.

The BSD Sockets API uses file descriptors to represent sockets. File descriptors are small integers,
consecutively assigned from zero, shared among sockets, files, special devices (like stdin/stdout),
etc. Internally, there is a table mapping file descriptors to internal object pointers. The file de-
scriptor table is used by the BSD Sockets API even if the rest of the POSIX subsystem (filesystem,
stdin/stdout) is not enabled.

See sockets-echo-server and sockets-echo-client sample applications to learn how to create a sim-
ple server or client BSD socket based application.

Secure Sockets Zephyr provides an extension of standard POSIX socket API, allowing to cre-
ate and configure sockets with TLS protocol types, facilitating secure communication. Se-
cure functions for the implementation are provided by mbedTLS library. Secure sockets im-
plementation allows use of both TLS and DTLS protocols with standard socket calls. See
net_ip_protocol_secure type for supported secure protocol versions.

To enable secure sockets, set the CONFIG_NET_SOCKETS_SOCKOPT_TLS option. To enable DTLS sup-
port, use CONFIG_NET_SOCKETS_ENABLE_DTLS option.

TLS credentials subsystem TLS credentials must be registered in the system before they can
be used with secure sockets. See tls_credential_add() for more information.

When a specific TLS credential is registered in the system, it is assigned with numeric value of
type sec_tag_t, called a tag. This value can be used later on to reference the credential during
secure socket configuration with socket options.

The following TLS credential types can be registered in the system:

• TLS_CREDENTIAL_CA_CERTIFICATE
• TLS_CREDENTIAL_SERVER_CERTIFICATE
• TLS_CREDENTIAL_PRIVATE_KEY
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• TLS_CREDENTIAL_PSK
• TLS_CREDENTIAL_PSK_ID

An example registration of CA certificate (provided in ca_certificate array) looks like this:

ret = tls_credential_add(CA_CERTIFICATE_TAG, TLS_CREDENTIAL_CA_CERTIFICATE,
ca_certificate, sizeof(ca_certificate));

By default certificates in DER format are supported. PEM support can be enabled in mbedTLS
settings.

Secure Socket Creation A secure socket can be created by specifying secure protocol type, for
instance:

sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TLS_1_2);

Once created, it can be configured with socket options. For instance, the CA certificate and host-
name can be set:

sec_tag_t sec_tag_opt[] = {
CA_CERTIFICATE_TAG,

};

ret = setsockopt(sock, SOL_TLS, TLS_SEC_TAG_LIST,
sec_tag_opt, sizeof(sec_tag_opt));

char host[] = "google.com";

ret = setsockopt(sock, SOL_TLS, TLS_HOSTNAME, host, sizeof(host));

Once configured, socket can be used just like a regular TCP socket.

Several samples in Zephyr use secure sockets for communication. For a sample use see e.g. echo-
server sample application or HTTP GET sample application.

Secure Sockets options Secure sockets offer the following options for socket management:

Related code samples

HTTP Client
Implement an HTTP(S) client that issues a variety of HTTP requests.

HTTP GET using plain sockets
Implement an HTTP(S) client using plain BSD sockets.

group secure_sockets_options

Since
1.13

Version
0.8.0

Socket options for TLS
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SOL_TLS
Protocol level for TLS.

Here, the same socket protocol level for TLS as in Linux was used.

TLS_SEC_TAG_LIST
Socket option to select TLS credentials to use.

It accepts and returns an array of sec_tag_t that indicate which TLS credentials should
be used with specific socket.

TLS_HOSTNAME
Write-only socket option to set hostname.

It accepts a string containing the hostname (may be NULL to disable hostname verifi-
cation). By default, hostname check is enforced for TLS clients.

TLS_CIPHERSUITE_LIST
Socket option to select ciphersuites to use.

It accepts and returns an array of integers with IANA assigned ciphersuite identifiers.
If not set, socket will allow all ciphersuites available in the system (mbedTLS default
behavior).

TLS_CIPHERSUITE_USED
Read-only socket option to read a ciphersuite chosen during TLS handshake.

It returns an integer containing an IANA assigned ciphersuite identifier of chosen ci-
phersuite.

TLS_PEER_VERIFY
Write-only socket option to set peer verification level for TLS connection.

This option accepts an integer with a peer verification level, compatible with mbedTLS
values:

• 0 - none

• 1 - optional

• 2 - required

If not set, socket will use mbedTLS defaults (none for servers, required for clients).

TLS_DTLS_ROLE
Write-only socket option to set role for DTLS connection.

This option is irrelevant for TLS connections, as for them role is selected based on
connect()/listen() usage. By default, DTLS will assume client role. This option accepts
an integer with a TLS role, compatible with mbedTLS values:

• 0 - client

• 1 - server

TLS_ALPN_LIST
Socket option for setting the supported Application Layer Protocols.

It accepts and returns a const char array of NULL terminated strings representing the
supported application layer protocols listed during the TLS handshake.
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TLS_DTLS_HANDSHAKE_TIMEOUT_MIN
Socket option to set DTLS min handshake timeout.

The timeout starts at min, and upon retransmission the timeout is doubled util max is
reached. Min and max arguments are separate options. The time unit is ms.

TLS_DTLS_HANDSHAKE_TIMEOUT_MAX
Socket option to set DTLS max handshake timeout.

The timeout starts at min, and upon retransmission the timeout is doubled util max is
reached. Min and max arguments are separate options. The time unit is ms.

TLS_CERT_NOCOPY
Socket option for preventing certificates from being copied to the mbedTLS heap if
possible.

The option is only effective for DER certificates and is ignored for PEM certificates.

TLS_NATIVE
TLS socket option to use with offloading.

The option instructs the network stack only to offload underlying TCP/UDP communi-
cation. The TLS/DTLS operation is handled by a native TLS/DTLS socket implementa-
tion from Zephyr.

Note, that this option is only applicable if socket dispatcher is used (CON-
FIG_NET_SOCKETS_OFFLOAD_DISPATCHER is enabled). In such case, it should be the
first socket option set on a newly created socket. After that, the application may
use SO_BINDTODEVICE to choose the dedicated network interface for the underlying
TCP/UDP socket.

TLS_SESSION_CACHE
Socket option to control TLS session caching on a socket.

Accepted values:

• 0 - Disabled.

• 1 - Enabled.

TLS_SESSION_CACHE_PURGE
Write-only socket option to purge session cache immediately.

This option accepts any value.

TLS_DTLS_CID
Write-only socket option to control DTLS CID.

The option accepts an integer, indicating the setting. Accepted values for the option
are: 0, 1 and 2. Effective when set before connecting to the socket.

• 0 - DTLS CID will be disabled.

• 1 - DTLS CID will be enabled, and a 0 length CID value to be sent to the peer.

• 2 - DTLS CID will be enabled, and the most recent value set with
TLS_DTLS_CID_VALUE will be sent to the peer. Otherwise, a random value
will be used.
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TLS_DTLS_CID_STATUS
Read-only socket option to get DTLS CID status.

The option accepts a pointer to an integer, indicating the setting upon return. Returned
values for the option are:

• 0 - DTLS CID is disabled.

• 1 - DTLS CID is received on the downlink.

• 2 - DTLS CID is sent to the uplink.

• 3 - DTLS CID is used in both directions.

TLS_DTLS_CID_VALUE
Socket option to set or get the value of the DTLS connection ID to be used for the DTLS
session.

The option accepts a byte array, holding the CID value.

TLS_DTLS_PEER_CID_VALUE
Read-only socket option to get the value of the DTLS connection ID received from the
peer.

The option accepts a pointer to a byte array, holding the CID value upon return. The
optlen returned will be 0 if the peer did not provide a connection ID, otherwise will
contain the length of the CID value.

TLS_DTLS_HANDSHAKE_ON_CONNECT
Socket option to configure DTLS socket behavior on connect().

If set, DTLS connect() will execute the handshake with the configured peer. This is the
default behavior. Otherwise, DTLS connect() will only configure peer address (as with
regular UDP socket) and will not attempt to execute DTLS handshake. The handshake
will take place in consecutive send()/recv() call.

TLS_PEER_VERIFY_NONE
Peer verification disabled.

TLS_PEER_VERIFY_OPTIONAL
Peer verification optional.

TLS_PEER_VERIFY_REQUIRED
Peer verification required.

TLS_DTLS_ROLE_CLIENT
Client role in a DTLS session.

TLS_DTLS_ROLE_SERVER
Server role in a DTLS session.

TLS_CERT_NOCOPY_NONE
Cert duplicated in heap.

TLS_CERT_NOCOPY_OPTIONAL
Cert not copied in heap if DER.
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TLS_SESSION_CACHE_DISABLED
Disable TLS session caching.

TLS_SESSION_CACHE_ENABLED
Enable TLS session caching.

TLS_DTLS_CID_DISABLED
CID is disabled

TLS_DTLS_CID_SUPPORTED
CID is supported.

TLS_DTLS_CID_ENABLED
CID is enabled

TLS_DTLS_CID_STATUS_DISABLED
CID is disabled.

TLS_DTLS_CID_STATUS_DOWNLINK
CID is in use by us.

TLS_DTLS_CID_STATUS_UPLINK
CID is in use by peer.

TLS_DTLS_CID_STATUS_BIDIRECTIONAL
CID is in use by us and peer.

Socket offloading Zephyr allows to register custom socket implementations (called offloaded
sockets). This allows for seamless integration for devices which provide an external IP stack and
expose socket-like API.

Socket offloading can be enabled with CONFIG_NET_SOCKETS_OFFLOAD option. A network driver
that wants to register a new socket implementation should use NET_SOCKET_OFFLOAD_REGISTER
macro. The macro accepts the following parameters:

• socket_name
An arbitrary name for the socket implementation.

• prio
Socket implementation’s priority. The higher the priority, the earlier this particular
implementation will be processed when creating a new socket. Lower numeric value
indicates higher priority.

• _family
Socket family implemented by the offloaded socket. AF_UNSPEC indicates any family.

• _is_supported
A filtering function, used to verify whether a particular socket family, type and protocol
are supported by the offloaded socket implementation.

• _handler
A function compatible with socket() API, used to create an offloaded socket.

Every offloaded socket implementation should also implement a set of socket APIs, specified in
socket_op_vtable struct.
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The function registered for socket creation should allocate a new file descriptor using
zvfs_reserve_fd() function. Any additional actions, specific to the creation of a particular of-
floaded socket implementation, should take place after the file descriptor is allocated. As a final
step, if the offloaded socket was created successfully, the file descriptor should be finalized with
zvfs_finalize_typed_fd(), or zvfs_finalize_fd() functions. The finalize function allows to
register a socket_op_vtable structure implementing socket APIs for an offloaded socket along
with an optional socket context data pointer.

Finally, when an offloaded network interface is initialized, it should indicate that the interface is
offloaded with net_if_socket_offload_set() function. The function registers the function used
to create an offloaded socket (the same as the one provided in NET_SOCKET_OFFLOAD_REGISTER)
at the network interface.

Offloaded socket creation When application creates a new socket with socket() function, the
network stack iterates over all registered socket implementations (native and offloaded). Higher
priority socket implementations are processed first. For each registered socket implementation,
an address family is verified, and if it matches (or the socket was registered as AF_UNSPEC), the
corresponding _is_supported function is called to verify the remaining socket parameters. The
first implementation that fulfills the socket requirements (i. e. _is_supported returns true) will
create a new socket with its _handler function.

The above indicates the importance of the socket priority. If multiple socket implementations
support the same set of socket family/type/protocol, the first implementation processed by the
system will create a socket. Therefore it’s important to give the highest priority to the implemen-
tation that should be the system default.

The socket priority for native socket implementation is configured with Kconfig. Use CON-
FIG_NET_SOCKETS_TLS_PRIORITY to set the priority for the native TLS sockets. Use CON-
FIG_NET_SOCKETS_PRIORITY_DEFAULT to set the priority for the remaining native sockets.

Dealing with multiple offloaded interfaces As the socket() function does not allow to spec-
ify which network interface should be used by a socket, it’s not possible to choose a specific
implementation in case multiple offloaded socket implementations, supporting the same type
of sockets, are available. The same problem arises when both native and offloaded sockets are
available in the system.

To address this problem, a special socket implementation (called socket dispatcher) was intro-
duced. The sole reason for this module is to postpone the socket creation for until the first op-
eration on a socket is performed. This leaves an opening to use SO_BINDTODEVICE socket option,
to bind a socket to a particular network interface (and thus offloaded socket implementation).
The socket dispatcher can be enabled with CONFIG_NET_SOCKETS_OFFLOAD_DISPATCHER Kconfig
option.

When enabled, the application can specify the network interface to use with setsockopt() func-
tion:

/* A "dispatcher" socket is created */
sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

struct ifreq ifreq = {
.ifr_name = "SimpleLink"

};

/* The socket is "dispatched" to a particular network interface
* (offloaded or not).
*/

setsockopt(sock, SOL_SOCKET, SO_BINDTODEVICE, &ifreq, sizeof(ifreq));

Similarly, if TLS is supported by both native and offloaded sockets, TLS_NATIVE socket option can
be used to indicate that a native TLS socket should be created. The underlying socket can then
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be bound to a particular network interface:

/* A "dispatcher" socket is created */
sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TLS_1_2);

int tls_native = 1;

/* The socket is "dispatched" to a native TLS socket implmeentation.
* The underlying socket is a "dispatcher" socket now.
*/

setsockopt(sock, SOL_TLS, TLS_NATIVE, &tls_native, sizeof(tls_native));

struct ifreq ifreq = {
.ifr_name = "SimpleLink"

};

/* The underlying socket is "dispatched" to a particular network interface
* (offloaded or not).
*/

setsockopt(sock, SOL_SOCKET, SO_BINDTODEVICE, &ifreq, sizeof(ifreq));

In case no SO_BINDTODEVICE socket option is used on a socket, the socket will be dispatched ac-
cording to the default priority and filtering rules on a first socket API call.

API Reference

Related code samples

AWS IoT Core MQTT
Connect to AWS IoT Core and publish messages using MQTT.

Asynchronous echo server using poll()
Implement an asynchronous IPv4/IPv6 TCP echo server using BSD sockets and poll()

Asynchronous echo server using select()
Implement an asynchronous IPv4/IPv6 TCP echo server using BSD sockets and select()

Dumb HTTP server
Implement a simple, portable, HTTP server using BSD sockets.

Dumb HTTP server (multi-threaded)
Implement a simple HTTP server supporting simultaneous connections using BSD sock-
ets.

Echo client (advanced)
Implement a client that sends IP packets, waits for data to be sent back, and verifies it.

Echo server (advanced)
Implement a UDP/TCP server that sends received packets back to the sender.

Echo server (service)
Implements a simple IPv4/IPv6 TCP echo server using BSD sockets and socket service
API.

Echo server (simple)
Implements a simple IPv4/IPv6 TCP echo server using BSD sockets.

HTTP Client
Implement an HTTP(S) client that issues a variety of HTTP requests.
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HTTP GET using plain sockets
Implement an HTTP(S) client using plain BSD sockets.

Large HTTP download
Download a large file from a web server using BSD sockets.

Microsoft Azure IoT Hub MQTT
Connect to Azure IoT Hub and publish messages using MQTT.

Modbus TCP server
Implement a Modbus TCP server exposing Modbus commands to control LEDs.

Modbus TCP-to-serial gateway
Implement a gateway between an Ethernet TCP-IP network and a Modbus serial line.

Network management socket
Listen to network management events using a network management socket.

Packet socket
Use raw packet sockets over Ethernet.

SNTP client
Use SNTP to get the current time from the host.

SocketCAN
Send and receive raw CAN frames using BSD sockets API.

Socketpair
Implement communication between threads using socket pairs.

TCP sample for TTCN-3 based sanity check
Use TTCN-3 to validate the functionality of the TCP stack.

TagoIO HTTP Post
Send random temperature values to TagoIO IoT Cloud Platform using HTTP.

UDP sender using SO_TXTIME
Control the transmission time of a packet using SO_TXTIME socket option.

Video TCP server sink
Capture video frames and send them over the network to a TCP client.

WebSocket Client
Implement a Websocket client that connects to a Websocket server.

mDNS responder
Listen and respond to mDNS queries.

BSD Sockets

group bsd_sockets
BSD Sockets compatible API.

Since
1.9

Version
1.0.0

Socket APIs available if CONFIG_NET_SOCKETS_POSIX_NAMES is enabled

static inline int socket(int family, int type, int proto)
POSIX wrapper for zsock_socket.
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static inline int socketpair(int family, int type, int proto, int sv[2])
POSIX wrapper for zsock_socketpair.

static inline int close(int sock)
POSIX wrapper for zsock_close.

static inline int shutdown(int sock, int how)
POSIX wrapper for zsock_shutdown.

static inline int bind(int sock, const struct sockaddr *addr, socklen_t addrlen)
POSIX wrapper for zsock_bind.

static inline int connect(int sock, const struct sockaddr *addr, socklen_t addrlen)
POSIX wrapper for zsock_connect.

static inline int listen(int sock, int backlog)
POSIX wrapper for zsock_listen.

static inline int accept(int sock, struct sockaddr *addr, socklen_t *addrlen)
POSIX wrapper for zsock_accept.

static inline ssize_t send(int sock, const void *buf, size_t len, int flags)
POSIX wrapper for zsock_send.

static inline ssize_t recv(int sock, void *buf, size_t max_len, int flags)
POSIX wrapper for zsock_recv.

static inline ssize_t sendto(int sock, const void *buf, size_t len, int flags, const struct
sockaddr *dest_addr, socklen_t addrlen)

POSIX wrapper for zsock_sendto.

static inline ssize_t sendmsg(int sock, const struct msghdr *message, int flags)
POSIX wrapper for zsock_sendmsg.

static inline ssize_t recvfrom(int sock, void *buf, size_t max_len, int flags, struct sockaddr
*src_addr, socklen_t *addrlen)

POSIX wrapper for zsock_recvfrom.

static inline ssize_t recvmsg(int sock, struct msghdr *msg, int flags)
POSIX wrapper for zsock_recvmsg.

static inline int poll(struct zsock_pollfd *fds, int nfds, int timeout)
POSIX wrapper for zsock_poll.

static inline int getsockopt(int sock, int level, int optname, void *optval, socklen_t
*optlen)

POSIX wrapper for zsock_getsockopt.

static inline int setsockopt(int sock, int level, int optname, const void *optval, socklen_t
optlen)

POSIX wrapper for zsock_setsockopt.

static inline int getpeername(int sock, struct sockaddr *addr, socklen_t *addrlen)
POSIX wrapper for zsock_getpeername.

static inline int getsockname(int sock, struct sockaddr *addr, socklen_t *addrlen)
POSIX wrapper for zsock_getsockname.

static inline int getaddrinfo(const char *host, const char *service, const struct
zsock_addrinfo *hints, struct zsock_addrinfo **res)

POSIX wrapper for zsock_getaddrinfo.
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static inline void freeaddrinfo(struct zsock_addrinfo *ai)
POSIX wrapper for zsock_freeaddrinfo.

static inline const char *gai_strerror(int errcode)
POSIX wrapper for zsock_gai_strerror.

static inline int getnameinfo(const struct sockaddr *addr, socklen_t addrlen, char *host,
socklen_t hostlen, char *serv, socklen_t servlen, int flags)

POSIX wrapper for zsock_getnameinfo.

static inline int gethostname(char *buf, size_t len)
POSIX wrapper for zsock_gethostname.

static inline int inet_pton(sa_family_t family, const char *src, void *dst)
POSIX wrapper for zsock_inet_pton.

static inline char *inet_ntop(sa_family_t family, const void *src, char *dst, size_t size)
POSIX wrapper for zsock_inet_ntop.

pollfd
POSIX wrapper for zsock_pollfd.

addrinfo
POSIX wrapper for zsock_addrinfo.

POLLIN
POSIX wrapper for ZSOCK_POLLIN.

POLLOUT
POSIX wrapper for ZSOCK_POLLOUT.

POLLERR
POSIX wrapper for ZSOCK_POLLERR.

POLLHUP
POSIX wrapper for ZSOCK_POLLHUP.

POLLNVAL
POSIX wrapper for ZSOCK_POLLNVAL.

MSG_PEEK
POSIX wrapper for ZSOCK_MSG_PEEK.

MSG_CTRUNC
POSIX wrapper for ZSOCK_MSG_CTRUNC.

MSG_TRUNC
POSIX wrapper for ZSOCK_MSG_TRUNC.

MSG_DONTWAIT
POSIX wrapper for ZSOCK_MSG_DONTWAIT.
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MSG_WAITALL
POSIX wrapper for ZSOCK_MSG_WAITALL.

SHUT_RD
POSIX wrapper for ZSOCK_SHUT_RD.

SHUT_WR
POSIX wrapper for ZSOCK_SHUT_WR.

SHUT_RDWR
POSIX wrapper for ZSOCK_SHUT_RDWR.

EAI_BADFLAGS
POSIX wrapper for DNS_EAI_BADFLAGS.

EAI_NONAME
POSIX wrapper for DNS_EAI_NONAME.

EAI_AGAIN
POSIX wrapper for DNS_EAI_AGAIN.

EAI_FAIL
POSIX wrapper for DNS_EAI_FAIL.

EAI_NODATA
POSIX wrapper for DNS_EAI_NODATA.

EAI_MEMORY
POSIX wrapper for DNS_EAI_MEMORY .

EAI_SYSTEM
POSIX wrapper for DNS_EAI_SYSTEM.

EAI_SERVICE
POSIX wrapper for DNS_EAI_SERVICE.

EAI_SOCKTYPE
POSIX wrapper for DNS_EAI_SOCKTYPE.

EAI_FAMILY
POSIX wrapper for DNS_EAI_FAMILY .

Options for poll()

ZSOCK_POLLIN
zsock_poll: Poll for readability
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ZSOCK_POLLPRI
zsock_poll: Poll for exceptional condition

ZSOCK_POLLOUT
zsock_poll: Poll for writability

ZSOCK_POLLERR
zsock_poll: Poll results in error condition (output value only)

ZSOCK_POLLHUP
zsock_poll: Poll detected closed connection (output value only)

ZSOCK_POLLNVAL
zsock_poll: Invalid socket (output value only)

Options for sending and receiving data

ZSOCK_MSG_PEEK
zsock_recv: Read data without removing it from socket input queue

ZSOCK_MSG_CTRUNC
zsock_recvmsg: Control data buffer too small.

ZSOCK_MSG_TRUNC
zsock_recv: return the real length of the datagram, even when it was longer than the
passed buffer

ZSOCK_MSG_DONTWAIT
zsock_recv/zsock_send: Override operation to non-blocking

ZSOCK_MSG_WAITALL
zsock_recv: block until the full amount of data can be returned

Options for shutdown() function

ZSOCK_SHUT_RD
zsock_shutdown: Shut down for reading

ZSOCK_SHUT_WR
zsock_shutdown: Shut down for writing

ZSOCK_SHUT_RDWR
zsock_shutdown: Shut down for both reading and writing
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Flags for getaddrinfo() hints

AI_PASSIVE
Address for bind() (vs for connect())

AI_CANONNAME
Fill in ai_canonname.

AI_NUMERICHOST
Assume host address is in numeric notation, don’t DNS lookup.

AI_V4MAPPED
May return IPv4 mapped address for IPv6

AI_ALL
May return both native IPv6 and mapped IPv4 address for IPv6.

AI_ADDRCONFIG
IPv4/IPv6 support depends on local system config.

AI_NUMERICSERV
Assume service (port) is numeric.

AI_EXTFLAGS
Extra flags present (see RFC 5014)

Flags for getnameinfo()

NI_NUMERICHOST
zsock_getnameinfo(): Resolve to numeric address.

NI_NUMERICSERV
zsock_getnameinfo(): Resolve to numeric port number.

NI_NOFQDN
zsock_getnameinfo(): Return only hostname instead of FQDN

NI_NAMEREQD
zsock_getnameinfo(): Dummy option for compatibility

NI_DGRAM
zsock_getnameinfo(): Dummy option for compatibility

NI_MAXHOST
zsock_getnameinfo(): Max supported hostname length
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Network interface name description

IFNAMSIZ
Network interface name length.

Socket level options (SOL_SOCKET)

SOL_SOCKET
Socket-level option.

SO_DEBUG
Recording debugging information (ignored, for compatibility)

SO_REUSEADDR
address reuse

SO_TYPE
Type of the socket.

SO_ERROR
Async error.

SO_DONTROUTE
Bypass normal routing and send directly to host (ignored, for compatibility)

SO_BROADCAST
Transmission of broadcast messages is supported (ignored, for compatibility)

SO_SNDBUF
Size of socket send buffer.

SO_RCVBUF
Size of socket recv buffer.

SO_KEEPALIVE
Enable sending keep-alive messages on connections.

SO_OOBINLINE
Place out-of-band data into receive stream (ignored, for compatibility)

SO_PRIORITY
Socket priority.

SO_LINGER
Socket lingers on close (ignored, for compatibility)

SO_REUSEPORT
Allow multiple sockets to reuse a single port.
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SO_RCVLOWAT
Receive low watermark (ignored, for compatibility)

SO_SNDLOWAT
Send low watermark (ignored, for compatibility)

SO_RCVTIMEO
Receive timeout Applies to receive functions like recv(), but not to connect()

SO_SNDTIMEO
Send timeout.

SO_BINDTODEVICE
Bind a socket to an interface.

SO_ACCEPTCONN
Socket accepts incoming connections (ignored, for compatibility)

SO_TIMESTAMPING
Timestamp TX RX or both packets.

Supports multiple timestamp sources.

SO_PROTOCOL
Protocol used with the socket.

SO_DOMAIN
Domain used with SOCKET.

SO_SOCKS5
Enable SOCKS5 for Socket.

SO_TXTIME
Socket TX time (when the data should be sent)

SCM_TXTIME
Socket TX time (same as SO_TXTIME)

SOF_TIMESTAMPING_RX_HARDWARE
Timestamp generation flags.

Request RX timestamps generated by network adapter.

SOF_TIMESTAMPING_TX_HARDWARE
Request TX timestamps generated by network adapter.

This can be enabled via socket option or control messages.

TCP level options (IPPROTO_TCP)
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TCP_NODELAY
Disable TCP buffering (ignored, for compatibility)

TCP_KEEPIDLE
Start keepalives after this period (seconds)

TCP_KEEPINTVL
Interval between keepalives (seconds)

TCP_KEEPCNT
Number of keepalives before dropping connection.

IPv4 level options (IPPROTO_IP)

IP_TOS
Set or receive the Type-Of-Service value for an outgoing packet.

IP_TTL
Set or receive the Time-To-Live value for an outgoing packet.

IP_PKTINFO
Pass an IP_PKTINFO ancillary message that contains a pktinfo structure that supplies
some information about the incoming packet.

IP_MULTICAST_TTL
Set IPv4 multicast TTL value.

IP_ADD_MEMBERSHIP
Join IPv4 multicast group.

IP_DROP_MEMBERSHIP
Leave IPv4 multicast group.

IPv6 level options (IPPROTO_IPV6)

IPV6_UNICAST_HOPS
Set the unicast hop limit for the socket.

IPV6_MULTICAST_HOPS
Set the multicast hop limit for the socket.

IPV6_ADD_MEMBERSHIP
Join IPv6 multicast group.

IPV6_DROP_MEMBERSHIP
Leave IPv6 multicast group.
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IPV6_V6ONLY
Don’t support IPv4 access.

IPV6_RECVPKTINFO
Pass an IPV6_RECVPKTINFO ancillary message that contains a in6_pktinfo structure
that supplies some information about the incoming packet.

See RFC 3542.

IPV6_ADDR_PREFERENCES
RFC5014: Source address selection.

IPV6_PREFER_SRC_TMP
Prefer temporary address as source.

IPV6_PREFER_SRC_PUBLIC
Prefer public address as source.

IPV6_PREFER_SRC_PUBTMP_DEFAULT
Either public or temporary address is selected as a default source depending on the
output interface configuration (this is the default value).

This is Linux specific option not found in the RFC.

IPV6_PREFER_SRC_COA
Prefer Care-of address as source.

Ignored in Zephyr.

IPV6_PREFER_SRC_HOME
Prefer Home address as source.

Ignored in Zephyr.

IPV6_PREFER_SRC_CGA
Prefer CGA (Cryptographically Generated Address) address as source.

Ignored in Zephyr.

IPV6_PREFER_SRC_NONCGA
Prefer non-CGA address as source.

Ignored in Zephyr.

IPV6_TCLASS
Set or receive the traffic class value for an outgoing packet.

Backlog size for listen()

SOMAXCONN
listen: The maximum backlog queue length
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Defines

ZSOCK_FD_SETSIZE
Number of file descriptors which can be added to zsock_fd_set.

Typedefs

typedef struct zsock_fd_set zsock_fd_set
Socket file descriptor set.

Functions

void *zsock_get_context_object(int sock)
Obtain a file descriptor’s associated net context.

With CONFIG_USERSPACE enabled, the kernel’s object permission system must apply
to socket file descriptors. When a socket is opened, by default only the caller has per-
mission, access by other threads will fail unless they have been specifically granted
permission.

This is achieved by tagging data structure definitions that implement the underly-
ing object associated with a network socket file descriptor with ‘__net_socket‘. All
pointers to instances of these will be known to the kernel as kernel objects with type
K_OBJ_NET_SOCKET.

This API is intended for threads that need to grant access to the object associated with
a particular file descriptor to another thread. The returned pointer represents the un-
derlying K_OBJ_NET_SOCKET and may be passed to APIs like k_object_access_grant().

In a system like Linux which has the notion of threads running in processes in a shared
virtual address space, this sort of management is unnecessary as the scope of file de-
scriptors is implemented at the process level.

However in Zephyr the file descriptor scope is global, and MPU-based systems are not
able to implement a process-like model due to the lack of memory virtualization hard-
ware. They use discrete object permissions and memory domains instead to define
thread access scope.

User threads will have no direct access to the returned object and will fault if they try
to access its memory; the pointer can only be used to make permission assignment
calls, which follow exactly the rules for other kernel objects like device drivers and
IPC.

Parameters
• sock – file descriptor

Returns
pointer to associated network socket object, or NULL if the file descriptor
wasn’t valid or the caller had no access permission

int zsock_socket(int family, int type, int proto)
Create a network socket.

See POSIX.1-2017 article for normative description. This function is also exposed as
socket() if CONFIG_POSIX_API is defined.

If CONFIG_USERSPACE is enabled, the caller will be granted access to the context object
associated with the returned file descriptor.
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See also

zsock_get_context_object()

int zsock_socketpair(int family, int type, int proto, int *sv)
Create an unnamed pair of connected sockets.

See POSIX.1-2017 article for normative description. This function is also exposed as
socketpair() if CONFIG_POSIX_API is defined.

int zsock_close(int sock)
Close a network socket.

Close a network socket. This function is also exposed as close() if CONFIG_POSIX_API
is defined (in which case it may conflict with generic POSIX close() function).

int zsock_shutdown(int sock, int how)
Shutdown socket send/receive operations.

See POSIX.1-2017 article for normative description, but currently this function has no
effect in Zephyr and provided solely for compatibility with existing code. This function
is also exposed as shutdown() if CONFIG_POSIX_API is defined.

int zsock_bind(int sock, const struct sockaddr *addr, socklen_t addrlen)
Bind a socket to a local network address.

See POSIX.1-2017 article for normative description. This function is also exposed as
bind() if CONFIG_POSIX_API is defined.

int zsock_connect(int sock, const struct sockaddr *addr, socklen_t addrlen)
Connect a socket to a peer network address.

See POSIX.1-2017 article for normative description. This function is also exposed as
connect() if CONFIG_POSIX_API is defined.

int zsock_listen(int sock, int backlog)
Set up a STREAM socket to accept peer connections.

See POSIX.1-2017 article for normative description. This function is also exposed as
listen() if CONFIG_POSIX_API is defined.

int zsock_accept(int sock, struct sockaddr *addr, socklen_t *addrlen)
Accept a connection on listening socket.

See POSIX.1-2017 article for normative description. This function is also exposed as
accept() if CONFIG_POSIX_API is defined.

ssize_t zsock_sendto(int sock, const void *buf, size_t len, int flags, const struct sockaddr
*dest_addr, socklen_t addrlen)

Send data to an arbitrary network address.

See POSIX.1-2017 article for normative description. This function is also exposed as
sendto() if CONFIG_POSIX_API is defined.

static inline ssize_t zsock_send(int sock, const void *buf, size_t len, int flags)
Send data to a connected peer.

See POSIX.1-2017 article for normative description. This function is also exposed as
send() if CONFIG_POSIX_API is defined.

ssize_t zsock_sendmsg(int sock, const struct msghdr *msg, int flags)
Send data to an arbitrary network address.

See POSIX.1-2017 article for normative description. This function is also exposed as
sendmsg() if CONFIG_POSIX_API is defined.
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ssize_t zsock_recvfrom(int sock, void *buf, size_t max_len, int flags, struct sockaddr
*src_addr, socklen_t *addrlen)

Receive data from an arbitrary network address.

See POSIX.1-2017 article for normative description. This function is also exposed as
recvfrom() if CONFIG_POSIX_API is defined.

ssize_t zsock_recvmsg(int sock, struct msghdr *msg, int flags)
Receive a message from an arbitrary network address.

See POSIX.1-2017 article for normative description. This function is also exposed as
recvmsg() if CONFIG_POSIX_API is defined.

static inline ssize_t zsock_recv(int sock, void *buf, size_t max_len, int flags)
Receive data from a connected peer.

See POSIX.1-2017 article for normative description. This function is also exposed as
recv() if CONFIG_POSIX_API is defined.

int zsock_fcntl_impl(int sock, int cmd, int flags)
Control blocking/non-blocking mode of a socket.

This functions allow to (only) configure a socket for blocking or non-blocking opera-
tion (O_NONBLOCK). This function is also exposed as fcntl() if CONFIG_POSIX_API is
defined (in which case it may conflict with generic POSIX fcntl() function).

int zsock_ioctl_impl(int sock, unsigned long request, va_list ap)
Control underlying socket parameters.

See POSIX.1-2017 article for normative description. This function enables querying or
manipulating underlying socket parameters. Currently supported @p request values
include ZFD_IOCTL_FIONBIO, and ZFD_IOCTL_FIONREAD, to set non-blocking mode, and
query the number of bytes available to read, respectively. This function is also exposed
as ioctl() if CONFIG_POSIX_API is defined (in which case it may conflict with generic
POSIX ioctl() function).

int zsock_poll(struct zsock_pollfd *fds, int nfds, int timeout)
Efficiently poll multiple sockets for events.

See POSIX.1-2017 article for normative description. This function is also exposed as
poll() if CONFIG_POSIX_API is defined (in which case it may conflict with generic POSIX
poll() function).

int zsock_getsockopt(int sock, int level, int optname, void *optval, socklen_t *optlen)
Get various socket options.

See POSIX.1-2017 article for normative description. In Zephyr this function supports a
subset of socket options described by POSIX, but also some additional options available
in Linux (some options are dummy and provided to ease porting of existing code). This
function is also exposed as getsockopt() if CONFIG_POSIX_API is defined.

int zsock_setsockopt(int sock, int level, int optname, const void *optval, socklen_t optlen)
Set various socket options.

See POSIX.1-2017 article for normative description. In Zephyr this function supports a
subset of socket options described by POSIX, but also some additional options available
in Linux (some options are dummy and provided to ease porting of existing code). This
function is also exposed as setsockopt() if CONFIG_POSIX_API is defined.

int zsock_getpeername(int sock, struct sockaddr *addr, socklen_t *addrlen)
Get peer name.

See POSIX.1-2017 article for normative description. This function is also exposed as
getpeername() if CONFIG_POSIX_API is defined.
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int zsock_getsockname(int sock, struct sockaddr *addr, socklen_t *addrlen)
Get socket name.

See POSIX.1-2017 article for normative description. This function is also exposed as
getsockname() if CONFIG_POSIX_API is defined.

int zsock_gethostname(char *buf, size_t len)
Get local host name.

See POSIX.1-2017 article for normative description. This function is also exposed as
gethostname() if CONFIG_POSIX_API is defined.

static inline char *zsock_inet_ntop(sa_family_t family, const void *src, char *dst, size_t
size)

Convert network address from internal to numeric ASCII form.

See POSIX.1-2017 article for normative description. This function is also exposed as
inet_ntop() if CONFIG_POSIX_API is defined.

int zsock_inet_pton(sa_family_t family, const char *src, void *dst)
Convert network address from numeric ASCII form to internal representation.

See POSIX.1-2017 article for normative description. This function is also exposed as
inet_pton() if CONFIG_POSIX_API is defined.

int zsock_getaddrinfo(const char *host, const char *service, const struct zsock_addrinfo
*hints, struct zsock_addrinfo **res)

Resolve a domain name to one or more network addresses.

See POSIX.1-2017 article for normative description. This function is also exposed as
getaddrinfo() if CONFIG_POSIX_API is defined.

void zsock_freeaddrinfo(struct zsock_addrinfo *ai)
Free results returned by zsock_getaddrinfo()

See POSIX.1-2017 article for normative description. This function is also exposed as
freeaddrinfo() if CONFIG_POSIX_API is defined.

const char *zsock_gai_strerror(int errcode)
Convert zsock_getaddrinfo() error code to textual message.

See POSIX.1-2017 article for normative description. This function is also exposed as
gai_strerror() if CONFIG_POSIX_API is defined.

int zsock_getnameinfo(const struct sockaddr *addr, socklen_t addrlen, char *host,
socklen_t hostlen, char *serv, socklen_t servlen, int flags)

Resolve a network address to a domain name or ASCII address.

See POSIX.1-2017 article for normative description. This function is also exposed as
getnameinfo() if CONFIG_POSIX_API is defined.

int zsock_select(int nfds, zsock_fd_set *readfds, zsock_fd_set *writefds, zsock_fd_set
*exceptfds, struct zsock_timeval *timeout)

Legacy function to poll multiple sockets for events.

See POSIX.1-2017 article for normative description. This function is provided to ease
porting of existing code and not recommended for usage due to its inefficiency, use
zsock_poll() instead. In Zephyr this function works only with sockets, not arbitrary file
descriptors. This function is also exposed as select() if CONFIG_POSIX_API is defined
(in which case it may conflict with generic POSIX select() function).
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void ZSOCK_FD_ZERO(zsock_fd_set *set)
Initialize (clear) fd_set.

See POSIX.1-2017 article for normative description. This function is also exposed as
FD_ZERO() if CONFIG_POSIX_API is defined.

int ZSOCK_FD_ISSET(int fd, zsock_fd_set *set)
Check whether socket is a member of fd_set.

See POSIX.1-2017 article for normative description. This function is also exposed as
FD_ISSET() if CONFIG_POSIX_API is defined.

void ZSOCK_FD_CLR(int fd, zsock_fd_set *set)
Remove socket from fd_set.

See POSIX.1-2017 article for normative description. This function is also exposed as
FD_CLR() if CONFIG_POSIX_API is defined.

void ZSOCK_FD_SET(int fd, zsock_fd_set *set)
Add socket to fd_set.

See POSIX.1-2017 article for normative description. This function is also exposed as
FD_SET() if CONFIG_POSIX_API is defined.

struct zsock_addrinfo
#include <socket.h> Definition used when querying address information.

A linked list of these descriptors is returned by getaddrinfo(). The struct is also passed
as hints when calling the getaddrinfo() function.

Public Members

struct zsock_addrinfo *ai_next
Pointer to next address entry.

int ai_flags
Additional options.

int ai_family
Address family of the returned addresses.

int ai_socktype
Socket type, for example SOCK_STREAM or SOCK_DGRAM.

int ai_protocol
Protocol for addresses, 0 means any protocol.

int ai_eflags
Extended flags for special usage.

socklen_t ai_addrlen
Length of the socket address.

struct sockaddr *ai_addr
Pointer to the address.
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char *ai_canonname
Optional official name of the host.

struct ifreq
#include <socket.h> Interface description structure.

Public Members

char ifr_name[Z_DEVICE_MAX_NAME_LEN]
Network interface name.

struct in_pktinfo
#include <socket.h> Incoming IPv4 packet information.

Used as ancillary data when calling recvmsg() and IP_PKTINFO socket option is set.

Public Members

unsigned int ipi_ifindex
Network interface index.

struct in_addr ipi_spec_dst
Local address.

struct in_addr ipi_addr
Header Destination address.

struct ip_mreqn
#include <socket.h> Struct used when joining or leaving a IPv4 multicast group.

Public Members

struct in_addr imr_multiaddr
IP multicast group address.

struct in_addr imr_address
IP address of local interface.

int imr_ifindex
Network interface index.

struct ipv6_mreq
#include <socket.h> Struct used when joining or leaving a IPv6 multicast group.
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Public Members

struct in6_addr ipv6mr_multiaddr
IPv6 multicast address of group.

int ipv6mr_ifindex
Network interface index of the local IPv6 address.

struct in6_pktinfo
#include <socket.h> Incoming IPv6 packet information.

Used as ancillary data when calling recvmsg() and IPV6_RECVPKTINFO socket option
is set.

Public Members

struct in6_addr ipi6_addr
Destination IPv6 address.

unsigned int ipi6_ifindex
Receive interface index.

struct zsock_pollfd
#include <socket_poll.h> Definition of the monitored socket/file descriptor.

An array of these descriptors is passed as an argument to poll().

Public Members

int fd
Socket descriptor.

short events
Requested events.

short revents
Returned events.

struct zsock_fd_set
#include <socket_select.h> Socket file descriptor set.

Related code samples

AWS IoT Core MQTT
Connect to AWS IoT Core and publish messages using MQTT.
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Dumb HTTP server (multi-threaded)
Implement a simple HTTP server supporting simultaneous connections using BSD sock-
ets.

Echo client (advanced)
Implement a client that sends IP packets, waits for data to be sent back, and verifies it.

Echo server (advanced)
Implement a UDP/TCP server that sends received packets back to the sender.

HTTP Client
Implement an HTTP(S) client that issues a variety of HTTP requests.

HTTP GET using plain sockets
Implement an HTTP(S) client using plain BSD sockets.

HTTP Server
Implement an HTTP(s) Server demonstrating various resource types.

Large HTTP download
Download a large file from a web server using BSD sockets.

Microsoft Azure IoT Hub MQTT
Connect to Azure IoT Hub and publish messages using MQTT.

TagoIO HTTP Post
Send random temperature values to TagoIO IoT Cloud Platform using HTTP.

TLS Credentials

group tls_credentials
TLS credentials management.

Since
1.13

Version
0.8.0

Typedefs

typedef int sec_tag_t
Secure tag, a reference to TLS credential.

Secure tag can be used to reference credential after it was registered in the system.

Note

Some TLS credentials come in pairs:

• TLS_CREDENTIAL_SERVER_CERTIFICATE with TLS_CREDENTIAL_PRIVATE_KEY,

• TLS_CREDENTIAL_PSK with TLS_CREDENTIAL_PSK_ID. Such pairs of creden-
tials must be assigned the same secure tag to be correctly handled in the sys-
tem.
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Note

Negative values are reserved for internal use.

Enums

enum tls_credential_type
TLS credential types.

Values:

enumerator TLS_CREDENTIAL_NONE
Unspecified credential.

enumerator TLS_CREDENTIAL_CA_CERTIFICATE
A trusted CA certificate.

Use this to authenticate remote servers. Used with certificate-based ciphersuites.

enumerator TLS_CREDENTIAL_SERVER_CERTIFICATE
A public server certificate.

Use this to register your own server certificate. Should be registered together with
a corresponding private key. Used with certificate-based ciphersuites.

enumerator TLS_CREDENTIAL_PRIVATE_KEY
Private key.

Should be registered together with a corresponding public certificate. Used with
certificate-based ciphersuites.

enumerator TLS_CREDENTIAL_PSK
Pre-shared key.

Should be registered together with a corresponding PSK identity. Used with PSK-
based ciphersuites.

enumerator TLS_CREDENTIAL_PSK_ID
Pre-shared key identity.

Should be registered together with a corresponding PSK. Used with PSK-based ci-
phersuites.

Functions

int tls_credential_add(sec_tag_t tag, enum tls_credential_type type, const void *cred,
size_t credlen)

Add a TLS credential.

This function adds a TLS credential, that can be used by TLS/DTLS for authentication.

Parameters
• tag – A security tag that credential will be referenced with.
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• type – A TLS/DTLS credential type.

• cred – A TLS/DTLS credential.

• credlen – A TLS/DTLS credential length.

Return values
• 0 – TLS credential successfully added.

• -EACCES – Access to the TLS credential subsystem was denied.

• -ENOMEM – Not enough memory to add new TLS credential.

• -EEXIST – TLS credential of specific tag and type already exists.

int tls_credential_get(sec_tag_t tag, enum tls_credential_type type, void *cred, size_t
*credlen)

Get a TLS credential.

This function gets an already registered TLS credential, referenced by tag secure tag
of type.

Parameters
• tag – A security tag of requested credential.

• type – A TLS/DTLS credential type of requested credential.

• cred – A buffer for TLS/DTLS credential.

• credlen – A buffer size on input. TLS/DTLS credential length on output.

Return values
• 0 – TLS credential successfully obtained.

• -EACCES – Access to the TLS credential subsystem was denied.

• -ENOENT – Requested TLS credential was not found.

• -EFBIG – Requested TLS credential does not fit in the buffer provided.

int tls_credential_delete(sec_tag_t tag, enum tls_credential_type type)
Delete a TLS credential.

This function removes a TLS credential, referenced by tag secure tag of type.

Parameters
• tag – A security tag corresponding to removed credential.

• type – A TLS/DTLS credential type of removed credential.

Return values
• 0 – TLS credential successfully deleted.

• -EACCES – Access to the TLS credential subsystem was denied.

• -ENOENT – Requested TLS credential was not found.

IPv4/IPv6 Primitives and Helpers

• Overview

• API Reference
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Overview Miscellaneous defines and helper functions for IP addresses and IP protocols.

API Reference

group ip_4_6
IPv4/IPv6 primitives and helpers.

Since
1.0

Version
1.0.0

Defines

PF_UNSPEC
Unspecified protocol family.

PF_INET
IP protocol family version 4.

PF_INET6
IP protocol family version 6.

PF_PACKET
Packet family.

PF_CAN
Controller Area Network.

PF_NET_MGMT
Network management info.

PF_LOCAL
Inter-process communication

PF_UNIX
Inter-process communication

AF_UNSPEC
Unspecified address family.

AF_INET
IP protocol family version 4.

AF_INET6
IP protocol family version 6.
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AF_PACKET
Packet family.

AF_CAN
Controller Area Network.

AF_NET_MGMT
Network management info.

AF_LOCAL
Inter-process communication

AF_UNIX
Inter-process communication

ntohs(x)
Convert 16-bit value from network to host byte order.

Parameters
• x – The network byte order value to convert.

Returns
Host byte order value.

ntohl(x)
Convert 32-bit value from network to host byte order.

Parameters
• x – The network byte order value to convert.

Returns
Host byte order value.

ntohll(x)
Convert 64-bit value from network to host byte order.

Parameters
• x – The network byte order value to convert.

Returns
Host byte order value.

htons(x)
Convert 16-bit value from host to network byte order.

Parameters
• x – The host byte order value to convert.

Returns
Network byte order value.

htonl(x)
Convert 32-bit value from host to network byte order.

Parameters
• x – The host byte order value to convert.

Returns
Network byte order value.
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htonll(x)
Convert 64-bit value from host to network byte order.

Parameters
• x – The host byte order value to convert.

Returns
Network byte order value.

NET_IPV6_ADDR_SIZE
Binary size of the IPv6 address.

NET_IPV4_ADDR_SIZE
Binary size of the IPv4 address.

CMSG_FIRSTHDR(msghdr)
Returns a pointer to the first cmsghdr in the ancillary data buffer associated with the
passed msghdr.

It returns NULL if there isn’t enough space for a cmsghdr in the buffer.

CMSG_NXTHDR(msghdr, cmsg)
Returns the next valid cmsghdr after the passed cmsghdr.

It returns NULL when there isn’t enough space left in the buffer.

CMSG_DATA(cmsg)
Returns a pointer to the data portion of a cmsghdr.

The pointer returned cannot be assumed to be suitably aligned for accessing arbitrary
payload data types. Applications should not cast it to a pointer type matching the pay-
load, but should instead use memcpy(3) to copy data to or from a suitably declared
object.

CMSG_SPACE(length)
Returns the number of bytes an ancillary element with payload of the passed data
length occupies.

CMSG_LEN(length)
Returns the value to store in the cmsg_len member of the cmsghdr structure, taking
into account any necessary alignment.

It takes the data length as an argument.

IN6ADDR_ANY_INIT
IPv6 address initializer.

IN6ADDR_LOOPBACK_INIT
IPv6 loopback address initializer.

INADDR_ANY
IPv4 any address.

INADDR_ANY_INIT
IPv4 address initializer.

INADDR_LOOPBACK_INIT
IPv6 loopback address initializer.
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INET_ADDRSTRLEN
Max length of the IPv4 address as a string.

Defined by POSIX.

INET6_ADDRSTRLEN
Max length of the IPv6 address as a string.

Takes into account possible mapped IPv4 addresses.

NET_MAX_PRIORITIES
How many priority values there are.

net_ipaddr_copy(dest, src)
Copy an IPv4 or IPv6 address.

Parameters
• dest – Destination IP address.

• src – Source IP address.

Returns
Destination address.

Typedefs

typedef unsigned short int sa_family_t
Socket address family type.

typedef size_t socklen_t
Length of a socket address.

Enums

enum net_ip_protocol
Protocol numbers from IANA/BSD.

Values:

enumerator IPPROTO_IP = 0
IP protocol (pseudo-val for setsockopt()

enumerator IPPROTO_ICMP = 1
ICMP protocol

enumerator IPPROTO_IGMP = 2
IGMP protocol

enumerator IPPROTO_IPIP = 4
IPIP tunnels
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enumerator IPPROTO_TCP = 6
TCP protocol

enumerator IPPROTO_UDP = 17
UDP protocol

enumerator IPPROTO_IPV6 = 41
IPv6 protocol

enumerator IPPROTO_ICMPV6 = 58
ICMPv6 protocol.

enumerator IPPROTO_RAW = 255
RAW IP packets

enum net_ip_protocol_secure
Protocol numbers for TLS protocols.

Values:

enumerator IPPROTO_TLS_1_0 = 256
TLS 1.0 protocol.

enumerator IPPROTO_TLS_1_1 = 257
TLS 1.1 protocol.

enumerator IPPROTO_TLS_1_2 = 258
TLS 1.2 protocol.

enumerator IPPROTO_DTLS_1_0 = 272
DTLS 1.0 protocol.

enumerator IPPROTO_DTLS_1_2 = 273
DTLS 1.2 protocol.

enum net_sock_type
Socket type.

Values:

enumerator SOCK_STREAM = 1
Stream socket type

enumerator SOCK_DGRAM
Datagram socket type.

enumerator SOCK_RAW
RAW socket type
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enum net_ip_mtu
IP Maximum Transfer Unit.

Values:

enumerator NET_IPV6_MTU = 1280
IPv6 MTU length.

We must be able to receive this size IPv6 packet without fragmentation.

enumerator NET_IPV4_MTU = 576
IPv4 MTU length.

We must be able to receive this size IPv4 packet without fragmentation.

enum net_priority
Network packet priority settings described in IEEE 802.1Q Annex I.1.

Values:

enumerator NET_PRIORITY_BK = 1
Background (lowest)

enumerator NET_PRIORITY_BE = 0
Best effort (default)

enumerator NET_PRIORITY_EE = 2
Excellent effort

enumerator NET_PRIORITY_CA = 3
Critical applications

enumerator NET_PRIORITY_VI = 4
Video, < 100 ms latency and jitter.

enumerator NET_PRIORITY_VO = 5
Voice, < 10 ms latency and jitter

enumerator NET_PRIORITY_IC = 6
Internetwork control

enumerator NET_PRIORITY_NC = 7
Network control (highest)

enum net_addr_state
What is the current state of the network address.

Values:

enumerator NET_ADDR_ANY_STATE = -1
Default (invalid) address type.
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enumerator NET_ADDR_TENTATIVE = 0
Tentative address

enumerator NET_ADDR_PREFERRED
Preferred address

enumerator NET_ADDR_DEPRECATED
Deprecated address

enum net_addr_type
How the network address is assigned to network interface.

Values:

enumerator NET_ADDR_ANY = 0
Default value.

This is not a valid value.

enumerator NET_ADDR_AUTOCONF
Auto configured address.

enumerator NET_ADDR_DHCP
Address is from DHCP.

enumerator NET_ADDR_MANUAL
Manually set address.

enumerator NET_ADDR_OVERRIDABLE
Manually set address which is overridable by DHCP.

Functions

static inline bool net_ipv6_is_addr_loopback(struct in6_addr *addr)
Check if the IPv6 address is a loopback address (::1).

Parameters
• addr – IPv6 address

Returns
True if address is a loopback address, False otherwise.

static inline bool net_ipv6_is_addr_mcast(const struct in6_addr *addr)
Check if the IPv6 address is a multicast address.

Parameters
• addr – IPv6 address

Returns
True if address is multicast address, False otherwise.

struct net_if_addr *net_if_ipv6_addr_lookup(const struct in6_addr *addr, struct net_if
**iface)
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static inline bool net_ipv6_is_my_addr(struct in6_addr *addr)
Check if IPv6 address is found in one of the network interfaces.

Parameters
• addr – IPv6 address

Returns
True if address was found, False otherwise.

struct net_if_mcast_addr *net_if_ipv6_maddr_lookup(const struct in6_addr *addr, struct
net_if **iface)

static inline bool net_ipv6_is_my_maddr(struct in6_addr *maddr)
Check if IPv6 multicast address is found in one of the network interfaces.

Parameters
• maddr – Multicast IPv6 address

Returns
True if address was found, False otherwise.

static inline bool net_ipv6_is_prefix(const uint8_t *addr1, const uint8_t *addr2, uint8_t
length)

Check if two IPv6 addresses are same when compared after prefix mask.

Parameters
• addr1 – First IPv6 address.

• addr2 – Second IPv6 address.

• length – Prefix length (max length is 128).

Returns
True if IPv6 prefixes are the same, False otherwise.

static inline bool net_ipv4_is_addr_loopback(struct in_addr *addr)
Check if the IPv4 address is a loopback address (127.0.0.0/8).

Parameters
• addr – IPv4 address

Returns
True if address is a loopback address, False otherwise.

static inline bool net_ipv4_is_addr_unspecified(const struct in_addr *addr)
Check if the IPv4 address is unspecified (all bits zero)

Parameters
• addr – IPv4 address.

Returns
True if the address is unspecified, false otherwise.

static inline bool net_ipv4_is_addr_mcast(const struct in_addr *addr)
Check if the IPv4 address is a multicast address.

Parameters
• addr – IPv4 address

Returns
True if address is multicast address, False otherwise.
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static inline bool net_ipv4_is_ll_addr(const struct in_addr *addr)
Check if the given IPv4 address is a link local address.

Parameters
• addr – A valid pointer on an IPv4 address

Returns
True if it is, false otherwise.

static inline bool net_ipv4_is_private_addr(const struct in_addr *addr)
Check if the given IPv4 address is from a private address range.

See https://en.wikipedia.org/wiki/Reserved_IP_addresses for details.

Parameters
• addr – A valid pointer on an IPv4 address

Returns
True if it is, false otherwise.

static inline void net_ipv4_addr_copy_raw(uint8_t *dest, const uint8_t *src)
Copy an IPv4 address raw buffer.

Parameters
• dest – Destination IP address.

• src – Source IP address.

static inline void net_ipv6_addr_copy_raw(uint8_t *dest, const uint8_t *src)
Copy an IPv6 address raw buffer.

Parameters
• dest – Destination IP address.

• src – Source IP address.

static inline bool net_ipv4_addr_cmp(const struct in_addr *addr1, const struct in_addr
*addr2)

Compare two IPv4 addresses.

Parameters
• addr1 – Pointer to IPv4 address.

• addr2 – Pointer to IPv4 address.

Returns
True if the addresses are the same, false otherwise.

static inline bool net_ipv4_addr_cmp_raw(const uint8_t *addr1, const uint8_t *addr2)
Compare two raw IPv4 address buffers.

Parameters
• addr1 – Pointer to IPv4 address buffer.

• addr2 – Pointer to IPv4 address buffer.

Returns
True if the addresses are the same, false otherwise.

static inline bool net_ipv6_addr_cmp(const struct in6_addr *addr1, const struct in6_addr
*addr2)

Compare two IPv6 addresses.

Parameters
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• addr1 – Pointer to IPv6 address.

• addr2 – Pointer to IPv6 address.

Returns
True if the addresses are the same, false otherwise.

static inline bool net_ipv6_addr_cmp_raw(const uint8_t *addr1, const uint8_t *addr2)
Compare two raw IPv6 address buffers.

Parameters
• addr1 – Pointer to IPv6 address buffer.

• addr2 – Pointer to IPv6 address buffer.

Returns
True if the addresses are the same, false otherwise.

static inline bool net_ipv6_is_ll_addr(const struct in6_addr *addr)
Check if the given IPv6 address is a link local address.

Parameters
• addr – A valid pointer on an IPv6 address

Returns
True if it is, false otherwise.

static inline bool net_ipv6_is_sl_addr(const struct in6_addr *addr)
Check if the given IPv6 address is a site local address.

Parameters
• addr – A valid pointer on an IPv6 address

Returns
True if it is, false otherwise.

static inline bool net_ipv6_is_ula_addr(const struct in6_addr *addr)
Check if the given IPv6 address is a unique local address.

Parameters
• addr – A valid pointer on an IPv6 address

Returns
True if it is, false otherwise.

static inline bool net_ipv6_is_global_addr(const struct in6_addr *addr)
Check if the given IPv6 address is a global address.

Parameters
• addr – A valid pointer on an IPv6 address

Returns
True if it is, false otherwise.

static inline bool net_ipv6_is_private_addr(const struct in6_addr *addr)
Check if the given IPv6 address is from a private/local address range.

See https://en.wikipedia.org/wiki/Reserved_IP_addresses for details.

Parameters
• addr – A valid pointer on an IPv6 address

Returns
True if it is, false otherwise.
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const struct in6_addr *net_ipv6_unspecified_address(void)
Return pointer to any (all bits zeros) IPv6 address.

Returns
Any IPv6 address.

const struct in_addr *net_ipv4_unspecified_address(void)
Return pointer to any (all bits zeros) IPv4 address.

Returns
Any IPv4 address.

const struct in_addr *net_ipv4_broadcast_address(void)
Return pointer to broadcast (all bits ones) IPv4 address.

Returns
Broadcast IPv4 address.

bool net_if_ipv4_addr_mask_cmp(struct net_if *iface, const struct in_addr *addr)

static inline bool net_ipv4_addr_mask_cmp(struct net_if *iface, const struct in_addr *addr)
Check if the given address belongs to same subnet that has been configured for the
interface.

Parameters
• iface – A valid pointer on an interface

• addr – IPv4 address

Returns
True if address is in same subnet, false otherwise.

bool net_if_ipv4_is_addr_bcast(struct net_if *iface, const struct in_addr *addr)

static inline bool net_ipv4_is_addr_bcast(struct net_if *iface, const struct in_addr *addr)
Check if the given IPv4 address is a broadcast address.

Parameters
• iface – Interface to use. Must be a valid pointer to an interface.

• addr – IPv4 address

Returns
True if address is a broadcast address, false otherwise.

struct net_if_addr *net_if_ipv4_addr_lookup(const struct in_addr *addr, struct net_if
**iface)

static inline bool net_ipv4_is_my_addr(const struct in_addr *addr)
Check if the IPv4 address is assigned to any network interface in the system.

Parameters
• addr – A valid pointer on an IPv4 address

Returns
True if IPv4 address is found in one of the network interfaces, False other-
wise.

static inline bool net_ipv6_is_addr_unspecified(const struct in6_addr *addr)
Check if the IPv6 address is unspecified (all bits zero)

Parameters
• addr – IPv6 address.
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Returns
True if the address is unspecified, false otherwise.

static inline bool net_ipv6_is_addr_solicited_node(const struct in6_addr *addr)
Check if the IPv6 address is solicited node multicast address FF02:0:0:0:0:1:FFXX:XXXX
defined in RFC 3513.

Parameters
• addr – IPv6 address.

Returns
True if the address is solicited node address, false otherwise.

static inline bool net_ipv6_is_addr_mcast_scope(const struct in6_addr *addr, int scope)
Check if the IPv6 address is a given scope multicast address (FFyx::).

Parameters
• addr – IPv6 address

• scope – Scope to check

Returns
True if the address is in given scope multicast address, false otherwise.

static inline bool net_ipv6_is_same_mcast_scope(const struct in6_addr *addr_1, const
struct in6_addr *addr_2)

Check if the IPv6 addresses have the same multicast scope (FFyx::).

Parameters
• addr_1 – IPv6 address 1

• addr_2 – IPv6 address 2

Returns
True if both addresses have same multicast scope, false otherwise.

static inline bool net_ipv6_is_addr_mcast_global(const struct in6_addr *addr)
Check if the IPv6 address is a global multicast address (FFxE::/16).

Parameters
• addr – IPv6 address.

Returns
True if the address is global multicast address, false otherwise.

static inline bool net_ipv6_is_addr_mcast_iface(const struct in6_addr *addr)
Check if the IPv6 address is a interface scope multicast address (FFx1::).

Parameters
• addr – IPv6 address.

Returns
True if the address is a interface scope multicast address, false otherwise.

static inline bool net_ipv6_is_addr_mcast_link(const struct in6_addr *addr)
Check if the IPv6 address is a link local scope multicast address (FFx2::).

Parameters
• addr – IPv6 address.

Returns
True if the address is a link local scope multicast address, false otherwise.
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static inline bool net_ipv6_is_addr_mcast_mesh(const struct in6_addr *addr)
Check if the IPv6 address is a mesh-local scope multicast address (FFx3::).

Parameters
• addr – IPv6 address.

Returns
True if the address is a mesh-local scope multicast address, false otherwise.

static inline bool net_ipv6_is_addr_mcast_site(const struct in6_addr *addr)
Check if the IPv6 address is a site scope multicast address (FFx5::).

Parameters
• addr – IPv6 address.

Returns
True if the address is a site scope multicast address, false otherwise.

static inline bool net_ipv6_is_addr_mcast_org(const struct in6_addr *addr)
Check if the IPv6 address is an organization scope multicast address (FFx8::).

Parameters
• addr – IPv6 address.

Returns
True if the address is an organization scope multicast address, false other-
wise.

static inline bool net_ipv6_is_addr_mcast_group(const struct in6_addr *addr, const struct
in6_addr *group)

Check if the IPv6 address belongs to certain multicast group.

Parameters
• addr – IPv6 address.

• group – Group id IPv6 address, the values must be in network byte order

Returns
True if the IPv6 multicast address belongs to given multicast group, false
otherwise.

static inline bool net_ipv6_is_addr_mcast_all_nodes_group(const struct in6_addr
*addr)

Check if the IPv6 address belongs to the all nodes multicast group.

Parameters
• addr – IPv6 address

Returns
True if the IPv6 multicast address belongs to the all nodes multicast group,
false otherwise

static inline bool net_ipv6_is_addr_mcast_iface_all_nodes(const struct in6_addr
*addr)

Check if the IPv6 address is a interface scope all nodes multicast address (FF01::1).

Parameters
• addr – IPv6 address.

Returns
True if the address is a interface scope all nodes multicast address, false
otherwise.
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static inline bool net_ipv6_is_addr_mcast_link_all_nodes(const struct in6_addr *addr)
Check if the IPv6 address is a link local scope all nodes multicast address (FF02::1).

Parameters
• addr – IPv6 address.

Returns
True if the address is a link local scope all nodes multicast address, false
otherwise.

static inline void net_ipv6_addr_create_solicited_node(const struct in6_addr *src,
struct in6_addr *dst)

Create solicited node IPv6 multicast address FF02:0:0:0:0:1:FFXX:XXXX defined in RFC
3513.

Parameters
• src – IPv6 address.

• dst – IPv6 address.

static inline void net_ipv6_addr_create(struct in6_addr *addr, uint16_t addr0, uint16_t
addr1, uint16_t addr2, uint16_t addr3, uint16_t
addr4, uint16_t addr5, uint16_t addr6, uint16_t
addr7)

Construct an IPv6 address from eight 16-bit words.

Parameters
• addr – IPv6 address

• addr0 – 16-bit word which is part of the address

• addr1 – 16-bit word which is part of the address

• addr2 – 16-bit word which is part of the address

• addr3 – 16-bit word which is part of the address

• addr4 – 16-bit word which is part of the address

• addr5 – 16-bit word which is part of the address

• addr6 – 16-bit word which is part of the address

• addr7 – 16-bit word which is part of the address

static inline void net_ipv6_addr_create_ll_allnodes_mcast(struct in6_addr *addr)
Create link local allnodes multicast IPv6 address.

Parameters
• addr – IPv6 address

static inline void net_ipv6_addr_create_ll_allrouters_mcast(struct in6_addr *addr)
Create link local allrouters multicast IPv6 address.

Parameters
• addr – IPv6 address

static inline void net_ipv6_addr_create_v4_mapped(const struct in_addr *addr4, struct
in6_addr *addr6)

Create IPv4 mapped IPv6 address.

Parameters
• addr4 – IPv4 address
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• addr6 – IPv6 address to be created

static inline bool net_ipv6_addr_is_v4_mapped(const struct in6_addr *addr)
Is the IPv6 address an IPv4 mapped one.

The v4 mapped addresses look like ::ffff:a.b.c.d

Parameters
• addr – IPv6 address

Returns
True if IPv6 address is a IPv4 mapped address, False otherwise.

static inline void net_ipv6_addr_create_iid(struct in6_addr *addr, struct net_linkaddr
*lladdr)

Create IPv6 address interface identifier.

Parameters
• addr – IPv6 address

• lladdr – Link local address

static inline bool net_ipv6_addr_based_on_ll(const struct in6_addr *addr, const struct
net_linkaddr *lladdr)

Check if given address is based on link layer address.

Returns
True if it is, False otherwise

static inline struct sockaddr_in6 *net_sin6(const struct sockaddr *addr)
Get sockaddr_in6 from sockaddr.

This is a helper so that the code calling this function can be made shorter.

Parameters
• addr – Socket address

Returns
Pointer to IPv6 socket address

static inline struct sockaddr_in *net_sin(const struct sockaddr *addr)
Get sockaddr_in from sockaddr.

This is a helper so that the code calling this function can be made shorter.

Parameters
• addr – Socket address

Returns
Pointer to IPv4 socket address

static inline struct sockaddr_in6_ptr *net_sin6_ptr(const struct sockaddr_ptr *addr)
Get sockaddr_in6_ptr from sockaddr_ptr.

This is a helper so that the code calling this function can be made shorter.

Parameters
• addr – Socket address

Returns
Pointer to IPv6 socket address
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static inline struct sockaddr_in_ptr *net_sin_ptr(const struct sockaddr_ptr *addr)
Get sockaddr_in_ptr from sockaddr_ptr.

This is a helper so that the code calling this function can be made shorter.

Parameters
• addr – Socket address

Returns
Pointer to IPv4 socket address

static inline struct sockaddr_ll_ptr *net_sll_ptr(const struct sockaddr_ptr *addr)
Get sockaddr_ll_ptr from sockaddr_ptr.

This is a helper so that the code calling this function can be made shorter.

Parameters
• addr – Socket address

Returns
Pointer to linklayer socket address

static inline struct sockaddr_can_ptr *net_can_ptr(const struct sockaddr_ptr *addr)
Get sockaddr_can_ptr from sockaddr_ptr.

This is a helper so that the code needing this functionality can be made shorter.

Parameters
• addr – Socket address

Returns
Pointer to CAN socket address

int net_addr_pton(sa_family_t family, const char *src, void *dst)
Convert a string to IP address.

Note

This function doesn’t do precise error checking, do not use for untrusted strings.

Parameters
• family – IP address family (AF_INET or AF_INET6)

• src – IP address in a null terminated string

• dst – Pointer to struct in_addr if family is AF_INET or pointer to struct
in6_addr if family is AF_INET6

Returns
0 if ok, < 0 if error

char *net_addr_ntop(sa_family_t family, const void *src, char *dst, size_t size)
Convert IP address to string form.

Parameters
• family – IP address family (AF_INET or AF_INET6)

• src – Pointer to struct in_addr if family is AF_INET or pointer to struct
in6_addr if family is AF_INET6

• dst – Buffer for IP address as a null terminated string

• size – Number of bytes available in the buffer
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Returns
dst pointer if ok, NULL if error

bool net_ipaddr_parse(const char *str, size_t str_len, struct sockaddr *addr)
Parse a string that contains either IPv4 or IPv6 address and optional port, and store
the information in user supplied sockaddr struct.

Syntax of the IP address string: 192.0.2.1:80 192.0.2.42

[2001:db8::2] 2001:db::42 Note that the str_len parameter is used to restrict the amount
of characters that are checked. If the string does not contain port number, then the port
number in sockaddr is not modified.

Parameters
• str – String that contains the IP address.

• str_len – Length of the string to be parsed.

• addr – Pointer to user supplied struct sockaddr.

Returns
True if parsing could be done, false otherwise.

int net_port_set_default(struct sockaddr *addr, uint16_t default_port)
Set the default port in the sockaddr structure.

If the port is already set, then do nothing.

Parameters
• addr – Pointer to user supplied struct sockaddr.

• default_port – Default port number to set.

Returns
0 if ok, <0 if error

static inline int32_t net_tcp_seq_cmp(uint32_t seq1, uint32_t seq2)
Compare TCP sequence numbers.

This function compares TCP sequence numbers, accounting for wraparound effects.

Parameters
• seq1 – First sequence number

• seq2 – Seconds sequence number

Returns
< 0 if seq1 < seq2, 0 if seq1 == seq2, > 0 if seq > seq2

static inline bool net_tcp_seq_greater(uint32_t seq1, uint32_t seq2)
Check that one TCP sequence number is greater.

This is convenience function on top of net_tcp_seq_cmp().

Parameters
• seq1 – First sequence number

• seq2 – Seconds sequence number

Returns
True if seq > seq2

int net_bytes_from_str(uint8_t *buf, int buf_len, const char *src)
Convert a string of hex values to array of bytes.

The syntax of the string is “ab:02:98:fa:42:01”
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Parameters
• buf – Pointer to memory where the bytes are written.

• buf_len – Length of the memory area.

• src – String of bytes.

Returns
0 if ok, <0 if error

int net_tx_priority2tc(enum net_priority prio)
Convert Tx network packet priority to traffic class so we can place the packet into cor-
rect Tx queue.

Parameters
• prio – Network priority

Returns
Tx traffic class that handles that priority network traffic.

int net_rx_priority2tc(enum net_priority prio)
Convert Rx network packet priority to traffic class so we can place the packet into cor-
rect Rx queue.

Parameters
• prio – Network priority

Returns
Rx traffic class that handles that priority network traffic.

static inline enum net_priority net_vlan2priority(uint8_t priority)
Convert network packet VLAN priority to network packet priority so we can place the
packet into correct queue.

Parameters
• priority – VLAN priority

Returns
Network priority

static inline uint8_t net_priority2vlan(enum net_priority priority)
Convert network packet priority to network packet VLAN priority.

Parameters
• priority – Packet priority

Returns
VLAN priority (PCP)

const char *net_family2str(sa_family_t family)
Return network address family value as a string.

This is only usable for debugging.

Parameters
• family – Network address family code

Returns
Network address family as a string, or NULL if family is unknown.

static inline int net_ipv6_pe_add_filter(struct in6_addr *addr, bool is_denylist)
Add IPv6 prefix as a privacy extension filter.

Note that the filters can either allow or deny listing.
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Parameters
• addr – IPv6 prefix

• is_denylist – Tells if this filter is for allowing or denying listing.

Returns
0 if ok, <0 if error

static inline int net_ipv6_pe_del_filter(struct in6_addr *addr)
Delete IPv6 prefix from privacy extension filter list.

Parameters
• addr – IPv6 prefix

Returns
0 if ok, <0 if error

struct in6_addr
#include <net_ip.h> IPv6 address struct.

Public Members

uint8_t s6_addr[16]
IPv6 address buffer.

uint16_t s6_addr16[8]
In big endian.

uint32_t s6_addr32[4]
In big endian.

struct in_addr
#include <net_ip.h> IPv4 address struct.

Public Members

uint8_t s4_addr[4]
IPv4 address buffer.

uint16_t s4_addr16[2]
In big endian.

uint32_t s4_addr32[1]
In big endian.

uint32_t s_addr
In big endian, for POSIX compatibility.

struct sockaddr_in6
#include <net_ip.h> Socket address struct for IPv6.
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Public Members

sa_family_t sin6_family
AF_INET6

uint16_t sin6_port
Port number

struct in6_addr sin6_addr
IPv6 address

uint8_t sin6_scope_id
Interfaces for a scope.

struct sockaddr_in
#include <net_ip.h> Socket address struct for IPv4.

Public Members

sa_family_t sin_family
AF_INET

uint16_t sin_port
Port number

struct in_addr sin_addr
IPv4 address.

struct sockaddr_ll
#include <net_ip.h> Socket address struct for packet socket.

Public Members

sa_family_t sll_family
Always AF_PACKET

uint16_t sll_protocol
Physical-layer protocol

int sll_ifindex
Interface number

uint16_t sll_hatype
ARP hardware type

uint8_t sll_pkttype
Packet type
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uint8_t sll_halen
Length of address

uint8_t sll_addr[8]
Physical-layer address, big endian.

struct iovec
#include <net_ip.h> IO vector array element.

Public Members

void *iov_base
Pointer to data.

size_t iov_len
Length of the data.

struct msghdr
#include <net_ip.h> Message struct.

Public Members

void *msg_name
Optional socket address, big endian.

socklen_t msg_namelen
Size of socket address.

struct iovec *msg_iov
Scatter/gather array.

size_t msg_iovlen
Number of elements in msg_iov.

void *msg_control
Ancillary data.

size_t msg_controllen
Ancillary data buffer len.

int msg_flags
Flags on received message.

struct cmsghdr
#include <net_ip.h> Control message ancillary data.
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Public Members

socklen_t cmsg_len
Number of bytes, including header.

int cmsg_level
Originating protocol.

int cmsg_type
Protocol-specific type.

z_max_align_t cmsg_data[]
Flexible array member to force alignment of cmsghdr.

struct sockaddr
#include <net_ip.h> Generic sockaddr struct.

Must be cast to proper type.

Public Members

sa_family_t sa_family
Address family.

struct net_tuple
#include <net_ip.h> IPv6/IPv4 network connection tuple.

Public Members

struct net_addr *remote_addr
IPv6/IPv4 remote address.

struct net_addr *local_addr
IPv6/IPv4 local address

uint16_t remote_port
UDP/TCP remote port

uint16_t local_port
UDP/TCP local port

enum net_ip_protocol ip_proto
IP protocol
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DNS Resolve

• Overview

• Sample usage

• API Reference

Overview The DNS resolver implements a basic DNS resolver according to IETF RFC1035 on
Domain Implementation and Specification. Supported DNS answers are IPv4/IPv6 addresses and
CNAME.

If a CNAME is received, the DNS resolver will create another DNS query. The number of addi-
tional queries is controlled by the CONFIG_DNS_RESOLVER_ADDITIONAL_QUERIES Kconfig variable.

The multicast DNS (mDNS) client resolver support can be enabled by setting CON-
FIG_MDNS_RESOLVER Kconfig option. See IETF RFC6762 for more details about mDNS.

The link-local multicast name resolution (LLMNR) client resolver support can be enabled by
setting the CONFIG_LLMNR_RESOLVER Kconfig variable. See IETF RFC4795 for more details about
LLMNR.

For more information about DNS configuration variables, see: subsys/net/lib/dns/Kconfig. The
DNS resolver API can be found at include/zephyr/net/dns_resolve.h.

Sample usage See dns-resolve sample application for details.

Related code samples

AWS IoT Core MQTT
Connect to AWS IoT Core and publish messages using MQTT.

DNS resolve
Resolve an IP address for a given hostname.

TagoIO HTTP Post
Send random temperature values to TagoIO IoT Cloud Platform using HTTP.

API Reference

group dns_resolve
DNS resolving library.

Since
1.8

Version
0.8.0

Defines
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DNS_MAX_NAME_SIZE
Max size of the resolved name.

Typedefs

typedef void (*dns_resolve_cb_t)(enum dns_resolve_status status, struct dns_addrinfo
*info, void *user_data)

DNS resolve callback.

The DNS resolve callback is called after a successful DNS resolving. The resolver can
call this callback multiple times, one for each resolved address.

Param status
The status of the query: DNS_EAI_INPROGRESS returned for each resolved
address DNS_EAI_ALLDONE mark end of the resolving, info is set to NULL
in this case DNS_EAI_CANCELED if the query was canceled manually or
timeout happened DNS_EAI_FAIL if the name cannot be resolved by the
server DNS_EAI_NODATA if there is no such name other values means that
an error happened.

Param info
Query results are stored here.

Param user_data
The user data given in dns_resolve_name() call.

Enums

enum dns_query_type
DNS query type enum.

Values:

enumerator DNS_QUERY_TYPE_A = 1
IPv4 query.

enumerator DNS_QUERY_TYPE_AAAA = 28
IPv6 query.

enum dns_resolve_status
Status values for the callback.

Values:

enumerator DNS_EAI_BADFLAGS = -1
Invalid value for ai_flags field.

enumerator DNS_EAI_NONAME = -2
NAME or SERVICE is unknown.

enumerator DNS_EAI_AGAIN = -3
Temporary failure in name resolution.
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enumerator DNS_EAI_FAIL = -4
Non-recoverable failure in name res.

enumerator DNS_EAI_NODATA = -5
No address associated with NAME.

enumerator DNS_EAI_FAMILY = -6
ai_family not supported

enumerator DNS_EAI_SOCKTYPE = -7
ai_socktype not supported

enumerator DNS_EAI_SERVICE = -8
SRV not supported for ai_socktype.

enumerator DNS_EAI_ADDRFAMILY = -9
Address family for NAME not supported.

enumerator DNS_EAI_MEMORY = -10
Memory allocation failure.

enumerator DNS_EAI_SYSTEM = -11
System error returned in errno.

enumerator DNS_EAI_OVERFLOW = -12
Argument buffer overflow.

enumerator DNS_EAI_INPROGRESS = -100
Processing request in progress.

enumerator DNS_EAI_CANCELED = -101
Request canceled.

enumerator DNS_EAI_NOTCANCELED = -102
Request not canceled.

enumerator DNS_EAI_ALLDONE = -103
All requests done.

enumerator DNS_EAI_IDN_ENCODE = -105
IDN encoding failed.

Functions

int dns_resolve_init(struct dns_resolve_context *ctx, const char *dns_servers_str[], const
struct sockaddr *dns_servers_sa[])

Init DNS resolving context.

This function sets the DNS server address and initializes the DNS context that is used by
the actual resolver. DNS server addresses can be specified either in textual form, or as
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struct sockaddr (or both). Note that the recommended way to resolve DNS names is to
use the dns_get_addr_info()API. In that case user does not need to call dns_resolve_init()
as the DNS servers are already setup by the system.

Parameters
• ctx – DNS context. If the context variable is allocated from the stack, then

the variable needs to be valid for the whole duration of the resolving.
Caller does not need to fill the variable beforehand or edit the context
afterwards.

• dns_servers_str – DNS server addresses using textual strings. The ar-
ray is NULL terminated. The port number can be given in the string.
Syntax for the server addresses with or without port numbers: IPv4 :
10.0.9.1 IPv4 + port : 10.0.9.1:5353 IPv6 : 2001:db8::22:42 IPv6 + port :
[2001:db8::22:42]:5353

• dns_servers_sa – DNS server addresses as struct sockaddr. The array
is NULL terminated. Port numbers are optional in struct sockaddr, the
default will be used if set to 0.

Returns
0 if ok, <0 if error.

int dns_resolve_init_default(struct dns_resolve_context *ctx)
Init DNS resolving context with default Kconfig options.

Parameters
• ctx – DNS context.

Returns
0 if ok, <0 if error.

int dns_resolve_close(struct dns_resolve_context *ctx)
Close DNS resolving context.

This releases DNS resolving context and marks the context unusable. Caller must call
the dns_resolve_init() again to make context usable.

Parameters
• ctx – DNS context

Returns
0 if ok, <0 if error.

int dns_resolve_reconfigure(struct dns_resolve_context *ctx, const char *servers_str[],
const struct sockaddr *servers_sa[])

Reconfigure DNS resolving context.

Reconfigures DNS context with new server list.

Parameters
• ctx – DNS context

• servers_str – DNS server addresses using textual strings. The array is
NULL terminated. The port number can be given in the string. Syn-
tax for the server addresses with or without port numbers: IPv4 :
10.0.9.1 IPv4 + port : 10.0.9.1:5353 IPv6 : 2001:db8::22:42 IPv6 + port :
[2001:db8::22:42]:5353

• servers_sa – DNS server addresses as struct sockaddr. The array is NULL
terminated. Port numbers are optional in struct sockaddr, the default
will be used if set to 0.
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Returns
0 if ok, <0 if error.

int dns_resolve_cancel(struct dns_resolve_context *ctx, uint16_t dns_id)
Cancel a pending DNS query.

This releases DNS resources used by a pending query.

Parameters
• ctx – DNS context

• dns_id – DNS id of the pending query

Returns
0 if ok, <0 if error.

int dns_resolve_cancel_with_name(struct dns_resolve_context *ctx, uint16_t dns_id, const
char *query_name, enum dns_query_type
query_type)

Cancel a pending DNS query using id, name and type.

This releases DNS resources used by a pending query.

Parameters
• ctx – DNS context

• dns_id – DNS id of the pending query

• query_name – Name of the resource we are trying to query (hostname)

• query_type – Type of the query (A or AAAA)

Returns
0 if ok, <0 if error.

int dns_resolve_name(struct dns_resolve_context *ctx, const char *query, enum
dns_query_type type, uint16_t *dns_id, dns_resolve_cb_t cb, void
*user_data, int32_t timeout)

Resolve DNS name.

This function can be used to resolve e.g., IPv4 or IPv6 address. Note that this is asyn-
chronous call, the function will return immediately and system will call the callback
after resolving has finished or timeout has occurred. We might send the query to mul-
tiple servers (if there are more than one server configured), but we only use the result
of the first received response.

Parameters
• ctx – DNS context

• query – What the caller wants to resolve.

• type – What kind of data the caller wants to get.

• dns_id – DNS id is returned to the caller. This is needed if one wishes to
cancel the query. This can be set to NULL if there is no need to cancel the
query.

• cb – Callback to call after the resolving has finished or timeout has hap-
pened.

• user_data – The user data.

• timeout – The timeout value for the query. Possible values:
SYS_FOREVER_MS: the query is tried forever, user needs to cancel it man-
ually if it takes too long time to finish >0: start the query and let the sys-
tem timeout it after specified ms
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Returns
0 if resolving was started ok, < 0 otherwise

struct dns_resolve_context *dns_resolve_get_default(void)
Get default DNS context.

The system level DNS context uses DNS servers that are defined in project config
file. If no DNS servers are defined by the user, then resolving DNS names using de-
fault DNS context will do nothing. The configuration options are described in sub-
sys/net/lib/dns/Kconfig file.

Returns
Default DNS context.

static inline int dns_get_addr_info(const char *query, enum dns_query_type type,
uint16_t *dns_id, dns_resolve_cb_t cb, void *user_data,
int32_t timeout)

Get IP address info from DNS.

This function can be used to resolve e.g., IPv4 or IPv6 address. Note that this is asyn-
chronous call, the function will return immediately and system will call the callback
after resolving has finished or timeout has occurred. We might send the query to mul-
tiple servers (if there are more than one server configured), but we only use the result
of the first received response. This variant uses system wide DNS servers.

Parameters
• query – What the caller wants to resolve.

• type – What kind of data the caller wants to get.

• dns_id – DNS id is returned to the caller. This is needed if one wishes to
cancel the query. This can be set to NULL if there is no need to cancel the
query.

• cb – Callback to call after the resolving has finished or timeout has hap-
pened.

• user_data – The user data.

• timeout – The timeout value for the connection. Possible values:
SYS_FOREVER_MS: the query is tried forever, user needs to cancel it man-
ually if it takes too long time to finish >0: start the query and let the sys-
tem timeout it after specified ms

Returns
0 if resolving was started ok, < 0 otherwise

static inline int dns_cancel_addr_info(uint16_t dns_id)
Cancel a pending DNS query.

This releases DNS resources used by a pending query.

Parameters
• dns_id – DNS id of the pending query

Returns
0 if ok, <0 if error.

struct dns_addrinfo
#include <dns_resolve.h> Address info struct is passed to callback that gets all the re-
sults.
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Public Members

struct sockaddr ai_addr
IP address information.

socklen_t ai_addrlen
Length of the ai_addr field.

uint8_t ai_family
Address family of the address information.

char ai_canonname[20 + 1]
Canonical name of the address.

struct dns_resolve_context
#include <dns_resolve.h> DNS resolve context structure.

Public Members

struct k_mutex lock
Prevent concurrent access.

k_timeout_t buf_timeout
This timeout is also used when a buffer is required from the buffer pools.

enum dns_resolve_context_state state
Is this context in use.

struct dns_pending_query
#include <dns_resolve.h> Result callbacks.

We have multiple callbacks here so that it is possible to do multiple queries at the
same time.

Contents of this structure can be inspected and changed only when the lock is held.

Public Members

struct k_work_delayable timer
Timeout timer.

struct dns_resolve_context *ctx
Back pointer to ctx, needed in timeout handler.

dns_resolve_cb_t cb
Result callback.

A null value indicates the slot is not in use.
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void *user_data
User data.

k_timeout_t timeout
TX timeout.

const char *query
String containing the thing to resolve like www.example.com.

This is set to a non-null value when the query is started, and is not used there-
after.

If the query completed at a point where the work item was still pending the
pointer is cleared to indicate that the query is complete, but release of the query
slot will be deferred until a request for a slot determines that the work item has
been released.

enum dns_query_type query_type
Query type.

uint16_t id
DNS id of this query.

uint16_t query_hash
Hash of the DNS name + query type we are querying.

This hash is calculated so we can match the response that we are receiving.
This is needed mainly for mDNS which is setting the DNS id to 0, which means
that the id alone cannot be used to find correct pending query.

struct dns_server
#include <dns_resolve.h> List of configured DNS servers.

Public Members

struct sockaddr dns_server
DNS server information.

int sock
Connection to the DNS server.

uint8_t is_mdns
Is this server mDNS one.

uint8_t is_llmnr
Is this server LLMNR one.

Network Management
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• Overview

• Requesting a defined procedure

• Listening to network events

• Defining a network management procedure

• Signaling a network event

• API Reference

Overview The Network Management APIs allow applications, as well as network layer code
itself, to call defined network routines at any level in the IP stack, or receive notifications on
relevant network events. For example, by using these APIs, application code can request a scan
be done on a Wi-Fi- or Bluetooth-based network interface, or request notification if a network
interface IP address changes.

The Network Management API implementation is designed to save memory by eliminating code
at build time for management routines that are not used. Distinct and statically defined APIs for
network management procedures are not used. Instead, defined procedure handlers are reg-
istered by using a NET_MGMT_REGISTER_REQUEST_HANDLER macro. Procedure requests are done
through a single net_mgmt() API that invokes the registered handler for the corresponding re-
quest.

The current implementation is experimental and may change and improve in future releases.

Requesting a defined procedure All network management requests are of the form
net_mgmt(mgmt_request, ...). The mgmt_request parameter is a bit mask that tells which stack
layer is targeted, if a net_if object is implied, and the specific management procedure being re-
quested. The available procedure requests depend on what has been implemented in the stack.

To avoid extra cost, all net_mgmt() calls are direct. Though this may change in a future release,
it will not affect the users of this function.

Listening to network events You can receive notifications on network events by registering
a callback function and specifying a set of events used to filter when your callback is invoked.
The callback will have to be unique for a pair of layer and code, whereas on the command part
it will be a mask of events.

At runtime two functions are available, net_mgmt_add_event_callback() for registering the call-
back function, and net_mgmt_del_event_callback() for unregistering a callback. A helper func-
tion, net_mgmt_init_event_callback(), can be used to ease the initialization of the callback
structure.

Additionally NET_MGMT_REGISTER_EVENT_HANDLER can be used to register a callback handler at
compile time.

When an event occurs that matches a callback’s event set, the associated callback function is
invoked with the actual event code. This makes it possible for different events to be handled by
the same callback function, if desired.

Warning

Event set filtering allows false positives for events that have the same layer and layer code.
A callback handler function must check the event code (passed as an argument) against the
specific network events it will handle, regardless of how many events were in the set passed
to net_mgmt_init_event_callback().
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Note that in order to receive events from multiple layers, one must have multiple listeners
registered, one for each layer being listened. The callback handler function can be shared
between different layer events.

(False positives can occur for events which have the same layer and layer code.)

An example follows.

/*
* Set of events to handle.
* See e.g. include/net/net_event.h for some NET_EVENT_xxx values.
*/

#define EVENT_IFACE_SET (NET_EVENT_IF_xxx | NET_EVENT_IF_yyy)
#define EVENT_IPV4_SET (NET_EVENT_IPV4_xxx | NET_EVENT_IPV4_yyy)

struct net_mgmt_event_callback iface_callback;
struct net_mgmt_event_callback ipv4_callback;

void callback_handler(struct net_mgmt_event_callback *cb,
uint32_t mgmt_event,
struct net_if *iface)

{
if (mgmt_event == NET_EVENT_IF_xxx) {

/* Handle NET_EVENT_IF_xxx */
} else if (mgmt_event == NET_EVENT_IF_yyy) {

/* Handle NET_EVENT_IF_yyy */
} else if (mgmt_event == NET_EVENT_IPV4_xxx) {

/* Handle NET_EVENT_IPV4_xxx */
} else if (mgmt_event == NET_EVENT_IPV4_yyy) {

/* Handle NET_EVENT_IPV4_yyy */
} else {

/* Spurious (false positive) invocation. */
}

}

void register_cb(void)
{

net_mgmt_init_event_callback(&iface_callback, callback_handler,
EVENT_IFACE_SET);

net_mgmt_init_event_callback(&ipv4_callback, callback_handler,
EVENT_IPV4_SET);

net_mgmt_add_event_callback(&iface_callback);
net_mgmt_add_event_callback(&ipv4_callback);

}

Or similarly using NET_MGMT_REGISTER_EVENT_HANDLER.

Note

The info and info_length arguments are only usable if CONFIG_NET_MGMT_EVENT_INFO is en-
abled. Otherwise these are NULL and zero.

/*
* Set of events to handle.
*/

#define EVENT_IFACE_SET (NET_EVENT_IF_xxx | NET_EVENT_IF_yyy)
#define EVENT_IPV4_SET (NET_EVENT_IPV4_xxx | NET_EVENT_IPV4_yyy)

static void event_handler(uint32_t mgmt_event, struct net_if *iface,
(continues on next page)
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(continued from previous page)
void *info, size_t info_length,
void *user_data)

{
if (mgmt_event == NET_EVENT_IF_xxx) {

/* Handle NET_EVENT_IF_xxx */
} else if (mgmt_event == NET_EVENT_IF_yyy) {

/* Handle NET_EVENT_IF_yyy */
} else if (mgmt_event == NET_EVENT_IPV4_xxx) {

/* Handle NET_EVENT_IPV4_xxx */
} else if (mgmt_event == NET_EVENT_IPV4_yyy) {

/* Handle NET_EVENT_IPV4_yyy */
} else {

/* Spurious (false positive) invocation. */
}

}

NET_MGMT_REGISTER_EVENT_HANDLER(iface_event_handler, EVENT_IFACE_SET,
event_handler, NULL);

NET_MGMT_REGISTER_EVENT_HANDLER(ipv4_event_handler, EVENT_IPV4_SET,
event_handler, NULL);

See include/zephyr/net/net_event.h for available generic core events that can be listened to.

Defining a network management procedure You can provide additional management pro-
cedures specific to your stack implementation by defining a handler and registering it with an
associated mgmt_request code.

Management request code are defined in relevant places depending on the targeted layer or
eventually, if l2 is the layer, on the technology as well. For instance, all IP layer management
request code will be found in the include/zephyr/net/net_event.h header file. But in case of an
L2 technology, let’s say Ethernet, these would be found in include/zephyr/net/ethernet.h

You define your handler modeled with this signature:

static int your_handler(uint32_t mgmt_event, struct net_if *iface,
void *data, size_t len);

and then register it with an associated mgmt_request code:

NET_MGMT_REGISTER_REQUEST_HANDLER(<mgmt_request code>, your_handler);

This new management procedure could then be called by using:

net_mgmt(<mgmt_request code>, ...);

Signaling a network event You can signal a specific network event using the
net_mgmt_event_notify() function and provide the network event code. See in-
clude/zephyr/net/net_mgmt.h for details. As for the management request code, event
code can be also found on specific L2 technology mgmt headers, for example in-
clude/zephyr/net/ieee802154_mgmt.h would be the right place if 802.15.4 L2 is the technology
one wants to listen to events.

Related code samples
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DHCPv4 client
Start a DHCPv4 client to obtain an IPv4 address from a DHCPv4 server.

DNS resolve
Resolve an IP address for a given hostname.

IPv4 autoconf client
Perform IPv4 autoconfiguration and self-assign a random IPv4 address

Telnet console
Access Zephyr shell over telnet.

API Reference

group net_mgmt
Network Management.

Since
1.7

Version
1.0.0

Defines

NET_EVENT_IF_DOWN
Event emitted when the network interface goes down.

NET_EVENT_IF_UP
Event emitted when the network interface goes up.

NET_EVENT_IF_ADMIN_DOWN
Event emitted when the network interface is taken down manually.

NET_EVENT_IF_ADMIN_UP
Event emitted when the network interface goes up manually.

NET_EVENT_IPV6_ADDR_ADD
Event emitted when an IPv6 address is added to the system.

NET_EVENT_IPV6_ADDR_DEL
Event emitted when an IPv6 address is removed from the system.

NET_EVENT_IPV6_MADDR_ADD
Event emitted when an IPv6 multicast address is added to the system.

NET_EVENT_IPV6_MADDR_DEL
Event emitted when an IPv6 multicast address is removed from the system.

NET_EVENT_IPV6_PREFIX_ADD
Event emitted when an IPv6 prefix is added to the system.
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NET_EVENT_IPV6_PREFIX_DEL
Event emitted when an IPv6 prefix is removed from the system.

NET_EVENT_IPV6_MCAST_JOIN
Event emitted when an IPv6 multicast group is joined.

NET_EVENT_IPV6_MCAST_LEAVE
Event emitted when an IPv6 multicast group is left.

NET_EVENT_IPV6_ROUTER_ADD
Event emitted when an IPv6 router is added to the system.

NET_EVENT_IPV6_ROUTER_DEL
Event emitted when an IPv6 router is removed from the system.

NET_EVENT_IPV6_ROUTE_ADD
Event emitted when an IPv6 route is added to the system.

NET_EVENT_IPV6_ROUTE_DEL
Event emitted when an IPv6 route is removed from the system.

NET_EVENT_IPV6_DAD_SUCCEED
Event emitted when an IPv6 duplicate address detection succeeds.

NET_EVENT_IPV6_DAD_FAILED
Event emitted when an IPv6 duplicate address detection fails.

NET_EVENT_IPV6_NBR_ADD
Event emitted when an IPv6 neighbor is added to the system.

NET_EVENT_IPV6_NBR_DEL
Event emitted when an IPv6 neighbor is removed from the system.

NET_EVENT_IPV6_DHCP_START
Event emitted when an IPv6 DHCP client starts.

NET_EVENT_IPV6_DHCP_BOUND
Event emitted when an IPv6 DHCP client address is bound.

NET_EVENT_IPV6_DHCP_STOP
Event emitted when an IPv6 DHCP client is stopped.

NET_EVENT_IPV6_ADDR_DEPRECATED
IPv6 address is deprecated.

NET_EVENT_IPV6_PE_ENABLED
IPv6 Privacy extension is enabled.
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NET_EVENT_IPV6_PE_DISABLED
IPv6 Privacy extension is disabled.

NET_EVENT_IPV6_PE_FILTER_ADD
IPv6 Privacy extension filter is added.

NET_EVENT_IPV6_PE_FILTER_DEL
IPv6 Privacy extension filter is removed.

NET_EVENT_IPV4_ADDR_ADD
Event emitted when an IPv4 address is added to the system.

NET_EVENT_IPV4_ADDR_DEL
Event emitted when an IPv4 address is removed from the system.

NET_EVENT_IPV4_MADDR_ADD
Event emitted when an IPv4 multicast address is added to the system.

NET_EVENT_IPV4_MADDR_DEL
Event emitted when an IPv4 multicast address is removed from the system.

NET_EVENT_IPV4_ROUTER_ADD
Event emitted when an IPv4 router is added to the system.

NET_EVENT_IPV4_ROUTER_DEL
Event emitted when an IPv4 router is removed from the system.

NET_EVENT_IPV4_DHCP_START
Event emitted when an IPv4 DHCP client is started.

NET_EVENT_IPV4_DHCP_BOUND
Event emitted when an IPv4 DHCP client address is bound.

NET_EVENT_IPV4_DHCP_STOP
Event emitted when an IPv4 DHCP client is stopped.

NET_EVENT_IPV4_MCAST_JOIN
Event emitted when an IPv4 multicast group is joined.

NET_EVENT_IPV4_MCAST_LEAVE
Event emitted when an IPv4 multicast group is left.

NET_EVENT_IPV4_ACD_SUCCEED
Event emitted when an IPv4 address conflict detection succeeds.

NET_EVENT_IPV4_ACD_FAILED
Event emitted when an IPv4 address conflict detection fails.
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NET_EVENT_IPV4_ACD_CONFLICT
Event emitted when an IPv4 address conflict was detected after the address was con-
firmed as safe to use.

It’s up to the application to determine on how to act in such case.

NET_EVENT_L4_CONNECTED
Event emitted when the system is considered to be connected.

The connected in this context means that the network interface is up, and the interface
has either IPv4 or IPv6 address assigned to it.

NET_EVENT_L4_DISCONNECTED
Event emitted when the system is no longer connected.

Typically this means that network connectivity is lost either by the network interface
is going down, or the interface has no longer an IP address etc.

NET_EVENT_L4_IPV4_CONNECTED
Event raised when IPv4 network connectivity is available.

NET_EVENT_L4_IPV4_DISCONNECTED
Event emitted when IPv4 network connectivity is lost.

NET_EVENT_L4_IPV6_CONNECTED
Event emitted when IPv6 network connectivity is available.

NET_EVENT_L4_IPV6_DISCONNECTED
Event emitted when IPv6 network connectivity is lost.

NET_EVENT_DNS_SERVER_ADD
Event emitted when a DNS server is added to the system.

NET_EVENT_DNS_SERVER_DEL
Event emitted when a DNS server is removed from the system.

NET_EVENT_HOSTNAME_CHANGED
Event emitted when the system hostname is changed.

NET_EVENT_CAPTURE_STARTED
Network packet capture is started.

NET_EVENT_CAPTURE_STOPPED
Network packet capture is stopped.

net_mgmt(_mgmt_request, _iface, _data, _len)
Generate a network management event.

Parameters
• _mgmt_request – Management event identifier

• _iface – Network interface

• _data – Any additional data for the event
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• _len – Length of the additional data.

NET_MGMT_DEFINE_REQUEST_HANDLER(_mgmt_request)
Declare a request handler function for the given network event.

Parameters
• _mgmt_request – Management event identifier

NET_MGMT_REGISTER_REQUEST_HANDLER(_mgmt_request, _func)
Create a request handler function for the given network event.

Parameters
• _mgmt_request – Management event identifier

• _func – Function for handling this event

NET_MGMT_REGISTER_EVENT_HANDLER(_name, _event_mask, _func, _user_data)
Define a static network event handler.

Parameters
• _name – Name of the event handler.

• _event_mask – A mask of network events on which the passed handler
should be called in case those events come. Note that only the command
part is treated as a mask, matching one to several commands. Layer and
layer code will be made of an exact match. This means that in order
to receive events from multiple layers, one must have multiple listeners
registered, one for each layer being listened.

• _func – The function to be called upon network events being emitted.

• _user_data – User data passed to the handler being called on network
events.

Typedefs

typedef int (*net_mgmt_request_handler_t)(uint32_t mgmt_request, struct net_if *iface,
void *data, size_t len)

Signature which all Net MGMT request handler need to follow.

Parammgmt_request
The exact request value the handler is being called through

Param iface
A valid pointer on structnet_if if the request is meant to be tied to a network
interface. NULL otherwise.

Param data
A valid pointer on a data understood by the handler. NULL otherwise.

Param len
Length in byte of the memory pointed by data.

typedef void (*net_mgmt_event_handler_t)(struct net_mgmt_event_callback *cb, uint32_t
mgmt_event, struct net_if *iface)

Define the user’s callback handler function signature.

Param cb
Original struct net_mgmt_event_callback owning this handler.
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Parammgmt_event
The network event being notified.

Param iface
A pointer on a struct net_if to which the event belongs to, if it’s an event on
an iface. NULL otherwise.

typedef void (*net_mgmt_event_static_handler_t)(uint32_t mgmt_event, struct net_if
*iface, void *info, size_t info_length, void *user_data)

Define the user’s callback handler function signature.

Parammgmt_event
The network event being notified.

Param iface
A pointer on a struct net_if to which the event belongs to, if it’s an event on
an iface. NULL otherwise.

Param info
A valid pointer on a data understood by the handler. NULL otherwise.

Param info_length
Length in bytes of the memory pointed by info.

Param user_data
Data provided by the user to the handler.

Functions

static inline void net_mgmt_init_event_callback(struct net_mgmt_event_callback *cb,
net_mgmt_event_handler_t handler,
uint32_t mgmt_event_mask)

Helper to initialize a struct net_mgmt_event_callback properly.

Parameters
• cb – A valid application’s callback structure pointer.

• handler – A valid handler function pointer.

• mgmt_event_mask – A mask of relevant events for the handler

void net_mgmt_add_event_callback(struct net_mgmt_event_callback *cb)
Add a user callback.

Parameters
• cb – A valid pointer on user’s callback to add.

void net_mgmt_del_event_callback(struct net_mgmt_event_callback *cb)
Delete a user callback.

Parameters
• cb – A valid pointer on user’s callback to delete.

void net_mgmt_event_notify_with_info(uint32_t mgmt_event, struct net_if *iface, const
void *info, size_t length)

Used by the system to notify an event.

Note: info and length are disabled if CONFIG_NET_MGMT_EVENT_INFO is not defined.

Parameters
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• mgmt_event – The actual network event code to notify

• iface – a valid pointer on a struct net_if if only the event is based on an
iface. NULL otherwise.

• info – A valid pointer on the information you want to pass along with
the event. NULL otherwise. Note the data pointed there is normalized
by the related event.

• length – size of the data pointed by info pointer.

static inline void net_mgmt_event_notify(uint32_t mgmt_event, struct net_if *iface)
Used by the system to notify an event without any additional information.

Parameters
• mgmt_event – The actual network event code to notify

• iface – A valid pointer on a struct net_if if only the event is based on an
iface. NULL otherwise.

int net_mgmt_event_wait(uint32_t mgmt_event_mask, uint32_t *raised_event, struct
net_if **iface, const void **info, size_t *info_length, k_timeout_t
timeout)

Used to wait synchronously on an event mask.

Parameters
• mgmt_event_mask – A mask of relevant events to wait on.

• raised_event – a pointer on a uint32_t to get which event from the mask
generated the event. Can be NULL if the caller is not interested in that
information.

• iface – a pointer on a place holder for the iface on which the event
has originated from. This is valid if only the event mask has bit
NET_MGMT_IFACE_BIT set relevantly, depending on events the caller
wants to listen to.

• info – a valid pointer if user wants to get the information the event might
bring along. NULL otherwise.

• info_length – tells how long the info memory area is. Only valid if the
info is not NULL.

• timeout – A timeout delay. K_FOREVER can be used to wait indefinitely.

Returns
0 on success, a negative error code otherwise. -ETIMEDOUT will be specif-
ically returned if the timeout kick-in instead of an actual event.

int net_mgmt_event_wait_on_iface(struct net_if *iface, uint32_t mgmt_event_mask,
uint32_t *raised_event, const void **info, size_t
*info_length, k_timeout_t timeout)

Used to wait synchronously on an event mask for a specific iface.

Parameters
• iface – a pointer on a valid network interface to listen event to

• mgmt_event_mask – A mask of relevant events to wait on. Listened
to events should be relevant to iface events and thus have the bit
NET_MGMT_IFACE_BIT set.

• raised_event – a pointer on a uint32_t to get which event from the mask
generated the event. Can be NULL if the caller is not interested in that
information.
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• info – a valid pointer if user wants to get the information the event might
bring along. NULL otherwise.

• info_length – tells how long the info memory area is. Only valid if the
info is not NULL.

• timeout – A timeout delay. K_FOREVER can be used to wait indefinitely.

Returns
0 on success, a negative error code otherwise. -ETIMEDOUT will be specif-
ically returned if the timeout kick-in instead of an actual event.

void net_mgmt_event_init(void)
Used by the core of the network stack to initialize the network event processing.

struct net_event_ipv6_addr
#include <net_event.h> Network Management event information structure Used
to pass information on network events like NET_EVENT_IPV6_ADDR_ADD,
NET_EVENT_IPV6_ADDR_DEL, NET_EVENT_IPV6_MADDR_ADD and
NET_EVENT_IPV6_MADDR_DEL when CONFIG_NET_MGMT_EVENT_INFO enabled
and event generator pass the information.

Public Members

struct in6_addr addr
IPv6 address related to this event.

struct net_event_ipv6_nbr
#include <net_event.h> Network Management event information structure Used
to pass information on network events like NET_EVENT_IPV6_NBR_ADD and
NET_EVENT_IPV6_NBR_DEL when CONFIG_NET_MGMT_EVENT_INFO enabled and
event generator pass the information.

Note

: idx will be ‘-1’ in case of NET_EVENT_IPV6_NBR_DEL event.

Public Members

struct in6_addr addr
Neighbor IPv6 address.

int idx
Neighbor index in cache.

struct net_event_ipv6_route
#include <net_event.h> Network Management event information structure Used
to pass information on network events like NET_EVENT_IPV6_ROUTE_ADD and
NET_EVENT_IPV6_ROUTE_DEL when CONFIG_NET_MGMT_EVENT_INFO enabled and
event generator pass the information.
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Public Members

struct in6_addr nexthop
IPv6 address of the next hop.

struct in6_addr addr
IPv6 address or prefix of the route.

uint8_t prefix_len
IPv6 prefix length.

struct net_event_ipv6_prefix
#include <net_event.h> Network Management event information structure Used
to pass information on network events like NET_EVENT_IPV6_PREFIX_ADD and
NET_EVENT_IPV6_PREFIX_DEL when CONFIG_NET_MGMT_EVENT_INFO is enabled
and event generator pass the information.

Public Members

struct in6_addr addr
IPv6 prefix.

uint8_t len
IPv6 prefix length.

uint32_t lifetime
IPv6 prefix lifetime in seconds.

struct net_event_l4_hostname
#include <net_event.h> Network Management event information structure Used
to pass information on NET_EVENT_HOSTNAME_CHANGED event when CON-
FIG_NET_MGMT_EVENT_INFO is enabled and event generator pass the information.

Public Members

char hostname[NET_HOSTNAME_SIZE]
New hostname.

struct net_event_ipv6_pe_filter
#include <net_event.h> Network Management event information structure Used to
pass information on network events like NET_EVENT_IPV6_PE_FILTER_ADD and
NET_EVENT_IPV6_PE_FILTER_DEL when CONFIG_NET_MGMT_EVENT_INFO is en-
abled and event generator pass the information.

This is only available if CONFIG_NET_IPV6_PE_FILTER_PREFIX_COUNT is >0.
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Public Members

struct in6_addr prefix
IPv6 address of privacy extension filter.

bool is_deny_list
IPv6 filter deny or allow list.

struct net_mgmt_event_callback
#include <net_mgmt.h>Network Management event callback structure Used to register
a callback into the network management event part, in order to let the owner of this
struct to get network event notification based on given event mask.

Public Members

sys_snode_t node
Meant to be used internally, to insert the callback into a list.

So nobody should mess with it.

net_mgmt_event_handler_t handler
Actual callback function being used to notify the owner.

struct k_sem *sync_call
Semaphore meant to be used internally for the synchronous
net_mgmt_event_wait() function.

uint32_t event_mask
A mask of network events on which the above handler should be called in case
those events come.

Note that only the command part is treated as a mask, matching one to several
commands. Layer and layer code will be made of an exact match. This means that
in order to receive events from multiple layers, one must have multiple listeners
registered, one for each layer being listened.

uint32_t raised_event
Internal place holder when a synchronous event wait is successfully unlocked on
a event.

union net_mgmt_event_callback
A mask of network events on which the above handler should be called in case
those events come.

Such mask can be modified whenever necessary by the owner, and thus will affect
the handler being called or not.

Network Statistics
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• Overview

• API Reference

Overview Network statistics are collected if CONFIG_NET_STATISTICS is set. Individual compo-
nent statistics for IPv4 or IPv6 can be turned off if those statistics are not needed. See various
options in subsys/net/ip/Kconfig.stats file for details.

By default, the system collects network statistics per network interface. This can be controlled
by CONFIG_NET_STATISTICS_PER_INTERFACE option.

The CONFIG_NET_STATISTICS_USER_API option can be set if the application wants to collect statis-
tics for further processing. The network management interface API is used for that. See Network
Management for details.

The CONFIG_NET_STATISTICS_ETHERNET option can be set to collect generic Ethernet statistics.
If the CONFIG_NET_STATISTICS_ETHERNET_VENDOR option is set, then Ethernet device driver can
collect Ethernet device specific statistics. These statistics can then be transferred to application
for processing.

If the CONFIG_NET_SHELL option is set, then network shell can show statistics information with
net stats command.

Related code samples

Network statistics
Query and display network statistics from a user application.

Wi-Fi shell
Test Wi-Fi functionality using the Wi-Fi shell module.

API Reference

group net_stats
Network statistics library.

Since
1.5

Version
0.8.0

Typedefs

typedef uint32_t net_stats_t
Network statistics counter.

struct net_stats_bytes
#include <net_stats.h> Number of bytes sent and received.
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Public Members

net_stats_t sent
Number of bytes sent.

net_stats_t received
Number of bytes received.

struct net_stats_pkts
#include <net_stats.h> Number of network packets sent and received.

Public Members

net_stats_t tx
Number of packets sent.

net_stats_t rx
Number of packets received.

struct net_stats_ip
#include <net_stats.h> IP layer statistics.

Public Members

net_stats_t recv
Number of received packets at the IP layer.

net_stats_t sent
Number of sent packets at the IP layer.

net_stats_t forwarded
Number of forwarded packets at the IP layer.

net_stats_t drop
Number of dropped packets at the IP layer.

struct net_stats_ip_errors
#include <net_stats.h> IP layer error statistics.

Public Members

net_stats_t vhlerr
Number of packets dropped due to wrong IP version or header length.

net_stats_t hblenerr
Number of packets dropped due to wrong IP length, high byte.
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net_stats_t lblenerr
Number of packets dropped due to wrong IP length, low byte.

net_stats_t fragerr
Number of packets dropped because they were IP fragments.

net_stats_t chkerr
Number of packets dropped due to IP checksum errors.

net_stats_t protoerr
Number of packets dropped because they were neither ICMP, UDP nor TCP.

struct net_stats_icmp
#include <net_stats.h> ICMP statistics.

Public Members

net_stats_t recv
Number of received ICMP packets.

net_stats_t sent
Number of sent ICMP packets.

net_stats_t drop
Number of dropped ICMP packets.

net_stats_t typeerr
Number of ICMP packets with a wrong type.

net_stats_t chkerr
Number of ICMP packets with a bad checksum.

struct net_stats_tcp
#include <net_stats.h> TCP statistics.

Public Members

struct net_stats_bytes bytes
Amount of received and sent TCP application data.

net_stats_t resent
Amount of retransmitted data.

net_stats_t drop
Number of dropped packets at the TCP layer.
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net_stats_t recv
Number of received TCP segments.

net_stats_t sent
Number of sent TCP segments.

net_stats_t seg_drop
Number of dropped TCP segments.

net_stats_t chkerr
Number of TCP segments with a bad checksum.

net_stats_t ackerr
Number of received TCP segments with a bad ACK number.

net_stats_t rsterr
Number of received bad TCP RST (reset) segments.

net_stats_t rst
Number of received TCP RST (reset) segments.

net_stats_t rexmit
Number of retransmitted TCP segments.

net_stats_t conndrop
Number of dropped connection attempts because too few connections were avail-
able.

net_stats_t connrst
Number of connection attempts for closed ports, triggering a RST.

struct net_stats_udp
#include <net_stats.h> UDP statistics.

Public Members

net_stats_t drop
Number of dropped UDP segments.

net_stats_t recv
Number of received UDP segments.

net_stats_t sent
Number of sent UDP segments.

net_stats_t chkerr
Number of UDP segments with a bad checksum.
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struct net_stats_ipv6_nd
#include <net_stats.h> IPv6 neighbor discovery statistics.

Public Members

net_stats_t drop
Number of dropped IPv6 neighbor discovery packets.

net_stats_t recv
Number of received IPv6 neighbor discovery packets.

net_stats_t sent
Number of sent IPv6 neighbor discovery packets.

struct net_stats_ipv6_mld
#include <net_stats.h> IPv6 multicast listener daemon statistics.

Public Members

net_stats_t recv
Number of received IPv6 MLD queries.

net_stats_t sent
Number of sent IPv6 MLD reports.

net_stats_t drop
Number of dropped IPv6 MLD packets.

struct net_stats_ipv4_igmp
#include <net_stats.h> IPv4 IGMP daemon statistics.

Public Members

net_stats_t recv
Number of received IPv4 IGMP queries.

net_stats_t sent
Number of sent IPv4 IGMP reports.

net_stats_t drop
Number of dropped IPv4 IGMP packets.

struct net_stats_tx_time
#include <net_stats.h> Network packet transfer times for calculating average TX time.
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Public Members

uint64_t sum
Sum of network packet transfer times.

net_stats_t count
Number of network packets transferred.

struct net_stats_rx_time
#include <net_stats.h> Network packet receive times for calculating average RX time.

Public Members

uint64_t sum
Sum of network packet receive times.

net_stats_t count
Number of network packets received.

struct net_stats_tc
#include <net_stats.h> Traffic class statistics.

Public Members

struct net_stats_tx_time tx_time
Helper for calculating average TX time statistics.

net_stats_t pkts
Number of packets sent for this traffic class.

Number of packets received for this traffic class.

net_stats_t bytes
Number of bytes sent for this traffic class.

Number of bytes received for this traffic class.

uint8_t priority
Priority of this traffic class.

struct net_stats_tc sent[NET_TC_TX_STATS_COUNT]
TX statistics for each traffic class.

struct net_stats_rx_time rx_time
Helper for calculating average RX time statistics.

struct net_stats_tc recv[NET_TC_RX_STATS_COUNT]
RX statistics for each traffic class.
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struct net_stats_pm
#include <net_stats.h> Power management statistics.

Public Members

uint64_t overall_suspend_time
Total suspend time.

net_stats_t suspend_count
How many times we were suspended.

uint32_t last_suspend_time
How long the last suspend took.

uint32_t start_time
Network interface last suspend start time.

struct net_stats
#include <net_stats.h> All network statistics in one struct.

Public Members

net_stats_t processing_error
Count of malformed packets or packets we do not have handler for.

struct net_stats_bytes bytes
This calculates amount of data transferred through all the network interfaces.

struct net_stats_ip_errors ip_errors
IP layer errors.

struct net_stats_eth_errors
#include <net_stats.h> Ethernet error statistics.

Public Members

net_stats_t rx_length_errors
Number of RX length errors.

net_stats_t rx_over_errors
Number of RX overrun errors.

net_stats_t rx_crc_errors
Number of RX CRC errors.
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net_stats_t rx_frame_errors
Number of RX frame errors.

net_stats_t rx_no_buffer_count
Number of RX net_pkt allocation errors.

net_stats_t rx_missed_errors
Number of RX missed errors.

net_stats_t rx_long_length_errors
Number of RX long length errors.

net_stats_t rx_short_length_errors
Number of RX short length errors.

net_stats_t rx_align_errors
Number of RX buffer align errors.

net_stats_t rx_dma_failed
Number of RX DMA failed errors.

net_stats_t rx_buf_alloc_failed
Number of RX net_buf allocation errors.

net_stats_t tx_aborted_errors
Number of TX aborted errors.

net_stats_t tx_carrier_errors
Number of TX carrier errors.

net_stats_t tx_fifo_errors
Number of TX FIFO errors.

net_stats_t tx_heartbeat_errors
Number of TX heartbeat errors.

net_stats_t tx_window_errors
Number of TX window errors.

net_stats_t tx_dma_failed
Number of TX DMA failed errors.

net_stats_t uncorr_ecc_errors
Number of uncorrected ECC errors.

net_stats_t corr_ecc_errors
Number of corrected ECC errors.

struct net_stats_eth_flow
#include <net_stats.h> Ethernet flow control statistics.
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Public Members

net_stats_t rx_flow_control_xon
Number of RX XON flow control.

net_stats_t rx_flow_control_xoff
Number of RX XOFF flow control.

net_stats_t tx_flow_control_xon
Number of TX XON flow control.

net_stats_t tx_flow_control_xoff
Number of TX XOFF flow control.

struct net_stats_eth_csum
#include <net_stats.h> Ethernet checksum statistics.

Public Members

net_stats_t rx_csum_offload_good
Number of good RX checksum offloading.

net_stats_t rx_csum_offload_errors
Number of failed RX checksum offloading.

struct net_stats_eth_hw_timestamp
#include <net_stats.h> Ethernet hardware timestamp statistics.

Public Members

net_stats_t rx_hwtstamp_cleared
Number of RX hardware timestamp cleared.

net_stats_t tx_hwtstamp_timeouts
Number of RX hardware timestamp timeout.

net_stats_t tx_hwtstamp_skipped
Number of RX hardware timestamp skipped.

struct net_stats_eth
#include <net_stats.h> All Ethernet specific statistics.

Public Members

struct net_stats_bytes bytes
Total number of bytes received and sent.
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struct net_stats_pkts pkts
Total number of packets received and sent.

struct net_stats_pkts broadcast
Total number of broadcast packets received and sent.

struct net_stats_pkts multicast
Total number of multicast packets received and sent.

struct net_stats_pkts errors
Total number of errors in RX and TX.

struct net_stats_eth_errors error_details
Total number of errors in RX and TX.

struct net_stats_eth_flow flow_control
Total number of flow control errors in RX and TX.

struct net_stats_eth_csum csum
Total number of checksum errors in RX and TX.

struct net_stats_eth_hw_timestamp hw_timestamp
Total number of hardware timestamp errors in RX and TX.

net_stats_t collisions
Total number of collisions.

net_stats_t tx_dropped
Total number of dropped TX packets.

net_stats_t tx_timeout_count
Total number of TX timeout errors.

net_stats_t tx_restart_queue
Total number of TX queue restarts.

net_stats_t unknown_protocol
Total number of RX unknown protocol packets.

struct net_stats_ppp
#include <net_stats.h> All PPP specific statistics.

Public Members

struct net_stats_bytes bytes
Total number of bytes received and sent.
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struct net_stats_pkts pkts
Total number of packets received and sent.

net_stats_t drop
Number of received and dropped PPP frames.

net_stats_t chkerr
Number of received PPP frames with a bad checksum.

struct net_stats_sta_mgmt
#include <net_stats.h> All Wi-Fi management statistics.

Public Members

net_stats_t beacons_rx
Number of received beacons.

net_stats_t beacons_miss
Number of missed beacons.

struct net_stats_wifi
#include <net_stats.h> All Wi-Fi specific statistics.

Public Members

struct net_stats_sta_mgmt sta_mgmt
Total number of beacon errors.

struct net_stats_bytes bytes
Total number of bytes received and sent.

struct net_stats_pkts pkts
Total number of packets received and sent.

struct net_stats_pkts broadcast
Total number of broadcast packets received and sent.

struct net_stats_pkts multicast
Total number of multicast packets received and sent.

struct net_stats_pkts errors
Total number of errors in RX and TX.

struct net_stats_pkts unicast
Total number of unicast packets received and sent.
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Network Timeout

• Overview

• Use

• API Reference

Overview Zephyr’s network infrastructure mostly uses the millisecond-resolution uptime
clock to track timeouts, with both deadlines and durations measured with 32-bit unsigned val-
ues. The 32-bit value rolls over at 49 days 17 hours 2 minutes 47.296 seconds.

Timeout processing is often affected by latency, so that the time at which the timeout is checked
may be some time after it should have expired. Handling this correctly without arbitrary expec-
tations of maximum latency requires that the maximum delay that can be directly represented
be a 31-bit non-negative number (INT32_MAX), which overflows at 24 days 20 hours 31 minutes
23.648 seconds.

Most network timeouts are shorter than the delay rollover, but a few protocols allow for delays
that are represented as unsigned 32-bit values counting seconds, which corresponds to a 42-bit
millisecond count.

The net_timeout API provides a generic timeout mechanism to correctly track the remaining
time for these extended-duration timeouts.

Use The simplest use of this API is:

1. Configure a network timeout using net_timeout_set().

2. Use net_timeout_evaluate() to determine how long it is until the timeout occurs. Schedule
a timeout to occur after this delay.

3. When the timeout callback is invoked, use net_timeout_evaluate() again to determine
whether the timeout has completed, or whether there is additional time remaining. If the
latter, reschedule the callback.

4. While the timeout is running, use net_timeout_remaining() to get the number of seconds
until the timeout expires. This may be used to explicitly update the timeout, which should
be done by canceling any pending callback and restarting from step 1 with the new timeout.

The net_timeout contains a sys_snode_t that allows multiple timeout instances to be aggregated
to share a single kernel timer element. The application must use net_timeout_evaluate() on all
instances to determine the next timeout event to occur.

net_timeout_deadline() may be used to reconstruct the full-precision deadline of the time-
out. This exists primarily for testing but may have use in some applications, as it does allow
a millisecond-resolution calculation of remaining time.

API Reference

group net_timeout
Network long timeout primitives and helpers.

Since
1.14

Version
0.8.0
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Defines

NET_TIMEOUT_MAX_VALUE
Divisor used to support ms resolution timeouts.

Because delays are processed in work queues which are not invoked synchronously
with clock changes we need to be able to detect timeouts after they occur, which re-
quires comparing “deadline” to “now” with enough “slop” to handle any observable
latency due to “now” advancing past “deadline”.

The simplest solution is to use the native conversion of the well-defined 32-bit unsigned
difference to a 32-bit signed difference, which caps the maximum delay at INT32_MAX.
This is compatible with the standard mechanism for detecting completion of deadlines
that do not overflow their representation.

Functions

void net_timeout_set(struct net_timeout *timeout, uint32_t lifetime, uint32_t now)
Configure a network timeout structure.

Parameters
• timeout – a pointer to the timeout state.

• lifetime – the duration of the timeout in seconds.

• now – the time at which the timeout started counting down, in millisec-
onds. This is generally a captured value of k_uptime_get_32().

int64_t net_timeout_deadline(const struct net_timeout *timeout, int64_t now)
Return the 64-bit system time at which the timeout will complete.

Note

Correct behavior requires invocation of net_timeout_evaluate() at its specified in-
tervals.

Parameters
• timeout – state a pointer to the timeout state, initialized by
net_timeout_set() and maintained by net_timeout_evaluate().

• now – the full-precision value of k_uptime_get() relative to which the dead-
line will be calculated.

Returns
the value of k_uptime_get() at which the timeout will expire.

uint32_t net_timeout_remaining(const struct net_timeout *timeout, uint32_t now)
Calculate the remaining time to the timeout in whole seconds.

Note

This function rounds the remaining time down, i.e. if the timeout will occur in 3500
milliseconds the value 3 will be returned.
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Note

Correct behavior requires invocation of net_timeout_evaluate() at its specified in-
tervals.

Parameters
• timeout – a pointer to the timeout state

• now – the time relative to which the estimate of remaining time
should be calculated. This should be recently captured value from
k_uptime_get_32().

Return values
• 0 – if the timeout has completed.

• positive – the remaining duration of the timeout, in seconds.

uint32_t net_timeout_evaluate(struct net_timeout *timeout, uint32_t now)
Update state to reflect elapsed time and get new delay.

This function must be invoked periodically to (1) apply the effect of elapsed time on
what remains of a total delay that exceeded the maximum representable delay, and (2)
determine that either the timeout has completed or that the infrastructure must wait
a certain period before checking again for completion.

Parameters
• timeout – a pointer to the timeout state

• now – the time relative to which the estimate of remaining time
should be calculated. This should be recently captured value from
k_uptime_get_32().

Return values
• 0 – if the timeout has completed

• positive – the maximum delay until the state of this timeout should be
re-evaluated, in milliseconds.

struct net_timeout
#include <net_timeout.h> Generic struct for handling network timeouts.

Except for the linking node, all access to state from these objects must go through the
defined API.

Public Members

sys_snode_t node
Used to link multiple timeouts that share a common timer infrastructure.

For examples a set of related timers may use a single delayed work structure, which
is always scheduled at the shortest time to a timeout event.

uint32_t timer_start
Time at which the timer was last set.

This usually corresponds to the low 32 bits of k_uptime_get().
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uint32_t timer_timeout
Portion of remaining timeout that does not exceed NET_TIMEOUT_MAX_VALUE.

This value is updated in parallel with timer_start and wrap_counter by
net_timeout_evaluate().

uint32_t wrap_counter
Timer wrap count.

This tracks multiples of NET_TIMEOUT_MAX_VALUE milliseconds that have
yet to pass. It is also updated along with timer_start and wrap_counter by
net_timeout_evaluate().

Networking Context The net_context API is not meant for application use. Application should
use BSD Sockets API instead.

Promiscuous Mode

• Overview

• Sample usage

• API Reference

Overview Promiscuous mode is a mode for a network interface controller that causes it to pass
all traffic it receives to the application rather than passing only the frames that the controller is
specifically programmed to receive. This mode is normally used for packet sniffing as used to
diagnose network connectivity issues by showing an application all the data being transferred
over the network. (See the Wikipedia article on promiscuous mode for more information.)

The network promiscuous APIs are used to enable and disable this mode, and to wait for and
receive a network data to arrive. Not all network technologies or network device drivers support
promiscuous mode.

Sample usage First the promiscuous mode needs to be turned ON by the application like this:

ret = net_promisc_mode_on(iface);
if (ret < 0) {

if (ret == -EALREADY) {
printf("Promiscuous mode already enabled\n");

} else {
printf("Cannot enable promiscuous mode for "

"interface %p (%d)\n", iface, ret);
}

}

If there is no error, then the application can start to wait for network data:

while (true) {
pkt = net_promisc_mode_wait_data(K_FOREVER);
if (pkt) {

print_info(pkt);
}

(continues on next page)
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(continued from previous page)
net_pkt_unref(pkt);

}

Finally the promiscuous mode can be turned OFF by the application like this:

ret = net_promisc_mode_off(iface);
if (ret < 0) {

if (ret == -EALREADY) {
printf("Promiscuous mode already disabled\n");

} else {
printf("Cannot disable promiscuous mode for "

"interface %p (%d)\n", iface, ret);
}

}

See net-promiscuous-mode for a more comprehensive example.

Related code samples

Promiscuous mode
Enable promiscuous mode on all interfaces and print information about incoming pack-
ets.

API Reference

group promiscuous
Promiscuous mode support.

Since
1.13

Version
0.8.0

Functions

static inline struct net_pkt *net_promisc_mode_wait_data(k_timeout_t timeout)
Start to wait received network packets.

Parameters
• timeout – How long to wait before returning.

Returns
Received net_pkt, NULL if not received any packet.

static inline int net_promisc_mode_on(struct net_if *iface)
Enable promiscuous mode for a given network interface.

Parameters
• iface – Network interface

Returns
0 if ok, <0 if error
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static inline int net_promisc_mode_off(struct net_if *iface)
Disable promiscuous mode for a given network interface.

Parameters
• iface – Network interface

Returns
0 if ok, <0 if error

Simple Network Time Protocol Library

• Overview

• API Reference

Overview The SNTP library implements IETF RFC4330 (Simple Network Time Protocol v4).

SNTP provides a way to synchronize clocks in computer networks.

Related code samples

AWS IoT Core MQTT
Connect to AWS IoT Core and publish messages using MQTT.

SNTP client
Use SNTP to get the current time from the host.

API Reference

group sntp
Simple Network Time Protocol API.

Since
1.10

Version
0.8.0

Functions

int sntp_init(struct sntp_ctx *ctx, struct sockaddr *addr, socklen_t addr_len)
Initialize SNTP context.

Parameters
• ctx – Address of sntp context.

• addr – IP address of NTP/SNTP server.

• addr_len – IP address length of NTP/SNTP server.
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Returns
0 if ok, <0 if error.

int sntp_query(struct sntp_ctx *ctx, uint32_t timeout, struct sntp_time *time)
Perform SNTP query.

Parameters
• ctx – Address of sntp context.

• timeout – Timeout of waiting for sntp response (in milliseconds).

• time – Timestamp including integer and fractional seconds since 1 Jan
1970 (output).

Returns
0 if ok, <0 if error (-ETIMEDOUT if timeout).

void sntp_close(struct sntp_ctx *ctx)
Release SNTP context.

Parameters
• ctx – Address of sntp context.

int sntp_simple(const char *server, uint32_t timeout, struct sntp_time *ts)
Convenience function to query SNTP in one-shot fashion.

Convenience wrapper which calls getaddrinfo(), sntp_init(), sntp_query(), and
sntp_close().

Parameters
• server – Address of server in format addr[:port]

• timeout – Query timeout

• ts – Timestamp including integer and fractional seconds since 1 Jan 1970
(output).

Returns
0 if ok, <0 if error (-ETIMEDOUT if timeout).

int sntp_simple_addr(struct sockaddr *addr, socklen_t addr_len, uint32_t timeout, struct
sntp_time *ts)

Convenience function to query SNTP in one-shot fashion using a pre-initialized address
struct.

Convenience wrapper which calls sntp_init(), sntp_query() and sntp_close().

Parameters
• addr – IP address of NTP/SNTP server.

• addr_len – IP address length of NTP/SNTP server.

• timeout – Query timeout

• ts – Timestamp including integer and fractional seconds since 1 Jan 1970
(output).

Returns
0 if ok, <0 if error (-ETIMEDOUT if timeout).

struct sntp_time
#include <sntp.h> Time as returned by SNTP API, fractional seconds since 1 Jan 1970.
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Public Members

uint64_t seconds
Second value.

uint32_t fraction
Fractional seconds value.

struct sntp_ctx
#include <sntp.h> SNTP context.

Public Members

struct sntp_time expected_orig_ts
Timestamp when the request was sent from client to server.

This is used to check if the originated timestamp in the server reply matches the
one in client request.

SOCKS5 Proxy Support

• Overview

• SOCKS5 API

• SOCKS5 Proxy Usage in MQTT

Overview The SOCKS library implements SOCKS5 support, which allows Zephyr to connect to
peer devices via a network proxy.

See this SOCKS5 Wikipedia article for a detailed overview of how SOCKS5 works.

For more information about the protocol itself, see IETF RFC1928 SOCKS Protocol Version 5.

SOCKS5 API The SOCKS5 support is enabled by CONFIG_SOCKS Kconfig variable. Application
wanting to use the SOCKS5 must set the SOCKS5 proxy host address by calling setsockopt() like
this:

static int set_proxy(int sock, const struct sockaddr *proxy_addr,
socklen_t proxy_addrlen)

{
int ret;

ret = setsockopt(sock, SOL_SOCKET, SO_SOCKS5,
proxy_addr, proxy_addrlen);

if (ret < 0) {
return -errno;

}

return 0;
}
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SOCKS5 Proxy Usage in MQTT For MQTT client, there is mqtt_client_set_proxy() API that
the application can call to setup SOCKS5 proxy. See mqtt-publisher sample application for usage
example.

Trickle Timer Library

• Overview

• API Reference

Overview The Trickle timer library implements IETF RFC6206 (Trickle Algorithm).

The Trickle algorithm allows nodes in a lossy shared medium (e.g., low-power and lossy net-
works) to exchange information in a highly robust, energy efficient, simple, and scalable man-
ner.

API Reference

group trickle
Trickle algorithm library.

Since
1.7

Version
0.8.0

Typedefs

typedef void (*net_trickle_cb_t)(struct net_trickle *trickle, bool do_suppress, void
*user_data)

Trickle timer callback.

The callback is called after Trickle timeout expires.

Param trickle
The trickle context to use.

Param do_suppress
Is TX allowed (true) or not (false).

Param user_data
The user data given in net_trickle_start() call.

Functions

int net_trickle_create(struct net_trickle *trickle, uint32_t Imin, uint8_t Imax, uint8_t k)
Create a Trickle timer.

Parameters
• trickle – Pointer to Trickle struct.
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• Imin – Imin configuration parameter in ms.

• Imax – Max number of doublings.

• k – Redundancy constant parameter. See RFC 6206 for details.

Returns
Return 0 if ok and <0 if error.

int net_trickle_start(struct net_trickle *trickle, net_trickle_cb_t cb, void *user_data)
Start a Trickle timer.

Parameters
• trickle – Pointer to Trickle struct.

• cb – User callback to call at time T within the current trickle interval

• user_data – User pointer that is passed to callback.

Returns
Return 0 if ok and <0 if error.

int net_trickle_stop(struct net_trickle *trickle)
Stop a Trickle timer.

Parameters
• trickle – Pointer to Trickle struct.

Returns
Return 0 if ok and <0 if error.

void net_trickle_consistency(struct net_trickle *trickle)
To be called by the protocol handler when it hears a consistent network transmission.

Parameters
• trickle – Pointer to Trickle struct.

void net_trickle_inconsistency(struct net_trickle *trickle)
To be called by the protocol handler when it hears an inconsistent network transmis-
sion.

Parameters
• trickle – Pointer to Trickle struct.

static inline bool net_trickle_is_running(struct net_trickle *trickle)
Check if the Trickle timer is running or not.

Parameters
• trickle – Pointer to Trickle struct.

Returns
Return True if timer is running and False if not.

struct net_trickle
#include <trickle.h> The variable names are taken directly from RFC 6206 when appli-
cable.

Note that the struct members should not be accessed directly but only via the Trickle
API.
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Public Members

uint32_t I
Current interval size.

uint32_t Imin
Min interval size in ms.

uint32_t Istart
Start of the interval in ms.

uint32_t Imax_abs
Max interval size in ms (not doublings)

uint8_t Imax
Max number of doublings.

uint8_t k
Redundancy constant.

uint8_t c
Consistency counter.

bool double_to
Flag telling if the internval is doubled.

struct k_work_delayable timer
Internal timer struct.

net_trickle_cb_t cb
Callback to be called when timer expires.

void *user_data
User specific opaque data.

Websocket Client API

• Overview

• Websocket Transport

• API Reference

Overview The Websocket client library allows Zephyr to connect to a Websocket server. The
Websocket client API can be used directly by application to establish a Websocket connection to
server, or it can be used as a transport for other network protocols like MQTT.

See this Websocket Wikipedia article for a detailed overview of how Websocket works.

For more information about the protocol itself, see IETF RFC6455 The WebSocket Protocol.
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Websocket Transport The Websocket API allows it to be used as a transport for other high
level protocols like MQTT. The Zephyr MQTT client library can be configured to use Websocket
transport by enabling CONFIG_MQTT_LIB_WEBSOCKET and CONFIG_WEBSOCKET_CLIENT Kconfig op-
tions.

First a socket needs to be created and connected to the Websocket server:

sock = socket(family, SOCK_STREAM, IPPROTO_TCP);
...
ret = connect(sock, addr, addr_len);
...

The Websocket transport socket is then created like this:

ws_sock = websocket_connect(sock, &config, timeout, user_data);

The Websocket socket can then be used to send or receive data, and the Websocket client API
will encapsulate the sent or received data to/from Websocket packet payload. Both the web-
socket_xxx() API or normal BSD socket API functions can be used to send and receive applica-
tion data.

ret = websocket_send_msg(ws_sock, buf_to_send, buf_len,
WEBSOCKET_OPCODE_DATA_BINARY, true, true,
K_FOREVER);

...
ret = send(ws_sock, buf_to_send, buf_len, 0);

If normal BSD socket functions are used, then currently only TEXT data is supported. In order
to send BINARY data, the websocket_send_msg() must be used.

When done, the Websocket transport socket must be closed. User should handle the lifecy-
cle(close/reuse) of tcp socket after websocket_disconnect.

ret = close(ws_sock);
or
ret = websocket_disconnect(ws_sock);

Related code samples

WebSocket Client
Implement a Websocket client that connects to a Websocket server.

API Reference

group websocket
Websocket API.

Since
1.12

Version
0.1.0

Defines
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WEBSOCKET_FLAG_FINAL
Message type values.

Returned in websocket_recv_msg() Final frame

WEBSOCKET_FLAG_TEXT
Textual data

WEBSOCKET_FLAG_BINARY
Binary data

WEBSOCKET_FLAG_CLOSE
Closing connection.

WEBSOCKET_FLAG_PING
Ping message

WEBSOCKET_FLAG_PONG
Pong message

Typedefs

typedef int (*websocket_connect_cb_t)(int ws_sock, struct http_request *req, void
*user_data)

Callback called after Websocket connection is established.

Param ws_sock
Websocket id

Param req
HTTP handshake request

Param user_data
A valid pointer on some user data or NULL

Return
0 if ok, <0 if there is an error and connection should be aborted

Enums

enum websocket_opcode
Websocket option codes.

Values:

enumerator WEBSOCKET_OPCODE_CONTINUE = 0x00
Message continues.

enumerator WEBSOCKET_OPCODE_DATA_TEXT = 0x01
Textual data.
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enumerator WEBSOCKET_OPCODE_DATA_BINARY = 0x02
Binary data.

enumerator WEBSOCKET_OPCODE_CLOSE = 0x08
Closing connection.

enumerator WEBSOCKET_OPCODE_PING = 0x09
Ping message.

enumerator WEBSOCKET_OPCODE_PONG = 0x0A
Pong message.

Functions

int websocket_connect(int http_sock, struct websocket_request *req, int32_t timeout, void
*user_data)

Connect to a server that provides Websocket service.

The callback is called after connection is established. The returned value is a new
socket descriptor that can be used to send / receive data using the BSD socket API.

Parameters
• http_sock – Socket id to the server. Note that this socket is used to do

HTTP handshakes etc. The actual Websocket connectivity is done via the
returned websocket id. Note that the http_sock must not be closed after
this function returns as it is used to deliver the Websocket packets to the
Websocket server.

• req – Websocket request. User should allocate and fill the request data.

• timeout – Max timeout to wait for the connection. The timeout value is
in milliseconds. Value SYS_FOREVER_MS means to wait forever.

• user_data – User specified data that is passed to the callback.

Returns
Websocket id to be used when sending/receiving Websocket data.

int websocket_send_msg(int ws_sock, const uint8_t *payload, size_t payload_len, enum
websocket_opcode opcode, bool mask, bool final, int32_t timeout)

Send websocket msg to peer.

The function will automatically add websocket header to the message.

Parameters
• ws_sock – Websocket id returned by websocket_connect().

• payload – Websocket data to send.

• payload_len – Length of the data to be sent.

• opcode – Operation code (text, binary, ping, pong, close)

• mask – Mask the data, see RFC 6455 for details

• final – Is this final message for this message send. If final == false, then
the first message must have valid opcode and subsequent messages must
have opcode WEBSOCKET_OPCODE_CONTINUE. If final == true and this
is the only message, then opcode should have proper opcode (text or bi-
nary) set.
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• timeout – How long to try to send the message. The value is in millisec-
onds. Value SYS_FOREVER_MS means to wait forever.

Returns
<0 if error, >=0 amount of bytes sent

int websocket_recv_msg(int ws_sock, uint8_t *buf, size_t buf_len, uint32_t *message_type,
uint64_t *remaining, int32_t timeout)

Receive websocket msg from peer.

The function will automatically remove websocket header from the message.

Parameters
• ws_sock – Websocket id returned by websocket_connect().

• buf – Buffer where websocket data is read.

• buf_len – Length of the data buffer.

• message_type – Type of the message.

• remaining – How much there is data left in the message after this read.

• timeout – How long to try to receive the message. The value is in mil-
liseconds. Value SYS_FOREVER_MS means to wait forever.

Return values
• >=0 – amount of bytes received.

• -EAGAIN – on timeout.

• -ENOTCONN – on socket close.

• -errno – other negative errno value in case of failure.

int websocket_disconnect(int ws_sock)
Close websocket.

One must call websocket_connect() after this call to re-establish the connection.

Parameters
• ws_sock – Websocket id returned by websocket_connect().

Returns
<0 if error, 0 the connection was closed successfully

int websocket_register(int http_sock, uint8_t *recv_buf, size_t recv_buf_len)
Register a socket as websocket.

This is called by HTTP server when a connection is upgraded to a websocket connec-
tion.

Parameters
• http_sock – Underlying socket connection socket.

• recv_buf – Temporary receive buffer for websocket parsing. This must
point to a memory area that is valid for the duration of the whole web-
socket session.

• recv_buf_len – Length of the temporary receive buffer.

Returns
<0 if error, >=0 the actual websocket to be used by application
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int websocket_unregister(int ws_sock)
Unregister a websocket.

This is called when we no longer need the underlying “real” socket. This will close first
the websocket and then the original socket.

Parameters
• ws_sock – Websocket connection socket.

Returns
<0 if error, 0 the websocket connection is now fully closed

struct websocket_request
#include <websocket.h> Websocket client connection request.

This contains all the data that is needed when doing a Websocket connection request.

Public Members

const char *host
Host of the Websocket server when doing HTTP handshakes.

const char *url
URL of the Websocket.

http_header_cb_t optional_headers_cb
User supplied callback function to call when optional headers need to be sent.

This can be NULL, in which case the optional_headers field in http_request is used.
The idea of this optional_headers callback is to allow user to send more HTTP
header data that is practical to store in allocated memory.

const char **optional_headers
A NULL terminated list of any optional headers that should be added to the HTTP
request.

May be NULL. If the optional_headers_cb is specified, then this field is ignored.

websocket_connect_cb_t cb
User supplied callback function to call when a connection is established.

const struct http_parser_settings *http_cb
User supplied list of callback functions if the calling application wants to know the
parsing status or the HTTP fields during the handshake.

This is optional parameter and normally not needed but is useful if the caller wants
to know something about the fields that the server is sending.

uint8_t *tmp_buf
User supplied buffer where HTTP connection data is stored.

size_t tmp_buf_len
Length of the user supplied temp buffer.
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Network Packet Capture

• Overview

• Cooked Mode Capture

• Sample usage

• API Reference

Overview The net_capture API allows user to monitor the network traffic in one of the Zephyr
network interfaces and send that traffic to external system for analysis. The monitoring can be
setup either manually using net-shell or automatically by using the net_capture API.

Cooked Mode Capture If capturing is enabled and configured, the system will automatically
capture network traffic for a given network interface. If you would like to capture network data
when there is no network interface involved, then you need to use the cooked mode capture API.

In cooked mode capture, arbitrary network packets can be captured and there does not need
to be network interface involved. For example low level HDLC packets in PPP can be captured,
as the HDLC L2 layer data is stripped away when using the normal network interface based
capture. Also CANBUS or Bluetooth network data could be captured although currently there is
no support in the network stack to capture those.

The cooked mode capture works like this:

• An any network interface is created. It acts as a sink where the cooked mode captured
packets are written by the cooked mode capture API.

• A cooked virtual network interface is attached on top of this any interface.

• The cooked interface must be configured to capture certain L2 packet types using the net-
work interface configuration API.

• When cooked mode capture API is used, the caller must specify what is the layer 2 protocol
type of the captured data. The cooked mode capture API is then able to determine what to
capture when receiving such a L2 packet.

• The network packet capturing infrastructure is then setup so that the cooked interface is
marked as captured network interface. The packets received by the cooked interface via
the any interface are then automatically placed to the capture IP tunnel and sent to remote
host for analysis.

For example, in the sample capture application, these network interfaces are created:

Interface any (0x808ab3c) (Dummy) [1]
================================
Virtual interfaces attached to this : 2
Device : NET_ANY (0x80849a4)

Interface cooked (0x808ac94) (Virtual) [2]
==================================
Virtual name : Cooked mode capture
Attached : 1 (Dummy / 0x808ab3c)
Device : NET_COOKED (0x808497c)

Interface eth0 (0x808adec) (Ethernet) [3]
===================================
Virtual interfaces attached to this : 4
Device : zeth0 (0x80849b8)

(continues on next page)
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(continued from previous page)
IPv6 unicast addresses (max 4):

fe80::5eff:fe00:53e6 autoconf preferred infinite
2001:db8::1 manual preferred infinite

IPv4 unicast addresses (max 2):
192.0.2.1/255.255.255.0 overridable preferred infinite

Interface net0 (0x808af44) (Virtual) [4]
==================================
Virtual name : Capture tunnel
Attached : 3 (Ethernet / 0x808adec)
Device : IP_TUNNEL0 (0x8084990)
IPv6 unicast addresses (max 4):

2001:db8:200::1 manual preferred infinite
fe80::efed:6dff:fef2:b1df autoconf preferred infinite
fe80::56da:1eff:fe5e:bc02 autoconf preferred infinite

In this example, the 192.0.2.2 is the address of the outer end point of the host that terminates
the tunnel. Zephyr uses this address to select the internal interface to use for the tunnel. In this
example it is interface 3.

The interface 2 is a virtual interface that runs on top of interface 1. The cooked capture packets
are written by the capture API to sink interface 1. The packets propagate to interface 2 because
it is linked to the first interface. The net capture enable 2 net-shell command will cause the
packets sent to interface 2 to be written to capture interface 4, which in turn then capsulates the
packets and tunnels them to peer via the Ethernet interface 3.

The above IP addresses might change if you change the addresses in the sample
samples/net/capture/overlay-tunnel.conf file.

Sample usage See net-capture sample application and Monitor Network Traffic for details.

Related code samples

Network packet capture
Capture network packets and send them to a remote host via IPIP tunnel.

API Reference

group net_capture
Network packet capture support functions.

Since
2.6

Version
0.8.0

Functions

int net_capture_setup(const char *remote_addr, const char *my_local_addr, const char
*peer_addr, const struct device **dev)

Setup network packet capturing support.
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Parameters
• remote_addr – The value tells the tunnel remote/outer endpoint IP ad-

dress. The IP address can be either IPv4 or IPv6 address. This address is
used to select the network interface where the tunnel is created.

• my_local_addr – The local/inner IP address of the tunnel. Can contain
also port number which is used as UDP source port.

• peer_addr – The peer/inner IP address of the tunnel. Can contain also
port number which is used as UDP destination port.

• dev – Network capture device. This is returned to the caller.

Returns
0 if ok, <0 if network packet capture setup failed

static inline int net_capture_cleanup(const struct device *dev)
Cleanup network packet capturing support.

This should be called after the capturing is done and resources can be released.

Parameters
• dev – Network capture device. User must allocate using the
net_capture_setup() function.

Returns
0 if ok, <0 if network packet capture cleanup failed

static inline int net_capture_enable(const struct device *dev, struct net_if *iface)
Enable network packet capturing support.

This creates tunnel network interface where all the captured packets are pushed. The
captured network packets are placed in UDP packets that are sent to tunnel peer.

Parameters
• dev – Network capture device

• iface – Network interface we are starting to capture packets.

Returns
0 if ok, <0 if network packet capture enable failed

static inline bool net_capture_is_enabled(const struct device *dev)
Is network packet capture enabled or disabled.

Parameters
• dev – Network capture device. If set to NULL, then the default capture

device is used.

Returns
True if enabled, False if network capture is disabled.

static inline int net_capture_disable(const struct device *dev)
Disable network packet capturing support.

Parameters
• dev – Network capture device

Returns
0 if ok, <0 if network packet capture disable failed
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Network Buffer Management

Network Buffer

• Overview

• Creating buffers

• Common Operations

• Reference Counting

• API Reference

Overview Network buffers are a core concept of how the networking stack (as well as the Blue-
tooth stack) pass data around. The API for them is defined in include/zephyr/net/buf.h:.

Creating buffers Network buffers are created by first defining a pool of them:

NET_BUF_POOL_DEFINE(pool_name, buf_count, buf_size, user_data_size, NULL);

The pool is a static variable, so if it’s needed to be exported to another module a separate pointer
is needed.

Once the pool has been defined, buffers can be allocated from it with:

buf = net_buf_alloc(&pool_name, timeout);

There is no explicit initialization function for the pool or its buffers, rather this is done implicitly
as net_buf_alloc() gets called.

If there is a need to reserve space in the buffer for protocol headers to be prepended later, it’s
possible to reserve this headroom with:

net_buf_reserve(buf, headroom);

In addition to actual protocol data and generic parsing context, network buffers may also contain
protocol-specific context, known as user data. Both the maximum data and user data capacity
of the buffers is compile-time defined when declaring the buffer pool.

The buffers have native support for being passed through k_fifo kernel objects. This is
a very practical feature when the buffers need to be passed from one thread to another.
However, since a net_buf may have a fragment chain attached to it, instead of using the
k_fifo_put() and k_fifo_get() APIs, special net_buf_put() and net_buf_get() APIs must
be used when passing buffers through FIFOs. These APIs ensure that the buffer chains
stay intact. The same applies for passing buffers through a singly linked list, in which
case the net_buf_slist_put() and net_buf_slist_get() functions must be used instead of
sys_slist_append() and sys_slist_get().

Common Operations The network buffer API provides some useful helpers for encoding and
decoding data in the buffers. To fully understand these helpers it’s good to understand the basic
names of operations used with them:

Add
Add data to the end of the buffer. Modifies the data length value while leaving the actual
data pointer intact. Requires that there is enough tailroom in the buffer. Some examples of
APIs for adding data:
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void *net_buf_add(struct net_buf *buf, size_t len);
void *net_buf_add_mem(struct net_buf *buf, const void *mem, size_t len);
uint8_t *net_buf_add_u8(struct net_buf *buf, uint8_t value);
void net_buf_add_le16(struct net_buf *buf, uint16_t value);
void net_buf_add_le32(struct net_buf *buf, uint32_t value);

Remove
Remove data from the end of the buffer. Modifies the data length value while leaving the
actual data pointer intact. Some examples of APIs for removing data:

void *net_buf_remove_mem(struct net_buf *buf, size_t len);
uint8_t net_buf_remove_u8(struct net_buf *buf);
uint16_t net_buf_remove_le16(struct net_buf *buf);
uint32_t net_buf_remove_le32(struct net_buf *buf);

Push
Prepend data to the beginning of the buffer. Modifies both the data length value as well as
the data pointer. Requires that there is enough headroom in the buffer. Some examples of
APIs for pushing data:

void *net_buf_push(struct net_buf *buf, size_t len);
void *net_buf_push_mem(struct net_buf *buf, const void *mem, size_t len);
void net_buf_push_u8(struct net_buf *buf, uint8_t value);
void net_buf_push_le16(struct net_buf *buf, uint16_t value);

Pull
Remove data from the beginning of the buffer. Modifies both the data length value as well
as the data pointer. Some examples of APIs for pulling data:

void *net_buf_pull(struct net_buf *buf, size_t len);
void *net_buf_pull_mem(struct net_buf *buf, size_t len);
uint8_t net_buf_pull_u8(struct net_buf *buf);
uint16_t net_buf_pull_le16(struct net_buf *buf);
uint32_t net_buf_pull_le32(struct net_buf *buf);

The Add and Push operations are used when encoding data into the buffer, whereas the Remove
and Pull operations are used when decoding data from a buffer.

Reference Counting Each network buffer is reference counted. The buffer is initially ac-
quired from a free buffers pool by calling net_buf_alloc(), resulting in a buffer with refer-
ence count 1. The reference count can be incremented with net_buf_ref() or decremented
with net_buf_unref(). When the count drops to zero the buffer is automatically placed back to
the free buffers pool.

API Reference

group net_buf
Network buffer library.

Since
1.0

Version
1.0.0

Defines
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NET_BUF_SIMPLE_DEFINE(_name, _size)
Define a net_buf_simple stack variable.

This is a helper macro which is used to define a net_buf_simple object on the stack.

Parameters
• _name – Name of the net_buf_simple object.

• _size – Maximum data storage for the buffer.

NET_BUF_SIMPLE_DEFINE_STATIC(_name, _size)
Define a static net_buf_simple variable.

This is a helper macro which is used to define a static net_buf_simple object.

Parameters
• _name – Name of the net_buf_simple object.

• _size – Maximum data storage for the buffer.

NET_BUF_SIMPLE(_size)
Define a net_buf_simple stack variable and get a pointer to it.

This is a helper macro which is used to define a net_buf_simple object on the stack and
the get a pointer to it as follows:

struct net_buf_simple *my_buf = NET_BUF_SIMPLE(10);

After creating the object it needs to be initialized by calling net_buf_simple_init().

Parameters
• _size – Maximum data storage for the buffer.

Returns
Pointer to stack-allocated net_buf_simple object.

NET_BUF_EXTERNAL_DATA
Flag indicating that the buffer’s associated data pointer, points to externally allocated
memory.

Therefore once ref goes down to zero, the pointed data will not need to be deallocated.
This never needs to be explicitly set or unset by the net_buf API user. Such net_buf is
exclusively instantiated via net_buf_alloc_with_data() function. Reference count mech-
anism however will behave the same way, and ref count going to 0 will free the net_buf
but no the data pointer in it.

NET_BUF_POOL_HEAP_DEFINE(_name, _count, _ud_size, _destroy)
Define a new pool for buffers using the heap for the data.

Defines a net_buf_pool struct and the necessary memory storage (array of structs) for
the needed amount of buffers. After this, the buffers can be accessed from the pool
through net_buf_alloc. The pool is defined as a static variable, so if it needs to be ex-
ported outside the current module this needs to happen with the help of a separate
pointer rather than an extern declaration.

The data payload of the buffers will be allocated from the heap using k_malloc, so
CONFIG_HEAP_MEM_POOL_SIZE must be set to a positive value. This kind of pool does
not support blocking on the data allocation, so the timeout passed to net_buf_alloc will
be always treated as K_NO_WAIT when trying to allocate the data. This means that
allocation failures, i.e. NULL returns, must always be handled cleanly.

If provided with a custom destroy callback, this callback is responsible for eventually
calling net_buf_destroy() to complete the process of returning the buffer to the pool.

Parameters
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• _name – Name of the pool variable.

• _count – Number of buffers in the pool.

• _ud_size – User data space to reserve per buffer.

• _destroy – Optional destroy callback when buffer is freed.

NET_BUF_POOL_FIXED_DEFINE(_name, _count, _data_size, _ud_size, _destroy)
Define a new pool for buffers based on fixed-size data.

Defines a net_buf_pool struct and the necessary memory storage (array of structs) for
the needed amount of buffers. After this, the buffers can be accessed from the pool
through net_buf_alloc. The pool is defined as a static variable, so if it needs to be ex-
ported outside the current module this needs to happen with the help of a separate
pointer rather than an extern declaration.

The data payload of the buffers will be allocated from a byte array of fixed sized
chunks. This kind of pool does not support blocking on the data allocation, so the
timeout passed to net_buf_alloc will be always treated as K_NO_WAIT when trying to
allocate the data. This means that allocation failures, i.e. NULL returns, must always
be handled cleanly.

If provided with a custom destroy callback, this callback is responsible for eventually
calling net_buf_destroy() to complete the process of returning the buffer to the pool.

Parameters
• _name – Name of the pool variable.

• _count – Number of buffers in the pool.

• _data_size – Maximum data payload per buffer.

• _ud_size – User data space to reserve per buffer.

• _destroy – Optional destroy callback when buffer is freed.

NET_BUF_POOL_VAR_DEFINE(_name, _count, _data_size, _ud_size, _destroy)
Define a new pool for buffers with variable size payloads.

Defines a net_buf_pool struct and the necessary memory storage (array of structs) for
the needed amount of buffers. After this, the buffers can be accessed from the pool
through net_buf_alloc. The pool is defined as a static variable, so if it needs to be ex-
ported outside the current module this needs to happen with the help of a separate
pointer rather than an extern declaration.

The data payload of the buffers will be based on a memory pool from which variable
size payloads may be allocated.

If provided with a custom destroy callback, this callback is responsible for eventually
calling net_buf_destroy() to complete the process of returning the buffer to the pool.

Parameters
• _name – Name of the pool variable.

• _count – Number of buffers in the pool.

• _data_size – Total amount of memory available for data payloads.

• _ud_size – User data space to reserve per buffer.

• _destroy – Optional destroy callback when buffer is freed.

NET_BUF_POOL_DEFINE(_name, _count, _size, _ud_size, _destroy)
Define a new pool for buffers.

Defines a net_buf_pool struct and the necessary memory storage (array of structs) for
the needed amount of buffers. After this,the buffers can be accessed from the pool
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through net_buf_alloc. The pool is defined as a static variable, so if it needs to be ex-
ported outside the current module this needs to happen with the help of a separate
pointer rather than an extern declaration.

If provided with a custom destroy callback this callback is responsible for eventually
calling net_buf_destroy() to complete the process of returning the buffer to the pool.

Parameters
• _name – Name of the pool variable.

• _count – Number of buffers in the pool.

• _size – Maximum data size for each buffer.

• _ud_size – Amount of user data space to reserve.

• _destroy – Optional destroy callback when buffer is freed.

Typedefs

typedef struct net_buf *(*net_buf_allocator_cb)(k_timeout_t timeout, void *user_data)
Network buffer allocator callback.

The allocator callback is called when net_buf_append_bytes needs to allocate a new
net_buf .

Param timeout
Affects the action taken should the net buf pool be empty. If K_NO_WAIT,
then return immediately. If K_FOREVER, then wait as long as necessary.
Otherwise, wait until the specified timeout.

Param user_data
The user data given in net_buf_append_bytes call.

Return
pointer to allocated net_buf or NULL on error.

Functions

static inline void net_buf_simple_init(struct net_buf_simple *buf, size_t reserve_head)
Initialize a net_buf_simple object.

This needs to be called after creating a net_buf_simple object using the
NET_BUF_SIMPLE macro.

Parameters
• buf – Buffer to initialize.

• reserve_head – Headroom to reserve.

void net_buf_simple_init_with_data(struct net_buf_simple *buf, void *data, size_t size)
Initialize a net_buf_simple object with data.

Initialized buffer object with external data.

Parameters
• buf – Buffer to initialize.

• data – External data pointer

• size – Amount of data the pointed data buffer if able to fit.
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static inline void net_buf_simple_reset(struct net_buf_simple *buf)
Reset buffer.

Reset buffer data so it can be reused for other purposes.

Parameters
• buf – Buffer to reset.

void net_buf_simple_clone(const struct net_buf_simple *original, struct net_buf_simple
*clone)

Clone buffer state, using the same data buffer.

Initializes a buffer to point to the same data as an existing buffer. Allows operations
on the same data without altering the length and offset of the original.

Parameters
• original – Buffer to clone.

• clone – The new clone.

void *net_buf_simple_add(struct net_buf_simple *buf, size_t len)
Prepare data to be added at the end of the buffer.

Increments the data length of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• len – Number of bytes to increment the length with.

Returns
The original tail of the buffer.

void *net_buf_simple_add_mem(struct net_buf_simple *buf, const void *mem, size_t len)
Copy given number of bytes from memory to the end of the buffer.

Increments the data length of the buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• mem – Location of data to be added.

• len – Length of data to be added

Returns
The original tail of the buffer.

uint8_t *net_buf_simple_add_u8(struct net_buf_simple *buf, uint8_t val)
Add (8-bit) byte at the end of the buffer.

Increments the data length of the buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – byte value to be added.

Returns
Pointer to the value added

void net_buf_simple_add_le16(struct net_buf_simple *buf, uint16_t val)
Add 16-bit value at the end of the buffer.

Adds 16-bit value in little endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.
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Parameters
• buf – Buffer to update.

• val – 16-bit value to be added.

void net_buf_simple_add_be16(struct net_buf_simple *buf, uint16_t val)
Add 16-bit value at the end of the buffer.

Adds 16-bit value in big endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 16-bit value to be added.

void net_buf_simple_add_le24(struct net_buf_simple *buf, uint32_t val)
Add 24-bit value at the end of the buffer.

Adds 24-bit value in little endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 24-bit value to be added.

void net_buf_simple_add_be24(struct net_buf_simple *buf, uint32_t val)
Add 24-bit value at the end of the buffer.

Adds 24-bit value in big endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 24-bit value to be added.

void net_buf_simple_add_le32(struct net_buf_simple *buf, uint32_t val)
Add 32-bit value at the end of the buffer.

Adds 32-bit value in little endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 32-bit value to be added.

void net_buf_simple_add_be32(struct net_buf_simple *buf, uint32_t val)
Add 32-bit value at the end of the buffer.

Adds 32-bit value in big endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 32-bit value to be added.

void net_buf_simple_add_le40(struct net_buf_simple *buf, uint64_t val)
Add 40-bit value at the end of the buffer.

Adds 40-bit value in little endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.
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Parameters
• buf – Buffer to update.

• val – 40-bit value to be added.

void net_buf_simple_add_be40(struct net_buf_simple *buf, uint64_t val)
Add 40-bit value at the end of the buffer.

Adds 40-bit value in big endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 40-bit value to be added.

void net_buf_simple_add_le48(struct net_buf_simple *buf, uint64_t val)
Add 48-bit value at the end of the buffer.

Adds 48-bit value in little endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 48-bit value to be added.

void net_buf_simple_add_be48(struct net_buf_simple *buf, uint64_t val)
Add 48-bit value at the end of the buffer.

Adds 48-bit value in big endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 48-bit value to be added.

void net_buf_simple_add_le64(struct net_buf_simple *buf, uint64_t val)
Add 64-bit value at the end of the buffer.

Adds 64-bit value in little endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 64-bit value to be added.

void net_buf_simple_add_be64(struct net_buf_simple *buf, uint64_t val)
Add 64-bit value at the end of the buffer.

Adds 64-bit value in big endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 64-bit value to be added.

void *net_buf_simple_remove_mem(struct net_buf_simple *buf, size_t len)
Remove data from the end of the buffer.

Removes data from the end of the buffer by modifying the buffer length.

Parameters

6.3. Networking 2591



Zephyr Project Documentation, Release 3.7.99

• buf – Buffer to update.

• len – Number of bytes to remove.

Returns
New end of the buffer data.

uint8_t net_buf_simple_remove_u8(struct net_buf_simple *buf)
Remove a 8-bit value from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 8-bit
values.

Parameters
• buf – A valid pointer on a buffer.

Returns
The 8-bit removed value

uint16_t net_buf_simple_remove_le16(struct net_buf_simple *buf)
Remove and convert 16 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 16-bit
little endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
16-bit value converted from little endian to host endian.

uint16_t net_buf_simple_remove_be16(struct net_buf_simple *buf)
Remove and convert 16 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 16-bit
big endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
16-bit value converted from big endian to host endian.

uint32_t net_buf_simple_remove_le24(struct net_buf_simple *buf)
Remove and convert 24 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 24-bit
little endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
24-bit value converted from little endian to host endian.

uint32_t net_buf_simple_remove_be24(struct net_buf_simple *buf)
Remove and convert 24 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 24-bit
big endian data.

Parameters
• buf – A valid pointer on a buffer.
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Returns
24-bit value converted from big endian to host endian.

uint32_t net_buf_simple_remove_le32(struct net_buf_simple *buf)
Remove and convert 32 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 32-bit
little endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
32-bit value converted from little endian to host endian.

uint32_t net_buf_simple_remove_be32(struct net_buf_simple *buf)
Remove and convert 32 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 32-bit
big endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
32-bit value converted from big endian to host endian.

uint64_t net_buf_simple_remove_le40(struct net_buf_simple *buf)
Remove and convert 40 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 40-bit
little endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
40-bit value converted from little endian to host endian.

uint64_t net_buf_simple_remove_be40(struct net_buf_simple *buf)
Remove and convert 40 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 40-bit
big endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
40-bit value converted from big endian to host endian.

uint64_t net_buf_simple_remove_le48(struct net_buf_simple *buf)
Remove and convert 48 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 48-bit
little endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
48-bit value converted from little endian to host endian.
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uint64_t net_buf_simple_remove_be48(struct net_buf_simple *buf)
Remove and convert 48 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 48-bit
big endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
48-bit value converted from big endian to host endian.

uint64_t net_buf_simple_remove_le64(struct net_buf_simple *buf)
Remove and convert 64 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 64-bit
little endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
64-bit value converted from little endian to host endian.

uint64_t net_buf_simple_remove_be64(struct net_buf_simple *buf)
Remove and convert 64 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 64-bit
big endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
64-bit value converted from big endian to host endian.

void *net_buf_simple_push(struct net_buf_simple *buf, size_t len)
Prepare data to be added to the start of the buffer.

Modifies the data pointer and buffer length to account for more data in the beginning
of the buffer.

Parameters
• buf – Buffer to update.

• len – Number of bytes to add to the beginning.

Returns
The new beginning of the buffer data.

void *net_buf_simple_push_mem(struct net_buf_simple *buf, const void *mem, size_t len)
Copy given number of bytes from memory to the start of the buffer.

Modifies the data pointer and buffer length to account for more data in the beginning
of the buffer.

Parameters
• buf – Buffer to update.

• mem – Location of data to be added.

• len – Length of data to be added.

Returns
The new beginning of the buffer data.
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void net_buf_simple_push_le16(struct net_buf_simple *buf, uint16_t val)
Push 16-bit value to the beginning of the buffer.

Adds 16-bit value in little endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 16-bit value to be pushed to the buffer.

void net_buf_simple_push_be16(struct net_buf_simple *buf, uint16_t val)
Push 16-bit value to the beginning of the buffer.

Adds 16-bit value in big endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 16-bit value to be pushed to the buffer.

void net_buf_simple_push_u8(struct net_buf_simple *buf, uint8_t val)
Push 8-bit value to the beginning of the buffer.

Adds 8-bit value the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 8-bit value to be pushed to the buffer.

void net_buf_simple_push_le24(struct net_buf_simple *buf, uint32_t val)
Push 24-bit value to the beginning of the buffer.

Adds 24-bit value in little endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 24-bit value to be pushed to the buffer.

void net_buf_simple_push_be24(struct net_buf_simple *buf, uint32_t val)
Push 24-bit value to the beginning of the buffer.

Adds 24-bit value in big endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 24-bit value to be pushed to the buffer.

void net_buf_simple_push_le32(struct net_buf_simple *buf, uint32_t val)
Push 32-bit value to the beginning of the buffer.

Adds 32-bit value in little endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 32-bit value to be pushed to the buffer.

void net_buf_simple_push_be32(struct net_buf_simple *buf, uint32_t val)
Push 32-bit value to the beginning of the buffer.

Adds 32-bit value in big endian format to the beginning of the buffer.

Parameters
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• buf – Buffer to update.

• val – 32-bit value to be pushed to the buffer.

void net_buf_simple_push_le40(struct net_buf_simple *buf, uint64_t val)
Push 40-bit value to the beginning of the buffer.

Adds 40-bit value in little endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 40-bit value to be pushed to the buffer.

void net_buf_simple_push_be40(struct net_buf_simple *buf, uint64_t val)
Push 40-bit value to the beginning of the buffer.

Adds 40-bit value in big endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 40-bit value to be pushed to the buffer.

void net_buf_simple_push_le48(struct net_buf_simple *buf, uint64_t val)
Push 48-bit value to the beginning of the buffer.

Adds 48-bit value in little endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 48-bit value to be pushed to the buffer.

void net_buf_simple_push_be48(struct net_buf_simple *buf, uint64_t val)
Push 48-bit value to the beginning of the buffer.

Adds 48-bit value in big endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 48-bit value to be pushed to the buffer.

void net_buf_simple_push_le64(struct net_buf_simple *buf, uint64_t val)
Push 64-bit value to the beginning of the buffer.

Adds 64-bit value in little endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 64-bit value to be pushed to the buffer.

void net_buf_simple_push_be64(struct net_buf_simple *buf, uint64_t val)
Push 64-bit value to the beginning of the buffer.

Adds 64-bit value in big endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 64-bit value to be pushed to the buffer.
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void *net_buf_simple_pull(struct net_buf_simple *buf, size_t len)
Remove data from the beginning of the buffer.

Removes data from the beginning of the buffer by modifying the data pointer and
buffer length.

Parameters
• buf – Buffer to update.

• len – Number of bytes to remove.

Returns
New beginning of the buffer data.

void *net_buf_simple_pull_mem(struct net_buf_simple *buf, size_t len)
Remove data from the beginning of the buffer.

Removes data from the beginning of the buffer by modifying the data pointer and
buffer length.

Parameters
• buf – Buffer to update.

• len – Number of bytes to remove.

Returns
Pointer to the old location of the buffer data.

uint8_t net_buf_simple_pull_u8(struct net_buf_simple *buf)
Remove a 8-bit value from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 8-bit values.

Parameters
• buf – A valid pointer on a buffer.

Returns
The 8-bit removed value

uint16_t net_buf_simple_pull_le16(struct net_buf_simple *buf)
Remove and convert 16 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 16-bit little en-
dian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
16-bit value converted from little endian to host endian.

uint16_t net_buf_simple_pull_be16(struct net_buf_simple *buf)
Remove and convert 16 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 16-bit big endian
data.

Parameters
• buf – A valid pointer on a buffer.

Returns
16-bit value converted from big endian to host endian.
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uint32_t net_buf_simple_pull_le24(struct net_buf_simple *buf)
Remove and convert 24 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 24-bit little en-
dian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
24-bit value converted from little endian to host endian.

uint32_t net_buf_simple_pull_be24(struct net_buf_simple *buf)
Remove and convert 24 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 24-bit big endian
data.

Parameters
• buf – A valid pointer on a buffer.

Returns
24-bit value converted from big endian to host endian.

uint32_t net_buf_simple_pull_le32(struct net_buf_simple *buf)
Remove and convert 32 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 32-bit little en-
dian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
32-bit value converted from little endian to host endian.

uint32_t net_buf_simple_pull_be32(struct net_buf_simple *buf)
Remove and convert 32 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 32-bit big endian
data.

Parameters
• buf – A valid pointer on a buffer.

Returns
32-bit value converted from big endian to host endian.

uint64_t net_buf_simple_pull_le40(struct net_buf_simple *buf)
Remove and convert 40 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 40-bit little en-
dian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
40-bit value converted from little endian to host endian.

uint64_t net_buf_simple_pull_be40(struct net_buf_simple *buf)
Remove and convert 40 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 40-bit big endian
data.
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Parameters
• buf – A valid pointer on a buffer.

Returns
40-bit value converted from big endian to host endian.

uint64_t net_buf_simple_pull_le48(struct net_buf_simple *buf)
Remove and convert 48 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 48-bit little en-
dian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
48-bit value converted from little endian to host endian.

uint64_t net_buf_simple_pull_be48(struct net_buf_simple *buf)
Remove and convert 48 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 48-bit big endian
data.

Parameters
• buf – A valid pointer on a buffer.

Returns
48-bit value converted from big endian to host endian.

uint64_t net_buf_simple_pull_le64(struct net_buf_simple *buf)
Remove and convert 64 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 64-bit little en-
dian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
64-bit value converted from little endian to host endian.

uint64_t net_buf_simple_pull_be64(struct net_buf_simple *buf)
Remove and convert 64 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 64-bit big endian
data.

Parameters
• buf – A valid pointer on a buffer.

Returns
64-bit value converted from big endian to host endian.

static inline uint8_t *net_buf_simple_tail(const struct net_buf_simple *buf)
Get the tail pointer for a buffer.

Get a pointer to the end of the data in a buffer.

Parameters
• buf – Buffer.

Returns
Tail pointer for the buffer.
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size_t net_buf_simple_headroom(const struct net_buf_simple *buf)
Check buffer headroom.

Check how much free space there is in the beginning of the buffer.

buf A valid pointer on a buffer

Returns
Number of bytes available in the beginning of the buffer.

size_t net_buf_simple_tailroom(const struct net_buf_simple *buf)
Check buffer tailroom.

Check how much free space there is at the end of the buffer.

Parameters
• buf – A valid pointer on a buffer

Returns
Number of bytes available at the end of the buffer.

uint16_t net_buf_simple_max_len(const struct net_buf_simple *buf)
Check maximum net_buf_simple::len value.

This value is depending on the number of bytes being reserved as headroom.

Parameters
• buf – A valid pointer on a buffer

Returns
Number of bytes usable behind the net_buf_simple::data pointer.

static inline void net_buf_simple_save(const struct net_buf_simple *buf, struct
net_buf_simple_state *state)

Save the parsing state of a buffer.

Saves the parsing state of a buffer so it can be restored later.

Parameters
• buf – Buffer from which the state should be saved.

• state – Storage for the state.

static inline void net_buf_simple_restore(struct net_buf_simple *buf, struct
net_buf_simple_state *state)

Restore the parsing state of a buffer.

Restores the parsing state of a buffer from a state previously stored by
net_buf_simple_save().

Parameters
• buf – Buffer to which the state should be restored.

• state – Stored state.

struct net_buf_pool *net_buf_pool_get(int id)
Looks up a pool based on its ID.

Parameters
• id – Pool ID (e.g. from buf->pool_id).

Returns
Pointer to pool.
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int net_buf_id(const struct net_buf *buf)
Get a zero-based index for a buffer.

This function will translate a buffer into a zero-based index, based on its placement in
its buffer pool. This can be useful if you want to associate an external array of meta-
data contexts with the buffers of a pool.

Parameters
• buf – Network buffer.

Returns
Zero-based index for the buffer.

struct net_buf *net_buf_alloc_fixed(struct net_buf_pool *pool, k_timeout_t timeout)
Allocate a new fixed buffer from a pool.

Note

Some types of data allocators do not support blocking (such as the HEAP type). In
this case it’s still possible for net_buf_alloc() to fail (return NULL) even if it was given
K_FOREVER.

Note

The timeout value will be overridden to K_NO_WAIT if called from the system
workqueue.

Parameters
• pool – Which pool to allocate the buffer from.

• timeout – Affects the action taken should the pool be empty. If
K_NO_WAIT, then return immediately. If K_FOREVER, then wait as long
as necessary. Otherwise, wait until the specified timeout.

Returns
New buffer or NULL if out of buffers.

static inline struct net_buf *net_buf_alloc(struct net_buf_pool *pool, k_timeout_t
timeout)

Note

Some types of data allocators do not support blocking (such as the HEAP type). In
this case it’s still possible for net_buf_alloc() to fail (return NULL) even if it was given
K_FOREVER.

Note

The timeout value will be overridden to K_NO_WAIT if called from the system
workqueue.

Parameters
• pool – Which pool to allocate the buffer from.
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• timeout – Affects the action taken should the pool be empty. If
K_NO_WAIT, then return immediately. If K_FOREVER, then wait as long
as necessary. Otherwise, wait until the specified timeout.

Returns
New buffer or NULL if out of buffers.

struct net_buf *net_buf_alloc_len(struct net_buf_pool *pool, size_t size, k_timeout_t
timeout)

Allocate a new variable length buffer from a pool.

Note

Some types of data allocators do not support blocking (such as the HEAP type). In
this case it’s still possible for net_buf_alloc() to fail (return NULL) even if it was given
K_FOREVER.

Note

The timeout value will be overridden to K_NO_WAIT if called from the system
workqueue.

Parameters
• pool – Which pool to allocate the buffer from.

• size – Amount of data the buffer must be able to fit.

• timeout – Affects the action taken should the pool be empty. If
K_NO_WAIT, then return immediately. If K_FOREVER, then wait as long
as necessary. Otherwise, wait until the specified timeout.

Returns
New buffer or NULL if out of buffers.

struct net_buf *net_buf_alloc_with_data(struct net_buf_pool *pool, void *data, size_t
size, k_timeout_t timeout)

Allocate a new buffer from a pool but with external data pointer.

Allocate a new buffer from a pool, where the data pointer comes from the user and
not from the pool.

Note

Some types of data allocators do not support blocking (such as the HEAP type). In
this case it’s still possible for net_buf_alloc() to fail (return NULL) even if it was given
K_FOREVER.

Note

The timeout value will be overridden to K_NO_WAIT if called from the system
workqueue.

Parameters
• pool – Which pool to allocate the buffer from.
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• data – External data pointer

• size – Amount of data the pointed data buffer if able to fit.

• timeout – Affects the action taken should the pool be empty. If
K_NO_WAIT, then return immediately. If K_FOREVER, then wait as long
as necessary. Otherwise, wait until the specified timeout.

Returns
New buffer or NULL if out of buffers.

struct net_buf *net_buf_get(struct k_fifo *fifo, k_timeout_t timeout)
Get a buffer from a FIFO.

This function is NOT thread-safe if the buffers in the FIFO contain fragments.

Parameters
• fifo – Which FIFO to take the buffer from.

• timeout – Affects the action taken should the FIFO be empty. If
K_NO_WAIT, then return immediately. If K_FOREVER, then wait as long
as necessary. Otherwise, wait until the specified timeout.

Returns
New buffer or NULL if the FIFO is empty.

static inline void net_buf_destroy(struct net_buf *buf)
Destroy buffer from custom destroy callback.

This helper is only intended to be used from custom destroy callbacks. If no custom
destroy callback is given to NET_BUF_POOL_*_DEFINE() then there is no need to use
this API.

Parameters
• buf – Buffer to destroy.

void net_buf_reset(struct net_buf *buf)
Reset buffer.

Reset buffer data and flags so it can be reused for other purposes.

Parameters
• buf – Buffer to reset.

void net_buf_simple_reserve(struct net_buf_simple *buf, size_t reserve)
Initialize buffer with the given headroom.

The buffer is not expected to contain any data when this API is called.

Parameters
• buf – Buffer to initialize.

• reserve – How much headroom to reserve.

void net_buf_slist_put(sys_slist_t *list, struct net_buf *buf)
Put a buffer into a list.

If the buffer contains follow-up fragments this function will take care of inserting them
as well into the list.

Parameters
• list – Which list to append the buffer to.

• buf – Buffer.
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struct net_buf *net_buf_slist_get(sys_slist_t *list)
Get a buffer from a list.

If the buffer had any fragments, these will automatically be recovered from the list as
well and be placed to the buffer’s fragment list.

Parameters
• list – Which list to take the buffer from.

Returns
New buffer or NULL if the FIFO is empty.

void net_buf_put(struct k_fifo *fifo, struct net_buf *buf)
Put a buffer to the end of a FIFO.

If the buffer contains follow-up fragments this function will take care of inserting them
as well into the FIFO.

Parameters
• fifo – Which FIFO to put the buffer to.

• buf – Buffer.

void net_buf_unref(struct net_buf *buf)
Decrements the reference count of a buffer.

The buffer is put back into the pool if the reference count reaches zero.

Parameters
• buf – A valid pointer on a buffer

struct net_buf *net_buf_ref(struct net_buf *buf)
Increment the reference count of a buffer.

Parameters
• buf – A valid pointer on a buffer

Returns
the buffer newly referenced

struct net_buf *net_buf_clone(struct net_buf *buf, k_timeout_t timeout)
Clone buffer.

Duplicate given buffer including any (user) data and headers currently stored.

Parameters
• buf – A valid pointer on a buffer

• timeout – Affects the action taken should the pool be empty. If
K_NO_WAIT, then return immediately. If K_FOREVER, then wait as long
as necessary. Otherwise, wait until the specified timeout.

Returns
Cloned buffer or NULL if out of buffers.

static inline void *net_buf_user_data(const struct net_buf *buf)
Get a pointer to the user data of a buffer.

Parameters
• buf – A valid pointer on a buffer

Returns
Pointer to the user data of the buffer.
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int net_buf_user_data_copy(struct net_buf *dst, const struct net_buf *src)
Copy user data from one to another buffer.

Parameters
• dst – A valid pointer to a buffer gettings its user data overwritten.

• src – A valid pointer to a buffer gettings its user data copied. User data
size must be equal to or exceed dst.

Returns
0 on success or negative error number on failure.

static inline void net_buf_reserve(struct net_buf *buf, size_t reserve)
Initialize buffer with the given headroom.

The buffer is not expected to contain any data when this API is called.

Parameters
• buf – Buffer to initialize.

• reserve – How much headroom to reserve.

static inline void *net_buf_add(struct net_buf *buf, size_t len)
Prepare data to be added at the end of the buffer.

Increments the data length of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• len – Number of bytes to increment the length with.

Returns
The original tail of the buffer.

static inline void *net_buf_add_mem(struct net_buf *buf, const void *mem, size_t len)
Copies the given number of bytes to the end of the buffer.

Increments the data length of the buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• mem – Location of data to be added.

• len – Length of data to be added

Returns
The original tail of the buffer.

static inline uint8_t *net_buf_add_u8(struct net_buf *buf, uint8_t val)
Add (8-bit) byte at the end of the buffer.

Increments the data length of the buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – byte value to be added.

Returns
Pointer to the value added
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static inline void net_buf_add_le16(struct net_buf *buf, uint16_t val)
Add 16-bit value at the end of the buffer.

Adds 16-bit value in little endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 16-bit value to be added.

static inline void net_buf_add_be16(struct net_buf *buf, uint16_t val)
Add 16-bit value at the end of the buffer.

Adds 16-bit value in big endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 16-bit value to be added.

static inline void net_buf_add_le24(struct net_buf *buf, uint32_t val)
Add 24-bit value at the end of the buffer.

Adds 24-bit value in little endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 24-bit value to be added.

static inline void net_buf_add_be24(struct net_buf *buf, uint32_t val)
Add 24-bit value at the end of the buffer.

Adds 24-bit value in big endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 24-bit value to be added.

static inline void net_buf_add_le32(struct net_buf *buf, uint32_t val)
Add 32-bit value at the end of the buffer.

Adds 32-bit value in little endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 32-bit value to be added.

static inline void net_buf_add_be32(struct net_buf *buf, uint32_t val)
Add 32-bit value at the end of the buffer.

Adds 32-bit value in big endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 32-bit value to be added.

2606 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

static inline void net_buf_add_le40(struct net_buf *buf, uint64_t val)
Add 40-bit value at the end of the buffer.

Adds 40-bit value in little endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 40-bit value to be added.

static inline void net_buf_add_be40(struct net_buf *buf, uint64_t val)
Add 40-bit value at the end of the buffer.

Adds 40-bit value in big endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 40-bit value to be added.

static inline void net_buf_add_le48(struct net_buf *buf, uint64_t val)
Add 48-bit value at the end of the buffer.

Adds 48-bit value in little endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 48-bit value to be added.

static inline void net_buf_add_be48(struct net_buf *buf, uint64_t val)
Add 48-bit value at the end of the buffer.

Adds 48-bit value in big endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 48-bit value to be added.

static inline void net_buf_add_le64(struct net_buf *buf, uint64_t val)
Add 64-bit value at the end of the buffer.

Adds 64-bit value in little endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 64-bit value to be added.

static inline void net_buf_add_be64(struct net_buf *buf, uint64_t val)
Add 64-bit value at the end of the buffer.

Adds 64-bit value in big endian format at the end of buffer. Increments the data length
of a buffer to account for more data at the end.

Parameters
• buf – Buffer to update.

• val – 64-bit value to be added.
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static inline void *net_buf_remove_mem(struct net_buf *buf, size_t len)
Remove data from the end of the buffer.

Removes data from the end of the buffer by modifying the buffer length.

Parameters
• buf – Buffer to update.

• len – Number of bytes to remove.

Returns
New end of the buffer data.

static inline uint8_t net_buf_remove_u8(struct net_buf *buf)
Remove a 8-bit value from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 8-bit values.

Parameters
• buf – A valid pointer on a buffer.

Returns
The 8-bit removed value

static inline uint16_t net_buf_remove_le16(struct net_buf *buf)
Remove and convert 16 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 16-bit little
endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
16-bit value converted from little endian to host endian.

static inline uint16_t net_buf_remove_be16(struct net_buf *buf)
Remove and convert 16 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 16-bit big en-
dian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
16-bit value converted from big endian to host endian.

static inline uint32_t net_buf_remove_be24(struct net_buf *buf)
Remove and convert 24 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 24-bit big en-
dian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
24-bit value converted from big endian to host endian.

static inline uint32_t net_buf_remove_le24(struct net_buf *buf)
Remove and convert 24 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 24-bit little
endian data.
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Parameters
• buf – A valid pointer on a buffer.

Returns
24-bit value converted from little endian to host endian.

static inline uint32_t net_buf_remove_le32(struct net_buf *buf)
Remove and convert 32 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 32-bit little
endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
32-bit value converted from little endian to host endian.

static inline uint32_t net_buf_remove_be32(struct net_buf *buf)
Remove and convert 32 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 32-bit big en-
dian data.

Parameters
• buf – A valid pointer on a buffer

Returns
32-bit value converted from big endian to host endian.

static inline uint64_t net_buf_remove_le40(struct net_buf *buf)
Remove and convert 40 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 40-bit little
endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
40-bit value converted from little endian to host endian.

static inline uint64_t net_buf_remove_be40(struct net_buf *buf)
Remove and convert 40 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 40-bit big en-
dian data.

Parameters
• buf – A valid pointer on a buffer

Returns
40-bit value converted from big endian to host endian.

static inline uint64_t net_buf_remove_le48(struct net_buf *buf)
Remove and convert 48 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 48-bit little
endian data.

Parameters
• buf – A valid pointer on a buffer.
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Returns
48-bit value converted from little endian to host endian.

static inline uint64_t net_buf_remove_be48(struct net_buf *buf)
Remove and convert 48 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 48-bit big en-
dian data.

Parameters
• buf – A valid pointer on a buffer

Returns
48-bit value converted from big endian to host endian.

static inline uint64_t net_buf_remove_le64(struct net_buf *buf)
Remove and convert 64 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 64-bit little
endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
64-bit value converted from little endian to host endian.

static inline uint64_t net_buf_remove_be64(struct net_buf *buf)
Remove and convert 64 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 64-bit big en-
dian data.

Parameters
• buf – A valid pointer on a buffer

Returns
64-bit value converted from big endian to host endian.

static inline void *net_buf_push(struct net_buf *buf, size_t len)
Prepare data to be added at the start of the buffer.

Modifies the data pointer and buffer length to account for more data in the beginning
of the buffer.

Parameters
• buf – Buffer to update.

• len – Number of bytes to add to the beginning.

Returns
The new beginning of the buffer data.

static inline void *net_buf_push_mem(struct net_buf *buf, const void *mem, size_t len)
Copies the given number of bytes to the start of the buffer.

Modifies the data pointer and buffer length to account for more data in the beginning
of the buffer.

Parameters
• buf – Buffer to update.

• mem – Location of data to be added.

• len – Length of data to be added.
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Returns
The new beginning of the buffer data.

static inline void net_buf_push_u8(struct net_buf *buf, uint8_t val)
Push 8-bit value to the beginning of the buffer.

Adds 8-bit value the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 8-bit value to be pushed to the buffer.

static inline void net_buf_push_le16(struct net_buf *buf, uint16_t val)
Push 16-bit value to the beginning of the buffer.

Adds 16-bit value in little endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 16-bit value to be pushed to the buffer.

static inline void net_buf_push_be16(struct net_buf *buf, uint16_t val)
Push 16-bit value to the beginning of the buffer.

Adds 16-bit value in big endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 16-bit value to be pushed to the buffer.

static inline void net_buf_push_le24(struct net_buf *buf, uint32_t val)
Push 24-bit value to the beginning of the buffer.

Adds 24-bit value in little endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 24-bit value to be pushed to the buffer.

static inline void net_buf_push_be24(struct net_buf *buf, uint32_t val)
Push 24-bit value to the beginning of the buffer.

Adds 24-bit value in big endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 24-bit value to be pushed to the buffer.

static inline void net_buf_push_le32(struct net_buf *buf, uint32_t val)
Push 32-bit value to the beginning of the buffer.

Adds 32-bit value in little endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 32-bit value to be pushed to the buffer.
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static inline void net_buf_push_be32(struct net_buf *buf, uint32_t val)
Push 32-bit value to the beginning of the buffer.

Adds 32-bit value in big endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 32-bit value to be pushed to the buffer.

static inline void net_buf_push_le40(struct net_buf *buf, uint64_t val)
Push 40-bit value to the beginning of the buffer.

Adds 40-bit value in little endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 40-bit value to be pushed to the buffer.

static inline void net_buf_push_be40(struct net_buf *buf, uint64_t val)
Push 40-bit value to the beginning of the buffer.

Adds 40-bit value in big endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 40-bit value to be pushed to the buffer.

static inline void net_buf_push_le48(struct net_buf *buf, uint64_t val)
Push 48-bit value to the beginning of the buffer.

Adds 48-bit value in little endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 48-bit value to be pushed to the buffer.

static inline void net_buf_push_be48(struct net_buf *buf, uint64_t val)
Push 48-bit value to the beginning of the buffer.

Adds 48-bit value in big endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 48-bit value to be pushed to the buffer.

static inline void net_buf_push_le64(struct net_buf *buf, uint64_t val)
Push 64-bit value to the beginning of the buffer.

Adds 64-bit value in little endian format to the beginning of the buffer.

Parameters
• buf – Buffer to update.

• val – 64-bit value to be pushed to the buffer.

static inline void net_buf_push_be64(struct net_buf *buf, uint64_t val)
Push 64-bit value to the beginning of the buffer.

Adds 64-bit value in big endian format to the beginning of the buffer.

Parameters
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• buf – Buffer to update.

• val – 64-bit value to be pushed to the buffer.

static inline void *net_buf_pull(struct net_buf *buf, size_t len)
Remove data from the beginning of the buffer.

Removes data from the beginning of the buffer by modifying the data pointer and
buffer length.

Parameters
• buf – Buffer to update.

• len – Number of bytes to remove.

Returns
New beginning of the buffer data.

static inline void *net_buf_pull_mem(struct net_buf *buf, size_t len)
Remove data from the beginning of the buffer.

Removes data from the beginning of the buffer by modifying the data pointer and
buffer length.

Parameters
• buf – Buffer to update.

• len – Number of bytes to remove.

Returns
Pointer to the old beginning of the buffer data.

static inline uint8_t net_buf_pull_u8(struct net_buf *buf)
Remove a 8-bit value from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 8-bit values.

Parameters
• buf – A valid pointer on a buffer.

Returns
The 8-bit removed value

static inline uint16_t net_buf_pull_le16(struct net_buf *buf)
Remove and convert 16 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 16-bit little endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
16-bit value converted from little endian to host endian.

static inline uint16_t net_buf_pull_be16(struct net_buf *buf)
Remove and convert 16 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 16-bit big endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
16-bit value converted from big endian to host endian.
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static inline uint32_t net_buf_pull_le24(struct net_buf *buf)
Remove and convert 24 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 24-bit little endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
24-bit value converted from little endian to host endian.

static inline uint32_t net_buf_pull_be24(struct net_buf *buf)
Remove and convert 24 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 24-bit big endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
24-bit value converted from big endian to host endian.

static inline uint32_t net_buf_pull_le32(struct net_buf *buf)
Remove and convert 32 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 32-bit little endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
32-bit value converted from little endian to host endian.

static inline uint32_t net_buf_pull_be32(struct net_buf *buf)
Remove and convert 32 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 32-bit big endian data.

Parameters
• buf – A valid pointer on a buffer

Returns
32-bit value converted from big endian to host endian.

static inline uint64_t net_buf_pull_le40(struct net_buf *buf)
Remove and convert 40 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 40-bit little endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
40-bit value converted from little endian to host endian.

static inline uint64_t net_buf_pull_be40(struct net_buf *buf)
Remove and convert 40 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 40-bit big endian data.

Parameters
• buf – A valid pointer on a buffer

Returns
40-bit value converted from big endian to host endian.
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static inline uint64_t net_buf_pull_le48(struct net_buf *buf)
Remove and convert 48 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 48-bit little endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
48-bit value converted from little endian to host endian.

static inline uint64_t net_buf_pull_be48(struct net_buf *buf)
Remove and convert 48 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 48-bit big endian data.

Parameters
• buf – A valid pointer on a buffer

Returns
48-bit value converted from big endian to host endian.

static inline uint64_t net_buf_pull_le64(struct net_buf *buf)
Remove and convert 64 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 64-bit little endian data.

Parameters
• buf – A valid pointer on a buffer.

Returns
64-bit value converted from little endian to host endian.

static inline uint64_t net_buf_pull_be64(struct net_buf *buf)
Remove and convert 64 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 64-bit big endian data.

Parameters
• buf – A valid pointer on a buffer

Returns
64-bit value converted from big endian to host endian.

static inline size_t net_buf_tailroom(const struct net_buf *buf)
Check buffer tailroom.

Check how much free space there is at the end of the buffer.

Parameters
• buf – A valid pointer on a buffer

Returns
Number of bytes available at the end of the buffer.

static inline size_t net_buf_headroom(const struct net_buf *buf)
Check buffer headroom.

Check how much free space there is in the beginning of the buffer.

buf A valid pointer on a buffer

Returns
Number of bytes available in the beginning of the buffer.
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static inline uint16_t net_buf_max_len(const struct net_buf *buf)
Check maximum net_buf::len value.

This value is depending on the number of bytes being reserved as headroom.

Parameters
• buf – A valid pointer on a buffer

Returns
Number of bytes usable behind the net_buf::data pointer.

static inline uint8_t *net_buf_tail(const struct net_buf *buf)
Get the tail pointer for a buffer.

Get a pointer to the end of the data in a buffer.

Parameters
• buf – Buffer.

Returns
Tail pointer for the buffer.

struct net_buf *net_buf_frag_last(struct net_buf *frags)
Find the last fragment in the fragment list.

Returns
Pointer to last fragment in the list.

void net_buf_frag_insert(struct net_buf *parent, struct net_buf *frag)
Insert a new fragment to a chain of bufs.

Insert a new fragment into the buffer fragments list after the parent.

Note: This function takes ownership of the fragment reference so the caller is not re-
quired to unref.

Parameters
• parent – Parent buffer/fragment.

• frag – Fragment to insert.

struct net_buf *net_buf_frag_add(struct net_buf *head, struct net_buf *frag)
Add a new fragment to the end of a chain of bufs.

Append a new fragment into the buffer fragments list.

Note: This function takes ownership of the fragment reference so the caller is not re-
quired to unref.

Parameters
• head – Head of the fragment chain.

• frag – Fragment to add.

Returns
New head of the fragment chain. Either head (if head was non-NULL) or
frag (if head was NULL).

struct net_buf *net_buf_frag_del(struct net_buf *parent, struct net_buf *frag)
Delete existing fragment from a chain of bufs.

Parameters
• parent – Parent buffer/fragment, or NULL if there is no parent.

• frag – Fragment to delete.
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Returns
Pointer to the buffer following the fragment, or NULL if it had no further
fragments.

size_t net_buf_linearize(void *dst, size_t dst_len, const struct net_buf *src, size_t offset,
size_t len)

Copy bytes from net_buf chain starting at offset to linear buffer.

Copy (extract) len bytes from src net_buf chain, starting from offset in it, to a linear
buffer dst. Return number of bytes actually copied, which may be less than requested,
if net_buf chain doesn’t have enough data, or destination buffer is too small.

Parameters
• dst – Destination buffer

• dst_len – Destination buffer length

• src – Source net_buf chain

• offset – Starting offset to copy from

• len – Number of bytes to copy

Returns
number of bytes actually copied

size_t net_buf_append_bytes(struct net_buf *buf, size_t len, const void *value, k_timeout_t
timeout, net_buf_allocator_cb allocate_cb, void *user_data)

Append data to a list of net_buf .

Append data to a net_buf . If there is not enough space in the net_buf then more net_buf
will be added, unless there are no free net_buf and timeout occurs. If not allocator is
provided it attempts to allocate from the same pool as the original buffer.

Parameters
• buf – Network buffer.

• len – Total length of input data

• value – Data to be added

• timeout – Timeout is passed to the net_buf allocator callback.

• allocate_cb – When a new net_buf is required, use this callback.

• user_data – A user data pointer to be supplied to the allocate_cb. This
pointer is can be anything from a mem_pool or a net_pkt, the logic is left
up to the allocate_cb function.

Returns
Length of data actually added. This may be less than input length if other
timeout than K_FOREVER was used, and there were no free fragments in a
pool to accommodate all data.

size_t net_buf_data_match(const struct net_buf *buf, size_t offset, const void *data, size_t
len)

Match data with a net_buf ’s content.

Compare data with a content of a net_buf . Provide information about the number of
bytes matching between both. If needed, traverse through multiple buffer fragments.

Parameters
• buf – Network buffer

• offset – Starting offset to compare from

• data – Data buffer for comparison
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• len – Number of bytes to compare

Returns
The number of bytes compared before the first difference.

static inline struct net_buf *net_buf_skip(struct net_buf *buf, size_t len)
Skip N number of bytes in a net_buf .

Skip N number of bytes starting from fragment’s offset. If the total length of data is
placed in multiple fragments, this function will skip from all fragments until it reaches
N number of bytes. Any fully skipped buffers are removed from the net_buf list.

Parameters
• buf – Network buffer.

• len – Total length of data to be skipped.

Returns
Pointer to the fragment or NULL and pos is 0 after successful skip, NULL
and pos is 0xffff otherwise.

static inline size_t net_buf_frags_len(const struct net_buf *buf)
Calculate amount of bytes stored in fragments.

Calculates the total amount of data stored in the given buffer and the fragments linked
to it.

Parameters
• buf – Buffer to start off with.

Returns
Number of bytes in the buffer and its fragments.

struct net_buf_simple
#include <buf.h> Simple network buffer representation.

This is a simpler variant of the net_buf object (in fact net_buf uses net_buf_simple inter-
nally). It doesn’t provide any kind of reference counting, user data, dynamic allocation,
or in general the ability to pass through kernel objects such as FIFOs.

The main use of this is for scenarios where the meta-data of the normal net_buf isn’t
needed and causes too much overhead. This could be e.g. when the buffer only needs
to be allocated on the stack or when the access to and lifetime of the buffer is well
controlled and constrained.

Public Members

uint8_t *data
Pointer to the start of data in the buffer.

uint16_t len
Length of the data behind the data pointer.

To determine the max length, use net_buf_simple_max_len(), not size!

uint16_t size
Amount of data that net_buf_simple::__buf can store.
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struct net_buf_simple_state
#include <buf.h> Parsing state of a buffer.

This is used for temporarily storing the parsing state of a buffer while giving control
of the parsing to a routine which we don’t control.

Public Members

uint16_t offset
Offset of the data pointer from the beginning of the storage.

uint16_t len
Length of data.

struct net_buf
#include <buf.h> Network buffer representation.

This struct is used to represent network buffers. Such buffers are normally defined
through the NET_BUF_POOL_*_DEFINE() APIs and allocated using the net_buf_alloc()
API.

Public Members

sys_snode_t node
Allow placing the buffer into sys_slist_t.

struct net_buf *frags
Fragments associated with this buffer.

uint8_t ref
Reference count.

uint8_t flags
Bit-field of buffer flags.

uint8_t pool_id
Where the buffer should go when freed up.

uint8_t user_data_size
Size of user data on this buffer.

uint8_t *data
Pointer to the start of data in the buffer.

uint16_t len
Length of the data behind the data pointer.

uint16_t size
Amount of data that this buffer can store.
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union net_buf
Union for convenience access to the net_buf_simple members, also preserving the
old API.

uint8_t user_data[]
System metadata for this buffer.

struct net_buf_pool
#include <buf.h> Network buffer pool representation.

This struct is used to represent a pool of network buffers.

Public Members

struct k_lifo free
LIFO to place the buffer into when free.

struct k_spinlock lock
To prevent concurrent access/modifications.

const uint16_t buf_count
Number of buffers in pool.

uint16_t uninit_count
Number of uninitialized buffers.

uint8_t user_data_size
Size of user data allocated to this pool.

void (*const destroy)(struct net_buf *buf)
Optional destroy callback when buffer is freed.

const struct net_buf_data_alloc *alloc
Data allocation handlers.

Packet Management

• Overview

– Architectural notes

• Memory management

– Allocation

– Buffer allocation

– Deallocation

• Operations

– Read and Write access
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– Data access

• API Reference

Overview Network packets are the main data the networking stack manipulates. Such data is
represented through the net_pkt structure which provides a means to hold the packet, write and
read it, as well as necessary metadata for the core to hold important information. Such an object
is called net_pkt in this document.

The data structure and the whole API around it are defined in include/zephyr/net/net_pkt.h.

Architectural notes There are two network packets flows within the stack, TX for the trans-
mission path, and RX for the reception one. In both paths, each net_pkt is written and read from
the beginning to the end, or more specifically from the headers to the payload.

Memory management

Allocation All net_pkt objects come from a pre-defined pool of struct net_pkt. Such pool is
defined via

NET_PKT_SLAB_DEFINE(name, count)

Note, however, one will rarely have to use it, as the core provides already two pools, one for the
TX path and one for the RX path.

Allocating a raw net_pkt can be done through:

pkt = net_pkt_alloc(timeout);

However, by its nature, a raw net_pkt is useless without a buffer and needs various metadata
information to become relevant as well. It requires at least to get the network interface it is
meant to be sent through or through which it was received. As this is a very common operation,
a helper exist:

pkt = net_pkt_alloc_on_iface(iface, timeout);

A more complete allocator exists, where both the net_pkt and its buffer can be allocated at once:

pkt = net_pkt_alloc_with_buffer(iface, size, family, proto, timeout);

See below how the buffer is allocated.

Buffer allocation The net_pkt object does not define its own buffer, but instead uses an existing
object for this: net_buf . (See Network Buffer for more information). However, it mostly hides
the usage of such a buffer because net_pkt brings network awareness to buffer allocation and,
as we will see later, its operation too.

To allocate a buffer, a net_pkt needs to have at least its network interface set. This works if the
family of the packet is unknown at the time of buffer allocation. Then one could do:

net_pkt_alloc_buffer(pkt, size, proto, timeout);

Where proto could be 0 if unknown (there is no IPPROTO_UNSPEC).

As seen previously, the net_pkt and its buffer can be allocated at once via
net_pkt_alloc_with_buffer(). It is actually the most widely used allocator.

6.3. Networking 2621

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/zephyr/net/net_pkt.h


Zephyr Project Documentation, Release 3.7.99

The network interface, the family, and the protocol of the packet are used by the buffer allocation
to determine if the requested size can be allocated. Indeed, the allocator will use the network
interface to know the MTU and then the family and protocol for the headers space (if only these
2 are specified). If the whole fits within the MTU, the allocated space will be of the requested size
plus, eventually, the headers space. If there is insufficient MTU space, the requested size will be
shrunk so the possible headers space and new size will fit within the MTU.

For instance, on an Ethernet network interface, with an MTU of 1500 bytes:

pkt = net_pkt_alloc_with_buffer(iface, 800, AF_INET4, IPPROTO_UDP, K_FOREVER);

will successfully allocate 800 + 20 + 8 bytes of buffer for the new net_pkt where:

pkt = net_pkt_alloc_with_buffer(iface, 1600, AF_INET4, IPPROTO_UDP, K_FOREVER);

will successfully allocate 1500 bytes, and where 20 + 8 bytes (IPv4 + UDP headers) will not be
used for the payload.

On the receiving side, when the family and protocol are not known:

pkt = net_pkt_rx_alloc_with_buffer(iface, 800, AF_UNSPEC, 0, K_FOREVER);

will allocate 800 bytes and no extra header space. But a:

pkt = net_pkt_rx_alloc_with_buffer(iface, 1600, AF_UNSPEC, 0, K_FOREVER);

will allocate 1514 bytes, the MTU + Ethernet header space.

One can increase the amount of buffer space allocated by calling net_pkt_alloc_buffer(), as
it will take into account the existing buffer. It will also account for the header space if net_pkt’s
family is a valid one, as well as the proto parameter. In that case, the newly allocated buffer
space will be appended to the existing one, and not inserted in the front. Note however such
a use case is rather limited. Usually, one should know from the start how much size should be
requested.

Deallocation Each net_pkt is reference counted. At allocation, the reference is set to 1. The
reference count can be incremented with net_pkt_ref() or decremented with net_pkt_unref().
When the count drops to zero the buffer is also un-referenced and net_pkt is automatically placed
back into the free net_pkt_slabs

If net_pkt’s buffer is needed even after net_pkt deallocation, one will need to reference once
more all the chain of net_buf before calling last net_pkt_unref. See Network Buffer for more
information.

Operations There are two ways to access the net_pkt buffer, explained in the following sec-
tions: basic read/write access and data access, the latter being the preferred way.

Read and Write access As said earlier, though net_pkt uses net_buf for its buffer, it provides
its own API to access it. Indeed, a network packet might be scattered over a chain of net_buf ob-
jects, the functions provided by net_buf are then limited for such case. Instead, net_pkt provides
functions which hide all the complexity of potential non-contiguous access.

Data movement into the buffer is made through a cursor maintained within each net_pkt. All
read/write operations affect this cursor. Note as well that read or write functions are strict on
their length parameters: if it cannot r/w the given length it will fail. Length is not interpreted as
an upper limit, it is instead the exact amount of data that must be read or written.

As there are two paths, TX and RX, there are two access modes: write and overwrite. This might
sound a bit unusual, but is in fact simple and provides flexibility.
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In write mode, whatever is written in the buffer affects the length of actual data present in the
buffer. Buffer length should not be confused with the buffer size which is a limit any mode cannot
pass. In overwrite mode then, whatever is written must happen on valid data, and will not affect
the buffer length. By default, a newly allocated net_pkt is on write mode, and its cursor points
to the beginning of its buffer.

Let’s see now, step by step, the functions and how they behave depending on the mode.

When freshly allocated with a buffer of 500 bytes, a net_pkt has 0 length, which means no valid
data is in its buffer. One could verify this by:

len = net_pkt_get_len(pkt);

Now, let’s write 8 bytes:

net_pkt_write(pkt, data, 8);

The buffer length is now 8 bytes. There are various helpers to write a byte, or big endian uint16_t,
uint32_t.

net_pkt_write_u8(pkt, &foo);
net_pkt_write_be16(pkt, &ba);
net_pkt_write_be32(pkt, &bar);

Logically, net_pkt’s length is now 15. But if we try to read at this point, it will fail because there is
nothing to read at the cursor where we are at in the net_pkt. It is possible, while in write mode,
to read what has been already written by resetting the cursor of the net_pkt. For instance:

net_pkt_cursor_init(pkt);
net_pkt_read(pkt, data, 15);

This will reset the cursor of the pkt to the beginning of the buffer and then let you read the actual
15 bytes present. The cursor is then again pointing at the end of the buffer.

To set a large area with the same byte, a memset function is provided:

net_pkt_memset(pkt, 0, 5);

Our net_pkt has now a length of 20 bytes.

Switching between modes can be achieved via net_pkt_set_overwrite() function. It is possible
to switch mode back and forth at any time. The net_pkt will be set to overwrite and its cursor
reset:

net_pkt_set_overwrite(pkt, true);
net_pkt_cursor_init(pkt);

Now the same operators can be used, but it will be limited to the existing data in the buffer, i.e.
20 bytes.

If it is necessary to know how much space is available in the net_pkt call:

net_pkt_available_buffer(pkt);

Or, if headers space needs to be accounted for, call:

net_pkt_available_payload_buffer(pkt, proto);

If you want to place the cursor at a known position use the function net_pkt_skip(). For exam-
ple, to go after the IP header, use:

net_pkt_cursor_init(pkt);
net_pkt_skip(pkt, net_pkt_ip_header_len(pkt));
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Data access Though the API shown previously is rather simple, it involves always copying
things to and from the net_pkt buffer. In many occasions, it is more relevant to access the infor-
mation stored in the buffer contiguously, especially with network packets which embed headers.

These headers are, most of the time, a known fixed set of bytes. It is then more natural to have
a structure representing a certain type of header. In addition to this, if it is known the header
size appears in a contiguous area of the buffer, it will be way more efficient to cast the actual
position in the buffer to the type of header. Either for reading or writing the fields of such header,
accessing it directly will save memory.

Net pkt comes with a dedicated API for this, built on top of the previously described API. It is able
to handle both contiguous and non-contiguous access transparently.

There are two macros used to define a data access descriptor: NET_PKT_DATA_ACCESS_DEFINE
when it is not possible to tell if the data will be in a contiguous area, and
NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE when it is guaranteed the data is in a contigu-
ous area.

Let’s take the example of IP and UDP. Both IPv4 and IPv6 headers are always found at the begin-
ning of the packet and are small enough to fit in a net_buf of 128 bytes (for instance, though 64
bytes could be chosen).

NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE(ipv4_access, struct net_ipv4_hdr);
struct net_ipv4_hdr *ipv4_hdr;

ipv4_hdr = (struct net_ipv4_hdr *)net_pkt_get_data(pkt, &ipv4_access);

It would be the same for struct net_ipv4_hdr. For a UDP header it is likely not to be in a contiguous
area in IPv6 for instance so:

NET_PKT_DATA_ACCESS_DEFINE(udp_access, struct net_udp_hdr);
struct net_udp_hdr *udp_hdr;

udp_hdr = (struct net_udp_hdr *)net_pkt_get_data(pkt, &udp_access);

At this point, the cursor of the net_pkt points at the beginning of the requested data. On the
RX path, these headers will be read but not modified so to proceed further the cursor needs to
advance past the data. There is a function dedicated for this:

net_pkt_acknowledge_data(pkt, &ipv4_access);

On the TX path, however, the header fields have been modified. In such a case:

net_pkt_set_data(pkt, &ipv4_access);

If the data are in a contiguous area, it will advance the cursor relevantly. If not, it will write
the data and the cursor will be updated. Note that net_pkt_set_data() could be used in the RX
path as well, but it is slightly faster to use net_pkt_acknowledge_data() as this one does not care
about contiguity at all, it just advances the cursor via net_pkt_skip() directly.

Related code samples

Dumb HTTP server
Implement a simple, portable, HTTP server using BSD sockets.

Dumb HTTP server (multi-threaded)
Implement a simple HTTP server supporting simultaneous connections using BSD sock-
ets.
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API Reference

group net_pkt
Network packet management library.

Since
1.5

Version
0.8.0

Defines

NET_PKT_SLAB_DEFINE(name, count)
Create a net_pkt slab.

A net_pkt slab is used to store meta-information about network packets. It must be
coupled with a data fragment pool (NET_PKT_DATA_POOL_DEFINE) used to store the
actual packet data. The macro can be used by an application to define additional cus-
tom per-context TX packet slabs (see net_context_setup_pools()).

Parameters
• name – Name of the slab.

• count – Number of net_pkt in this slab.

NET_PKT_DATA_POOL_DEFINE(name, count)
Create a data fragment net_buf pool.

A net_buf pool is used to store actual data for network packets. It must be coupled with
a net_pkt slab (NET_PKT_SLAB_DEFINE) used to store the packet meta-information.
The macro can be used by an application to define additional custom per-context TX
packet pools (see net_context_setup_pools()).

Parameters
• name – Name of the pool.

• count – Number of net_buf in this pool.

net_pkt_print_frags(pkt)
Print fragment list and the fragment sizes.

Only available if debugging is activated.

Parameters
• pkt – Network pkt.

Functions

struct net_buf *net_pkt_get_reserve_data(struct net_buf_pool *pool, size_t min_len,
k_timeout_t timeout)

Get a data buffer from a given pool.

Normally this version is not useful for applications but is mainly used by network frag-
mentation code.

Parameters
• pool – The net_buf pool to use.
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• min_len – Minimum length of the requested fragment.

• timeout – Affects the action taken should the net buf pool be empty. If
K_NO_WAIT, then return immediately. If K_FOREVER, then wait as long
as necessary. Otherwise, wait up to the specified time.

Returns
Network buffer if successful, NULL otherwise.

struct net_buf *net_pkt_get_reserve_rx_data(size_t min_len, k_timeout_t timeout)
Get RX DATA buffer from pool.

Normally you should use net_pkt_get_frag() instead.

Normally this version is not useful for applications but is mainly used by network frag-
mentation code.

Parameters
• min_len – Minimum length of the requested fragment.

• timeout – Affects the action taken should the net buf pool be empty. If
K_NO_WAIT, then return immediately. If K_FOREVER, then wait as long
as necessary. Otherwise, wait up to the specified time.

Returns
Network buffer if successful, NULL otherwise.

struct net_buf *net_pkt_get_reserve_tx_data(size_t min_len, k_timeout_t timeout)
Get TX DATA buffer from pool.

Normally you should use net_pkt_get_frag() instead.

Normally this version is not useful for applications but is mainly used by network frag-
mentation code.

Parameters
• min_len – Minimum length of the requested fragment.

• timeout – Affects the action taken should the net buf pool be empty. If
K_NO_WAIT, then return immediately. If K_FOREVER, then wait as long
as necessary. Otherwise, wait up to the specified time.

Returns
Network buffer if successful, NULL otherwise.

struct net_buf *net_pkt_get_frag(struct net_pkt *pkt, size_t min_len, k_timeout_t
timeout)

Get a data fragment that might be from user specific buffer pool or from global DATA
pool.

Parameters
• pkt – Network packet.

• min_len – Minimum length of the requested fragment.

• timeout – Affects the action taken should the net buf pool be empty. If
K_NO_WAIT, then return immediately. If K_FOREVER, then wait as long
as necessary. Otherwise, wait up to the specified time.

Returns
Network buffer if successful, NULL otherwise.
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void net_pkt_unref(struct net_pkt *pkt)
Place packet back into the available packets slab.

Releases the packet to other use. This needs to be called by application after it has
finished with the packet.

Parameters
• pkt – Network packet to release.

struct net_pkt *net_pkt_ref(struct net_pkt *pkt)
Increase the packet ref count.

Mark the packet to be used still.

Parameters
• pkt – Network packet to ref.

Returns
Network packet if successful, NULL otherwise.

struct net_buf *net_pkt_frag_ref(struct net_buf *frag)
Increase the packet fragment ref count.

Mark the fragment to be used still.

Parameters
• frag – Network fragment to ref.

Returns
a pointer on the referenced Network fragment.

void net_pkt_frag_unref(struct net_buf *frag)
Decrease the packet fragment ref count.

Parameters
• frag – Network fragment to unref.

struct net_buf *net_pkt_frag_del(struct net_pkt *pkt, struct net_buf *parent, struct
net_buf *frag)

Delete existing fragment from a packet.

Parameters
• pkt – Network packet from which frag belongs to.

• parent – parent fragment of frag, or NULL if none.

• frag – Fragment to delete.

Returns
Pointer to the following fragment, or NULL if it had no further fragments.

void net_pkt_frag_add(struct net_pkt *pkt, struct net_buf *frag)
Add a fragment to a packet at the end of its fragment list.

Parameters
• pkt – pkt Network packet where to add the fragment

• frag – Fragment to add

void net_pkt_frag_insert(struct net_pkt *pkt, struct net_buf *frag)
Insert a fragment to a packet at the beginning of its fragment list.

Parameters
• pkt – pkt Network packet where to insert the fragment
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• frag – Fragment to insert

void net_pkt_compact(struct net_pkt *pkt)
Compact the fragment list of a packet.

After this there is no more any free space in individual fragments.

Parameters
• pkt – Network packet.

void net_pkt_get_info(struct k_mem_slab **rx, struct k_mem_slab **tx, struct
net_buf_pool **rx_data, struct net_buf_pool **tx_data)

Get information about predefined RX, TX and DATA pools.

Parameters
• rx – Pointer to RX pool is returned.

• tx – Pointer to TX pool is returned.

• rx_data – Pointer to RX DATA pool is returned.

• tx_data – Pointer to TX DATA pool is returned.

struct net_pkt *net_pkt_alloc(k_timeout_t timeout)
Allocate an initialized net_pkt.

for the time being, 2 pools are used. One for TX and one for RX. This allocator has to
be used for TX.

Parameters
• timeout – Maximum time to wait for an allocation.

Returns
a pointer to a newly allocated net_pkt on success, NULL otherwise.

struct net_pkt *net_pkt_alloc_from_slab(struct k_mem_slab *slab, k_timeout_t timeout)
Allocate an initialized net_pkt from a specific slab.

unlike net_pkt_alloc() which uses core slabs, this one will use an external slab (see
NET_PKT_SLAB_DEFINE()). Do not use it unless you know what you are doing. Basi-
cally, only net_context should be using this, in order to allocate packet and then buffer
on its local slab/pool (if any).

Parameters
• slab – The slab to use for allocating the packet

• timeout – Maximum time to wait for an allocation.

Returns
a pointer to a newly allocated net_pkt on success, NULL otherwise.

struct net_pkt *net_pkt_rx_alloc(k_timeout_t timeout)
Allocate an initialized net_pkt for RX.

for the time being, 2 pools are used. One for TX and one for RX. This allocator has to
be used for RX.

Parameters
• timeout – Maximum time to wait for an allocation.

Returns
a pointer to a newly allocated net_pkt on success, NULL otherwise.
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struct net_pkt *net_pkt_alloc_on_iface(struct net_if *iface, k_timeout_t timeout)
Allocate a network packet for a specific network interface.

Parameters
• iface – The network interface the packet is supposed to go through.

• timeout – Maximum time to wait for an allocation.

Returns
a pointer to a newly allocated net_pkt on success, NULL otherwise.

int net_pkt_alloc_buffer(struct net_pkt *pkt, size_t size, enum net_ip_protocol proto,
k_timeout_t timeout)

Allocate buffer for a net_pkt.

: such allocator will take into account space necessary for headers, MTU, and exist-
ing buffer (if any). Beware that, due to all these criteria, the allocated size might be
smaller/bigger than requested one.

Parameters
• pkt – The network packet requiring buffer to be allocated.

• size – The size of buffer being requested.

• proto – The IP protocol type (can be 0 for none).

• timeout – Maximum time to wait for an allocation.

Returns
0 on success, negative errno code otherwise.

int net_pkt_alloc_buffer_raw(struct net_pkt *pkt, size_t size, k_timeout_t timeout)
Allocate buffer for a net_pkt, of specified size, w/o any additional preconditions.

: The actual buffer size may be larger than requested one if fixed size buffers are in
use.

Parameters
• pkt – The network packet requiring buffer to be allocated.

• size – The size of buffer being requested.

• timeout – Maximum time to wait for an allocation.

Returns
0 on success, negative errno code otherwise.

struct net_pkt *net_pkt_alloc_with_buffer(struct net_if *iface, size_t size, sa_family_t
family, enum net_ip_protocol proto,
k_timeout_t timeout)

Allocate a network packet and buffer at once.

Parameters
• iface – The network interface the packet is supposed to go through.

• size – The size of buffer.

• family – The family to which the packet belongs.

• proto – The IP protocol type (can be 0 for none).

• timeout – Maximum time to wait for an allocation.

Returns
a pointer to a newly allocated net_pkt on success, NULL otherwise.
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void net_pkt_append_buffer(struct net_pkt *pkt, struct net_buf *buffer)
Append a buffer in packet.

Parameters
• pkt – Network packet where to append the buffer

• buffer – Buffer to append

size_t net_pkt_available_buffer(struct net_pkt *pkt)
Get available buffer space from a pkt.

Note

Reserved bytes (headroom) in any of the fragments are not considered to be avail-
able.

Parameters
• pkt – The net_pkt which buffer availability should be evaluated

Returns
the amount of buffer available

size_t net_pkt_available_payload_buffer(struct net_pkt *pkt, enum net_ip_protocol
proto)

Get available buffer space for payload from a pkt.

Unlike net_pkt_available_buffer(), this will take into account the headers space.

Note

Reserved bytes (headroom) in any of the fragments are not considered to be avail-
able.

Parameters
• pkt – The net_pkt which payload buffer availability should be evaluated

• proto – The IP protocol type (can be 0 for none).

Returns
the amount of buffer available for payload

void net_pkt_trim_buffer(struct net_pkt *pkt)
Trim net_pkt buffer.

This will basically check for unused buffers and deallocate them relevantly

Parameters
• pkt – The net_pkt which buffer will be trimmed

int net_pkt_remove_tail(struct net_pkt *pkt, size_t length)
Remove length bytes from tail of packet.

This function does not take packet cursor into account. It is a helper to remove un-
needed bytes from tail of packet (like appended CRC). It takes care of buffer dealloca-
tion if removed bytes span whole buffer(s).

Parameters
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• pkt – Network packet

• length – Number of bytes to be removed

Return values
• 0 – On success.

• -EINVAL – If packet length is shorter than length.

void net_pkt_cursor_init(struct net_pkt *pkt)
Initialize net_pkt cursor.

This will initialize the net_pkt cursor from its buffer.

Parameters
• pkt – The net_pkt whose cursor is going to be initialized

static inline void net_pkt_cursor_backup(struct net_pkt *pkt, struct net_pkt_cursor
*backup)

Backup net_pkt cursor.

Parameters
• pkt – The net_pkt whose cursor is going to be backed up

• backup – The cursor where to backup net_pkt cursor

static inline void net_pkt_cursor_restore(struct net_pkt *pkt, struct net_pkt_cursor
*backup)

Restore net_pkt cursor from a backup.

Parameters
• pkt – The net_pkt whose cursor is going to be restored

• backup – The cursor from where to restore net_pkt cursor

static inline void *net_pkt_cursor_get_pos(struct net_pkt *pkt)
Returns current position of the cursor.

Parameters
• pkt – The net_pkt whose cursor position is going to be returned

Returns
cursor’s position

int net_pkt_skip(struct net_pkt *pkt, size_t length)
Skip some data from a net_pkt.

net_pkt’s cursor should be properly initialized Cursor position will be updated after
the operation. Depending on the value of pkt->overwrite bit, this function will af-
fect the buffer length or not. If it’s true, it will advance the cursor to the requested
length. If it’s false, it will do the same but if the cursor was already also at the end of
existing data, it will increment the buffer length. So in this case, its behavior is just
like net_pkt_write or net_pkt_memset, difference being that it will not affect the buffer
content itself (which may be just garbage then).

Parameters
• pkt – The net_pkt whose cursor will be updated to skip given amount of

data from the buffer.

• length – Amount of data to skip in the buffer

Returns
0 in success, negative errno code otherwise.
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int net_pkt_memset(struct net_pkt *pkt, int byte, size_t length)
Memset some data in a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using
net_pkt_skip. Cursor position will be updated after the operation.

Parameters
• pkt – The net_pkt whose buffer to fill starting at the current cursor posi-

tion.

• byte – The byte to write in memory

• length – Amount of data to memset with given byte

Returns
0 in success, negative errno code otherwise.

int net_pkt_copy(struct net_pkt *pkt_dst, struct net_pkt *pkt_src, size_t length)
Copy data from a packet into another one.

Both net_pkt cursors should be properly initialized and, if needed, positioned using
net_pkt_skip. The cursors will be updated after the operation.

Parameters
• pkt_dst – Destination network packet.

• pkt_src – Source network packet.

• length – Length of data to be copied.

Returns
0 on success, negative errno code otherwise.

struct net_pkt *net_pkt_clone(struct net_pkt *pkt, k_timeout_t timeout)
Clone pkt and its buffer.

The cloned packet will be allocated on the same pool as the original one.

Parameters
• pkt – Original pkt to be cloned

• timeout – Timeout to wait for free buffer

Returns
NULL if error, cloned packet otherwise.

struct net_pkt *net_pkt_rx_clone(struct net_pkt *pkt, k_timeout_t timeout)
Clone pkt and its buffer.

The cloned packet will be allocated on the RX packet poll.

Parameters
• pkt – Original pkt to be cloned

• timeout – Timeout to wait for free buffer

Returns
NULL if error, cloned packet otherwise.

struct net_pkt *net_pkt_shallow_clone(struct net_pkt *pkt, k_timeout_t timeout)
Clone pkt and increase the refcount of its buffer.

Parameters
• pkt – Original pkt to be shallow cloned

• timeout – Timeout to wait for free packet
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Returns
NULL if error, cloned packet otherwise.

int net_pkt_read(struct net_pkt *pkt, void *data, size_t length)
Read some data from a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using
net_pkt_skip. Cursor position will be updated after the operation.

Parameters
• pkt – The network packet from where to read some data

• data – The destination buffer where to copy the data

• length – The amount of data to copy

Returns
0 on success, negative errno code otherwise.

static inline int net_pkt_read_u8(struct net_pkt *pkt, uint8_t *data)
Read a byte (uint8_t) from a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using
net_pkt_skip. Cursor position will be updated after the operation.

Parameters
• pkt – The network packet from where to read

• data – The destination uint8_t where to copy the data

Returns
0 on success, negative errno code otherwise.

int net_pkt_read_be16(struct net_pkt *pkt, uint16_t *data)
Read uint16_t big endian data from a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using
net_pkt_skip. Cursor position will be updated after the operation.

Parameters
• pkt – The network packet from where to read

• data – The destination uint16_t where to copy the data

Returns
0 on success, negative errno code otherwise.

int net_pkt_read_le16(struct net_pkt *pkt, uint16_t *data)
Read uint16_t little endian data from a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using
net_pkt_skip. Cursor position will be updated after the operation.

Parameters
• pkt – The network packet from where to read

• data – The destination uint16_t where to copy the data

Returns
0 on success, negative errno code otherwise.

int net_pkt_read_be32(struct net_pkt *pkt, uint32_t *data)
Read uint32_t big endian data from a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using
net_pkt_skip. Cursor position will be updated after the operation.
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Parameters
• pkt – The network packet from where to read

• data – The destination uint32_t where to copy the data

Returns
0 on success, negative errno code otherwise.

int net_pkt_write(struct net_pkt *pkt, const void *data, size_t length)
Write data into a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using
net_pkt_skip. Cursor position will be updated after the operation.

Parameters
• pkt – The network packet where to write

• data – Data to be written

• length – Length of the data to be written

Returns
0 on success, negative errno code otherwise.

static inline int net_pkt_write_u8(struct net_pkt *pkt, uint8_t data)
Write a byte (uint8_t) data to a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using
net_pkt_skip. Cursor position will be updated after the operation.

Parameters
• pkt – The network packet from where to read

• data – The uint8_t value to write

Returns
0 on success, negative errno code otherwise.

static inline int net_pkt_write_be16(struct net_pkt *pkt, uint16_t data)
Write a uint16_t big endian data to a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using
net_pkt_skip. Cursor position will be updated after the operation.

Parameters
• pkt – The network packet from where to read

• data – The uint16_t value in host byte order to write

Returns
0 on success, negative errno code otherwise.

static inline int net_pkt_write_be32(struct net_pkt *pkt, uint32_t data)
Write a uint32_t big endian data to a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using
net_pkt_skip. Cursor position will be updated after the operation.

Parameters
• pkt – The network packet from where to read

• data – The uint32_t value in host byte order to write

Returns
0 on success, negative errno code otherwise.
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static inline int net_pkt_write_le32(struct net_pkt *pkt, uint32_t data)
Write a uint32_t little endian data to a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using
net_pkt_skip. Cursor position will be updated after the operation.

Parameters
• pkt – The network packet from where to read

• data – The uint32_t value in host byte order to write

Returns
0 on success, negative errno code otherwise.

static inline int net_pkt_write_le16(struct net_pkt *pkt, uint16_t data)
Write a uint16_t little endian data to a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using
net_pkt_skip. Cursor position will be updated after the operation.

Parameters
• pkt – The network packet from where to read

• data – The uint16_t value in host byte order to write

Returns
0 on success, negative errno code otherwise.

size_t net_pkt_remaining_data(struct net_pkt *pkt)
Get the amount of data which can be read from current cursor position.

Parameters
• pkt – Network packet

Returns
Amount of data which can be read from current pkt cursor

int net_pkt_update_length(struct net_pkt *pkt, size_t length)
Update the overall length of a packet.

Unlike net_pkt_pull() below, this does not take packet cursor into account. It’s mainly
a helper dedicated for ipv4 and ipv6 input functions. It shrinks the overall length by
given parameter.

Parameters
• pkt – Network packet

• length – The new length of the packet

Returns
0 on success, negative errno code otherwise.

int net_pkt_pull(struct net_pkt *pkt, size_t length)
Remove data from the packet at current location.

net_pkt’s cursor should be properly initialized and, eventually, properly positioned us-
ing net_pkt_skip/read/write. Note that net_pkt’s cursor is reset by this function.

Parameters
• pkt – Network packet

• length – Number of bytes to be removed

Returns
0 on success, negative errno code otherwise.
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uint16_t net_pkt_get_current_offset(struct net_pkt *pkt)
Get the actual offset in the packet from its cursor.

Parameters
• pkt – Network packet.

Returns
a valid offset on success, 0 otherwise as there is nothing that can be done
to evaluate the offset.

bool net_pkt_is_contiguous(struct net_pkt *pkt, size_t size)
Check if a data size could fit contiguously.

net_pkt’s cursor should be properly initialized and, if needed, positioned using
net_pkt_skip.

Parameters
• pkt – Network packet.

• size – The size to check for contiguity

Returns
true if that is the case, false otherwise.

size_t net_pkt_get_contiguous_len(struct net_pkt *pkt)
Get the contiguous buffer space.

Parameters
• pkt – Network packet

Returns
The available contiguous buffer space in bytes starting from the current
cursor position. 0 in case of an error.

void *net_pkt_get_data(struct net_pkt *pkt, struct net_pkt_data_access *access)
Get data from a network packet in a contiguous way.

net_pkt’s cursor should be properly initialized and, if needed, positioned using
net_pkt_skip. Unlike other functions, cursor position will not be updated after the op-
eration.

Parameters
• pkt – The network packet from where to get the data.

• access – A pointer to a valid net_pkt_data_access describing the data to
get in a contiguous way.

Returns
a pointer to the requested contiguous data, NULL otherwise.

int net_pkt_set_data(struct net_pkt *pkt, struct net_pkt_data_access *access)
Set contiguous data into a network packet.

net_pkt’s cursor should be properly initialized and, if needed, positioned using
net_pkt_skip. Cursor position will be updated after the operation.

Parameters
• pkt – The network packet to where the data should be set.

• access – A pointer to a valid net_pkt_data_access describing the data to
set.

Returns
0 on success, a negative errno otherwise.
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static inline int net_pkt_acknowledge_data(struct net_pkt *pkt, struct net_pkt_data_access
*access)

Acknowledge previously contiguous data taken from a network packet Packet needs
to be set to overwrite mode.

struct net_pkt
#include <net_pkt.h> Network packet.

Note that if you add new fields into net_pkt, remember to update net_pkt_clone() func-
tion.

Public Members

intptr_t fifo
The fifo is used by RX/TX threads and by socket layer.

The net_pkt is queued via fifo to the processing thread.

struct k_mem_slab *slab
Slab pointer from where it belongs to.

struct net_buf *frags
buffer fragment

struct net_buf *buffer
alias to a buffer fragment

union net_pkt
buffer holding the packet

struct net_pkt_cursor cursor
Internal buffer iterator used for reading/writing.

struct net_context *context
Network connection context.

struct net_if *iface
Network interface.

Networking Technologies

Ethernet

• Overview

• API Reference
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Virtual LAN (VLAN) Support

• Overview

• API Reference

Overview Virtual LAN (VLAN) is a partitioned and isolated computer network at the data link
layer (OSI layer 2). For ethernet network this refers to IEEE 802.1Q

In Zephyr, each individual VLAN is modeled as a virtual network interface. This means that there
is an ethernet network interface that corresponds to a real physical ethernet port in the system.
A virtual network interface is created for each VLAN, and this virtual network interface connects
to the real network interface. This is similar to how Linux implements VLANs. The eth0 is the
real network interface and vlan0 is a virtual network interface that is run on top of eth0.

VLAN support must be enabled at compile time by setting option CONFIG_NET_VLAN and CON-
FIG_NET_VLAN_COUNT to reflect how many network interfaces there will be in the system. For
example, if there is one network interface without VLAN support, and two with VLAN support,
the CONFIG_NET_VLAN_COUNT option should be set to 3.

Even if VLAN is enabled in a prj.conf file, the VLAN needs to be activated at runtime by the
application. The VLAN API provides a net_eth_vlan_enable() function to do that. The applica-
tion needs to give the network interface and desired VLAN tag as a parameter to that function.
The VLAN tagging for a given network interface can be disabled by a net_eth_vlan_disable()
function. The application needs to configure the VLAN network interface itself, such as setting
the IP address, etc.

See also the VLAN sample application for API usage example. The source code for that sample
application can be found at samples/net/vlan.

The net-shell module contains net vlan add and net vlan del commands that can be used to enable
or disable VLAN tags for a given network interface.

See the IEEE 802.1Q spec for more information about ethernet VLANs.

Related code samples

Virtual LAN
Setup two virtual LAN networks and use net-shell to view the networks’ settings.

API Reference

group vlan_api
VLAN definitions and helpers.

Since
1.12

Version
0.8.0

Defines
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NET_VLAN_TAG_UNSPEC
Unspecified VLAN tag value.

Functions

static inline uint16_t net_eth_vlan_get_vid(uint16_t tci)
Get VLAN identifier from TCI.

Parameters
• tci – VLAN tag control information.

Returns
VLAN identifier.

static inline uint8_t net_eth_vlan_get_dei(uint16_t tci)
Get Drop Eligible Indicator from TCI.

Parameters
• tci – VLAN tag control information.

Returns
Drop eligible indicator.

static inline uint8_t net_eth_vlan_get_pcp(uint16_t tci)
Get Priority Code Point from TCI.

Parameters
• tci – VLAN tag control information.

Returns
Priority code point.

static inline uint16_t net_eth_vlan_set_vid(uint16_t tci, uint16_t vid)
Set VLAN identifier to TCI.

Parameters
• tci – VLAN tag control information.

• vid – VLAN identifier.

Returns
New TCI value.

static inline uint16_t net_eth_vlan_set_dei(uint16_t tci, bool dei)
Set Drop Eligible Indicator to TCI.

Parameters
• tci – VLAN tag control information.

• dei – Drop eligible indicator.

Returns
New TCI value.

static inline uint16_t net_eth_vlan_set_pcp(uint16_t tci, uint8_t pcp)
Set Priority Code Point to TCI.

Parameters
• tci – VLAN tag control information.

• pcp – Priority code point.
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Returns
New TCI value.

Link Layer Discovery Protocol

• Overview

• API Reference

Overview The Link Layer Discovery Protocol (LLDP) is a vendor-neutral link layer protocol
used by network devices for advertising their identity, capabilities, and neighbors on a wired
Ethernet network.

For more information, see this LLDP Wikipedia article.

Related code samples

Link Layer Discovery Protocol (LLDP)
Enable LLDP support and setup VLANs.

API Reference

group lldp
LLDP definitions and helpers.

Since
1.13

Version
0.8.0

Defines

net_lldp_set_lldpdu(iface)
Set LLDP protocol data unit (LLDPDU) for the network interface.

Parameters
• iface – Network interface

Returns
<0 if error, index in lldp array if iface is found there

net_lldp_unset_lldpdu(iface)
Unset LLDP protocol data unit (LLDPDU) for the network interface.

Parameters
• iface – Network interface
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Typedefs

typedef enum net_verdict (*net_lldp_recv_cb_t)(struct net_if *iface, struct net_pkt *pkt)
LLDP Receive packet callback.

Callback gets called upon receiving packet. It is responsible for freeing packet or indi-
cating to the stack that it needs to free packet by returning correct net_verdict.

Returns:

• NET_DROP, if packet was invalid, rejected or we want the stack to free it. In this
case the core stack will free the packet.

• NET_OK, if the packet was accepted, in this case the ownership of the net_pkt goes
to callback and core network stack will forget it.

Enums

enum net_lldp_tlv_type
TLV Types.

Please refer to table 8-1 from IEEE 802.1AB standard.

Values:

enumerator LLDP_TLV_END_LLDPDU = 0
End Of LLDPDU (optional)

enumerator LLDP_TLV_CHASSIS_ID = 1
Chassis ID (mandatory)

enumerator LLDP_TLV_PORT_ID = 2
Port ID (mandatory)

enumerator LLDP_TLV_TTL = 3
Time To Live (mandatory)

enumerator LLDP_TLV_PORT_DESC = 4
Port Description (optional)

enumerator LLDP_TLV_SYSTEM_NAME = 5
System Name (optional)

enumerator LLDP_TLV_SYSTEM_DESC = 6
System Description (optional)

enumerator LLDP_TLV_SYSTEM_CAPABILITIES = 7
System Capability (optional)

enumerator LLDP_TLV_MANAGEMENT_ADDR = 8
Management Address (optional)
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enumerator LLDP_TLV_ORG_SPECIFIC = 127
Org specific TLVs (optional)

Functions

int net_lldp_config(struct net_if *iface, const struct net_lldpdu *lldpdu)
Set the LLDP data unit for a network interface.

Parameters
• iface – Network interface

• lldpdu – LLDP data unit struct

Returns
0 if ok, <0 if error

int net_lldp_config_optional(struct net_if *iface, const uint8_t *tlv, size_t len)
Set the Optional LLDP TLVs for a network interface.

Parameters
• iface – Network interface

• tlv – LLDP optional TLVs following mandatory part

• len – Length of the optional TLVs

Returns
0 if ok, <0 if error

void net_lldp_init(void)
Initialize LLDP engine.

int net_lldp_register_callback(struct net_if *iface, net_lldp_recv_cb_t cb)
Register LLDP Rx callback function.

Parameters
• iface – Network interface

• cb – Callback function

Returns
0 if ok, < 0 if error

enum net_verdict net_lldp_recv(struct net_if *iface, struct net_pkt *pkt)
Parse LLDP packet.

Parameters
• iface – Network interface

• pkt – Network packet

Returns
Return the policy for network buffer

struct net_lldp_chassis_tlv
#include <lldp.h> Chassis ID TLV, see chapter 8.5.2 in IEEE 802.1AB.
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Public Members

uint16_t type_length
7 bits for type, 9 bits for length

uint8_t subtype
ID subtype.

uint8_t value[NET_LLDP_CHASSIS_ID_VALUE_LEN]
Chassis ID value.

struct net_lldp_port_tlv
#include <lldp.h> Port ID TLV, see chapter 8.5.3 in IEEE 802.1AB.

Public Members

uint16_t type_length
7 bits for type, 9 bits for length

uint8_t subtype
ID subtype.

uint8_t value[NET_LLDP_PORT_ID_VALUE_LEN]
Port ID value.

struct net_lldp_time_to_live_tlv
#include <lldp.h> Time To Live TLV, see chapter 8.5.4 in IEEE 802.1AB.

Public Members

uint16_t type_length
7 bits for type, 9 bits for length

uint16_t ttl
Time To Live (TTL) value.

struct net_lldpdu
#include <lldp.h> LLDP Data Unit (LLDPDU) shall contain the following ordered TLVs
as stated in “8.2 LLDPDU format” from the IEEE 802.1AB.

Public Members

struct net_lldp_chassis_tlv chassis_id
Mandatory Chassis TLV.
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struct net_lldp_port_tlv port_id
Mandatory Port TLV.

struct net_lldp_time_to_live_tlv ttl
Mandatory TTL TLV.

IEEE 802.1Qav

Overview Credit-based shaping is an alternative scheduling algorithm used in network sched-
ulers to achieve fairness when sharing a limited network resource. Zephyr has support for con-
figuring a credit-based shaper described in the IEEE 802.1Qav-2009 standard. Zephyr does not
implement the actual shaper; it only provides a way to configure the shaper implemented by the
Ethernet device driver.

Enabling 802.1Qav To enable 802.1Qav shaper, the Ethernet device driver must declare that
it supports credit-based shaping. The Ethernet driver’s capability function must return ETHER-
NET_QAV value for this purpose. Typically also priority queues ETHERNET_PRIORITY_QUEUES need
to be supported.

static enum ethernet_hw_caps eth_get_capabilities(const struct device *dev)
{

ARG_UNUSED(dev);

return ETHERNET_QAV | ETHERNET_PRIORITY_QUEUES |
ETHERNET_HW_VLAN | ETHERNET_LINK_10BASE_T |
ETHERNET_LINK_100BASE_T;

}

See sam-e70-xplained board Ethernet driver drivers/ethernet/eth_sam_gmac.c for an example.

Configuring 802.1Qav The application can configure the credit-based shaper like this:

#include <zephyr/net/net_if.h>
#include <zephyr/net/ethernet.h>
#include <zephyr/net/ethernet_mgmt.h>

static void qav_set_status(struct net_if *iface,
int queue_id, bool enable)

{
struct ethernet_req_params params;
int ret;

memset(&params, 0, sizeof(params));

params.qav_param.queue_id = queue_id;
params.qav_param.enabled = enable;
params.qav_param.type = ETHERNET_QAV_PARAM_TYPE_STATUS;

/* Disable or enable Qav for a queue */
ret = net_mgmt(NET_REQUEST_ETHERNET_SET_QAV_PARAM,

iface, &params,
sizeof(struct ethernet_req_params));

if (ret) {
LOG_ERR("Cannot %s Qav for queue %d for interface %p",

enable ? "enable" : "disable",
(continues on next page)

2644 Chapter 6. Connectivity

https://standards.ieee.org/standard/802_1Qav-2009.html
https://github.com/zephyrproject-rtos/zephyr/blob/main/drivers/ethernet/eth_sam_gmac.c


Zephyr Project Documentation, Release 3.7.99

(continued from previous page)
queue_id, iface);

}
}

static void qav_set_bandwidth_and_slope(struct net_if *iface,
int queue_id,
unsigned int bandwidth,
unsigned int idle_slope)

{
struct ethernet_req_params params;
int ret;

memset(&params, 0, sizeof(params));

params.qav_param.queue_id = queue_id;
params.qav_param.delta_bandwidth = bandwidth;
params.qav_param.type = ETHERNET_QAV_PARAM_TYPE_DELTA_BANDWIDTH;

ret = net_mgmt(NET_REQUEST_ETHERNET_SET_QAV_PARAM,
iface, &params,
sizeof(struct ethernet_req_params));

if (ret) {
LOG_ERR("Cannot set Qav delta bandwidth %u for "

"queue %d for interface %p",
bandwidth, queue_id, iface);

}

params.qav_param.idle_slope = idle_slope;
params.qav_param.type = ETHERNET_QAV_PARAM_TYPE_IDLE_SLOPE;

ret = net_mgmt(NET_REQUEST_ETHERNET_SET_QAV_PARAM,
iface, &params,
sizeof(struct ethernet_req_params));

if (ret) {
LOG_ERR("Cannot set Qav idle slope %u for "

"queue %d for interface %p",
idle_slope, queue_id, iface);

}
}

Overview Ethernet is a networking technology commonly used in local area networks (LAN).
For more information, see this Ethernet Wikipedia article.

Zephyr supports following Ethernet features:

• 10, 100 and 1000 Mbit/sec links

• Auto negotiation

• Half/full duplex

• Promiscuous mode

• TX and RX checksum offloading

• MAC address filtering

• Virtual LANs

• Priority queues

• IEEE 802.1AS (gPTP)

• IEEE 802.1Qav (credit based shaping)
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• LLDP (Link Layer Discovery Protocol)

Not all Ethernet device drivers support all of these features. You can see what is supported by
net iface net-shell command. It will print currently supported Ethernet features.

Related code samples

Inter-VM Shared Memory (ivshmem) Ethernet
Communicate with another ”cell” in the Jailhouse hypervisor using IVSHMEM Ethernet.

Packet socket
Use raw packet sockets over Ethernet.

UDP sender using SO_TXTIME
Control the transmission time of a packet using SO_TXTIME socket option.

API Reference

group ethernet
Ethernet support functions.

Since
1.0

Version
0.8.0

Defines

NET_ETH_ADDR_LEN
Ethernet MAC address length.

NET_ETH_MINIMAL_FRAME_SIZE
Minimum Ethernet frame size.

NET_ETH_MTU
Ethernet MTU size.

ETH_NET_DEVICE_INIT(dev_id, name, init_fn, pm, data, config, prio, api, mtu)
Create an Ethernet network interface and bind it to network device.

Parameters
• dev_id – Network device id.

• name – The name this instance of the driver exposes to the system.

• init_fn – Address to the init function of the driver.

• pm – Reference to struct pm_device associated with the device. (optional).

• data – Pointer to the device’s private data.

• config – The address to the structure containing the configuration infor-
mation for this instance of the driver.
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• prio – The initialization level at which configuration occurs.

• api – Provides an initial pointer to the API function struct used by the
driver. Can be NULL.

• mtu – Maximum transfer unit in bytes for this network interface.

ETH_NET_DEVICE_INIT_INSTANCE(dev_id, name, instance, init_fn, pm, data, config, prio,
api, mtu)

Create multiple Ethernet network interfaces and bind them to network devices.

If your network device needs more than one instance of a network interface, use this
macro below and provide a different instance suffix each time (0, 1, 2, … or a, b, c …
whatever works for you)

Parameters
• dev_id – Network device id.

• name – The name this instance of the driver exposes to the system.

• instance – Instance identifier.

• init_fn – Address to the init function of the driver.

• pm – Reference to struct pm_device associated with the device. (optional).

• data – Pointer to the device’s private data.

• config – The address to the structure containing the configuration infor-
mation for this instance of the driver.

• prio – The initialization level at which configuration occurs.

• api – Provides an initial pointer to the API function struct used by the
driver. Can be NULL.

• mtu – Maximum transfer unit in bytes for this network interface.

ETH_NET_DEVICE_DT_DEFINE(node_id, init_fn, pm, data, config, prio, api, mtu)
Like ETH_NET_DEVICE_INIT but taking metadata from a devicetree.

Create an Ethernet network interface and bind it to network device.

Parameters
• node_id – The devicetree node identifier.

• init_fn – Address to the init function of the driver.

• pm – Reference to struct pm_device associated with the device. (optional).

• data – Pointer to the device’s private data.

• config – The address to the structure containing the configuration infor-
mation for this instance of the driver.

• prio – The initialization level at which configuration occurs.

• api – Provides an initial pointer to the API function struct used by the
driver. Can be NULL.

• mtu – Maximum transfer unit in bytes for this network interface.

ETH_NET_DEVICE_DT_INST_DEFINE(inst, ...)
Like ETH_NET_DEVICE_DT_DEFINE for an instance of a DT_DRV_COMPAT compatible.

Parameters
• inst – instance number. This is replaced by DT_DRV_COMPAT(inst) in the

call to ETH_NET_DEVICE_DT_DEFINE.

6.3. Networking 2647



Zephyr Project Documentation, Release 3.7.99

• ... – other parameters as expected by ETH_NET_DEVICE_DT_DEFINE.

Enums

enum ethernet_hw_caps
Ethernet hardware capabilities.

Values:

enumerator ETHERNET_HW_TX_CHKSUM_OFFLOAD = BIT(0)
TX Checksum offloading supported for all of IPv4, UDP, TCP.

enumerator ETHERNET_HW_RX_CHKSUM_OFFLOAD = BIT(1)
RX Checksum offloading supported for all of IPv4, UDP, TCP.

enumerator ETHERNET_HW_VLAN = BIT(2)
VLAN supported.

enumerator ETHERNET_AUTO_NEGOTIATION_SET = BIT(3)
Enabling/disabling auto negotiation supported.

enumerator ETHERNET_LINK_10BASE_T = BIT(4)
10 Mbits link supported

enumerator ETHERNET_LINK_100BASE_T = BIT(5)
100 Mbits link supported

enumerator ETHERNET_LINK_1000BASE_T = BIT(6)
1 Gbits link supported

enumerator ETHERNET_DUPLEX_SET = BIT(7)
Changing duplex (half/full) supported.

enumerator ETHERNET_PTP = BIT(8)
IEEE 802.1AS (gPTP) clock supported.

enumerator ETHERNET_QAV = BIT(9)
IEEE 802.1Qav (credit-based shaping) supported.

enumerator ETHERNET_PROMISC_MODE = BIT(10)
Promiscuous mode supported.

enumerator ETHERNET_PRIORITY_QUEUES = BIT(11)
Priority queues available.

enumerator ETHERNET_HW_FILTERING = BIT(12)
MAC address filtering supported.
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enumerator ETHERNET_LLDP = BIT(13)
Link Layer Discovery Protocol supported.

enumerator ETHERNET_HW_VLAN_TAG_STRIP = BIT(14)
VLAN Tag stripping.

enumerator ETHERNET_DSA_SLAVE_PORT = BIT(15)
DSA switch slave port.

enumerator ETHERNET_DSA_MASTER_PORT = BIT(16)
DSA switch master port.

enumerator ETHERNET_QBV = BIT(17)
IEEE 802.1Qbv (scheduled traffic) supported.

enumerator ETHERNET_QBU = BIT(18)
IEEE 802.1Qbu (frame preemption) supported.

enumerator ETHERNET_TXTIME = BIT(19)
TXTIME supported.

enumerator ETHERNET_TXINJECTION_MODE = BIT(20)
TX-Injection supported.

enum ethernet_if_types
Types of Ethernet L2.

Values:

enumerator L2_ETH_IF_TYPE_ETHERNET
IEEE 802.3 Ethernet (default)

enumerator L2_ETH_IF_TYPE_WIFI
IEEE 802.11 Wi-Fi.

enum ethernet_checksum_support
Protocols that are supported by checksum offloading.

Values:

enumerator ETHERNET_CHECKSUM_SUPPORT_NONE = NET_IF_CHECKSUM_NONE_BIT
Device does not support any L3/L4 checksum offloading.

enumerator ETHERNET_CHECKSUM_SUPPORT_IPV4_HEADER =
NET_IF_CHECKSUM_IPV4_HEADER_BIT

Device supports checksum offloading for the IPv4 header.

enumerator ETHERNET_CHECKSUM_SUPPORT_IPV4_ICMP =
NET_IF_CHECKSUM_IPV4_ICMP_BIT

Device supports checksum offloading for ICMPv4 payload (implies IPv4 header)
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enumerator ETHERNET_CHECKSUM_SUPPORT_IPV6_HEADER =
NET_IF_CHECKSUM_IPV6_HEADER_BIT

Device supports checksum offloading for the IPv6 header.

enumerator ETHERNET_CHECKSUM_SUPPORT_IPV6_ICMP =
NET_IF_CHECKSUM_IPV6_ICMP_BIT

Device supports checksum offloading for ICMPv6 payload (implies IPv6 header)

enumerator ETHERNET_CHECKSUM_SUPPORT_TCP = NET_IF_CHECKSUM_TCP_BIT
Device supports TCP checksum offloading for all supported IP protocols.

enumerator ETHERNET_CHECKSUM_SUPPORT_UDP = NET_IF_CHECKSUM_UDP_BIT
Device supports UDP checksum offloading for all supported IP protocols.

Functions

static inline bool net_eth_is_addr_broadcast(struct net_eth_addr *addr)
Check if the Ethernet MAC address is a broadcast address.

Parameters
• addr – A valid pointer to a Ethernet MAC address.

Returns
true if address is a broadcast address, false if not

static inline bool net_eth_is_addr_all_zeroes(struct net_eth_addr *addr)
Check if the Ethernet MAC address is a all zeroes address.

Parameters
• addr – A valid pointer to an Ethernet MAC address.

Returns
true if address is an all zeroes address, false if not

static inline bool net_eth_is_addr_unspecified(struct net_eth_addr *addr)
Check if the Ethernet MAC address is unspecified.

Parameters
• addr – A valid pointer to a Ethernet MAC address.

Returns
true if address is unspecified, false if not

static inline bool net_eth_is_addr_multicast(struct net_eth_addr *addr)
Check if the Ethernet MAC address is a multicast address.

Parameters
• addr – A valid pointer to a Ethernet MAC address.

Returns
true if address is a multicast address, false if not

static inline bool net_eth_is_addr_group(struct net_eth_addr *addr)
Check if the Ethernet MAC address is a group address.

Parameters
• addr – A valid pointer to a Ethernet MAC address.
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Returns
true if address is a group address, false if not

static inline bool net_eth_is_addr_valid(struct net_eth_addr *addr)
Check if the Ethernet MAC address is valid.

Parameters
• addr – A valid pointer to a Ethernet MAC address.

Returns
true if address is valid, false if not

static inline bool net_eth_is_addr_lldp_multicast(struct net_eth_addr *addr)
Check if the Ethernet MAC address is a LLDP multicast address.

Parameters
• addr – A valid pointer to a Ethernet MAC address.

Returns
true if address is a LLDP multicast address, false if not

static inline bool net_eth_is_addr_ptp_multicast(struct net_eth_addr *addr)
Check if the Ethernet MAC address is a PTP multicast address.

Parameters
• addr – A valid pointer to a Ethernet MAC address.

Returns
true if address is a PTP multicast address, false if not

const struct net_eth_addr *net_eth_broadcast_addr(void)
Return Ethernet broadcast address.

Returns
Ethernet broadcast address.

void net_eth_ipv4_mcast_to_mac_addr(const struct in_addr *ipv4_addr, struct
net_eth_addr *mac_addr)

Convert IPv4 multicast address to Ethernet address.

Parameters
• ipv4_addr – IPv4 multicast address

• mac_addr – Output buffer for Ethernet address

void net_eth_ipv6_mcast_to_mac_addr(const struct in6_addr *ipv6_addr, struct
net_eth_addr *mac_addr)

Convert IPv6 multicast address to Ethernet address.

Parameters
• ipv6_addr – IPv6 multicast address

• mac_addr – Output buffer for Ethernet address

static inline enum ethernet_hw_caps net_eth_get_hw_capabilities(struct net_if *iface)
Return ethernet device hardware capability information.

Parameters
• iface – Network interface

Returns
Hardware capabilities
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static inline int net_eth_get_hw_config(struct net_if *iface, enum ethernet_config_type
type, struct ethernet_config *config)

Return ethernet device hardware configuration information.

Parameters
• iface – Network interface

• type – configuration type

• config – Ethernet configuration

Returns
0 if ok, <0 if error

static inline int net_eth_vlan_enable(struct net_if *iface, uint16_t tag)
Add VLAN tag to the interface.

Parameters
• iface – Interface to use.

• tag – VLAN tag to add

Returns
0 if ok, <0 if error

static inline int net_eth_vlan_disable(struct net_if *iface, uint16_t tag)
Remove VLAN tag from the interface.

Parameters
• iface – Interface to use.

• tag – VLAN tag to remove

Returns
0 if ok, <0 if error

static inline uint16_t net_eth_get_vlan_tag(struct net_if *iface)
Return VLAN tag specified to network interface.

Note that the interface parameter must be the VLAN interface, and not the Ethernet
one.

Parameters
• iface – VLAN network interface.

Returns
VLAN tag for this interface or NET_VLAN_TAG_UNSPEC if VLAN is not con-
figured for that interface.

static inline struct net_if *net_eth_get_vlan_iface(struct net_if *iface, uint16_t tag)
Return network interface related to this VLAN tag.

Parameters
• iface – Main network interface (not the VLAN one).

• tag – VLAN tag

Returns
Network interface related to this tag or NULL if no such interface exists.

static inline struct net_if *net_eth_get_vlan_main(struct net_if *iface)
Return main network interface that is attached to this VLAN tag.

Parameters
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• iface – VLAN network interface. This is used to get the pointer to ether-
net L2 context

Returns
Network interface related to this tag or NULL if no such interface exists.

static inline bool net_eth_is_vlan_enabled(struct ethernet_context *ctx, struct net_if
*iface)

Check if there are any VLAN interfaces enabled to this specific Ethernet network in-
terface.

Note that the iface must be the actual Ethernet interface and not the virtual VLAN
interface.

Parameters
• ctx – Ethernet context

• iface – Ethernet network interface

Returns
True if there are enabled VLANs for this network interface, false if not.

static inline bool net_eth_get_vlan_status(struct net_if *iface)
Get VLAN status for a given network interface (enabled or not).

Parameters
• iface – Network interface

Returns
True if VLAN is enabled for this network interface, false if not.

static inline bool net_eth_is_vlan_interface(struct net_if *iface)
Check if the given interface is a VLAN interface.

Parameters
• iface – Network interface

Returns
True if this network interface is VLAN one, false if not.

void net_eth_carrier_on(struct net_if *iface)
Inform ethernet L2 driver that ethernet carrier is detected.

This happens when cable is connected.

Parameters
• iface – Network interface

void net_eth_carrier_off(struct net_if *iface)
Inform ethernet L2 driver that ethernet carrier was lost.

This happens when cable is disconnected.

Parameters
• iface – Network interface

int net_eth_promisc_mode(struct net_if *iface, bool enable)
Set promiscuous mode either ON or OFF.

Parameters
• iface – Network interface

• enable – on (true) or off (false)
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Returns
0 if mode set or unset was successful, <0 otherwise.

int net_eth_txinjection_mode(struct net_if *iface, bool enable)
Set TX-Injection mode either ON or OFF.

Parameters
• iface – Network interface

• enable – on (true) or off (false)

Returns
0 if mode set or unset was successful, <0 otherwise.

int net_eth_mac_filter(struct net_if *iface, struct net_eth_addr *mac, enum
ethernet_filter_type type, bool enable)

Set or unset HW filtering for MAC address mac.

Parameters
• iface – Network interface

• mac – Pointer to an ethernet MAC address

• type – Filter type, either source or destination

• enable – Set (true) or unset (false)

Returns
0 if filter set or unset was successful, <0 otherwise.

const struct device *net_eth_get_phy(struct net_if *iface)
Return the PHY device that is tied to this ethernet network interface.

Parameters
• iface – Network interface

Returns
Pointer to PHY device if found, NULL if not found.

static inline const struct device *net_eth_get_ptp_clock(struct net_if *iface)
Return PTP clock that is tied to this ethernet network interface.

Parameters
• iface – Network interface

Returns
Pointer to PTP clock if found, NULL if not found or if this ethernet interface
does not support PTP.

const struct device *net_eth_get_ptp_clock_by_index(int index)
Return PTP clock that is tied to this ethernet network interface index.

Parameters
• index – Network interface index

Returns
Pointer to PTP clock if found, NULL if not found or if this ethernet interface
index does not support PTP.

static inline int net_eth_get_ptp_port(struct net_if *iface)
Return PTP port number attached to this interface.

Parameters
• iface – Network interface
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Returns
Port number, no such port if < 0

static inline void net_eth_set_ptp_port(struct net_if *iface, int port)
Set PTP port number attached to this interface.

Parameters
• iface – Network interface

• port – Port number to set

static inline bool net_eth_type_is_wifi(struct net_if *iface)
Check if the Ethernet L2 network interface can perform Wi-Fi.

Parameters
• iface – Pointer to network interface

Returns
True if interface supports Wi-Fi, False otherwise.

struct net_eth_addr
#include <ethernet.h> Ethernet address.

Public Members

uint8_t addr[6U]
Buffer storing the address.

struct ethernet_t1s_param
#include <ethernet.h> Ethernet T1S specific parameters.

Public Members

enum ethernet_t1s_param_type type
Type of T1S parameter.

bool enable
T1S PLCA enabled.

uint8_t node_id
T1S PLCA node id range: 0 to 254.

uint8_t node_count
T1S PLCA node count range: 1 to 255.

uint8_t burst_count
T1S PLCA burst count range: 0x0 to 0xFF.

uint8_t burst_timer
T1S PLCA burst timer.
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uint8_t to_timer
T1S PLCA TO value.

struct ethernet_t1s_param plca
PLCA is the Physical Layer (PHY) Collision Avoidance technique employed with
multidrop 10Base-T1S standard.

The PLCA parameters are described in standard [1] as registers in memory map 4
(MMS = 4) (point 9.6).

IDVER (PLCA ID Version) CTRL0 (PLCA Control 0) CTRL1 (PLCA Control 1) STATUS
(PLCA Status) TOTMR (PLCA TO Control) BURST (PLCA Burst Control)

Those registers are implemented by each OA TC6 compliant vendor (like for e.g.
LAN865x - e.g. [2]).

Documents: [1] - “OPEN Alliance 10BASE-T1x MAC-PHY Serial

Interface” (ver. 1.1) [2] - “DS60001734C” - LAN865x data sheet

struct ethernet_qav_param
#include <ethernet.h> Ethernet Qav specific parameters.

Public Members

int queue_id
ID of the priority queue to use.

enum ethernet_qav_param_type type
Type of Qav parameter.

bool enabled
True if Qav is enabled for queue.

unsigned int delta_bandwidth
Delta Bandwidth (percentage of bandwidth)

unsigned int idle_slope
Idle Slope (bits per second)

unsigned int oper_idle_slope
Oper Idle Slope (bits per second)

unsigned int traffic_class
Traffic class the queue is bound to.

struct ethernet_qbv_param
#include <ethernet.h> Ethernet Qbv specific parameters.
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Public Members

int port_id
Port id.

enum ethernet_qbv_param_type type
Type of Qbv parameter.

enum ethernet_qbv_state_type state
What state (Admin/Oper) parameters are these.

bool enabled
True if Qbv is enabled or not.

bool gate_status[NET_TC_TX_COUNT]
True = open, False = closed.

enum ethernet_gate_state_operation operation
GateState operation.

uint32_t time_interval
Time interval ticks (nanoseconds)

uint16_t row
Gate control list row.

struct ethernet_qbv_param gate_control
Gate control information.

uint32_t gate_control_list_len
Number of entries in gate control list.

struct net_ptp_extended_time base_time
Base time.

struct net_ptp_time cycle_time
Cycle time.

uint32_t extension_time
Extension time (nanoseconds)

struct ethernet_qbu_param
#include <ethernet.h> Ethernet Qbu specific parameters.

Public Members

int port_id
Port id.
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enum ethernet_qbu_param_type type
Type of Qbu parameter.

uint32_t hold_advance
Hold advance (nanoseconds)

uint32_t release_advance
Release advance (nanoseconds)

enum ethernet_qbu_preempt_status frame_preempt_statuses[NET_TC_TX_COUNT]
sequence of framePreemptionAdminStatus values

bool enabled
True if Qbu is enabled or not.

bool link_partner_status
Link partner status (from Qbr)

uint8_t additional_fragment_size
Additional fragment size (from Qbr).

The minimum non-final fragment size is (additional_fragment_size + 1) * 64 octets

struct ethernet_filter
#include <ethernet.h> Ethernet filter description.

Public Members

enum ethernet_filter_type type
Type of filter.

struct net_eth_addr mac_address
MAC address to filter.

bool set
Set (true) or unset (false) the filter.

struct ethernet_txtime_param
#include <ethernet.h> Ethernet TXTIME specific parameters.

Public Members

enum ethernet_txtime_param_type type
Type of TXTIME parameter.

int queue_id
Queue number for configuring TXTIME.
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bool enable_txtime
Enable or disable TXTIME per queue.

struct ethernet_api
#include <ethernet.h> Ethernet L2 API operations.

Public Members

struct net_if_api iface_api
The net_if_api must be placed in first position in this struct so that we are compat-
ible with network interface API.

int (*start)(const struct device *dev)
Collect optional ethernet specific statistics.

This pointer should be set by driver if statistics needs to be collected for that driver.
Start the device

int (*stop)(const struct device *dev)
Stop the device.

enum ethernet_hw_caps (*get_capabilities)(const struct device *dev)
Get the device capabilities.

int (*set_config)(const struct device *dev, enum ethernet_config_type type, const
struct ethernet_config *config)

Set specific hardware configuration.

int (*get_config)(const struct device *dev, enum ethernet_config_type type, struct
ethernet_config *config)

Get hardware specific configuration.

const struct device *(*get_phy)(const struct device *dev)
The IP stack will call this function when a VLAN tag is enabled or disabled.

If enable is set to true, then the VLAN tag was added, if it is false then the tag
was removed. The driver can utilize this information if needed. Return ptp_clock
device that is tied to this ethernet device Return PHY device that is tied to this
ethernet device

int (*send)(const struct device *dev, struct net_pkt *pkt)
Send a network packet.

struct ethernet_lldp
#include <ethernet.h> Ethernet LLDP specific parameters.

Public Members
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sys_snode_t node
Used for track timers.

const struct net_lldpdu *lldpdu
LLDP Data Unit mandatory TLVs for the interface.

const uint8_t *optional_du
LLDP Data Unit optional TLVs for the interface.

size_t optional_len
Length of the optional Data Unit TLVs.

struct net_if *iface
Network interface that has LLDP supported.

int64_t tx_timer_start
LLDP TX timer start time.

uint32_t tx_timer_timeout
LLDP TX timeout.

net_lldp_recv_cb_t cb
LLDP RX callback function.

group ethernet_mii
Ethernet MII (media independent interface) functions.

Since
1.7

Version
0.8.0

Defines

MII_BMCR
Basic Mode Control Register.

MII_BMSR
Basic Mode Status Register.

MII_PHYID1R
PHY ID 1 Register.

MII_PHYID2R
PHY ID 2 Register.
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MII_ANAR
Auto-Negotiation Advertisement Register.

MII_ANLPAR
Auto-Negotiation Link Partner Ability Reg.

MII_ANER
Auto-Negotiation Expansion Register.

MII_ANNPTR
Auto-Negotiation Next Page Transmit Register.

MII_ANLPRNPR
Auto-Negotiation Link Partner Received Next Page Reg.

MII_1KTCR
1000BASE-T Control Register

MII_1KSTSR
1000BASE-T Status Register

MII_MMD_ACR
MMD Access Control Register.

MII_MMD_AADR
MMD Access Address Data Register.

MII_ESTAT
Extended Status Register.

MII_BMCR_RESET
PHY reset.

MII_BMCR_LOOPBACK
enable loopback mode

MII_BMCR_SPEED_LSB
10=1000Mbps 01=100Mbps; 00=10Mbps

MII_BMCR_AUTONEG_ENABLE
Auto-Negotiation enable.

MII_BMCR_POWER_DOWN
power down mode

MII_BMCR_ISOLATE
isolate electrically PHY from MII
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MII_BMCR_AUTONEG_RESTART
restart auto-negotiation

MII_BMCR_DUPLEX_MODE
full duplex mode

MII_BMCR_SPEED_MSB
10=1000Mbps 01=100Mbps; 00=10Mbps

MII_BMCR_SPEED_MASK
Link Speed Field.

MII_BMCR_SPEED_10
select speed 10 Mb/s

MII_BMCR_SPEED_100
select speed 100 Mb/s

MII_BMCR_SPEED_1000
select speed 1000 Mb/s

MII_BMSR_100BASE_T4
100BASE-T4 capable

MII_BMSR_100BASE_X_FULL
100BASE-X full duplex capable

MII_BMSR_100BASE_X_HALF
100BASE-X half duplex capable

MII_BMSR_10_FULL
10 Mb/s full duplex capable

MII_BMSR_10_HALF
10 Mb/s half duplex capable

MII_BMSR_100BASE_T2_FULL
100BASE-T2 full duplex capable

MII_BMSR_100BASE_T2_HALF
100BASE-T2 half duplex capable

MII_BMSR_EXTEND_STATUS
extend status information in reg 15

MII_BMSR_MF_PREAMB_SUPPR
PHY accepts management frames with preamble suppressed.
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MII_BMSR_AUTONEG_COMPLETE
Auto-negotiation process completed.

MII_BMSR_REMOTE_FAULT
remote fault detected

MII_BMSR_AUTONEG_ABILITY
PHY is able to perform Auto-Negotiation.

MII_BMSR_LINK_STATUS
link is up

MII_BMSR_JABBER_DETECT
jabber condition detected

MII_BMSR_EXTEND_CAPAB
extended register capabilities

MII_ADVERTISE_NEXT_PAGE
next page

MII_ADVERTISE_LPACK
link partner acknowledge response

MII_ADVERTISE_REMOTE_FAULT
remote fault

MII_ADVERTISE_ASYM_PAUSE
try for asymmetric pause

MII_ADVERTISE_PAUSE
try for pause

MII_ADVERTISE_100BASE_T4
try for 100BASE-T4 support

MII_ADVERTISE_100_FULL
try for 100BASE-X full duplex support

MII_ADVERTISE_100_HALF
try for 100BASE-X support

MII_ADVERTISE_10_FULL
try for 10 Mb/s full duplex support

MII_ADVERTISE_10_HALF
try for 10 Mb/s half duplex support
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MII_ADVERTISE_SEL_MASK
Selector Field Mask.

MII_ADVERTISE_SEL_IEEE_802_3
Selector Field.

MII_ADVERTISE_1000_FULL
try for 1000BASE-T full duplex support

MII_ADVERTISE_1000_HALF
try for 1000BASE-T half duplex support

MII_ADVERTISE_ALL
Advertise all speeds.

MII_ESTAT_1000BASE_X_FULL
1000BASE-X full-duplex capable

MII_ESTAT_1000BASE_X_HALF
1000BASE-X half-duplex capable

MII_ESTAT_1000BASE_T_FULL
1000BASE-T full-duplex capable

MII_ESTAT_1000BASE_T_HALF
1000BASE-T half-duplex capable

IEEE 802.15.4

• Introduction

• API Reference

– IEEE 802.15.4 API Overview

– IEEE 802.15.4 Management API

– IEEE 802.15.4 Driver API

– IEEE 802.15.4 L2 / Native Stack API

– OpenThread L2 Adaptation Layer API

Introduction IEEE 802.15.4 is a technical standard which defines the operation of low-rate
wireless personal area networks (LR-WPANs). For a more detailed overview of this standard,
see the IEEE 802.15.4 Wikipedia article.

The most recent version of the standard is accessible through the IEEE GET Program. You need
to create a free IEEE account and can then downloading it.

We’re currently following the IEEE 802.15.4-2020 specification. This version is backwards com-
patible with IEEE 802.15.4-2015, parts of which are contained in the Thread protocol stack. The
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2020 version also includes prior extensions that were accepted into the standard, namely IEEE
802.15.4g (SUN FSK) and IEEE 802.15.4e (TSCH) which are of relevance to industrial IoT and au-
tomation. For recent developments in UWB ranging technology, see IEEE 802.15.4z which is not
yet integrated into the standard’s mainline.

Whenever sections from the standard are cited in the documentation, they refer to IEEE 802.15.4-
2020 section, table and figure numbering - unless otherwise specified.

Zephyr supports both, native IEEE 802.15.4 and Thread, with 6LoWPAN. Zephyr’s Thread protocol
implementation is based on OpenThread. The IPv6 header compression in 6LoWPAN is used for
native IEEE 802.15.4.

API Reference

IEEE 802.15.4 API Overview Gives an introduction and overview over the whole IEEE 802.15.4
subsystem and all of its APIs, configuration and user interfaces for all audiences.

Related code samples

802.15.4 ”serial-radio”
Implement a slip-radio device for Contiki-based border routers.

802.15.4 USB
Implement a device that exposes an IEEE 802.15.4 radio over USB.

group ieee802154
IEEE 802.15.4 native and OpenThread L2, configuration, management and driver APIs.

Since
1.0

Version
0.8.0

The IEEE 802.15.4 and Thread subsystems comprise the OpenThread L2 subsystem, the na-
tive IEEE 802.15.4 L2 subsystem (“Soft” MAC), a mostly vendor and protocol agnostic driver
API shared between the OpenThread and native L2 stacks (“Hard” MAC and PHY) as well as
several APIs to configure the subsystem (shell, net management, Kconfig, devicetree, etc.).

The OpenThread subsystem API integrates the external OpenThread stack into Zephyr. It
builds upon Zephyr’s native IEEE 802.15.4 driver API.

The native IEEE 802.15.4 subsystem APIs are exposed at different levels and address sev-
eral audiences:

• shell (end users, application developers):

– a set of IEEE 802.15.4 shell commands (see shell> ieee802154 help)

• application API (application developers):

– IPv6, DGRAM and RAW sockets for actual peer-to-peer, multicast and broadcast
data exchange between nodes including connection specific configuration (sample
coming soon, see https://github.com/linux-wpan/wpan-tools/tree/master/examples
for now which inspired our API and therefore has a similar socket API),

– Kconfig and devicetree configuration options (net config library extension,
subsystem-wide MAC and PHY Kconfig/DT options, driver/vendor specific Kcon-
fig/DT options, watch out for options prefixed with IEEE802154/ieee802154),
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– Network Management: runtime configuration of the IEEE 802.15.4 protocols stack
at the MAC (L2) and PHY (L1) levels (see IEEE 802.15.4 Net Management),

• L2 integration (subsystem contributors):

– see IEEE 802.15.4 L2

– implementation of Zephyr’s internal L2-level socket and network context abstrac-
tions (context/socket operations, see Network L2 Abstraction Layer),

– protocol-specific extension to the interface structure (see Network Interface ab-
straction layer)

– protocol-specific extensions to the network packet structure (see Network Packet
Library),

• OpenThread and native IEEE 802.15.4 share a common driver API (driver maintain-
ers/contributors):

– see IEEE 802.15.4 Drivers

– a basic, mostly PHY-level driver API to be implemented by all drivers,

– several “hard MAC” (hardware/firmware offloading) extension points for perfor-
mance critical or timing sensitive aspects of the protocol

IEEE 802.15.4 Management API This is the main subsystem-specific API of interest to IEEE
802.15.4 application developers as it allows to configure the IEEE 802.15.4 subsystem at run-
time. Other relevant interfaces for application developers are the typical shell, socket, Kconfig
and devicetree APIs that can be accessed through Zephyr’s generic subsystem-independent doc-
umentation. Look out for IEEE802154/ieee802154 prefixes there.

group ieee802154_mgmt
IEEE 802.15.4 net management library.

Since
1.0

Version
0.8.0

The IEEE 802.15.4 net management library provides runtime configuration features that
applications can interface with directly.

Most of these commands are also accessible via shell commands. See the shell’s help feature
(shell> ieee802154 help).

Note

All section, table and figure references are to the IEEE 802.15.4-2020 standard.

Command Macros

IEEE 802.15.4 net management commands.

These IEEE 802.15.4 subsystem net management commands can be called by applications
via Network Management macro.

All attributes and parameters are given in CPU byte order (scalars) or big endian (byte ar-
rays) unless otherwise specified.
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The following IEEE 802.15.4 MAC management service primitives are referenced in this
enumeration:

• MLME-ASSOCIATE.request, see section 8.2.3

• MLME-DISASSOCIATE.request, see section 8.2.4

• MLME-SET/GET.request, see section 8.2.6

• MLME-SCAN.request, see section 8.2.11

The following IEEE 802.15.4 MAC data service primitives are referenced in this enumera-
tion:

• MLME-DATA.request, see section 8.3.2

MAC PIB attributes (mac…/sec…): see sections 8.4.3 and 9.5. PHY PIB attributes (phy…): see
section 11.3. Both are accessed through MLME-SET/GET primitives.

NET_REQUEST_IEEE802154_SET_ACK
Sets AckTx for all subsequent MLME-DATA (aka TX) requests.

NET_REQUEST_IEEE802154_UNSET_ACK
Unsets AckTx for all subsequent MLME-DATA requests.

NET_REQUEST_IEEE802154_PASSIVE_SCAN
MLME-SCAN(PASSIVE, …) request.

See ieee802154_req_params for associated command parameters.

NET_REQUEST_IEEE802154_ACTIVE_SCAN
MLME-SCAN(ACTIVE, …) request.

See ieee802154_req_params for associated command parameters.

NET_REQUEST_IEEE802154_CANCEL_SCAN
Cancels an ongoing MLME-SCAN(…) command (non-standard).

NET_REQUEST_IEEE802154_ASSOCIATE
MLME-ASSOCIATE(…) request.

NET_REQUEST_IEEE802154_DISASSOCIATE
MLME-DISASSOCIATE(…) request.

NET_REQUEST_IEEE802154_SET_CHANNEL
MLME-SET(phyCurrentChannel) request.

NET_REQUEST_IEEE802154_GET_CHANNEL
MLME-GET(phyCurrentChannel) request.

NET_REQUEST_IEEE802154_SET_PAN_ID
MLME-SET(macPanId) request.

NET_REQUEST_IEEE802154_GET_PAN_ID
MLME-GET(macPanId) request.
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NET_REQUEST_IEEE802154_SET_EXT_ADDR
Sets the extended interface address (non-standard), see sections 7.1 and 8.4.3.1, in big
endian byte order.

NET_REQUEST_IEEE802154_GET_EXT_ADDR
like MLME-GET(macExtendedAddress) but in big endian byte order

NET_REQUEST_IEEE802154_SET_SHORT_ADDR
MLME-SET(macShortAddress) request, only allowed for co-ordinators.

NET_REQUEST_IEEE802154_GET_SHORT_ADDR
MLME-GET(macShortAddress) request.

NET_REQUEST_IEEE802154_GET_TX_POWER
MLME-SET(phyUnicastTxPower/phyBroadcastTxPower) request (currently not distin-
guished)

NET_REQUEST_IEEE802154_SET_TX_POWER
MLME-GET(phyUnicastTxPower/phyBroadcastTxPower) request.

NET_REQUEST_IEEE802154_SET_SECURITY_SETTINGS
Configures basic sec* MAC PIB attributes, implies macSecurityEnabled=true.

See ieee802154_security_params for associated command parameters.

NET_REQUEST_IEEE802154_GET_SECURITY_SETTINGS
Gets the configured sec* attributes.

See ieee802154_security_params for associated command parameters.

Event Macros

IEEE 802.15.4 net management events.

These IEEE 802.15.4 subsystem net management events can be subscribed to by
applications via net_mgmt_init_event_callback, net_mgmt_add_event_callback and
net_mgmt_del_event_callback.

NET_EVENT_IEEE802154_SCAN_RESULT
Signals the result of the NET_REQUEST_IEEE802154_ACTIVE_SCAN or
NET_REQUEST_IEEE802154_PASSIVE_SCAN net management commands.

See ieee802154_req_params for associated event parameters.

struct ieee802154_req_params
#include <ieee802154_mgmt.h> Scanning parameters.

Used to request a scan and get results as well, see section 8.2.11.2

Public Members
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uint32_t channel_set
The set of channels to scan, use above macros to manage it.

uint32_t duration
Duration of scan, per-channel, in milliseconds.

uint16_t channel
Current channel in use as a result.

uint16_t pan_id
Current pan_id in use as a result.

uint16_t short_addr
in CPU byte order

uint8_t addr[IEEE802154_MAX_ADDR_LENGTH]
in big endian

union ieee802154_req_params
Result address.

uint8_t len
length of address

uint8_t lqi
Link quality information, between 0 and 255.

bool association_permitted
Flag if association is permitted by the coordinator.

uint8_t *beacon_payload
Additional payload of the beacon if any.

size_t beacon_payload_len
Length of the additional payload.

struct ieee802154_security_params
#include <ieee802154_mgmt.h> Security parameters.

Used to setup the link-layer security settings, see tables 9-9 and 9-10 in section 9.5.

Public Members

uint8_t key[16]
secKeyDescriptor.secKey

uint8_t key_len
Key length of 16 bytes is mandatory for standards conformance.
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uint8_t key_mode
secKeyIdMode

uint8_t level
Used instead of a frame-specific SecurityLevel parameter when constructing the
auxiliary security header.

IEEE 802.15.4 Driver API This is the main API of interest to IEEE 802.15.4 driver developers.

group ieee802154_driver
IEEE 802.15.4 driver API.

Since
1.0

Version
0.8.0

This API provides a common representation of vendor-specific hardware and firmware to
the native IEEE 802.15.4 L2 and OpenThread stacks. Application developers should never
interface directly with this API. It is of interest to driver maintainers only.

The IEEE 802.15.4 driver API consists of two separate parts:

• a basic, mostly PHY-level driver API to be implemented by all drivers,

• several optional MAC-level extension points to offload performance critical or timing
sensitive aspects at MAC level to the driver hardware or firmware (“hard” MAC).

Implementing the basic driver API will ensure integration with the native L2 stack as well as
basic support for OpenThread. Depending on the hardware, offloading to vendor-specific
hardware or firmware features may be required to achieve full compliance with the Thread
protocol or IEEE 802.15.4 subprotocols (e.g. fast enough ACK packages, precise timing of
timed TX/RX in the TSCH or CSL subprotocols).

Whether or not MAC-level offloading extension points need to be implemented is to be de-
cided by individual driver maintainers. Upper layers SHOULD provide a “soft” MAC fall-
back whenever possible.

Note

All section, table and figure references are to the IEEE 802.15.4-2020 standard.

IEEE 802.15.4, section 7.4.2: MAC header information elements

enum ieee802154_ie_type
Information Element Types.

See sections 7.4.2.1 and 7.4.3.1.

Values:

enumerator IEEE802154_IE_TYPE_HEADER = 0x0
Header type.
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enumerator IEEE802154_IE_TYPE_PAYLOAD
Payload type.

enum ieee802154_header_ie_element_id
Header Information Element IDs.

See section 7.4.2.1, table 7-7, partial list, only IEs actually used are implemented.

Values:

enumerator IEEE802154_HEADER_IE_ELEMENT_ID_VENDOR_SPECIFIC_IE = 0x00
Vendor specific IE.

enumerator IEEE802154_HEADER_IE_ELEMENT_ID_CSL_IE = 0x1a
CSL IE.

enumerator IEEE802154_HEADER_IE_ELEMENT_ID_RIT_IE = 0x1b
RIT IE.

enumerator IEEE802154_HEADER_IE_ELEMENT_ID_RENDEZVOUS_TIME_IE = 0x1d
Rendezvous time IE.

enumerator IEEE802154_HEADER_IE_ELEMENT_ID_TIME_CORRECTION_IE = 0x1e
Time correction IE.

enumerator IEEE802154_HEADER_IE_ELEMENT_ID_HEADER_TERMINATION_1 = 0x7e
Header termination 1.

enumerator IEEE802154_HEADER_IE_ELEMENT_ID_HEADER_TERMINATION_2 = 0x7f
Header termination 2.

static inline int16_t ieee802154_header_ie_get_time_correction_us(struct
ieee802154_header_ie_time_correction
*ie)

Retrieve the time correction value in microseconds from a Time Correction IE, see sec-
tion 7.4.2.7.

Parameters
• ie – [in] pointer to the Time Correction IE structure

Returns
The time correction value in microseconds.

static inline void ieee802154_header_ie_set_element_id(struct ieee802154_header_ie
*ie, uint8_t element_id)

Set the element ID of a header IE.

Parameters
• ie – [in] pointer to a header IE

• element_id – [in] IE element id in CPU byte order

static inline uint8_t ieee802154_header_ie_get_element_id(struct ieee802154_header_ie
*ie)

Get the element ID of a header IE.
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Parameters
• ie – [in] pointer to a header IE

Returns
header IE element id in CPU byte order

IEEE802154_HEADER_IE_HEADER_LENGTH
The header IE’s header length (2 bytes).

IEEE802154_DEFINE_HEADER_IE_VENDOR_SPECIFIC(_vendor_oui, _vendor_specific_info,
_vendor_specific_info_len)

Define a vendor specific header IE, see section 7.4.2.3.

Example usage (all parameters in little endian):

uint8_t vendor_specific_info[] = {...some vendor specific IE content...};
struct ieee802154_header_ie header_ie = IEEE802154_DEFINE_HEADER_IE_VENDOR_
↪→SPECIFIC(

{0x9b, 0xb8, 0xea}, vendor_specific_info, sizeof(vendor_specific_info));

Parameters
• _vendor_oui – an initializer for a 3 byte vendor oui array in little endian

• _vendor_specific_info – pointer to a variable length uint8_t array with
the vendor specific IE content

• _vendor_specific_info_len – the length of the vendor specific IE con-
tent (in bytes)

IEEE802154_DEFINE_HEADER_IE_CSL_REDUCED(_csl_phase, _csl_period)
Define a reduced CSL IE, see section 7.4.2.3.

Example usage (all parameters in CPU byte order):

uint16_t csl_phase = ...;
uint16_t csl_period = ...;
struct ieee802154_header_ie header_ie =

IEEE802154_DEFINE_HEADER_IE_CSL_REDUCED(csl_phase, csl_period);

Parameters
• _csl_phase – CSL phase in CPU byte order

• _csl_period – CSL period in CPU byte order

IEEE802154_DEFINE_HEADER_IE_CSL_FULL(_csl_phase, _csl_period, _csl_rendezvous_time)
Define a full CSL IE, see section 7.4.2.3.

Example usage (all parameters in CPU byte order):

uint16_t csl_phase = ...;
uint16_t csl_period = ...;
uint16_t csl_rendezvous_time = ...;
struct ieee802154_header_ie header_ie =

IEEE802154_DEFINE_HEADER_IE_CSL_REDUCED(csl_phase, csl_period, csl_rendezvous_
↪→time);

Parameters
• _csl_phase – CSL phase in CPU byte order

• _csl_period – CSL period in CPU byte order
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• _csl_rendezvous_time – CSL rendezvous time in CPU byte order

IEEE802154_DEFINE_HEADER_IE_TIME_CORRECTION(_ack, _time_correction_us)
Define a Time Correction IE, see section 7.4.2.7.

Example usage (parameter in CPU byte order):

uint16_t time_sync_info = ...;
struct ieee802154_header_ie header_ie =

IEEE802154_DEFINE_HEADER_IE_TIME_CORRECTION(true, time_sync_info);

Parameters
• _ack – whether or not the enhanced ACK frame that receives this IE is an

ACK (true) or NACK (false)

• _time_correction_us – the positive or negative deviation from expected
RX time in microseconds

IEEE802154_TIME_CORRECTION_HEADER_IE_LEN
The length in bytes of a “Time Correction” header IE.

IEEE802154_HEADER_TERMINATION_1_HEADER_IE_LEN
The length in bytes of a “Header Termination 1” header IE.

IEEE 802.15.4-2020, Section 10: General PHY requirements

enum ieee802154_phy_channel_page
PHY channel pages, see section 10.1.3.

A device driver must support the mandatory channel pages, frequency bands and
channels of at least one IEEE 802.15.4 PHY.

Channel page and number assignments have developed over several versions of the
standard and are not particularly well documented. Therefore some notes about pe-
culiarities of channel pages and channel numbering:

• The 2006 version of the standard had a read-only phyChannelsSupported PHY PIB
attribute that represented channel page/number combinations as a bitmap. This
attribute was removed in later versions of the standard as the number of channels
increased beyond what could be represented by a bit map. That’s the reason why
it was decided to represent supported channels as a combination of channel pages
and ranges instead.

• In the 2020 version of the standard, 13 channel pages are explicitly defined, but
up to 32 pages could in principle be supported. This was a hard requirement in
the 2006 standard. In later standards it is implicit from field specifications, e.g. the
MAC PIB attribute macChannelPage (section 8.4.3.4, table 8-100) or channel page
fields used in the SRM protocol (see section 8.2.26.5).

• ASK PHY (channel page one) was deprecated in the 2015 version of the standard.
The 2020 version of the standard is a bit ambivalent whether channel page one
disappeared as well or should be interpreted as O-QPSK now (see section 10.1.3.3).
In Zephyr this ambivalence is resolved by deprecating channel page one.

• For some PHYs the standard doesn’t clearly specify a channel page, namely the
GFSK, RS-GFSK, CMB and TASK PHYs. These are all rather new and left out in our
list as long as no driver wants to implement them.
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Warning

The bit numbers are not arbitrary but represent the channel page numbers as de-
fined by the standard. Therefore do not change the bit numbering.

Values:

enumerator IEEE802154_ATTR_PHY_CHANNEL_PAGE_ZERO_OQPSK_2450_BPSK_868_915 =
BIT(0)

Channel page zero supports the 2.4G channels of the O-QPSK PHY and all channels
from the BPSK PHYs initially defined in the 2003 editions of the standard.

For channel page zero, 16 channels are available in the 2450 MHz band (channels
11-26, O-QPSK), 10 in the 915 MHz band (channels 1-10, BPSK), and 1 in the 868
MHz band (channel 0, BPSK).

You can retrieve the channels supported by a specific driver on this page via
IEEE802154_ATTR_PHY_SUPPORTED_CHANNEL_RANGES attribute.

see section 10.1.3.3

enumerator IEEE802154_ATTR_PHY_CHANNEL_PAGE_ONE_DEPRECATED = BIT(1)
Formerly ASK PHY - deprecated in IEEE 802.15.4-2015.

enumerator IEEE802154_ATTR_PHY_CHANNEL_PAGE_TWO_OQPSK_868_915 = BIT(2)
O-QPSK PHY - 868 MHz and 915 MHz bands, see section 10.1.3.3.

enumerator IEEE802154_ATTR_PHY_CHANNEL_PAGE_THREE_CSS = BIT(3)
CSS PHY - 2450 MHz band, see section 10.1.3.4.

enumerator IEEE802154_ATTR_PHY_CHANNEL_PAGE_FOUR_HRP_UWB = BIT(4)
UWB PHY - SubG, low and high bands, see section 10.1.3.5.

enumerator IEEE802154_ATTR_PHY_CHANNEL_PAGE_FIVE_OQPSK_780 = BIT(5)
O-QPSK PHY - 780 MHz band, see section 10.1.3.2.

enumerator IEEE802154_ATTR_PHY_CHANNEL_PAGE_SIX_RESERVED = BIT(6)
reserved - not currently assigned

enumerator IEEE802154_ATTR_PHY_CHANNEL_PAGE_SEVEN_MSK = BIT(7)
MSK PHY - 780 MHz and 2450 MHz bands, see sections 10.1.3.6, 10.1.3.7.

enumerator IEEE802154_ATTR_PHY_CHANNEL_PAGE_EIGHT_LRP_UWB = BIT(8)
LRP UWB PHY, see sections 10.1.3.8.

enumerator IEEE802154_ATTR_PHY_CHANNEL_PAGE_NINE_SUN_PREDEFINED = BIT(9)
SUN FSK/OFDM/O-QPSK PHYs - predefined bands, operating modes and channels,
see sections 10.1.3.9.

enumerator IEEE802154_ATTR_PHY_CHANNEL_PAGE_TEN_SUN_FSK_GENERIC = BIT(10)
SUN FSK/OFDM/O-QPSK PHYs - generic modulation and channel description, see
sections 10.1.3.9, 7.4.4.11.
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enumerator IEEE802154_ATTR_PHY_CHANNEL_PAGE_ELEVEN_OQPSK_2380 = BIT(11)
O-QPSK PHY - 2380 MHz band, see section 10.1.3.10.

enumerator IEEE802154_ATTR_PHY_CHANNEL_PAGE_TWELVE_LECIM = BIT(12)
LECIM DSSS/FSK PHYs, see section 10.1.3.11.

enumerator IEEE802154_ATTR_PHY_CHANNEL_PAGE_THIRTEEN_RCC = BIT(13)
RCC PHY, see section 10.1.3.12.

IEEE802154_DEFINE_PHY_SUPPORTED_CHANNELS(drv_attr, from, to)
Allocate memory for the supported channels driver attribute with a single channel
range constant across all driver instances.

This is what most IEEE 802.15.4 drivers need.

Example usage:

IEEE802154_DEFINE_PHY_SUPPORTED_CHANNELS(drv_attr, 11, 26);

The attribute may then be referenced like this:

... &drv_attr.phy_supported_channels ...

See ieee802154_attr_get_channel_page_and_range() for a further shortcut that can be
combined with this macro.

Parameters
• drv_attr – name of the local static variable to be declared for the local

attributes structure

• from – the first channel to be supported

• to – the last channel to be supported

IEEE 802.15.4-2020, Section 15: HRP UWB PHY

For HRP UWB the symbol period is derived from the preamble symbol period (T_psym), see
section 11.3, table 11-1 and section 15.2.5, table 15-4 (confirmed in IEEE 802.15.4z, section
15.1). Choosing among those periods cannot be done based on channel page and channel
alone. The mean pulse repetition frequency must also be known, see the ‘UwbPrf’ parame-
ter of the MCPS-DATA.request primitive (section 8.3.2, table 8-88) and the preamble param-
eters for HRP-ERDEV length 91 codes (IEEE 802.15.4z, section 15.2.6.2, table 15-7b).

enum ieee802154_phy_hrp_uwb_nominal_prf
represents the nominal pulse rate frequency of an HRP UWB PHY

Values:

enumerator IEEE802154_PHY_HRP_UWB_PRF_OFF = 0
standard modes, see section 8.3.2, table 8-88.

enumerator IEEE802154_PHY_HRP_UWB_NOMINAL_4_M = BIT(0)

enumerator IEEE802154_PHY_HRP_UWB_NOMINAL_16_M = BIT(1)
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enumerator IEEE802154_PHY_HRP_UWB_NOMINAL_64_M = BIT(2)

enumerator IEEE802154_PHY_HRP_UWB_NOMINAL_64_M_BPRF = BIT(3)
enhanced ranging device (ERDEV) modes not specified in table 8-88, see IEEE
802.15.4z, section 15.1, section 15.2.6.2, table 15-7b, section 15.3.4.2 and section
15.3.4.3.

enumerator IEEE802154_PHY_HRP_UWB_NOMINAL_128_M_HPRF = BIT(4)

enumerator IEEE802154_PHY_HRP_UWB_NOMINAL_256_M_HPRF = BIT(5)

IEEE802154_PHY_HRP_UWB_PRF4_TPSYM_SYMBOL_PERIOD_NS
Nominal PRF 4MHz symbol period.

IEEE802154_PHY_HRP_UWB_PRF16_TPSYM_SYMBOL_PERIOD_NS
Nominal PRF 16MHz symbol period.

IEEE802154_PHY_HRP_UWB_PRF64_TPSYM_SYMBOL_PERIOD_NS
Nominal PRF 64MHz symbol period.

IEEE802154_PHY_HRP_UWB_ERDEV_TPSYM_SYMBOL_PERIOD_NS
ERDEV symbol period.

IEEE802154_PHY_HRP_UWB_RDEV
RDEV device mask.

IEEE802154_PHY_HRP_UWB_ERDEV
ERDEV device mask.

IEEE 802.15.4 Driver API

enum ieee802154_hw_caps
IEEE 802.15.4 driver capabilities.

Any driver properties that can be represented in binary form should be modeled as
capabilities. These are called “hardware” capabilities for historical reasons but may
also represent driver firmware capabilities (e.g. MAC offloading features).

Values:

enumerator IEEE802154_HW_ENERGY_SCAN = BIT(0)
Energy detection (ED) supported (optional)

enumerator IEEE802154_HW_FCS = BIT(1)
Frame checksum verification supported.

enumerator IEEE802154_HW_FILTER = BIT(2)
Filtering of PAN ID, extended and short address supported.
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enumerator IEEE802154_HW_PROMISC = BIT(3)
Promiscuous mode supported.

enumerator IEEE802154_HW_CSMA = BIT(4)
CSMA-CA procedure supported on TX.

enumerator IEEE802154_HW_TX_RX_ACK = BIT(5)
Waits for ACK on TX if AR bit is set in TX pkt.

enumerator IEEE802154_HW_RETRANSMISSION = BIT(6)
Supports retransmission on TX ACK timeout.

enumerator IEEE802154_HW_RX_TX_ACK = BIT(7)
Sends ACK on RX if AR bit is set in RX pkt.

enumerator IEEE802154_HW_TXTIME = BIT(8)
TX at specified time supported.

enumerator IEEE802154_HW_SLEEP_TO_TX = BIT(9)
TX directly from sleep supported.

@note This HW capability does not conform to the requirements
specified in #61227 as it closely couples the driver to OpenThread's
capability and device model which is different from Zephyr's:
- "Sleeping" is a well defined term in Zephyr related to internal
power and thread management and different from "RX off" as
defined in OT.

- Currently all OT-capable drivers have the "sleep to TX"
capability anyway plus we expect future drivers to implement it
ootb as well, so no information is actually conveyed by this
capability.

- The `start()`/`stop()` API of a net device controls the
interface's operational state. Drivers MUST respond with
-ENETDOWN when calling `tx()` while their operational state is
"DOWN", only devices in the "UP" state MAY transmit packets (RFC
2863).

- A migration path has been defined in #63670 for actual removal of
this capability in favor of a standard compliant
`configure(rx_on/rx_off)` call, see there for details.

@deprecated Drivers and L2 SHALL not introduce additional references
to this capability and remove existing ones as outlined in #63670.

enumerator IEEE802154_HW_RXTIME = BIT(10)
Timed RX window scheduling supported.

enumerator IEEE802154_HW_TX_SEC = BIT(11)
TX security supported (key management, encryption and authentication)

enumerator IEEE802154_RX_ON_WHEN_IDLE = BIT(12)
RxOnWhenIdle handling supported.

enum ieee802154_filter_type
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Filter type, see ieee802154_radio_api::filter.

Values:

enumerator IEEE802154_FILTER_TYPE_IEEE_ADDR
Address type filter.

enumerator IEEE802154_FILTER_TYPE_SHORT_ADDR
Short address type filter.

enumerator IEEE802154_FILTER_TYPE_PAN_ID
PAN id type filter.

enumerator IEEE802154_FILTER_TYPE_SRC_IEEE_ADDR
Source address type filter.

enumerator IEEE802154_FILTER_TYPE_SRC_SHORT_ADDR
Source short address type filter.

enum ieee802154_event
Driver events, see IEEE802154_CONFIG_EVENT_HANDLER.

Values:

enumerator IEEE802154_EVENT_TX_STARTED
Data transmission started.

enumerator IEEE802154_EVENT_RX_FAILED
Data reception failed.

enumerator IEEE802154_EVENT_RX_OFF
An RX slot ended, requires IEEE802154_HW_RXTIME.

Note

This event SHALL not be triggered by drivers when RX is synchronously
switched of due to a call to stop() or an RX slot being configured.

enum ieee802154_rx_fail_reason
RX failed event reasons, see IEEE802154_EVENT_RX_FAILED.

Values:

enumerator IEEE802154_RX_FAIL_NOT_RECEIVED
Nothing received.

enumerator IEEE802154_RX_FAIL_INVALID_FCS
Frame had invalid checksum.
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enumerator IEEE802154_RX_FAIL_ADDR_FILTERED
Address did not match.

enumerator IEEE802154_RX_FAIL_OTHER
General reason.

enum ieee802154_tx_mode
IEEE 802.15.4 Transmission mode.

Values:

enumerator IEEE802154_TX_MODE_DIRECT
Transmit packet immediately, no CCA.

enumerator IEEE802154_TX_MODE_CCA
Perform CCA before packet transmission.

enumerator IEEE802154_TX_MODE_CSMA_CA
Perform full CSMA/CA procedure before packet transmission.

Note

requires IEEE802154_HW_CSMA capability.

enumerator IEEE802154_TX_MODE_TXTIME
Transmit packet in the future, at the specified time, no CCA.

Note

requires IEEE802154_HW_TXTIME capability.

enumerator IEEE802154_TX_MODE_TXTIME_CCA
Transmit packet in the future, perform CCA before transmission.

Note

requires IEEE802154_HW_TXTIME capability.

Note

Required for Thread 1.2 Coordinated Sampled Listening feature (see Thread
specification 1.2.0, ch. 3.2.6.3).

enumerator IEEE802154_TX_MODE_COMMON_COUNT
Number of modes defined in ieee802154_tx_mode.
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enumerator IEEE802154_TX_MODE_PRIV_START =
IEEE802154_TX_MODE_COMMON_COUNT

This and higher values are specific to the protocol- or driver-specific extensions.

enum ieee802154_fpb_mode
IEEE 802.15.4 Frame Pending Bit table address matching mode.

Values:

enumerator IEEE802154_FPB_ADDR_MATCH_THREAD
The pending bit shall be set only for addresses found in the list.

enumerator IEEE802154_FPB_ADDR_MATCH_ZIGBEE
The pending bit shall be cleared for short addresses found in the list.

enum ieee802154_config_type
IEEE 802.15.4 driver configuration types.

Values:

enumerator IEEE802154_CONFIG_AUTO_ACK_FPB
Indicates how the driver should set the Frame Pending bit in ACK responses for
Data Requests.

If enabled, the driver should determine whether to set the bit or not based on the
information provided with IEEE802154_CONFIG_ACK_FPB config and FPB address
matching mode specified. Otherwise, Frame Pending bit should be set to 1 (see
section 6.7.3).

Note

requires IEEE802154_HW_TX_RX_ACK capability and is available in any inter-
face operational state.

enumerator IEEE802154_CONFIG_ACK_FPB
Indicates whether to set ACK Frame Pending bit for specific address or not.

Disabling the Frame Pending bit with no address provided (NULL pointer) should
disable it for all enabled addresses.

Note

requires IEEE802154_HW_TX_RX_ACK capability and is available in any inter-
face operational state.

enumerator IEEE802154_CONFIG_PAN_COORDINATOR
Indicates whether the device is a PAN coordinator.

This influences packet filtering.
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Note

Available in any interface operational state.

enumerator IEEE802154_CONFIG_PROMISCUOUS
Enable/disable promiscuous mode.

Note

Available in any interface operational state.

enumerator IEEE802154_CONFIG_EVENT_HANDLER
Specifies new IEEE 802.15.4 driver event handler.

Specifying NULL as a handler will disable events notification.

Note

Available in any interface operational state.

enumerator IEEE802154_CONFIG_MAC_KEYS
Updates MAC keys, key index and the per-key frame counter for drivers supporting
transmit security offloading, see section 9.5, tables 9-9 and 9-10.

The key configuration SHALL NOT be accepted if the frame counter (in case frame
counter per key is true) is not strictly larger than the current frame counter asso-
ciated with the same key, see sections 8.2.2, 9.2.4 g/h) and 9.4.3.

Note

Requires IEEE802154_HW_TX_SEC capability and is available in any interface
operational state.

enumerator IEEE802154_CONFIG_FRAME_COUNTER
Sets the current MAC frame counter value associated with the interface for drivers
supporting transmit security offloading, see section 9.5, table 9-8, secFrame-
Counter.

Note

Requires IEEE802154_HW_TX_SEC capability and is available in any interface
operational state.

Warning

The frame counter MUST NOT be accepted if it is not strictly greater than the
current frame counter associated with the interface, see sections 8.2.2, 9.2.4 g/h)
and 9.4.3. Otherwise the replay protection provided by the frame counter may
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be compromised. Drivers SHALL return -EINVAL in case the configured frame
counter does not conform to this requirement.

enumerator IEEE802154_CONFIG_FRAME_COUNTER_IF_LARGER
Sets the current MAC frame counter value if the provided value is greater than the
current one.

Note

Requires IEEE802154_HW_TX_SEC capability and is available in any interface
operational state.

Warning

This configuration option does not conform to the requirements specified in
#61227 as it is redundant with IEEE802154_CONFIG_FRAME_COUNTER, and will
therefore be deprecated in the future.

enumerator IEEE802154_CONFIG_RX_SLOT
Set or unset a radio reception window (RX slot).

This can be used for any scheduled reception, e.g.: Zigbee GP device, CSL, TSCH,
etc.

The start and duration parameters of the RX slot are relative to the network subsys-
tem’s local clock. If the start parameter of the RX slot is -1 then any previously con-
figured RX slot SHALL be canceled immediately. If the start parameter is any value
in the past (including 0) or the duration parameter is zero then the receiver SHALL
remain off forever until the RX slot has either been removed or re-configured to
point to a future start time. If an RX slot is configured while the previous RX slot is
still scheduled, then the previous slot SHALL be cancelled and the new slot sched-
uled instead.

RX slots MAY be programmed while the driver is “DOWN”. If any past or future RX
slot is configured when calling start() then the interface SHALL be placed in “UP”
state but the receiver SHALL not be started.

The driver SHALL take care to start/stop the receiver autonomously, asyn-
chronously and automatically around the RX slot. The driver SHALL resume
power just before the RX slot and suspend it again after the slot unless another
programmed event forces the driver not to suspend. The driver SHALL switch
to the programmed channel before the RX slot and back to the channel set with
set_channel() after the RX slot. If the driver interface is “DOWN” when the start
time of an RX slot arrives, then the RX slot SHALL not be observed and the receiver
SHALL remain off.

If the driver is “UP” while configuring an RX slot, the driver SHALL turn off the
receiver immediately and (possibly asynchronously) put the driver into the lowest
possible power saving mode until the start of the RX slot. If the driver is “UP” while
the RX slot is deleted, then the driver SHALL enable the receiver immediately. The
receiver MUST be ready to receive packets before returning from the configure()
operation in this case.

This behavior means that setting an RX slot implicitly sets the MAC PIB attribute
macRxOnWhenIdle (see section 8.4.3.1, table 8-94) to “false” while deleting the RX
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slot implicitly sets macRxOnWhenIdle to “true”.

Note

requires IEEE802154_HW_RXTIME capability and is available in any interface
operational state.

Note

Required for Thread 1.2 Coordinated Sampled Listening feature (see Thread
specification 1.2.0, ch. 3.2.6.3).

enumerator IEEE802154_CONFIG_CSL_PERIOD
Enables or disables a device as a CSL receiver and configures its CSL period.

Configures the CSL period in units of 10 symbol periods. Values greater than zero
enable CSL if the driver supports it and the device starts to operate as a CSL re-
ceiver. Setting this to zero disables CSL on the device. If the driver does not support
CSL, the configuration call SHALL return -ENOTSUP.

See section 7.4.2.3 and section 8.4.3.6, table 8-104, macCslPeriod.

To offload CSL receiver timing to the driver the upper layer SHALL combine several
configuration options in the following way:

i. Use IEEE802154_CONFIG_ENH_ACK_HEADER_IE once with an appropriate pre-
filled CSL IE and the CSL phase set to an arbitrary value or left uninitialized.
The CSL phase SHALL be injected on-the-fly by the driver at runtime as outlined
in 2. below. Adding a short and extended address will inform the driver of the
specific CSL receiver to which it SHALL inject CSL IEs. If no addresses are given
then the CSL IE will be injected into all enhanced ACK frames as soon as CSL
is enabled. This configuration SHALL be done before enabling CSL by setting a
CSL period greater than zero.

ii. Configure IEEE802154_CONFIG_EXPECTED_RX_TIME immediately followed by
IEEE802154_CONFIG_CSL_PERIOD. To prevent race conditions, the upper layer
SHALL ensure that the receiver is not enabled during or between the two calls
(e.g. by a previously configured RX slot) nor SHALL a frame be transmitted
concurrently.

The expected RX time SHALL point to the end of SFD of an ideally timed RX
frame in an arbitrary past or future CSL channel sample, i.e. whose “end of
SFD” arrives exactly at the locally predicted time inside the CSL channel sam-
ple.

The driver SHALL derive CSL anchor points and the CSL phase from the given
expected RX time as follows:

cslAnchorPointNs = last expected RX time
+ PHY-specific PHR duration in ns

startOfMhrNs = start of MHR of the frame containing the
CSL IE relative to the local network clock

cslPhase = (startOfMhrNs - cslAnchorPointNs)
(continues on next page)
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(continued from previous page)
/ (10 * PHY specific symbol period in ns)
% cslPeriod

The driver SHALL set the CSL phase in the IE configured in 1. and inject that IE
on-the-fly into outgoing enhanced ACK frames if the destination address con-
forms to the IE’s address filter.

iii. Use IEEE802154_CONFIG_RX_SLOT periodically to schedule each CSL channel
sample early enough before its start time. The size of the CSL channel sample
SHALL take relative clock drift and scheduling uncertainties with respect to
CSL transmitters into account as specified by the standard such that at least
the full SHR of a legitimate RX frame is guaranteed to land inside the channel
sample.

To this avail, the last configured expected RX time plus an integer number of
CSL periods SHALL point to a fixed offset of the RX slot (not necessarily its cen-
ter):

expectedRxTimeNs_N = last expected RX time
+ N * (cslPeriod * 10 * PHY-specific symbol period in ns)

expectedRxTimeNs_N - rxSlot_N.start == const for all N

While the configured CSL period is greater than zero, drivers SHOULD validate
the offset of the expected RX time inside each RX slot accordingly. If the driver
finds that the offset varies from slot to slot, drivers SHOULD log the difference
but SHALL nevertheless accept and schedule the RX slot with a zero success
value to work around minor implementation or rounding errors in upper lay-
ers.

Configure and start a CSL receiver:

ENH_ACK_HEADER_IE
|
| EXPECTED_RX_TIME (end of SFD of a perfectly timed RX frame
| | in any past or future channel sample)
| |
| | CSL_PERIOD (>0) RX_SLOT
| | | |
v v v v

-----------------------------------------------[-CSL channel sample ]----+
^ |
| |
+--------------------- loop ---------+

Disable CSL on the receiver:

CSL_PERIOD (=0)
|
v

---------------------

Update the CSL period to a new value:

EXPECTED_RX_TIME (based on updated period)
|
| CSL_PERIOD (>0, updated) RX_SLOT
| | |
v v v

-----------------------------------------------[-CSL channel sample ]----+
^ |
| |
+--------------------- loop ---------+
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Note

Confusingly the standard calls the CSL receiver “CSL

coordinator” (i.e. “coordinating the CSL protocol timing”, see section 6.12.2.2),
although, typically, a CSL coordinator is NOT also an IEEE 802.15.4 FFD coor-
dinator or PAN coordintor but a simple RFD end device (compare the device
roles outlined in sections 5.1, 5.3, 5.5 and 6.1). To avoid confusion we therefore
prefer calling CSL coordinators (typically an RFD end device) “CSL receivers”
and CSL peer devices (typically FFD coordinators or PAN coordinators) “CSL

transmitters”. Also note that at this time, we do NOT support unsynchronized
transmission with CSL wake up frames as specified in section 6.12.2.4.4.

Note

Available in any interface operational state.

Note

Required for Thread 1.2 Coordinated Sampled Listening feature (see Thread
specification 1.2.0, ch. 3.2.6.3).

enumerator IEEE802154_CONFIG_EXPECTED_RX_TIME
Configure a timepoint at which an RX frame is expected to arrive.

Configure the nanosecond resolution timepoint relative to the network subsys-
tem’s local clock at which an RX frame’s end of SFD (i.e. equivalently its end of SHR,
start of PHR, or in the case of PHYs with RDEV or ERDEV capability the RMARKER)
is expected to arrive at the local antenna assuming perfectly synchronized local
and remote network clocks and zero distance between antennas.

This parameter MAY be used to offload parts of timing sensitive TDMA (e.g.
TSCH, beacon-enabled PAN including DSME), low-energy (e.g. CSL, RIT) or rang-
ing (TDoA) protocols to the driver. In these protocols, medium access is tightly
controlled such that the expected arrival time of a frame can be predicted
within a well-defined time window. This feature will typically be combined with
IEEE802154_CONFIG_RX_SLOT although this is not a hard requirement.

The “expected RX time” MAY be interpreted slightly differently depending on the
protocol context:

• CSL phase (i.e. time to the next expected CSL transmission) or anchor time (i.e.
any arbitrary timepoint with “zero CSL phase”) SHALL be derived by adding
the PHY header duration to the expected RX time to calculate the “start of MHR”
(“first symbol of MAC”, see section 6.12.2.1) required by the CSL protocol, com-
pare IEEE802154_CONFIG_CSL_PERIOD.

• In TSCH the expected RX time MAY be set to macTsRxOffset + macTsRxWait / 2.
Then the time correction SHALL be calculated as the expected RX time minus
actual arrival timestamp, see section 6.5.4.3.

• In ranging applications, time difference of arrival (TDOA) MAY be calculated
inside the driver comparing actual RMARKER timestamps against the assumed
synchronized time at which the ranging frame was sent, see IEEE 802.15.4z.

In case of periodic protocols (e.g. CSL channel samples, periodic beacons of a single
PAN, periodic ranging “blinks”), a single timestamp at any time in the past or in
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the future may be given from which other expected timestamps can be derived by
adding or subtracting multiples of the RX period. See e.g. the CSL documentation
in this API.

Additionally this parameter MAY be used by drivers to discipline their local rep-
resentation of a distributed network clock by deriving synchronization instants
related to a remote representation of the same clock (as in PTP).

Note

Available in any interface operational state.

Note

Required for Thread 1.2 Coordinated Sampled Listening feature (see Thread
specification 1.2.0, ch. 3.2.6.3).

enumerator IEEE802154_CONFIG_ENH_ACK_HEADER_IE
Adds a header information element (IE) to be injected into enhanced ACK frames
generated by the driver if the given destination address filter matches.

Drivers implementing the IEEE802154_HW_RX_TX_ACK capability generate ACK
frames autonomously. Setting this configuration will ask the driver to inject the
given preconfigured header IE when generating enhanced ACK frames where ap-
propriate by the standard. IEs for all other frame types SHALL be provided by
L2.

The driver shall return -ENOTSUP in the following cases:
• It does not support the IEEE802154_HW_RX_TX_ACK,
• It does not support header IE injection,
• It cannot inject the runtime fields on-the-fly required for the given IE element

ID (see list below).
Enhanced ACK header IEs (element IDs in parentheses) that either need to be re-
jected or explicitly supported and parsed by the driver because they require on-
the-fly timing information injection are:

• CSL IE (0x1a)
• Rendezvous Time IE (0x1d)
• Time Correction IE (0x1e)

Drivers accepting this configuration option SHALL check the list of configured IEs
for each outgoing enhanced ACK frame, select the ones appropriate for the re-
ceived frame based on their element ID, inject any required runtime information
on-the-fly and include the selected IEs into the enhanced ACK frame’s MAC header.

Drivers supporting enhanced ACK header IE injection SHALL autonomously inject
header termination IEs as required by the standard.

A destination short address and extended address MAY be given by L2 to filter the
devices to which the given IE is included. Setting the short address to the broadcast
address and the extended address to NULL will inject the given IE into all ACK
frames unless a more specific filter is also present for any given destination device
(fallback configuration). L2 SHALL take care to either set both address fields to
valid device addresses or none.

This configuration type may be called several times with distinct element IDs
and/or addresses. The driver SHALL either store all configured IE/address com-
binations or return -ENOMEM if no additional configuration can be stored.
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Configuring a header IE with a previously configured element ID and address fil-
ter SHALL override the previous configuration. This implies that repetition of the
same header IE/address combination is NOT supported.

Configuring an existing element ID/address filter combination with the header IE’s
length field set to zero SHALL remove that configuration. SHALL remove the fall-
back configuration if no address is given.

Configuring a header IE for an address filter with the header IE pointer set to NULL
SHALL remove all header IE’s for that address filter. SHALL remove ALL header
IE configuration (including but not limited to fallbacks) if no address is given.

If any of the deleted configurations didn’t previously exist, then the call SHALL be
ignored. Whenever the length field is set to zero, the content fields MUST NOT be
accessed by the driver.

L2 SHALL minimize the space required to keep IE configuration inside the driver
by consolidating address filters and by removing configuration that is no longer
required.

Note

requires IEEE802154_HW_RX_TX_ACK capability and is available in any inter-
face operational state. Currently we only support header IEs but that may
change in the future.

Note

Required for Thread 1.2 Coordinated Sampled Listening feature (see Thread
specification 1.2.0, ch. 3.2.6.3).

Note

Required for Thread 1.2 Link Metrics feature (see Thread specification 1.2.0, ch.
4.11.3.3).

enumerator IEEE802154_CONFIG_RX_ON_WHEN_IDLE
Enable/disable RxOnWhenIdle MAC PIB attribute (Table 8-94).

Since there is no clear guidance in IEEE 802.15.4 specification about the defini-
tion of an “idle period”, this implementation expects that drivers use the RxOn-
WhenIdle attribute to determine next radio state (false –> off, true –> receive) in
the following scenarios:

• Finalization of a regular frame reception task, provided that:
– The frame is received without errors and passes the filtering and it’s not an

spurious ACK.
– ACK is not requested or transmission of ACK is not possible due to internal

conditions.
• Finalization of a frame transmission or transmission of an ACK frame, when

ACK is not requested in the transmitted frame.
• Finalization of the reception operation of a requested ACK due to:
– ACK timeout expiration.
– Reception of an invalid ACK or not an ACK frame.
– Reception of the proper ACK, unless the transmitted frame was a Data Re-

quest Command and the frame pending bit on the received ACK is set to true.
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In this case the radio platform implementation SHOULD keep the receiver on
until a determined timeout which triggers an idle period start.

• Finalization of a stand alone CCA task.
• Finalization of a CCA operation with busy result during CSMA/CA procedure.
• Finalization of an Energy Detection task.
• Finalization of a scheduled radio reception window (see
IEEE802154_CONFIG_RX_SLOT).

enumerator IEEE802154_CONFIG_COMMON_COUNT
Number of types defined in ieee802154_config_type.

enumerator IEEE802154_CONFIG_PRIV_START =
IEEE802154_CONFIG_COMMON_COUNT

This and higher values are specific to the protocol- or driver-specific extensions.

enum ieee802154_attr
IEEE 802.15.4 driver attributes.

See ieee802154_attr_value and ieee802154_radio_api for usage details.

Values:

enumerator IEEE802154_ATTR_PHY_SUPPORTED_CHANNEL_PAGES
Retrieves a bit field with supported channel pages.

This attribute SHALL be implemented by all drivers.

enumerator IEEE802154_ATTR_PHY_SUPPORTED_CHANNEL_RANGES
Retrieves a pointer to the array of supported channel ranges within the currently
configured channel page.

This attribute SHALL be implemented by all drivers.

enumerator IEEE802154_ATTR_PHY_HRP_UWB_SUPPORTED_PRFS
Retrieves a bit field with supported HRP UWB nominal pulse repetition frequen-
cies.

This attribute SHALL be implemented by all devices that support channel page
four (HRP UWB).

enumerator IEEE802154_ATTR_COMMON_COUNT
Number of attributes defined in ieee802154_attr.

enumerator IEEE802154_ATTR_PRIV_START = IEEE802154_ATTR_COMMON_COUNT
This and higher values are specific to the protocol- or driver-specific extensions.

typedef void (*energy_scan_done_cb_t)(const struct device *dev, int16_t max_ed)
Energy scan callback.

typedef void (*ieee802154_event_cb_t)(const struct device *dev, enum ieee802154_event
evt, void *event_params)

Driver event callback.
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static inline int ieee802154_attr_get_channel_page_and_range(enum ieee802154_attr
attr, const enum
ieee802154_phy_channel_page
phy_supported_channel_page,
const struct
ieee802154_phy_supported_channels
*phy_supported_channels,
struct
ieee802154_attr_value
*value)

Helper function to handle channel page and range to be called from drivers’ attr_get()
implementation.

This only applies to drivers with a single channel page.

Parameters
• attr – The attribute to be retrieved.

• phy_supported_channel_page – The driver’s unique channel page.

• phy_supported_channels – Pointer to the structure that contains the
driver’s channel range or ranges.

• value – The pointer to the value struct provided by the user.

Return values
• 0 – if the attribute could be resolved

• -ENOENT – if the attribute could not be resolved

IEEE802154_HW_CAPS_BITS_COMMON_COUNT
Number of bits used by ieee802154_hw_caps type.

IEEE802154_HW_CAPS_BITS_PRIV_START
This and higher values are specific to the protocol- or driver-specific extensions.

IEEE802154_CONFIG_RX_SLOT_NONE
Configuring an RX slot with the start parameter set to this value will cancel and delete
any previously configured RX slot.

IEEE802154_CONFIG_RX_SLOT_OFF
Configuring an RX slot with this start parameter while the driver is “down”, will keep
RX off when the driver is being started.

Configuring an RX slot with this start value while the driver is “up” will immediately
switch RX off until either the slot is deleted, see IEEE802154_CONFIG_RX_SLOT_NONE
or a slot with a future start parameter is configured and that start time arrives.

IEEE 802.15.4 driver utils

static inline bool ieee802154_is_ar_flag_set(struct net_buf *frag)
Check if the AR flag is set on the frame inside the given Network Packet Library.

Parameters
• frag – A valid pointer on a net_buf structure, must not be NULL, and its

length should be at least 1 byte (ImmAck frames are the shortest sup-
ported frames with 3 bytes excluding FCS).
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Returns
true if AR flag is set, false otherwise

IEEE 802.15.4 driver callbacks

enum net_verdict ieee802154_handle_ack(struct net_if *iface, struct net_pkt *pkt)
IEEE 802.15.4 driver ACK handling callback into L2 that drivers must call when receiv-
ing an ACK package.

The IEEE 802.15.4 standard prescribes generic procedures for ACK handling on L2
(MAC) level. L2 stacks therefore have to provides a fast and re-usable generic imple-
mentation of this callback for drivers to call when receiving an ACK packet.

Note: This function is part of Zephyr’s 802.15.4 stack driver -> L2 “inversion-of-control”
adaptation API and must be implemented by all IEEE 802.15.4 L2 stacks.

Warning

Deviating from other functions in the net stack returning net_verdict, this function
will not unref the package even if it returns NET_OK.

Parameters
• iface – A valid pointer on a network interface that received the packet

• pkt – A valid pointer on a packet to check

Returns
NET_OK if L2 handles the ACK package, NET_CONTINUE or NET_DROP oth-
erwise.

void ieee802154_init(struct net_if *iface)
IEEE 802.15.4 driver initialization callback into L2 called by drivers to initialize the
active L2 stack for a given interface.

Drivers must call this function as part of their own initialization routine.

Note: This function is part of Zephyr’s 802.15.4 stack driver -> L2 “inversion-of-control”
adaptation API and must be implemented by all IEEE 802.15.4 L2 stacks.

Parameters
• iface – A valid pointer on a network interface

IEEE 802.15.4-2020, Section 6: MAC functional description

IEEE802154_PHY_SYMBOLS_PER_SECOND(symbol_period_ns)
The symbol period (and therefore symbol rate) is defined in section 6.1: “Some of the
timing parameters in definition of the MAC are in units of PHY symbols.

For PHYs that have multiple symbol periods, the duration to be used for the MAC pa-
rameters is defined in that PHY clause.”

This is not necessarily the true physical symbol period, so take care to use this macro
only when either the symbol period used for MAC timing is the same as the physical
symbol period or if you actually mean the MAC timing symbol period.

PHY specific symbol periods are defined in PHY specific sections below.
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IEEE 802.15.4-2020, Section 8: MAC services

IEEE802154_MAC_A_BASE_SLOT_DURATION
The number of PHY symbols forming a superframe slot when the superframe order is
equal to zero, see sections 8.4.2, table 8-93, aBaseSlotDuration and section 6.2.1.

IEEE802154_MAC_A_NUM_SUPERFRAME_SLOTS
The number of slots contained in any superframe, see section 8.4.2, table 8-93, aNum-
SuperframeSlots.

IEEE802154_MAC_A_BASE_SUPERFRAME_DURATION
The number of PHY symbols forming a superframe when the superframe order is
equal to zero, see section 8.4.2, table 8-93, aBaseSuperframeDuration.

IEEE802154_MAC_A_UNIT_BACKOFF_PERIOD(turnaround_time)
MAC PIB attribute aUnitBackoffPeriod, see section 8.4.2, table 8-93, in symbol periods,
valid for all PHYs except SUN PHY in the 920 MHz band.

IEEE802154_MAC_RESPONSE_WAIT_TIME_DEFAULT
Default macResponseWaitTime in multiples of aBaseSuperframeDuration as defined
in section 8.4.3.1, table 8-94.

IEEE 802.15.4-2020, Section 11: PHY services

IEEE802154_PHY_A_TURNAROUND_TIME_DEFAULT
Default PHY PIB attribute aTurnaroundTime, in PHY symbols, see section 11.3, table
11-1.

IEEE802154_PHY_A_TURNAROUND_TIME_1MS(symbol_period_ns)
PHY PIB attribute aTurnaroundTime for SUN, RS-GFSK, TVWS, and LECIM FSK PHY, in
PHY symbols, see section 11.3, table 11-1.

IEEE802154_PHY_A_CCA_TIME
PHY PIB attribute aCcaTime, in PHY symbols, all PHYs except for SUN O-QPSK, see sec-
tion 11.3, table 11-1.

IEEE 802.15.4-2020, Section 12: O-QPSK PHY

IEEE802154_PHY_OQPSK_868MHZ_SYMBOL_PERIOD_NS
O-QPSK 868Mhz band symbol period, see section 12.3.3.

IEEE802154_PHY_OQPSK_780_TO_2450MHZ_SYMBOL_PERIOD_NS
O-QPSK 780MHz, 915MHz, 2380MHz and 2450MHz bands symbol period, see section
12.3.3.

IEEE 802.15.4-2020, Section 13: BPSK PHY
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IEEE802154_PHY_BPSK_868MHZ_SYMBOL_PERIOD_NS
BPSK 868MHz band symbol period, see section 13.3.3.

IEEE802154_PHY_BPSK_915MHZ_SYMBOL_PERIOD_NS
BPSK 915MHz band symbol period, see section 13.3.3.

IEEE 802.15.4-2020, Section 19: SUN FSK PHY

IEEE802154_PHY_SUN_FSK_863MHZ_915MHZ_SYMBOL_PERIOD_NS
SUN FSK 863Mhz and 915MHz band symbol periods, see section 19.1, table 19-1.

IEEE802154_PHY_SUN_FSK_PHR_LEN
SUN FSK PHY header length, in bytes, see section 19.2.4.

struct ieee802154_header_ie_vendor_specific
#include <ieee802154_ie.h> Vendor Specific Header IE, see section 7.4.2.3.

Public Members

uint8_t vendor_oui[IEEE802154_VENDOR_SPECIFIC_IE_OUI_LEN]
Vendor OUI.

uint8_t *vendor_specific_info
Vendor specific information.

struct ieee802154_header_ie_csl_full
#include <ieee802154_ie.h> Full CSL IE, see section 7.4.2.3.

Public Members

uint16_t csl_phase
CSL phase.

uint16_t csl_period
CSL period.

uint16_t csl_rendezvous_time
Rendezvous time.

struct ieee802154_header_ie_csl_reduced
#include <ieee802154_ie.h> Reduced CSL IE, see section 7.4.2.3.
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Public Members

uint16_t csl_phase
CSL phase.

uint16_t csl_period
CSL period.

struct ieee802154_header_ie_csl
#include <ieee802154_ie.h> Generic CSL IE, see section 7.4.2.3.

Public Members

struct ieee802154_header_ie_csl_full full
CSL full information.

struct ieee802154_header_ie_csl_reduced reduced
CSL reduced information.

struct ieee802154_header_ie_rit
#include <ieee802154_ie.h> RIT IE, see section 7.4.2.4.

Public Members

uint8_t time_to_first_listen
Time to First Listen.

uint8_t number_of_repeat_listen
Number of Repeat Listen.

uint16_t repeat_listen_interval
Repeat listen interval.

struct ieee802154_header_ie_rendezvous_time_full
#include <ieee802154_ie.h> Full Rendezvous Time IE, see section 7.4.2.6 (macCslInterval
is nonzero).

Public Members

uint16_t rendezvous_time
Rendezvous time.

uint16_t wakeup_interval
Wakeup interval.
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struct ieee802154_header_ie_rendezvous_time_reduced
#include <ieee802154_ie.h> Reduced Rendezvous Time IE, see section 7.4.2.6 (macCslIn-
terval is zero).

Public Members

uint16_t rendezvous_time
Rendezvous time.

struct ieee802154_header_ie_rendezvous_time
#include <ieee802154_ie.h> Rendezvous Time IE, see section 7.4.2.6.

Public Members

struct ieee802154_header_ie_rendezvous_time_full full
Rendezvous time full information.

struct ieee802154_header_ie_rendezvous_time_reduced reduced
Rendezvous time reduced information.

struct ieee802154_header_ie_time_correction
#include <ieee802154_ie.h> Time Correction IE, see section 7.4.2.7.

Public Members

uint16_t time_sync_info
Time synchronization information.

struct ieee802154_phy_channel_range
#include <ieee802154_radio.h> Represents a supported channel range, see
ieee802154_phy_supported_channels.

Public Members

uint16_t from_channel
From channel range.

uint16_t to_channel
To channel range.

struct ieee802154_phy_supported_channels
#include <ieee802154_radio.h> Represents a list channels supported by a driver for a
given interface, see IEEE802154_ATTR_PHY_SUPPORTED_CHANNEL_RANGES.
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Public Members

const struct ieee802154_phy_channel_range *const ranges
Pointer to an array of channel range structures.

Warning

The pointer must be valid and constant throughout the life of the interface.

const uint8_t num_ranges
The number of currently available channel ranges.

struct ieee802154_filter
#include <ieee802154_radio.h> Filter value, see ieee802154_radio_api::filter.

Public Members

uint8_t *ieee_addr
Extended address, in little endian.

uint16_t short_addr
Short address, in CPU byte order.

uint16_t pan_id
PAN ID, in CPU byte order.

struct ieee802154_key
#include <ieee802154_radio.h> Key configuration for transmit security offloading, see
IEEE802154_CONFIG_MAC_KEYS.

Public Members

uint8_t *key_value
Key material.

uint32_t key_frame_counter
Initial value of frame counter associated with the key, see section 9.4.3.

bool frame_counter_per_key
Indicates if per-key frame counter should be used, see section 9.4.3.

uint8_t key_id_mode
Key Identifier Mode, see section 9.4.2.3, Table 9-7.

uint8_t *key_id
Key Identifier, see section 9.4.4.
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struct ieee802154_config
#include <ieee802154_radio.h> IEEE 802.15.4 driver configuration data.

Public Members

bool enabled
Is auto ACK FPB enabled.

Is enabled.

enum ieee802154_fpb_mode mode
Auto ACK FPB mode.

struct ieee802154_config auto_ack_fpb
see IEEE802154_CONFIG_AUTO_ACK_FPB

uint8_t *addr
little endian for both short and extended address

bool extended
Is extended address.

struct ieee802154_config ack_fpb
see IEEE802154_CONFIG_ACK_FPB

bool pan_coordinator
see IEEE802154_CONFIG_PAN_COORDINATOR

bool promiscuous
see IEEE802154_CONFIG_PROMISCUOUS

bool rx_on_when_idle
see IEEE802154_CONFIG_RX_ON_WHEN_IDLE

ieee802154_event_cb_t event_handler
see IEEE802154_CONFIG_EVENT_HANDLER

struct ieee802154_key *mac_keys
see IEEE802154_CONFIG_MAC_KEYS

Pointer to an array containing a list of keys used for MAC encryption. Refer to
secKeyIdLookupDescriptor and secKeyDescriptor in IEEE 802.15.4

The key_value field points to a buffer containing the 16 byte key. The buffer SHALL
be copied by the driver before returning from the call.

The variable length array is terminated by key_value field set to NULL.

uint32_t frame_counter
see IEEE802154_CONFIG_FRAME_COUNTER
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net_time_t start
Nanosecond resolution timestamp relative to the network subsystem’s local clock
defining the start of the RX window during which the receiver is expected to be
listening (i.e.

not including any driver startup times).

Configuring an rx_slot with the start attribute set to -1 will cancel and delete any
previously active rx slot.

net_time_t duration
Nanosecond resolution duration of the RX window relative to the above RX win-
dow start time during which the receiver is expected to be listening (i.e.

not including any shutdown times). Only positive values larger than or equal zero
are allowed.

Setting the duration to zero will disable the receiver, no matter what the start pa-
rameter.

uint8_t channel
Used channel.

struct ieee802154_config rx_slot
see IEEE802154_CONFIG_RX_SLOT

uint32_t csl_period
see IEEE802154_CONFIG_CSL_PERIOD

in CPU byte order

net_time_t expected_rx_time
see IEEE802154_CONFIG_EXPECTED_RX_TIME

struct ieee802154_header_ie *header_ie
Pointer to the header IE, see section 7.4.2.1, figure 7-21.

Certain header IEs may be incomplete if they require timing in-
formation to be injected at runtime on-the-fly, see the list in
IEEE802154_CONFIG_ENH_ACK_HEADER_IE.

const uint8_t *ext_addr
Filters the devices that will receive this IE by extended address.

MAY be set to NULL to configure a fallback for all devices (implies that short_addr
MUST also be set to IEEE802154_BROADCAST_ADDRESS).

in big endian

uint16_t short_addr
Filters the devices that will receive this IE by short address.

MAY be set to IEEE802154_BROADCAST_ADDRESS to configure a fallback for all
devices (implies that ext_addr MUST also set to NULL in this case).

in CPU byte order
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bool purge_ie
Flag for purging enh ACK header IEs.

When flag is set to true, driver should remove all existing header IEs, and all other
entries in config should be ignored. This means that purging current header IEs
and configuring a new one in the same call is not allowed.

struct ieee802154_config ack_ie
see IEEE802154_CONFIG_ENH_ACK_HEADER_IE

union ieee802154_config
Configuration data.

struct ieee802154_attr_value
#include <ieee802154_radio.h> IEEE 802.15.4 driver attribute values.

This structure is reserved to scalar and structured attributes that originate in the driver
implementation and can neither be implemented as boolean ieee802154_hw_caps nor
be derived directly or indirectly by the MAC (L2) layer. In particular this structure
MUST NOT be used to return configuration data that originate from L2.

Note

To keep this union reasonably small, any attribute requiring a large memory area,
SHALL be provided pointing to static memory allocated by the driver and valid
throughout the lifetime of the driver instance.

Public Members

uint32_t phy_supported_channel_pages
A bit field that represents the supported channel pages, see
ieee802154_phy_channel_page.

Note

To keep the API extensible as required by the standard, supported pages are
modeled as a bitmap to support drivers that implement runtime switching be-
tween multiple channel pages.

Note

Currently none of the Zephyr drivers implements more than one channel page
at runtime, therefore only one bit will be set and the current channel page (see
the PHY PIB attribute phyCurrentPage, section 11.3, table 11-2) is considered to
be read-only, fixed and “well known” via the supported channel pages attribute.

const struct ieee802154_phy_supported_channels *phy_supported_channels
Pointer to a structure representing channel ranges currently available on the se-
lected channel page.
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The selected channel page corresponds to the phyCurrentPage PHY PIB attribute,
see the description of phy_supported_channel_pages above. Currently it can be re-
trieved via the IEEE802154_ATTR_PHY_SUPPORTED_CHANNEL_PAGES attribute.

Most drivers will expose a single channel page with a single, often zero-based, fixed
channel range.

Some notable exceptions:
• The legacy channel page (zero) exposes ranges in different bands and even

PHYs that are usually not implemented by a single driver.
• SUN and LECIM PHYs specify a large number of bands and operating modes

on a single page with overlapping channel ranges each. Some of these ranges
are not zero-based or contain “holes”. This explains why several ranges may
be necessary to represent all available channels.

• UWB PHYs often support partial channel ranges on the same channel page de-
pending on the supported bands.

In these cases, drivers may expose custom configuration attributes (Kconfig, de-
vicetree, runtime, …) that allow switching between sub-ranges within the same
channel page (e.g. switching between SubG and 2.4G bands on channel page zero
or switching between multiple operating modes in the SUN or LECIM PHYs.

Warning

The pointer must be valid and constant throughout the life of the interface.

uint32_t phy_hrp_uwb_supported_nominal_prfs
A bit field representing supported HRP UWB pulse repetition frequencies (PRF),
see enum ieee802154_phy_hrp_uwb_nominal_prf.

Note

Currently none of the Zephyr HRP UWB drivers implements more than one
nominal PRF at runtime, therefore only one bit will be set and the current PRF
(UwbPrf, MCPS-DATA.request, section 8.3.2, table 8-88) is considered to be read-
only, fixed and “well known” via the supported PRF attribute.

struct ieee802154_radio_api
#include <ieee802154_radio.h> IEEE 802.15.4 driver interface API.

While L1-level driver features are exclusively implemented by drivers and MAY be
mandatory to support certain application requirements, L2 features SHOULD be op-
tional by default and only need to be implemented for performance optimization or
precise timing as deemed necessary by driver maintainers. Fallback implementa-
tions (“Soft MAC”) SHOULD be provided in the driver-independent L2 layer for all
L2/MAC features especially if these features are not implemented in vendor hard-
ware/firmware by a majority of existing in-tree drivers. If, however, a driver offers
offloading opportunities then L2 implementations SHALL delegate performance criti-
cal or resource intensive tasks to the driver.

All drivers SHALL support two externally observable interface operational states: “UP”
and “DOWN”. Drivers MAY additionally support a “TESTING” interface state (see con-
tinuous_carrier()).

The following rules apply:
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• An interface is considered “UP” when it is able to transmit and receive packets,
“DOWN” otherwise (see precise definitions of the corresponding ifOperStatus val-
ues in RFC 2863, section 3.1.14, net_if_oper_state and the continuous_carrier()
exception below). A device that has its receiver temporarily disabled during “UP”
state due to an active receive window configuration is still considered “UP”.

• Upper layers will assume that the interface managed by the driver is “UP” after a
call to start() returned zero or -EALREADY. Upper layers assume that the interface
is “DOWN” after calling stop() returned zero or -EALREADY.

• The driver SHALL block start()/stop() calls until the interface fully transitioned
to the new state (e.g. the receiver is operational, ongoing transmissions were fin-
ished, etc.). Drivers SHOULD yield the calling thread (i.e. “sleep”) if waiting for the
new state without CPU interaction is possible.

• Drivers are responsible of guaranteeing atomicity of state changes. Appropriate
means of synchronization SHALL be implemented (locking, atomic flags, …).

• While the interface is “DOWN”, the driver SHALL be placed in the lowest possible
power state. The driver MAY return from a call to stop() before it reaches the
lowest possible power state, i.e. manage power asynchronously. While the inter-
face is “UP”, the driver SHOULD autonomously and asynchronously transition to
lower power states whenever possible. If the driver claims to support timed RX/TX
capabilities and the upper layers configure an RX slot, then the driver SHALL im-
mediately transition (asynchronously) to the lowest possible power state until the
start of the RX slot or until a scheduled packet needs to be transmitted.

• The driver SHALL NOT change the interface’s “UP”/”DOWN” state on its own. Ini-
tially, the interface SHALL be in the “DOWN” state.

• Drivers that implement the optional continuous_carrier() operation will be con-
sidered to be in the RFC 2863 “testing” ifOperStatus state if that operation returns
zero. This state is active until either start() or stop() is called. If continu-
ous_carrier() returns a non-zero value then the previous state is assumed by
upper layers.

• If calls to start()/stop() return any other value than zero or -EALREADY, upper
layers will consider the interface to be in a “lowerLayerDown” state as defined in
RFC 2863.

• The RFC 2863 “dormant”, “unknown” and “notPresent” ifOperStatus states are cur-
rently not supported. The “lowerLevelUp” state.

• The ed_scan(), cca() and tx() operations SHALL only be supported in the “UP”
state and return -ENETDOWN in any other state. See the function-level API documen-
tation below for further details.

Note

This structure is called “radio” API for backwards compatibility. A better name
would be “IEEE 802.15.4 driver API” as typical drivers will not only implement
L1/radio (PHY) features but also L2 (MAC) features if the vendor-specific driver
hardware or firmware offers offloading opportunities.

Note

In case of devices that support timed RX/TX, the “UP” state is not equal to “receiver
enabled”. If a receive window (i.e. RX slot, see IEEE802154_CONFIG_RX_SLOT) is
configured before calling start() then the receiver will not be enabled when tran-
sitioning to the “UP” state. Configuring a receive window while the interface is “UP”
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will cause the receiver to be disabled immediately until the configured reception
time has arrived.

Public Members

struct net_if_api iface_api
network interface API

Note

Network devices must extend the network interface API. It is therefore manda-
tory to place it at the top of the driver API struct so that it can be cast to a net-
work interface.

enum ieee802154_hw_caps (*get_capabilities)(const struct device *dev)
Get the device driver capabilities.

Note

Implementations SHALL be isr-ok and MUST NOT sleep. MAY be called in any
interface state once the driver is fully initialized (“ready”).

Param dev
pointer to IEEE 802.15.4 driver device

Return
Bit field with all supported device driver capabilities.

int (*cca)(const struct device *dev)
Clear Channel Assessment - Check channel’s activity.

Note

Implementations SHALL be isr-ok and MAY sleep. SHALL return -ENETDOWN
unless the interface is “UP”.

Param dev
pointer to IEEE 802.15.4 driver device

Retval 0
the channel is available

Retval -EBUSY
The channel is busy.

Retval -EWOULDBLOCK
The operation is called from ISR context but temporarily cannot be exe-
cuted without blocking.

Retval -ENETDOWN
The interface is not “UP”.

Retval -ENOTSUP
CCA is not supported by this driver.

Retval -EIO
The CCA procedure could not be executed.
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int (*set_channel)(const struct device *dev, uint16_t channel)
Set current channel.

Note

Implementations SHALL be isr-ok and MAY sleep. SHALL return -EIO unless
the interface is either “UP” or “DOWN”.

Param dev
pointer to IEEE 802.15.4 driver device

Param channel
the number of the channel to be set in CPU byte order

Retval 0
channel was successfully set

Retval -EALREADY
The previous channel is the same as the requested channel.

Retval -EINVAL
The given channel is not within the range of valid
channels of the driver’s current channel page, see the
IEEE802154_ATTR_PHY_SUPPORTED_CHANNEL_RANGES driver at-
tribute.

Retval -EWOULDBLOCK
The operation is called from ISR context but temporarily cannot be exe-
cuted without blocking.

Retval -ENOTSUP
The given channel is within the range of valid channels of the driver’s
current channel page but unsupported by the current driver.

Retval -EIO
The channel could not be set.

int (*filter)(const struct device *dev, bool set, enum ieee802154_filter_type type,
const struct ieee802154_filter *filter)

Set/Unset PAN ID, extended or short address filters.

Note

requires IEEE802154_HW_FILTER capability.

Note

Implementations SHALL be isr-ok and MAY sleep. SHALL return -EIO unless
the interface is either “UP” or “DOWN”.

Param dev
pointer to IEEE 802.15.4 driver device

Param set
true to set the filter, false to remove it

Param type
the type of entity to be added/removed from the filter list (a PAN ID or a
source/destination address)

Param filter
the entity to be added/removed from the filter list

Retval 0
The filter was successfully added/removed.
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Retval -EINVAL
The given filter entity or filter entity type was not valid.

Retval -EWOULDBLOCK
The operation is called from ISR context but temporarily cannot be exe-
cuted without blocking.

Retval -ENOTSUP
Setting/removing this filter or filter type is not supported by this driver.

Retval -EIO
Error while setting/removing the filter.

int (*set_txpower)(const struct device *dev, int16_t dbm)
Set TX power level in dbm.

Note

Implementations SHALL be isr-ok and MAY sleep. SHALL return -EIO unless
the interface is either “UP” or “DOWN”.

Param dev
pointer to IEEE 802.15.4 driver device

Param dbm
TX power in dbm

Retval 0
The TX power was successfully set.

Retval -EINVAL
The given dbm value is invalid or not supported by the driver.

Retval -EWOULDBLOCK
The operation is called from ISR context but temporarily cannot be exe-
cuted without blocking.

Retval -EIO
The TX power could not be set.

int (*tx)(const struct device *dev, enum ieee802154_tx_mode mode, struct net_pkt
*pkt, struct net_buf *frag)

Transmit a packet fragment as a single frame.

Depending on the level of offloading features supported by the driver, the frame
MAY not be fully encrypted/authenticated or it MAY not contain an FCS. It is the re-
sponsibility of L2 implementations to prepare the frame according to the offload-
ing capabilities announced by the driver and to decide whether CCA, CSMA/CA,
ACK or retransmission procedures need to be executed outside (“soft MAC”) or in-
side (“hard MAC”) the driver .

All frames originating from L2 SHALL have all required IEs pre-allocated and pre-
filled such that the driver does not have to parse and manipulate IEs at all. This
includes ACK packets if the driver does not have the IEEE802154_HW_RX_TX_ACK
capability. Also see IEEE802154_CONFIG_ENH_ACK_HEADER_IE for drivers that
have the IEEE802154_HW_RX_TX_ACK capability.

IEs that cannot be prepared by L2 unless the TX time is known (e.g. CSL IE, Ren-
dezvous Time IE, Time Correction IE, …) SHALL be sent in any of the timed TX
modes with appropriate timing information pre-filled in the IE such that drivers
do not have to parse and manipulate IEs at all unless the frame is generated by the
driver itself.

In case any of the timed TX modes is supported and used (see ieee802154_hw_caps
and ieee802154_tx_mode), the driver SHALL take responsibility of scheduling and
sending the packet at the precise programmed time autonomously without fur-
ther interaction by upper layers. The call to tx() will block until the package has
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either been sent successfully (possibly including channel acquisition and packet
acknowledgment) or a terminal transmission error occurred. The driver SHALL
sleep and keep power consumption to the lowest possible level until the scheduled
transmission time arrives or during any other idle waiting time.

Note

Implementations MAY sleep and will usually NOT be isr-ok - especially when
timed TX, CSMA/CA, retransmissions, auto-ACK or any other offloading fea-
ture is supported that implies considerable idle waiting time. SHALL return
-ENETDOWN unless the interface is “UP”.

Warning

The driver SHALL NOT take ownership of the given network packet and frame
(fragment) buffer. Any data required by the driver including the actual frame
content must be read synchronously and copied internally if needed at a later
time (e.g. the contents of IEs required for protocol configuration, states of frame
counters, sequence numbers, etc). Both, the packet and the buffer MAY be re-
used or released by upper layers immediately after the function returns.

Param dev
pointer to IEEE 802.15.4 driver device

Parammode
the transmission mode, some of which require specific offloading capa-
bilities.

Param pkt
pointer to the network packet to be transmitted.

Param frag
pointer to a network buffer containing a single fragment with the frame
data to be transmitted

Retval 0
The frame was successfully sent or scheduled. If the driver supports ACK
offloading and the frame requested acknowledgment (AR bit set), this
means that the packet was successfully acknowledged by its peer.

Retval -EINVAL
Invalid packet (e.g. an expected IE is missing or the encryp-
tion/authentication state is not as expected).

Retval -EBUSY
The frame could not be sent because the medium was busy (CSMA/CA or
CCA offloading feature only).

Retval -ENOMSG
The frame was not confirmed by an ACK packet (TX ACK offloading fea-
ture only) or the received ACK packet was invalid.

Retval -ENOBUFS
The frame could not be scheduled due to missing internal resources
(timed TX offloading feature only).

Retval -ENETDOWN
The interface is not “UP”.

Retval -ENOTSUP
The given TX mode is not supported.

Retval -EIO
The frame could not be sent due to some unspecified driver error (e.g.
the driver being busy).

int (*start)(const struct device *dev)
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Start the device.

Upper layers will assume the interface is “UP” if this operation returns with zero
or -EALREADY. The interface is placed in receive mode before returning from this
operation unless an RX slot has been configured (even if it lies in the past, see
IEEE802154_CONFIG_RX_SLOT).

Note

Implementations SHALL be isr-ok and MAY sleep. MAY be called in any inter-
face state once the driver is fully initialized (“ready”).

Param dev
pointer to IEEE 802.15.4 driver device

Retval 0
The driver was successfully started.

Retval -EALREADY
The driver was already “UP”.

Retval -EWOULDBLOCK
The operation is called from ISR context but temporarily cannot be exe-
cuted without blocking.

Retval -EIO
The driver could not be started.

int (*stop)(const struct device *dev)
Stop the device.

Upper layers will assume the interface is “DOWN” if this operation returns with
zero or -EALREADY. The driver switches off the receiver before returning if it was
previously on. The driver enters the lowest possible power mode after this oper-
ation is called. This MAY happen asynchronously (i.e. after the operation already
returned control).

Note

Implementations SHALL be isr-ok and MAY sleep. MAY be called in any inter-
face state once the driver is fully initialized (“ready”).

Param dev
pointer to IEEE 802.15.4 driver device

Retval 0
The driver was successfully stopped.

Retval -EWOULDBLOCK
The operation is called from ISR context but temporarily cannot be exe-
cuted without blocking.

Retval -EALREADY
The driver was already “DOWN”.

Retval -EIO
The driver could not be stopped.

int (*continuous_carrier)(const struct device *dev)
Start continuous carrier wave transmission.

The method blocks until the interface has started to emit a continuous carrier. To
leave this mode, start() or stop() should be called, which will put the driver back
into the “UP” or “DOWN” states, respectively.
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Note

Implementations MAY sleep and will usually NOT be isr-ok. MAY be called in
any interface state once the driver is fully initialized (“ready”).

Param dev
pointer to IEEE 802.15.4 driver device

Retval 0
continuous carrier wave transmission started

Retval -EALREADY
The driver was already in “TESTING” state and emitting a continuous car-
rier.

Retval -EIO
not started

int (*configure)(const struct device *dev, enum ieee802154_config_type type, const
struct ieee802154_config *config)

Set or update driver configuration.

The method blocks until the interface has been reconfigured atomically with re-
spect to ongoing package reception, transmission or any other ongoing driver op-
eration.

Note

Implementations SHALL be isr-ok and MAY sleep. MAY be called in any in-
terface state once the driver is fully initialized (“ready”). Some configuration
options may not be supported in all interface operational states, see the de-
tailed specifications in ieee802154_config_type. In this case the operation re-
turns -EACCES.

Param dev
pointer to IEEE 802.15.4 driver device

Param type
the configuration type to be set

Param config
the configuration parameters to be set for the given configuration type

Retval 0
configuration successful

Retval -EINVAL
The configuration parameters are invalid for the given configuration
type.

Retval -ENOTSUP
The given configuration type is not supported by this driver.

Retval -EACCES
The given configuration type is supported by this driver but cannot be
configured in the current interface operational state.

Retval -ENOMEM
The configuration cannot be saved due to missing memory resources.

Retval -ENOENT
The resource referenced in the configuration parameters cannot be
found in the configuration.

Retval -EWOULDBLOCK
The operation is called from ISR context but temporarily cannot be exe-
cuted without blocking.

Retval -EIO
An internal error occurred while trying to configure the given configura-
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tion parameter.

int (*ed_scan)(const struct device *dev, uint16_t duration, energy_scan_done_cb_t
done_cb)

Run an energy detection scan.

Note

requires IEEE802154_HW_ENERGY_SCAN capability

Note

The radio channel must be set prior to calling this function.

Note

Implementations SHALL be isr-ok and MAY sleep. SHALL return -ENETDOWN
unless the interface is “UP”.

Param dev
pointer to IEEE 802.15.4 driver device

Param duration
duration of energy scan in ms

Param done_cb
function called when the energy scan has finished

Retval 0
the energy detection scan was successfully scheduled

Retval -EBUSY
the energy detection scan could not be scheduled at this time

Retval -EALREADY
a previous energy detection scan has not finished yet.

Retval -ENETDOWN
The interface is not “UP”.

Retval -ENOTSUP
This driver does not support energy scans.

Retval -EIO
The energy detection procedure could not be executed.

net_time_t (*get_time)(const struct device *dev)
Get the current time in nanoseconds relative to the network subsystem’s local up-
time clock as represented by this network interface.

See net_time_t for semantic details.

Note

requires IEEE802154_HW_TXTIME and/or IEEE802154_HW_RXTIME capabili-
ties. Implementations SHALL be isr-ok and MUST NOT sleep. MAY be called
in any interface state once the driver is fully initialized (“ready”).

Param dev
pointer to IEEE 802.15.4 driver device
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Return
nanoseconds relative to the network subsystem’s local clock, -1 if an error
occurred or the operation is not supported

uint8_t (*get_sch_acc)(const struct device *dev)
Get the current estimated worst case accuracy (maximum ± deviation from the
nominal frequency) of the network subsystem’s local clock used to calculate toler-
ances and guard times when scheduling delayed receive or transmit radio opera-
tions.

The deviation is given in units of PPM (parts per million).

Note

requires IEEE802154_HW_TXTIME and/or IEEE802154_HW_RXTIME capabili-
ties.

Note

Implementations may estimate this value based on current operating condi-
tions (e.g. temperature). Implementations SHALL be isr-ok and MUST NOT
sleep. MAY be called in any interface state once the driver is fully initialized
(“ready”).

Param dev
pointer to IEEE 802.15.4 driver device

Return
current estimated clock accuracy in PPM

int (*attr_get)(const struct device *dev, enum ieee802154_attr attr, struct
ieee802154_attr_value *value)

Get the value of a driver specific attribute.

Note

This function SHALL NOT return any values configurable by the MAC (L2) layer.
It is reserved to non-boolean (i.e. scalar or structured) attributes that originate
from the driver implementation and cannot be directly or indirectly derived by
L2. Boolean attributes SHALL be implemented as ieee802154_hw_caps.

Note

Implementations SHALL be isr-ok and MUST NOT sleep. MAY be called in any
interface state once the driver is fully initialized (“ready”).

Retval 0
The requested attribute is supported by the driver and the value can be
retrieved from the corresponding ieee802154_attr_value member.

Retval -ENOENT
The driver does not provide the requested attribute. The value structure
has not been updated with attribute data. The content of the value at-
tribute is undefined.
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IEEE 802.15.4 L2 / Native Stack API This documents the IEEE 802.15.4 L2 native stack, which
neither applications nor drivers will ever access directly. It is called internally by Zephyr’s upper
network layers (L3+), its socket and network context abstractions. This API is therefore of interest
to IEEE 802.15.4 subsystem contributors only.

group ieee802154_l2
IEEE 802.15.4 L2 APIs.

Since
1.0

Version
0.8.0

This API provides integration with Zephyr’s sockets and network contexts. Application
and driver developers should never interface directly with this API. It is of interest to
subsystem maintainers only.

The API implements and extends the following structures:

• implements Zephyr’s internal L2-level socket and network context abstractions (con-
text/socket operations, see Network L2 Abstraction Layer),

• protocol-specific extension to the interface structure (see Network Interface abstrac-
tion layer)

• protocol-specific extensions to the network packet structure (see Network Packet Li-
brary),

Note

All section, table and figure references are to the IEEE 802.15.4-2020 standard.

Defines

IEEE802154_MAX_PHY_PACKET_SIZE
Represents the PHY constant aMaxPhyPacketSize, see section 11.3.

Note

Currently only 127 byte sized packets are supported although some PHYs (e.g. SUN,
MSK, LECIM, …) support larger packet sizes. Needs to be changed once those PHYs
should be fully supported.

IEEE802154_FCS_LENGTH
Represents the frame check sequence length, see section 7.2.1.1.

Note

Currently only a 2 byte FCS is supported although some PHYs (e.g. SUN, TVWS, …)
optionally support a 4 byte FCS. Needs to be changed once those PHYs should be
fully supported.
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IEEE802154_MTU
IEEE 802.15.4 “hardware” MTU (not to be confused with L3/IP MTU), i.e.

the actual payload available to the next higher layer.

This is equivalent to the IEEE 802.15.4 MAC frame length minus checksum bytes which
is again equivalent to the PHY payload aka PSDU length minus checksum bytes. This
definition exists for compatibility with the same concept in Linux and Zephyr’s L3. It
is not a concept from the IEEE 802.15.4 standard.

Note

Currently only the original frame size from the 2006 standard version and earlier
is supported. The 2015+ standard introduced PHYs with larger PHY payload. These
are not (yet) supported in Zephyr.

IEEE802154_SHORT_ADDR_LENGTH
IEEE 802.15.4 short address length.

IEEE802154_EXT_ADDR_LENGTH
IEEE 802.15.4 extended address length.

IEEE802154_MAX_ADDR_LENGTH
IEEE 802.15.4 maximum address length.

IEEE802154_NO_CHANNEL
A special channel value that symbolizes “all” channels or “any” channel - depending
on context.

IEEE802154_BROADCAST_ADDRESS
Represents the IEEE 802.15.4 broadcast short address, see sections 6.1 and 8.4.3, table
8-94, macShortAddress.

IEEE802154_NO_SHORT_ADDRESS_ASSIGNED
Represents a special IEEE 802.15.4 short address that indicates that a device has been
associated with a coordinator but did not receive a short address, see sections 6.4.1
and 8.4.3, table 8-94, macShortAddress.

IEEE802154_BROADCAST_PAN_ID
Represents the IEEE 802.15.4 broadcast PAN ID, see section 6.1.

IEEE802154_SHORT_ADDRESS_NOT_ASSOCIATED
Represents a special value of the macShortAddress MAC PIB attribute, while the device
is not associated, see section 8.4.3, table 8-94.

IEEE802154_PAN_ID_NOT_ASSOCIATED
Represents a special value of the macPanId MAC PIB attribute, while the device is not
associated, see section 8.4.3, table 8-94.

Enums
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enum ieee802154_device_role
IEEE 802.15.4 device role.

Values:

enumerator IEEE802154_DEVICE_ROLE_ENDDEVICE
End device.

enumerator IEEE802154_DEVICE_ROLE_COORDINATOR
Coordinator.

enumerator IEEE802154_DEVICE_ROLE_PAN_COORDINATOR
PAN coordinator.

struct ieee802154_security_ctx
#include <ieee802154.h> Interface-level security attributes, see section 9.5.

Public Members

uint32_t frame_counter
Interface-level outgoing frame counter, section 9.5, table 9-8, secFrameCounter.

Only used when the driver does not implement key-specific frame counters.

uint8_t key[16]
Interface-level frame encryption security key material.

Currently native L2 only supports a single secKeySource, see section 9.5, table 9-
9, in combination with secKeyMode zero (implicit key mode), see section 9.4.2.3,
table 9-7.

Warning

This is no longer in accordance with the 2015+ versions of the standard and
needs to be extended in the future for full security procedure compliance.

uint8_t key_len
Length in bytes of the interface-level security key material.

uint8_t level
Frame security level, possible values are defined in section 9.4.2.2, table 9-6.

Warning

Currently native L2 allows to configure one common security level for all frame
types, commands and information elements. This is no longer in accordance
with the 2015+ versions of the standard and needs to be extended in the future
for full security procedure compliance.
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uint8_t key_mode
Frame security key mode.

Currently only implicit key mode is partially supported, see section 9.4.2.3, table
9-7, secKeyMode.

Warning

This is no longer in accordance with the 2015+ versions of the standard and
needs to be extended in the future for full security procedure compliance.

struct ieee802154_context
#include <ieee802154.h> IEEE 802.15.4 L2 context.

Public Members

uint16_t pan_id
PAN ID.

The identifier of the PAN on which the device is operating. If this value is 0xffff,
the device is not associated. See section 8.4.3.1, table 8-94, macPanId.

in CPU byte order

uint16_t channel
Channel Number.

The RF channel to use for all transmissions and receptions, see section 11.3, ta-
ble 11-2, phyCurrentChannel. The allowable range of values is PHY dependent as
defined in section 10.1.3.

in CPU byte order

uint16_t short_addr
Short Address (in CPU byte order)

Range:
• 0x0000–0xfffd: associated, short address was assigned
• 0xfffe: associated but no short address assigned
• 0xffff: not associated (default),

See section 6.4.1, table 6-4 (Usage of the shart address) and section 8.4.3.1, table
8-94, macShortAddress.

uint8_t ext_addr[8]
Extended Address (in little endian)

The extended address is device specific, usually permanently stored on the device
and immutable.

See section 8.4.3.1, table 8-94, macExtendedAddress.

struct net_linkaddr_storage linkaddr
Link layer address (in big endian)
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struct ieee802154_security_ctx sec_ctx
Security context.

struct ieee802154_req_params *scan_ctx
Pointer to scanning parameters and results, guarded by scan_ctx_lock.

struct k_sem scan_ctx_lock
Used to maintain integrity of data for all fields in this struct unless otherwise doc-
umented on field level.

uint8_t coord_ext_addr[8]
Coordinator extended address.

see section 8.4.3.1, table 8-94, macCoordExtendedAddress, the address of the coor-
dinator through which the device is associated.

A value of zero indicates that a coordinator extended address is unknown (default).

in little endian

uint16_t coord_short_addr
Coordinator short address.

see section 8.4.3.1, table 8-94, macCoordShortAddress, the short address assigned
to the coordinator through which the device is associated.

A value of 0xfffe indicates that the coordinator is only using its extended address.
A value of 0xffff indicates that this value is unknown.

in CPU byte order

int16_t tx_power
Transmission power in dBm.

enum net_l2_flags flags
L2 flags.

uint8_t sequence
Data sequence number.

The sequence number added to the transmitted Data frame or MAC command, see
section 8.4.3.1, table 8-94, macDsn.

uint8_t device_role
Device Role.

See section 6.1: A device may be operating as end device (0), coordinator (1), or
PAN coordinator (2). If no device role is explicitly configured then the device will
be treated as an end device.

A value of 3 is undefined.

Can be read/set via ieee802154_device_role.

uint8_t ack_requested
ACK requested flag, guarded by ack_lock.

6.3. Networking 2713



Zephyr Project Documentation, Release 3.7.99

uint8_t ack_seq
ACK expected sequence number, guarded by ack_lock.

struct k_sem ack_lock
ACK lock, guards ack_* fields.

struct k_sem ctx_lock
Context lock.

This lock guards all mutable context attributes unless otherwise mentioned on at-
tribute level.

OpenThread L2 Adaptation Layer API Zephyr’s OpenThread L2 platform adaptation layer
glues the external OpenThread stack together with Zephyr’s IEEE 802.15.4 protocol agnostic
driver API. This API is of interest to OpenThread L2 subsystem contributors only.

The OpenThread API is part of the Thread protocol subsystem and documented there.

Thread protocol

• Overview

• Internet connectivity

• Sample usage

• Thread related APIs

– OpenThread Driver API

– OpenThread L2 Adaptation Layer API

Overview Thread is a low-power mesh networking technology, designed specifically for home
automation applications. It is an IPv6-based standard, which uses 6LoWPAN technology over
IEEE 802.15.4 protocol. IP connectivity lets you easily connect a Thread mesh network to the
internet with a Thread Border Router.

The Thread specification provides a high level of network security. Mesh networks built with
Thread are secure - only authenticated devices can join the network and all communications
within the mesh are encrypted. More information about Thread protocol can be found at Thread
Group website.

Zephyr integrates an open source Thread protocol implementation called OpenThread, docu-
mented on the OpenThread website.

Internet connectivity A Thread Border Router is required to connect mesh network to the in-
ternet. An open source implementation of Thread Border Router is provided by the OpenThread
community. See OpenThread Border Router guide for instructions on how to set up a Border
Router.

Sample usage You can try using OpenThread with the Zephyr Echo server and Echo client
samples, which provide out-of-the-box configuration for OpenThread. To enable OpenThread
support in these samples, build them with overlay-ot.conf overlay config file. See sockets-echo-
server and sockets-echo-client samples for details.
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Thread related APIs

OpenThread Driver API OpenThread L2 uses Zephyr’s protocol agnostic IEEE 802.15.4 driver
API internally. This API is of interest to driver developers that want to support OpenThread.

The driver API is part of the IEEE 802.15.4 Driver API subsystem and documented there.

OpenThread L2 Adaptation Layer API Zephyr’s OpenThread L2 platform adaptation layer
glues the external OpenThread stack together with Zephyr’s IEEE 802.15.4 protocol agnostic
driver API. This API is of interest to OpenThread L2 subsystem contributors only.

Related code samples

OpenThread co-processor
Build a Thread border-router using OpenThread’s co-processor designs.

group openthread
OpenThread Layer 2 abstraction layer.

Since
1.11

Version
0.8.0

Functions

int openthread_state_changed_cb_register(struct openthread_context *ot_context,
struct openthread_state_changed_cb *cb)

Registers callbacks which will be called when certain configuration or state changes
occur within OpenThread.

Parameters
• ot_context – the OpenThread context to register the callback with.

• cb – callback struct to register.

int openthread_state_changed_cb_unregister(struct openthread_context *ot_context,
struct openthread_state_changed_cb *cb)

Unregisters OpenThread configuration or state changed callbacks.

Parameters
• ot_context – the OpenThread context to unregister the callback from.

• cb – callback struct to unregister.

k_tid_t openthread_thread_id_get(void)
Get OpenThread thread identification.

struct openthread_context *openthread_get_default_context(void)
Get pointer to default OpenThread context.

Return values
• !NULL – On success.
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• NULL – On failure.

struct otInstance *openthread_get_default_instance(void)
Get pointer to default OpenThread instance.

Return values
• !NULL – On success.

• NULL – On failure.

int openthread_start(struct openthread_context *ot_context)
Starts the OpenThread network.

Depends on active settings: it uses stored network configuration, start joining proce-
dure or uses default network configuration. Additionally when the device is MTD, it
sets the SED mode to properly attach the network.

Parameters
• ot_context

void openthread_api_mutex_lock(struct openthread_context *ot_context)
Lock internal mutex before accessing OT API.

OpenThread API is not thread-safe, therefore before accessing any API function, it’s
needed to lock the internal mutex, to prevent the OpenThread thread from preempting
the API call.

Parameters
• ot_context – Context to lock.

int openthread_api_mutex_try_lock(struct openthread_context *ot_context)
Try to lock internal mutex before accessing OT API.

This function behaves like openthread_api_mutex_lock() provided that the internal mu-
tex is unlocked. Otherwise, it exists immediately and returns a negative value.

Parameters
• ot_context – Context to lock.

Return values
• 0 – On success.

• <0 – On failure.

void openthread_api_mutex_unlock(struct openthread_context *ot_context)
Unlock internal mutex after accessing OT API.

Parameters
• ot_context – Context to unlock.

struct openthread_state_changed_cb
#include <openthread.h> OpenThread state change callback

OpenThread state change callback structure

Used to register a callback in the callback list. As many callbacks as
needed can be added as long as each of them are unique pointers of struct
openthread_state_changed_cb. Beware such structure should not be allocated on
stack.
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Public Members

void (*state_changed_cb)(otChangedFlags flags, struct openthread_context
*ot_context, void *user_data)

Callback for notifying configuration or state changes.
Param flags

as per OpenThread otStateChangedCallback() aFlags param-
eter. See https://openthread.io/reference/group/api-instance#
otstatechangedcallback

Param ot_context
the OpenThread context the callback is registered with.

Param user_data
Data to pass to the callback.

void *user_data
User data if required.

sys_snode_t node
Internally used field for list handling.

• user must not directly modify

Point-to-Point Protocol (PPP) Support

• Overview

• Testing

Overview Point-to-Point Protocol (PPP) is a data link layer (layer 2) communications protocol
used to establish a direct connection between two nodes. PPP is used over many types of serial
links since IP packets cannot be transmitted over a modem line on their own, without some data
link protocol.

In Zephyr, each individual PPP link is modelled as a network interface. This is similar to how
Linux implements PPP.

PPP support must be enabled at compile time by setting option CONFIG_NET_L2_PPP. The PPP
implementation supports only these protocols:

• LCP (Link Control Protocol, RFC1661)

• HDLC (High-level data link control, RFC1662)

• IPCP (IP Control Protocol, RFC1332)

• IPV6CP (IPv6 Control Protocol, RFC5072)

For using PPP with a cellular modem, see cellular-modem sample for additional information.

Testing See the net-tools README file for more details on how to test the Zephyr PPP against
pppd running in Linux.

Wi-Fi Management

6.3. Networking 2717

https://openthread.io/reference/group/api-instance#otstatechangedcallback
https://openthread.io/reference/group/api-instance#otstatechangedcallback
https://en.wikipedia.org/wiki/Point-to-Point_Protocol
https://tools.ietf.org/html/rfc1661
https://tools.ietf.org/html/rfc1662
https://tools.ietf.org/html/rfc1332
https://tools.ietf.org/html/rfc5072
https://github.com/zephyrproject-rtos/net-tools/blob/master/README.md#ppp-connectivity


Zephyr Project Documentation, Release 3.7.99

Overview The Wi-Fi management API is used to manage Wi-Fi networks. It supports below
modes:

• IEEE802.11 Station (STA)

• IEEE802.11 Access Point (AP)

Only personal mode security is supported with below types:

• Open

• WPA2-PSK

• WPA3-PSK-256

• WPA3-SAE

The Wi-Fi management API is implemented in the wifi_mgmt module as a part of the networking
L2 stack. Currently, two types of Wi-Fi drivers are supported:

• Networking or socket offloaded drivers

• Native L2 Ethernet drivers

API Reference

group wifi_mgmt
Wi-Fi Management API.

Since
1.12

Version
0.8.0

Wi-Fi utility functions.

Utility functions for the Wi-Fi subsystem.

int wifi_utils_parse_scan_bands(char *scan_bands_str, uint8_t *band_map)
Convert a band specification string to a bitmap representing the bands.

The function will parse a string which specifies Wi-Fi frequency band values as a
comma separated string and convert it to a bitmap. The string can use the following
characters to represent the bands:

• 2: 2.4 GHz

• 5: 5 GHz

• 6: 6 GHz

For the bitmap generated refer to wifi_frequency_bands for bit position of each band.

E.g. a string “2,5,6” will be converted to a bitmap value of 0x7

Parameters
• scan_bands_str – String which spe.

• band_map – Pointer to the bitmap variable to be updated.

Return values
• 0 – on success.
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• -errno – value in case of failure.

int wifi_utils_parse_scan_ssids(char *scan_ssids_str, const char *ssids[], uint8_t
num_ssids)

Append a string containing an SSID to an array of SSID strings.

Parameters
• scan_ssids_str – string to be appended in the list of scanned SSIDs.

• ssids – Pointer to an array where the SSIDs pointers are to be stored.

• num_ssids – Maximum number of SSIDs that can be stored.

Return values
• 0 – on success.

• -errno – value in case of failure.

int wifi_utils_parse_scan_chan(char *scan_chan_str, struct wifi_band_channel *chan,
uint8_t max_channels)

Convert a string containing a specification of scan channels to an array.

The function will parse a string which specifies channels to be scanned as a string and
convert it to an array.

The channel string has to be formatted using the colon (:), comma(,), hyphen (-) and
underscore (_) delimiters as follows:

• A colon identifies the value preceding it as a band. A band value (2: 2.4 GHz, 5: 5
GHz 6: 6 GHz) has to precede the channels in that band (e.g. 2: etc)

• Hyphens (-) are used to identify channel ranges (e.g. 2-7, 32-48 etc)

• Commas are used to separate channel values within a band. Channels can be spec-
ified as individual values (2,6,48 etc) or channel ranges using hyphens (1-14, 32-48
etc)

• Underscores (_) are used to specify multiple band-channel sets (e.g. 2:1,2_5:36,40
etc)

• No spaces should be used anywhere, i.e. before/after commas, before/after hy-
phens etc.

An example channel specification specifying channels in the 2.4 GHz and 5 GHz bands
is as below: 2:1,5,7,9-11_5:36-48,100,163-167

Parameters
• scan_chan_str – List of channels expressed in the format described

above.

• chan – Pointer to an array where the parsed channels are to be stored.

• max_channels – Maximum number of channels to store

Return values
• 0 – on success.

• -errno – value in case of failure.

bool wifi_utils_validate_chan(uint8_t band, uint16_t chan)
Validate a channel against a band.

Parameters
• band – Band to validate the channel against.

• chan – Channel to validate.
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Return values
• true – if the channel is valid for the band.

• false – if the channel is not valid for the band.

bool wifi_utils_validate_chan_2g(uint16_t chan)
Validate a channel against the 2.4 GHz band.

Parameters
• chan – Channel to validate.

Return values
• true – if the channel is valid for the band.

• false – if the channel is not valid for the band.

bool wifi_utils_validate_chan_5g(uint16_t chan)
Validate a channel against the 5 GHz band.

Parameters
• chan – Channel to validate.

Return values
• true – if the channel is valid for the band.

• false – if the channel is not valid for the band.

bool wifi_utils_validate_chan_6g(uint16_t chan)
Validate a channel against the 6 GHz band.

Parameters
• chan – Channel to validate.

Return values
• true – if the channel is valid for the band.

• false – if the channel is not valid for the band.

WIFI_UTILS_MAX_BAND_STR_LEN
Maximum length of the band specification string.

WIFI_UTILS_MAX_CHAN_STR_LEN
Maximum length of the channel specification string.

Defines

WIFI_COUNTRY_CODE_LEN
Length of the country code string.

WIFI_SSID_MAX_LEN
Max SSID length.

WIFI_PSK_MIN_LEN
Minimum PSK length.
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WIFI_PSK_MAX_LEN
Maximum PSK length.

WIFI_SAE_PSWD_MAX_LEN
Max SAW password length.

WIFI_MAC_ADDR_LEN
MAC address length.

WIFI_CHANNEL_MIN
Minimum channel number.

WIFI_CHANNEL_MAX
Maximum channel number.

WIFI_CHANNEL_ANY
Any channel number.

WIFI_INTERFACE_INDEX_MIN
Network interface index min value.

WIFI_INTERFACE_INDEX_MAX
Network interface index max value.

NET_REQUEST_WIFI_SCAN
Request a Wi-Fi scan.

NET_REQUEST_WIFI_CONNECT
Request a Wi-Fi connect.

NET_REQUEST_WIFI_DISCONNECT
Request a Wi-Fi disconnect.

NET_REQUEST_WIFI_AP_ENABLE
Request a Wi-Fi access point enable.

NET_REQUEST_WIFI_AP_DISABLE
Request a Wi-Fi access point disable.

NET_REQUEST_WIFI_IFACE_STATUS
Request a Wi-Fi network interface status.

NET_REQUEST_WIFI_PS
Request a Wi-Fi power save.

NET_REQUEST_WIFI_TWT
Request a Wi-Fi TWT.
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NET_REQUEST_WIFI_PS_CONFIG
Request a Wi-Fi power save configuration.

NET_REQUEST_WIFI_REG_DOMAIN
Request a Wi-Fi regulatory domain.

NET_REQUEST_WIFI_MODE
Request current Wi-Fi mode.

NET_REQUEST_WIFI_PACKET_FILTER
Request Wi-Fi packet filter.

NET_REQUEST_WIFI_CHANNEL
Request a Wi-Fi channel.

NET_REQUEST_WIFI_AP_STA_DISCONNECT
Request a Wi-Fi access point to disconnect a station.

NET_REQUEST_WIFI_VERSION
Request a Wi-Fi version.

NET_REQUEST_WIFI_RTS_THRESHOLD
Request a Wi-Fi RTS threshold.

NET_REQUEST_WIFI_AP_CONFIG_PARAM
Request a Wi-Fi AP parameters configuration.

NET_EVENT_WIFI_SCAN_RESULT
Event emitted for Wi-Fi scan result.

NET_EVENT_WIFI_SCAN_DONE
Event emitted when Wi-Fi scan is done.

NET_EVENT_WIFI_CONNECT_RESULT
Event emitted for Wi-Fi connect result.

NET_EVENT_WIFI_DISCONNECT_RESULT
Event emitted for Wi-Fi disconnect result.

NET_EVENT_WIFI_IFACE_STATUS
Event emitted for Wi-Fi network interface status.

NET_EVENT_WIFI_TWT
Event emitted for Wi-Fi TWT information.

NET_EVENT_WIFI_TWT_SLEEP_STATE
Event emitted for Wi-Fi TWT sleep state.
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NET_EVENT_WIFI_RAW_SCAN_RESULT
Event emitted for Wi-Fi raw scan result.

NET_EVENT_WIFI_DISCONNECT_COMPLETE
Event emitted Wi-Fi disconnect is completed.

NET_EVENT_WIFI_AP_ENABLE_RESULT
Event emitted for Wi-Fi access point enable result.

NET_EVENT_WIFI_AP_DISABLE_RESULT
Event emitted for Wi-Fi access point disable result.

NET_EVENT_WIFI_AP_STA_CONNECTED
Event emitted when Wi-Fi station is connected in AP mode.

NET_EVENT_WIFI_AP_STA_DISCONNECTED
Event emitted Wi-Fi station is disconnected from AP.

MAX_REG_CHAN_NUM
Max regulatory channel number.

Typedefs

typedef void (*scan_result_cb_t)(struct net_if *iface, int status, struct wifi_scan_result
*entry)

Scan result callback.

Param iface
Network interface

Param status
Scan result status

Param entry
Scan result entry

Enums

enum wifi_security_type
IEEE 802.11 security types.

Values:

enumerator WIFI_SECURITY_TYPE_NONE = 0
No security.

enumerator WIFI_SECURITY_TYPE_PSK
WPA2-PSK security.
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enumerator WIFI_SECURITY_TYPE_PSK_SHA256
WPA2-PSK-SHA256 security.

enumerator WIFI_SECURITY_TYPE_SAE
WPA3-SAE security.

enumerator WIFI_SECURITY_TYPE_WAPI
GB 15629.11-2003 WAPI security.

enumerator WIFI_SECURITY_TYPE_EAP
EAP security - Enterprise.

enumerator WIFI_SECURITY_TYPE_WEP
WEP security.

enumerator WIFI_SECURITY_TYPE_WPA_PSK
WPA-PSK security.

enumerator WIFI_SECURITY_TYPE_WPA_AUTO_PERSONAL
WPA/WPA2/WPA3 PSK security.

enum wifi_mfp_options
IEEE 802.11w - Management frame protection.

Values:

enumerator WIFI_MFP_DISABLE = 0
MFP disabled.

enumerator WIFI_MFP_OPTIONAL
MFP optional.

enumerator WIFI_MFP_REQUIRED
MFP required.

enum wifi_frequency_bands
IEEE 802.11 operational frequency bands (not exhaustive).

Values:

enumerator WIFI_FREQ_BAND_2_4_GHZ = 0
2.4 GHz band.

enumerator WIFI_FREQ_BAND_5_GHZ
5 GHz band.

enumerator WIFI_FREQ_BAND_6_GHZ
6 GHz band (Wi-Fi 6E, also extends to 7GHz).
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enumerator __WIFI_FREQ_BAND_AFTER_LAST
Number of frequency bands available.

enumerator WIFI_FREQ_BAND_MAX = __WIFI_FREQ_BAND_AFTER_LAST - 1
Highest frequency band available.

enumerator WIFI_FREQ_BAND_UNKNOWN
Invalid frequency band.

enum wifi_iface_state
Wi-Fi interface states.

Based on https://w1.fi/wpa_supplicant/devel/defs_8h.html#
a4aeb27c1e4abd046df3064ea9756f0bc

Values:

enumerator WIFI_STATE_DISCONNECTED = 0
Interface is disconnected.

enumerator WIFI_STATE_INTERFACE_DISABLED
Interface is disabled (administratively).

enumerator WIFI_STATE_INACTIVE
No enabled networks in the configuration.

enumerator WIFI_STATE_SCANNING
Interface is scanning for networks.

enumerator WIFI_STATE_AUTHENTICATING
Authentication with a network is in progress.

enumerator WIFI_STATE_ASSOCIATING
Association with a network is in progress.

enumerator WIFI_STATE_ASSOCIATED
Association with a network completed.

enumerator WIFI_STATE_4WAY_HANDSHAKE
4-way handshake with a network is in progress.

enumerator WIFI_STATE_GROUP_HANDSHAKE
Group Key exchange with a network is in progress.

enumerator WIFI_STATE_COMPLETED
All authentication completed, ready to pass data.

enum wifi_iface_mode
Wi-Fi interface modes.

Based on https://w1.fi/wpa_supplicant/devel/defs_8h.html#
a4aeb27c1e4abd046df3064ea9756f0bc
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Values:

enumerator WIFI_MODE_INFRA = 0
Infrastructure station mode.

enumerator WIFI_MODE_IBSS = 1
IBSS (ad-hoc) station mode.

enumerator WIFI_MODE_AP = 2
AP mode.

enumerator WIFI_MODE_P2P_GO = 3
P2P group owner mode.

enumerator WIFI_MODE_P2P_GROUP_FORMATION = 4
P2P group formation mode.

enumerator WIFI_MODE_MESH = 5
802.11s Mesh mode.

enum wifi_link_mode
Wi-Fi link operating modes.

As per https://en.wikipedia.org/wiki/Wi-Fi#Versions_and_generations.

Values:

enumerator WIFI_0 = 0
802.11 (legacy).

enumerator WIFI_1
802.11b.

enumerator WIFI_2
802.11a.

enumerator WIFI_3
802.11g.

enumerator WIFI_4
802.11n.

enumerator WIFI_5
802.11ac.

enumerator WIFI_6
802.11ax.

enumerator WIFI_6E
802.11ax 6GHz.

2726 Chapter 6. Connectivity

https://en.wikipedia.org/wiki/Wi-Fi#Versions_and_generations


Zephyr Project Documentation, Release 3.7.99

enumerator WIFI_7
802.11be.

enum wifi_scan_type
Wi-Fi scanning types.

Values:

enumerator WIFI_SCAN_TYPE_ACTIVE = 0
Active scanning (default).

enumerator WIFI_SCAN_TYPE_PASSIVE
Passive scanning.

enum wifi_ps
Wi-Fi power save states.

Values:

enumerator WIFI_PS_DISABLED = 0
Power save disabled.

enumerator WIFI_PS_ENABLED
Power save enabled.

enum wifi_ps_mode
Wi-Fi power save modes.

Values:

enumerator WIFI_PS_MODE_LEGACY = 0
Legacy power save mode.

enumerator WIFI_PS_MODE_WMM
WMM power save mode.

enum wifi_operational_modes
Wifi operational mode.

Values:

enumerator WIFI_STA_MODE = BIT(0)
STA mode setting enable.

enumerator WIFI_MONITOR_MODE = BIT(1)
Monitor mode setting enable.

enumerator WIFI_TX_INJECTION_MODE = BIT(2)
TX injection mode setting enable.

enumerator WIFI_PROMISCUOUS_MODE = BIT(3)
Promiscuous mode setting enable.
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enumerator WIFI_AP_MODE = BIT(4)
AP mode setting enable.

enumerator WIFI_SOFTAP_MODE = BIT(5)
Softap mode setting enable.

enum wifi_filter
Mode filter settings.

Values:

enumerator WIFI_PACKET_FILTER_ALL = BIT(0)
Support management, data and control packet sniffing.

enumerator WIFI_PACKET_FILTER_MGMT = BIT(1)
Support only sniffing of management packets.

enumerator WIFI_PACKET_FILTER_DATA = BIT(2)
Support only sniffing of data packets.

enumerator WIFI_PACKET_FILTER_CTRL = BIT(3)
Support only sniffing of control packets.

enum wifi_twt_operation
Wi-Fi Target Wake Time (TWT) operations.

Values:

enumerator WIFI_TWT_SETUP = 0
TWT setup operation.

enumerator WIFI_TWT_TEARDOWN
TWT teardown operation.

enum wifi_twt_negotiation_type
Wi-Fi Target Wake Time (TWT) negotiation types.

Values:

enumerator WIFI_TWT_INDIVIDUAL = 0
TWT individual negotiation.

enumerator WIFI_TWT_BROADCAST
TWT broadcast negotiation.

enumerator WIFI_TWT_WAKE_TBTT
TWT wake TBTT negotiation.

enum wifi_twt_setup_cmd
Wi-Fi Target Wake Time (TWT) setup commands.

Values:
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enumerator WIFI_TWT_SETUP_CMD_REQUEST = 0
TWT setup request.

enumerator WIFI_TWT_SETUP_CMD_SUGGEST
TWT setup suggest (parameters can be changed by AP)

enumerator WIFI_TWT_SETUP_CMD_DEMAND
TWT setup demand (parameters can not be changed by AP)

enumerator WIFI_TWT_SETUP_CMD_GROUPING
TWT setup grouping (grouping of TWT flows)

enumerator WIFI_TWT_SETUP_CMD_ACCEPT
TWT setup accept (parameters accepted by AP)

enumerator WIFI_TWT_SETUP_CMD_ALTERNATE
TWT setup alternate (alternate parameters suggested by AP)

enumerator WIFI_TWT_SETUP_CMD_DICTATE
TWT setup dictate (parameters dictated by AP)

enumerator WIFI_TWT_SETUP_CMD_REJECT
TWT setup reject (parameters rejected by AP)

enum wifi_twt_setup_resp_status
Wi-Fi Target Wake Time (TWT) negotiation status.

Values:

enumerator WIFI_TWT_RESP_RECEIVED = 0
TWT response received for TWT request.

enumerator WIFI_TWT_RESP_NOT_RECEIVED
TWT response not received for TWT request.

enum wifi_twt_fail_reason
Target Wake Time (TWT) error codes.

Values:

enumerator WIFI_TWT_FAIL_UNSPECIFIED
Unspecified error.

enumerator WIFI_TWT_FAIL_CMD_EXEC_FAIL
Command execution failed.

enumerator WIFI_TWT_FAIL_OPERATION_NOT_SUPPORTED
Operation not supported.
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enumerator WIFI_TWT_FAIL_UNABLE_TO_GET_IFACE_STATUS
Unable to get interface status.

enumerator WIFI_TWT_FAIL_DEVICE_NOT_CONNECTED
Device not connected to AP.

enumerator WIFI_TWT_FAIL_PEER_NOT_HE_CAPAB
Peer not HE (802.11ax/Wi-Fi 6) capable.

enumerator WIFI_TWT_FAIL_PEER_NOT_TWT_CAPAB
Peer not TWT capable.

enumerator WIFI_TWT_FAIL_OPERATION_IN_PROGRESS
A TWT flow is already in progress.

enumerator WIFI_TWT_FAIL_INVALID_FLOW_ID
Invalid negotiated flow id.

enumerator WIFI_TWT_FAIL_IP_NOT_ASSIGNED
IP address not assigned or configured.

enumerator WIFI_TWT_FAIL_FLOW_ALREADY_EXISTS
Flow already exists.

enum wifi_twt_teardown_status
Wi-Fi Target Wake Time (TWT) teradown status.

Values:

enumerator WIFI_TWT_TEARDOWN_SUCCESS = 0
TWT teardown success.

enumerator WIFI_TWT_TEARDOWN_FAILED
TWT teardown failure.

enum wifi_ps_param_type
Wi-Fi power save parameters.

Values:

enumerator WIFI_PS_PARAM_STATE
Power save state.

enumerator WIFI_PS_PARAM_LISTEN_INTERVAL
Power save listen interval.

enumerator WIFI_PS_PARAM_WAKEUP_MODE
Power save wakeup mode.
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enumerator WIFI_PS_PARAM_MODE
Power save mode.

enumerator WIFI_PS_PARAM_TIMEOUT
Power save timeout.

enum wifi_ps_wakeup_mode
Wi-Fi power save modes.

Values:

enumerator WIFI_PS_WAKEUP_MODE_DTIM = 0
DTIM based wakeup.

enumerator WIFI_PS_WAKEUP_MODE_LISTEN_INTERVAL
Listen interval based wakeup.

enum wifi_config_ps_param_fail_reason
Wi-Fi power save error codes.

Values:

enumerator WIFI_PS_PARAM_FAIL_UNSPECIFIED
Unspecified error.

enumerator WIFI_PS_PARAM_FAIL_CMD_EXEC_FAIL
Command execution failed.

enumerator WIFI_PS_PARAM_FAIL_OPERATION_NOT_SUPPORTED
Parameter not supported.

enumerator WIFI_PS_PARAM_FAIL_UNABLE_TO_GET_IFACE_STATUS
Unable to get interface status.

enumerator WIFI_PS_PARAM_FAIL_DEVICE_NOT_CONNECTED
Device not connected to AP.

enumerator WIFI_PS_PARAM_FAIL_DEVICE_CONNECTED
Device already connected to AP.

enumerator WIFI_PS_PARAM_LISTEN_INTERVAL_RANGE_INVALID
Listen interval out of range.

enum wifi_ap_config_param
Wi-Fi AP mode configuration parameter.

Values:

enumerator WIFI_AP_CONFIG_PARAM_MAX_INACTIVITY = BIT(0)
Used for AP mode configuration parameter ap_max_inactivity.
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enumerator WIFI_AP_CONFIG_PARAM_MAX_NUM_STA = BIT(1)
Used for AP mode configuration parameter max_num_sta.

enum net_request_wifi_cmd
Wi-Fi management commands.

Values:

enumerator NET_REQUEST_WIFI_CMD_SCAN = 1
Scan for Wi-Fi networks.

enumerator NET_REQUEST_WIFI_CMD_CONNECT
Connect to a Wi-Fi network.

enumerator NET_REQUEST_WIFI_CMD_DISCONNECT
Disconnect from a Wi-Fi network.

enumerator NET_REQUEST_WIFI_CMD_AP_ENABLE
Enable AP mode.

enumerator NET_REQUEST_WIFI_CMD_AP_DISABLE
Disable AP mode.

enumerator NET_REQUEST_WIFI_CMD_IFACE_STATUS
Get interface status.

enumerator NET_REQUEST_WIFI_CMD_PS
Set power save status.

enumerator NET_REQUEST_WIFI_CMD_TWT
Setup or teardown TWT flow.

enumerator NET_REQUEST_WIFI_CMD_PS_CONFIG
Get power save config.

enumerator NET_REQUEST_WIFI_CMD_REG_DOMAIN
Set or get regulatory domain.

enumerator NET_REQUEST_WIFI_CMD_MODE
Set or get Mode of operation.

enumerator NET_REQUEST_WIFI_CMD_PACKET_FILTER
Set or get packet filter setting for current mode.

enumerator NET_REQUEST_WIFI_CMD_CHANNEL
Set or get Wi-Fi channel for Monitor or TX-Injection mode.

enumerator NET_REQUEST_WIFI_CMD_AP_STA_DISCONNECT
Disconnect a STA from AP.
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enumerator NET_REQUEST_WIFI_CMD_VERSION
Get Wi-Fi driver and Firmware versions.

enumerator NET_REQUEST_WIFI_CMD_RTS_THRESHOLD
Set RTS threshold.

enumerator NET_REQUEST_WIFI_CMD_AP_CONFIG_PARAM
Configure AP parameter.

enum net_event_wifi_cmd
Wi-Fi management events.

Values:

enumerator NET_EVENT_WIFI_CMD_SCAN_RESULT = 1
Scan results available.

enumerator NET_EVENT_WIFI_CMD_SCAN_DONE
Scan done.

enumerator NET_EVENT_WIFI_CMD_CONNECT_RESULT
Connect result.

enumerator NET_EVENT_WIFI_CMD_DISCONNECT_RESULT
Disconnect result.

enumerator NET_EVENT_WIFI_CMD_IFACE_STATUS
Interface status.

enumerator NET_EVENT_WIFI_CMD_TWT
TWT events.

enumerator NET_EVENT_WIFI_CMD_TWT_SLEEP_STATE
TWT sleep status: awake or sleeping, can be used by application to determine if it
can send data or not.

enumerator NET_EVENT_WIFI_CMD_RAW_SCAN_RESULT
Raw scan results available.

enumerator NET_EVENT_WIFI_CMD_DISCONNECT_COMPLETE
Disconnect complete.

enumerator NET_EVENT_WIFI_CMD_AP_ENABLE_RESULT
AP mode enable result.

enumerator NET_EVENT_WIFI_CMD_AP_DISABLE_RESULT
AP mode disable result.

enumerator NET_EVENT_WIFI_CMD_AP_STA_CONNECTED
STA connected to AP.
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enumerator NET_EVENT_WIFI_CMD_AP_STA_DISCONNECTED
STA disconnected from AP.

enum wifi_conn_status
Wi-Fi connect result codes.

To be overlaid on top of wifi_status in the connect result event for detailed status.

Values:

enumerator WIFI_STATUS_CONN_SUCCESS = 0
Connection successful.

enumerator WIFI_STATUS_CONN_FAIL
Connection failed - generic failure.

enumerator WIFI_STATUS_CONN_WRONG_PASSWORD
Connection failed - wrong password Few possible reasons for 4-way handshake
failure that we can guess are as follows: 1) Incorrect key 2) EAPoL frames lost
causing timeout.

#1 is the likely cause, so, we convey to the user that it is due to Wrong
passphrase/password.

enumerator WIFI_STATUS_CONN_TIMEOUT
Connection timed out.

enumerator WIFI_STATUS_CONN_AP_NOT_FOUND
Connection failed - AP not found.

enumerator WIFI_STATUS_CONN_LAST_STATUS
Last connection status.

enumerator WIFI_STATUS_DISCONN_FIRST_STATUS =
WIFI_STATUS_CONN_LAST_STATUS

Connection disconnected status.

enum wifi_disconn_reason
Wi-Fi disconnect reason codes.

To be overlaid on top of wifi_status in the disconnect result event for detailed reason.

Values:

enumerator WIFI_REASON_DISCONN_SUCCESS = 0
Success, overload status as reason.

enumerator WIFI_REASON_DISCONN_UNSPECIFIED
Unspecified reason.

enumerator WIFI_REASON_DISCONN_USER_REQUEST
Disconnected due to user request.
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enumerator WIFI_REASON_DISCONN_AP_LEAVING
Disconnected due to AP leaving.

enumerator WIFI_REASON_DISCONN_INACTIVITY
Disconnected due to inactivity.

enum wifi_ap_status
Wi-Fi AP mode result codes.

To be overlaid on top of wifi_status in the AP mode enable or disable result event for
detailed status.

Values:

enumerator WIFI_STATUS_AP_SUCCESS = 0
AP mode enable or disable successful.

enumerator WIFI_STATUS_AP_FAIL
AP mode enable or disable failed - generic failure.

enumerator WIFI_STATUS_AP_CHANNEL_NOT_SUPPORTED
AP mode enable failed - channel not supported.

enumerator WIFI_STATUS_AP_CHANNEL_NOT_ALLOWED
AP mode enable failed - channel not allowed.

enumerator WIFI_STATUS_AP_SSID_NOT_ALLOWED
AP mode enable failed - SSID not allowed.

enumerator WIFI_STATUS_AP_AUTH_TYPE_NOT_SUPPORTED
AP mode enable failed - authentication type not supported.

enumerator WIFI_STATUS_AP_OP_NOT_SUPPORTED
AP mode enable failed - operation not supported.

enumerator WIFI_STATUS_AP_OP_NOT_PERMITTED
AP mode enable failed - operation not permitted.

enum wifi_mgmt_op
Generic get/set operation for any command.

Values:

enumerator WIFI_MGMT_GET = 0
Get operation.

enumerator WIFI_MGMT_SET = 1
Set operation.

6.3. Networking 2735



Zephyr Project Documentation, Release 3.7.99

enum wifi_twt_sleep_state
Wi-Fi TWT sleep states.

Values:

enumerator WIFI_TWT_STATE_SLEEP = 0
TWT sleep state: sleeping.

enumerator WIFI_TWT_STATE_AWAKE = 1
TWT sleep state: awake.

Functions

const char *wifi_security_txt(enum wifi_security_type security)
Helper function to get user-friendly security type name.

const char *wifi_mfp_txt(enum wifi_mfp_options mfp)
Helper function to get user-friendly MFP name.

const char *wifi_band_txt(enum wifi_frequency_bands band)
Helper function to get user-friendly frequency band name.

const char *wifi_state_txt(enum wifi_iface_state state)
Helper function to get user-friendly interface state name.

const char *wifi_mode_txt(enum wifi_iface_mode mode)
Helper function to get user-friendly interface mode name.

const char *wifi_link_mode_txt(enum wifi_link_mode link_mode)
Helper function to get user-friendly link mode name.

const char *wifi_ps_txt(enum wifi_ps ps_name)
Helper function to get user-friendly ps name.

const char *wifi_ps_mode_txt(enum wifi_ps_mode ps_mode)
Helper function to get user-friendly ps mode name.

const char *wifi_twt_operation_txt(enum wifi_twt_operation twt_operation)
Helper function to get user-friendly twt operation name.

const char *wifi_twt_negotiation_type_txt(enum wifi_twt_negotiation_type
twt_negotiation)

Helper function to get user-friendly twt negotiation type name.

const char *wifi_twt_setup_cmd_txt(enum wifi_twt_setup_cmd twt_setup)
Helper function to get user-friendly twt setup cmd name.

static inline const char *wifi_twt_get_err_code_str(int16_t err_no)
Helper function to get user-friendly TWT error code name.

const char *wifi_ps_wakeup_mode_txt(enum wifi_ps_wakeup_mode ps_wakeup_mode)
Helper function to get user-friendly ps wakeup mode name.

static inline const char *wifi_ps_get_config_err_code_str(int16_t err_no)
Helper function to get user-friendly power save error code name.
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void wifi_mgmt_raise_connect_result_event(struct net_if *iface, int status)
Wi-Fi management connect result event.

Parameters
• iface – Network interface

• status – Connect result status

void wifi_mgmt_raise_disconnect_result_event(struct net_if *iface, int status)
Wi-Fi management disconnect result event.

Parameters
• iface – Network interface

• status – Disconnect result status

void wifi_mgmt_raise_iface_status_event(struct net_if *iface, struct wifi_iface_status
*iface_status)

Wi-Fi management interface status event.

Parameters
• iface – Network interface

• iface_status – Interface status

void wifi_mgmt_raise_twt_event(struct net_if *iface, struct wifi_twt_params
*twt_params)

Wi-Fi management TWT event.

Parameters
• iface – Network interface

• twt_params – TWT parameters

void wifi_mgmt_raise_twt_sleep_state(struct net_if *iface, int twt_sleep_state)
Wi-Fi management TWT sleep state event.

Parameters
• iface – Network interface

• twt_sleep_state – TWT sleep state

void wifi_mgmt_raise_raw_scan_result_event(struct net_if *iface, struct
wifi_raw_scan_result *raw_scan_info)

Wi-Fi management raw scan result event.

Parameters
• iface – Network interface

• raw_scan_info – Raw scan result

void wifi_mgmt_raise_disconnect_complete_event(struct net_if *iface, int status)
Wi-Fi management disconnect complete event.

Parameters
• iface – Network interface

• status – Disconnect complete status

void wifi_mgmt_raise_ap_enable_result_event(struct net_if *iface, enum wifi_ap_status
status)

Wi-Fi management AP mode enable result event.
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Parameters
• iface – Network interface

• status – AP mode enable result status

void wifi_mgmt_raise_ap_disable_result_event(struct net_if *iface, enum
wifi_ap_status status)

Wi-Fi management AP mode disable result event.

Parameters
• iface – Network interface

• status – AP mode disable result status

void wifi_mgmt_raise_ap_sta_connected_event(struct net_if *iface, struct
wifi_ap_sta_info *sta_info)

Wi-Fi management AP mode STA connected event.

Parameters
• iface – Network interface

• sta_info – STA information

void wifi_mgmt_raise_ap_sta_disconnected_event(struct net_if *iface, struct
wifi_ap_sta_info *sta_info)

Wi-Fi management AP mode STA disconnected event.

Parameters
• iface – Network interface

• sta_info – STA information

struct wifi_version
#include <wifi_mgmt.h> Wi-Fi version.

Public Members

const char *drv_version
Driver version.

const char *fw_version
Firmware version.

struct wifi_band_channel
#include <wifi_mgmt.h> Wi-Fi structure to uniquely identify a band-channel pair.

Public Members

uint8_t band
Frequency band.

uint8_t channel
Channel.
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struct wifi_scan_params
#include <wifi_mgmt.h> Wi-Fi scan parameters structure.

Used to specify parameters which can control how the Wi-Fi scan is performed.

Public Members

enum wifi_scan_type scan_type
Scan type, see enum wifi_scan_type.

The scan_type is only a hint to the underlying Wi-Fi chip for the preferred mode
of scan. The actual mode of scan can depend on factors such as the Wi-Fi chip
implementation support, regulatory domain restrictions etc.

uint8_t bands
Bitmap of bands to be scanned.

Refer to wifi_frequency_bands for bit position of each band.

uint16_t dwell_time_active
Active scan dwell time (in ms) on a channel.

uint16_t dwell_time_passive
Passive scan dwell time (in ms) on a channel.

const char *ssids[WIFI_MGMT_SCAN_SSID_FILT_MAX]
Array of SSID strings to scan.

uint16_t max_bss_cnt
Specifies the maximum number of scan results to return.

These results would be the BSSIDS with the best RSSI values, in all the scanned
channels. This should only be used to limit the number of returned scan results,
and cannot be counted upon to limit the scan time, since the underlying Wi-Fi chip
might have to scan all the channels to find the max_bss_cnt number of APs with
the best signal strengths. A value of 0 signifies that there is no restriction on the
number of scan results to be returned.

struct wifi_band_channel band_chan[WIFI_MGMT_SCAN_CHAN_MAX_MANUAL]
Channel information array indexed on Wi-Fi frequency bands and channels within
that band.

E.g. to scan channel 6 and 11 on the 2.4 GHz band, channel 36 on the 5 GHz band:

chan[0] = {WIFI_FREQ_BAND_2_4_GHZ, 6};
chan[1] = {WIFI_FREQ_BAND_2_4_GHZ, 11};
chan[2] = {WIFI_FREQ_BAND_5_GHZ, 36};

This list specifies the channels to be considered for scan. The underlying Wi-Fi
chip can silently omit some channels due to various reasons such as channels not
conforming to regulatory restrictions etc. The invoker of the API should ensure
that the channels specified follow regulatory rules.

6.3. Networking 2739



Zephyr Project Documentation, Release 3.7.99

struct wifi_scan_result
#include <wifi_mgmt.h> Wi-Fi scan result, each result is provided to the
net_mgmt_event_callback via its info attribute (see net_mgmt.h)

Public Members

uint8_t ssid[WIFI_SSID_MAX_LEN]
SSID.

uint8_t ssid_length
SSID length.

uint8_t band
Frequency band.

uint8_t channel
Channel.

enum wifi_security_type security
Security type.

enum wifi_mfp_options mfp
MFP options.

int8_t rssi
RSSI.

uint8_t mac[WIFI_MAC_ADDR_LEN]
BSSID.

uint8_t mac_length
BSSID length.

struct wifi_connect_req_params
#include <wifi_mgmt.h> Wi-Fi connect request parameters.

Public Members

const uint8_t *ssid
SSID.

uint8_t ssid_length
SSID length.

const uint8_t *psk
Pre-shared key.
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uint8_t psk_length
Pre-shared key length.

const uint8_t *sae_password
SAE password (same as PSK but with no length restrictions), optional.

uint8_t sae_password_length
SAE password length.

uint8_t band
Frequency band.

uint8_t channel
Channel.

enum wifi_security_type security
Security type.

enum wifi_mfp_options mfp
MFP options.

uint8_t bssid[WIFI_MAC_ADDR_LEN]
BSSID.

int timeout
Connect timeout in seconds, SYS_FOREVER_MS for no timeout.

struct wifi_status
#include <wifi_mgmt.h> Generic Wi-Fi status for commands and events.

Public Members

int status
Status value.

enum wifi_conn_status conn_status
Connection status.

enum wifi_disconn_reason disconn_reason
Disconnection reason status.

enum wifi_ap_status ap_status
Access point status.

struct wifi_iface_status
#include <wifi_mgmt.h> Wi-Fi interface status.
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Public Members

int state
Interface state, see enum wifi_iface_state.

unsigned int ssid_len
SSID length.

char ssid[WIFI_SSID_MAX_LEN]
SSID.

char bssid[WIFI_MAC_ADDR_LEN]
BSSID.

enum wifi_frequency_bands band
Frequency band.

unsigned int channel
Channel.

enum wifi_iface_mode iface_mode
Interface mode, see enum wifi_iface_mode.

enum wifi_link_mode link_mode
Link mode, see enum wifi_link_mode.

enum wifi_security_type security
Security type, see enum wifi_security_type.

enum wifi_mfp_options mfp
MFP options, see enum wifi_mfp_options.

int rssi
RSSI.

unsigned char dtim_period
DTIM period.

unsigned short beacon_interval
Beacon interval.

bool twt_capable
is TWT capable?

struct wifi_ps_params
#include <wifi_mgmt.h> Wi-Fi power save parameters.
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Public Members

enum wifi_ps enabled
Power save state.

unsigned short listen_interval
Listen interval.

enum wifi_ps_wakeup_mode wakeup_mode
Wi-Fi power save wakeup mode.

enum wifi_ps_mode mode
Wi-Fi power save mode.

unsigned int timeout_ms
Wi-Fi power save timeout.

This is the time out to wait after sending a TX packet before going back to power
save (in ms) to receive any replies from the AP. Zero means this feature is disabled.

It’s a tradeoff between power consumption and latency.

enum wifi_ps_param_type type
Wi-Fi power save type.

enum wifi_config_ps_param_fail_reason fail_reason
Wi-Fi power save fail reason.

struct wifi_twt_params
#include <wifi_mgmt.h> Wi-Fi TWT parameters.

Public Members

enum wifi_twt_operation operation
TWT operation, see enum wifi_twt_operation.

enum wifi_twt_negotiation_type negotiation_type
TWT negotiation type, see enum wifi_twt_negotiation_type.

enum wifi_twt_setup_cmd setup_cmd
TWT setup command, see enum wifi_twt_setup_cmd.

enum wifi_twt_setup_resp_status resp_status
TWT setup response status, see enum wifi_twt_setup_resp_status.

enum wifi_twt_teardown_status teardown_status
TWT teardown cmd status, see enum wifi_twt_teardown_status.
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uint8_t dialog_token
Dialog token, used to map requests to responses.

uint8_t flow_id
Flow ID, used to map setup with teardown.

uint64_t twt_interval
Interval = Wake up time + Sleeping time.

bool responder
Requestor or responder.

bool trigger
Trigger enabled or disabled.

bool implicit
Implicit or explicit.

bool announce
Announced or unannounced.

uint32_t twt_wake_interval
Wake up time.

uint32_t twt_wake_ahead_duration
Wake ahead notification is sent earlier than TWT Service period (SP) start based
on this duration.

This should give applications ample time to prepare the data before TWT SP starts.

struct wifi_twt_params setup
Setup specific parameters.

bool teardown_all
Teardown all flows.

struct wifi_twt_params teardown
Teardown specific parameters.

enum wifi_twt_fail_reason fail_reason
TWT fail reason, see enum wifi_twt_fail_reason.

struct wifi_twt_flow_info
#include <wifi_mgmt.h> Wi-Fi TWT flow information.

Public Members

uint64_t twt_interval
Interval = Wake up time + Sleeping time.
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uint8_t dialog_token
Dialog token, used to map requests to responses.

uint8_t flow_id
Flow ID, used to map setup with teardown.

enum wifi_twt_negotiation_type negotiation_type
TWT negotiation type, see enum wifi_twt_negotiation_type.

bool responder
Requestor or responder.

bool trigger
Trigger enabled or disabled.

bool implicit
Implicit or explicit.

bool announce
Announced or unannounced.

uint32_t twt_wake_interval
Wake up time.

uint32_t twt_wake_ahead_duration
Wake ahead duration.

struct wifi_ps_config
#include <wifi_mgmt.h> Wi-Fi power save configuration.

Public Members

char num_twt_flows
Number of TWT flows.

struct wifi_twt_flow_info twt_flows[WIFI_MAX_TWT_FLOWS]
TWT flow details.

struct wifi_ps_params ps_params
Power save configuration.

struct wifi_reg_chan_info
#include <wifi_mgmt.h> Per-channel regulatory attributes.

Public Members
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unsigned short center_frequency
Center frequency in MHz.

unsigned short max_power
Maximum transmission power (in dBm)

unsigned short supported
Is channel supported or not.

unsigned short passive_only
Passive transmissions only.

unsigned short dfs
Is a DFS channel.

struct wifi_reg_domain
#include <wifi_mgmt.h> Regulatory domain information or configuration.

Public Members

enum wifi_mgmt_op oper
Regulatory domain operation.

bool force
Ignore all other regulatory hints over this one.

uint8_t country_code[WIFI_COUNTRY_CODE_LEN]
Country code: ISO/IEC 3166-1 alpha-2.

unsigned int num_channels
Number of channels supported.

struct wifi_reg_chan_info *chan_info
Channels information.

struct wifi_raw_scan_result
#include <wifi_mgmt.h> Wi-Fi raw scan result.

Public Members

int8_t rssi
RSSI.

int frame_length
Frame length.
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unsigned short frequency
Frequency.

uint8_t data[CONFIG_WIFI_MGMT_RAW_SCAN_RESULT_LENGTH]
Raw scan data.

struct wifi_ap_sta_info
#include <wifi_mgmt.h> AP mode - connected STA details.

Public Members

enum wifi_link_mode link_mode
Link mode, see enum wifi_link_mode.

uint8_t mac[WIFI_MAC_ADDR_LEN]
MAC address.

uint8_t mac_length
MAC address length.

bool twt_capable
is TWT capable ?

struct wifi_mode_info
#include <wifi_mgmt.h> Wi-Fi mode setup.

Public Members

uint8_t mode
Mode setting for a specific mode of operation.

uint8_t if_index
Interface index.

enum wifi_mgmt_op oper
Get or set operation.

struct wifi_filter_info
#include <wifi_mgmt.h> Wi-Fi filter setting for monitor, prmoiscuous, TX-injection
modes.

Public Members

uint8_t filter
Filter setting.
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uint8_t if_index
Interface index.

uint16_t buffer_size
Filter buffer size.

enum wifi_mgmt_op oper
Get or set operation.

struct wifi_channel_info
#include <wifi_mgmt.h> Wi-Fi channel setting for monitor and TX-injection modes.

Public Members

uint16_t channel
Channel value to set.

uint8_t if_index
Interface index.

enum wifi_mgmt_op oper
Get or set operation.

struct wifi_ap_config_params
#include <wifi_mgmt.h> Wi-Fi AP configuration parameter.

Public Members

enum wifi_ap_config_param type
Parameter used to identify the different AP parameters.

uint32_t max_inactivity
Parameter used for setting maximum inactivity duration for stations.

uint32_t max_num_sta
Parameter used for setting maximum number of stations.

struct wifi_mgmt_ops
#include <wifi_mgmt.h> Wi-Fi management API.

Public Members

int (*scan)(const struct device *dev, struct wifi_scan_params *params, scan_result_cb_t
cb)

Scan for Wi-Fi networks.
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Param dev
Pointer to the device structure for the driver instance.

Param params
Scan parameters

Param cb
Callback to be called for each result cb parameter is the cb that should be
called for each result by the driver. The wifi mgmt part will take care of
raising the necessary event etc.

Return
0 if ok, < 0 if error

int (*connect)(const struct device *dev, struct wifi_connect_req_params *params)
Connect to a Wi-Fi network.

Param dev
Pointer to the device structure for the driver instance.

Param params
Connect parameters

Return
0 if ok, < 0 if error

int (*disconnect)(const struct device *dev)
Disconnect from a Wi-Fi network.

Param dev
Pointer to the device structure for the driver instance.

Return
0 if ok, < 0 if error

int (*ap_enable)(const struct device *dev, struct wifi_connect_req_params *params)
Enable AP mode.

Param dev
Pointer to the device structure for the driver instance.

Param params
AP mode parameters

Return
0 if ok, < 0 if error

int (*ap_disable)(const struct device *dev)
Disable AP mode.

Param dev
Pointer to the device structure for the driver instance.

Return
0 if ok, < 0 if error

int (*ap_sta_disconnect)(const struct device *dev, const uint8_t *mac)
Disconnect a STA from AP.

Param dev
Pointer to the device structure for the driver instance.

Parammac
MAC address of the STA to disconnect

Return
0 if ok, < 0 if error

int (*iface_status)(const struct device *dev, struct wifi_iface_status *status)
Get interface status.
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Param dev
Pointer to the device structure for the driver instance.

Param status
Interface status

Return
0 if ok, < 0 if error

int (*get_stats)(const struct device *dev, struct net_stats_wifi *stats)
Get Wi-Fi statistics.

Param dev
Pointer to the device structure for the driver instance.

Param stats
Wi-Fi statistics

Return
0 if ok, < 0 if error

int (*set_power_save)(const struct device *dev, struct wifi_ps_params *params)
Set power save status.

Param dev
Pointer to the device structure for the driver instance.

Param params
Power save parameters

Return
0 if ok, < 0 if error

int (*set_twt)(const struct device *dev, struct wifi_twt_params *params)
Setup or teardown TWT flow.

Param dev
Pointer to the device structure for the driver instance.

Param params
TWT parameters

Return
0 if ok, < 0 if error

int (*get_power_save_config)(const struct device *dev, struct wifi_ps_config *config)
Get power save config.

Param dev
Pointer to the device structure for the driver instance.

Param config
Power save config

Return
0 if ok, < 0 if error

int (*reg_domain)(const struct device *dev, struct wifi_reg_domain *reg_domain)
Set or get regulatory domain.

Param dev
Pointer to the device structure for the driver instance.

Param reg_domain
Regulatory domain

Return
0 if ok, < 0 if error

int (*filter)(const struct device *dev, struct wifi_filter_info *filter)
Set or get packet filter settings for monitor and promiscuous modes.
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Param dev
Pointer to the device structure for the driver instance.

Param packet
filter settings

Return
0 if ok, < 0 if error

int (*mode)(const struct device *dev, struct wifi_mode_info *mode)
Set or get mode of operation.

Param dev
Pointer to the device structure for the driver instance.

Parammode
settings

Return
0 if ok, < 0 if error

int (*channel)(const struct device *dev, struct wifi_channel_info *channel)
Set or get current channel of operation.

Param dev
Pointer to the device structure for the driver instance.

Param channel
settings

Return
0 if ok, < 0 if error

int (*get_version)(const struct device *dev, struct wifi_version *params)
Get Version of WiFi driver and Firmware.

The driver that implements the get_version function must not use stack to allocate
the version information pointers that are returned as params struct members. The
version pointer parameters should point to a static memory either in ROM (pre-
ferred) or in RAM.

Param dev
Pointer to the device structure for the driver instance

Param params
Version parameters

Return
0 if ok, < 0 if error

int (*set_rts_threshold)(const struct device *dev, unsigned int rts_threshold)
Set RTS threshold value.

Param dev
Pointer to the device structure for the driver instance.

Param RTS
threshold value

Return
0 if ok, < 0 if error

int (*ap_config_params)(const struct device *dev, struct wifi_ap_config_params
*params)

Configure AP parameter.
Param dev

Pointer to the device structure for the driver instance.
Param params

AP mode parameter configuration parameter info
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Return
0 if ok, < 0 if error

struct net_wifi_mgmt_offload
#include <wifi_mgmt.h> Wi-Fi management offload API.

Public Members

struct ethernet_api wifi_iface
Mandatory to get in first position.

A network device should indeed provide a pointer on such net_if_api structure.
So we make current structure pointer that can be casted to a net_if_api structure
pointer. Ethernet API

const struct wifi_mgmt_ops *const wifi_mgmt_api
Wi-Fi management API.

const void *wifi_drv_ops
Wi-Fi supplicant driver API.

Protocols

CoAP

• Overview

• Sample Usage

– CoAP Server

– CoAP Client

• Testing

– libcoap

– TTCN3

• API Reference

Overview The Constrained Application Protocol (CoAP) is a specialized web transfer protocol
for use with constrained nodes and constrained (e.g., low-power, lossy) networks. It provides a
convenient API for RESTful Web services that support CoAP’s features. For more information
about the protocol itself, see IETF RFC7252 The Constrained Application Protocol.

Zephyr provides a CoAP library which supports client and server roles. The library can be en-
abled with CONFIG_COAP Kconfig option and is configurable as per user needs. The Zephyr CoAP
library is implemented using plain buffers. Users of the API create sockets for communication
and pass the buffer to the library for parsing and other purposes. The library itself doesn’t create
any sockets for users.

On top of CoAP, Zephyr has support for LWM2M “Lightweight Machine 2 Machine” protocol, a
simple, low-cost remote management and service enablement mechanism. SeeLightweightM2M
(LWM2M) for more information.
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Supported RFCs:

• RFC7252: The Constrained Application Protocol (CoAP)

• RFC6690: Constrained RESTful Environments (CoRE) Link Format

• RFC7959: Block-Wise Transfers in the Constrained Application Protocol (CoAP)

• RFC7641: Observing Resources in the Constrained Application Protocol (CoAP)

Note

Not all parts of these RFCs are supported. Features are supported based on Zephyr require-
ments.

Sample Usage

Note

A CoAP server subsystem is available, the following is for creating a custom server implemen-
tation.

CoAP Server To create a CoAP server, resources for the server need to be defined. The .
well-known/core resource should be added before all other resources that should be included
in the responses of the .well-known/core resource.

static struct coap_resource resources[] = {
{ .get = well_known_core_get,

.path = COAP_WELL_KNOWN_CORE_PATH,
},
{ .get = sample_get,

.post = sample_post,

.del = sample_del,

.put = sample_put,

.path = sample_path
},
{ },

};

An application reads data from the socket and passes the buffer to the CoAP library to parse the
message. If the CoAP message is proper, the library uses the buffer along with resources defined
above to call the correct callback function to handle the CoAP request from the client. It’s the
callback function’s responsibility to either reply or act according to CoAP request.

coap_packet_parse(&request, data, data_len, options, opt_num);
...
coap_handle_request(&request, resources, options, opt_num,

client_addr, client_addr_len);

If CONFIG_COAP_URI_WILDCARD enabled, server may accept multiple resources using MQTT-like
wildcard style:

• the plus symbol represents a single-level wild card in the path;

• the hash symbol represents the multi-level wild card in the path.

static const char * const led_set[] = { "led","+","set", NULL };
static const char * const btn_get[] = { "button","#", NULL };
static const char * const no_wc[] = { "test","+1", NULL };
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It accepts /led/0/set, led/1234/set, led/any/set, /button/door/1, /test/+1, but returns -ENOENT for
/led/1, /test/21, /test/1.

This option is enabled by default, disable it to avoid unexpected behaviour with resource path
like ‘/some_resource/+/#’.

Note

A CoAP client subsystem is available, the following is for creating a custom client implemen-
tation.

CoAP Client If the CoAP client knows about resources in the CoAP server, the client can start
prepare CoAP requests and wait for responses. If the client doesn’t know about resources in the
CoAP server, it can request resources through the .well-known/core CoAP message.

/* Initialize the CoAP message */
char *path = "test";
struct coap_packet request;
uint8_t data[100];
uint8_t payload[20];

coap_packet_init(&request, data, sizeof(data),
1, COAP_TYPE_CON, 8, coap_next_token(),
COAP_METHOD_GET, coap_next_id());

/* Append options */
coap_packet_append_option(&request, COAP_OPTION_URI_PATH,

path, strlen(path));

/* Append Payload marker if you are going to add payload */
coap_packet_append_payload_marker(&request);

/* Append payload */
coap_packet_append_payload(&request, (uint8_t *)payload,

sizeof(payload) - 1);

/* send over sockets */

Testing There are various ways to test Zephyr CoAP library.

libcoap libcoap implements a lightweight application-protocol for devices that are resource
constrained, such as by computing power, RF range, memory, bandwidth, or network packet
sizes. Sources can be found here libcoap. libcoap has a script (examples/etsi_coaptest.sh) to
test coap-server functionality in Zephyr.

See the net-tools project for more details

The coap-server sample can be built and executed on QEMU as described in Networking with
QEMU.

Use this command on the host to run the libcoap implementation of the ETSI test cases:

sudo ./libcoap/examples/etsi_coaptest.sh -i tap0 2001:db8::1

TTCN3 Eclipse has TTCN3 based tests to run against CoAP implementations.

Install eclipse-titan and set symbolic links for titan tools
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sudo apt-get install eclipse-titan

cd /usr/share/titan

sudo ln -s /usr/bin bin
sudo ln /usr/bin/titanver bin
sudo ln -s /usr/bin/mctr_cli bin
sudo ln -s /usr/include/titan include
sudo ln -s /usr/lib/titan lib

export TTCN3_DIR=/usr/share/titan

git clone https://gitlab.eclipse.org/eclipse/titan/titan.misc.git

cd titan.misc

Follow the instruction to setup CoAP test suite from here:

• https://gitlab.eclipse.org/eclipse/titan/titan.misc

• https://gitlab.eclipse.org/eclipse/titan/titan.misc/-/tree/master/CoAP_Conf

After the build is complete, the coap-server sample can be built and executed on QEMU as de-
scribed in Networking with QEMU.

Change the client (test suite) and server (Zephyr coap-server sample) addresses in coap.cfg file
as per your setup.

Execute the test cases with following command.

ttcn3_start coaptests coap.cfg

Sample output of ttcn3 tests looks like this.

Verdict statistics: 0 none (0.00 %), 10 pass (100.00 %), 0 inconc (0.00 %), 0 fail (0.00 %),
↪→ 0 error (0.00 %).
Test execution summary: 10 test cases were executed. Overall verdict: pass

Related code samples

CoAP client
Use the CoAP library to implement a client that fetches a resource.

CoAP service
Use the CoAP server subsystem to register CoAP resources.

API Reference

group coap
COAP library.

Since
1.10

Version
0.8.0
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Defines

COAP_MAKE_RESPONSE_CODE(class, det)
Utility macro to create a CoAP response code.

Parameters
• class – Class of the response code (ex. 2, 4, 5, …)

• det – Detail of the response code

Returns
Response code literal

COAP_WELL_KNOWN_CORE_PATH
This resource should be added before all other resources that should be in-
cluded in the responses of the .well-known/core resource if is to be used with
coap_well_known_core_get.

Typedefs

typedef int (*coap_method_t)(struct coap_resource *resource, struct coap_packet *request,
struct sockaddr *addr, socklen_t addr_len)

Type of the callback being called when a resource’s method is invoked by the remote
entity.

typedef void (*coap_notify_t)(struct coap_resource *resource, struct coap_observer
*observer)

Type of the callback being called when a resource’s has observers to be informed when
an update happens.

typedef int (*coap_reply_t)(const struct coap_packet *response, struct coap_reply *reply,
const struct sockaddr *from)

Helper function to be called when a response matches the a pending request.

When sending blocks, the callback is only executed when the reply of the last block is
received. i.e. it is not called when the code of the reply is ‘continue’ (2.31).

Enums

enum coap_option_num
Set of CoAP packet options we are aware of.

Users may add options other than these to their packets, provided they know how to
format them correctly. The only restriction is that all options must be added to a packet
in numeric order.

Refer to RFC 7252, section 12.2 for more information.

Values:

enumerator COAP_OPTION_IF_MATCH = 1
If-Match.
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enumerator COAP_OPTION_URI_HOST = 3
Uri-Host.

enumerator COAP_OPTION_ETAG = 4
ETag.

enumerator COAP_OPTION_IF_NONE_MATCH = 5
If-None-Match.

enumerator COAP_OPTION_OBSERVE = 6
Observe (RFC 7641)

enumerator COAP_OPTION_URI_PORT = 7
Uri-Port.

enumerator COAP_OPTION_LOCATION_PATH = 8
Location-Path.

enumerator COAP_OPTION_URI_PATH = 11
Uri-Path.

enumerator COAP_OPTION_CONTENT_FORMAT = 12
Content-Format.

enumerator COAP_OPTION_MAX_AGE = 14
Max-Age.

enumerator COAP_OPTION_URI_QUERY = 15
Uri-Query.

enumerator COAP_OPTION_ACCEPT = 17
Accept.

enumerator COAP_OPTION_LOCATION_QUERY = 20
Location-Query.

enumerator COAP_OPTION_BLOCK2 = 23
Block2 (RFC 7959)

enumerator COAP_OPTION_BLOCK1 = 27
Block1 (RFC 7959)

enumerator COAP_OPTION_SIZE2 = 28
Size2 (RFC 7959)

enumerator COAP_OPTION_PROXY_URI = 35
Proxy-Uri.
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enumerator COAP_OPTION_PROXY_SCHEME = 39
Proxy-Scheme.

enumerator COAP_OPTION_SIZE1 = 60
Size1.

enumerator COAP_OPTION_ECHO = 252
Echo (RFC 9175)

enumerator COAP_OPTION_REQUEST_TAG = 292
Request-Tag (RFC 9175)

enum coap_method
Available request methods.

To be used when creating a request or a response.

Values:

enumerator COAP_METHOD_GET = 1
GET.

enumerator COAP_METHOD_POST = 2
POST.

enumerator COAP_METHOD_PUT = 3
PUT.

enumerator COAP_METHOD_DELETE = 4
DELETE.

enumerator COAP_METHOD_FETCH = 5
FETCH.

enumerator COAP_METHOD_PATCH = 6
PATCH.

enumerator COAP_METHOD_IPATCH = 7
IPATCH.

enum coap_msgtype
CoAP packets may be of one of these types.

Values:

enumerator COAP_TYPE_CON = 0
Confirmable message.

The packet is a request or response the destination end-point must acknowledge.
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enumerator COAP_TYPE_NON_CON = 1
Non-confirmable message.

The packet is a request or response that doesn’t require acknowledgements.

enumerator COAP_TYPE_ACK = 2
Acknowledge.

Response to a confirmable message.

enumerator COAP_TYPE_RESET = 3
Reset.

Rejecting a packet for any reason is done by sending a message of this type.

enum coap_response_code
Set of response codes available for a response packet.

To be used when creating a response.

Values:

enumerator COAP_RESPONSE_CODE_OK = ((2 « 5) | (0))
2.00 - OK

enumerator COAP_RESPONSE_CODE_CREATED = ((2 « 5) | (1))
2.01 - Created

enumerator COAP_RESPONSE_CODE_DELETED = ((2 « 5) | (2))
2.02 - Deleted

enumerator COAP_RESPONSE_CODE_VALID = ((2 « 5) | (3))
2.03 - Valid

enumerator COAP_RESPONSE_CODE_CHANGED = ((2 « 5) | (4))
2.04 - Changed

enumerator COAP_RESPONSE_CODE_CONTENT = ((2 « 5) | (5))
2.05 - Content

enumerator COAP_RESPONSE_CODE_CONTINUE = ((2 « 5) | (31))
2.31 - Continue

enumerator COAP_RESPONSE_CODE_BAD_REQUEST = ((4 « 5) | (0))
4.00 - Bad Request

enumerator COAP_RESPONSE_CODE_UNAUTHORIZED = ((4 « 5) | (1))
4.01 - Unauthorized

enumerator COAP_RESPONSE_CODE_BAD_OPTION = ((4 « 5) | (2))
4.02 - Bad Option
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enumerator COAP_RESPONSE_CODE_FORBIDDEN = ((4 « 5) | (3))
4.03 - Forbidden

enumerator COAP_RESPONSE_CODE_NOT_FOUND = ((4 « 5) | (4))
4.04 - Not Found

enumerator COAP_RESPONSE_CODE_NOT_ALLOWED = ((4 « 5) | (5))
4.05 - Method Not Allowed

enumerator COAP_RESPONSE_CODE_NOT_ACCEPTABLE = ((4 « 5) | (6))
4.06 - Not Acceptable

enumerator COAP_RESPONSE_CODE_INCOMPLETE = ((4 « 5) | (8))
4.08 - Request Entity Incomplete

enumerator COAP_RESPONSE_CODE_CONFLICT = ((4 « 5) | (9))
4.12 - Precondition Failed

enumerator COAP_RESPONSE_CODE_PRECONDITION_FAILED = ((4 « 5) | (12))
4.12 - Precondition Failed

enumerator COAP_RESPONSE_CODE_REQUEST_TOO_LARGE = ((4 « 5) | (13))
4.13 - Request Entity Too Large

enumerator COAP_RESPONSE_CODE_UNSUPPORTED_CONTENT_FORMAT = ((4 « 5) | (15))
4.15 - Unsupported Content-Format

enumerator COAP_RESPONSE_CODE_UNPROCESSABLE_ENTITY = ((4 « 5) | (22))
4.22 - Unprocessable Entity

enumerator COAP_RESPONSE_CODE_TOO_MANY_REQUESTS = ((4 « 5) | (29))
4.29 - Too Many Requests

enumerator COAP_RESPONSE_CODE_INTERNAL_ERROR = ((5 « 5) | (0))
5.00 - Internal Server Error

enumerator COAP_RESPONSE_CODE_NOT_IMPLEMENTED = ((5 « 5) | (1))
5.01 - Not Implemented

enumerator COAP_RESPONSE_CODE_BAD_GATEWAY = ((5 « 5) | (2))
5.02 - Bad Gateway

enumerator COAP_RESPONSE_CODE_SERVICE_UNAVAILABLE = ((5 « 5) | (3))
5.03 - Service Unavailable

enumerator COAP_RESPONSE_CODE_GATEWAY_TIMEOUT = ((5 « 5) | (4))
5.04 - Gateway Timeout
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enumerator COAP_RESPONSE_CODE_PROXYING_NOT_SUPPORTED = ((5 « 5) | (5))
5.05 - Proxying Not Supported

enum coap_content_format
Set of Content-Format option values for CoAP.

To be used when encoding or decoding a Content-Format option.

Values:

enumerator COAP_CONTENT_FORMAT_TEXT_PLAIN = 0
text/plain;charset=utf-8

enumerator COAP_CONTENT_FORMAT_APP_LINK_FORMAT = 40
application/link-format

enumerator COAP_CONTENT_FORMAT_APP_XML = 41
application/xml

enumerator COAP_CONTENT_FORMAT_APP_OCTET_STREAM = 42
application/octet-stream

enumerator COAP_CONTENT_FORMAT_APP_EXI = 47
application/exi

enumerator COAP_CONTENT_FORMAT_APP_JSON = 50
application/json

enumerator COAP_CONTENT_FORMAT_APP_JSON_PATCH_JSON = 51
application/json-patch+json

enumerator COAP_CONTENT_FORMAT_APP_MERGE_PATCH_JSON = 52
application/merge-patch+json

enumerator COAP_CONTENT_FORMAT_APP_CBOR = 60
application/cbor

enum coap_block_size
Represents the size of each block that will be transferred using block-wise transfers
[RFC7959]:

Each entry maps directly to the value that is used in the wire.

https://tools.ietf.org/html/rfc7959

Values:

enumerator COAP_BLOCK_16
16-byte block size

enumerator COAP_BLOCK_32
32-byte block size

6.3. Networking 2761

https://tools.ietf.org/html/rfc7959


Zephyr Project Documentation, Release 3.7.99

enumerator COAP_BLOCK_64
64-byte block size

enumerator COAP_BLOCK_128
128-byte block size

enumerator COAP_BLOCK_256
256-byte block size

enumerator COAP_BLOCK_512
512-byte block size

enumerator COAP_BLOCK_1024
1024-byte block size

Functions

uint8_t coap_header_get_version(const struct coap_packet *cpkt)
Returns the version present in a CoAP packet.

Parameters
• cpkt – CoAP packet representation

Returns
the CoAP version in packet

uint8_t coap_header_get_type(const struct coap_packet *cpkt)
Returns the type of the CoAP packet.

Parameters
• cpkt – CoAP packet representation

Returns
the type of the packet

uint8_t coap_header_get_token(const struct coap_packet *cpkt, uint8_t *token)
Returns the token (if any) in the CoAP packet.

Parameters
• cpkt – CoAP packet representation

• token – Where to store the token, must point to a buffer containing at
least COAP_TOKEN_MAX_LEN bytes

Returns
Token length in the CoAP packet (0 - COAP_TOKEN_MAX_LEN).

uint8_t coap_header_get_code(const struct coap_packet *cpkt)
Returns the code of the CoAP packet.

Parameters
• cpkt – CoAP packet representation

Returns
the code present in the packet
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int coap_header_set_code(const struct coap_packet *cpkt, uint8_t code)
Modifies the code of the CoAP packet.

Parameters
• cpkt – CoAP packet representation

• code – CoAP code

Returns
0 on success, -EINVAL on failure

uint16_t coap_header_get_id(const struct coap_packet *cpkt)
Returns the message id associated with the CoAP packet.

Parameters
• cpkt – CoAP packet representation

Returns
the message id present in the packet

const uint8_t *coap_packet_get_payload(const struct coap_packet *cpkt, uint16_t *len)
Returns the data pointer and length of the CoAP packet.

Parameters
• cpkt – CoAP packet representation

• len – Total length of CoAP payload

Returns
data pointer and length if payload exists NULL pointer and length set to 0
in case there is no payload

bool coap_uri_path_match(const char *const *path, struct coap_option *options, uint8_t
opt_num)

Verify if CoAP URI path matches with provided options.

Parameters
• path – Null-terminated array of strings.

• options – Parsed options from coap_packet_parse()

• opt_num – Number of options

Returns
true if the CoAP URI path matches, false otherwise.

int coap_packet_parse(struct coap_packet *cpkt, uint8_t *data, uint16_t len, struct
coap_option *options, uint8_t opt_num)

Parses the CoAP packet in data, validating it and initializing cpkt.

data must remain valid while cpkt is used.

Parameters
• cpkt – Packet to be initialized from received data.

• data – Data containing a CoAP packet, its data pointer is positioned on
the start of the CoAP packet.

• len – Length of the data

• options – Parse options and cache its details.

• opt_num – Number of options

Return values
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• 0 – in case of success.

• -EINVAL – in case of invalid input args.

• -EBADMSG – in case of malformed coap packet header.

• -EILSEQ – in case of malformed coap options.

int coap_packet_set_path(struct coap_packet *cpkt, const char *path)
Parses provided coap path (with/without query) or query and appends that as options
to the cpkt.

Parameters
• cpkt – Packet to append path and query options for.

• path – Null-terminated string of coap path, query or both.

Return values
0 – in case of success or negative in case of error.

int coap_packet_init(struct coap_packet *cpkt, uint8_t *data, uint16_t max_len, uint8_t
ver, uint8_t type, uint8_t token_len, const uint8_t *token, uint8_t
code, uint16_t id)

Creates a new CoAP Packet from input data.

Parameters
• cpkt – New packet to be initialized using the storage from data.

• data – Data that will contain a CoAP packet information

• max_len – Maximum allowable length of data

• ver – CoAP header version

• type – CoAP header type

• token_len – CoAP header token length

• token – CoAP header token

• code – CoAP header code

• id – CoAP header message id

Returns
0 in case of success or negative in case of error.

int coap_ack_init(struct coap_packet *cpkt, const struct coap_packet *req, uint8_t *data,
uint16_t max_len, uint8_t code)

Create a new CoAP Acknowledgment message for given request.

This function works like coap_packet_init, filling CoAP header type, CoAP header token,
and CoAP header message id fields according to acknowledgment rules.

Parameters
• cpkt – New packet to be initialized using the storage from data.

• req – CoAP request packet that is being acknowledged

• data – Data that will contain a CoAP packet information

• max_len – Maximum allowable length of data

• code – CoAP header code

Returns
0 in case of success or negative in case of error.
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uint8_t *coap_next_token(void)
Returns a randomly generated array of 8 bytes, that can be used as a message’s token.

Returns
a 8-byte pseudo-random token.

uint16_t coap_next_id(void)
Helper to generate message ids.

Returns
a new message id

int coap_find_options(const struct coap_packet *cpkt, uint16_t code, struct coap_option
*options, uint16_t veclen)

Return the values associated with the option of value code.

Parameters
• cpkt – CoAP packet representation

• code – Option number to look for

• options – Array of coap_option where to store the value of the options
found

• veclen – Number of elements in the options array

Returns
The number of options found in packet matching code, negative on error.

int coap_packet_append_option(struct coap_packet *cpkt, uint16_t code, const uint8_t
*value, uint16_t len)

Appends an option to the packet.

Note: options can be added out of numeric order of their codes. But it’s more efficient
to add them in order.

Parameters
• cpkt – Packet to be updated

• code – Option code to add to the packet, see coap_option_num

• value – Pointer to the value of the option, will be copied to the packet

• len – Size of the data to be added

Returns
0 in case of success or negative in case of error.

int coap_packet_remove_option(struct coap_packet *cpkt, uint16_t code)
Remove an option from the packet.

Parameters
• cpkt – Packet to be updated

• code – Option code to remove from the packet, see coap_option_num

Returns
0 in case of success or negative in case of error.

unsigned int coap_option_value_to_int(const struct coap_option *option)
Converts an option to its integer representation.

Assumes that the number is encoded in the network byte order in the option.

Parameters
• option – Pointer to the option value, retrieved by coap_find_options()
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Returns
The integer representation of the option

int coap_append_option_int(struct coap_packet *cpkt, uint16_t code, unsigned int val)
Appends an integer value option to the packet.

The option must be added in numeric order of their codes, and the least amount of
bytes will be used to encode the value.

Parameters
• cpkt – Packet to be updated

• code – Option code to add to the packet, see coap_option_num

• val – Integer value to be added

Returns
0 in case of success or negative in case of error.

int coap_packet_append_payload_marker(struct coap_packet *cpkt)
Append payload marker to CoAP packet.

Parameters
• cpkt – Packet to append the payload marker (0xFF)

Returns
0 in case of success or negative in case of error.

int coap_packet_append_payload(struct coap_packet *cpkt, const uint8_t *payload,
uint16_t payload_len)

Append payload to CoAP packet.

Parameters
• cpkt – Packet to append the payload

• payload – CoAP packet payload

• payload_len – CoAP packet payload len

Returns
0 in case of success or negative in case of error.

bool coap_packet_is_request(const struct coap_packet *cpkt)
Check if a CoAP packet is a CoAP request.

Parameters
• cpkt – Packet to be checked.

Returns
true if the packet is a request, false otherwise.

int coap_handle_request_len(struct coap_packet *cpkt, struct coap_resource *resources,
size_t resources_len, struct coap_option *options, uint8_t
opt_num, struct sockaddr *addr, socklen_t addr_len)

When a request is received, call the appropriate methods of the matching resources.

Parameters
• cpkt – Packet received

• resources – Array of known resources

• resources_len – Number of resources in the array

• options – Parsed options from coap_packet_parse()

• opt_num – Number of options
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• addr – Peer address

• addr_len – Peer address length

Return values
• >= – 0 in case of success.

• -ENOTSUP – in case of invalid request code.

• -EPERM – in case resource handler is not implemented.

• -ENOENT – in case the resource is not found.

int coap_handle_request(struct coap_packet *cpkt, struct coap_resource *resources, struct
coap_option *options, uint8_t opt_num, struct sockaddr *addr,
socklen_t addr_len)

When a request is received, call the appropriate methods of the matching resources.

Parameters
• cpkt – Packet received

• resources – Array of known resources (terminated with empty resource)

• options – Parsed options from coap_packet_parse()

• opt_num – Number of options

• addr – Peer address

• addr_len – Peer address length

Return values
• >= – 0 in case of success.

• -ENOTSUP – in case of invalid request code.

• -EPERM – in case resource handler is not implemented.

• -ENOENT – in case the resource is not found.

static inline uint16_t coap_block_size_to_bytes(enum coap_block_size block_size)
Helper for converting the enumeration to the size expressed in bytes.

Parameters
• block_size – The block size to be converted

Returns
The size in bytes that the block_size represents

static inline enum coap_block_size coap_bytes_to_block_size(uint16_t bytes)
Helper for converting block size in bytes to enumeration.

NOTE: Only valid CoAP block sizes map correctly.

Parameters
• bytes – CoAP block size in bytes.

Returns
enum coap_block_size

int coap_block_transfer_init(struct coap_block_context *ctx, enum coap_block_size
block_size, size_t total_size)

Initializes the context of a block-wise transfer.

Parameters
• ctx – The context to be initialized
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• block_size – The size of the block

• total_size – The total size of the transfer, if known

Returns
0 in case of success or negative in case of error.

int coap_append_descriptive_block_option(struct coap_packet *cpkt, struct
coap_block_context *ctx)

Append BLOCK1 or BLOCK2 option to the packet.

If the CoAP packet is a request then BLOCK1 is appended otherwise BLOCK2 is ap-
pended.

Parameters
• cpkt – Packet to be updated

• ctx – Block context from which to retrieve the information for the block
option

Returns
0 in case of success or negative in case of error.

bool coap_has_descriptive_block_option(struct coap_packet *cpkt)
Check if a descriptive block option is set in the packet.

If the CoAP packet is a request then an available BLOCK1 option would be checked
otherwise a BLOCK2 option would be checked.

Parameters
• cpkt – Packet to be checked.

Returns
true if the corresponding block option is set, false otherwise.

int coap_remove_descriptive_block_option(struct coap_packet *cpkt)
Remove BLOCK1 or BLOCK2 option from the packet.

If the CoAP packet is a request then BLOCK1 is removed otherwise BLOCK2 is removed.

Parameters
• cpkt – Packet to be updated.

Returns
0 in case of success or negative in case of error.

bool coap_block_has_more(struct coap_packet *cpkt)
Check if BLOCK1 or BLOCK2 option has more flag set.

Parameters
• cpkt – Packet to be checked.

Returns
true If more flag is set in BLOCK1 or BLOCK2

Returns
false If MORE flag is not set or BLOCK header not found.

int coap_append_block1_option(struct coap_packet *cpkt, struct coap_block_context *ctx)
Append BLOCK1 option to the packet.

Parameters
• cpkt – Packet to be updated
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• ctx – Block context from which to retrieve the information for the Block1
option

Returns
0 in case of success or negative in case of error.

int coap_append_block2_option(struct coap_packet *cpkt, struct coap_block_context *ctx)
Append BLOCK2 option to the packet.

Parameters
• cpkt – Packet to be updated

• ctx – Block context from which to retrieve the information for the Block2
option

Returns
0 in case of success or negative in case of error.

int coap_append_size1_option(struct coap_packet *cpkt, struct coap_block_context *ctx)
Append SIZE1 option to the packet.

Parameters
• cpkt – Packet to be updated

• ctx – Block context from which to retrieve the information for the Size1
option

Returns
0 in case of success or negative in case of error.

int coap_append_size2_option(struct coap_packet *cpkt, struct coap_block_context *ctx)
Append SIZE2 option to the packet.

Parameters
• cpkt – Packet to be updated

• ctx – Block context from which to retrieve the information for the Size2
option

Returns
0 in case of success or negative in case of error.

int coap_get_option_int(const struct coap_packet *cpkt, uint16_t code)
Get the integer representation of a CoAP option.

Parameters
• cpkt – Packet to be inspected

• code – CoAP option code

Returns
Integer value >= 0 in case of success or negative in case of error.

int coap_get_block1_option(const struct coap_packet *cpkt, bool *has_more, uint8_t
*block_number)

Get the block size, more flag and block number from the CoAP block1 option.

Parameters
• cpkt – Packet to be inspected

• has_more – Is set to the value of the more flag

• block_number – Is set to the number of the block
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Returns
Integer value of the block size in case of success or negative in case of error.

int coap_get_block2_option(const struct coap_packet *cpkt, uint8_t *block_number)
Get values from CoAP block2 option.

Decode block number and block size from option. Ignore the has_more flag as it should
always be zero on queries.

Parameters
• cpkt – Packet to be inspected

• block_number – Is set to the number of the block

Returns
Integer value of the block size in case of success or negative in case of error.

int coap_update_from_block(const struct coap_packet *cpkt, struct coap_block_context
*ctx)

Retrieves BLOCK{1,2} and SIZE{1,2} from cpkt and updates ctx accordingly.

Parameters
• cpkt – Packet in which to look for block-wise transfers options

• ctx – Block context to be updated

Returns
0 in case of success or negative in case of error.

int coap_next_block_for_option(const struct coap_packet *cpkt, struct
coap_block_context *ctx, enum coap_option_num
option)

Updates ctx according to option set in cpkt so after this is called the current entry indi-
cates the correct offset in the body of data being transferred.

Parameters
• cpkt – Packet in which to look for block-wise transfers options

• ctx – Block context to be updated

• option – Either COAP_OPTION_BLOCK1 or COAP_OPTION_BLOCK2

Returns
The offset in the block-wise transfer, 0 if the transfer has finished or a neg-
ative value in case of an error.

size_t coap_next_block(const struct coap_packet *cpkt, struct coap_block_context *ctx)
Updates ctx so after this is called the current entry indicates the correct offset in the
body of data being transferred.

Parameters
• cpkt – Packet in which to look for block-wise transfers options

• ctx – Block context to be updated

Returns
The offset in the block-wise transfer, 0 if the transfer has finished.

void coap_observer_init(struct coap_observer *observer, const struct coap_packet
*request, const struct sockaddr *addr)

Indicates that the remote device referenced by addr, with request, wants to observe a
resource.

Parameters
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• observer – Observer to be initialized

• request – Request on which the observer will be based

• addr – Address of the remote device

bool coap_register_observer(struct coap_resource *resource, struct coap_observer
*observer)

After the observer is initialized, associate the observer with an resource.

Parameters
• resource – Resource to add an observer

• observer – Observer to be added

Returns
true if this is the first observer added to this resource.

bool coap_remove_observer(struct coap_resource *resource, struct coap_observer
*observer)

Remove this observer from the list of registered observers of that resource.

Parameters
• resource – Resource in which to remove the observer

• observer – Observer to be removed

Returns
true if the observer was found and removed.

struct coap_observer *coap_find_observer(struct coap_observer *observers, size_t len,
const struct sockaddr *addr, const uint8_t
*token, uint8_t token_len)

Returns the observer that matches address addr and has token token.

Parameters
• observers – Pointer to the array of observers

• len – Size of the array of observers

• addr – Address of the endpoint observing a resource

• token – Pointer to the token

• token_len – Length of valid bytes in the token

Returns
A pointer to a observer if a match is found, NULL otherwise.

struct coap_observer *coap_find_observer_by_addr(struct coap_observer *observers,
size_t len, const struct sockaddr
*addr)

Returns the observer that matches address addr.

Note

The function coap_find_observer() should be preferred if both the observer’s ad-
dress and token are known.

Parameters
• observers – Pointer to the array of observers

• len – Size of the array of observers
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• addr – Address of the endpoint observing a resource

Returns
A pointer to a observer if a match is found, NULL otherwise.

struct coap_observer *coap_find_observer_by_token(struct coap_observer *observers,
size_t len, const uint8_t *token,
uint8_t token_len)

Returns the observer that has token token.

Note

The function coap_find_observer() should be preferred if both the observer’s ad-
dress and token are known.

Parameters
• observers – Pointer to the array of observers

• len – Size of the array of observers

• token – Pointer to the token

• token_len – Length of valid bytes in the token

Returns
A pointer to a observer if a match is found, NULL otherwise.

struct coap_observer *coap_observer_next_unused(struct coap_observer *observers,
size_t len)

Returns the next available observer representation.

Parameters
• observers – Pointer to the array of observers

• len – Size of the array of observers

Returns
A pointer to a observer if there’s an available observer, NULL otherwise.

void coap_reply_init(struct coap_reply *reply, const struct coap_packet *request)
Indicates that a reply is expected for request.

Parameters
• reply – Reply structure to be initialized

• request – Request from which reply will be based

int coap_pending_init(struct coap_pending *pending, const struct coap_packet *request,
const struct sockaddr *addr, const struct
coap_transmission_parameters *params)

Initialize a pending request with a request.

The request’s fields are copied into the pending struct, so request doesn’t have to live
for as long as the pending struct lives, but “data” that needs to live for at least that long.

Parameters
• pending – Structure representing the waiting for a confirmation message,

initialized with data from request

• request – Message waiting for confirmation

• addr – Address to send the retransmission
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• params – Pointer to the CoAP transmission parameters struct, or NULL to
use default values

Returns
0 in case of success or negative in case of error.

struct coap_pending *coap_pending_next_unused(struct coap_pending *pendings, size_t
len)

Returns the next available pending struct, that can be used to track the retransmission
status of a request.

Parameters
• pendings – Pointer to the array of coap_pending structures

• len – Size of the array of coap_pending structures

Returns
pointer to a free coap_pending structure, NULL in case none could be found.

struct coap_reply *coap_reply_next_unused(struct coap_reply *replies, size_t len)
Returns the next available reply struct, so it can be used to track replies and notifica-
tions received.

Parameters
• replies – Pointer to the array of coap_reply structures

• len – Size of the array of coap_reply structures

Returns
pointer to a free coap_reply structure, NULL in case none could be found.

struct coap_pending *coap_pending_received(const struct coap_packet *response, struct
coap_pending *pendings, size_t len)

After a response is received, returns if there is any matching pending request exits.

User has to clear all pending retransmissions related to that response by calling
coap_pending_clear().

Parameters
• response – The received response

• pendings – Pointer to the array of coap_reply structures

• len – Size of the array of coap_reply structures

Returns
pointer to the associated coap_pending structure, NULL in case none could
be found.

struct coap_reply *coap_response_received(const struct coap_packet *response, const
struct sockaddr *from, struct coap_reply
*replies, size_t len)

After a response is received, call coap_reply_t handler registered in coap_reply struc-
ture.

Parameters
• response – A response received

• from – Address from which the response was received

• replies – Pointer to the array of coap_reply structures

• len – Size of the array of coap_reply structures
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Returns
Pointer to the reply matching the packet received, NULL if none could be
found.

struct coap_pending *coap_pending_next_to_expire(struct coap_pending *pendings,
size_t len)

Returns the next pending about to expire, pending->timeout informs how many ms to
next expiration.

Parameters
• pendings – Pointer to the array of coap_pending structures

• len – Size of the array of coap_pending structures

Returns
The next coap_pending to expire, NULL if none is about to expire.

bool coap_pending_cycle(struct coap_pending *pending)
After a request is sent, user may want to cycle the pending retransmission so the time-
out is updated.

Parameters
• pending – Pending representation to have its timeout updated

Returns
false if this is the last retransmission.

void coap_pending_clear(struct coap_pending *pending)
Cancels the pending retransmission, so it again becomes available.

Parameters
• pending – Pending representation to be canceled

void coap_pendings_clear(struct coap_pending *pendings, size_t len)
Cancels all pending retransmissions, so they become available again.

Parameters
• pendings – Pointer to the array of coap_pending structures

• len – Size of the array of coap_pending structures

size_t coap_pendings_count(struct coap_pending *pendings, size_t len)
Count number of pending requests.

Parameters
• len – Number of elements in array.

• pendings – Array of pending requests.

Returns
count of elements where timeout is not zero.

void coap_reply_clear(struct coap_reply *reply)
Cancels awaiting for this reply, so it becomes available again.

User responsibility to free the memory associated with data.

Parameters
• reply – The reply to be canceled
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void coap_replies_clear(struct coap_reply *replies, size_t len)
Cancels all replies, so they become available again.

Parameters
• replies – Pointer to the array of coap_reply structures

• len – Size of the array of coap_reply structures

int coap_resource_notify(struct coap_resource *resource)
Indicates that this resource was updated and that the notify callback should be called
for every registered observer.

Parameters
• resource – Resource that was updated

Returns
0 in case of success or negative in case of error.

bool coap_request_is_observe(const struct coap_packet *request)
Returns if this request is enabling observing a resource.

Parameters
• request – Request to be checked

Returns
True if the request is enabling observing a resource, False otherwise

struct coap_transmission_parameters coap_get_transmission_parameters(void)
Get currently active CoAP transmission parameters.

Returns
CoAP transmission parameters structure.

void coap_set_transmission_parameters(const struct coap_transmission_parameters
*params)

Set CoAP transmission parameters.

Parameters
• params – Pointer to the transmission parameters structure.

int coap_well_known_core_get(struct coap_resource *resource, const struct coap_packet
*request, struct coap_packet *response, uint8_t *data,
uint16_t data_len)

Build a CoAP response for a .well-known/core CoAP request.

Parameters
• resource – Array of known resources, terminated with an empty re-

source

• request – A pointer to the .well-known/core CoAP request

• response – A pointer to a CoAP response, will be initialized

• data – A data pointer to be used to build the CoAP response

• data_len – The maximum length of the data buffer

Returns
0 in case of success or negative in case of error.

int coap_well_known_core_get_len(struct coap_resource *resources, size_t resources_len,
const struct coap_packet *request, struct coap_packet
*response, uint8_t *data, uint16_t data_len)

Build a CoAP response for a .well-known/core CoAP request.
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Parameters
• resources – Array of known resources

• resources_len – Number of resources in the array

• request – A pointer to the .well-known/core CoAP request

• response – A pointer to a CoAP response, will be initialized

• data – A data pointer to be used to build the CoAP response

• data_len – The maximum length of the data buffer

Returns
0 in case of success or negative in case of error.

struct coap_resource
#include <coap.h> Description of CoAP resource.

CoAP servers often want to register resources, so that clients can act on them, by fetch-
ing their state or requesting updates to them.

Public Members

coap_method_t get
Which function to be called for each CoAP method.

coap_notify_t notify
Notify function to call.

const char *const *path
Resource path.

void *user_data
User specific opaque data.

sys_slist_t observers
List of resource observers.

int age
Resource age.

struct coap_observer
#include <coap.h> Represents a remote device that is observing a local resource.

Public Members

sys_snode_t list
Observer list node.

struct sockaddr addr
Observer connection end point information.
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uint8_t token[8]
Observer token.

uint8_t tkl
Extended token length.

struct coap_packet
#include <coap.h> Representation of a CoAP Packet.

Public Members

uint8_t *data
User allocated buffer.

uint16_t offset
CoAP lib maintains offset while adding data.

uint16_t max_len
Max CoAP packet data length.

uint8_t hdr_len
CoAP header length.

uint16_t opt_len
Total options length (delta + len + value)

uint16_t delta
Used for delta calculation in CoAP packet.

struct coap_option
#include <coap.h> Representation of a CoAP option.

Public Members

uint16_t delta
Option delta.

uint8_t len
Option length.

uint8_t value[12]
Option value.

struct coap_transmission_parameters
#include <coap.h> CoAP transmission parameters.
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Public Members

uint32_t ack_timeout
Initial ACK timeout.

Value is used as a base value to retry pending CoAP packets.

uint16_t coap_backoff_percent
Set CoAP retry backoff factor.

A value of 200 means a factor of 2.0.

uint8_t max_retransmission
Maximum number of retransmissions.

struct coap_pending
#include <coap.h> Represents a request awaiting for an acknowledgment (ACK).

Public Members

struct sockaddr addr
Remote address.

int64_t t0
Time when the request was sent.

uint32_t timeout
Timeout in ms.

uint16_t id
Message id.

uint8_t *data
User allocated buffer.

uint16_t len
Length of the CoAP packet.

uint8_t retries
Number of times the request has been sent.

struct coap_transmission_parameters params
Transmission parameters.

struct coap_reply
#include <coap.h>Represents the handler for the reply of a request, it is also used when
observing resources.
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Public Members

coap_reply_t reply
CoAP reply callback.

void *user_data
User specific opaque data.

int age
Reply age.

uint16_t id
Reply id.

uint8_t token[8]
Reply token.

uint8_t tkl
Extended token length.

struct coap_block_context
#include <coap.h> Represents the current state of a block-wise transaction.

Public Members

size_t total_size
Total size of the block-wise transaction.

size_t current
Current size of the block-wise transaction.

enum coap_block_size block_size
Block size.

struct coap_core_metadata
#include <coap_link_format.h> In case you want to add attributes to the resources in-
cluded in the ‘well-known/core’ “virtual” resource, the ‘user_data’ field should point to
a valid coap_core_metadata structure.

Public Members

const char *const *attributes
List of attributes to add.

void *user_data
User specific data.
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CoAP client

• Overview

• Sample Usage

• API Reference

Overview The CoAP client library allows application to send CoAP requests and parse CoAP
responses. The library can be enabled with CONFIG_COAP_CLIENT Kconfig option. The applica-
tion is notified about the response via a callback that is provided to the API in the request. The
CoAP client handles the communication over sockets. As the CoAP client doesn’t create socket
it is using, the application is responsible for creating the socket. Plain UDP or DTLS sockets are
supported.

Sample Usage The following is an example of a CoAP client initialization and request sending:

static struct coap_client;
struct coap_client_request req = { 0 };

coap_client_init(&client, NULL);

req.method = COAP_METHOD_GET;
req.confirmable = true;
req.path = "test";
req.fmt = COAP_CONTENT_FORMAT_TEXT_PLAIN;
req.cb = response_cb;
req.payload = NULL;
req.len = 0;

/* Sock is a file descriptor referencing a socket, address is the sockaddr struct for the
* destination address of the request or NULL if the socket is already connected.
*/

ret = coap_client_req(&client, sock, &address, &req, -1);

Before any requests can be sent, the CoAP client needs to be initialized. After initialization, the
application can send a CoAP request and wait for the response. Currently only one request can
be sent for a single CoAP client at a time. There can be multiple CoAP clients.

The callback provided in the callback will be called in following cases:

• There is a response for the request

• The request failed for some reason

The callback contains a flag last_block, which indicates if there is more data to come in the re-
sponse and means that the current response is part of a blockwise transfer. When the last_block
is set to true, the response is finished and the client is ready for the next request after returning
from the callback.

If the server responds to the request, the library provides the response to the application through
the response callback registered in the request structure. As the response can be a blockwise
transfer and the client calls the callback once per each block, the application should be to process
all of the blocks to be able to process the response.

The following is an example of a very simple response handling function:
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void response_cb(int16_t code, size_t offset, const uint8_t *payload, size_t len,
bool last_block, void *user_data)

{
if (code >= 0) {

LOG_INF("CoAP response from server %d", code);
if (last_block) {

LOG_INF("Last packet received");
}

} else {
LOG_ERR("Error in sending request %d", code);

}
}

CoAP options may also be added to the request by the application. The following is an example
of the application adding a Block2 option to the initial request, to suggest a maximum block size
to the server for a resource that it expects to be large enough to require a blockwise transfer (see
RFC7959 Figure 3: Block-Wise GET with Early Negotiation).

static struct coap_client;
struct coap_client_request req = { 0 };

/* static, since options must remain valid throughout the whole execution of the request */
static struct coap_client_option block2_option;

coap_client_init(&client, NULL);
block2_option = coap_client_option_initial_block2();

req.method = COAP_METHOD_GET;
req.confirmable = true;
req.path = "test";
req.fmt = COAP_CONTENT_FORMAT_TEXT_PLAIN;
req.cb = response_cb;
req.options = &block2_option;
req.num_options = 1;
req.payload = NULL;
req.len = 0;

ret = coap_client_req(&client, sock, &address, &req, -1);

API Reference

group coap_client
CoAP client API.

Since
3.4

Version
0.1.0

Defines

MAX_COAP_MSG_LEN
Maximum size of a CoAP message.
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Typedefs

typedef void (*coap_client_response_cb_t)(int16_t result_code, size_t offset, const
uint8_t *payload, size_t len, bool last_block, void *user_data)

Callback for CoAP request.

This callback is called for responses to CoAP client requests. It is used to indicate er-
rors, response codes from server or to deliver payload. Blockwise transfers cause this
callback to be called sequentially with increasing payload offset and only partial con-
tent in buffer pointed by payload parameter.

Param result_code
Result code of the response. Negative if there was a failure in send.
coap_response_code for positive.

Param offset
Payload offset from the beginning of a blockwise transfer.

Param payload
Buffer containing the payload from the response. NULL for empty payload.

Param len
Size of the payload.

Param last_block
Indicates the last block of the response.

Param user_data
User provided context.

Functions

int coap_client_init(struct coap_client *client, const char *info)
Initialize the CoAP client.

Parameters
• client – [in] Client instance.

• info – [in] Name for the receiving thread of the client. Setting this NULL
will result as default name of “coap_client”.

Returns
int Zero on success, otherwise a negative error code.

int coap_client_req(struct coap_client *client, int sock, const struct sockaddr *addr,
struct coap_client_request *req, struct
coap_transmission_parameters *params)

Send CoAP request.

Operation is handled asynchronously using a background thread. If the socket isn’t
connected to a destination address, user must provide a destination address, otherwise
the address should be set as NULL. Once the callback is called with last block set as true,
socket can be closed or used for another query.

Parameters
• client – Client instance.

• sock – Open socket file descriptor.

• addr – the destination address of the request, NULL if socket is already
connected.
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• req – CoAP request structure

• params – Pointer to transmission parameters structure or NULL to use
default values.

Returns
zero when operation started successfully or negative error code otherwise.

void coap_client_cancel_requests(struct coap_client *client)
Cancel all current requests.

This is intended for canceling long-running requests (e.g. GETs with the OBSERVE op-
tion set) which has gone stale for some reason.

Parameters
• client – Client instance.

static inline struct coap_client_option coap_client_option_initial_block2(void)
Initialise a Block2 option to be added to a request.

If the application expects a request to require a blockwise transfer, it may pre-
emptively suggest a maximum block size to the server - see RFC7959 Figure 3: Block-
Wise GET with Early Negotiation.

This helper function returns a Block2 option to send with the initial request.

Returns
CoAP client initial Block2 option structure

struct coap_client_request
#include <coap_client.h> Representation of a CoAP client request.

Public Members

enum coap_method method
Method of the request.

bool confirmable
CoAP Confirmable/Non-confirmable message.

const char *path
Path of the requested resource.

enum coap_content_format fmt
Content format to be used.

uint8_t *payload
User allocated buffer for send request.

size_t len
Length of the payload.

coap_client_response_cb_t cb
Callback when response received.
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struct coap_client_option *options
Extra options to be added to request.

uint8_t num_options
Number of extra options.

void *user_data
User provided context.

struct coap_client_option
#include <coap_client.h> Representation of extra options for the CoAP client request.

Public Members

uint16_t code
Option code.

uint8_t len
Option len.

uint8_t value[12]
Buffer for the length.

CoAP server

• Overview

• Setup

• Sample Usage

• Observable resources

• CoAP Events

• CoRE Link Format

• API Reference

Overview Zephyr comes with a batteries-included CoAP server, which uses services to listen
for CoAP requests. The CoAP services handle communication over sockets and pass requests to
registered CoAP resources.

Setup Some configuration is required to make sure services can be started using the CoAP
server. The CONFIG_COAP_SERVER option should be enabled in your project:
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Listing 1: prj.conf
CONFIG_COAP_SERVER=y

All services are added to a predefined linker section and all resources for each service also get
their respective linker sections. If you would have a service my_service it has to be prefixed with
coap_resource_ and added to a linker file:

Listing 2: sections-ram.ld
#include <zephyr/linker/iterable_sections.h>

ITERABLE_SECTION_RAM(coap_resource_my_service, 4)

Add this linker file to your application using CMake:

Listing 3: CMakeLists.txt
zephyr_linker_sources(DATA_SECTIONS sections-ram.ld)

You can now define your service as part of the application:

#include <zephyr/net/coap_service.h>

static const uint16_t my_service_port = 5683;

COAP_SERVICE_DEFINE(my_service, "0.0.0.0", &my_service_port, COAP_SERVICE_AUTOSTART);

Note

Services defined with the COAP_SERVICE_AUTOSTARTflag will be started together with the CoAP
server thread. Services can be manually started and stopped with coap_service_start and
coap_service_stop respectively.

Sample Usage The following is an example of a CoAP resource registered with our service:

#include <zephyr/net/coap_service.h>

static int my_get(struct coap_resource *resource, struct coap_packet *request,
struct sockaddr *addr, socklen_t addr_len)

{
static const char *msg = "Hello, world!";
uint8_t data[CONFIG_COAP_SERVER_MESSAGE_SIZE];
struct coap_packet response;
uint16_t id;
uint8_t token[COAP_TOKEN_MAX_LEN];
uint8_t tkl, type;

type = coap_header_get_type(request);
id = coap_header_get_id(request);
tkl = coap_header_get_token(request, token);

/* Determine response type */
type = (type == COAP_TYPE_CON) ? COAP_TYPE_ACK : COAP_TYPE_NON_CON;

coap_packet_init(&response, data, sizeof(data), COAP_VERSION_1, type, tkl, token,
COAP_RESPONSE_CODE_CONTENT, id);

(continues on next page)
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(continued from previous page)
/* Set content format */
coap_append_option_int(&response, COAP_OPTION_CONTENT_FORMAT,

COAP_CONTENT_FORMAT_TEXT_PLAIN);

/* Append payload */
coap_packet_append_payload_marker(&response);
coap_packet_append_payload(&response, (uint8_t *)msg, sizeof(msg));

/* Send to response back to the client */
return coap_resource_send(resource, &response, addr, addr_len, NULL);

}

static int my_put(struct coap_resource *resource, struct coap_packet *request,
struct sockaddr *addr, socklen_t addr_len)

{
/* ... Handle the incoming request ... */

/* Return a CoAP response code as a shortcut for an empty ACK message */
return COAP_RESPONSE_CODE_CHANGED;

}

static const char * const my_resource_path[] = { "test", NULL };
COAP_RESOURCE_DEFINE(my_resource, my_service, {

.path = my_resource_path,

.get = my_get,

.put = my_put,
});

Note

As demonstrated in the example above, a CoAP resource handler can return response codes
to let the server respond with an empty ACK response.

Observable resources The CoAP server provides logic for parsing observe requests and stores
these using the runtime data of CoAP services. An example using a temperature sensor can look
like:

#include <zephyr/kernel.h>
#include <zephyr/drivers/sensor.h>
#include <zephyr/net/coap_service.h>

static void notify_observers(struct k_work *work);
K_WORK_DELAYABLE_DEFINE(temp_work, notify_observers);

static int send_temperature(struct coap_resource *resource,
const struct sockaddr *addr, socklen_t addr_len,
uint16_t age, uint16_t id, const uint8_t *token, uint8_t tkl,
bool is_response)

{
const struct device *dev = DEVICE_DT_GET(DT_ALIAS(ambient_temp0));
uint8_t data[CONFIG_COAP_SERVER_MESSAGE_SIZE];
struct coap_packet response;
char payload[14];
struct sensor_value value;
double temp;
uint8_t type;

/* Determine response type */
(continues on next page)
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(continued from previous page)
type = is_response ? COAP_TYPE_ACK : COAP_TYPE_CON;

if (!is_response) {
id = coap_next_id();

}

coap_packet_init(&response, data, sizeof(data), COAP_VERSION_1, type, tkl, token,
COAP_RESPONSE_CODE_CONTENT, id);

if (age >= 2U) {
coap_append_option_int(&response, COAP_OPTION_OBSERVE, age);

}

/* Set content format */
coap_append_option_int(&response, COAP_OPTION_CONTENT_FORMAT,

COAP_CONTENT_FORMAT_TEXT_PLAIN);

/* Get the sensor date */
sensor_sample_fetch_chan(dev, SENSOR_CHAN_AMBIENT_TEMP);
sensor_channel_get(dev, SENSOR_CHAN_AMBIENT_TEMP, &value);
temp = sensor_value_to_double(&value);

snprintk(payload, sizeof(payload), "%0.2f°C", temp);

/* Append payload */
coap_packet_append_payload_marker(&response);
coap_packet_append_payload(&response, (uint8_t *)payload, strlen(payload));

return coap_resource_send(resource, &response, addr, addr_len, NULL);
}

static int temp_get(struct coap_resource *resource, struct coap_packet *request,
struct sockaddr *addr, socklen_t addr_len)

{
uint8_t token[COAP_TOKEN_MAX_LEN];
uint16_t id;
uint8_t tkl;
int r;

/* Let the CoAP server parse the request and add/remove observers if needed */
r = coap_resource_parse_observe(resource, request, addr);

id = coap_header_get_id(request);
tkl = coap_header_get_token(request, token);

return send_temperature(resource, addr, addr_len, r == 0 ? resource->age : 0,
id, token, tkl, true);

}

static void temp_notify(struct coap_resource *resource, struct coap_observer *observer)
{

send_temperature(resource, &observer->addr, sizeof(observer->addr), resource->age, 0,
observer->token, observer->tkl, false);

}

static const char * const temp_resource_path[] = { "sensors", "temp1", NULL };
COAP_RESOURCE_DEFINE(temp_resource, my_service, {

.path = temp_resource_path,

.get = temp_get,

.notify = temp_notify,
});

(continues on next page)
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(continued from previous page)

static void notify_observers(struct k_work *work)
{

if (sys_slist_is_empty(&temp_resource.observers)) {
return;

}

coap_resource_notify(&temp_resource);
k_work_reschedule(&temp_work, K_SECONDS(1));

}

CoAP Events By enabling CONFIG_NET_MGMT_EVENT the user can register for CoAP events. The
following example simply prints when an event occurs.

#include <zephyr/sys/printk.h>
#include <zephyr/net/coap_mgmt.h>
#include <zephyr/net/coap_service.h>

#define COAP_EVENTS_SET (NET_EVENT_COAP_OBSERVER_ADDED | NET_EVENT_COAP_OBSERVER_REMOVED | \
NET_EVENT_COAP_SERVICE_STARTED | NET_EVENT_COAP_SERVICE_STOPPED)

void coap_event_handler(uint32_t mgmt_event, struct net_if *iface,
void *info, size_t info_length, void *user_data)

{
switch (mgmt_event) {
case NET_EVENT_COAP_OBSERVER_ADDED:

printk("CoAP observer added");
break;

case NET_EVENT_COAP_OBSERVER_REMOVED:
printk("CoAP observer removed");
break;

case NET_EVENT_COAP_SERVICE_STARTED:
if (info != NULL && info_length == sizeof(struct net_event_coap_service)) {

struct net_event_coap_service *net_event = info;

printk("CoAP service %s started", net_event->service->name);
} else {

printk("CoAP service started");
}
break;

case NET_EVENT_COAP_SERVICE_STOPPED:
if (info != NULL && info_length == sizeof(struct net_event_coap_service)) {

struct net_event_coap_service *net_event = info;

printk("CoAP service %s stopped", net_event->service->name);
} else {

printk("CoAP service stopped");
}
break;

}
}

NET_MGMT_REGISTER_EVENT_HANDLER(coap_events, COAP_EVENTS_SET, coap_event_handler, NULL);

CoRE Link Format The CONFIG_COAP_SERVER_WELL_KNOWN_CORE option enables handling the .
well-known/core GET requests by the server. This allows clients to get a list of hypermedia links
to other resources hosted in that server.
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Related code samples

CoAP service
Use the CoAP server subsystem to register CoAP resources.

API Reference

group coap_service
CoAP Service API.

Since
3.6

Version
0.1.0

CoAP Service configuration flags

COAP_SERVICE_AUTOSTART
Start the service on boot.

Defines

COAP_RESOURCE_DEFINE(_name, _service, ...)
Define a static CoAP resource owned by the service named _service .

static const struct gpio_dt_spec led = GPIO_DT_SPEC_GET(DT_ALIAS(led0), gpios);

static int led_put(struct coap_resource *resource, struct coap_packet *request,
struct sockaddr *addr, socklen_t addr_len)

{
const uint8_t *payload;
uint16_t payload_len;

payload = coap_packet_get_payload(request, &payload_len);
if (payload_len != 1) {

return COAP_RESPONSE_CODE_BAD_REQUEST;
}

if (gpio_pin_set_dt(&led, payload[0]) < 0) {
return COAP_RESPONSE_CODE_INTERNAL_ERROR;

}

return COAP_RESPONSE_CODE_CHANGED;
}

COAP_RESOURCE_DEFINE(my_resource, my_service, {
.put = led_put,

});
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Note

The handlers registered with the resource can return a CoAP response code to reply
with an acknowledge without any payload, nothing is sent if the return value is 0
or negative. As seen in the example.

Parameters
• _name – Name of the resource.

• _service – Name of the associated service.

COAP_SERVICE_DEFINE(_name, _host, _port, _flags)
Define a CoAP service with static resources.

See also

COAP_SERVICE_FLAGS.

Note

The _host parameter can be NULL. If not, it is used to specify an IP address either in
IPv4 or IPv6 format a fully-qualified hostname or a virtual host, otherwise the any
address is used.

Note

The _port parameter must be non-NULL. It points to a location that specifies the
port number to use for the service. If the specified port number is zero, then an
ephemeral port number will be used and the actual port number assigned will be
written back to memory. For ephemeral port numbers, the memory pointed to by
_port must be writeable.

Parameters
• _name – Name of the service.

• _host – IP address or hostname associated with the service.

• _port – [inout] Pointer to port associated with the service.

• _flags – Configuration flags

COAP_SERVICE_COUNT(_dst)
Count the number of CoAP services.

Parameters
• _dst – [out] Pointer to location where result is written.

COAP_SERVICE_RESOURCE_COUNT(_service)
Count CoAP service static resources.

Parameters
• _service – Pointer to a service.
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COAP_SERVICE_HAS_RESOURCE(_service, _resource)
Check if service has the specified resource.

Parameters
• _service – Pointer to a service.

• _resource – Pointer to a resource.

COAP_SERVICE_FOREACH(_it)
Iterate over all CoAP services.

Parameters
• _it – Name of iterator (of type CoAP service API)

COAP_RESOURCE_FOREACH(_service, _it)
Iterate over static CoAP resources associated with a given _service.

Note

This macro requires that _service is defined with COAP_SERVICE_DEFINE.

Parameters
• _service – Name of CoAP service

• _it – Name of iterator (of type coap_resource)

COAP_SERVICE_FOREACH_RESOURCE(_service, _it)
Iterate over all static resources associated with _service .

Note

This macro is suitable for a _service defined with COAP_SERVICE_DEFINE.

Parameters
• _service – Pointer to COAP service

• _it – Name of iterator (of type coap_resource)

Functions

int coap_service_start(const struct coap_service *service)
Start the provided service .

Note

This function is suitable for a service defined with COAP_SERVICE_DEFINE.

Parameters
• service – Pointer to CoAP service

Return values
• 0 – in case of success.

• -EALREADY – in case of an already running service.

6.3. Networking 2791



Zephyr Project Documentation, Release 3.7.99

• -ENOTSUP – in case the server has no valid host and port configuration.

int coap_service_stop(const struct coap_service *service)
Stop the provided service .

Note

This function is suitable for a service defined with COAP_SERVICE_DEFINE.

Parameters
• service – Pointer to CoAP service

Return values
• 0 – in case of success.

• -EALREADY – in case the service isn’t running.

int coap_service_is_running(const struct coap_service *service)
Query the provided service running state.

Note

This function is suitable for a service defined with COAP_SERVICE_DEFINE.

Parameters
• service – Pointer to CoAP service

Return values
• 1 – if the service is running

• 0 – if the service is stopped

• negative – in case of an error.

int coap_service_send(const struct coap_service *service, const struct coap_packet *cpkt,
const struct sockaddr *addr, socklen_t addr_len, const struct
coap_transmission_parameters *params)

Send a CoAP message from the provided service .

Note

This function is suitable for a service defined with COAP_SERVICE_DEFINE.

Parameters
• service – Pointer to CoAP service

• cpkt – CoAP Packet to send

• addr – Peer address

• addr_len – Peer address length

• params – Pointer to transmission parameters structure or NULL to use
default values.
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Returns
0 in case of success or negative in case of error.

int coap_resource_send(const struct coap_resource *resource, const struct coap_packet
*cpkt, const struct sockaddr *addr, socklen_t addr_len, const
struct coap_transmission_parameters *params)

Send a CoAP message from the provided resource .

Note

This function is suitable for a resource defined with COAP_RESOURCE_DEFINE.

Parameters
• resource – Pointer to CoAP resource

• cpkt – CoAP Packet to send

• addr – Peer address

• addr_len – Peer address length

• params – Pointer to transmission parameters structure or NULL to use
default values.

Returns
0 in case of success or negative in case of error.

int coap_resource_parse_observe(struct coap_resource *resource, const struct
coap_packet *request, const struct sockaddr *addr)

Parse a CoAP observe request for the provided resource .

If the observe option value is equal to 0, an observer will be added, if the value is equal
to 1, an existing observer will be removed.

Note

This function is suitable for a resource defined with COAP_RESOURCE_DEFINE.

Parameters
• resource – Pointer to CoAP resource

• request – CoAP request to parse

• addr – Peer address

Returns
the observe option value in case of success or negative in case of error.

int coap_resource_remove_observer_by_addr(struct coap_resource *resource, const
struct sockaddr *addr)

Lookup an observer by address and remove it from the resource .

Note

This function is suitable for a resource defined with COAP_RESOURCE_DEFINE.
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Parameters
• resource – Pointer to CoAP resource

• addr – Peer address

Returns
0 in case of success or negative in case of error.

int coap_resource_remove_observer_by_token(struct coap_resource *resource, const
uint8_t *token, uint8_t token_len)

Lookup an observer by token and remove it from the resource .

Note

This function is suitable for a resource defined with COAP_RESOURCE_DEFINE.

Parameters
• resource – Pointer to CoAP resource

• token – Pointer to the token

• token_len – Length of valid bytes in the token

Returns
0 in case of success or negative in case of error.

group coap_mgmt
CoAP Manager Events.

Since
3.6

Version
0.1.0

Defines

NET_EVENT_COAP_SERVICE_STARTED
coap_mgmt event raised when a service has started

NET_EVENT_COAP_SERVICE_STOPPED
coap_mgmt event raised when a service has stopped

NET_EVENT_COAP_OBSERVER_ADDED
coap_mgmt event raised when an observer has been added to a resource

NET_EVENT_COAP_OBSERVER_REMOVED
coap_mgmt event raised when an observer has been removed from a resource

struct net_event_coap_service
#include <coap_mgmt.h> CoAP Service event structure.

2794 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

Public Members

const struct coap_service *service
The CoAP service for which the event is emitted.

struct net_event_coap_observer
#include <coap_mgmt.h> CoAP Observer event structure.

Public Members

struct coap_resource *resource
The CoAP resource for which the event is emitted.

struct coap_observer *observer
The observer that is added/removed.

HTTP Client

• Overview

• Sample Usage

• API Reference

Overview The HTTP client library allows you to send HTTP requests and parse HTTP responses.
The library communicates over the sockets API but it does not create sockets on its own. It can
be enabled with CONFIG_HTTP_CLIENT Kconfig option.

The application must be responsible for creating a socket and passing it to the library. Therefore,
depending on the application’s needs, the library can communicate over either a plain TCP socket
(HTTP) or a TLS socket (HTTPS).

Sample Usage The API of the HTTP client library has a single function.

The following is an example of a request structure created correctly:

struct http_request req = { 0 };
static uint8_t recv_buf[512];

req.method = HTTP_GET;
req.url = "/";
req.host = "localhost";
req.protocol = "HTTP/1.1";
req.response = response_cb;
req.recv_buf = recv_buf;
req.recv_buf_len = sizeof(recv_buf);

/* sock is a file descriptor referencing a socket that has been connected
* to the HTTP server.
*/

ret = http_client_req(sock, &req, 5000, NULL);
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If the server responds to the request, the library provides the response to the application through
the response callback registered in the request structure. As the library can provide the response
in chunks, the application must be able to process these.

Together with the structure containing the response data, the callback function also provides
information about whether the library expects to receive more data.

The following is an example of a very simple response handling function:

static void response_cb(struct http_response *rsp,
enum http_final_call final_data,
void *user_data)

{
if (final_data == HTTP_DATA_MORE) {

LOG_INF("Partial data received (%zd bytes)", rsp->data_len);
} else if (final_data == HTTP_DATA_FINAL) {

LOG_INF("All the data received (%zd bytes)", rsp->data_len);
}

LOG_INF("Response status %s", rsp->http_status);
}

See HTTP client sample application for more information about the library usage.

Related code samples

HTTP Client
Implement an HTTP(S) client that issues a variety of HTTP requests.

TagoIO HTTP Post
Send random temperature values to TagoIO IoT Cloud Platform using HTTP.

API Reference

group http_client
HTTP client API.

Since
2.1

Version
0.2.0

Typedefs

typedef int (*http_payload_cb_t)(int sock, struct http_request *req, void *user_data)
Callback used when data needs to be sent to the server.

Param sock
Socket id of the connection

Param req
HTTP request information

Param user_data
User specified data specified in http_client_req()
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Return
>=0 amount of data sent, in this case http_client_req() should continue send-
ing data, <0 if http_client_req() should return the error code to the caller.

typedef int (*http_header_cb_t)(int sock, struct http_request *req, void *user_data)
Callback can be used if application wants to construct additional HTTP headers when
the HTTP request is sent.

Usage of this is optional.

Param sock
Socket id of the connection

Param req
HTTP request information

Param user_data
User specified data specified in http_client_req()

Return
>=0 amount of data sent, in this case http_client_req() should continue send-
ing data, <0 if http_client_req() should return the error code to the caller.

typedef void (*http_response_cb_t)(struct http_response *rsp, enum http_final_call
final_data, void *user_data)

Callback used when data is received from the server.

Param rsp
HTTP response information

Param final_data
Does this data buffer contain all the data or is there still more data to come.

Param user_data
User specified data specified in http_client_req()

Enums

enum http_final_call
Is there more data to come.

Values:

enumerator HTTP_DATA_MORE = 0
More data will come.

enumerator HTTP_DATA_FINAL = 1
End of data.

Functions

int http_client_req(int sock, struct http_request *req, int32_t timeout, void *user_data)
Do a HTTP request.

The callback is called when data is received from the HTTP server. The caller must
have created a connection to the server before calling this function so connect() call
must have be done successfully for the socket.

6.3. Networking 2797



Zephyr Project Documentation, Release 3.7.99

Parameters
• sock – Socket id of the connection.

• req – HTTP request information

• timeout – Max timeout to wait for the data. The timeout value cannot be
0 as there would be no time to receive the data. The timeout value is in
milliseconds.

• user_data – User specified data that is passed to the callback.

Returns
<0 if error, >=0 amount of data sent to the server

struct http_response
#include <client.h> HTTP response from the server.

Public Members

const struct http_parser_settings *http_cb
HTTP parser settings for the application usage.

http_response_cb_t cb
User provided HTTP response callback which is called when a response is received
to a sent HTTP request.

uint8_t *body_frag_start
Start address of the body fragment contained in the recv_buf.

recv_buffer that contains header + body
_______________________________________

|←-------- body_frag_len ---------→|
|←--------------------- data len --------------------→|

---------------------------------------------------------------
..header | header | body | body..

---------------------------------------------------------------
↑ ↑

recv_buf body_frag_start

recv_buffer that contains body only
___________________________________

|←------------------ body_frag_len ------------------→|
|←--------------------- data len --------------------→|

---------------------------------------------------------------

size_t body_frag_len
Length of the body fragment contained in the recv_buf.

uint8_t *recv_buf
Where the response is stored, this is to be provided by the user.

size_t recv_buf_len
Response buffer maximum length.
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size_t data_len
Length of the data in the result buf.

If the value is larger than recv_buf_len, then it means that the data is truncated
and could not be fully copied into recv_buf. This can only happen if the user did
not set the response callback. If the callback is set, then the HTTP client API will
call response callback many times so that all the data is delivered to the user. Will
be zero in the event of a null response.

size_t content_length
HTTP Content-Length field value.

Will be set to zero in the event of a null response.

size_t processed
Amount of data given to the response callback so far, including the current data
given to the callback.

This should be equal to the content_length field once the entire body has been
received. Will be zero if a null response is given.

char http_status[HTTP_STATUS_STR_SIZE]
See https://tools.ietf.org/html/rfc7230#section-3.1.2 for more information.

The status-code element is a 3-digit integer code

The reason-phrase element exists for the sole purpose of providing a textual de-
scription associated with the numeric status code. A client SHOULD ignore the
reason-phrase content.

Will be blank if a null HTTP response is given.

uint16_t http_status_code
Numeric HTTP status code which corresponds to the textual description.

Set to zero if null response is given. Otherwise, will be a 3-digit integer code if valid
HTTP response is given.

uint8_t cl_present
Is Content-Length field present.

uint8_t body_found
Is message body found.

uint8_t message_complete
Is HTTP message parsing complete.

struct http_client_internal_data
#include <client.h> HTTP client internal data that the application should not touch.

Public Members

struct http_parser parser
HTTP parser context.
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struct http_parser_settings parser_settings
HTTP parser settings.

struct http_response response
HTTP response specific data (filled by http_client_req() when data is received)

void *user_data
User data.

int sock
HTTP socket.

struct http_request
#include <client.h> HTTP client request.

This contains all the data that is needed when doing a HTTP request.

Public Members

struct http_client_internal_data internal
HTTP client request internal data.

enum http_method method
The HTTP method: GET, HEAD, OPTIONS, POST, …

http_response_cb_t response
User supplied callback function to call when response is received.

const struct http_parser_settings *http_cb
User supplied list of HTTP callback functions if the calling application wants to
know the parsing status or the HTTP fields.

This is optional and normally not needed.

uint8_t *recv_buf
User supplied buffer where received data is stored.

size_t recv_buf_len
Length of the user supplied receive buffer.

const char *url
The URL for this request, for example: /index.html.

const char *protocol
The HTTP protocol, for example “HTTP/1.1”.

const char **header_fields
The HTTP header fields (application specific) The Content-Type may be specified
here or in the next field.
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Depending on your application, the Content-Type may vary, however some header
fields may remain constant through the application’s life cycle. This is a NULL
terminated list of header fields.

const char *content_type_value
The value of the Content-Type header field, may be NULL.

const char *host
Hostname to be used in the request.

const char *port
Port number to be used in the request.

http_payload_cb_t payload_cb
User supplied callback function to call when payload needs to be sent.

This can be NULL in which case the payload field in http_request is used. The idea
of this payload callback is to allow user to send more data that is practical to store
in allocated memory.

const char *payload
Payload, may be NULL.

size_t payload_len
Payload length is used to calculate Content-Length.

Set to 0 for chunked transfers.

http_header_cb_t optional_headers_cb
User supplied callback function to call when optional headers need to be sent.

This can be NULL, in which case the optional_headers field in http_request is used.
The idea of this optional_headers callback is to allow user to send more HTTP
header data that is practical to store in allocated memory.

const char **optional_headers
A NULL terminated list of any optional headers that should be added to the HTTP
request.

May be NULL. If the optional_headers_cb is specified, then this field is ignored.
Note that there are two similar fields that contain headers, the header_fields above
and this optional_headers. This is done like this to support Websocket use case
where Websocket will use header_fields variable and any optional application spe-
cific headers will be placed into this field.

HTTP Server

• Overview

• Server Setup

• Sample Usage

– Services
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– Static resources

– Static filesystem resources

– Dynamic resources

– Websocket resources

• API Reference

Overview Zephyr provides an HTTP server library, which allows to register HTTP services and
HTTP resources associated with those services. The server creates a listening socket for every
registered service, and handles incoming client connections. It’s possible to communicate over
a plain TCP socket (HTTP) or a TLS socket (HTTPS). Both, HTTP/1.1 (RFC 2616) and HTTP/2 (RFC
9113) protocol versions are supported.

The server operation is generally transparent for the application, running in a background
thread. The application can control the server activity with respective API functions.

Certain resource types (for example dynamic resource) provide resource-specific application
callbacks, allowing the server to interact with the application (for instance provide resource
content, or process request payload).

Currently, the following resource types are supported:

• Static resources - content defined compile-time, cannot be modified at runtime
(HTTP_RESOURCE_TYPE_STATIC).

• Dynamic resources - content provided at runtime by respective application callback
(HTTP_RESOURCE_TYPE_DYNAMIC).

• Websocket resources - allowing to establish Websocket connections with the server
(HTTP_RESOURCE_TYPE_WEBSOCKET).

Zephyr provides a sample demonstrating HTTP(s) server operation and various resource types
usage. See sockets-http-server for more information.

Server Setup A few prerequisites are needed in order to enable HTTP server functionality in
the application.

First of all, the HTTP server has to be enabled in applications configuration file with CON-
FIG_HTTP_SERVER Kconfig option:

Listing 4: prj.conf
CONFIG_HTTP_SERVER=y

All HTTP services and HTTP resources are placed in a dedicated linker section. The linker sec-
tion for services is predefined locally, however the application is responsible for defining linker
sections for resources associated with respective services. Linker section names for resources
should be prefixed with http_resource_desc_, appended with the service name.

Linker sections for resources should be defined in a linker file. For example, for a service named
my_service, the linker section shall be defined as follows:

Listing 5: sections-rom.ld
#include <zephyr/linker/iterable_sections.h>

ITERABLE_SECTION_ROM(http_resource_desc_my_service, Z_LINK_ITERABLE_SUBALIGN)

Finally, the linker file and linker section have to be added to your application using CMake:
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Listing 6: CMakeLists.txt
zephyr_linker_sources(SECTIONS sections-rom.ld)
zephyr_linker_section(NAME http_resource_desc_my_service

KVMA RAM_REGION GROUP RODATA_REGION
SUBALIGN Z_LINK_ITERABLE_SUBALIGN)

Note

You need to define a separate linker section for each HTTP service registered in the system.

Sample Usage

Services The application needs to define an HTTP service (or multiple services), with the same
name as used for the linker section with HTTP_SERVICE_DEFINE macro:

#include <zephyr/net/http/service.h>

static uint16_t http_service_port = 80;

HTTP_SERVICE_DEFINE(my_service, "0.0.0.0", &http_service_port, 1, 10, NULL);

Alternatively, an HTTPS service can be defined with HTTPS_SERVICE_DEFINE:

#include <zephyr/net/http/service.h>
#include <zephyr/net/tls_credentials.h>

#define HTTP_SERVER_CERTIFICATE_TAG 1

static uint16_t https_service_port = 443;
static const sec_tag_t sec_tag_list[] = {

HTTP_SERVER_CERTIFICATE_TAG,
};

HTTPS_SERVICE_DEFINE(my_service, "0.0.0.0", &https_service_port, 1, 10,
NULL, sec_tag_list, sizeof(sec_tag_list));

Note

HTTPS services rely on TLS credentials being registered in the system. See TLS credentials
subsystem for information on how to configure TLS credentials in the system.

Once HTTP(s) service is defined, resources can be registered for it with HTTP_RESOURCE_DEFINE
macro.

Application can enable resource wildcard support by enabling CON-
FIG_HTTP_SERVER_RESOURCE_WILDCARD option. When this option is set, then it is possible to
match several incoming HTTP requests with just one resource handler. The fnmatch() POSIX
API function is used to match the pattern in the URL paths.

Example:

HTTP_RESOURCE_DEFINE(my_resource, my_service, "/foo*", &resource_detail);

This would match all URLs that start with a string foo. See POSIX.2 chapter 2.13 for pattern
matching syntax description.
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Static resources Static resource content is defined build-time and is immutable. The follow-
ing example shows how gzip compressed webpage can be defined as a static resource in the
application:

static const uint8_t index_html_gz[] = {
#include "index.html.gz.inc"

};

struct http_resource_detail_static index_html_gz_resource_detail = {
.common = {

.type = HTTP_RESOURCE_TYPE_STATIC,

.bitmask_of_supported_http_methods = BIT(HTTP_GET),

.content_encoding = "gzip",
},
.static_data = index_html_gz,
.static_data_len = sizeof(index_html_gz),

};

HTTP_RESOURCE_DEFINE(index_html_gz_resource, my_service, "/",
&index_html_gz_resource_detail);

The resource content and content encoding is application specific. For the above example, a
gzip compressed webpage can be generated during build, by adding the following code to the
application’s CMakeLists.txt file:

Listing 7: CMakeLists.txt
set(gen_dir ${ZEPHYR_BINARY_DIR}/include/generated/)
set(source_file_index src/index.html)
generate_inc_file_for_target(app ${source_file_index} ${gen_dir}/index.html.gz.inc --gzip)

where src/index.html is the location of the webpage to be compressed.

Static filesystem resources Static filesystem resource content is defined build-time and is im-
mutable. The following example shows how the path can be defined as a static resource in the
application:

struct http_resource_detail_static_fs static_fs_resource_detail = {
.common = {

.type = HTTP_RESOURCE_TYPE_STATIC_FS,

.bitmask_of_supported_http_methods = BIT(HTTP_GET),
},
.fs_path = "/lfs1/www",

};

HTTP_RESOURCE_DEFINE(static_fs_resource, my_service, "*", &static_fs_resource_detail);

All files located in /lfs1/www are made available to the client. If a file is gzipped, .gz must be
appended to the file name (e.g. index.html.gz), then the server delivers index.html.gz when the
client requests index.html and adds gzip content-encoding to the HTTP header.

The content type is evaluated based on the file extension. The server supports .html, .js, .css, .jpg,
.png and .svg. More content types can be provided with the HTTP_SERVER_CONTENT_TYPE macro.
All other files are provided with the content type text/html.

HTTP_SERVER_CONTENT_TYPE(json, "application/json")

Dynamic resources For dynamic resource, a resource callback is registered to exchange data
between the server and the application. The application defines a resource buffer used to pass
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the request payload data from the server, and to provide response payload to the server. The fol-
lowing example code shows how to register a dynamic resource with a simple resource handler,
which echoes received data back to the client:

static uint8_t recv_buffer[1024];

static int dyn_handler(struct http_client_ctx *client,
enum http_data_status status, uint8_t *buffer,
size_t len, void *user_data)

{
#define MAX_TEMP_PRINT_LEN 32

static char print_str[MAX_TEMP_PRINT_LEN];
enum http_method method = client->method;
static size_t processed;

__ASSERT_NO_MSG(buffer != NULL);

if (status == HTTP_SERVER_DATA_ABORTED) {
LOG_DBG("Transaction aborted after %zd bytes.", processed);
processed = 0;
return 0;

}

processed += len;

snprintf(print_str, sizeof(print_str), "%s received (%zd bytes)",
http_method_str(method), len);

LOG_HEXDUMP_DBG(buffer, len, print_str);

if (status == HTTP_SERVER_DATA_FINAL) {
LOG_DBG("All data received (%zd bytes).", processed);
processed = 0;

}

/* This will echo data back to client as the buffer and recv_buffer
* point to same area.
*/

return len;
}

struct http_resource_detail_dynamic dyn_resource_detail = {
.common = {

.type = HTTP_RESOURCE_TYPE_DYNAMIC,

.bitmask_of_supported_http_methods =
BIT(HTTP_GET) | BIT(HTTP_POST),

},
.cb = dyn_handler,
.data_buffer = recv_buffer,
.data_buffer_len = sizeof(recv_buffer),
.user_data = NULL,

};

HTTP_RESOURCE_DEFINE(dyn_resource, my_service, "/dynamic",
&dyn_resource_detail);

The resource callback may be called multiple times for a single request, hence the application
should be able to keep track of the received data progress.

The status field informs the application about the progress in passing request payload from the
server to the application. As long as the status reports HTTP_SERVER_DATA_MORE, the application
should expect more data to be provided in a consecutive callback calls. Once all request payload
has been passed to the application, the server reports HTTP_SERVER_DATA_FINAL status. In case of
communication errors during request processing (for example client closed the connection be-
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fore complete payload has been received), the server reports HTTP_SERVER_DATA_ABORTED. Either
of the two events indicate that the application shall reset any progress recorded for the resource,
and await a new request to come. The server guarantees that the resource can only be accessed
by single client at a time.

The resource callback returns the number of bytes to be replied in the response payload to the
server (provided in the resource data buffer). In case there is no more data to be included in the
response, the callback should return 0.

The server will call the resource callback until it provided all request data to the application, and
the application reports there is no more data to include in the reply.

Websocket resources Websocket resources register an application callback, which is called
when a Websocket connection upgrade takes place. The callback is provided with a socket de-
scriptor corresponding to the underlying TCP/TLS connection. Once called, the application takes
full control over the socket, i. e. is responsible to release it when done.

static int ws_socket;
static uint8_t ws_recv_buffer[1024];

int ws_setup(int sock, void *user_data)
{

ws_socket = sock;
return 0;

}

struct http_resource_detail_websocket ws_resource_detail = {
.common = {

.type = HTTP_RESOURCE_TYPE_WEBSOCKET,
/* We need HTTP/1.1 Get method for upgrading */
.bitmask_of_supported_http_methods = BIT(HTTP_GET),

},
.cb = ws_setup,
.data_buffer = ws_recv_buffer,
.data_buffer_len = sizeof(ws_recv_buffer),
.user_data = NULL, /* Fill this for any user specific data */

};

HTTP_RESOURCE_DEFINE(ws_resource, my_service, "/", &ws_resource_detail);

The above minimalistic example shows how to register a Websocket resource with a simple call-
back, used only to store the socket descriptor provided. Further processing of the Websocket
connection is application-specific, hence outside of scope of this guide. See sockets-http-server
for an example Websocket-based echo service implementation.

Related code samples

HTTP Server
Implement an HTTP(s) Server demonstrating various resource types.

API Reference

group http_service

Since
3.4
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Version
0.1.0

Defines

HTTP_RESOURCE_DEFINE(_name, _service, _resource, _detail)
Define a static HTTP resource.

A static HTTP resource is one that is known prior to system initialization. In contrast,
dynamic resources may be discovered upon system initialization. Dynamic resources
may also be inserted, or removed by events originating internally or externally to the
system at runtime.

Note

The _resource is the URL without the associated protocol, host, or URL parameters.
E.g. the resource for #param1=value1 would be /bar/baz.html. It is often referred
to as the “path” of the URL. Every (service, resource) pair should be unique. The
_resource must be non-NULL.

Parameters
• _name – Name of the resource.

• _service – Name of the associated service.

• _resource – Pathname-like string identifying the resource.

• _detail – Implementation-specific detail associated with the resource.

HTTP_SERVICE_DEFINE_EMPTY(_name, _host, _port, _concurrent, _backlog, _detail)
Define an HTTP service without static resources.

Note

The _host parameter must be non-NULL. It is used to specify an IP address either in
IPv4 or IPv6 format a fully-qualified hostname or a virtual host.

Note

The _port parameter must be non-NULL. It points to a location that specifies the
port number to use for the service. If the specified port number is zero, then an
ephemeral port number will be used and the actual port number assigned will be
written back to memory. For ephemeral port numbers, the memory pointed to by
_port must be writeable.

Parameters
• _name – Name of the service.

• _host – IP address or hostname associated with the service.

• _port – [inout] Pointer to port associated with the service.

• _concurrent – Maximum number of concurrent clients.

• _backlog – Maximum number queued connections.
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• _detail – Implementation-specific detail associated with the service.

HTTPS_SERVICE_DEFINE_EMPTY(_name, _host, _port, _concurrent, _backlog, _detail,
_sec_tag_list, _sec_tag_list_size)

Define an HTTPS service without static resources.

Note

The _host parameter must be non-NULL. It is used to specify an IP address either in
IPv4 or IPv6 format a fully-qualified hostname or a virtual host.

Note

The _port parameter must be non-NULL. It points to a location that specifies the
port number to use for the service. If the specified port number is zero, then an
ephemeral port number will be used and the actual port number assigned will be
written back to memory. For ephemeral port numbers, the memory pointed to by
_port must be writeable.

Parameters
• _name – Name of the service.

• _host – IP address or hostname associated with the service.

• _port – [inout] Pointer to port associated with the service.

• _concurrent – Maximum number of concurrent clients.

• _backlog – Maximum number queued connections.

• _detail – Implementation-specific detail associated with the service.

• _sec_tag_list – TLS security tag list used to setup a HTTPS socket.

• _sec_tag_list_size – TLS security tag list size used to setup a HTTPS
socket.

HTTP_SERVICE_DEFINE(_name, _host, _port, _concurrent, _backlog, _detail)
Define an HTTP service with static resources.

Note

The _host parameter must be non-NULL. It is used to specify an IP address either in
IPv4 or IPv6 format a fully-qualified hostname or a virtual host.

Note

The _port parameter must be non-NULL. It points to a location that specifies the
port number to use for the service. If the specified port number is zero, then an
ephemeral port number will be used and the actual port number assigned will be
written back to memory. For ephemeral port numbers, the memory pointed to by
_port must be writeable.

Parameters
• _name – Name of the service.
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• _host – IP address or hostname associated with the service.

• _port – [inout] Pointer to port associated with the service.

• _concurrent – Maximum number of concurrent clients.

• _backlog – Maximum number queued connections.

• _detail – Implementation-specific detail associated with the service.

HTTPS_SERVICE_DEFINE(_name, _host, _port, _concurrent, _backlog, _detail, _sec_tag_list,
_sec_tag_list_size)

Define an HTTPS service with static resources.

Note

The _host parameter must be non-NULL. It is used to specify an IP address either in
IPv4 or IPv6 format a fully-qualified hostname or a virtual host.

Note

The _port parameter must be non-NULL. It points to a location that specifies the
port number to use for the service. If the specified port number is zero, then an
ephemeral port number will be used and the actual port number assigned will be
written back to memory. For ephemeral port numbers, the memory pointed to by
_port must be writeable.

Parameters
• _name – Name of the service.

• _host – IP address or hostname associated with the service.

• _port – [inout] Pointer to port associated with the service.

• _concurrent – Maximum number of concurrent clients.

• _backlog – Maximum number queued connections.

• _detail – Implementation-specific detail associated with the service.

• _sec_tag_list – TLS security tag list used to setup a HTTPS socket.

• _sec_tag_list_size – TLS security tag list size used to setup a HTTPS
socket.

HTTP_SERVICE_COUNT(_dst)
Count the number of HTTP services.

Parameters
• _dst – [out] Pointer to location where result is written.

HTTP_SERVICE_RESOURCE_COUNT(_service)
Count HTTP service static resources.

Parameters
• _service – Pointer to a service.

HTTP_SERVICE_FOREACH(_it)
Iterate over all HTTP services.

Parameters
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• _it – Name of http_service_desc iterator

HTTP_RESOURCE_FOREACH(_service, _it)
Iterate over static HTTP resources associated with a given _service.

Note

This macro requires that _service is defined with HTTP_SERVICE_DEFINE.

Parameters
• _service – Name of HTTP service

• _it – Name of iterator (of type http_resource_desc)

HTTP_SERVICE_FOREACH_RESOURCE(_service, _it)
Iterate over all static resources associated with _service .

Note

This macro is suitable for a _service defined with either HTTP_SERVICE_DEFINE
or HTTP_SERVICE_DEFINE_EMPTY .

Parameters
• _service – Pointer to HTTP service

• _it – Name of iterator (of type http_resource_desc)

struct http_resource_desc
#include <service.h> HTTP resource description.

Public Members

const char *resource
Resource name.

void *detail
Detail associated with this resource.

Related code samples

HTTP Server
Implement an HTTP(s) Server demonstrating various resource types.

group http_server

Since
3.7

Version
0.1.0
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Defines

HTTP_SERVER_CONTENT_TYPE(_extension, _content_type)

HTTP_SERVER_CONTENT_TYPE_FOREACH(_it)

Typedefs

typedef int (*http_resource_dynamic_cb_t)(struct http_client_ctx *client, enum
http_data_status status, uint8_t *data_buffer, size_t data_len, void *user_data)

Callback used when data is received.

Data to be sent to client can be specified.

Param client
HTTP context information for this client connection.

Param status
HTTP data status, indicate whether more data is expected or not.

Param data_buffer
Data received.

Param data_len
Amount of data received.

Param user_data
User specified data.

Return
>0 amount of data to be sent to client, let server to call this function again
when new data is received. 0 nothing to sent to client, close the connection
<0 error, close the connection.

typedef int (*http_resource_websocket_cb_t)(int ws_socket, void *user_data)
Callback used when a Websocket connection is setup.

The application will need to handle all functionality related to the connection like read-
ing and writing websocket data, and closing the connection.

Param ws_socket
A socket for the Websocket data.

Param user_data
User specified data.

Return
0 Accepting the connection, HTTP server library will no longer handle data
to/from the socket and it is application responsibility to send and receive
data to/from the supplied socket. <0 error, close the connection.

Enums

enum http_resource_type
HTTP server resource type.

Values:
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enumerator HTTP_RESOURCE_TYPE_STATIC
Static resource, cannot be modified on runtime.

enumerator HTTP_RESOURCE_TYPE_STATIC_FS
serves static gzipped files from a filesystem

enumerator HTTP_RESOURCE_TYPE_DYNAMIC
Dynamic resource, server interacts with the application via registered
http_resource_dynamic_cb_t.

enumerator HTTP_RESOURCE_TYPE_WEBSOCKET
Websocket resource, application takes control over Websocket connection after
and upgrade.

enum http_data_status
Indicates the status of the currently processed piece of data.

Values:

enumerator HTTP_SERVER_DATA_ABORTED = -1
Transaction aborted, data incomplete.

enumerator HTTP_SERVER_DATA_MORE = 0
Transaction incomplete, more data expected.

enumerator HTTP_SERVER_DATA_FINAL = 1
Final data fragment in current transaction.

Functions

int http_server_start(void)
Start the HTTP2 server.

The server runs in a background thread. Once started, the server will create a server
socket for all HTTP services registered in the system and accept connections from
clients (see HTTP_SERVICE_DEFINE).

int http_server_stop(void)
Stop the HTTP2 server.

All server sockets are closed and the server thread is suspended.

struct http_resource_detail
#include <server.h>Representation of a server resource, common for all resource types.

Public Members

uint32_t bitmask_of_supported_http_methods
Bitmask of supported HTTP methods (http_method).
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enum http_resource_type type
Resource type.

int path_len
Length of the URL path.

const char *content_encoding
Content encoding of the resource.

const char *content_type
Content type of the resource.

struct http_resource_detail_static
#include <server.h> Representation of a static server resource.

Public Members

struct http_resource_detail common
Common resource details.

const void *static_data
Content of the static resource.

size_t static_data_len
Size of the static resource.

struct http_resource_detail_static_fs
#include <server.h> Representation of a static filesystem server resource.

Public Members

struct http_resource_detail common
Common resource details.

const char *fs_path
Path in the local filesystem.

struct http_content_type
#include <server.h>

struct http_resource_detail_dynamic
#include <server.h> Representation of a dynamic server resource.

Public Members
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struct http_resource_detail common
Common resource details.

http_resource_dynamic_cb_t cb
Resource callback used by the server to interact with the application.

uint8_t *data_buffer
Data buffer used to exchanged data between server and the, application.

size_t data_buffer_len
Length of the data in the data buffer.

struct http_client_ctx *holder
A pointer to the client currently processing resource, used to prevent concurrent
access to the resource from multiple clients.

void *user_data
A pointer to the user data registered by the application.

struct http_resource_detail_websocket
#include <server.h> Representation of a websocket server resource.

Public Members

struct http_resource_detail common
Common resource details.

int ws_sock
Websocket socket value.

http_resource_websocket_cb_t cb
Resource callback used by the server to interact with the application.

uint8_t *data_buffer
Data buffer used to exchanged data between server and the, application.

size_t data_buffer_len
Length of the data in the data buffer.

void *user_data
A pointer to the user data registered by the application.

struct http2_stream_ctx
#include <server.h> HTTP/2 stream representation.
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Public Members

int stream_id
Stream identifier.

enum http2_stream_state stream_state
Stream state.

int window_size
Stream-level window size.

bool headers_sent
Flag indicating that headers were sent in the reply.

bool end_stream_sent
Flag indicating that END_STREAM flag was sent.

struct http2_frame
#include <server.h> HTTP/2 frame representation.

Public Members

uint32_t length
Frame payload length.

uint32_t stream_identifier
Stream ID the frame belongs to.

uint8_t type
Frame type.

uint8_t flags
Frame flags.

uint8_t padding_len
Frame padding length.

struct http_client_ctx
#include <server.h> Representation of an HTTP client connected to the server.

Public Members

int fd
Socket descriptor associated with the server.

unsigned char buffer[HTTP_SERVER_CLIENT_BUFFER_SIZE]
Client data buffer.
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unsigned char *cursor
Cursor indicating currently processed byte.

size_t data_len
Data left to process in the buffer.

int window_size
Connection-level window size.

enum http_server_state server_state
Server state for the associated client.

struct http2_frame current_frame
Currently processed HTTP/2 frame.

struct http_resource_detail *current_detail
Currently processed resource detail.

struct http2_stream_ctx *current_stream
Currently processed stream.

struct http_hpack_header_buf header_field
HTTP/2 header parser context.

struct http2_stream_ctx streams[HTTP_SERVER_MAX_STREAMS]
HTTP/2 streams context.

struct http_parser_settings parser_settings
HTTP/1 parser configuration.

struct http_parser parser
HTTP/1 parser context.

unsigned char url_buffer[HTTP_SERVER_MAX_URL_LENGTH]
Request URL.

unsigned char content_type[HTTP_SERVER_MAX_CONTENT_TYPE_LEN]
Request content type.

unsigned char header_buffer[HTTP_SERVER_MAX_HEADER_LEN]
Temp buffer for currently processed header (HTTP/1 only).

size_t content_len
Request content length.

enum http_method method
Request method.
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enum http1_parser_state parser_state
HTTP/1 parser state.

int http1_frag_data_len
Length of the payload length in the currently processed request fragment (HTTP/1
only).

struct k_work_delayable inactivity_timer
Client inactivity timer.

The client connection is closed by the server when it expires.

bool preface_sent
Flag indicating that HTTP2 preface was sent.

bool http1_headers_sent
Flag indicating that HTTP1 headers were sent.

bool has_upgrade_header
Flag indicating that upgrade header was present in the request.

bool http2_upgrade
Flag indicating HTTP/2 upgrade takes place.

bool websocket_upgrade
Flag indicating Websocket upgrade takes place.

bool websocket_sec_key_next
Flag indicating Websocket key is being processed.

bool expect_continuation
The next frame on the stream is expectd to be a continuation frame.

Lightweight M2M (LWM2M)

• Overview

• Example LwM2M object and resources: Device

• Sample usage

• LwM2M security modes

• Multi-thread usage

• Support for time series data

– Enabling and configuring

– Read and Write operations

– Limitations

• LwM2M engine and application events
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• Configuring lifetime and activity period

• LwM2M shell

• API Reference

Overview Lightweight Machine to Machine (LwM2M) is an application layer protocol designed
with device management, data reporting and device actuation in mind. Based on CoAP/UDP,
LwM2M is a standard defined by the Open Mobile Alliance and suitable for constrained devices
by its use of CoAP packet-size optimization and a simple, stateless flow that supports a REST API.

One of the key differences between LwM2M and CoAP is that an LwM2M client initiates the con-
nection to an LwM2M server. The server can then use the REST API to manage various interfaces
with the client.

LwM2M uses a simple resource model with the core set of objects and resources defined in the
specification.

The LwM2M library can be enabled with CONFIG_LWM2M Kconfig option.

Example LwM2M object and resources: Device Object definition

Object ID Name Instance Mandatory
3 Device Single Mandatory

Resource definitions

* R=Read, W=Write, E=Execute

ID Name OP* Instance Mandatory Type
0 Manufacturer R Single Optional String
1 Model R Single Optional String
2 Serial number R Single Optional String
3 Firmware version R Single Optional String
4 Reboot E Single Mandatory
5 Factory Reset E Single Optional
6 Available Power Sources R Multiple Optional Integer 0-7
7 Power Source Voltage (mV) R Multiple Optional Integer
8 Power Source Current (mA) R Multiple Optional Integer
9 Battery Level % R Single Optional Integer
10 Memory Free (Kb) R Single Optional Integer
11 Error Code R Multiple Optional Integer 0-8
12 Reset Error E Single Optional
13 Current Time RW Single Optional Time
14 UTC Offset RW Single Optional String
15 Timezone RW Single Optional String
16 Supported Binding R Single Mandatory String
17 Device Type R Single Optional String
18 Hardware Version R Single Optional String
19 Software Version R Single Optional String
20 Battery Status R Single Optional Integer 0-6
21 Memory Total (Kb) R Single Optional Integer
22 ExtDevInfo R Multiple Optional ObjLnk
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The server could query the Manufacturer resource for Device object instance 0 (the default and
only instance) by sending a READ 3/0/0 operation to the client.

The full list of registered objects and resource IDs can be found in the LwM2M registry.

Zephyr’s LwM2M library lives in the subsys/net/lib/lwm2m, with a client sample in sam-
ples/net/lwm2m_client. For more information about the provided sample see: lwm2m-client.
The sample can be configured to use normal unsecure network sockets or sockets secured via
DTLS.

The Zephyr LwM2M library implements the following items:

• engine to process networking events and core functions

• RD client which performs BOOTSTRAP and REGISTRATION functions

• SenML CBOR, SenML JSON, CBOR, TLV, JSON, and plain text formatting functions

• LwM2M Technical Specification Enabler objects such as Security, Server, Device, Firmware
Update, etc.

• Extended IPSO objects such as Light Control, Temperature Sensor, and Timer

By default, the library implements LwM2M specification 1.0.2 and can be set to LwM2M specifi-
cation 1.1.1 with a Kconfig option.

For more information about LwM2M visit OMA Specworks LwM2M.

Sample usage To use the LwM2M library, start by creating an LwM2M client context lwm2m_ctx
structure:

/* LwM2M client context */
static struct lwm2m_ctx client;

Create callback functions for LwM2M resource executions:

static int device_reboot_cb(uint16_t obj_inst_id, uint8_t *args,
uint16_t args_len)

{
LOG_INF("Device rebooting.");
LOG_PANIC();
sys_reboot(0);
return 0; /* won't reach this */

}

The LwM2M RD client can send events back to the sample. To receive those events, setup a
callback function:

static void rd_client_event(struct lwm2m_ctx *client,
enum lwm2m_rd_client_event client_event)

{
switch (client_event) {

case LWM2M_RD_CLIENT_EVENT_NONE:
/* do nothing */
break;

case LWM2M_RD_CLIENT_EVENT_BOOTSTRAP_REG_FAILURE:
LOG_DBG("Bootstrap registration failure!");
break;

case LWM2M_RD_CLIENT_EVENT_BOOTSTRAP_REG_COMPLETE:
LOG_DBG("Bootstrap registration complete");
break;

(continues on next page)
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(continued from previous page)

case LWM2M_RD_CLIENT_EVENT_BOOTSTRAP_TRANSFER_COMPLETE:
LOG_DBG("Bootstrap transfer complete");
break;

case LWM2M_RD_CLIENT_EVENT_REGISTRATION_FAILURE:
LOG_DBG("Registration failure!");
break;

case LWM2M_RD_CLIENT_EVENT_REGISTRATION_COMPLETE:
LOG_DBG("Registration complete");
break;

case LWM2M_RD_CLIENT_EVENT_REG_TIMEOUT:
LOG_DBG("Registration timeout!");
break;

case LWM2M_RD_CLIENT_EVENT_REG_UPDATE_COMPLETE:
LOG_DBG("Registration update complete");
break;

case LWM2M_RD_CLIENT_EVENT_DEREGISTER_FAILURE:
LOG_DBG("Deregister failure!");
break;

case LWM2M_RD_CLIENT_EVENT_DISCONNECT:
LOG_DBG("Disconnected");
break;

case LWM2M_RD_CLIENT_EVENT_REG_UPDATE:
LOG_DBG("Registration update");
break;

case LWM2M_RD_CLIENT_EVENT_DEREGISTER:
LOG_DBG("Deregistration client");
break;

case LWM2M_RD_CLIENT_EVENT_SERVER_DISABLED:
LOG_DBG("LwM2M server disabled");

break;
}

}

Next we assign Security resource values to let the client know where and how to connect as
well as set the Manufacturer and Reboot resources in the Device object with some data and the
callback we defined above:

/*
* Server URL of default Security object = 0/0/0
* Use leshan.eclipse.org server IP (5.39.83.206) for connection
*/

lwm2m_set_string(&LWM2M_OBJ(0, 0, 0), "coap://5.39.83.206");

/*
* Security Mode of default Security object = 0/0/2
* 3 = NoSec mode (no security beware!)
*/

lwm2m_set_u8(&LWM2M_OBJ(0, 0, 2), 3);

#define CLIENT_MANUFACTURER "Zephyr Manufacturer"

(continues on next page)
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(continued from previous page)
/*
* Manufacturer resource of Device object = 3/0/0
* We use lwm2m_set_res_data() function to set a pointer to the
* CLIENT_MANUFACTURER string.
* Note the LWM2M_RES_DATA_FLAG_RO flag which stops the engine from
* trying to assign a new value to the buffer.
*/

lwm2m_set_res_data(&LWM2M_OBJ(3, 0, 0), CLIENT_MANUFACTURER,
sizeof(CLIENT_MANUFACTURER),
LWM2M_RES_DATA_FLAG_RO);

/* Reboot resource of Device object = 3/0/4 */
lwm2m_register_exec_callback(&LWM2M_OBJ(3, 0, 4), device_reboot_cb);

Lastly, we start the LwM2M RD client (which in turn starts the LwM2M engine). The second
parameter of lwm2m_rd_client_start() is the client endpoint name. This is important as it needs
to be unique per LwM2M server:

(void)memset(&client, 0x0, sizeof(client));
lwm2m_rd_client_start(&client, "unique-endpoint-name", 0, rd_client_event);

LwM2M security modes The Zephyr LwM2M library can be used either without security or
use DTLS to secure the communication channel. When using DTLS with the LwM2M engine,
PSK (Pre-Shared Key) and X.509 certificates are the security modes that can be used to secure
the communication. The engine uses LwM2M Security object (Id 0) to read the stored creden-
tials and feed keys from the security object into the TLS credential subsystem, see secure sockets
documentation. Enable the CONFIG_LWM2M_DTLS_SUPPORT Kconfig option to use the security.

Depending on the selected mode, the security object must contain following data:

PSK
Security Mode (Resource ID 2) set to zero (Pre-Shared Key mode). Identity (Resource ID 3)
contains PSK ID in binary form. Secret key (Resource ID 5) contains the PSK key in binary
form. If the key or identity is provided as a hex string, it must be converted to binary before
storing into the security object.

X509
When X509 certificates are used, set Security Mode (ID 2) to 2 (Certificate mode). Iden-
tity (ID 3) is used to store the client certificate and Secret key (ID 5) must have a pri-
vate key associated with the certificate. Server Public Key resource (ID 4) must con-
tain a server certificate or CA certificate used to sign the certificate chain. If the CON-
FIG_MBEDTLS_PEM_CERTIFICATE_FORMAT Kconfig option is enabled, certificates and private
key can be entered in PEM format. Otherwise, they must be in binary DER format.

NoSec
When no security is used, set Security Mode (Resource ID 2) to 3 (NoSec).

In all modes, Server URI resource (ID 0) must contain the full URI for the target server. When
DNS names are used, the DNS resolver must be enabled.

When DTLS is used, following options are recommended to reduce DTLS handshake traffic when
connection is re-established:

• CONFIG_LWM2M_DTLS_CID enables DTLS Connection Identifier support. When server sup-
ports it, this completely removes the handshake when device resumes operation after long
idle period. Greatly helps when NAT mappings have timed out.

• CONFIG_LWM2M_TLS_SESSION_CACHING uses session cache when before falling back to full
DTLS handshake. Reduces few packets from handshake, when session is still cached on
server side. Most significant effect is to avoid full registration.
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LwM2M stack provides callbacks in the lwm2m_ctx structure. They are used to feed keys from
the LwM2M security object into the TLS credential subsystem. By default, these callbacks can be
left as NULL pointers, in which case default callbacks are used. When an external TLS stack, or
non-default socket options are required, you can overwrite the lwm2m_ctx.load_credentials()
or lwm2m_ctx.set_socketoptions() callbacks.

An example of setting up the security object for PSK mode:

/* "000102030405060708090a0b0c0d0e0f" */
static unsigned char client_psk[] = {

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f

};

static const char client_identity[] = "Client_identity";

lwm2m_set_string(&LWM2M_OBJ(LWM2M_OBJECT_SECURITY_ID, 0, 0), "coaps://lwm2m.example.com");
lwm2m_set_u8(&LWM2M_OBJ(LWM2M_OBJECT_SECURITY_ID, 0, 2), LWM2M_SECURITY_PSK);
/* Set the client identity as a string, but this could be binary as well */
lwm2m_set_string(&LWM2M_OBJ(LWM2M_OBJECT_SECURITY_ID, 0, 3), client_identity);
/* Set the client pre-shared key (PSK) */
lwm2m_set_opaque(&LWM2M_OBJ(LWM2M_OBJECT_SECURITY_ID, 0, 5), client_psk, sizeof(client_
↪→psk));

An example of setting up the security object for X509 certificate mode:

static const char certificate[] = "-----BEGIN CERTIFICATE-----\nMIIB6jCCAY+gAw...";
static const char key[] = "-----BEGIN EC PRIVATE KEY-----\nMHcCAQ...";
static const char root_ca[] = "-----BEGIN CERTIFICATE-----\nMIIBaz...";

lwm2m_set_string(&LWM2M_OBJ(LWM2M_OBJECT_SECURITY_ID, 0, 0), "coaps://lwm2m.example.com");
lwm2m_set_u8(&LWM2M_OBJ(LWM2M_OBJECT_SECURITY_ID, 0, 2), LWM2M_SECURITY_CERT);
lwm2m_set_string(&LWM2M_OBJ(LWM2M_OBJECT_SECURITY_ID, 0, 3), certificate);
lwm2m_set_string(&LWM2M_OBJ(LWM2M_OBJECT_SECURITY_ID, 0, 5), key);
lwm2m_set_string(&LWM2M_OBJ(LWM2M_OBJECT_SECURITY_ID, 0, 4), root_ca);

Before calling lwm2m_rd_client_start() assign the tls_tag # where the LwM2M library should
store the DTLS information prior to connection (normally a value of 1 is ok here).

(void)memset(&client, 0x0, sizeof(client));
client.tls_tag = 1; /* <---- */
lwm2m_rd_client_start(&client, "endpoint-name", 0, rd_client_event);

For a more detailed LwM2M client sample see: lwm2m-client.

Multi-thread usage Writing a value to a resource can be done using functions like
lwm2m_set_u8. When writing to multiple resources, the function lwm2m_registry_lock will en-
sure that the client halts until all writing operations are finished:

lwm2m_registry_lock();
lwm2m_set_u32(&LWM2M_OBJ(1, 0, 1), 60);
lwm2m_set_u8(&LWM2M_OBJ(5, 0, 3), 0);
lwm2m_set_f64(&LWM2M_OBJ(3303, 0, 5700), value);
lwm2m_registry_unlock();

This is especially useful if the server is composite-observing the resources being written to. Lock-
ing will then ensure that the client only updates and sends notifications to the server after all
operations are done, resulting in fewer messages in general.

Support for time series data LwM2M version 1.1 adds support for SenML CBOR and SenML
JSON data formats. These data formats add support for time series data. Time series formats can
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be used for READ, NOTIFY and SEND operations. When data cache is enabled for a resource, each
write will create a timestamped entry in a cache, and its content is then returned as a content in
READ, NOTIFY or SEND operation for a given resource.

Data cache is only supported for resources with a fixed data size.

Supported resource types:

• Signed and unsigned 8-64-bit integers

• Float

• Boolean

Enabling and configuring Enable data cache by selecting CON-
FIG_LWM2M_RESOURCE_DATA_CACHE_SUPPORT. Application needs to allocate an ar-
ray of lwm2m_time_series_elem structures and then enable the cache by calling
lwm2m_engine_enable_cache() for a given resource. Each resource must be enabled sepa-
rately and each resource needs their own storage.

/* Allocate data cache storage */
static struct lwm2m_time_series_elem temperature_cache[10];
/* Enable data cache */
lwm2m_engine_enable_cache(LWM2M_PATH(IPSO_OBJECT_TEMP_SENSOR_ID, 0, SENSOR_VALUE_RID),

temperature_cache, ARRAY_SIZE(temperature_cache));

LwM2M engine have room for four resources that have cache enabled. Limit can be increased
by changing CONFIG_LWM2M_MAX_CACHED_RESOURCES. This affects a static memory usage of engine.

Data caches depends on one of the SenML data formats CONFIG_LWM2M_RW_SENML_CBOR_SUPPORT
or CONFIG_LWM2M_RW_SENML_JSON_SUPPORT and needs CONFIG_POSIX_TIMERS so it can request a
timestamp from the system and CONFIG_RING_BUFFER for ring buffer.

Read and Write operations Full content of data cache is written into a payload when any
READ, SEND or NOTIFY operation internally reads the content of a given resource. This has
a side effect that any read callbacks registered for a that resource are ignored when cache
is enabled. Data is written into a cache when any of the lwm2m_set_* functions are called.
To filter the data entering the cache, application may register a validation callback using
lwm2m_register_validate_callback().

Limitations Cache size should be manually set so small that the content can fit normal packets
sizes. When cache is full, new values are dropped.

LwM2Mengine and application events The Zephyr LwM2M engine defines events that can be
sent back to the application through callback functions. The engine state machine shows when
the events are spawned. Events depicted in the diagram are listed in the table. The events are
prefixed with LWM2M_RD_CLIENT_EVENT_.
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lwm2m_rd_client_start()
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Fig. 15: State machine for the LwM2M engine
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Table 30: LwM2M RD Client events

Event
ID

Event Name Description

0 NONE No event
1 BOOT-

STRAP_REG_FAILURE
Bootstrap registration failed. Occurs if there is a timeout or failure in
bootstrap registration.

2 BOOT-
STRAP_REG_COMPLETE

Bootstrap registration complete. Occurs after successful bootstrap regis-
tration.

3 BOOT-
STRAP_TRANSFER_COMPLETE

Bootstrap finish command received from the server.

4 REGISTRA-
TION_FAILURE

Registration to LwM2M server failed. Occurs if there is a failure in the
registration.

5 REGISTRA-
TION_COMPLETE

Registration to LwM2M server successful. Occurs after a successful reg-
istration reply from the LwM2M server or when session resumption is
used.

6 REG_TIMEOUTRegistration or registration update timeout. Occurs if there is a timeout
during registration. Client have lost connection to the server.

7 REG_UPDATE_COMPLETERegistration update completed. Occurs after successful registration up-
date reply from the LwM2M server.

8 DEREGIS-
TER_FAILURE

Deregistration to LwM2M server failed. Occurs if there is a timeout or
failure in the deregistration.

9 DISCON-
NECT

LwM2M client have de-registered from server and is now stopped. Trig-
gered only if the application have requested the client to stop.

10 QUEUE_MODE_RX_OFFUsed only in queue mode, not actively listening for incoming packets. In
queue mode the client is not required to actively listen for the incoming
packets after a configured time period.

11 EN-
GINE_SUSPENDED

Indicate that client has now paused as a result of calling
lwm2m_engine_pause(). State machine is no longer running and the
handler thread is suspended. All timers are stopped so notifications are
not triggered.

12 SERVER_DISABLEDServer have executed the disable command. Client will deregister and
stay idle for the disable period.

13 NET-
WORK_ERROR

Sending messages to the network failed too many times. Client cannot
reach any servers or fallback to bootstrap. LwM2M engine cannot re-
cover and have stopped.

The LwM2M client engine handles most of the state transitions automatically. The application
needs to handle only the events that indicate that the client have stopped or is in a state where
it cannot recover.
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Table 31: How application should react to events

Event Name How application should react
NONE Ignore the event.
BOOT-
STRAP_REG_FAILURE

Try to recover network connection. Then restart the client by calling
lwm2m_rd_client_start(). This might also indicate configuration issue.

BOOT-
STRAP_REG_COMPLETE

No actions needed

BOOT-
STRAP_TRANSFER_COMPLETE

No actions needed

REGISTRA-
TION_FAILURE

No actions needed

REGISTRA-
TION_COMPLETE

No actions needed. Application can send or receive data.

REG_TIMEOUT No actions needed. Client proceeds to re-registration automatically. Cannot
send or receive data.

REG_UPDATE_COMPLETENo actions needed Application can send or receive data.
DEREGIS-
TER_FAILURE

No actions needed, client proceeds to idle state automatically. Cannot send
or receive data.

DISCONNECT Engine have stopped as a result of calling lwm2m_rd_client_stop(). If
connection is required, the application should restart the client by calling
lwm2m_rd_client_start().

QUEUE_MODE_RX_OFFNo actions needed. Application can send but cannot receive data. Any data
transmission will trigger a registration update.

EN-
GINE_SUSPENDED

Engine can be resumed by calling lwm2m_engine_resume(). Cannot send or
receive data.

SERVER_DISABLEDNo actions needed, client will re-register once the disable period is over.
Cannot send or receive data.

NET-
WORK_ERROR

Try to recover network connection. Then restart the client by calling
lwm2m_rd_client_start(). This might also indicate configuration issue.

Sending of data in the table above refers to calling lwm2m_send_cb() or by writing into one of the
observed resources where observation would trigger a notify message. Receiving of data refers
to receiving read, write or execute operations from the server. Application can register callbacks
for these operations.

Configuring lifetime and activity period In LwM2M engine, there are three Kconfig options
and one runtime value that configures how often the client will send LwM2M Update message.

Table 32: Update period variables

Variable Effect
LwM2M regis-
tration lifetime

The lifetime parameter in LwM2M specifies how long a device’s registration
with an LwM2M server remains valid. Device is expected to send LwM2M
Update message before the lifetime exprires.

CON-
FIG_LWM2M_ENGINE_DEFAULT_LIFETIME

Default lifetime value, unless set by the bootstrap server. Also defines lower
limit that client accepts as a lifetime.

CON-
FIG_LWM2M_UPDATE_PERIOD

How long the client can stay idle before sending a next update.

CON-
FIG_LWM2M_SECONDS_TO_UPDATE_EARLY

Minimum time margin to send the update message before the registration
lifetime expires.

By default, the client uses CONFIG_LWM2M_SECONDS_TO_UPDATE_EARLY to calculate how many sec-
onds before the expiration of lifetime it is going to send the registration update. The problem
with default mode is when the server changes the lifetime of the registration. This is then af-
fecting the period of updates the client is doing. If this is used with the QUEUE mode, which is
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Fig. 16: Default way of calculating when to update registration.

typical in IPv4 networks, it is also affecting the period of when the device is reachable from the
server.

Fig. 17: Update time is controlled by UPDATE_PERIOD.

When also the CONFIG_LWM2M_UPDATE_PERIOD is set, time to send the update message is the ear-
liest when any of these values expire. This allows setting long lifetime for the registration and
configure the period accurately, even if server changes the lifetime parameter.

In runtime, the update frequency is limited to once in 15 seconds to avoid flooding.

LwM2M shell For testing the client it is possible to enable Zephyr’s shell and LwM2M specific
commands which support changing the state of the client. Operations supported are read, write
and execute resources. Client start, stop, pause and resume are also available. The feature is
enabled by selecting CONFIG_LWM2M_SHELL. The shell is meant for testing so productions systems
should not enable it.

One imaginable scenario, where to use the shell, would be executing client side actions over
UART when a server side tests would require those. It is assumed that not all tests are able to
trigger required actions from the server side.

uart:~$ lwm2m
lwm2m - LwM2M commands
Subcommands:
send :send PATHS

LwM2M SEND operation

exec :exec PATH [PARAM]
Execute a resource

read :read PATH [OPTIONS]
Read value from LwM2M resource

(continues on next page)
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(continued from previous page)
-x Read value as hex stream (default)
-s Read value as string
-b Read value as bool (1/0)
-uX Read value as uintX_t
-sX Read value as intX_t
-f Read value as float
-t Read value as time_t

write :write PATH [OPTIONS] VALUE
Write into LwM2M resource
-s Write value as string (default)
-b Write value as bool
-uX Write value as uintX_t
-sX Write value as intX_t
-f Write value as float
-t Write value as time_t

create :create PATH
Create object or resource instance

delete :delete PATH
Delete object or resource instance

cache :cache PATH NUM
Enable data cache for resource
PATH is LwM2M path
NUM how many elements to cache

start :start EP_NAME [BOOTSTRAP FLAG]
Start the LwM2M RD (Registration / Discovery) Client
-b Set the bootstrap flag (default 0)

stop :stop [OPTIONS]
Stop the LwM2M RD (De-register) Client
-f Force close the connection

update :Trigger Registration Update of the LwM2M RD Client

pause :LwM2M engine thread pause
resume :LwM2M engine thread resume
lock :Lock the LwM2M registry
unlock :Unlock the LwM2M registry

Related code samples

LwM2M client
Implement a LwM2M client that connects to a LwM2M server.

API Reference

group lwm2m_api

Since
1.9

Version
0.8.0
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LwM2M Objects managed by OMA for LwM2M tech specification.

Objects in this range have IDs from 0 to 1023.

LWM2M_OBJECT_SECURITY_ID
Security object.

LWM2M_OBJECT_SERVER_ID
Server object.

LWM2M_OBJECT_ACCESS_CONTROL_ID
Access Control object.

LWM2M_OBJECT_DEVICE_ID
Device object.

LWM2M_OBJECT_CONNECTIVITY_MONITORING_ID
Connectivity Monitoring object.

LWM2M_OBJECT_FIRMWARE_ID
Firmware object.

LWM2M_OBJECT_LOCATION_ID
Location object.

LWM2M_OBJECT_CONNECTIVITY_STATISTICS_ID
Connectivity Statistics object.

LWM2M_OBJECT_SOFTWARE_MANAGEMENT_ID
Software Management object.

LWM2M_OBJECT_PORTFOLIO_ID
Portfolio object.

LWM2M_OBJECT_BINARYAPPDATACONTAINER_ID
Binary App Data Container object.

LWM2M_OBJECT_EVENT_LOG_ID
Event Log object.

LWM2M_OBJECT_OSCORE_ID
OSCORE object.

LWM2M_OBJECT_GATEWAY_ID
Gateway object.

LwM2M Objects produced by 3rd party Standards Development

Organizations.
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Refer to the OMA LightweightM2M (LwM2M) Object and Resource Registry: http://www.
openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html

IPSO_OBJECT_GENERIC_SENSOR_ID
IPSO Generic Sensor object.

IPSO_OBJECT_TEMP_SENSOR_ID
IPSO Temperature Sensor object.

IPSO_OBJECT_HUMIDITY_SENSOR_ID
IPSO Humidity Sensor object.

IPSO_OBJECT_LIGHT_CONTROL_ID
IPSO Light Control object.

IPSO_OBJECT_ACCELEROMETER_ID
IPSO Accelerometer object.

IPSO_OBJECT_VOLTAGE_SENSOR_ID
IPSO Voltage Sensor object.

IPSO_OBJECT_CURRENT_SENSOR_ID
IPSO Current Sensor object.

IPSO_OBJECT_PRESSURE_ID
IPSO Pressure Sensor object.

IPSO_OBJECT_BUZZER_ID
IPSO Buzzer object.

IPSO_OBJECT_TIMER_ID
IPSO Timer object.

IPSO_OBJECT_ONOFF_SWITCH_ID
IPSO On/Off Switch object.

IPSO_OBJECT_PUSH_BUTTON_ID
IPSO Push Button object.

UCIFI_OBJECT_BATTERY_ID
uCIFI Battery object

IPSO_OBJECT_FILLING_LEVEL_SENSOR_ID
IPSO Filling Level Sensor object.

Power source types used for the “Available Power Sources” resource of

the LwM2M Device object (3/0/6).
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LWM2M_DEVICE_PWR_SRC_TYPE_DC_POWER
DC power.

LWM2M_DEVICE_PWR_SRC_TYPE_BAT_INT
Internal battery.

LWM2M_DEVICE_PWR_SRC_TYPE_BAT_EXT
External battery.

LWM2M_DEVICE_PWR_SRC_TYPE_FUEL_CELL
Fuel cell.

LWM2M_DEVICE_PWR_SRC_TYPE_PWR_OVER_ETH
Power over Ethernet.

LWM2M_DEVICE_PWR_SRC_TYPE_USB
USB.

LWM2M_DEVICE_PWR_SRC_TYPE_AC_POWER
AC (mains) power.

LWM2M_DEVICE_PWR_SRC_TYPE_SOLAR
Solar.

LWM2M_DEVICE_PWR_SRC_TYPE_MAX
Max value for Available Power Source type.

Error codes used for the “Error Code” resource of the LwM2M Device

object.

An LwM2M client can register one of the following error codes via the
lwm2m_device_add_err() function.

LWM2M_DEVICE_ERROR_NONE
No error.

LWM2M_DEVICE_ERROR_LOW_POWER
Low battery power.

LWM2M_DEVICE_ERROR_EXT_POWER_SUPPLY_OFF
External power supply off.

LWM2M_DEVICE_ERROR_GPS_FAILURE
GPS module failure.

LWM2M_DEVICE_ERROR_LOW_SIGNAL_STRENGTH
Low received signal strength.
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LWM2M_DEVICE_ERROR_OUT_OF_MEMORY
Out of memory.

LWM2M_DEVICE_ERROR_SMS_FAILURE
SMS failure.

LWM2M_DEVICE_ERROR_NETWORK_FAILURE
IP Connectivity failure.

LWM2M_DEVICE_ERROR_PERIPHERAL_FAILURE
Peripheral malfunction.

Battery status codes used for the “Battery Status” resource (3/0/20)

of the LwM2M Device object.

As the battery status changes, an LwM2M client can set one of the following codes via:
lwm2m_set_u8(“3/0/20”, [battery status])

LWM2M_DEVICE_BATTERY_STATUS_NORMAL
The battery is operating normally and not on power.

LWM2M_DEVICE_BATTERY_STATUS_CHARGING
The battery is currently charging.

LWM2M_DEVICE_BATTERY_STATUS_CHARGE_COMP
The battery is fully charged and the charger is still connected.

LWM2M_DEVICE_BATTERY_STATUS_DAMAGED
The battery has some problem.

LWM2M_DEVICE_BATTERY_STATUS_LOW
The battery is low on charge.

LWM2M_DEVICE_BATTERY_STATUS_NOT_INST
The battery is not installed.

LWM2M_DEVICE_BATTERY_STATUS_UNKNOWN
The battery information is not available.

LWM2M Firmware Update object states

An LwM2M client or the LwM2M Firmware Update object use the following codes to rep-
resent the LwM2M Firmware Update state (5/0/3).

STATE_IDLE
Idle.

Before downloading or after successful updating.
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STATE_DOWNLOADING
Downloading.

The data sequence is being downloaded.

STATE_DOWNLOADED
Downloaded.

The whole data sequence has been downloaded.

STATE_UPDATING
Updating.

The device is being updated.

LWM2M Firmware Update object result codes

After processing a firmware update, the client sets the result via one of the following codes
via lwm2m_set_u8(“5/0/5”, [result code])

RESULT_DEFAULT
Initial value.

RESULT_SUCCESS
Firmware updated successfully.

RESULT_NO_STORAGE
Not enough flash memory for the new firmware package.

RESULT_OUT_OF_MEM
Out of RAM during downloading process.

RESULT_CONNECTION_LOST
Connection lost during downloading process.

RESULT_INTEGRITY_FAILED
Integrity check failure for new downloaded package.

RESULT_UNSUP_FW
Unsupported package type.

RESULT_INVALID_URI
Invalid URI.

RESULT_UPDATE_FAILED
Firmware update failed.

RESULT_UNSUP_PROTO
Unsupported protocol.
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Defines

LWM2M_OBJLNK_MAX_ID
Maximum value for Objlnk resource fields.

LWM2M_RES_DATA_READ_ONLY
Resource read-only value bit.

LWM2M_RES_DATA_FLAG_RO
Resource read-only flag.

LWM2M_HAS_RES_FLAG(res, f)
Read resource flags helper macro.

LWM2M_RD_CLIENT_FLAG_BOOTSTRAP
Run bootstrap procedure in current session.

LWM2M_MAX_PATH_STR_SIZE
LwM2M path maximum length.

Typedefs

typedef void (*lwm2m_socket_fault_cb_t)(int error)
Callback function called when a socket error is encountered.

Param error
Error code

typedef void (*lwm2m_observe_cb_t)(enum lwm2m_observe_event event, struct
lwm2m_obj_path *path, void *user_data)

Observe callback indicating observer adds and deletes, and notification ACKs and time-
outs.

Param event
[in] Observer add/delete or notification ack/timeout

Param path
[in] LwM2M path

Param user_data
[in] Pointer to user_data buffer, as provided in
send_traceable_notification(). Used to determine for which data the
ACKed/timed out notification was.

typedef void (*lwm2m_ctx_event_cb_t)(struct lwm2m_ctx *ctx, enum
lwm2m_rd_client_event event)

Asynchronous RD client event callback.

Param ctx
[in] LwM2M context generating the event

Param event
[in] LwM2M RD client event code
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typedef void *(*lwm2m_engine_get_data_cb_t)(uint16_t obj_inst_id, uint16_t res_id,
uint16_t res_inst_id, size_t *data_len)

Asynchronous callback to get a resource buffer and length.

Prior to accessing the data buffer of a resource, the engine can use this callback to get
the buffer pointer and length instead of using the resource’s data buffer.

The client or LwM2M objects can register a function of this type via:
lwm2m_register_read_callback() lwm2m_register_pre_write_callback()

Param obj_inst_id
[in] Object instance ID generating the callback.

Param res_id
[in] Resource ID generating the callback.

Param res_inst_id
[in] Resource instance ID generating the callback (typically 0 for non-multi
instance resources).

Param data_len
[out] Length of the data buffer.

Return
Callback returns a pointer to the data buffer or NULL for failure.

typedef int (*lwm2m_engine_set_data_cb_t)(uint16_t obj_inst_id, uint16_t res_id, uint16_t
res_inst_id, uint8_t *data, uint16_t data_len, bool last_block, size_t total_size, size_t offset)

Asynchronous callback when data has been set to a resource buffer.

After changing the data of a resource buffer, the LwM2M engine can make use of this
callback to pass the data back to the client or LwM2M objects.

On a block-wise transfers the handler is called multiple times with the data blocks and
increasing offset. The last block has the last_block flag set to true. Beginning of the
block transfer has the offset set to 0.

A function of this type can be registered via: lwm2m_register_validate_callback()
lwm2m_register_post_write_callback()

Param obj_inst_id
[in] Object instance ID generating the callback.

Param res_id
[in] Resource ID generating the callback.

Param res_inst_id
[in] Resource instance ID generating the callback (typically 0 for non-multi
instance resources).

Param data
[in] Pointer to data.

Param data_len
[in] Length of the data.

Param last_block
[in] Flag used during block transfer to indicate the last block of data. For
non-block transfers this is always false.

Param total_size
[in] Expected total size of data for a block transfer. For non-block transfers
this is 0.

Param offset
[in] Offset of the data block. For non-block transfers this is always 0.
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Return
Callback returns a negative error code (errno.h) indicating reason of fail-
ure or 0 for success.

typedef int (*lwm2m_engine_user_cb_t)(uint16_t obj_inst_id)
Asynchronous event notification callback.

Various object instance and resource-based events in the LwM2M engine can trigger a
callback of this function type: object instance create, and object instance delete.

Register a function of this type via: lwm2m_register_create_callback()
lwm2m_register_delete_callback()

Param obj_inst_id
[in] Object instance ID generating the callback.

Return
Callback returns a negative error code (errno.h) indicating reason of fail-
ure or 0 for success.

typedef int (*lwm2m_engine_execute_cb_t)(uint16_t obj_inst_id, uint8_t *args, uint16_t
args_len)

Asynchronous execute notification callback.

Resource executes trigger a callback of this type.

Register a function of this type via: lwm2m_register_exec_callback()

Param obj_inst_id
[in] Object instance ID generating the callback.

Param args
[in] Pointer to execute arguments payload. (This can be NULL if no argu-
ments are provided)

Param args_len
[in] Length of argument payload in bytes.

Return
Callback returns a negative error code (errno.h) indicating reason of fail-
ure or 0 for success.

typedef void (*lwm2m_send_cb_t)(enum lwm2m_send_status status)
Callback returning send status.

Enums

enum lwm2m_observe_event
Observe callback events.

Values:

enumerator LWM2M_OBSERVE_EVENT_OBSERVER_ADDED
Observer added.

enumerator LWM2M_OBSERVE_EVENT_OBSERVER_REMOVED
Observer removed.
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enumerator LWM2M_OBSERVE_EVENT_NOTIFY_ACK
Notification ACKed.

enumerator LWM2M_OBSERVE_EVENT_NOTIFY_TIMEOUT
Notification timed out.

enum lwm2m_socket_states
Different traffic states of the LwM2M socket.

This information can be used to give hints for the network interface that can decide
what kind of power management should be used.

These hints are given from CoAP layer messages, so usage of DTLS might affect the
actual number of expected datagrams.

Values:

enumerator LWM2M_SOCKET_STATE_ONGOING
Ongoing traffic is expected.

enumerator LWM2M_SOCKET_STATE_ONE_RESPONSE
One response is expected for the next message.

enumerator LWM2M_SOCKET_STATE_LAST
Next message is the last one.

enumerator LWM2M_SOCKET_STATE_NO_DATA
No more data is expected.

enum lwm2m_rd_client_event
LwM2M RD client events.

LwM2M client events are passed back to the event_cb function in
lwm2m_rd_client_start()

Values:

enumerator LWM2M_RD_CLIENT_EVENT_NONE
Invalid event.

enumerator LWM2M_RD_CLIENT_EVENT_BOOTSTRAP_REG_FAILURE
Bootstrap registration failure.

enumerator LWM2M_RD_CLIENT_EVENT_BOOTSTRAP_REG_COMPLETE
Bootstrap registration complete.

enumerator LWM2M_RD_CLIENT_EVENT_BOOTSTRAP_TRANSFER_COMPLETE
Bootstrap transfer complete.

enumerator LWM2M_RD_CLIENT_EVENT_REGISTRATION_FAILURE
Registration failure.
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enumerator LWM2M_RD_CLIENT_EVENT_REGISTRATION_COMPLETE
Registration complete.

enumerator LWM2M_RD_CLIENT_EVENT_REG_TIMEOUT
Registration timeout.

enumerator LWM2M_RD_CLIENT_EVENT_REG_UPDATE_COMPLETE
Registration update complete.

enumerator LWM2M_RD_CLIENT_EVENT_DEREGISTER_FAILURE
De-registration failure.

enumerator LWM2M_RD_CLIENT_EVENT_DISCONNECT
Disconnected.

enumerator LWM2M_RD_CLIENT_EVENT_QUEUE_MODE_RX_OFF
Queue mode RX off.

enumerator LWM2M_RD_CLIENT_EVENT_ENGINE_SUSPENDED
Engine suspended.

enumerator LWM2M_RD_CLIENT_EVENT_NETWORK_ERROR
Network error.

enumerator LWM2M_RD_CLIENT_EVENT_REG_UPDATE
Registration update.

enumerator LWM2M_RD_CLIENT_EVENT_DEREGISTER
De-register.

enumerator LWM2M_RD_CLIENT_EVENT_SERVER_DISABLED
Server disabled.

enum lwm2m_send_status
LwM2M send status.

LwM2M send status are generated back to the lwm2m_send_cb_t function in
lwm2m_send_cb()

Values:

enumerator LWM2M_SEND_STATUS_SUCCESS
Succeed.

enumerator LWM2M_SEND_STATUS_FAILURE
Failure.

enumerator LWM2M_SEND_STATUS_TIMEOUT
Timeout.
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enum lwm2m_security_mode_e
Security modes as defined in LwM2M Security object.

Values:

enumerator LWM2M_SECURITY_PSK = 0
Pre-Shared Key mode.

enumerator LWM2M_SECURITY_RAW_PK = 1
Raw Public Key mode.

enumerator LWM2M_SECURITY_CERT = 2
Certificate mode.

enumerator LWM2M_SECURITY_NOSEC = 3
NoSec mode.

enumerator LWM2M_SECURITY_CERT_EST = 4
Certificate mode with EST.

Functions

int lwm2m_device_add_err(uint8_t error_code)
Register a new error code with LwM2M Device object.

Parameters
• error_code – [in] New error code.

Returns
0 for success or negative in case of error.

void lwm2m_firmware_set_write_cb(lwm2m_engine_set_data_cb_t cb)
Set data callback for firmware block transfer.

LwM2M clients use this function to register a callback for receiving the block transfer
data when performing a firmware update.

Parameters
• cb – [in] A callback function to receive the block transfer data

lwm2m_engine_set_data_cb_t lwm2m_firmware_get_write_cb(void)
Get the data callback for firmware block transfer writes.

Returns
A registered callback function to receive the block transfer data

void lwm2m_firmware_set_write_cb_inst(uint16_t obj_inst_id,
lwm2m_engine_set_data_cb_t cb)

Set data callback for firmware block transfer.

LwM2M clients use this function to register a callback for receiving the block transfer
data when performing a firmware update.

Parameters
• obj_inst_id – [in] Object instance ID

• cb – [in] A callback function to receive the block transfer data
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lwm2m_engine_set_data_cb_t lwm2m_firmware_get_write_cb_inst(uint16_t obj_inst_id)
Get the data callback for firmware block transfer writes.

Parameters
• obj_inst_id – [in] Object instance ID

Returns
A registered callback function to receive the block transfer data

void lwm2m_firmware_set_cancel_cb(lwm2m_engine_user_cb_t cb)
Set callback for firmware update cancel.

LwM2M clients use this function to register a callback to perform actions on firmware
update cancel.

Parameters
• cb – [in] A callback function perform actions on firmware update cancel.

lwm2m_engine_user_cb_t lwm2m_firmware_get_cancel_cb(void)
Get a callback for firmware update cancel.

Returns
A registered callback function perform actions on firmware update cancel.

void lwm2m_firmware_set_cancel_cb_inst(uint16_t obj_inst_id, lwm2m_engine_user_cb_t
cb)

Set data callback for firmware update cancel.

LwM2M clients use this function to register a callback to perform actions on firmware
update cancel.

Parameters
• obj_inst_id – [in] Object instance ID

• cb – [in] A callback function perform actions on firmware update cancel.

lwm2m_engine_user_cb_t lwm2m_firmware_get_cancel_cb_inst(uint16_t obj_inst_id)
Get the callback for firmware update cancel.

Parameters
• obj_inst_id – [in] Object instance ID

Returns
A registered callback function perform actions on firmware update cancel.

void lwm2m_firmware_set_update_cb(lwm2m_engine_execute_cb_t cb)
Set data callback to handle firmware update execute events.

LwM2M clients use this function to register a callback for receiving the update re-
source “execute” operation on the LwM2M Firmware Update object.

Parameters
• cb – [in] A callback function to receive the execute event.

lwm2m_engine_execute_cb_t lwm2m_firmware_get_update_cb(void)
Get the event callback for firmware update execute events.

Returns
A registered callback function to receive the execute event.
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void lwm2m_firmware_set_update_cb_inst(uint16_t obj_inst_id,
lwm2m_engine_execute_cb_t cb)

Set data callback to handle firmware update execute events.

LwM2M clients use this function to register a callback for receiving the update re-
source “execute” operation on the LwM2M Firmware Update object.

Parameters
• obj_inst_id – [in] Object instance ID

• cb – [in] A callback function to receive the execute event.

lwm2m_engine_execute_cb_t lwm2m_firmware_get_update_cb_inst(uint16_t obj_inst_id)
Get the event callback for firmware update execute events.

Parameters
• obj_inst_id – [in] Object instance ID

Returns
A registered callback function to receive the execute event.

int lwm2m_swmgmt_set_activate_cb(uint16_t obj_inst_id, lwm2m_engine_execute_cb_t cb)
Set callback to handle software activation requests.

The callback will be executed when the LWM2M execute operation gets called on the
corresponding object’s Activate resource instance.

Parameters
• obj_inst_id – [in] The instance number to set the callback for.

• cb – [in] A callback function to receive the execute event.

Returns
0 on success, otherwise a negative integer.

int lwm2m_swmgmt_set_deactivate_cb(uint16_t obj_inst_id, lwm2m_engine_execute_cb_t
cb)

Set callback to handle software deactivation requests.

The callback will be executed when the LWM2M execute operation gets called on the
corresponding object’s Deactivate resource instance.

Parameters
• obj_inst_id – [in] The instance number to set the callback for.

• cb – [in] A callback function to receive the execute event.

Returns
0 on success, otherwise a negative integer.

int lwm2m_swmgmt_set_install_package_cb(uint16_t obj_inst_id,
lwm2m_engine_execute_cb_t cb)

Set callback to handle software install requests.

The callback will be executed when the LWM2M execute operation gets called on the
corresponding object’s Install resource instance.

Parameters
• obj_inst_id – [in] The instance number to set the callback for.

• cb – [in] A callback function to receive the execute event.

Returns
0 on success, otherwise a negative integer.
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int lwm2m_swmgmt_set_delete_package_cb(uint16_t obj_inst_id,
lwm2m_engine_execute_cb_t cb)

Set callback to handle software uninstall requests.

The callback will be executed when the LWM2M execute operation gets called on the
corresponding object’s Uninstall resource instance.

Parameters
• obj_inst_id – [in] The instance number to set the callback for.

• cb – [in] A callback function for handling the execute event.

Returns
0 on success, otherwise a negative integer.

int lwm2m_swmgmt_set_read_package_version_cb(uint16_t obj_inst_id,
lwm2m_engine_get_data_cb_t cb)

Set callback to read software package.

The callback will be executed when the LWM2M read operation gets called on the cor-
responding object.

Parameters
• obj_inst_id – [in] The instance number to set the callback for.

• cb – [in] A callback function for handling the read event.

Returns
0 on success, otherwise a negative integer.

int lwm2m_swmgmt_set_write_package_cb(uint16_t obj_inst_id,
lwm2m_engine_set_data_cb_t cb)

Set data callback for software management block transfer.

The callback will be executed when the LWM2M block write operation gets called on
the corresponding object’s resource instance.

Parameters
• obj_inst_id – [in] The instance number to set the callback for.

• cb – [in] A callback function for handling the block write event.

Returns
0 on success, otherwise a negative integer.

int lwm2m_swmgmt_install_completed(uint16_t obj_inst_id, int error_code)
Function to be called when a Software Management object instance completed the In-
stall operation.

return 0 on success, otherwise a negative integer.

Parameters
• obj_inst_id – [in] The Software Management object instance

• error_code – [in] The result code of the operation. Zero on success oth-
erwise it should be a negative integer.

void lwm2m_event_log_set_read_log_data_cb(lwm2m_engine_get_data_cb_t cb)
Set callback to read log data.

The callback will be executed when the LWM2M read operation gets called on the cor-
responding object.

Parameters
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• cb – [in] A callback function for handling the read event.

int lwm2m_update_observer_min_period(struct lwm2m_ctx *client_ctx, const struct
lwm2m_obj_path *path, uint32_t period_s)

Change an observer’s pmin value.

LwM2M clients use this function to modify the pmin attribute for an observation being
made. Example to update the pmin of a temperature sensor value being observed:
lwm2m_update_observer_min_period(client_ctx, &LWM2M_OBJ(3303, 0, 5700), 5);

Parameters
• client_ctx – [in] LwM2M context

• path – [in] LwM2M path as a struct

• period_s – [in] Value of pmin to be given (in seconds).

Returns
0 for success or negative in case of error.

int lwm2m_update_observer_max_period(struct lwm2m_ctx *client_ctx, const struct
lwm2m_obj_path *path, uint32_t period_s)

Change an observer’s pmax value.

LwM2M clients use this function to modify the pmax attribute for an observation being
made. Example to update the pmax of a temperature sensor value being observed:
lwm2m__update_observer_max_period(client_ctx, &LWM2M_OBJ(3303, 0, 5700), 5);

Parameters
• client_ctx – [in] LwM2M context

• path – [in] LwM2M path as a struct

• period_s – [in] Value of pmax to be given (in seconds).

Returns
0 for success or negative in case of error.

int lwm2m_create_object_inst(const struct lwm2m_obj_path *path)
Create an LwM2M object instance.

LwM2M clients use this function to create non-default LwM2M objects: Example to
create first temperature sensor object: lwm2m_create_obj_inst(&LWM2M_OBJ(3303,
0));

Parameters
• path – [in] LwM2M path as a struct

Returns
0 for success or negative in case of error.

int lwm2m_delete_object_inst(const struct lwm2m_obj_path *path)
Delete an LwM2M object instance.

LwM2M clients use this function to delete LwM2M objects.

Parameters
• path – [in] LwM2M path as a struct

Returns
0 for success or negative in case of error.
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void lwm2m_registry_lock(void)
Locks the registry for this thread.

Use this function before writing to multiple resources. This halts the lwm2m main
thread until all the write-operations are finished.

void lwm2m_registry_unlock(void)
Unlocks the registry previously locked by lwm2m_registry_lock().

int lwm2m_set_opaque(const struct lwm2m_obj_path *path, const char *data_ptr, uint16_t
data_len)

Set resource (instance) value (opaque buffer)

Parameters
• path – [in] LwM2M path as a struct

• data_ptr – [in] Data buffer

• data_len – [in] Length of buffer

Returns
0 for success or negative in case of error.

int lwm2m_set_string(const struct lwm2m_obj_path *path, const char *data_ptr)
Set resource (instance) value (string)

Parameters
• path – [in] LwM2M path as a struct

• data_ptr – [in] NULL terminated char buffer

Returns
0 for success or negative in case of error.

int lwm2m_set_u8(const struct lwm2m_obj_path *path, uint8_t value)
Set resource (instance) value (u8)

Parameters
• path – [in] LwM2M path as a struct

• value – [in] u8 value

Returns
0 for success or negative in case of error.

int lwm2m_set_u16(const struct lwm2m_obj_path *path, uint16_t value)
Set resource (instance) value (u16)

Parameters
• path – [in] LwM2M path as a struct

• value – [in] u16 value

Returns
0 for success or negative in case of error.

int lwm2m_set_u32(const struct lwm2m_obj_path *path, uint32_t value)
Set resource (instance) value (u32)

Parameters
• path – [in] LwM2M path as a struct

• value – [in] u32 value
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Returns
0 for success or negative in case of error.

int lwm2m_set_u64(const struct lwm2m_obj_path *path, uint64_t value)
Set resource (instance) value (u64)

Deprecated:
Unsigned 64bit value type does not exits. This is internally handled as a int64_t.
Use lwm2m_set_s64() instead.

Parameters
• path – [in] LwM2M path as a struct

• value – [in] u64 value

Returns
0 for success or negative in case of error.

int lwm2m_set_s8(const struct lwm2m_obj_path *path, int8_t value)
Set resource (instance) value (s8)

Parameters
• path – [in] LwM2M path as a struct

• value – [in] s8 value

Returns
0 for success or negative in case of error.

int lwm2m_set_s16(const struct lwm2m_obj_path *path, int16_t value)
Set resource (instance) value (s16)

Parameters
• path – [in] LwM2M path as a struct

• value – [in] s16 value

Returns
0 for success or negative in case of error.

int lwm2m_set_s32(const struct lwm2m_obj_path *path, int32_t value)
Set resource (instance) value (s32)

Parameters
• path – [in] LwM2M path as a struct

• value – [in] s32 value

Returns
0 for success or negative in case of error.

int lwm2m_set_s64(const struct lwm2m_obj_path *path, int64_t value)
Set resource (instance) value (s64)

Parameters
• path – [in] LwM2M path as a struct

• value – [in] s64 value

Returns
0 for success or negative in case of error.
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int lwm2m_set_bool(const struct lwm2m_obj_path *path, bool value)
Set resource (instance) value (bool)

Parameters
• path – [in] LwM2M path as a struct

• value – [in] bool value

Returns
0 for success or negative in case of error.

int lwm2m_set_f64(const struct lwm2m_obj_path *path, const double value)
Set resource (instance) value (double)

Parameters
• path – [in] LwM2M path as a struct

• value – [in] double value

Returns
0 for success or negative in case of error.

int lwm2m_set_objlnk(const struct lwm2m_obj_path *path, const struct lwm2m_objlnk
*value)

Set resource (instance) value (Objlnk)

Parameters
• path – [in] LwM2M path as a struct

• value – [in] pointer to the lwm2m_objlnk structure

Returns
0 for success or negative in case of error.

int lwm2m_set_time(const struct lwm2m_obj_path *path, time_t value)
Set resource (instance) value (Time)

Parameters
• path – [in] LwM2M path as a struct

• value – [in] Epoch timestamp

Returns
0 for success or negative in case of error.

int lwm2m_set_bulk(const struct lwm2m_res_item res_list[], size_t res_list_size)
Set multiple resource (instance) values.

NOTE: Value type must match the target resource as this function does not do any type
conversion. See struct lwm2m_res_item for list of resource types.

Parameters
• res_list – [in] LwM2M resource item list

• res_list_size – [in] Length of resource list

Returns
0 for success or negative in case of error.

int lwm2m_get_opaque(const struct lwm2m_obj_path *path, void *buf, uint16_t buflen)
Get resource (instance) value (opaque buffer)

Parameters
• path – [in] LwM2M path as a struct
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• buf – [out] Data buffer to copy data into

• buflen – [in] Length of buffer

Returns
0 for success or negative in case of error.

int lwm2m_get_string(const struct lwm2m_obj_path *path, void *str, uint16_t buflen)
Get resource (instance) value (string)

Parameters
• path – [in] LwM2M path as a struct

• str – [out] String buffer to copy data into

• buflen – [in] Length of buffer

Returns
0 for success or negative in case of error.

int lwm2m_get_u8(const struct lwm2m_obj_path *path, uint8_t *value)
Get resource (instance) value (u8)

Parameters
• path – [in] LwM2M path as a struct

• value – [out] u8 buffer to copy data into

Returns
0 for success or negative in case of error.

int lwm2m_get_u16(const struct lwm2m_obj_path *path, uint16_t *value)
Get resource (instance) value (u16)

Parameters
• path – [in] LwM2M path as a struct

• value – [out] u16 buffer to copy data into

Returns
0 for success or negative in case of error.

int lwm2m_get_u32(const struct lwm2m_obj_path *path, uint32_t *value)
Get resource (instance) value (u32)

Parameters
• path – [in] LwM2M path as a struct

• value – [out] u32 buffer to copy data into

Returns
0 for success or negative in case of error.

int lwm2m_get_u64(const struct lwm2m_obj_path *path, uint64_t *value)
Get resource (instance) value (u64)

Deprecated:
Unsigned 64bit value type does not exits. This is internally handled as a int64_t.
Use lwm2m_get_s64() instead.

Parameters
• path – [in] LwM2M path as a struct

• value – [out] u64 buffer to copy data into
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Returns
0 for success or negative in case of error.

int lwm2m_get_s8(const struct lwm2m_obj_path *path, int8_t *value)
Get resource (instance) value (s8)

Parameters
• path – [in] LwM2M path as a struct

• value – [out] s8 buffer to copy data into

Returns
0 for success or negative in case of error.

int lwm2m_get_s16(const struct lwm2m_obj_path *path, int16_t *value)
Get resource (instance) value (s16)

Parameters
• path – [in] LwM2M path as a struct

• value – [out] s16 buffer to copy data into

Returns
0 for success or negative in case of error.

int lwm2m_get_s32(const struct lwm2m_obj_path *path, int32_t *value)
Get resource (instance) value (s32)

Parameters
• path – [in] LwM2M path as a struct

• value – [out] s32 buffer to copy data into

Returns
0 for success or negative in case of error.

int lwm2m_get_s64(const struct lwm2m_obj_path *path, int64_t *value)
Get resource (instance) value (s64)

Parameters
• path – [in] LwM2M path as a struct

• value – [out] s64 buffer to copy data into

Returns
0 for success or negative in case of error.

int lwm2m_get_bool(const struct lwm2m_obj_path *path, bool *value)
Get resource (instance) value (bool)

Parameters
• path – [in] LwM2M path as a struct

• value – [out] bool buffer to copy data into

Returns
0 for success or negative in case of error.

int lwm2m_get_f64(const struct lwm2m_obj_path *path, double *value)
Get resource (instance) value (double)

Parameters
• path – [in] LwM2M path as a struct

• value – [out] double buffer to copy data into
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Returns
0 for success or negative in case of error.

int lwm2m_get_objlnk(const struct lwm2m_obj_path *path, struct lwm2m_objlnk *buf)
Get resource (instance) value (Objlnk)

Parameters
• path – [in] LwM2M path as a struct

• buf – [out] lwm2m_objlnk buffer to copy data into

Returns
0 for success or negative in case of error.

int lwm2m_get_time(const struct lwm2m_obj_path *path, time_t *buf)
Get resource (instance) value (Time)

Parameters
• path – [in] LwM2M path as a struct

• buf – [out] time_t pointer to copy data

Returns
0 for success or negative in case of error.

int lwm2m_register_read_callback(const struct lwm2m_obj_path *path,
lwm2m_engine_get_data_cb_t cb)

Set resource (instance) read callback.

LwM2M clients can use this to set the callback function for resource reads when data
handling in the LwM2M engine needs to be bypassed. For example reading back
opaque binary data from external storage.

This callback should not generally be used for any data that might be observed as en-
gine does not have any knowledge of data changes.

When separate buffer for data should be used, use lwm2m_set_res_buf() instead to set
the storage.

Parameters
• path – [in] LwM2M path as a struct

• cb – [in] Read resource callback

Returns
0 for success or negative in case of error.

int lwm2m_register_pre_write_callback(const struct lwm2m_obj_path *path,
lwm2m_engine_get_data_cb_t cb)

Set resource (instance) pre-write callback.

This callback is triggered before setting the value of a resource. It can pass a special
data buffer to the engine so that the actual resource value can be calculated later, etc.

Parameters
• path – [in] LwM2M path as a struct

• cb – [in] Pre-write resource callback

Returns
0 for success or negative in case of error.
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int lwm2m_register_validate_callback(const struct lwm2m_obj_path *path,
lwm2m_engine_set_data_cb_t cb)

Set resource (instance) validation callback.

This callback is triggered before setting the value of a resource to the resource data
buffer.

The callback allows an LwM2M client or object to validate the data before writing and
notify an error if the data should be discarded for any reason (by returning a negative
error code).

Note

All resources that have a validation callback registered are initially
decoded into a temporary validation buffer. Make sure that CON-
FIG_LWM2M_ENGINE_VALIDATION_BUFFER_SIZE is large enough to store each of
the validated resources (individually).

Parameters
• path – [in] LwM2M path as a struct

• cb – [in] Validate resource data callback

Returns
0 for success or negative in case of error.

int lwm2m_register_post_write_callback(const struct lwm2m_obj_path *path,
lwm2m_engine_set_data_cb_t cb)

Set resource (instance) post-write callback.

This callback is triggered after setting the value of a resource to the resource data
buffer.

It allows an LwM2M client or object to post-process the value of a resource or trigger
other related resource calculations.

Parameters
• path – [in] LwM2M path as a struct

• cb – [in] Post-write resource callback

Returns
0 for success or negative in case of error.

int lwm2m_register_exec_callback(const struct lwm2m_obj_path *path,
lwm2m_engine_execute_cb_t cb)

Set resource execute event callback.

This event is triggered when the execute method of a resource is enabled.

Parameters
• path – [in] LwM2M path as a struct

• cb – [in] Execute resource callback

Returns
0 for success or negative in case of error.

int lwm2m_register_create_callback(uint16_t obj_id, lwm2m_engine_user_cb_t cb)
Set object instance create event callback.

This event is triggered when an object instance is created.
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Parameters
• obj_id – [in] LwM2M object id

• cb – [in] Create object instance callback

Returns
0 for success or negative in case of error.

int lwm2m_register_delete_callback(uint16_t obj_id, lwm2m_engine_user_cb_t cb)
Set object instance delete event callback.

This event is triggered when an object instance is deleted.

Parameters
• obj_id – [in] LwM2M object id

• cb – [in] Delete object instance callback

Returns
0 for success or negative in case of error.

int lwm2m_set_res_buf(const struct lwm2m_obj_path *path, void *buffer_ptr, uint16_t
buffer_len, uint16_t data_len, uint8_t data_flags)

Set data buffer for a resource.

Use this function to set the data buffer and flags for the specified LwM2M resource.

Parameters
• path – [in] LwM2M path as a struct

• buffer_ptr – [in] Data buffer pointer

• buffer_len – [in] Length of buffer

• data_len – [in] Length of existing data in the buffer

• data_flags – [in] Data buffer flags (such as read-only, etc)

Returns
0 for success or negative in case of error.

int lwm2m_set_res_data_len(const struct lwm2m_obj_path *path, uint16_t data_len)
Update data size for a resource.

Use this function to set the new size of data in the buffer if you write to a buffer received
by lwm2m_get_res_buf().

Parameters
• path – [in] LwM2M path as a struct

• data_len – [in] Length of data

Returns
0 for success or negative in case of error.

int lwm2m_get_res_buf(const struct lwm2m_obj_path *path, void **buffer_ptr, uint16_t
*buffer_len, uint16_t *data_len, uint8_t *data_flags)

Get data buffer for a resource.

Use this function to get the data buffer information for the specified LwM2M resource.

If you directly write into the buffer, you must use lwm2m_set_res_data_len() function
to update the new size of the written data.

All parameters, except for the pathstr, can be NULL if you don’t want to read those
values.
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Parameters
• path – [in] LwM2M path as a struct

• buffer_ptr – [out] Data buffer pointer

• buffer_len – [out] Length of buffer

• data_len – [out] Length of existing data in the buffer

• data_flags – [out] Data buffer flags (such as read-only, etc)

Returns
0 for success or negative in case of error.

int lwm2m_create_res_inst(const struct lwm2m_obj_path *path)
Create a resource instance.

LwM2M clients use this function to create multi-resource instances:
Example to create 0 instance of device available power sources:
lwm2m_create_res_inst(&LWM2M_OBJ(3, 0, 6, 0));

Parameters
• path – [in] LwM2M path as a struct

Returns
0 for success or negative in case of error.

int lwm2m_delete_res_inst(const struct lwm2m_obj_path *path)
Delete a resource instance.

Use this function to remove an existing resource instance

Parameters
• path – [in] LwM2M path as a struct

Returns
0 for success or negative in case of error.

int lwm2m_update_device_service_period(uint32_t period_ms)
Update the period of the device service.

Change the duration of the periodic device service that notifies the current time.

Parameters
• period_ms – [in] New period for the device service (in milliseconds)

Returns
0 for success or negative in case of error.

bool lwm2m_path_is_observed(const struct lwm2m_obj_path *path)
Check whether a path is observed.

Parameters
• path – [in] LwM2M path as a struct to check

Returns
true when there exists an observation of the same level or lower as the
given path, false if it doesn’t or path is not a valid LwM2M-path. E.g. true
if path refers to a resource and the parent object has an observation, false
for the inverse.
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int lwm2m_engine_stop(struct lwm2m_ctx *client_ctx)
Stop the LwM2M engine.

LwM2M clients normally do not need to call this function as it is called within
lwm2m_rd_client. However, if the client does not use the RD client implementation, it
will need to be called manually.

Parameters
• client_ctx – [in] LwM2M context

Returns
0 for success or negative in case of error.

int lwm2m_engine_start(struct lwm2m_ctx *client_ctx)
Start the LwM2M engine.

LwM2M clients normally do not need to call this function as it is called by
lwm2m_rd_client_start(). However, if the client does not use the RD client implemen-
tation, it will need to be called manually.

Parameters
• client_ctx – [in] LwM2M context

Returns
0 for success or negative in case of error.

void lwm2m_acknowledge(struct lwm2m_ctx *client_ctx)
Acknowledge the currently processed request with an empty ACK.

LwM2M engine by default sends piggybacked responses for requests. This function
allows to send an empty ACK for a request earlier (from the application callback). The
LwM2M engine will then send the actual response as a separate CON message after all
callbacks are executed.

Parameters
• client_ctx – [in] LwM2M context

int lwm2m_rd_client_start(struct lwm2m_ctx *client_ctx, const char *ep_name, uint32_t
flags, lwm2m_ctx_event_cb_t event_cb, lwm2m_observe_cb_t
observe_cb)

Start the LwM2M RD (Registration / Discovery) Client.

The RD client sits just above the LwM2M engine and performs the necessary actions
to implement the “Registration interface”. For more information see Section “Client
Registration Interface” of LwM2M Technical Specification.

NOTE: lwm2m_engine_start() is called automatically by this function.

Parameters
• client_ctx – [in] LwM2M context

• ep_name – [in] Registered endpoint name

• flags – [in] Flags used to configure current LwM2M session.

• event_cb – [in] Client event callback function

• observe_cb – [in] Observe callback function called when an observer
was added or deleted, and when a notification was acked or has timed
out

Returns
0 for success, -EINPROGRESS when client is already running or negative
error codes in case of failure.
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int lwm2m_rd_client_stop(struct lwm2m_ctx *client_ctx, lwm2m_ctx_event_cb_t event_cb,
bool deregister)

Stop the LwM2M RD (De-register) Client.

The RD client sits just above the LwM2M engine and performs the necessary actions
to implement the “Registration interface”. For more information see Section “Client
Registration Interface” of the LwM2M Technical Specification.

Parameters
• client_ctx – [in] LwM2M context

• event_cb – [in] Client event callback function

• deregister – [in] True to deregister the client if registered. False to force
close the connection.

Returns
0 for success or negative in case of error.

int lwm2m_engine_pause(void)
Suspend the LwM2M engine Thread.

Suspend LwM2M engine. Use case could be when network con-
nection is down. LwM2M Engine indicate before it suspend by
LWM2M_RD_CLIENT_EVENT_ENGINE_SUSPENDED event.

Returns
0 for success or negative in case of error.

int lwm2m_engine_resume(void)
Resume the LwM2M engine thread.

Resume suspended LwM2M engine. After successful resume call en-
gine will do full registration or registration update based on suspended
time. Event’s LWM2M_RD_CLIENT_EVENT_REGISTRATION_COMPLETE or
LWM2M_RD_CLIENT_EVENT_REG_UPDATE_COMPLETE indicate that client is con-
nected to server.

Returns
0 for success or negative in case of error.

void lwm2m_rd_client_update(void)
Trigger a Registration Update of the LwM2M RD Client.

char *lwm2m_path_log_buf(char *buf, struct lwm2m_obj_path *path)
Helper function to print path objects’ contents to log.

Parameters
• buf – [in] The buffer to use for formatting the string

• path – [in] The path to stringify

Returns
Resulting formatted path string

int lwm2m_send_cb(struct lwm2m_ctx *ctx, const struct lwm2m_obj_path path_list[], uint8_t
path_list_size, lwm2m_send_cb_t reply_cb)

LwM2M SEND operation to given path list asynchronously with confirmation callback

Parameters
• ctx – LwM2M context

• path_list – LwM2M path struct list
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• path_list_size – Length of path list. Max size is CON-
FIG_LWM2M_COMPOSITE_PATH_LIST_SIZE

• reply_cb – Callback triggered with confirmation state or NULL if not used

Returns
0 for success or negative in case of error.

struct lwm2m_ctx *lwm2m_rd_client_ctx(void)

Returns LwM2Mclient context

Returns
ctx LwM2M context

int lwm2m_enable_cache(const struct lwm2m_obj_path *path, struct
lwm2m_time_series_elem *data_cache, size_t cache_len)

Enable data cache for a resource.

Application may enable caching of resource data by allocating buffer for LwM2M en-
gine to use. Buffer must be size of struct lwm2m_time_series_elem times cache_len

Parameters
• path – LwM2M path to resource as a struct

• data_cache – Pointer to Data cache array

• cache_len – number of cached entries

Returns
0 for success or negative in case of error.

int lwm2m_security_mode(struct lwm2m_ctx *ctx)
Read security mode from selected security object instance.

This data is valid only if RD client is running.

Parameters
• ctx – Pointer to client context.

Returns
int Positive values are lwm2m_security_mode_e, negative error codes oth-
erwise.

int lwm2m_set_default_sockopt(struct lwm2m_ctx *ctx)
Set default socket options for DTLS connections.

The engine calls this when lwm2m_ctx::set_socketoptions is not overwritten. You can
call this from the overwritten callback to set extra options after or before defaults.

Parameters
• ctx – Client context

Returns
0 for success or negative in case of error.

struct lwm2m_obj_path
#include <lwm2m.h> LwM2M object path structure.

Public Members
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uint16_t obj_id
Object ID.

uint16_t obj_inst_id
Object instance ID.

uint16_t res_id
Resource ID.

uint16_t res_inst_id
Resource instance ID.

uint8_t level
Path level (0-4).

Ex. 4 = resource instance.

struct lwm2m_ctx
#include <lwm2m.h> LwM2M context structure to maintain information for a single
LwM2M connection.

DTLS related information

Available only when CONFIG_LWM2M_DTLS_SUPPORT is enabled and lwm2m_ctx::use_dtls
is set to true.

int tls_tag
TLS tag is set by client as a reference used when the LwM2M engine calls
tls_credential_(add|delete)

char *desthostname
Destination hostname.

When MBEDTLS SNI is enabled socket must be set with destination server host-
name.

uint16_t desthostnamelen
Destination hostname length.

bool hostname_verify
Flag to indicate if hostname verification is enabled.

int (*load_credentials)(struct lwm2m_ctx *client_ctx)
Custom load_credentials function.

Client can set load_credentials function as a way of overriding the default behavior
of load_tls_credential() in lwm2m_engine.c

Public Members
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struct sockaddr remote_addr
Destination address storage.

void *processed_req
A pointer to currently processed request, for internal LwM2M engine use.

The underlying type is struct lwm2m_message, but since it’s declared in a private
header and not exposed to the application, it’s stored as a void pointer.

int (*set_socketoptions)(struct lwm2m_ctx *client_ctx)
Custom socket options.

Client can override default socket options by providing a callback that is called
after a socket is created and before connect.

bool use_dtls
Flag to indicate if context should use DTLS.

Enabled via the use of coaps:// protocol prefix in connection information. NOTE:
requires CONFIG_LWM2M_DTLS_SUPPORT

bool connection_suspended
Flag to indicate that the socket connection is suspended.

With queue mode, this will tell if there is a need to reconnect.

bool buffer_client_messages
Flag to indicate that the client is buffering Notifications and Send messages.

True value buffer Notifications and Send messages.

int sec_obj_inst
Current index of Security Object used for server credentials.

int srv_obj_inst
Current index of Server Object used in this context.

bool bootstrap_mode
Flag to enable BOOTSTRAP interface.

See Section “Bootstrap Interface” of LwM2M Technical Specification for more in-
formation.

int sock_fd
Socket File Descriptor.

lwm2m_socket_fault_cb_t fault_cb
Socket fault callback.

LwM2M processing thread will call this callback in case of socket errors on receive.

lwm2m_observe_cb_t observe_cb
Callback for new or cancelled observations, and acknowledged or timed out noti-
fications.
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lwm2m_ctx_event_cb_t event_cb
Callback for client events.

uint8_t validate_buf[CONFIG_LWM2M_ENGINE_VALIDATION_BUFFER_SIZE]
Validation buffer.

Used as a temporary buffer to decode the resource value before validation. On
successful validation, its content is copied into the actual resource buffer.

void (*set_socket_state)(int fd, enum lwm2m_socket_states state)
Callback to indicate transmission states.

Client application may request LwM2M engine to indicate hints about transmis-
sion states and use that information to control various power saving modes.

struct lwm2m_time_series_elem
#include <lwm2m.h> LwM2M Time series data structure.

Public Members

time_t t
Cached data Unix timestamp.

union lwm2m_time_series_elem
Element value.

struct lwm2m_objlnk
#include <lwm2m.h> LWM2M Objlnk resource type structure.

Public Members

uint16_t obj_id
Object ID.

uint16_t obj_inst
Object instance ID.

struct lwm2m_res_item
#include <lwm2m.h> LwM2M resource item structure.

Value type must match the target resource as no type conversion are done and the
value is just memcopied.

Following C types are used for resource types:

• BOOL is uint8_t

• U8 is uint8_t

• S8 is int8_t

• U16 is uint16_t

• S16 is int16_t
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• U32 is uint32_t

• S32 is int32_t

• S64 is int64_t

• TIME is time_t

• FLOAT is double

• OBJLNK is struct lwm2m_objlnk

• STRING is char * and the null-terminator should be included in the size.

• OPAQUE is any binary data. When null-terminated string is written in OPAQUE
resource, the terminator should not be included in size.

Public Members

struct lwm2m_obj_path *path
Pointer to LwM2M path as a struct.

void *value
Pointer to resource value.

uint16_t size
Size of the value.

For string resources, it should contain the null-terminator.

MQTT

• Overview

• Sample usage

• Using MQTT with TLS

• API Reference

Overview MQTT (Message Queuing Telemetry Transport) is an application layer protocol
which works on top of the TCP/IP stack. It is a lightweight publish/subscribe messaging trans-
port for machine-to-machine communication. For more information about the protocol itself,
see http://mqtt.org/.

Zephyr provides an MQTT client library built on top of BSD sockets API. The library can be en-
abled with CONFIG_MQTT_LIBKconfig option and is configurable at a per-client basis, with support
for MQTT versions 3.1.0 and 3.1.1. The Zephyr MQTT implementation can be used with either
plain sockets communicating over TCP, or with secure sockets communicating over TLS. See BSD
Sockets for more information about Zephyr sockets.

MQTT clients require an MQTT server to connect to. Such a server, called an MQTT Broker, is
responsible for managing client subscriptions and distributing messages published by clients.
There are many implementations of MQTT brokers, one of them being Eclipse Mosquitto. See
https://mosquitto.org/ for more information about the Eclipse Mosquitto project.
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Sample usage To create an MQTT client, a client context structure and buffers need to be de-
fined:

/* Buffers for MQTT client. */
static uint8_t rx_buffer[256];
static uint8_t tx_buffer[256];

/* MQTT client context */
static struct mqtt_client client_ctx;

Multiple MQTT client instances can be created in the application and managed independently.
Additionally, a structure for MQTT Broker address information is needed. This structure must
be accessible throughout the lifespan of the MQTT client and can be shared among MQTT clients:

/* MQTT Broker address information. */
static struct sockaddr_storage broker;

An MQTT client library will notify MQTT events to the application through a callback function
created to handle respective events:

void mqtt_evt_handler(struct mqtt_client *client,
const struct mqtt_evt *evt)

{
switch (evt->type) {

/* Handle events here. */
}

}

For a list of possible events, see API Reference.

The client context structure needs to be initialized and set up before it can be used. An example
configuration for TCP transport is shown below:

mqtt_client_init(&client_ctx);

/* MQTT client configuration */
client_ctx.broker = &broker;
client_ctx.evt_cb = mqtt_evt_handler;
client_ctx.client_id.utf8 = (uint8_t *)"zephyr_mqtt_client";
client_ctx.client_id.size = sizeof("zephyr_mqtt_client") - 1;
client_ctx.password = NULL;
client_ctx.user_name = NULL;
client_ctx.protocol_version = MQTT_VERSION_3_1_1;
client_ctx.transport.type = MQTT_TRANSPORT_NON_SECURE;

/* MQTT buffers configuration */
client_ctx.rx_buf = rx_buffer;
client_ctx.rx_buf_size = sizeof(rx_buffer);
client_ctx.tx_buf = tx_buffer;
client_ctx.tx_buf_size = sizeof(tx_buffer);

After the configuration is set up, the MQTT client can connect to the MQTT broker. Call the
mqtt_connect function, which will create the appropriate socket, establish a TCP/TLS connection,
and send an MQTT CONNECT message. When notified, the application should call the mqtt_input
function to process the response received. Note, that mqtt_input is a non-blocking function,
therefore the application should use socket poll to wait for the response. If the connection was
successful, MQTT_EVT_CONNACK will be notified to the application through the callback function.

rc = mqtt_connect(&client_ctx);
if (rc != 0) {

return rc;
}

(continues on next page)
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(continued from previous page)

fds[0].fd = client_ctx.transport.tcp.sock;
fds[0].events = ZSOCK_POLLIN;
poll(fds, 1, 5000);

mqtt_input(&client_ctx);

if (!connected) {
mqtt_abort(&client_ctx);

}

In the above code snippet, the MQTT callback function should set the connected flag upon a suc-
cessful connection. If the connection fails at the MQTT level or a timeout occurs, the connection
will be aborted, and the underlying socket closed.

After the connection is established, an application needs to call mqtt_input and mqtt_live func-
tions periodically to process incoming data and upkeep the connection. If an MQTT message is
received, an MQTT callback function will be called and an appropriate event notified.

The connection can be closed by calling the mqtt_disconnect function.

Zephyr provides sample code utilizing the MQTT client API. See mqtt-publisher for more infor-
mation.

Using MQTT with TLS The Zephyr MQTT library can be used with TLS transport for secure
communication by selecting a secure transport type (MQTT_TRANSPORT_SECURE) and some addi-
tional configuration information:

client_ctx.transport.type = MQTT_TRANSPORT_SECURE;

struct mqtt_sec_config *tls_config = &client_ctx.transport.tls.config;

tls_config->peer_verify = TLS_PEER_VERIFY_REQUIRED;
tls_config->cipher_list = NULL;
tls_config->sec_tag_list = m_sec_tags;
tls_config->sec_tag_count = ARRAY_SIZE(m_sec_tags);
tls_config->hostname = MQTT_BROKER_HOSTNAME;

In this sample code, the m_sec_tags array holds a list of tags, referencing TLS credentials that
the MQTT library should use for authentication. We do not specify cipher_list, to allow the use
of all cipher suites available in the system. We set hostname field to broker hostname, which is
required for server authentication. Finally, we enforce peer certificate verification by setting the
peer_verify field.

Note, that TLS credentials referenced by the m_sec_tags array must be registered in the system
first. For more information on how to do that, refer to secure sockets documentation.

An example of how to use TLS with MQTT is also present in mqtt-publisher sample application.

Related code samples

AWS IoT Core MQTT
Connect to AWS IoT Core and publish messages using MQTT.

MQTT publisher
Send MQTT PUBLISH messages to an MQTT server.
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Microsoft Azure IoT Hub MQTT
Connect to Azure IoT Hub and publish messages using MQTT.

Secure MQTT Sensor/Actuator
Implement an MQTT-based IoT sensor/actuator device

API Reference

group mqtt_socket

Since
1.14

Version
0.8.0

Defines

MQTT_UTF8_LITERAL(literal)
Initialize UTF-8 encoded string from C literal string.

Use it as follows:

struct mqtt_utf8 password = MQTT_UTF8_LITERAL(“my_pass”);

Parameters
• literal – [in] Literal string from which to generate mqtt_utf8 object.

Typedefs

typedef void (*mqtt_evt_cb_t)(struct mqtt_client *client, const struct mqtt_evt *evt)
Asynchronous event notification callback registered by the application.

Param client
[in] Identifies the client for which the event is notified.

Param evt
[in] Event description along with result and associated parameters (if any).

Enums

enum mqtt_evt_type
MQTT Asynchronous Events notified to the application from the module through the
callback registered by the application.

Values:

enumerator MQTT_EVT_CONNACK
Acknowledgment of connection request.

Event result accompanying the event indicates whether the connection failed or
succeeded.
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enumerator MQTT_EVT_DISCONNECT
Disconnection Event.

MQTT Client Reference is no longer valid once this event is received for the client.

enumerator MQTT_EVT_PUBLISH
Publish event received when message is published on a topic client is subscribed
to.

Note

PUBLISH event structure only contains payload size, the payload data pa-
rameter should be ignored. Payload content has to be read manually with
mqtt_read_publish_payload function.

enumerator MQTT_EVT_PUBACK
Acknowledgment for published message with QoS 1.

enumerator MQTT_EVT_PUBREC
Reception confirmation for published message with QoS 2.

enumerator MQTT_EVT_PUBREL
Release of published message with QoS 2.

enumerator MQTT_EVT_PUBCOMP
Confirmation to a publish release message with QoS 2.

enumerator MQTT_EVT_SUBACK
Acknowledgment to a subscribe request.

enumerator MQTT_EVT_UNSUBACK
Acknowledgment to a unsubscribe request.

enumerator MQTT_EVT_PINGRESP
Ping Response from server.

enum mqtt_version
MQTT version protocol level.

Values:

enumerator MQTT_VERSION_3_1_0 = 3
Protocol level for 3.1.0.

enumerator MQTT_VERSION_3_1_1 = 4
Protocol level for 3.1.1.

enum mqtt_qos
MQTT Quality of Service types.

Values:
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enumerator MQTT_QOS_0_AT_MOST_ONCE = 0x00
Lowest Quality of Service, no acknowledgment needed for published message.

enumerator MQTT_QOS_1_AT_LEAST_ONCE = 0x01
Medium Quality of Service, if acknowledgment expected for published message,
duplicate messages permitted.

enumerator MQTT_QOS_2_EXACTLY_ONCE = 0x02
Highest Quality of Service, acknowledgment expected and message shall be pub-
lished only once.

Message not published to interested parties unless client issues a PUBREL.

enum mqtt_conn_return_code
MQTT CONNACK return codes.

Values:

enumerator MQTT_CONNECTION_ACCEPTED = 0x00
Connection accepted.

enumerator MQTT_UNACCEPTABLE_PROTOCOL_VERSION = 0x01
The Server does not support the level of the MQTT protocol requested by the Client.

enumerator MQTT_IDENTIFIER_REJECTED = 0x02
The Client identifier is correct UTF-8 but not allowed by the Server.

enumerator MQTT_SERVER_UNAVAILABLE = 0x03
The Network Connection has been made but the MQTT service is unavailable.

enumerator MQTT_BAD_USER_NAME_OR_PASSWORD = 0x04
The data in the user name or password is malformed.

enumerator MQTT_NOT_AUTHORIZED = 0x05
The Client is not authorized to connect.

enum mqtt_suback_return_code
MQTT SUBACK return codes.

Values:

enumerator MQTT_SUBACK_SUCCESS_QoS_0 = 0x00
Subscription with QoS 0 succeeded.

enumerator MQTT_SUBACK_SUCCESS_QoS_1 = 0x01
Subscription with QoS 1 succeeded.

enumerator MQTT_SUBACK_SUCCESS_QoS_2 = 0x02
Subscription with QoS 2 succeeded.
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enumerator MQTT_SUBACK_FAILURE = 0x80
Subscription for a topic failed.

enum mqtt_transport_type
MQTT transport type.

Values:

enumerator MQTT_TRANSPORT_NON_SECURE
Use non secure TCP transport for MQTT connection.

enumerator MQTT_TRANSPORT_NUM
Shall not be used as a transport type.

Indicator of maximum transport types possible.

Functions

void mqtt_client_init(struct mqtt_client *client)
Initializes the client instance.

Note

Shall be called to initialize client structure, before setting any client parameters and
before connecting to broker.

Parameters
• client – [in] Client instance for which the procedure is requested. Shall

not be NULL.

int mqtt_connect(struct mqtt_client *client)
API to request new MQTT client connection.

Note

This memory is assumed to be resident until mqtt_disconnect is called.

Note

Any subsequent changes to parameters like broker address, user name, device id,
etc. have no effect once MQTT connection is established.

Note

Default protocol revision used for connection request is 3.1.1. Please set
client.protocol_version = MQTT_VERSION_3_1_0 to use protocol 3.1.0.
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Note

Please modify CONFIG_MQTT_KEEPALIVE time to override default of 1 minute.

Parameters
• client – [in] Client instance for which the procedure is requested. Shall

not be NULL.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_publish(struct mqtt_client *client, const struct mqtt_publish_param *param)
API to publish messages on topics.

Parameters
• client – [in] Client instance for which the procedure is requested. Shall

not be NULL.

• param – [in] Parameters to be used for the publish message. Shall not be
NULL.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_publish_qos1_ack(struct mqtt_client *client, const struct mqtt_puback_param
*param)

API used by client to send acknowledgment on receiving QoS1 publish message.

Should be called on reception of MQTT_EVT_PUBLISH with QoS level
MQTT_QOS_1_AT_LEAST_ONCE.

Parameters
• client – [in] Client instance for which the procedure is requested. Shall

not be NULL.

• param – [in] Identifies message being acknowledged.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_publish_qos2_receive(struct mqtt_client *client, const struct
mqtt_pubrec_param *param)

API used by client to send acknowledgment on receiving QoS2 publish message.

Should be called on reception of MQTT_EVT_PUBLISH with QoS level
MQTT_QOS_2_EXACTLY_ONCE.

Parameters
• client – [in] Identifies client instance for which the procedure is re-

quested. Shall not be NULL.

• param – [in] Identifies message being acknowledged.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_publish_qos2_release(struct mqtt_client *client, const struct mqtt_pubrel_param
*param)

API used by client to request release of QoS2 publish message.

Should be called on reception of MQTT_EVT_PUBREC.
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Parameters
• client – [in] Client instance for which the procedure is requested. Shall

not be NULL.

• param – [in] Identifies message being released.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_publish_qos2_complete(struct mqtt_client *client, const struct
mqtt_pubcomp_param *param)

API used by client to send acknowledgment on receiving QoS2 publish release message.

Should be called on reception of MQTT_EVT_PUBREL.

Parameters
• client – [in] Identifies client instance for which the procedure is re-

quested. Shall not be NULL.

• param – [in] Identifies message being completed.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_subscribe(struct mqtt_client *client, const struct mqtt_subscription_list *param)
API to request subscription of one or more topics on the connection.

Parameters
• client – [in] Identifies client instance for which the procedure is re-

quested. Shall not be NULL.

• param – [in] Subscription parameters. Shall not be NULL.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_unsubscribe(struct mqtt_client *client, const struct mqtt_subscription_list
*param)

API to request unsubscription of one or more topics on the connection.

Note

QoS included in topic description is unused in this API.

Parameters
• client – [in] Identifies client instance for which the procedure is re-

quested. Shall not be NULL.

• param – [in]Parameters describing topics being unsubscribed from. Shall
not be NULL.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_ping(struct mqtt_client *client)
API to send MQTT ping.

The use of this API is optional, as the library handles the connection keep-alive on it’s
own, see mqtt_live.

Parameters
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• client – [in] Identifies client instance for which procedure is requested.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_disconnect(struct mqtt_client *client)
API to disconnect MQTT connection.

Parameters
• client – [in] Identifies client instance for which procedure is requested.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_abort(struct mqtt_client *client)
API to abort MQTT connection.

This will close the corresponding transport without closing the connection gracefully
at the MQTT level (with disconnect message).

Parameters
• client – [in] Identifies client instance for which procedure is requested.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_live(struct mqtt_client *client)
This API should be called periodically for the client to be able to keep the connection
alive by sending Ping Requests if need be.

Note

Application shall ensure that the periodicity of calling this function makes it
possible to respect the Keep Alive time agreed with the broker on connection.
mqtt_connect for details on Keep Alive time.

Parameters
• client – [in] Client instance for which the procedure is requested. Shall

not be NULL.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_keepalive_time_left(const struct mqtt_client *client)
Helper function to determine when next keep alive message should be sent.

Can be used for instance as a source for poll timeout.

Parameters
• client – [in] Client instance for which the procedure is requested.

Returns
Time in milliseconds until next keep alive message is expected to be sent.
Function will return -1 if keep alive messages are not enabled.

int mqtt_input(struct mqtt_client *client)
Receive an incoming MQTT packet.

The registered callback will be called with the packet content.
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Note

In case of PUBLISH message, the payload has to be read separately with
mqtt_read_publish_payload function. The size of the payload to read is provided
in the publish event structure.

Note

This is a non-blocking call.

Parameters
• client – [in] Client instance for which the procedure is requested. Shall

not be NULL.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_read_publish_payload(struct mqtt_client *client, void *buffer, size_t length)
Read the payload of the received PUBLISH message.

This function should be called within the MQTT event handler, when MQTT PUBLISH
message is notified.

Note

This is a non-blocking call.

Parameters
• client – [in] Client instance for which the procedure is requested. Shall

not be NULL.

• buffer – [out] Buffer where payload should be stored.

• length – [in] Length of the buffer, in bytes.

Returns
Number of bytes read or a negative error code (errno.h) indicating reason
of failure.

int mqtt_read_publish_payload_blocking(struct mqtt_client *client, void *buffer, size_t
length)

Blocking version of mqtt_read_publish_payload function.

Parameters
• client – [in] Client instance for which the procedure is requested. Shall

not be NULL.

• buffer – [out] Buffer where payload should be stored.

• length – [in] Length of the buffer, in bytes.

Returns
Number of bytes read or a negative error code (errno.h) indicating reason
of failure.
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int mqtt_readall_publish_payload(struct mqtt_client *client, uint8_t *buffer, size_t
length)

Blocking version of mqtt_read_publish_payload function which runs until the required
number of bytes are read.

Parameters
• client – [in] Client instance for which the procedure is requested. Shall

not be NULL.

• buffer – [out] Buffer where payload should be stored.

• length – [in] Number of bytes to read.

Returns
0 if success, otherwise a negative error code (errno.h) indicating reason of
failure.

struct mqtt_utf8
#include <mqtt.h> Abstracts UTF-8 encoded strings.

Public Members

const uint8_t *utf8
Pointer to UTF-8 string.

uint32_t size
Size of UTF string, in bytes.

struct mqtt_binstr
#include <mqtt.h> Abstracts binary strings.

Public Members

uint8_t *data
Pointer to binary stream.

uint32_t len
Length of binary stream.

struct mqtt_topic
#include <mqtt.h> Abstracts MQTT UTF-8 encoded topic that can be subscribed to or
published.

Public Members

struct mqtt_utf8 topic
Topic on to be published or subscribed to.
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uint8_t qos
Quality of service requested for the subscription.

mqtt_qos for details.

struct mqtt_publish_message
#include <mqtt.h> Parameters for a publish message.

Public Members

struct mqtt_topic topic
Topic on which data was published.

struct mqtt_binstr payload
Payload on the topic published.

struct mqtt_connack_param
#include <mqtt.h> Parameters for a connection acknowledgment (CONNACK).

Public Members

uint8_t session_present_flag
The Session Present flag enables a Client to establish whether the Client and Server
have a consistent view about whether there is already stored Session state.

enum mqtt_conn_return_code return_code
The appropriate non-zero Connect return code indicates if the Server is unable to
process a connection request for some reason.

struct mqtt_puback_param
#include <mqtt.h> Parameters for MQTT publish acknowledgment (PUBACK).

Public Members

uint16_t message_id
Message id of the PUBLISH message being acknowledged.

struct mqtt_pubrec_param
#include <mqtt.h> Parameters for MQTT publish receive (PUBREC).

Public Members

uint16_t message_id
Message id of the PUBLISH message being acknowledged.

struct mqtt_pubrel_param
#include <mqtt.h> Parameters for MQTT publish release (PUBREL).
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Public Members

uint16_t message_id
Message id of the PUBREC message being acknowledged.

struct mqtt_pubcomp_param
#include <mqtt.h> Parameters for MQTT publish complete (PUBCOMP).

Public Members

uint16_t message_id
Message id of the PUBREL message being acknowledged.

struct mqtt_suback_param
#include <mqtt.h> Parameters for MQTT subscription acknowledgment (SUBACK).

Public Members

uint16_t message_id
Message id of the SUBSCRIBE message being acknowledged.

struct mqtt_binstr return_codes
Return codes indicating maximum QoS level granted for each topic in the subscrip-
tion list.

struct mqtt_unsuback_param
#include <mqtt.h> Parameters for MQTT unsubscribe acknowledgment (UNSUBACK).

Public Members

uint16_t message_id
Message id of the UNSUBSCRIBE message being acknowledged.

struct mqtt_publish_param
#include <mqtt.h> Parameters for a publish message (PUBLISH).

Public Members

struct mqtt_publish_message message
Messages including topic, QoS and its payload (if any) to be published.

uint16_t message_id
Message id used for the publish message.

Redundant for QoS 0.
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uint8_t dup_flag
Duplicate flag.

If 1, it indicates the message is being retransmitted. Has no meaning with QoS 0.

uint8_t retain_flag
Retain flag.

If 1, the message shall be stored persistently by the broker.

struct mqtt_subscription_list
#include <mqtt.h> List of topics in a subscription request.

Public Members

struct mqtt_topic *list
Array containing topics along with QoS for each.

uint16_t list_count
Number of topics in the subscription list.

uint16_t message_id
Message id used to identify subscription request.

union mqtt_evt_param
#include <mqtt.h> Defines event parameters notified along with asynchronous events
to the application.

Public Members

struct mqtt_connack_param connack
Parameters accompanying MQTT_EVT_CONNACK event.

struct mqtt_publish_param publish
Parameters accompanying MQTT_EVT_PUBLISH event.

Note

PUBLISH event structure only contains payload size, the payload data pa-
rameter should be ignored. Payload content has to be read manually with
mqtt_read_publish_payload function.

struct mqtt_puback_param puback
Parameters accompanying MQTT_EVT_PUBACK event.

struct mqtt_pubrec_param pubrec
Parameters accompanying MQTT_EVT_PUBREC event.
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struct mqtt_pubrel_param pubrel
Parameters accompanying MQTT_EVT_PUBREL event.

struct mqtt_pubcomp_param pubcomp
Parameters accompanying MQTT_EVT_PUBCOMP event.

struct mqtt_suback_param suback
Parameters accompanying MQTT_EVT_SUBACK event.

struct mqtt_unsuback_param unsuback
Parameters accompanying MQTT_EVT_UNSUBACK event.

struct mqtt_evt
#include <mqtt.h> Defines MQTT asynchronous event notified to the application.

Public Members

enum mqtt_evt_type type
Identifies the event.

union mqtt_evt_param param
Contains parameters (if any) accompanying the event.

int result
Event result.

0 or a negative error code (errno.h) indicating reason of failure.

struct mqtt_sec_config
#include <mqtt.h> TLS configuration for secure MQTT transports.

Public Members

int peer_verify
Indicates the preference for peer verification.

uint32_t cipher_count
Indicates the number of entries in the cipher list.

const int *cipher_list
Indicates the list of ciphers to be used for the session.

May be NULL to use the default ciphers.

uint32_t sec_tag_count
Indicates the number of entries in the sec tag list.
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const sec_tag_t *sec_tag_list
Indicates the list of security tags to be used for the session.

const char *hostname
Peer hostname for ceritificate verification.

May be NULL to skip hostname verification.

int cert_nocopy
Indicates the preference for copying certificates to the heap.

struct mqtt_transport
#include <mqtt.h> MQTT transport specific data.

Public Members

enum mqtt_transport_type type
Transport type selection for client instance.

mqtt_transport_type for possible values. MQTT_TRANSPORT_MAX is not a valid
type.

int sock
Socket descriptor.

struct mqtt_transport tcp
TCP socket transport for MQTT.

union mqtt_transport
Use either unsecured TCP or secured TLS transport.

struct mqtt_internal
#include <mqtt.h> MQTT internal state.

Public Members

struct sys_mutex mutex
Internal.

Mutex to protect access to the client instance.

uint32_t last_activity
Internal.

Wall clock value (in milliseconds) of the last activity that occurred. Needed for
periodic PING.

uint32_t state
Internal.

Client’s state in the connection.
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uint32_t rx_buf_datalen
Internal.

Packet length read so far.

uint32_t remaining_payload
Internal.

Remaining payload length to read.

struct mqtt_client
#include <mqtt.h> MQTT Client definition to maintain information relevant to the
client.

Public Members

struct mqtt_internal internal
MQTT client internal state.

struct mqtt_transport transport
MQTT transport configuration and data.

struct mqtt_utf8 client_id
Unique client identification to be used for the connection.

const void *broker
Broker details, for example, address, port.

Address type should be compatible with transport used.

struct mqtt_utf8 *user_name
User name (if any) to be used for the connection.

NULL indicates no user name.

struct mqtt_utf8 *password
Password (if any) to be used for the connection.

Note that if password is provided, user name shall also be provided. NULL indi-
cates no password.

struct mqtt_topic *will_topic
Will topic and QoS.

Can be NULL.

struct mqtt_utf8 *will_message
Will message.

Can be NULL. Non NULL value valid only if will topic is not NULL.

mqtt_evt_cb_t evt_cb
Application callback registered with the module to get MQTT events.
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uint8_t *rx_buf
Receive buffer used for MQTT packet reception in RX path.

uint32_t rx_buf_size
Size of receive buffer.

uint8_t *tx_buf
Transmit buffer used for creating MQTT packet in TX path.

uint32_t tx_buf_size
Size of transmit buffer.

uint16_t keepalive
Keepalive interval for this client in seconds.

Default is CONFIG_MQTT_KEEPALIVE.

uint8_t protocol_version
MQTT protocol version.

int8_t unacked_ping
Unanswered PINGREQ count on this connection.

uint8_t will_retain
Will retain flag, 1 if will message shall be retained persistently.

uint8_t clean_session
Clean session flag indicating a fresh (1) or a retained session (0).

Default is CONFIG_MQTT_CLEAN_SESSION.

void *user_data
User specific opaque data.

MQTT-SN

• Overview

• Sample usage

• Deviations from the standard

• API Reference

Overview MQTT-SN is a variant of the well-known MQTT protocol - see MQTT.

In contrast to MQTT, MQTT-SN does not require a TCP transport, but is designed to be used over
any message-based transport. Originally, it was mainly created with ZigBee in mind, but others
like Bluetooth, UDP or even a UART can be used just as well.

Zephyr provides an MQTT-SN client library built on top of BSD sockets API. The library can be
enabled with CONFIG_MQTT_SN_LIB Kconfig option and is configurable at a per-client basis, with
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support for MQTT-SN version 1.2. The Zephyr MQTT-SN implementation can be used with any
message-based transport, but support for UDP is already built-in.

MQTT-SN clients require an MQTT-SN gateway to connect to. These gateways translate between
MQTT-SN and MQTT. The Eclipse Paho project offers an implementation of a MQTT-SN gate-
way, but others are available too. https://www.eclipse.org/paho/index.php?page=components/
mqtt-sn-transparent-gateway/index.php

The MQTT-SN spec v1.2 can be found here: https://www.oasis-open.org/committees/download.
php/66091/MQTT-SN_spec_v1.2.pdf

Sample usage To create an MQTT-SN client, a client context structure and buffers need to be
defined:

/* Buffers for MQTT client. */
static uint8_t rx_buffer[256];
static uint8_t tx_buffer[256];

/* MQTT-SN client context */
static struct mqtt_sn_client client;

Multiple MQTT-SN client instances can be created in the application and managed independently.
Additionally, a structure for the transport is needed as well. The library already comes with an
example implementation for UDP.

/* MQTT Broker address information. */
static struct mqtt_sn_transport tp;

The MQTT-SN library will inform clients about certain events using a callback.

static void evt_cb(struct mqtt_sn_client *client,
const struct mqtt_sn_evt *evt)

{
switch(evt->type) {
{

/* Handle events here. */
}

}

For a list of possible events, see API Reference.

The client context structure needs to be initialized and set up before it can be used. An example
configuration for UDP transport is shown below:

struct mqtt_sn_data client_id = MQTT_SN_DATA_STRING_LITERAL("ZEPHYR");
struct sockaddr_in gateway = {0};

uint8_t tx_buf[256];
uint8_t rx_buf[256];

mqtt_sn_transport_udp_init(&tp, (struct sockaddr*)&gateway, sizeof((gateway)));

mqtt_sn_client_init(&client, &client_id, &tp.tp, evt_cb, tx_buf, sizeof(tx_buf), rx_buf,␣
↪→sizeof(rx_buf));

After the configuration is set up, the MQTT-SN client can connect to the gateway. While the MQTT-
SN protocol offers functionality to discover gateways through an advertisement mechanism, this
is not implemented yet in the library.

Call the mqtt_sn_connect function, which will send a CONNECT message. The application should
periodically call the mqtt_sn_input function to process the response received. The application
does not have to call mqtt_sn_input if it knows that no data has been received (e.g. when using
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Bluetooth). Note that mqtt_sn_input is a non-blocking function, if the transport struct contains a
poll compatible function pointer. If the connection was successful, MQTT_SN_EVT_CONNECTED will
be notified to the application through the callback function.

err = mqtt_sn_connect(&client, false, true);
__ASSERT(err == 0, "mqtt_sn_connect() failed %d", err);

while (1) {
mqtt_sn_input(&client);
if (connected) {

mqtt_sn_publish(&client, MQTT_SN_QOS_0, &topic_p, false, &pubdata);
}
k_sleep(K_MSEC(500));

}

In the above code snippet, the event handler function should set the connected flag upon a suc-
cessful connection. If the connection fails at the MQTT level or a timeout occurs, the connection
will be aborted.

After the connection is established, an application needs to call mqtt_input function periodically
to process incoming data. Connection upkeep, on the other hand, is done automatically using a
k_work item. If a MQTT message is received, an MQTT callback function will be called and an
appropriate event notified.

The connection can be closed by calling the mqtt_sn_disconnect function. This has no ef-
fect on the transport, however. If you want to close the transport (e.g. the socket), call
mqtt_sn_client_deinit, which will deinit the transport as well.

Zephyr provides sample code utilizing the MQTT-SN client API. See mqtt-sn-publisher for more
information.

Deviations from the standard Certain parts of the protocol are not yet supported in the li-
brary.

• Pre-defined topic IDs

• QoS -1 - it’s most useful with predefined topics

• Gateway discovery using ADVERTISE, SEARCHGW and GWINFO messages.

• Setting the will topic and message after the initial connect

• Forwarder Encapsulation

Related code samples

MQTT-SN publisher
Send MQTT-SN PUBLISH messages to an MQTT-SN gateway.

API Reference

group mqtt_sn_socket

Since
3.3

Version
0.1.0
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Defines

MQTT_SN_DATA_STRING_LITERAL(literal)
Initialize memory buffer from C literal string.

Use it as follows:

struct mqtt_sn_data topic = MQTT_SN_DATA_STRING_LITERAL(“/zephyr”);

Parameters
• literal – [in] Literal string from which to generate mqtt_sn_data object.

MQTT_SN_DATA_BYTES(...)
Initialize memory buffer from single bytes.

Use it as follows:

struct mqtt_sn_data data = MQTT_SN_DATA_BYTES(0x13, 0x37);

Typedefs

typedef void (*mqtt_sn_evt_cb_t)(struct mqtt_sn_client *client, const struct mqtt_sn_evt
*evt)

Asynchronous event notification callback registered by the application.

Param client
[in] Identifies the client for which the event is notified.

Param evt
[in] Event description along with result and associated parameters (if any).

Enums

enum mqtt_sn_qos
Quality of Service.

QoS 0-2 work the same as basic MQTT, QoS -1 is an MQTT-SN addition. QOS -1 is not
supported yet.

Values:

enumerator MQTT_SN_QOS_0
QOS 0.

enumerator MQTT_SN_QOS_1
QOS 1.

enumerator MQTT_SN_QOS_2
QOS 2.

enumerator MQTT_SN_QOS_M1
QOS -1.
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enum mqtt_sn_topic_type
MQTT-SN topic types.

Values:

enumerator MQTT_SN_TOPIC_TYPE_NORMAL
Normal topic.

It allows usage of any valid UTF-8 string as a topic name.

enumerator MQTT_SN_TOPIC_TYPE_PREDEF
Pre-defined topic.

It allows usage of a two-byte identifier representing a topic name for which the
corresponding topic name is known in advance by both the client and the gate-
way/server.

enumerator MQTT_SN_TOPIC_TYPE_SHORT
Short topic.

It allows usage of a two-byte string as a topic name.

enum mqtt_sn_return_code
MQTT-SN return codes.

Values:

enumerator MQTT_SN_CODE_ACCEPTED = 0x00
Accepted.

enumerator MQTT_SN_CODE_REJECTED_CONGESTION = 0x01
Rejected: congestion.

enumerator MQTT_SN_CODE_REJECTED_TOPIC_ID = 0x02
Rejected: Invalid Topic ID.

enumerator MQTT_SN_CODE_REJECTED_NOTSUP = 0x03
Rejected: Not Supported.

enum mqtt_sn_evt_type
Event types that can be emitted by the library.

Values:

enumerator MQTT_SN_EVT_CONNECTED
Connected to a gateway.

enumerator MQTT_SN_EVT_DISCONNECTED
Disconnected.

enumerator MQTT_SN_EVT_ASLEEP
Entered ASLEEP state.
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enumerator MQTT_SN_EVT_AWAKE
Entered AWAKE state.

enumerator MQTT_SN_EVT_PUBLISH
Received a PUBLISH message.

enumerator MQTT_SN_EVT_PINGRESP
Received a PINGRESP.

Functions

int mqtt_sn_client_init(struct mqtt_sn_client *client, const struct mqtt_sn_data
*client_id, struct mqtt_sn_transport *transport, mqtt_sn_evt_cb_t
evt_cb, void *tx, size_t txsz, void *rx, size_t rxsz)

Initialize a client.

Parameters
• client – The MQTT-SN client to initialize.

• client_id – The ID to be used by the client.

• transport – The transport to be used by the client.

• evt_cb – The event callback function for the client.

• tx – Pointer to the transmit buffer.

• txsz – Size of the transmit buffer.

• rx – Pointer to the receive buffer.

• rxsz – Size of the receive buffer.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

void mqtt_sn_client_deinit(struct mqtt_sn_client *client)
Deinitialize the client.

This removes all topics and publishes, and also de-inits the transport.

Parameters
• client – The MQTT-SN client to deinitialize.

int mqtt_sn_connect(struct mqtt_sn_client *client, bool will, bool clean_session)
Connect the client.

Parameters
• client – The MQTT-SN client to connect.

• will – Flag indicating if a Will message should be sent.

• clean_session – Flag indicating if a clean session should be started.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_sn_disconnect(struct mqtt_sn_client *client)
Disconnect the client.

Parameters
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• client – The MQTT-SN client to disconnect.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_sn_sleep(struct mqtt_sn_client *client, uint16_t duration)
Set the client into sleep state.

Parameters
• client – The MQTT-SN client to be put to sleep.

• duration – Sleep duration (in seconds).

Returns
0 on success, negative errno code on failure.

int mqtt_sn_subscribe(struct mqtt_sn_client *client, enum mqtt_sn_qos qos, struct
mqtt_sn_data *topic_name)

Subscribe to a given topic.

Parameters
• client – The MQTT-SN client that should subscribe.

• qos – The desired quality of service for the subscription.

• topic_name – The name of the topic to subscribe to.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_sn_unsubscribe(struct mqtt_sn_client *client, enum mqtt_sn_qos qos, struct
mqtt_sn_data *topic_name)

Unsubscribe from a topic.

Parameters
• client – The MQTT-SN client that should unsubscribe.

• qos – The quality of service used when subscribing.

• topic_name – The name of the topic to unsubscribe from.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_sn_publish(struct mqtt_sn_client *client, enum mqtt_sn_qos qos, struct
mqtt_sn_data *topic_name, bool retain, struct mqtt_sn_data *data)

Publish a value.

If the topic is not yet registered with the gateway, the library takes care of it.

Parameters
• client – The MQTT-SN client that should publish.

• qos – The desired quality of service for the publish.

• topic_name – The name of the topic to publish to.

• retain – Flag indicating if the message should be retained by the broker.

• data – The data to be published.

Returns
0 or a negative error code (errno.h) indicating reason of failure.
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int mqtt_sn_input(struct mqtt_sn_client *client)
Check the transport for new incoming data.

Call this function periodically, or if you have good reason to believe there is any data.
If the client’s transport struct contains a poll-function, this function is non-blocking.

Parameters
• client – The MQTT-SN client to check for incoming data.

Returns
0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_sn_get_topic_name(struct mqtt_sn_client *client, uint16_t id, struct mqtt_sn_data
*topic_name)

Get topic name by topic ID.

Parameters
• client – [in] The MQTT-SN client that uses this topic.

• id – [in] Topic identifier.

• topic_name – [out] Will be assigned to topic name.

Returns
0 on success, -ENOENT if topic ID doesn’t exist, or -EINVAL on invalid argu-
ments.

struct mqtt_sn_data
#include <mqtt_sn.h> Abstracts memory buffers.

Public Members

const uint8_t *data
Pointer to data.

uint16_t size
Size of data, in bytes.

union mqtt_sn_evt_param
#include <mqtt_sn.h> Event metadata.

Public Members

struct mqtt_sn_data data
The payload data associated with the event.

enum mqtt_sn_topic_type topic_type
The type of topic for the event.

uint16_t topic_id
The identifier for the topic of the event.
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struct mqtt_sn_evt_param publish
Structure holding publish event details.

struct mqtt_sn_evt
#include <mqtt_sn.h> MQTT-SN event structure to be handled by the event callback.

Public Members

enum mqtt_sn_evt_type type
Event type.

union mqtt_sn_evt_param param
Event parameters.

struct mqtt_sn_transport
#include <mqtt_sn.h> Structure to describe an MQTT-SN transport.

MQTT-SN does not require transports to be reliable or to hold a connection. Transports
just need to be frame-based, so you can use UDP, ZigBee, or even a simple UART, given
some kind of framing protocol is used.

Public Members

int (*init)(struct mqtt_sn_transport *transport)
Will be called once on client init to initialize the transport.

Use this to open sockets or similar. May be NULL.

void (*deinit)(struct mqtt_sn_transport *transport)
Will be called on client deinit.

Use this to close sockets or similar. May be NULL.

int (*msg_send)(struct mqtt_sn_client *client, void *buf, size_t sz)
Will be called by the library when it wants to send a message.

ssize_t (*recv)(struct mqtt_sn_client *client, void *buffer, size_t length)
Will be called by the library when it wants to receive a message.

Implementations should follow recv conventions.

int (*poll)(struct mqtt_sn_client *client)
Check if incoming data is available.

If poll() returns a positive number, recv must not block.

May be NULL, but recv should not block then either.
Return

Positive number if data is available, or zero if there is none. Negative
values signal errors.

struct mqtt_sn_client
#include <mqtt_sn.h> Structure describing an MQTT-SN client.
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Public Members

struct mqtt_sn_data client_id
1-23 character unique client ID

struct mqtt_sn_data will_topic
Topic for Will message.

Must be initialized before connecting with will=true

struct mqtt_sn_data will_msg
Will message.

Must be initialized before connecting with will=true

enum mqtt_sn_qos will_qos
Quality of Service for the Will message.

bool will_retain
Flag indicating if the will message should be retained by the broker.

struct mqtt_sn_transport *transport
Underlying transport to be used by the client.

struct net_buf_simple tx
Buffer for outgoing data.

struct net_buf_simple rx
Buffer for incoming data.

mqtt_sn_evt_cb_t evt_cb
Event callback.

uint16_t next_msg_id
Message ID for the next message to be sent.

sys_slist_t publish
List of pending publish messages.

sys_slist_t topic
List of registered topics.

int state
Current state of the MQTT-SN client.

int64_t last_ping
Timestamp of the last ping request.

uint8_t ping_retries
Number of retries for failed ping attempts.
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struct k_work_delayable process_work
Delayable work structure for processing MQTT-SN events.

Precision Time Protocol (PTP)

• Overview

• Supported features

• Supported Management messages

• Enabling the stack

• Testing

• API Reference

Overview PTP is a network protocol implemented in the application layer, used to synchronize
clocks in a computer network. It’s accurate up to less than a microsecond. The stack supports
the protocol and procedures as defined in the IEEE 1588-2019 standard (IEEE Standard for a
Precision Clock Synchronization Protocol for Networked Measurement and Control Systems).
It has multiple profiles, and can be implemented on top of L2 (Ethernet) or L3 (UDP/IPv4 or
UDP/IPv6). Its accuracy is achieved by using hardware timestamping of the protocol packets.

Zephyr’s implementation of PTP stack consist following items:

• PTP stack thread that handles incoming messages and events

• Integration with ptp_clock driver

• PTP stack initialization executed during system init

The implementation automatically creates PTP Ports (each PTP Port corresponds to unique in-
terface).

Supported features Implementation of the stack doesn’t support all features specified in the
standard. In the table below all supported features are listed.
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Table 33: Supported features

Feature Supported
Ordinary Clock yes
Boundary Clock yes
Transparent Clock
Management Node
End to end delay mechanism yes
Peer to peer delay mechanism
Multicast operation mode
Hybrid operation mode
Unicast operation mode
Non-volatile storage
UDP IPv4 transport protocol yes
UDP IPv6 transport protocol yes
IEEE 802.3 (Ethernet) transport protocol
Hardware timestamping yes
Software timestamping
TIME_RECEIVER_ONLY PTP Instance yes
TIME_TRANSMITTER_ONLY PTP Instance

Supported Management messages Based on Table 59 from section 15.5.2.3 of the IEEE 1588-
2019 following management TLVs are supported:

Table 34: Supported management message’s IDs

Manage-
ment_ID

Management_ID name Allowed actions

0x0000 NULL_PTP_MANAGEMENT GET SET COMMAND
0x0001 CLOCK_DESCRIPTION GET
0x0002 USER_DESCRIPTION GET
0x0003 SAVE_IN_NON_VOLATILE_STORAGE •

0x0004 RESET_NON_VOLATILE_STORAGE •

0x0005 INITIALIZE •

0x0006 FAULT_LOG •

0x0007 FAULT_LOG_RESET •

0x2000 DEFAULT_DATA_SET GET
0x2001 CURRENT_DATA_SET GET
0x2002 PARENT_DATA_SET GET
0x2003 TIME_PROPERTIES_DATA_SET GET
0x2004 PORT_DATA_SET GET
0x2005 PRIORITY1 GET SET
0x2006 PRIORITY2 GET SET
0x2007 DOMAIN GET SET
0x2008 TIME_RECEIVER_ONLY GET SET
0x2009 LOG_ANNOUNCE_INTERVAL GET SET
0x200A ANNOUNCE_RECEIPT_TIMEOUT GET SET
0x200B LOG_SYNC_INTERVAL GET SET

continues on next page
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Table 34 – continued from previous page
Manage-
ment_ID

Management_ID name Allowed actions

0x200C VERSION_NUMBER GET SET
0x200D ENABLE_PORT COMMAND
0x200E DISABLE_PORT COMMAND
0x200F TIME GET SET
0x2010 CLOCK_ACCURACY GET SET
0x2011 UTC_PROPERTIES GET SET
0x2012 TRACEBILITY_PROPERTIES GET SET
0x2013 TIMESCALE_PROPERTIES GET SET
0x2014 UNICAST_NEGOTIATION_ENABLE •

0x2015 PATH_TRACE_LIST •

0x2016 PATH_TRACE_ENABLE •

0x2017 GRANDMASTER_CLUSTER_TABLE •

0x2018 UNICAST_TIME_TRANSMITTER_TABLE •

0x2019 UNICAST_TIME_TRANSMITTER_MAX_TABLE_SIZE •

0x201A ACCEPTABLE_TIME_TRANSMITTER_TABLE •

0x201B ACCEPTABLE_TIME_TRANSMITTER_TABLE_ENABLED •

0x201C ACCEPTABLE_TIME_TRANSMITTER_MAX_TABLE_SIZE•

0x201D ALTERNATE_TIME_TRANSMITTER •

0x201E ALTERNATE_TIME_OFFSET_ENABLE •

0x201F ALTERNATE_TIME_OFFSET_NAME •

0x2020 ALTERNATE_TIME_OFFSET_MAX_KEY •

0x2021 ALTERNATE_TIME_OFFSET_PROPERTIES •

0x3000 EXTERNAL_PORT_CONFIGURATION_ENABLED
0x3001 TIME_TRANSMITTER_ONLY •

0x3002 HOLDOVER_UPGRADE_ENABLE •

0x3003 EXT_PORT_CONFIG_PORT_DATA_SET •

0x4000 TRANSPARENT_CLOCK_DEFAULT_DATA_SET •

continues on next page
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Table 34 – continued from previous page
Manage-
ment_ID

Management_ID name Allowed actions

0x4001 TRANSPARENT_CLOCK_PORT_DATA_SET •

0x4002 PRIMARY_DOMAIN •

0x6000 DELAY_MECHANISM GET
0x6001 LOG_MIN_PDELAY_REQ_INTERVAL GET SET

Enabling the stack The following configuration option must me enabled in prj.conf file.

• CONFIG_PTP

Testing The stack has been informally tested using the Linux ptp4l daemons. The PTP sample
application from the Zephyr source distribution can be used for testing.

Related code samples

PTP
Enable PTP support and monitor messages and events via logging.

API Reference

group ptp
Precision Time Protocol (PTP) support.

Since
3.7

Version
0.1.0

Defines

PTP_MAJOR_VERSION
Major PTP Version.

PTP_MINOR_VERSION
Minor PTP Version.

PTP_VERSION
PTP version IEEE-1588:2019.

TFTP Zephyr provides a simple TFTP client library that can enabled with CONFIG_MQTT_SN_LIB
Kconfig option.

See TFTP client sample application for more information about the library usage.
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Related code samples

TFTP client
Use the TFTP client library to get/put files from/to a TFTP server.

API Reference

group tftp_client

Since
2.3

Version
0.1.0

TFTP client error codes.

TFTPC_SUCCESS
Success.

TFTPC_DUPLICATE_DATA
Duplicate data received.

TFTPC_BUFFER_OVERFLOW
User buffer is too small.

TFTPC_UNKNOWN_FAILURE
Unknown failure.

TFTPC_REMOTE_ERROR
Remote server error.

TFTPC_RETRIES_EXHAUSTED
Retries exhausted.

Defines

TFTP_BLOCK_SIZE
RFC1350: the file is sent in fixed length blocks of 512 bytes.

Each data packet contains one block of data, and must be acknowledged by an ac-
knowledgment packet before the next packet can be sent. A data packet of less than
512 bytes signals termination of a transfer.

TFTP_HEADER_SIZE
RFC1350: For non-request TFTP message, the header contains 2-byte operation code
plus 2-byte block number or error code.

TFTPC_MAX_BUF_SIZE
Maximum amount of data that can be sent or received.
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Typedefs

typedef void (*tftp_callback_t)(const struct tftp_evt *evt)
TFTP event notification callback registered by the application.

Param evt
[in] Event description along with result and associated parameters (if any).

Enums

enum tftp_evt_type
TFTP Asynchronous Events notified to the application from the module through the
callback registered by the application.

Values:

enumerator TFTP_EVT_DATA
DATA event when data is received from remote server.

Note

DATA event structure contains payload data and size.

enumerator TFTP_EVT_ERROR
ERROR event when error is received from remote server.

Note

ERROR event structure contains error code and message.

Functions

int tftp_get(struct tftpc *client, const char *remote_file, const char *mode)
This function gets data from a “file” on the remote server.

Note

This function blocks until the transfer is completed or network error happens. The
integrity of the client structure must be ensured until the function returns.

Parameters
• client – Client information of type tftpc.

• remote_file – Name of the remote file to get.

• mode – TFTP Client “mode” setting.

Return values
• The – size of data being received if the operation completed successfully.
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• TFTPC_BUFFER_OVERFLOW – if the file is larger than the user buffer.

• TFTPC_REMOTE_ERROR – if the server failed to process our request.

• TFTPC_RETRIES_EXHAUSTED – if the client timed out waiting for server.

• -EINVAL – if client is NULL.

int tftp_put(struct tftpc *client, const char *remote_file, const char *mode, const uint8_t
*user_buf, uint32_t user_buf_size)

This function puts data to a “file” on the remote server.

Note

This function blocks until the transfer is completed or network error happens. The
integrity of the client structure must be ensured until the function returns.

Parameters
• client – Client information of type tftpc.

• remote_file – Name of the remote file to put.

• mode – TFTP Client “mode” setting.

• user_buf – Data buffer containing the data to put.

• user_buf_size – Length of the data to put.

Return values
• The – size of data being sent if the operation completed successfully.

• TFTPC_REMOTE_ERROR – if the server failed to process our request.

• TFTPC_RETRIES_EXHAUSTED – if the client timed out waiting for server.

• -EINVAL – if client or user_buf is NULL or if user_buf_size is zero.

struct tftp_data_param
#include <tftp.h> Parameters for data event.

Public Members

uint8_t *data_ptr
Pointer to binary data.

uint32_t len
Length of binary data.

struct tftp_error_param
#include <tftp.h> Parameters for error event.

Public Members
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char *msg
Error message.

int code
Error code.

union tftp_evt_param
#include <tftp.h> Defines event parameters notified along with asynchronous events to
the application.

Public Members

struct tftp_data_param data
Parameters accompanying TFTP_EVT_DATA event.

struct tftp_error_param error
Parameters accompanying TFTP_EVT_ERROR event.

struct tftp_evt
#include <tftp.h> Defines TFTP asynchronous event notified to the application.

Public Members

enum tftp_evt_type type
Identifies the event.

union tftp_evt_param param
Contains parameters (if any) accompanying the event.

struct tftpc
#include <tftp.h> TFTP client definition to maintain information relevant to the client.

Note

Application must initialize server and callback before calling GET or PUT API with
the tftpc structure.

Public Members

struct sockaddr server
Socket address pointing to the remote TFTP server.

tftp_callback_t callback
Event notification callback.

No notification if NULL
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uint8_t tftp_buf[(512 + 4)]
Buffer for internal usage.

Network System Management

Network Configuration Library

• Overview

• Sample usage

• API Reference

Overview The network configuration library sets up networking devices in a semi-automatic
way during the system boot, based on user-supplied Kconfig options.

The following Kconfig options affect how configuration library will setup the system:
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Table 35: Kconfig options for network configuration library

Option name Description
CONFIG_NET_CONFIG_SETTINGS This option controls whether the network system

is configured or initialized at all. If not set, then
the config library is not used for initialization and
the application needs to do all the network related
configuration itself. If this option is set, then the
user can optionally configure static IP addresses
to be set to the first network interface in the sys-
tem. Typically setting static IP addresses is only
usable in testing and should not be used in produc-
tion code. See the config library Kconfig file sub-
sys/net/lib/config/Kconfig for specific options to set
the static IP addresses.

CONFIG_NET_CONFIG_AUTO_INIT The networking system is automatically config-
ured when the device is started.

CONFIG_NET_CONFIG_INIT_TIMEOUT This tells how long to wait for the networking to be
ready and available. If for example IPv4 address
from DHCPv4 is not received within this limit, then
a call to net_config_init() will return error dur-
ing the device startup.

CONFIG_NET_CONFIG_NEED_IPV4 The network application needs IPv4 support to
function properly. This option makes sure the net-
work application is initialized properly in order to
use IPv4. If CONFIG_NET_IPV4 is not enabled, then
setting this option will automatically enable IPv4.

CONFIG_NET_CONFIG_NEED_IPV6 The network application needs IPv6 support to
function properly. This option makes sure the net-
work application is initialized properly in order to
use IPv6. If CONFIG_NET_IPV6 is not enabled, then
setting this option will automatically enable IPv6.

CONFIG_NET_CONFIG_NEED_IPV6_ROUTER If IPv6 is enabled, then this option tells that the
network application needs IPv6 router to exists
before continuing. This means in practice that
the application wants to wait until it receives IPv6
router advertisement message before continuing.

CONFIG_NET_CONFIG_MY_IPV6_ADDR Local static IPv6 address assigned to the default
network interface.

CONFIG_NET_CONFIG_PEER_IPV6_ADDR Peer static IPv6 address. This is mainly useful in
testing setups where the application can connect
to a pre-defined host.

CONFIG_NET_CONFIG_MY_IPV4_ADDR Local static IPv4 address assigned to the default
network interface.

CONFIG_NET_CONFIG_MY_IPV4_NETMASK Static IPv4 netmask assigned to the IPv4 address.
CONFIG_NET_CONFIG_MY_IPV4_GW Static IPv4 gateway address assigned to the default

network interface.
CONFIG_NET_CONFIG_PEER_IPV4_ADDR Peer static IPv4 address. This is mainly useful in

testing setups where the application can connect
to a pre-defined host.

Sample usage If CONFIG_NET_CONFIG_AUTO_INIT is set, then the configuration library is au-
tomatically enabled and run during the device boot. In this case, the library will call
net_config_init() automatically and the application does not need to do any network configu-
ration.

If you want to use the network configuration library but without automatic initialization, you can
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call net_config_init() manually. The flags parameter can be used to give hints to the library
about what kind of functionality the application wishes to have before the actual application
starts.

Related code samples

zperf: Network Traffic Generator
Use the zperf shell utility to evaluate network bandwidth.

API Reference

group net_config
Network configuration library.

Since
1.8

Version
0.8.0

Defines

NET_CONFIG_NEED_ROUTER
Application needs routers to be set so that connectivity to remote network is possible.

For IPv6 networks, this means that the device should receive IPv6 router advertise-
ment message before continuing.

NET_CONFIG_NEED_IPV6
Application needs IPv6 subsystem configured and initialized.

Typically this means that the device has IPv6 address set.

NET_CONFIG_NEED_IPV4
Application needs IPv4 subsystem configured and initialized.

Typically this means that the device has IPv4 address set.

Functions

int net_config_init(const char *app_info, uint32_t flags, int32_t timeout)
Initialize this network application.

This will call net_config_init_by_iface() with NULL network interface.

Parameters
• app_info – String describing this application.

• flags – Flags related to services needed by the client.

• timeout – How long to wait the network setup before continuing the
startup.
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Returns
0 if ok, <0 if error.

int net_config_init_by_iface(struct net_if *iface, const char *app_info, uint32_t flags,
int32_t timeout)

Initialize this network application using a specific network interface.

If network interface is set to NULL, then the default one is used in the configuration.

Parameters
• iface – Initialize networking using this network interface.

• app_info – String describing this application.

• flags – Flags related to services needed by the client.

• timeout – How long to wait the network setup before continuing the
startup.

Returns
0 if ok, <0 if error.

int net_config_init_app(const struct device *dev, const char *app_info)
Initialize this network application.

If CONFIG_NET_CONFIG_AUTO_INIT is set, then this function is called automatically
when the device boots. If that is not desired, unset the config option and call the func-
tion manually when the application starts.

Parameters
• dev – Network device to use. The function will figure out what network

interface to use based on the device. If the device is NULL, then default
network interface is used by the function.

• app_info – String describing this application.

Returns
0 if ok, <0 if error.

DHCPv4

• Overview

• Sample usage

• API Reference

Overview The Dynamic Host Configuration Protocol (DHCP) is a network management proto-
col used on IPv4 networks. A DHCPv4 server dynamically assigns an IPv4 address and other
network configuration parameters to each device on a network so they can communicate with
other IP networks. See this DHCP Wikipedia article for a detailed overview of how DHCP works.

Note that Zephyr supports both DHCPv4 client and server functionality.

Sample usage See dhcpv4-client sample application for details.
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Related code samples

DHCPv4 client
Start a DHCPv4 client to obtain an IPv4 address from a DHCPv4 server.

API Reference

group dhcpv4
DHCPv4.

Since
1.7

Version
0.8.0

Typedefs

typedef void (*net_dhcpv4_option_callback_handler_t)(struct
net_dhcpv4_option_callback *cb, size_t length, enum net_dhcpv4_msg_type msg_type,
struct net_if *iface)

Define the application callback handler function signature.

Note: cb pointer can be used to retrieve private data through CONTAINER_OF() if orig-
inal struct net_dhcpv4_option_callback is stored in another private structure.

Param cb
Original struct net_dhcpv4_option_callback owning this handler

Param length
The length of data returned by the server. If this is greater than cb-
>max_length, only cb->max_length bytes will be available in cb->data

Parammsg_type
Type of DHCP message that triggered the callback

Param iface
The interface on which the DHCP message was received

Enums

enum net_dhcpv4_msg_type
DHCPv4 message types.

These enumerations represent RFC2131 defined msy type codes, hence they should not
be renumbered.

Additions, removald and reorders in this definition must be reflected within corre-
sponding changes to net_dhcpv4_msg_type_name.

Values:
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enumerator NET_DHCPV4_MSG_TYPE_DISCOVER = 1
Discover message.

enumerator NET_DHCPV4_MSG_TYPE_OFFER = 2
Offer message.

enumerator NET_DHCPV4_MSG_TYPE_REQUEST = 3
Request message.

enumerator NET_DHCPV4_MSG_TYPE_DECLINE = 4
Decline message.

enumerator NET_DHCPV4_MSG_TYPE_ACK = 5
Acknowledge message.

enumerator NET_DHCPV4_MSG_TYPE_NAK = 6
Negative acknowledge message.

enumerator NET_DHCPV4_MSG_TYPE_RELEASE = 7
Release message.

enumerator NET_DHCPV4_MSG_TYPE_INFORM = 8
Inform message.

Functions

static inline void net_dhcpv4_init_option_callback(struct net_dhcpv4_option_callback
*callback,
net_dhcpv4_option_callback_handler_t
handler, uint8_t option, void *data,
size_t max_length)

Helper to initialize a struct net_dhcpv4_option_callback properly.

Parameters
• callback – A valid Application’s callback structure pointer.

• handler – A valid handler function pointer.

• option – The DHCP option the callback responds to.

• data – A pointer to a buffer for max_length bytes.

• max_length – The maximum length of the data returned.

int net_dhcpv4_add_option_callback(struct net_dhcpv4_option_callback *cb)
Add an application callback.

Parameters
• cb – A valid application’s callback structure pointer.

Returns
0 if successful, negative errno code on failure.
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int net_dhcpv4_remove_option_callback(struct net_dhcpv4_option_callback *cb)
Remove an application callback.

Parameters
• cb – A valid application’s callback structure pointer.

Returns
0 if successful, negative errno code on failure.

static inline void net_dhcpv4_init_option_vendor_callback(struct
net_dhcpv4_option_callback
*callback,
net_dhcpv4_option_callback_handler_t
handler, uint8_t option,
void *data, size_t
max_length)

Helper to initialize a struct net_dhcpv4_option_callback for encapsulated vendor-
specific options properly.

Parameters
• callback – A valid Application’s callback structure pointer.

• handler – A valid handler function pointer.

• option – The DHCP encapsulated vendor-specific option the callback re-
sponds to.

• data – A pointer to a buffer for max_length bytes.

• max_length – The maximum length of the data returned.

int net_dhcpv4_add_option_vendor_callback(struct net_dhcpv4_option_callback *cb)
Add an application callback for encapsulated vendor-specific options.

Parameters
• cb – A valid application’s callback structure pointer.

Returns
0 if successful, negative errno code on failure.

int net_dhcpv4_remove_option_vendor_callback(struct net_dhcpv4_option_callback *cb)
Remove an application callback for encapsulated vendor-specific options.

Parameters
• cb – A valid application’s callback structure pointer.

Returns
0 if successful, negative errno code on failure.

void net_dhcpv4_start(struct net_if *iface)
Start DHCPv4 client on an iface.

Start DHCPv4 client on a given interface. DHCPv4 client will start negotiation for IPv4
address. Once the negotiation is success IPv4 address details will be added to interface.

Parameters
• iface – A valid pointer on an interface

void net_dhcpv4_stop(struct net_if *iface)
Stop DHCPv4 client on an iface.

Stop DHCPv4 client on a given interface. DHCPv4 client will remove all configuration
obtained from a DHCP server from the interface and stop any further negotiation with
the server.
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Parameters
• iface – A valid pointer on an interface

void net_dhcpv4_restart(struct net_if *iface)
Restart DHCPv4 client on an iface.

Restart DHCPv4 client on a given interface. DHCPv4 client will restart the state ma-
chine without any of the initial delays used in start.

Parameters
• iface – A valid pointer on an interface

const char *net_dhcpv4_msg_type_name(enum net_dhcpv4_msg_type msg_type)
Return a text representation of the msg_type.

Parameters
• msg_type – The msg_type to be converted to text

Returns
A text representation of msg_type

DHCPv6

• Overview

• API Reference

Overview The Dynamic Host Configuration Protocol (DHCP) for IPv6 is a network management
protocol used on IPv6 based networks. A DHCPv6 server dynamically assigns an IPv6 address
and other network configuration parameters to each device on a network so they can communi-
cate with other IP networks. See this DHCPv6 Wikipedia article for a detailed overview of how
DHCPv6 works.

Note that Zephyr only supports DHCPv6 client functionality.

API Reference

group dhcpv6
DHCPv6.

Since
3.5

Version
0.8.0

Functions

void net_dhcpv6_start(struct net_if *iface, struct net_dhcpv6_params *params)
Start DHCPv6 client on an iface.

Start DHCPv6 client on a given interface. DHCPv6 client will start negotiation for IPv6
address and/or prefix, depending on the configuration. Once the negotiation is com-
plete, IPv6 address/prefix details will be added to the interface.
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Parameters
• iface – A valid pointer to a network interface

• params – DHCPv6 client configuration parameters.

void net_dhcpv6_stop(struct net_if *iface)
Stop DHCPv6 client on an iface.

Stop DHCPv6 client on a given interface. DHCPv6 client will remove all configuration
obtained from a DHCP server from the interface and stop any further negotiation with
the server.

Parameters
• iface – A valid pointer to a network interface

void net_dhcpv6_restart(struct net_if *iface)
Restart DHCPv6 client on an iface.

Restart DHCPv6 client on a given interface. DHCPv6 client will restart the state ma-
chine without any of the initial delays.

Parameters
• iface – A valid pointer to a network interface

struct net_dhcpv6_params
#include <dhcpv6.h> DHCPv6 client configuration parameters.

Public Members

bool request_addr
Request IPv6 address.

bool request_prefix
Request IPv6 prefix.

Hostname Configuration

• Overview

• API Reference

Overview A networked device might need a hostname, for example, if the device is configured
to be a mDNS responder (see DNS Resolve for details) and needs to respond to <hostname>.local
DNS queries.

The CONFIG_NET_HOSTNAME_ENABLE must be set in order to store the hostname and enable the
relevant APIs. If the option is enabled, then the default hostname is set to be zephyr by CON-
FIG_NET_HOSTNAME option.

If the same firmware image is used to flash multiple boards, then it is not practical to use the
same hostname in all of the boards. In that case, one can enable CONFIG_NET_HOSTNAME_UNIQUE
which will add a unique postfix to the hostname. By default the link local address of
the first network interface is used as a postfix. In Ethernet networks, the link local ad-
dress refers to MAC address. For example, if the link local address is 01:02:03:04:05:06,
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then the unique hostname could be zephyr010203040506. If you want to set the pre-
fix yourself, then call net_hostname_set_postfix_str() before the network interfaces are
created. Alternatively, if you prefer a hexadecimal conversion for the prefix, then call
net_hostname_set_postfix(). For example for the Ethernet networks, the initialization priority
is set by CONFIG_ETH_INIT_PRIORITY so you would need to set the postfix before that. The postfix
can be set only once.

API Reference

group net_hostname
Network hostname configuration library.

Since
1.10

Version
0.8.0

Defines

NET_HOSTNAME_MAX_LEN
Maximum hostname length.

Functions

static inline const char *net_hostname_get(void)
Get the device hostname.

Return pointer to device hostname.

Returns
Pointer to hostname or NULL if not set.

static inline int net_hostname_set(char *host, size_t len)
Set the device hostname.

Parameters
• host – new hostname as char array.

• len – Length of the hostname array.

Returns
0 if ok, <0 on error

static inline void net_hostname_init(void)
Initialize and set the device hostname.

static inline int net_hostname_set_postfix(const uint8_t *hostname_postfix, int
postfix_len)

Set the device hostname postfix.

Convert the hostname postfix to hexadecimal value and set the device hostname with
the converted value. This is only used if CONFIG_NET_HOSTNAME_UNIQUE is set.

Parameters
• hostname_postfix – Usually link address. The function will convert this

to a hexadecimal string.
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• postfix_len – Length of the hostname_postfix array.

Returns
0 if ok, <0 if error

static inline int net_hostname_set_postfix_str(const uint8_t *hostname_postfix, int
postfix_len)

Set the postfix string for the network hostname.

Set the hostname postfix string for the network hostname as is, without any conver-
sion. This is only used if CONFIG_NET_HOSTNAME_UNIQUE is set. The function checks
if the combined length of the default hostname (defined by CONFIG_NET_HOSTNAME)
and the postfix does not exceed NET_HOSTNAME_MAX_LEN. If the postfix is too long,
the function returns an error.

Parameters
• hostname_postfix – Pointer to the postfix string to be appended to the

network hostname.

• postfix_len – Length of the hostname_postfix array.

Returns
0 if ok, <0 if error

Network Core Helpers

• Overview

• API Reference

Overview The network subsystem contains two functions for sending and receiving data from
the network. The net_recv_data() is typically used by network device driver when the received
network data needs to be pushed up in the network stack for further processing. All the data is
received via a network interface which is typically created by the device driver.

For sending, the net_send_data() can be used. Typically applications do not call this function
directly as there is the BSD Sockets API for sending and receiving network data.

Related code samples

Telnet console
Access Zephyr shell over telnet.

mDNS responder
Listen and respond to mDNS queries.

API Reference

group net_core
Network core library.

Since
1.0
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Version
1.0.0

Enums

enum net_verdict
Net Verdict.

Values:

enumerator NET_OK
Packet has been taken care of.

enumerator NET_CONTINUE
Packet has not been touched, other part should decide about its fate.

enumerator NET_DROP
Packet must be dropped.

Functions

int net_recv_data(struct net_if *iface, struct net_pkt *pkt)
Called by lower network stack or network device driver when a network packet has
been received.

The function will push the packet up in the network stack for further processing.

Parameters
• iface – Network interface where the packet was received.

• pkt – Network packet data.

Returns
0 if ok, <0 if error.

int net_send_data(struct net_pkt *pkt)
Send data to network.

Send data to network. This should not be used normally by applications as it requires
that the network packet is properly constructed.

Parameters
• pkt – Network packet.

Returns
0 if ok, <0 if error. If <0 is returned, then the caller needs to unref the pkt
in order to avoid memory leak.

Network Interface

• Overview

• Network interface state management
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• API Reference

Overview The network interface is a nexus that ties the network device drivers and the upper
part of the network stack together. All the sent and received data is transferred via a network
interface. The network interfaces cannot be created at runtime. A special linker section will
contain information about them and that section is populated at linking time.

Network interfaces are created by NET_DEVICE_INIT() macro. For Ethernet network, a macro
called ETH_NET_DEVICE_INIT() should be used instead as it will create VLAN interfaces automat-
ically if CONFIG_NET_VLAN is enabled. These macros are typically used in network device driver
source code.

The network interface can be turned ON by calling net_if_up() and OFF by calling
net_if_down(). When the device is powered ON, the network interface is also turned ON by
default.

The network interfaces can be referenced either by a struct net_if * pointer or by a
network interface index. The network interface can be resolved from its index by calling
net_if_get_by_index() and from interface pointer by calling net_if_get_by_iface().

The IP address for network devices must be set for them to be connectable. In a typical dynamic
network environment, IP addresses are set automatically by DHCPv4, for example. If needed
though, the application can set a device’s IP address manually. See the API documentation below
for functions such as net_if_ipv4_addr_add() that do that.

The net_if_get_default() returns a default network interface. What this default in-
terface means can be configured via options like CONFIG_NET_DEFAULT_IF_FIRST and CON-
FIG_NET_DEFAULT_IF_ETHERNET. See Kconfig file subsys/net/ip/Kconfig what options are available
for selecting the default network interface.

The transmitted and received network packets can be classified via a network packet priority.
This is typically done in Ethernet networks when virtual LANs (VLANs) are used. Higher priority
packets can be sent or received earlier than lower priority packets. The traffic class setup can be
configured by CONFIG_NET_TC_TX_COUNT and CONFIG_NET_TC_RX_COUNT options.

If the CONFIG_NET_PROMISCUOUS_MODE is enabled and if the underlying network technology sup-
ports promiscuous mode, then it is possible to receive all the network packets that the network
device driver is able to receive. See Promiscuous Mode API for more details.

Network interface statemanagement Zephyr distinguishes between two interface states: ad-
ministrative state and operational state, as described in RFC 2863. The administrative state indi-
cate whether an interface is turned ON or OFF. This state is represented by NET_IF_UP flag and is
controlled by the application. It can be changed by calling net_if_up() or net_if_down() func-
tions. Network drivers or L2 implementations should not change administrative state on their
own.

Bringing an interface up however not always means that the interface is ready to transmit pack-
ets. Because of that, operational state, which represents the internal interface status, was imple-
mented. The operational state is updated whenever one of the following conditions take place:

• The interface is brought up/down by the application (administrative state changes).

• The interface is notified by the driver/L2 that PHY status has changed.

• The interface is notified by the driver/L2 that it joined/left a network.

The PHY status is represented with NET_IF_LOWER_UP flag and can be changed with
net_if_carrier_on() and net_if_carrier_off(). By default, the flag is set on a newly initial-
ized interface. An example of an event that changes the carrier state is Ethernet cable being
plugged in or out.
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The network association status is represented with NET_IF_DORMANT flag and can be changed
with net_if_dormant_on() and net_if_dormant_off(). By default, the flag is cleared on a newly
initialized interface. An example of an event that changes the dormant state is a Wi-Fi driver
successfully connecting to an access point. In this scenario, driver should set the dormant state
to ON during initialization, and once it detects that it connected to a Wi-Fi network, the dormant
state should be set to OFF.

The operational state of an interface is updated as follows:

• !net_if_is_admin_up()
Interface is in NET_IF_OPER_DOWN.

• net_if_is_admin_up() && !net_if_is_carrier_ok()
Interface is in NET_IF_OPER_DOWN or NET_IF_OPER_LOWERLAYERDOWN if the interface is stacked
(virtual).

• net_if_is_admin_up() && net_if_is_carrier_ok() && net_if_is_dormant()
Interface is in NET_IF_OPER_DORMANT.

• net_if_is_admin_up() && net_if_is_carrier_ok() && !net_if_is_dormant()
Interface is in NET_IF_OPER_UP.

Only after an interface enters NET_IF_OPER_UP state the NET_IF_RUNNING flag is set on the inter-
face indicating that the interface is ready to be used by the application.

Related code samples

IPv4 autoconf client
Perform IPv4 autoconfiguration and self-assign a random IPv4 address

Network management socket
Listen to network management events using a network management socket.

Telnet console
Access Zephyr shell over telnet.

Virtual LAN
Setup two virtual LAN networks and use net-shell to view the networks’ settings.

API Reference

group net_if
Network Interface abstraction layer.

Since
1.5

Version
1.0.0

Defines

NET_DEVICE_INIT(dev_id, name, init_fn, pm, data, config, prio, api, l2, l2_ctx_type, mtu)
Create a network interface and bind it to network device.
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Parameters
• dev_id – Network device id.

• name – The name this instance of the driver exposes to the system.

• init_fn – Address to the init function of the driver.

• pm – Reference to struct pm_device associated with the device. (optional).

• data – Pointer to the device’s private data.

• config – The address to the structure containing the configuration infor-
mation for this instance of the driver.

• prio – The initialization level at which configuration occurs.

• api – Provides an initial pointer to the API function struct used by the
driver. Can be NULL.

• l2 – Network L2 layer for this network interface.

• l2_ctx_type – Type of L2 context data.

• mtu – Maximum transfer unit in bytes for this network interface.

NET_DEVICE_DT_DEFINE(node_id, init_fn, pm, data, config, prio, api, l2, l2_ctx_type, mtu)
Like NET_DEVICE_INIT but taking metadata from a devicetree node.

Create a network interface and bind it to network device.

Parameters
• node_id – The devicetree node identifier.

• init_fn – Address to the init function of the driver.

• pm – Reference to struct pm_device associated with the device. (optional).

• data – Pointer to the device’s private data.

• config – The address to the structure containing the configuration infor-
mation for this instance of the driver.

• prio – The initialization level at which configuration occurs.

• api – Provides an initial pointer to the API function struct used by the
driver. Can be NULL.

• l2 – Network L2 layer for this network interface.

• l2_ctx_type – Type of L2 context data.

• mtu – Maximum transfer unit in bytes for this network interface.

NET_DEVICE_DT_INST_DEFINE(inst, ...)
Like NET_DEVICE_DT_DEFINE for an instance of a DT_DRV_COMPAT compatible.

Parameters
• inst – instance number. This is replaced by DT_DRV_COMPAT(inst) in the

call to NET_DEVICE_DT_DEFINE.

• ... – other parameters as expected by NET_DEVICE_DT_DEFINE.

NET_DEVICE_INIT_INSTANCE(dev_id, name, instance, init_fn, pm, data, config, prio, api, l2,
l2_ctx_type, mtu)

Create multiple network interfaces and bind them to network device.

If your network device needs more than one instance of a network interface, use this
macro below and provide a different instance suffix each time (0, 1, 2, … or a, b, c …
whatever works for you)
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Parameters
• dev_id – Network device id.

• name – The name this instance of the driver exposes to the system.

• instance – Instance identifier.

• init_fn – Address to the init function of the driver.

• pm – Reference to struct pm_device associated with the device. (optional).

• data – Pointer to the device’s private data.

• config – The address to the structure containing the configuration infor-
mation for this instance of the driver.

• prio – The initialization level at which configuration occurs.

• api – Provides an initial pointer to the API function struct used by the
driver. Can be NULL.

• l2 – Network L2 layer for this network interface.

• l2_ctx_type – Type of L2 context data.

• mtu – Maximum transfer unit in bytes for this network interface.

NET_DEVICE_DT_DEFINE_INSTANCE(node_id, instance, init_fn, pm, data, config, prio, api, l2,
l2_ctx_type, mtu)

Like NET_DEVICE_OFFLOAD_INIT but taking metadata from a devicetree.

Create multiple network interfaces and bind them to network device. If your network
device needs more than one instance of a network interface, use this macro below and
provide a different instance suffix each time (0, 1, 2, … or a, b, c … whatever works for
you)

Parameters
• node_id – The devicetree node identifier.

• instance – Instance identifier.

• init_fn – Address to the init function of the driver.

• pm – Reference to struct pm_device associated with the device. (optional).

• data – Pointer to the device’s private data.

• config – The address to the structure containing the configuration infor-
mation for this instance of the driver.

• prio – The initialization level at which configuration occurs.

• api – Provides an initial pointer to the API function struct used by the
driver. Can be NULL.

• l2 – Network L2 layer for this network interface.

• l2_ctx_type – Type of L2 context data.

• mtu – Maximum transfer unit in bytes for this network interface.

NET_DEVICE_DT_INST_DEFINE_INSTANCE(inst, ...)
Like NET_DEVICE_DT_DEFINE_INSTANCE for an instance of a DT_DRV_COMPAT com-
patible.

Parameters
• inst – instance number. This is replaced by DT_DRV_COMPAT(inst) in the

call to NET_DEVICE_DT_DEFINE_INSTANCE.
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• ... – other parameters as expected by
NET_DEVICE_DT_DEFINE_INSTANCE.

NET_DEVICE_OFFLOAD_INIT(dev_id, name, init_fn, pm, data, config, prio, api, mtu)
Create a offloaded network interface and bind it to network device.

The offloaded network interface is implemented by a device vendor HAL or similar.

Parameters
• dev_id – Network device id.

• name – The name this instance of the driver exposes to the system.

• init_fn – Address to the init function of the driver.

• pm – Reference to struct pm_device associated with the device. (optional).

• data – Pointer to the device’s private data.

• config – The address to the structure containing the configuration infor-
mation for this instance of the driver.

• prio – The initialization level at which configuration occurs.

• api – Provides an initial pointer to the API function struct used by the
driver. Can be NULL.

• mtu – Maximum transfer unit in bytes for this network interface.

NET_DEVICE_DT_OFFLOAD_DEFINE(node_id, init_fn, pm, data, config, prio, api, mtu)
Like NET_DEVICE_OFFLOAD_INIT but taking metadata from a devicetree node.

Create a offloaded network interface and bind it to network device. The offloaded
network interface is implemented by a device vendor HAL or similar.

Parameters
• node_id – The devicetree node identifier.

• init_fn – Address to the init function of the driver.

• pm – Reference to struct pm_device associated with the device. (optional).

• data – Pointer to the device’s private data.

• config – The address to the structure containing the configuration infor-
mation for this instance of the driver.

• prio – The initialization level at which configuration occurs.

• api – Provides an initial pointer to the API function struct used by the
driver. Can be NULL.

• mtu – Maximum transfer unit in bytes for this network interface.

NET_DEVICE_DT_INST_OFFLOAD_DEFINE(inst, ...)
Like NET_DEVICE_DT_OFFLOAD_DEFINE for an instance of a DT_DRV_COMPAT com-
patible.

Parameters
• inst – instance number. This is replaced by DT_DRV_COMPAT(inst) in the

call to NET_DEVICE_DT_OFFLOAD_DEFINE.

• ... – other parameters as expected by
NET_DEVICE_DT_OFFLOAD_DEFINE.
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NET_IFACE_COUNT(_dst)
Count the number of network interfaces.

Parameters
• _dst – [out] Pointer to location where result is written.

Typedefs

typedef int (*net_socket_create_t)(int, int, int)
A function prototype to create an offloaded socket.

The prototype is compatible with socket() function.

typedef void (*net_if_ip_addr_cb_t)(struct net_if *iface, struct net_if_addr *addr, void
*user_data)

Callback used while iterating over network interface IP addresses.

Param iface
Pointer to the network interface the address belongs to

Param addr
Pointer to current IP address

Param user_data
A valid pointer to user data or NULL

typedef void (*net_if_ip_maddr_cb_t)(struct net_if *iface, struct net_if_mcast_addr
*maddr, void *user_data)

Callback used while iterating over network interface multicast IP addresses.

Param iface
Pointer to the network interface the address belongs to

Parammaddr
Pointer to current multicast IP address

Param user_data
A valid pointer to user data or NULL

typedef void (*net_if_mcast_callback_t)(struct net_if *iface, const struct net_addr *addr,
bool is_joined)

Define a callback that is called whenever a IPv6 or IPv4 multicast address group is
joined or left.

Param iface
A pointer to a struct net_if to which the multicast address is attached.

Param addr
IP multicast address.

Param is_joined
True if the multicast group is joined, false if group is left.

typedef void (*net_if_link_callback_t)(struct net_if *iface, struct net_linkaddr *dst, int
status)

Define callback that is called after a network packet has been sent.

Param iface
A pointer to a struct net_if to which the net_pkt was sent to.
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Param dst
Link layer address of the destination where the network packet was sent.

Param status
Send status, 0 is ok, < 0 error.

typedef void (*net_if_cb_t)(struct net_if *iface, void *user_data)
Callback used while iterating over network interfaces.

Param iface
Pointer to current network interface

Param user_data
A valid pointer to user data or NULL

Enums

enum net_if_flag
Network interface flags.

Values:

enumerator NET_IF_UP
Interface is admin up.

enumerator NET_IF_POINTOPOINT
Interface is pointopoint.

enumerator NET_IF_PROMISC
Interface is in promiscuous mode.

enumerator NET_IF_NO_AUTO_START
Do not start the interface immediately after initialization.

This requires that either the device driver or some other entity will need to manu-
ally take the interface up when needed. For example for Ethernet this will happen
when the driver calls the net_eth_carrier_on() function.

enumerator NET_IF_SUSPENDED
Power management specific: interface is being suspended.

enumerator NET_IF_FORWARD_MULTICASTS
Flag defines if received multicasts of other interface are forwarded on this inter-
face.

This activates multicast routing / forwarding for this interface.

enumerator NET_IF_IPV4
Interface supports IPv4.

enumerator NET_IF_IPV6
Interface supports IPv6.
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enumerator NET_IF_RUNNING
Interface up and running (ready to receive and transmit).

enumerator NET_IF_LOWER_UP
Driver signals L1 is up.

enumerator NET_IF_DORMANT
Driver signals dormant.

enumerator NET_IF_IPV6_NO_ND
IPv6 Neighbor Discovery disabled.

enumerator NET_IF_IPV6_NO_MLD
IPv6 Multicast Listener Discovery disabled.

enumerator NET_IF_NO_TX_LOCK
Mutex locking on TX data path disabled on the interface.

enum net_if_oper_state
Network interface operational status (RFC 2863).

Values:

enumerator NET_IF_OPER_UNKNOWN
Initial (unknown) value.

enumerator NET_IF_OPER_NOTPRESENT
Hardware missing.

enumerator NET_IF_OPER_DOWN
Interface is down.

enumerator NET_IF_OPER_LOWERLAYERDOWN
Lower layer interface is down.

enumerator NET_IF_OPER_TESTING
Training mode.

enumerator NET_IF_OPER_DORMANT
Waiting external action.

enumerator NET_IF_OPER_UP
Interface is up.

enum net_if_checksum_type
Type of checksum for which support in the interface will be queried.

Values:
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enumerator NET_IF_CHECKSUM_IPV4_HEADER = NET_IF_CHECKSUM_IPV4_HEADER_BIT
Interface supports IP version 4 header checksum calculation.

enumerator NET_IF_CHECKSUM_IPV4_TCP = NET_IF_CHECKSUM_IPV4_HEADER_BIT |
NET_IF_CHECKSUM_TCP_BIT

Interface supports checksum calculation for TCP payload in IPv4.

enumerator NET_IF_CHECKSUM_IPV4_UDP = NET_IF_CHECKSUM_IPV4_HEADER_BIT |
NET_IF_CHECKSUM_UDP_BIT

Interface supports checksum calculation for UDP payload in IPv4.

enumerator NET_IF_CHECKSUM_IPV4_ICMP = NET_IF_CHECKSUM_IPV4_ICMP_BIT
Interface supports checksum calculation for ICMP4 payload in IPv4.

enumerator NET_IF_CHECKSUM_IPV6_HEADER = NET_IF_CHECKSUM_IPV6_HEADER_BIT
Interface supports IP version 6 header checksum calculation.

enumerator NET_IF_CHECKSUM_IPV6_TCP = NET_IF_CHECKSUM_IPV6_HEADER_BIT |
NET_IF_CHECKSUM_TCP_BIT

Interface supports checksum calculation for TCP payload in IPv6.

enumerator NET_IF_CHECKSUM_IPV6_UDP = NET_IF_CHECKSUM_IPV6_HEADER_BIT |
NET_IF_CHECKSUM_UDP_BIT

Interface supports checksum calculation for UDP payload in IPv6.

enumerator NET_IF_CHECKSUM_IPV6_ICMP = NET_IF_CHECKSUM_IPV6_ICMP_BIT
Interface supports checksum calculation for ICMP6 payload in IPv6.

Functions

static inline void net_if_flag_set(struct net_if *iface, enum net_if_flag value)
Set a value in network interface flags.

Parameters
• iface – Pointer to network interface

• value – Flag value

static inline bool net_if_flag_test_and_set(struct net_if *iface, enum net_if_flag value)
Test and set a value in network interface flags.

Parameters
• iface – Pointer to network interface

• value – Flag value

Returns
true if the bit was set, false if it wasn’t.

static inline void net_if_flag_clear(struct net_if *iface, enum net_if_flag value)
Clear a value in network interface flags.

Parameters
• iface – Pointer to network interface
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• value – Flag value

static inline bool net_if_flag_test_and_clear(struct net_if *iface, enum net_if_flag
value)

Test and clear a value in network interface flags.

Parameters
• iface – Pointer to network interface

• value – Flag value

Returns
true if the bit was set, false if it wasn’t.

static inline bool net_if_flag_is_set(struct net_if *iface, enum net_if_flag value)
Check if a value in network interface flags is set.

Parameters
• iface – Pointer to network interface

• value – Flag value

Returns
True if the value is set, false otherwise

static inline enum net_if_oper_state net_if_oper_state_set(struct net_if *iface, enum
net_if_oper_state oper_state)

Set an operational state on an interface.

Parameters
• iface – Pointer to network interface

• oper_state – Operational state to set

Returns
The new operational state of an interface

static inline enum net_if_oper_state net_if_oper_state(struct net_if *iface)
Get an operational state of an interface.

Parameters
• iface – Pointer to network interface

Returns
Operational state of an interface

enum net_verdict net_if_send_data(struct net_if *iface, struct net_pkt *pkt)
Send a packet through a net iface.

return verdict about the packet

Parameters
• iface – Pointer to a network interface structure

• pkt – Pointer to a net packet to send

static inline const struct net_l2 *net_if_l2(struct net_if *iface)
Get a pointer to the interface L2.

Parameters
• iface – a valid pointer to a network interface structure
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Returns
a pointer to the iface L2

enum net_verdict net_if_recv_data(struct net_if *iface, struct net_pkt *pkt)
Input a packet through a net iface.

Parameters
• iface – Pointer to a network interface structure

• pkt – Pointer to a net packet to input

Returns
verdict about the packet

static inline void *net_if_l2_data(struct net_if *iface)
Get a pointer to the interface L2 private data.

Parameters
• iface – a valid pointer to a network interface structure

Returns
a pointer to the iface L2 data

static inline const struct device *net_if_get_device(struct net_if *iface)
Get an network interface’s device.

Parameters
• iface – Pointer to a network interface structure

Returns
a pointer to the device driver instance

void net_if_queue_tx(struct net_if *iface, struct net_pkt *pkt)
Queue a packet to the net interface TX queue.

Parameters
• iface – Pointer to a network interface structure

• pkt – Pointer to a net packet to queue

static inline bool net_if_is_ip_offloaded(struct net_if *iface)
Return the IP offload status.

Parameters
• iface – Network interface

Returns
True if IP offloading is active, false otherwise.

bool net_if_is_offloaded(struct net_if *iface)
Return offload status of a given network interface.

Parameters
• iface – Network interface

Returns
True if IP or socket offloading is active, false otherwise.

static inline struct net_offload *net_if_offload(struct net_if *iface)
Return the IP offload plugin.

Parameters
• iface – Network interface
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Returns
NULL if there is no offload plugin defined, valid pointer otherwise

static inline bool net_if_is_socket_offloaded(struct net_if *iface)
Return the socket offload status.

Parameters
• iface – Network interface

Returns
True if socket offloading is active, false otherwise.

static inline void net_if_socket_offload_set(struct net_if *iface, net_socket_create_t
socket_offload)

Set the function to create an offloaded socket.

Parameters
• iface – Network interface

• socket_offload – A function to create an offloaded socket

static inline net_socket_create_t net_if_socket_offload(struct net_if *iface)
Return the function to create an offloaded socket.

Parameters
• iface – Network interface

Returns
NULL if the interface is not socket offloaded, valid pointer otherwise

static inline struct net_linkaddr *net_if_get_link_addr(struct net_if *iface)
Get an network interface’s link address.

Parameters
• iface – Pointer to a network interface structure

Returns
a pointer to the network link address

static inline struct net_if_config *net_if_get_config(struct net_if *iface)
Return network configuration for this network interface.

Parameters
• iface – Pointer to a network interface structure

Returns
Pointer to configuration

static inline void net_if_start_dad(struct net_if *iface)
Start duplicate address detection procedure.

Parameters
• iface – Pointer to a network interface structure

void net_if_start_rs(struct net_if *iface)
Start neighbor discovery and send router solicitation message.

Parameters
• iface – Pointer to a network interface structure

2918 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

static inline void net_if_stop_rs(struct net_if *iface)
Stop neighbor discovery.

Parameters
• iface – Pointer to a network interface structure

static inline void net_if_nbr_reachability_hint(struct net_if *iface, const struct
in6_addr *ipv6_addr)

Provide a reachability hint for IPv6 Neighbor Discovery.

This function is intended for upper-layer protocols to inform the IPv6 Neighbor Discov-
ery process about an active link to a specific neighbor. By signaling a recent “forward
progress” event, such as the reception of an ACK, this function can help reduce unnec-
essary ND traffic as per the guidelines in RFC 4861 (section 7.3).

Parameters
• iface – A pointer to the network interface.

• ipv6_addr – Pointer to the IPv6 address of the neighbor node.

static inline int net_if_set_link_addr(struct net_if *iface, uint8_t *addr, uint8_t len,
enum net_link_type type)

Set a network interface’s link address.

Parameters
• iface – Pointer to a network interface structure

• addr – A pointer to a uint8_t buffer representing the address. The buffer
must remain valid throughout interface lifetime.

• len – length of the address buffer

• type – network bearer type of this link address

Returns
0 on success

static inline uint16_t net_if_get_mtu(struct net_if *iface)
Get an network interface’s MTU.

Parameters
• iface – Pointer to a network interface structure

Returns
the MTU

static inline void net_if_set_mtu(struct net_if *iface, uint16_t mtu)
Set an network interface’s MTU.

Parameters
• iface – Pointer to a network interface structure

• mtu – New MTU, note that we store only 16 bit mtu value.

static inline void net_if_addr_set_lf(struct net_if_addr *ifaddr, bool is_infinite)
Set the infinite status of the network interface address.

Parameters
• ifaddr – IP address for network interface

• is_infinite – Infinite status
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struct net_if *net_if_get_by_link_addr(struct net_linkaddr *ll_addr)
Get an interface according to link layer address.

Parameters
• ll_addr – Link layer address.

Returns
Network interface or NULL if not found.

struct net_if *net_if_lookup_by_dev(const struct device *dev)
Find an interface from it’s related device.

Parameters
• dev – A valid struct device pointer to relate with an interface

Returns
a valid struct net_if pointer on success, NULL otherwise

static inline struct net_if_config *net_if_config_get(struct net_if *iface)
Get network interface IP config.

Parameters
• iface – Interface to use.

Returns
NULL if not found or pointer to correct config settings.

void net_if_router_rm(struct net_if_router *router)
Remove a router from the system.

Parameters
• router – Pointer to existing router

void net_if_set_default(struct net_if *iface)
Set the default network interface.

Parameters
• iface – New default interface, or NULL to revert to the one set by Kconfig.

struct net_if *net_if_get_default(void)
Get the default network interface.

Returns
Default interface or NULL if no interfaces are configured.

struct net_if *net_if_get_first_by_type(const struct net_l2 *l2)
Get the first network interface according to its type.

Parameters
• l2 – Layer 2 type of the network interface.

Returns
First network interface of a given type or NULL if no such interfaces was
found.

struct net_if *net_if_get_first_up(void)
Get the first network interface which is up.

Returns
First network interface which is up or NULL if all interfaces are down.
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int net_if_config_ipv6_get(struct net_if *iface, struct net_if_ipv6 **ipv6)
Allocate network interface IPv6 config.

This function will allocate new IPv6 config.

Parameters
• iface – Interface to use.

• ipv6 – Pointer to allocated IPv6 struct is returned to caller.

Returns
0 if ok, <0 if error

int net_if_config_ipv6_put(struct net_if *iface)
Release network interface IPv6 config.

Parameters
• iface – Interface to use.

Returns
0 if ok, <0 if error

struct net_if_addr *net_if_ipv6_addr_lookup(const struct in6_addr *addr, struct net_if
**iface)

Check if this IPv6 address belongs to one of the interfaces.

Parameters
• addr – IPv6 address

• iface – Pointer to interface is returned

Returns
Pointer to interface address, NULL if not found.

struct net_if_addr *net_if_ipv6_addr_lookup_by_iface(struct net_if *iface, struct
in6_addr *addr)

Check if this IPv6 address belongs to this specific interfaces.

Parameters
• iface – Network interface

• addr – IPv6 address

Returns
Pointer to interface address, NULL if not found.

int net_if_ipv6_addr_lookup_by_index(const struct in6_addr *addr)
Check if this IPv6 address belongs to one of the interface indices.

Parameters
• addr – IPv6 address

Returns
>0 if address was found in given network interface index, all other values
mean address was not found

struct net_if_addr *net_if_ipv6_addr_add(struct net_if *iface, struct in6_addr *addr,
enum net_addr_type addr_type, uint32_t
vlifetime)

Add a IPv6 address to an interface.

Parameters
• iface – Network interface
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• addr – IPv6 address

• addr_type – IPv6 address type

• vlifetime – Validity time for this address

Returns
Pointer to interface address, NULL if cannot be added

bool net_if_ipv6_addr_add_by_index(int index, struct in6_addr *addr, enum
net_addr_type addr_type, uint32_t vlifetime)

Add a IPv6 address to an interface by index.

Parameters
• index – Network interface index

• addr – IPv6 address

• addr_type – IPv6 address type

• vlifetime – Validity time for this address

Returns
True if ok, false if address could not be added

void net_if_ipv6_addr_update_lifetime(struct net_if_addr *ifaddr, uint32_t vlifetime)
Update validity lifetime time of an IPv6 address.

Parameters
• ifaddr – Network IPv6 address

• vlifetime – Validity time for this address

bool net_if_ipv6_addr_rm(struct net_if *iface, const struct in6_addr *addr)
Remove an IPv6 address from an interface.

Parameters
• iface – Network interface

• addr – IPv6 address

Returns
True if successfully removed, false otherwise

bool net_if_ipv6_addr_rm_by_index(int index, const struct in6_addr *addr)
Remove an IPv6 address from an interface by index.

Parameters
• index – Network interface index

• addr – IPv6 address

Returns
True if successfully removed, false otherwise

void net_if_ipv6_addr_foreach(struct net_if *iface, net_if_ip_addr_cb_t cb, void
*user_data)

Go through all IPv6 addresses on a network interface and call callback for each used
address.

Parameters
• iface – Pointer to the network interface

• cb – User-supplied callback function to call

• user_data – User specified data
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struct net_if_mcast_addr *net_if_ipv6_maddr_add(struct net_if *iface, const struct
in6_addr *addr)

Add a IPv6 multicast address to an interface.

Parameters
• iface – Network interface

• addr – IPv6 multicast address

Returns
Pointer to interface multicast address, NULL if cannot be added

bool net_if_ipv6_maddr_rm(struct net_if *iface, const struct in6_addr *addr)
Remove an IPv6 multicast address from an interface.

Parameters
• iface – Network interface

• addr – IPv6 multicast address

Returns
True if successfully removed, false otherwise

void net_if_ipv6_maddr_foreach(struct net_if *iface, net_if_ip_maddr_cb_t cb, void
*user_data)

Go through all IPv6 multicast addresses on a network interface and call callback for
each used address.

Parameters
• iface – Pointer to the network interface

• cb – User-supplied callback function to call

• user_data – User specified data

struct net_if_mcast_addr *net_if_ipv6_maddr_lookup(const struct in6_addr *addr, struct
net_if **iface)

Check if this IPv6 multicast address belongs to a specific interface or one of the inter-
faces.

Parameters
• addr – IPv6 address

• iface – If *iface is null, then pointer to interface is returned, otherwise
the *iface value needs to be matched.

Returns
Pointer to interface multicast address, NULL if not found.

void net_if_mcast_mon_register(struct net_if_mcast_monitor *mon, struct net_if *iface,
net_if_mcast_callback_t cb)

Register a multicast monitor.

Parameters
• mon – Monitor handle. This is a pointer to a monitor storage structure

which should be allocated by caller, but does not need to be initialized.

• iface – Network interface or NULL for all interfaces

• cb – Monitor callback
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void net_if_mcast_mon_unregister(struct net_if_mcast_monitor *mon)
Unregister a multicast monitor.

Parameters
• mon – Monitor handle

void net_if_mcast_monitor(struct net_if *iface, const struct net_addr *addr, bool
is_joined)

Call registered multicast monitors.

Parameters
• iface – Network interface

• addr – Multicast address

• is_joined – Is this multicast address group joined (true) or not (false)

void net_if_ipv6_maddr_join(struct net_if *iface, struct net_if_mcast_addr *addr)
Mark a given multicast address to be joined.

Parameters
• iface – Network interface the address belongs to

• addr – IPv6 multicast address

static inline bool net_if_ipv6_maddr_is_joined(struct net_if_mcast_addr *addr)
Check if given multicast address is joined or not.

Parameters
• addr – IPv6 multicast address

Returns
True if address is joined, False otherwise.

void net_if_ipv6_maddr_leave(struct net_if *iface, struct net_if_mcast_addr *addr)
Mark a given multicast address to be left.

Parameters
• iface – Network interface the address belongs to

• addr – IPv6 multicast address

struct net_if_ipv6_prefix *net_if_ipv6_prefix_get(struct net_if *iface, const struct
in6_addr *addr)

Return prefix that corresponds to this IPv6 address.

Parameters
• iface – Network interface

• addr – IPv6 address

Returns
Pointer to prefix, NULL if not found.

struct net_if_ipv6_prefix *net_if_ipv6_prefix_lookup(struct net_if *iface, struct in6_addr
*addr, uint8_t len)

Check if this IPv6 prefix belongs to this interface.

Parameters
• iface – Network interface

• addr – IPv6 address

• len – Prefix length
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Returns
Pointer to prefix, NULL if not found.

struct net_if_ipv6_prefix *net_if_ipv6_prefix_add(struct net_if *iface, struct in6_addr
*prefix, uint8_t len, uint32_t lifetime)

Add a IPv6 prefix to an network interface.

Parameters
• iface – Network interface

• prefix – IPv6 address

• len – Prefix length

• lifetime – Prefix lifetime in seconds

Returns
Pointer to prefix, NULL if the prefix was not added.

bool net_if_ipv6_prefix_rm(struct net_if *iface, struct in6_addr *addr, uint8_t len)
Remove an IPv6 prefix from an interface.

Parameters
• iface – Network interface

• addr – IPv6 prefix address

• len – Prefix length

Returns
True if successfully removed, false otherwise

static inline void net_if_ipv6_prefix_set_lf(struct net_if_ipv6_prefix *prefix, bool
is_infinite)

Set the infinite status of the prefix.

Parameters
• prefix – IPv6 address

• is_infinite – Infinite status

void net_if_ipv6_prefix_set_timer(struct net_if_ipv6_prefix *prefix, uint32_t lifetime)
Set the prefix lifetime timer.

Parameters
• prefix – IPv6 address

• lifetime – Prefix lifetime in seconds

void net_if_ipv6_prefix_unset_timer(struct net_if_ipv6_prefix *prefix)
Unset the prefix lifetime timer.

Parameters
• prefix – IPv6 address

bool net_if_ipv6_addr_onlink(struct net_if **iface, struct in6_addr *addr)
Check if this IPv6 address is part of the subnet of our network interface.

Parameters
• iface – Network interface. This is returned to the caller. The iface can

be NULL in which case we check all the interfaces.

• addr – IPv6 address
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Returns
True if address is part of our subnet, false otherwise

static inline struct in6_addr *net_if_router_ipv6(struct net_if_router *router)
Get the IPv6 address of the given router.

Parameters
• router – a network router

Returns
pointer to the IPv6 address, or NULL if none

struct net_if_router *net_if_ipv6_router_lookup(struct net_if *iface, struct in6_addr
*addr)

Check if IPv6 address is one of the routers configured in the system.

Parameters
• iface – Network interface

• addr – IPv6 address

Returns
Pointer to router information, NULL if cannot be found

struct net_if_router *net_if_ipv6_router_find_default(struct net_if *iface, struct
in6_addr *addr)

Find default router for this IPv6 address.

Parameters
• iface – Network interface. This can be NULL in which case we go

through all the network interfaces to find a suitable router.

• addr – IPv6 address

Returns
Pointer to router information, NULL if cannot be found

void net_if_ipv6_router_update_lifetime(struct net_if_router *router, uint16_t
lifetime)

Update validity lifetime time of a router.

Parameters
• router – Network IPv6 address

• lifetime – Lifetime of this router.

struct net_if_router *net_if_ipv6_router_add(struct net_if *iface, struct in6_addr *addr,
uint16_t router_lifetime)

Add IPv6 router to the system.

Parameters
• iface – Network interface

• addr – IPv6 address

• router_lifetime – Lifetime of the router

Returns
Pointer to router information, NULL if could not be added

bool net_if_ipv6_router_rm(struct net_if_router *router)
Remove IPv6 router from the system.

Parameters
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• router – Router information.

Returns
True if successfully removed, false otherwise

uint8_t net_if_ipv6_get_hop_limit(struct net_if *iface)
Get IPv6 hop limit specified for a given interface.

This is the default value but can be overridden by the user.

Parameters
• iface – Network interface

Returns
Hop limit

void net_if_ipv6_set_hop_limit(struct net_if *iface, uint8_t hop_limit)
Set the default IPv6 hop limit of a given interface.

Parameters
• iface – Network interface

• hop_limit – New hop limit

uint8_t net_if_ipv6_get_mcast_hop_limit(struct net_if *iface)
Get IPv6 multicast hop limit specified for a given interface.

This is the default value but can be overridden by the user.

Parameters
• iface – Network interface

Returns
Hop limit

void net_if_ipv6_set_mcast_hop_limit(struct net_if *iface, uint8_t hop_limit)
Set the default IPv6 multicast hop limit of a given interface.

Parameters
• iface – Network interface

• hop_limit – New hop limit

static inline void net_if_ipv6_set_base_reachable_time(struct net_if *iface, uint32_t
reachable_time)

Set IPv6 reachable time for a given interface.

Parameters
• iface – Network interface

• reachable_time – New reachable time

static inline uint32_t net_if_ipv6_get_reachable_time(struct net_if *iface)
Get IPv6 reachable timeout specified for a given interface.

Parameters
• iface – Network interface

Returns
Reachable timeout
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uint32_t net_if_ipv6_calc_reachable_time(struct net_if_ipv6 *ipv6)
Calculate next reachable time value for IPv6 reachable time.

Parameters
• ipv6 – IPv6 address configuration

Returns
Reachable time

static inline void net_if_ipv6_set_reachable_time(struct net_if_ipv6 *ipv6)
Set IPv6 reachable time for a given interface.

This requires that base reachable time is set for the interface.

Parameters
• ipv6 – IPv6 address configuration

static inline void net_if_ipv6_set_retrans_timer(struct net_if *iface, uint32_t
retrans_timer)

Set IPv6 retransmit timer for a given interface.

Parameters
• iface – Network interface

• retrans_timer – New retransmit timer

static inline uint32_t net_if_ipv6_get_retrans_timer(struct net_if *iface)
Get IPv6 retransmit timer specified for a given interface.

Parameters
• iface – Network interface

Returns
Retransmit timer

static inline const struct in6_addr *net_if_ipv6_select_src_addr(struct net_if *iface,
const struct in6_addr
*dst)

Get a IPv6 source address that should be used when sending network data to destina-
tion.

Parameters
• iface – Interface that was used when packet was received. If the inter-

face is not known, then NULL can be given.

• dst – IPv6 destination address

Returns
Pointer to IPv6 address to use, NULL if no IPv6 address could be found.

static inline const struct in6_addr *net_if_ipv6_select_src_addr_hint(struct net_if
*iface, const
struct in6_addr
*dst, int flags)

Get a IPv6 source address that should be used when sending network data to destina-
tion.

Use a hint set to the socket to select the proper address.

Parameters
• iface – Interface that was used when packet was received. If the inter-

face is not known, then NULL can be given.
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• dst – IPv6 destination address

• flags – Hint from the related socket. See RFC 5014 for value details.

Returns
Pointer to IPv6 address to use, NULL if no IPv6 address could be found.

static inline struct net_if *net_if_ipv6_select_src_iface(const struct in6_addr *dst)
Get a network interface that should be used when sending IPv6 network data to desti-
nation.

Parameters
• dst – IPv6 destination address

Returns
Pointer to network interface to use, NULL if no suitable interface could be
found.

struct in6_addr *net_if_ipv6_get_ll(struct net_if *iface, enum net_addr_state
addr_state)

Get a IPv6 link local address in a given state.

Parameters
• iface – Interface to use. Must be a valid pointer to an interface.

• addr_state – IPv6 address state (preferred, tentative, deprecated)

Returns
Pointer to link local IPv6 address, NULL if no proper IPv6 address could be
found.

struct in6_addr *net_if_ipv6_get_ll_addr(enum net_addr_state state, struct net_if
**iface)

Return link local IPv6 address from the first interface that has a link local address
matching give state.

Parameters
• state – IPv6 address state (ANY, TENTATIVE, PREFERRED, DEPRECATED)

• iface – Pointer to interface is returned

Returns
Pointer to IPv6 address, NULL if not found.

void net_if_ipv6_dad_failed(struct net_if *iface, const struct in6_addr *addr)
Stop IPv6 Duplicate Address Detection (DAD) procedure if we find out that our IPv6
address is already in use.

Parameters
• iface – Interface where the DAD was running.

• addr – IPv6 address that failed DAD

struct in6_addr *net_if_ipv6_get_global_addr(enum net_addr_state state, struct net_if
**iface)

Return global IPv6 address from the first interface that has a global IPv6 address
matching the given state.

Parameters
• state – IPv6 address state (ANY, TENTATIVE, PREFERRED, DEPRECATED)

• iface – Caller can give an interface to check. If iface is set to NULL, then
all the interfaces are checked. Pointer to interface where the IPv6 ad-
dress is defined is returned to the caller.
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Returns
Pointer to IPv6 address, NULL if not found.

int net_if_config_ipv4_get(struct net_if *iface, struct net_if_ipv4 **ipv4)
Allocate network interface IPv4 config.

This function will allocate new IPv4 config.

Parameters
• iface – Interface to use.

• ipv4 – Pointer to allocated IPv4 struct is returned to caller.

Returns
0 if ok, <0 if error

int net_if_config_ipv4_put(struct net_if *iface)
Release network interface IPv4 config.

Parameters
• iface – Interface to use.

Returns
0 if ok, <0 if error

uint8_t net_if_ipv4_get_ttl(struct net_if *iface)
Get IPv4 time-to-live value specified for a given interface.

Parameters
• iface – Network interface

Returns
Time-to-live

void net_if_ipv4_set_ttl(struct net_if *iface, uint8_t ttl)
Set IPv4 time-to-live value specified to a given interface.

Parameters
• iface – Network interface

• ttl – Time-to-live value

uint8_t net_if_ipv4_get_mcast_ttl(struct net_if *iface)
Get IPv4 multicast time-to-live value specified for a given interface.

Parameters
• iface – Network interface

Returns
Time-to-live

void net_if_ipv4_set_mcast_ttl(struct net_if *iface, uint8_t ttl)
Set IPv4 multicast time-to-live value specified to a given interface.

Parameters
• iface – Network interface

• ttl – Time-to-live value

struct net_if_addr *net_if_ipv4_addr_lookup(const struct in_addr *addr, struct net_if
**iface)

Check if this IPv4 address belongs to one of the interfaces.

Parameters
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• addr – IPv4 address

• iface – Interface is returned

Returns
Pointer to interface address, NULL if not found.

struct net_if_addr *net_if_ipv4_addr_add(struct net_if *iface, struct in_addr *addr, enum
net_addr_type addr_type, uint32_t vlifetime)

Add a IPv4 address to an interface.

Parameters
• iface – Network interface

• addr – IPv4 address

• addr_type – IPv4 address type

• vlifetime – Validity time for this address

Returns
Pointer to interface address, NULL if cannot be added

bool net_if_ipv4_addr_rm(struct net_if *iface, const struct in_addr *addr)
Remove a IPv4 address from an interface.

Parameters
• iface – Network interface

• addr – IPv4 address

Returns
True if successfully removed, false otherwise

int net_if_ipv4_addr_lookup_by_index(const struct in_addr *addr)
Check if this IPv4 address belongs to one of the interface indices.

Parameters
• addr – IPv4 address

Returns
>0 if address was found in given network interface index, all other values
mean address was not found

bool net_if_ipv4_addr_add_by_index(int index, struct in_addr *addr, enum
net_addr_type addr_type, uint32_t vlifetime)

Add a IPv4 address to an interface by network interface index.

Parameters
• index – Network interface index

• addr – IPv4 address

• addr_type – IPv4 address type

• vlifetime – Validity time for this address

Returns
True if ok, false if the address could not be added

bool net_if_ipv4_addr_rm_by_index(int index, const struct in_addr *addr)
Remove a IPv4 address from an interface by interface index.

Parameters
• index – Network interface index
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• addr – IPv4 address

Returns
True if successfully removed, false otherwise

void net_if_ipv4_addr_foreach(struct net_if *iface, net_if_ip_addr_cb_t cb, void
*user_data)

Go through all IPv4 addresses on a network interface and call callback for each used
address.

Parameters
• iface – Pointer to the network interface

• cb – User-supplied callback function to call

• user_data – User specified data

struct net_if_mcast_addr *net_if_ipv4_maddr_add(struct net_if *iface, const struct in_addr
*addr)

Add a IPv4 multicast address to an interface.

Parameters
• iface – Network interface

• addr – IPv4 multicast address

Returns
Pointer to interface multicast address, NULL if cannot be added

bool net_if_ipv4_maddr_rm(struct net_if *iface, const struct in_addr *addr)
Remove an IPv4 multicast address from an interface.

Parameters
• iface – Network interface

• addr – IPv4 multicast address

Returns
True if successfully removed, false otherwise

void net_if_ipv4_maddr_foreach(struct net_if *iface, net_if_ip_maddr_cb_t cb, void
*user_data)

Go through all IPv4 multicast addresses on a network interface and call callback for
each used address.

Parameters
• iface – Pointer to the network interface

• cb – User-supplied callback function to call

• user_data – User specified data

struct net_if_mcast_addr *net_if_ipv4_maddr_lookup(const struct in_addr *addr, struct
net_if **iface)

Check if this IPv4 multicast address belongs to a specific interface or one of the inter-
faces.

Parameters
• addr – IPv4 address

• iface – If *iface is null, then pointer to interface is returned, otherwise
the *iface value needs to be matched.

Returns
Pointer to interface multicast address, NULL if not found.
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void net_if_ipv4_maddr_join(struct net_if *iface, struct net_if_mcast_addr *addr)
Mark a given multicast address to be joined.

Parameters
• iface – Network interface the address belongs to

• addr – IPv4 multicast address

static inline bool net_if_ipv4_maddr_is_joined(struct net_if_mcast_addr *addr)
Check if given multicast address is joined or not.

Parameters
• addr – IPv4 multicast address

Returns
True if address is joined, False otherwise.

void net_if_ipv4_maddr_leave(struct net_if *iface, struct net_if_mcast_addr *addr)
Mark a given multicast address to be left.

Parameters
• iface – Network interface the address belongs to

• addr – IPv4 multicast address

static inline struct in_addr *net_if_router_ipv4(struct net_if_router *router)
Get the IPv4 address of the given router.

Parameters
• router – a network router

Returns
pointer to the IPv4 address, or NULL if none

struct net_if_router *net_if_ipv4_router_lookup(struct net_if *iface, struct in_addr
*addr)

Check if IPv4 address is one of the routers configured in the system.

Parameters
• iface – Network interface

• addr – IPv4 address

Returns
Pointer to router information, NULL if cannot be found

struct net_if_router *net_if_ipv4_router_find_default(struct net_if *iface, struct
in_addr *addr)

Find default router for this IPv4 address.

Parameters
• iface – Network interface. This can be NULL in which case we go

through all the network interfaces to find a suitable router.

• addr – IPv4 address

Returns
Pointer to router information, NULL if cannot be found

struct net_if_router *net_if_ipv4_router_add(struct net_if *iface, struct in_addr *addr,
bool is_default, uint16_t router_lifetime)

Add IPv4 router to the system.

Parameters
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• iface – Network interface

• addr – IPv4 address

• is_default – Is this router the default one

• router_lifetime – Lifetime of the router

Returns
Pointer to router information, NULL if could not be added

bool net_if_ipv4_router_rm(struct net_if_router *router)
Remove IPv4 router from the system.

Parameters
• router – Router information.

Returns
True if successfully removed, false otherwise

bool net_if_ipv4_addr_mask_cmp(struct net_if *iface, const struct in_addr *addr)
Check if the given IPv4 address belongs to local subnet.

Parameters
• iface – Interface to use. Must be a valid pointer to an interface.

• addr – IPv4 address

Returns
True if address is part of local subnet, false otherwise.

bool net_if_ipv4_is_addr_bcast(struct net_if *iface, const struct in_addr *addr)
Check if the given IPv4 address is a broadcast address.

Parameters
• iface – Interface to use. Must be a valid pointer to an interface.

• addr – IPv4 address, this should be in network byte order

Returns
True if address is a broadcast address, false otherwise.

static inline struct net_if *net_if_ipv4_select_src_iface(const struct in_addr *dst)
Get a network interface that should be used when sending IPv4 network data to desti-
nation.

Parameters
• dst – IPv4 destination address

Returns
Pointer to network interface to use, NULL if no suitable interface could be
found.

static inline const struct in_addr *net_if_ipv4_select_src_addr(struct net_if *iface,
const struct in_addr
*dst)

Get a IPv4 source address that should be used when sending network data to destina-
tion.

Parameters
• iface – Interface to use when sending the packet. If the interface is not

known, then NULL can be given.

• dst – IPv4 destination address
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Returns
Pointer to IPv4 address to use, NULL if no IPv4 address could be found.

struct in_addr *net_if_ipv4_get_ll(struct net_if *iface, enum net_addr_state addr_state)
Get a IPv4 link local address in a given state.

Parameters
• iface – Interface to use. Must be a valid pointer to an interface.

• addr_state – IPv4 address state (preferred, tentative, deprecated)

Returns
Pointer to link local IPv4 address, NULL if no proper IPv4 address could be
found.

struct in_addr *net_if_ipv4_get_global_addr(struct net_if *iface, enum net_addr_state
addr_state)

Get a IPv4 global address in a given state.

Parameters
• iface – Interface to use. Must be a valid pointer to an interface.

• addr_state – IPv4 address state (preferred, tentative, deprecated)

Returns
Pointer to link local IPv4 address, NULL if no proper IPv4 address could be
found.

struct in_addr net_if_ipv4_get_netmask_by_addr(struct net_if *iface, const struct
in_addr *addr)

Get IPv4 netmask related to an address of an interface.

Parameters
• iface – Interface to use.

• addr – IPv4 address to check.

Returns
The netmask set on the interface related to the give address, unspecified
address if not found.

struct in_addr net_if_ipv4_get_netmask(struct net_if *iface)
Get IPv4 netmask of an interface.

Deprecated:
Use net_if_ipv4_get_netmask_by_addr() instead.

Parameters
• iface – Interface to use.

Returns
The netmask set on the interface, unspecified address if not found.

void net_if_ipv4_set_netmask(struct net_if *iface, const struct in_addr *netmask)
Set IPv4 netmask for an interface.

Deprecated:
Use net_if_ipv4_set_netmask_by_addr() instead.
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Parameters
• iface – Interface to use.

• netmask – IPv4 netmask

bool net_if_ipv4_set_netmask_by_index(int index, const struct in_addr *netmask)
Set IPv4 netmask for an interface index.

Deprecated:
Use net_if_ipv4_set_netmask_by_addr() instead.

Parameters
• index – Network interface index

• netmask – IPv4 netmask

Returns
True if netmask was added, false otherwise.

bool net_if_ipv4_set_netmask_by_addr_by_index(int index, const struct in_addr *addr,
const struct in_addr *netmask)

Set IPv4 netmask for an interface index for a given address.

Parameters
• index – Network interface index

• addr – IPv4 address related to this netmask

• netmask – IPv4 netmask

Returns
True if netmask was added, false otherwise.

bool net_if_ipv4_set_netmask_by_addr(struct net_if *iface, const struct in_addr *addr,
const struct in_addr *netmask)

Set IPv4 netmask for an interface index for a given address.

Parameters
• iface – Network interface

• addr – IPv4 address related to this netmask

• netmask – IPv4 netmask

Returns
True if netmask was added, false otherwise.

struct in_addr net_if_ipv4_get_gw(struct net_if *iface)
Get IPv4 gateway of an interface.

Parameters
• iface – Interface to use.

Returns
The gateway set on the interface, unspecified address if not found.

void net_if_ipv4_set_gw(struct net_if *iface, const struct in_addr *gw)
Set IPv4 gateway for an interface.

Parameters
• iface – Interface to use.
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• gw – IPv4 address of an gateway

bool net_if_ipv4_set_gw_by_index(int index, const struct in_addr *gw)
Set IPv4 gateway for an interface index.

Parameters
• index – Network interface index

• gw – IPv4 address of an gateway

Returns
True if gateway was added, false otherwise.

struct net_if *net_if_select_src_iface(const struct sockaddr *dst)
Get a network interface that should be used when sending IPv6 or IPv4 network data
to destination.

Parameters
• dst – IPv6 or IPv4 destination address

Returns
Pointer to network interface to use. Note that the function will return the
default network interface if the best network interface is not found.

void net_if_register_link_cb(struct net_if_link_cb *link, net_if_link_callback_t cb)
Register a link callback.

Parameters
• link – Caller specified handler for the callback.

• cb – Callback to register.

void net_if_unregister_link_cb(struct net_if_link_cb *link)
Unregister a link callback.

Parameters
• link – Caller specified handler for the callback.

void net_if_call_link_cb(struct net_if *iface, struct net_linkaddr *lladdr, int status)
Call a link callback function.

Parameters
• iface – Network interface.

• lladdr – Destination link layer address

• status – 0 is ok, < 0 error

bool net_if_need_calc_rx_checksum(struct net_if *iface, enum net_if_checksum_type
chksum_type)

Check if received network packet checksum calculation can be avoided or not.

For example many ethernet devices support network packet offloading in which case
the IP stack does not need to calculate the checksum.

Parameters
• iface – Network interface

• chksum_type – L3 and/or L4 protocol for which to compute checksum

Returns
True if checksum needs to be calculated, false otherwise.
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bool net_if_need_calc_tx_checksum(struct net_if *iface, enum net_if_checksum_type
chksum_type)

Check if network packet checksum calculation can be avoided or not when sending the
packet.

For example many ethernet devices support network packet offloading in which case
the IP stack does not need to calculate the checksum.

Parameters
• iface – Network interface

• chksum_type – L3 and/or L4 protocol for which to compute checksum

Returns
True if checksum needs to be calculated, false otherwise.

struct net_if *net_if_get_by_index(int index)
Get interface according to index.

This is a syscall only to provide access to the object for purposes of assigning permis-
sions.

Parameters
• index – Interface index

Returns
Pointer to interface or NULL if not found.

int net_if_get_by_iface(struct net_if *iface)
Get interface index according to pointer.

Parameters
• iface – Pointer to network interface

Returns
Interface index

void net_if_foreach(net_if_cb_t cb, void *user_data)
Go through all the network interfaces and call callback for each interface.

Parameters
• cb – User-supplied callback function to call

• user_data – User specified data

int net_if_up(struct net_if *iface)
Bring interface up.

Parameters
• iface – Pointer to network interface

Returns
0 on success

static inline bool net_if_is_up(struct net_if *iface)
Check if interface is up and running.

Parameters
• iface – Pointer to network interface

Returns
True if interface is up, False if it is down.
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int net_if_down(struct net_if *iface)
Bring interface down.

Parameters
• iface – Pointer to network interface

Returns
0 on success

static inline bool net_if_is_admin_up(struct net_if *iface)
Check if interface was brought up by the administrator.

Parameters
• iface – Pointer to network interface

Returns
True if interface is admin up, false otherwise.

void net_if_carrier_on(struct net_if *iface)
Underlying network device has detected the carrier (cable connected).

The function should be used by the respective network device driver or L2 implemen-
tation to update its state on a network interface.

Parameters
• iface – Pointer to network interface

void net_if_carrier_off(struct net_if *iface)
Underlying network device has lost the carrier (cable disconnected).

The function should be used by the respective network device driver or L2 implemen-
tation to update its state on a network interface.

Parameters
• iface – Pointer to network interface

static inline bool net_if_is_carrier_ok(struct net_if *iface)
Check if carrier is present on network device.

Parameters
• iface – Pointer to network interface

Returns
True if carrier is present, false otherwise.

void net_if_dormant_on(struct net_if *iface)
Mark interface as dormant.

Dormant state indicates that the interface is not ready to pass packets yet, but is waiting
for some event (for example Wi-Fi network association).

The function should be used by the respective network device driver or L2 implemen-
tation to update its state on a network interface.

Parameters
• iface – Pointer to network interface

void net_if_dormant_off(struct net_if *iface)
Mark interface as not dormant.

The function should be used by the respective network device driver or L2 implemen-
tation to update its state on a network interface.

Parameters
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• iface – Pointer to network interface

static inline bool net_if_is_dormant(struct net_if *iface)
Check if the interface is dormant.

Parameters
• iface – Pointer to network interface

Returns
True if interface is dormant, false otherwise.

static inline int net_if_set_promisc(struct net_if *iface)
Set network interface into promiscuous mode.

Note that not all network technologies will support this.

Parameters
• iface – Pointer to network interface

Returns
0 on success, <0 if error

static inline void net_if_unset_promisc(struct net_if *iface)
Set network interface into normal mode.

Parameters
• iface – Pointer to network interface

static inline bool net_if_is_promisc(struct net_if *iface)
Check if promiscuous mode is set or not.

Parameters
• iface – Pointer to network interface

Returns
True if interface is in promisc mode, False if interface is not in promiscuous
mode.

static inline bool net_if_are_pending_tx_packets(struct net_if *iface)
Check if there are any pending TX network data for a given network interface.

Parameters
• iface – Pointer to network interface

Returns
True if there are pending TX network packets for this network interface,
False otherwise.

bool net_if_is_wifi(struct net_if *iface)
Check if the network interface supports Wi-Fi.

Parameters
• iface – Pointer to network interface

Returns
True if interface supports Wi-Fi, False otherwise.

struct net_if *net_if_get_first_wifi(void)
Get first Wi-Fi network interface.

Returns
Pointer to network interface, NULL if not found.
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struct net_if *net_if_get_wifi_sta(void)
Get Wi-Fi network station interface.

Returns
Pointer to network interface, NULL if not found.

struct net_if *net_if_get_wifi_sap(void)
Get first Wi-Fi network Soft-AP interface.

Returns
Pointer to network interface, NULL if not found.

int net_if_get_name(struct net_if *iface, char *buf, int len)
Get network interface name.

If interface name support is not enabled, empty string is returned.

Parameters
• iface – Pointer to network interface

• buf – User supplied buffer

• len – Length of the user supplied buffer

Returns
Length of the interface name copied to buf, -EINVAL if invalid parameters,
-ERANGE if name cannot be copied to the user supplied buffer, -ENOTSUP
if interface name support is disabled,

int net_if_set_name(struct net_if *iface, const char *buf)
Set network interface name.

Normally this function is not needed to call as the system will automatically assign a
name to the network interface.

Parameters
• iface – Pointer to network interface

• buf – User supplied name

Returns
0 name is set correctly -ENOTSUP interface name support is disabled -
EINVAL if invalid parameters are given, -ENAMETOOLONG if name is too
long

int net_if_get_by_name(const char *name)
Get interface index according to its name.

Parameters
• name – Name of the network interface

Returns
Interface index

struct net_if_addr
#include <net_if.h> Network Interface unicast IP addresses.

Stores the unicast IP addresses assigned to this network interface.

Public Members
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struct net_addr address
IP address.

atomic_t atomic_ref
Reference counter.

This is used to prevent address removal if there are sockets that have bound the
local endpoint to this address.

enum net_addr_type addr_type
How the IP address was set.

enum net_addr_state addr_state
What is the current state of the address.

uint8_t is_infinite
Is the IP address valid forever.

uint8_t is_used
Is this IP address used or not.

uint8_t is_mesh_local
Is this IP address usage limited to the subnet (mesh) or not.

uint8_t is_temporary
Is this IP address temporary and generated for example by IPv6 privacy extension
(RFC 8981)

struct net_if_mcast_addr
#include <net_if.h> Network Interface multicast IP addresses.

Stores the multicast IP addresses assigned to this network interface.

Public Members

struct net_addr address
IP address.

uint8_t is_used
Is this multicast IP address used or not.

uint8_t is_joined
Did we join to this group.

struct net_if_ipv6_prefix
#include <net_if.h> Network Interface IPv6 prefixes.

Stores the IPV6 prefixes assigned to this network interface.
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Public Members

struct net_timeout lifetime
Prefix lifetime.

struct in6_addr prefix
IPv6 prefix.

struct net_if *iface
Backpointer to network interface where this prefix is used.

uint8_t len
Prefix length.

uint8_t is_infinite
Is the IP prefix valid forever.

uint8_t is_used
Is this prefix used or not.

struct net_if_router
#include <net_if.h> Information about routers in the system.

Stores the router information.

Public Members

sys_snode_t node
Slist lifetime timer node.

struct net_addr address
IP address.

struct net_if *iface
Network interface the router is connected to.

uint32_t life_start
Router life timer start.

uint16_t lifetime
Router lifetime.

uint8_t is_used
Is this router used or not.

uint8_t is_default
Is default router.
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uint8_t is_infinite
Is the router valid forever.

struct net_if_ipv6
#include <net_if.h> IPv6 configuration.

Public Members

struct net_if_addr unicast[NET_IF_MAX_IPV6_ADDR]
Unicast IP addresses.

struct net_if_mcast_addr mcast[NET_IF_MAX_IPV6_MADDR]
Multicast IP addresses.

struct net_if_ipv6_prefix prefix[NET_IF_MAX_IPV6_PREFIX]
Prefixes.

uint32_t base_reachable_time
Default reachable time (RFC 4861, page 52)

uint32_t reachable_time
Reachable time (RFC 4861, page 20)

uint32_t retrans_timer
Retransmit timer (RFC 4861, page 52)

uint8_t hop_limit
IPv6 hop limit.

uint8_t mcast_hop_limit
IPv6 multicast hop limit.

struct net_if_addr_ipv4
#include <net_if.h> Network Interface unicast IPv4 address and netmask.

Stores the unicast IPv4 address and related netmask.

Public Members

struct net_if_addr ipv4
IPv4 address.

struct in_addr netmask
Netmask.

struct net_if_ipv4
#include <net_if.h> IPv4 configuration.
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Public Members

struct net_if_addr_ipv4 unicast[NET_IF_MAX_IPV4_ADDR]
Unicast IP addresses.

struct net_if_mcast_addr mcast[NET_IF_MAX_IPV4_MADDR]
Multicast IP addresses.

struct in_addr gw
Gateway.

uint8_t ttl
IPv4 time-to-live.

uint8_t mcast_ttl
IPv4 time-to-live for multicast packets.

struct net_if_ip
#include <net_if.h> Network interface IP address configuration.

struct net_if_config
#include <net_if.h> IP and other configuration related data for network interface.

struct net_traffic_class
#include <net_if.h> Network traffic class.

Traffic classes are used when sending or receiving data that is classified with different
priorities. So some traffic can be marked as high priority and it will be sent or received
first. Each network packet that is transmitted or received goes through a fifo to a thread
that will transmit it.

Public Members

struct k_fifo fifo
Fifo for handling this Tx or Rx packet.

struct k_thread handler
Traffic class handler thread.

k_thread_stack_t *stack
Stack for this handler.

struct net_if_dev
#include <net_if.h> Network Interface Device structure.

Used to handle a network interface on top of a device driver instance. There can be
many net_if_dev instance against the same device.

Such interface is mainly to be used by the link layer, but is also tight to a network
context: it then makes the relation with a network context and the network device.
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Because of the strong relationship between a device driver and such network interface,
each net_if_dev should be instantiated by one of the network device init macros found
in net_if.h.

Public Members

const struct device *dev
The actually device driver instance the net_if is related to.

const struct net_l2 *const l2
Interface’s L2 layer.

void *l2_data
Interface’s private L2 data pointer.

atomic_t flags[ATOMIC_BITMAP_SIZE(NET_IF_NUM_FLAGS)]
For internal use.

struct net_linkaddr link_addr
The hardware link address.

uint16_t mtu
The hardware MTU.

enum net_if_oper_state oper_state
RFC 2863 operational status.

struct net_if
#include <net_if.h> Network Interface structure.

Used to handle a network interface on top of a net_if_dev instance. There can be many
net_if instance against the same net_if_dev instance.

Public Members

struct net_if_dev *if_dev
The net_if_dev instance the net_if is related to.

struct net_if_config config
Network interface instance configuration.

struct k_mutex lock
Mutex protecting this network interface instance.

struct k_mutex tx_lock
Mutex used when sending data.
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uint8_t pe_enabled
Network interface specific flags.

Enable IPv6 privacy extension (RFC 8981), this is enabled by default if PE support
is enabled in configuration.

uint8_t pe_prefer_public
If PE is enabled, then this tells whether public addresses are preferred over tem-
porary ones for this interface.

struct net_if_mcast_monitor
#include <net_if.h> Multicast monitor handler struct.

Stores the multicast callback information. Caller must make sure that the variable
pointed by this is valid during the lifetime of registration. Typically this means that
the variable cannot be allocated from stack.

Public Members

sys_snode_t node
Node information for the slist.

struct net_if *iface
Network interface.

net_if_mcast_callback_t cb
Multicast callback.

struct net_if_link_cb
#include <net_if.h> Link callback handler struct.

Stores the link callback information. Caller must make sure that the variable pointed
by this is valid during the lifetime of registration. Typically this means that the variable
cannot be allocated from stack.

Public Members

sys_snode_t node
Node information for the slist.

net_if_link_callback_t cb
Link callback.

L2 Layer Management

• Overview

• L2 layer API
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• Network Device drivers

– Ethernet device driver

– IEEE 802.15.4 device driver

• API Reference

Overview The L2 stack is designed to hide the whole networking link-layer part and the re-
lated device drivers from the upper network stack. This is made through a net_if declared in
include/zephyr/net/net_if.h.

The upper layers are unaware of implementation details beyond the net_if object and the generic
API provided by the L2 layer in include/zephyr/net/net_l2.h as net_l2.

Only the L2 layer can talk to the device driver, linked to the net_if object. The L2 layer dictates the
API provided by the device driver, specific for that device, and optimized for working together.

Currently, there are L2 layers for Ethernet, IEEE 802.15.4 Soft-MAC, CANBUS, OpenThread, Wi-Fi,
and a dummy layer example that can be used as a template for writing a new one.

L2 layer API In order to create an L2 layer, or a driver for a specific L2 layer, one needs to
understand how the L3 layer interacts with it and how the L2 layer is supposed to behave. See
also network stack architecture for more details. The generic L2 API has these functions:

• recv(): All device drivers, once they receive a packet which they put into a net_pkt, will
push this buffer to the network stack via net_recv_data(). At this point, the network stack
does not know what to do with it. Instead, it passes the buffer along to the L2 stack’s recv()
function for handling. The L2 stack does what it needs to do with the packet, for example,
parsing the link layer header, or handling link-layer only packets. The recv() function will
return NET_DROP in case of an erroneous packet, NET_OK if the packet was fully consumed
by the L2, or NET_CONTINUE if the network stack should then handle it.

• send(): Similar to receive function, the network stack will call this function to actually
send a network packet. All relevant link-layer content will be generated and added by this
function. The send() function returns the number of bytes sent, or a negative error code if
there was a failure sending the network packet.

• enable(): This function is used to enable/disable traffic over a network interface. The func-
tion returns <0 if error and >=0 if no error.

• get_flags(): This function will return the capabilities of an L2 driver, for example whether
the L2 supports multicast or promiscuous mode.

Network Device drivers Network device drivers fully follows Zephyr device driver model as
a basis. Please refer to Device Driver Model.

There are, however, two differences:

• The driver_api pointer must point to a valid net_if_api pointer.

• The network device driver must use NET_DEVICE_INIT_INSTANCE() or
ETH_NET_DEVICE_INIT() for Ethernet devices. These macros will call the DEVICE_DEFINE()
macro, and also instantiate a unique net_if related to the created device driver instance.

Implementing a network device driver depends on the L2 stack it belongs to: Ethernet, IEEE
802.15.4, etc. In the next section, we will describe how a device driver should behave when
receiving or sending a network packet. The rest is hardware dependent and is not detailed here.
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Ethernet device driver On reception, it is up to the device driver to fill-in the network packet
with as many data buffers as required. The network packet itself is a net_pkt and should be
allocated through net_pkt_rx_alloc_with_buffer(). Then all data buffers will be automatically
allocated and filled by net_pkt_write().

After all the network data has been received, the device driver needs to call net_recv_data(). If
that call fails, it will be up to the device driver to unreference the buffer via net_pkt_unref().

On sending, the device driver send function will be called, and it is up to the device driver to
send the network packet all at once, with all the buffers.

Each Ethernet device driver will need, in the end, to call ETH_NET_DEVICE_INIT() like this:

ETH_NET_DEVICE_INIT(..., CONFIG_ETH_INIT_PRIORITY,
&the_valid_net_if_api_instance, 1500);

IEEE 802.15.4 device driver Device drivers for IEEE 802.15.4 L2 work basically the same as for
Ethernet. What has been described above, especially for recv(), applies here as well. There are
two specific differences however:

• It requires a dedicated device driver API: ieee802154_radio_api, which overloads
net_if_api. This is because 802.15.4 L2 needs more from the device driver
than just send() and recv() functions. This dedicated API is declared in in-
clude/zephyr/net/ieee802154_radio.h. Each and every IEEE 802.15.4 device driver must pro-
vide a valid pointer on such relevantly filled-in API structure.

• Sending a packet is slightly different than in Ethernet. Most IEEE 802.15.4 PHYs support
relatively small frames only, 127 bytes all inclusive: frame header, payload and frame
checksum. Buffers to be sent over the radio will often not fit this frame size limitation,
e.g. a buffer containing an IPv6 packet will often have to be split into several fragments
and IP6 packet headers and fragments need to be compressed using a protocol like 6LoW-
PAN before being passed on to the radio driver. Additionally the IEEE 802.15.4 standard
defines medium access (e.g. CSMA/CA), frame retransmission, encryption and other pre-
processing procedures (e.g. addition of information elements) that individual radio drivers
should not have to care about. This is why the ieee802154_radio_api requires a tx func-
tion pointer which differs from the net_if_api send function pointer. Zephyr’s native IEEE
802.15.4 L2 implementation provides a generic ieee802154_send() instead, meant to be
given as net_if send function. The implementation of ieee802154_send() takes care of
IEEE 802.15.4 standard packet preparation procedures, splitting the packet into possibly
compressed, encrypted and otherwise pre-processed fragment buffers, sending one buffer
at a time through ieee802154_radio_api tx function and unreferencing the network packet
only when the transmission as a whole was either successful or failed.

Interaction between IEEE 802.15.4 radio device drivers and L2 is bidirectional:

• L2 -> L1: Methods as ieee802154_send() and several IEEE 802.15.4 net management
calls will call into the driver, e.g. to send a packet over the radio link or re-configure
the driver at runtime. These incoming calls will all be handled by the methods in the
ieee802154_radio_api.

• L1 -> L2: There are several situations in which the driver needs to initiate calls into the
L2/MAC layer. Zephyr’s IEEE 802.15.4 L1 -> L2 adaptation API employs an “inversion-
of-control” pattern in such cases avoids duplication of complex logic across independent
driver implementations and ensures implementation agnostic loose coupling and clean
separation of concerns between MAC (L2) and PHY (L1) whenever reverse information
transfer or close co-operation between hardware and L2 is required. During driver ini-
tialization, for example, the driver calls ieee802154_init() to pass the interface’s MAC ad-
dress as well as other hardware-related configuration to L2. Similarly, drivers may indicate
performance or timing critical radio events to L2 that require close integration with the
hardware (e.g. ieee802154_handle_ack()). Calls from L1 into L2 are not implemented as
methods in ieee802154_radio_api but are standalone functions declared and documented
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as such in include/zephyr/net/ieee802154_radio.h. The API documentation will clearly state
which functions must be implemented by all L2 stacks as part of the L1 -> L2 “inversion-of-
control” adaptation API.

Note: Standalone functions in include/zephyr/net/ieee802154_radio.h that are not explicitly doc-
umented as callbacks are considered to be helper functions within the PHY (L1) layer imple-
mented independently of any specific L2 stack, see for example ieee802154_is_ar_flag_set().

As all net interfaces, IEEE 802.15.4 device driver implementations will have to call
NET_DEVICE_INIT_INSTANCE() in the end:

NET_DEVICE_INIT_INSTANCE(...,
the_device_init_prio,
&the_valid_ieee802154_radio_api_instance,
IEEE802154_L2,
NET_L2_GET_CTX_TYPE(IEEE802154_L2), 125);

Related code samples

Link Layer Discovery Protocol (LLDP)
Enable LLDP support and setup VLANs.

Virtual LAN
Setup two virtual LAN networks and use net-shell to view the networks’ settings.

API Reference

group net_l2
Network Layer 2 abstraction layer.

Since
1.5

Version
1.0.0

Enums

enum net_l2_flags
L2 flags.

Values:

enumerator NET_L2_MULTICAST = BIT(0)
IP multicast supported.

enumerator NET_L2_MULTICAST_SKIP_JOIN_SOLICIT_NODE = BIT(1)
Do not join solicited node multicast group.

enumerator NET_L2_PROMISC_MODE = BIT(2)
Is promiscuous mode supported.
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enumerator NET_L2_POINT_TO_POINT = BIT(3)
Is this L2 point-to-point with tunneling so no need to have IP address etc to network
interface.

struct net_l2
#include <net_l2.h> Network L2 structure.

Used to provide an interface to lower network stack.

Public Members

enum net_verdict (*recv)(struct net_if *iface, struct net_pkt *pkt)
This function is used by net core to get iface’s L2 layer parsing what’s relevant to
itself.

int (*send)(struct net_if *iface, struct net_pkt *pkt)
This function is used by net core to push a packet to lower layer (interface’s L2),
which in turn might work on the packet relevantly.

(adding proper header etc…) Returns a negative error code, or the number of bytes
sent otherwise.

int (*enable)(struct net_if *iface, bool state)
This function is used to enable/disable traffic over a network interface.

The function returns <0 if error and >=0 if no error.

enum net_l2_flags (*get_flags)(struct net_if *iface)
Return L2 flags for the network interface.

Network Traffic Offloading

• Network Offloading

– Overview

– API Reference

• Socket Offloading

– Overview

Network Offloading

Overview The network offloading API provides hooks that a device vendor can use to provide
an alternate implementation for an IP stack. This means that the actual network connection
creation, data transfer, etc., is done in the vendor HAL instead of the Zephyr network stack.
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API Reference

group net_offload
Network offloading interface.

Since
1.7

Version
0.8.0

Socket Offloading

Overview In addition to the network offloading API, Zephyr allows offloading of networking
functionality at the socket API level. With this approach, vendors who provide an alternate im-
plementation of the networking stack, exposing socket API for their networking devices, can
easily integrate it with Zephyr.

See drivers/wifi/simplelink/simplelink_sockets.c for a sample implementation on how to inte-
grate network offloading at socket level.

Link Layer Address Handling

• Overview

• API Reference

Overview The link layer addresses are set for network interfaces so that L2 connectivity works
correctly in the network stack. Typically the link layer addresses are 6 bytes long like in Ethernet
but for IEEE 802.15.4 the link layer address length is 8 bytes.

API Reference

group net_linkaddr
Network link address library.

Since
1.0

Version
1.0.0

Defines

NET_LINK_ADDR_MAX_LENGTH
Maximum length of the link address.
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Enums

enum net_link_type
Type of the link address.

This indicates the network technology that this address is used in. Note that in order
to save space we store the value into a uint8_t variable, so please do not introduce any
values > 255 in this enum.

Values:

enumerator NET_LINK_UNKNOWN = 0
Unknown link address type.

enumerator NET_LINK_IEEE802154
IEEE 802.15.4 link address.

enumerator NET_LINK_BLUETOOTH
Bluetooth IPSP link address.

enumerator NET_LINK_ETHERNET
Ethernet link address.

enumerator NET_LINK_DUMMY
Dummy link address.

Used in testing apps and loopback support.

enumerator NET_LINK_CANBUS_RAW
CANBUS link address.

Functions

static inline bool net_linkaddr_cmp(struct net_linkaddr *lladdr1, struct net_linkaddr
*lladdr2)

Compare two link layer addresses.

Parameters
• lladdr1 – Pointer to a link layer address

• lladdr2 – Pointer to a link layer address

Returns
True if the addresses are the same, false otherwise.

static inline int net_linkaddr_set(struct net_linkaddr_storage *lladdr_store, uint8_t
*new_addr, uint8_t new_len)

Set the member data of a link layer address storage structure.

Parameters
• lladdr_store – The link address storage structure to change.

• new_addr – Array of bytes containing the link address.

• new_len – Length of the link address array. This value should always be
<= NET_LINK_ADDR_MAX_LENGTH.
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struct net_linkaddr
#include <net_linkaddr.h> Hardware link address structure.

Used to hold the link address information

Public Members

uint8_t *addr
The array of byte representing the address.

uint8_t len
Length of that address array.

uint8_t type
What kind of address is this for.

struct net_linkaddr_storage
#include <net_linkaddr.h> Hardware link address structure.

Used to hold the link address information. This variant is needed when we have to
store the link layer address.

Note that you cannot cast this to net_linkaddr as uint8_t * is handled differently than
uint8_t addr[] and the fields are purposely in different order.

Public Members

uint8_t type
What kind of address is this for.

uint8_t len
The real length of the ll address.

uint8_t addr[6]
The array of bytes representing the address.

Ethernet Management

• Overview

• API Reference

Overview Ethernet management API provides functions to manage the Ethernet network in-
terface low level status. The caller of these functions can:

• raise carrier ON or carrier OFF management events

• raise VLAN enabled or VLAN disabled management events
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Typically the carrier OFF event would be generated by the Ethernet device driver when it notices
that the Ethernet cable is disconnected. The carrier ON event would be generated if the Ethernet
device driver notices that the Ethernet cable is re-connected.

Currently the VLAN events are generated by the Ethernet L2 layer when a specific VLAN tag is
either enabled or disabled.

The user application can monitor these events if it needs to act when the corresponding status
changes.

API Reference

group ethernet_mgmt
Ethernet library.

Since
1.12

Version
0.8.0

Functions

void ethernet_mgmt_raise_carrier_on_event(struct net_if *iface)
Raise CARRIER_ON event when Ethernet is connected.

Parameters
• iface – Ethernet network interface.

void ethernet_mgmt_raise_carrier_off_event(struct net_if *iface)
Raise CARRIER_OFF event when Ethernet is disconnected.

Parameters
• iface – Ethernet network interface.

void ethernet_mgmt_raise_vlan_enabled_event(struct net_if *iface, uint16_t tag)
Raise VLAN_ENABLED event when VLAN is enabled.

Parameters
• iface – Ethernet network interface.

• tag – VLAN tag which is enabled.

void ethernet_mgmt_raise_vlan_disabled_event(struct net_if *iface, uint16_t tag)
Raise VLAN_DISABLED event when VLAN is disabled.

Parameters
• iface – Ethernet network interface.

• tag – VLAN tag which is disabled.

Traffic Classification
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Overview Traffic classification is an automated process that categorizes computer network
traffic according to various parameters. For Zephyr, the VLAN priority code point (PCP) is used
to classify both received and sent network packets. See more information about VLAN priority
at IEEE 802.1Q.

By default, all network traffic is treated equal in Zephyr. If desired, the option CON-
FIG_NET_TC_TX_COUNT can be used to set the number of transmit queues. The option CON-
FIG_NET_TC_RX_COUNT can be used to set the number of receive queues. Each traffic class queue
corresponds to a specific kernel work queue. Each kernel work queue has a priority. The VLAN
priority is mapped to a certain traffic class according to rules specified in IEEE 802.1Q spec chap-
ter I.3, chapter 8.6.6 table 8-4, and chapter 34.5 table 34-1. Each traffic class is in turn mapped to
a certain kernel work queue. The maximum number of traffic classes for both Rx and Tx is 8.

See subsys/net/ip/net_tc.c for details of how various mappings are done.

Network Packet Filtering

• Overview

• Examples

• API Reference

Overview The Network Packet Filtering facility provides the infrastructure to construct custom
rules for accepting and/or denying packet transmission and reception. This can be used to create
a basic firewall, control network traffic, etc.

The CONFIG_NET_PKT_FILTER must be set in order to enable the relevant APIs.

Both the transmission and reception paths may have a list of filter rules. Each rule is made of a
set of conditions and a packet outcome. Every packet is subjected to the conditions attached to a
rule. When all the conditions for a given rule are true then the packet outcome is immediately
determined as specified by the current rule and no more rules are considered. If one condition
is false then the next rule in the list is considered.

Packet outcome is either NET_OK to accept the packet or NET_DROP to drop it.

A rule is represented by a npf_rule object. It can be inserted to, appended to or removed from a
rule list contained in a npf_rule_list object using npf_insert_rule(), npf_append_rule(), and
npf_remove_rule(). Currently, two such rule lists exist: npf_send_rules for outgoing packets,
and npf_recv_rules for incoming packets.

If a filter rule list is empty then NET_OK is assumed. If a non-empty rule list runs to the end then
NET_DROP is assumed. However it is recommended to always terminate a non-empty rule list
with an explicit default termination rule, either npf_default_ok or npf_default_drop.

Rule conditions are represented by a npf_test. This structure can be embedded into a larger
structure when a specific condition requires extra test data. It is up to the test function for such
conditions to retrieve the outer structure from the provided npf_test structure pointer.

Convenience macros are provided in include/zephyr/net/net_pkt_filter.h to statically define con-
dition instances for various conditions, and NPF_RULE() to create a rule instance to tie them.

Examples Here’s an example usage:

static NPF_SIZE_MAX(maxsize_200, 200);
static NPF_ETH_TYPE_MATCH(ip_packet, NET_ETH_PTYPE_IP);

(continues on next page)
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(continued from previous page)
static NPF_RULE(small_ip_pkt, NET_OK, ip_packet, maxsize_200);

void install_my_filter(void)
{

npf_insert_recv_rule(&npf_default_drop);
npf_insert_recv_rule(&small_ip_pkt);

}

The above would accept IP packets that are 200 bytes or smaller, and drop all other packets.

Another (less efficient) way to achieve the same result could be:

static NPF_SIZE_MIN(minsize_201, 201);
static NPF_ETH_TYPE_UNMATCH(not_ip_packet, NET_ETH_PTYPE_IP);

static NPF_RULE(reject_big_pkts, NET_DROP, minsize_201);
static NPF_RULE(reject_non_ip, NET_DROP, not_ip_packet);

void install_my_filter(void) {
npf_append_recv_rule(&reject_big_pkts);
npf_append_recv_rule(&reject_non_ip);
npf_append_recv_rule(&npf_default_ok);

}

API Reference

group net_pkt_filter
Network Packet Filter API.

Since
3.0

Version
0.8.0

Defines

NPF_RULE(_name, _result, ...)
Statically define one packet filter rule.

This creates a rule from a variable amount of filter conditions. This rule can then be
inserted or appended to the rule list for a given network packet path.

Example:

static NPF_SIZE_MAX(maxsize_200, 200);
static NPF_ETH_TYPE_MATCH(ip_packet, NET_ETH_PTYPE_IP);

static NPF_RULE(small_ip_pkt, NET_OK, ip_packet, maxsize_200);

void install_my_filter(void)
{

npf_insert_recv_rule(&npf_default_drop);
npf_insert_recv_rule(&small_ip_pkt);

}

The above would accept IP packets that are 200 bytes or smaller, and drop all other
packets.
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Another (less efficient) way to create the same result could be:

static NPF_SIZE_MIN(minsize_201, 201);
static NPF_ETH_TYPE_UNMATCH(not_ip_packet, NET_ETH_PTYPE_IP);

static NPF_RULE(reject_big_pkts, NET_DROP, minsize_201);
static NPF_RULE(reject_non_ip, NET_DROP, not_ip_packet);

void install_my_filter(void) {
npf_append_recv_rule(&reject_big_pkts);
npf_append_recv_rule(&reject_non_ip);
npf_append_recv_rule(&npf_default_ok);

}

The first rule in the list for which all conditions are true determines the fate of the
packet. If one condition is false then the next rule in the list is evaluated.

Parameters
• _name – Name for this rule.

• _result – Fate of the packet if all conditions are true, either NET_OK or
NET_DROP.

• ... – List of conditions for this rule.

Functions

void npf_insert_rule(struct npf_rule_list *rules, struct npf_rule *rule)
Insert a rule at the front of given rule list.

Parameters
• rules – the affected rule list

• rule – the rule to be inserted

void npf_append_rule(struct npf_rule_list *rules, struct npf_rule *rule)
Append a rule at the end of given rule list.

Parameters
• rules – the affected rule list

• rule – the rule to be appended

bool npf_remove_rule(struct npf_rule_list *rules, struct npf_rule *rule)
Remove a rule from the given rule list.

Parameters
• rules – the affected rule list

• rule – the rule to be removed

Return values
true – if given rule was found in the rule list and removed

bool npf_remove_all_rules(struct npf_rule_list *rules)
Remove all rules from the given rule list.

Parameters
• rules – the affected rule list

Return values
true – if at least one rule was removed from the rule list
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Variables

struct npf_rule npf_default_ok
Default rule list termination for accepting a packet.

struct npf_rule npf_default_drop
Default rule list termination for rejecting a packet.

struct npf_rule_list npf_send_rules
rule list applied to outgoing packets

struct npf_rule_list npf_recv_rules
rule list applied to incoming packets

struct npf_rule_list npf_local_in_recv_rules
rule list applied for local incoming packets

struct npf_rule_list npf_ipv4_recv_rules
rule list applied for IPv4 incoming packets

struct npf_rule_list npf_ipv6_recv_rules
rule list applied for IPv6 incoming packets

struct npf_test
#include <net_pkt_filter.h> common filter test structure to be embedded into larger
structures

Public Members

npf_test_fn_t *fn
packet condition test function

struct npf_rule
#include <net_pkt_filter.h> filter rule structure

Public Members

sys_snode_t node
Slist rule list node.

enum net_verdict result
result if all tests pass

uint32_t nb_tests
number of tests for this rule
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struct npf_test *tests[]
pointers to npf_test instances

struct npf_rule_list
#include <net_pkt_filter.h> rule set for a given test location

Public Members

sys_slist_t rule_head
List head.

struct k_spinlock lock
Lock protecting the list access.

group npf_basic_cond

Since
3.0

Version
0.8.0

Defines

NPF_IFACE_MATCH(_name, _iface)
Statically define an “interface match” packet filter condition.

Parameters
• _name – Name of the condition

• _iface – Interface to match

NPF_IFACE_UNMATCH(_name, _iface)
Statically define an “interface unmatch” packet filter condition.

Parameters
• _name – Name of the condition

• _iface – Interface to exclude

NPF_ORIG_IFACE_MATCH(_name, _iface)
Statically define an “orig interface match” packet filter condition.

Parameters
• _name – Name of the condition

• _iface – Interface to match

NPF_ORIG_IFACE_UNMATCH(_name, _iface)
Statically define an “orig interface unmatch” packet filter condition.

Parameters
• _name – Name of the condition

• _iface – Interface to exclude
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NPF_SIZE_MIN(_name, _size)
Statically define a “data minimum size” packet filter condition.

Parameters
• _name – Name of the condition

• _size – Lower bound of the packet’s data size

NPF_SIZE_MAX(_name, _size)
Statically define a “data maximum size” packet filter condition.

Parameters
• _name – Name of the condition

• _size – Higher bound of the packet’s data size

NPF_SIZE_BOUNDS(_name, _min_size, _max_size)
Statically define a “data bounded size” packet filter condition.

Parameters
• _name – Name of the condition

• _min_size – Lower bound of the packet’s data size

• _max_size – Higher bound of the packet’s data size

NPF_IP_SRC_ADDR_ALLOWLIST(_name, _ip_addr_array, _ip_addr_num, _af)
Statically define a “ip address allowlist” packet filter condition.

This tests if the packet source ip address matches any of the ip addresses contained in
the provided set.

Parameters
• _name – Name of the condition

• _ip_addr_array – Array of struct in_addr or struct in6_addr items to
test against

• _ip_addr_num – number of IP addresses in the array

• _af – Addresses family type (AF_INET / AF_INET6) in the array

NPF_IP_SRC_ADDR_BLOCKLIST(_name, _ip_addr_array, _ip_addr_num, _af)
Statically define a “ip address blocklist” packet filter condition.

This tests if the packet source ip address matches any of the ip addresses contained in
the provided set.

Parameters
• _name – Name of the condition

• _ip_addr_array – Array of struct in_addr or struct in6_addr items to
test against

• _ip_addr_num – number of IP addresses in the array

• _af – Addresses family type (AF_INET / AF_INET6) in the array

group npf_eth_cond

Since
3.0

Version
0.8.0
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Defines

NPF_ETH_SRC_ADDR_MATCH(_name, _addr_array)
Statically define a “source address match” packet filter condition.

This tests if the packet source address matches any of the Ethernet addresses contained
in the provided set.

Parameters
• _name – Name of the condition

• _addr_array – Array of struct net_eth_addr items to test against

NPF_ETH_SRC_ADDR_UNMATCH(_name, _addr_array)
Statically define a “source address unmatch” packet filter condition.

This tests if the packet source address matches none of the Ethernet addresses con-
tained in the provided set.

Parameters
• _name – Name of the condition

• _addr_array – Array of struct net_eth_addr items to test against

NPF_ETH_DST_ADDR_MATCH(_name, _addr_array)
Statically define a “destination address match” packet filter condition.

This tests if the packet destination address matches any of the Ethernet addresses con-
tained in the provided set.

Parameters
• _name – Name of the condition

• _addr_array – Array of struct net_eth_addr items to test against

NPF_ETH_DST_ADDR_UNMATCH(_name, _addr_array)
Statically define a “destination address unmatch” packet filter condition.

This tests if the packet destination address matches none of the Ethernet addresses
contained in the provided set.

Parameters
• _name – Name of the condition

• _addr_array – Array of struct net_eth_addr items to test against

NPF_ETH_SRC_ADDR_MASK_MATCH(_name, _addr_array, ...)
Statically define a “source address match with mask” packet filter condition.

This tests if the packet source address matches any of the Ethernet addresses contained
in the provided set after applying specified mask.

Parameters
• _name – Name of the condition

• _addr_array – Array of struct net_eth_addr items to test against

• ... – up to 6 mask bytes

NPF_ETH_DST_ADDR_MASK_MATCH(_name, _addr_array, ...)
Statically define a “destination address match with mask” packet filter condition.

This tests if the packet destination address matches any of the Ethernet addresses con-
tained in the provided set after applying specified mask.

Parameters
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• _name – Name of the condition

• _addr_array – Array of struct net_eth_addr items to test against

• ... – up to 6 mask bytes

NPF_ETH_TYPE_MATCH(_name, _type)
Statically define an “Ethernet type match” packet filter condition.

Parameters
• _name – Name of the condition

• _type – Ethernet type to match

NPF_ETH_TYPE_UNMATCH(_name, _type)
Statically define an “Ethernet type unmatch” packet filter condition.

Parameters
• _name – Name of the condition

• _type – Ethernet type to exclude

Network Shell Network shell provides helpers for figuring out network status, en-
abling/disabling features, and issuing commands like ping or DNS resolving. Note that net-shell
should probably not be used in production code as it will require extra memory. See also generic
shell for detailed shell information.

The following net-shell commands are implemented:

Table 36: net-shell commands

Command Description
net allocs Print network memory allocations. Only available if CON-

FIG_NET_DEBUG_NET_PKT_ALLOC is set.
net arp Print information about IPv4 ARP cache. Only available if CONFIG_NET_ARP is

set in IPv4 enabled networks.
net capture Monitor network traffic See Monitor Network Traffic for details.
net conn Print information about network connections.
net dns Show how DNS is configured. The command can also be used to resolve a DNS

name. Only available if CONFIG_DNS_RESOLVER is set.
net events Enable network event monitoring. Only available if CON-

FIG_NET_MGMT_EVENT_MONITOR is set.
net gptp Print information about gPTP support. Only available if CONFIG_NET_GPTP is set.
net iface Print information about network interfaces.
net ipv6 Print IPv6 specific information and configuration. Only available if CON-

FIG_NET_IPV6 is set.
net mem Print information about network memory usage. The command will print more

information if CONFIG_NET_BUF_POOL_USAGE is set.
net nbr Print neighbor information. Only available if CONFIG_NET_IPV6 is set.
net ping Ping a network host.
net route Show IPv6 network routes. Only available if CONFIG_NET_ROUTE is set.
net sockets Show network socket information and statistics. Only available if CON-

FIG_NET_SOCKETS_OBJ_CORE and CONFIG_OBJ_CORE are set.
net stats Show network statistics.
net tcp Connect/send data/close TCP connection. Only available if CONFIG_NET_TCP is

set.
net vlan Show Ethernet virtual LAN information. Only available if CONFIG_NET_VLAN is

set.
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TLS Credentials Shell The TLS Credentials shell provides a command-line interface for man-
aging installed TLS credentials.

Commands

Buffer Credential (buf) Buffer data incrementally into the credential buffer so that it can be
added using the Add Credential (add) command.

Alternatively, clear the credential buffer.

Usage To append <DATA> to the credential buffer, use:

cred buf <DATA>

Use this as many times as needed to load the full credential into the credential buffer, then use
the Add Credential (add) command to store it.

To clear the credential buffer, use:

cred buf clear

Arguments

Argument Description
<DATA> Text data to be appended to credential buffer. It can be either text, or base64-

encoded binary. See Add Credential (add) and Storage/Retrieval Formats for de-
tails.

Add Credential (add) Add a TLS credential to the TLS Credential store.

Credential contents can be provided in-line with the call to cred add, or will otherwise be sourced
from the credential buffer.

Usage To add a TLS credential using the data from the credential buffer, use:

cred add <SECTAG> <TYPE> <BACKEND> <FORMAT>

To add a TLS credential using data provided with the same command, use:

cred add <SECTAG> <TYPE> <BACKEND> <FORMAT> <DATA>

Arguments

Argument Description
<SECTAG> The sectag to use for the new credential. Can be any non-negative integer.
<TYPE> The type of credential to add. See Credential Types for valid values.
<BACKEND> Reserved. Must always be DEFAULT (case-insensitive).
<FORMAT> Specifies the storage format of the provided credential. See Storage/Retrieval

Formats for valid values.
<DATA> If provided, this argument will be used as the credential data, instead of any

data in the credential buffer. Can be either text, or base64-encoded binary.
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Delete Credential (del) Delete a specified credential from the credential store.

Usage To delete a credential matching a specified sectag and credential type (if it exists), use:

cred del <SECTAG> <TYPE>

Arguments

Argument Description
<SECTAG> The sectag of the credential to delete. Can be any non-negative integer.
<TYPE> The type of credential to delete. See Credential Types for valid values.

Get Credential Contents (get) Retrieve and print the contents of a specified credential.

Usage To retrieve and print a credential matching a specified sectag and credential type (if it
exists), use:

cred get <SECTAG> <TYPE> <FORMAT>

Arguments

Argument Description
<SECTAG> The sectag of the credential to get. Can be any non-negative integer.
<TYPE> The type of credential to get. See Credential Types for valid values.
<FORMAT> Specifies the retrieval format for the provided credential. See Storage/Retrieval

Formats for valid values.

List Credentials (list) List TLS credentials in the credential store.

Usage To list all available credentials, use:

cred list

To list all credentials with a specified sectag, use:

cred list <SECTAG>

To list all credentials with a specified credential type, use:

cred list any <TYPE>

To list all credentials with a specified credential type and sectag, use:

cred list <SECTAG> <TYPE>
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Arguments

Argument Description
<SECTAG> Optional. If provided, only list credentials with this sectag. Pass any or omit to

allow any sectag. Otherwise, can be any non-negative integer.
<TYPE> Optional. If provided, only list credentials with this credential type. Pass any

or omit to allow any credential type. Otherwise, see Credential Types for valid
values.

Output The command outputs all matching credentials in the following (CSV-compliant) for-
mat:

<SECTAG>,<TYPE>,<DIGEST>,<STATUS>

Where:

Symbol Value
<SECTAG> The sectag of the listed credential. A non-negative integer.
<TYPE> Credential type short-code (see Credential Types for details) of the listed creden-

tial.
<DIGEST> A string digest representing the credential contents. The exact nature of this di-

gest may vary depending on credentials storage backend, but currently for all
backends this is a base64 encoded SHA256 hash of the raw credential contents
(so different storage formats for essentially identical credentials will have dif-
ferent digests).

<STATUS> Status code indicating success or failure with generating a digest of the listed
credential. 0 if successful, negative error code specific to the storage backend
otherwise. Lines for which status is not zero will be printed with error format-
ting.

After the list is printed, a final summary of the found credentials will be printed in the form:

<N> credentials found.

Where <N> is the number of credentials found, and is zero if none are found.

Credential Types The following keywords (case-insensitive) may be used to specify a creden-
tial type:

Keyword(s) Meaning
CA_CERT, CA A trusted CA certificate.
SERVER_CERT,
SELF_CERT,
CLIENT_CERT,
CLIENT,
SELF, SERV

Self or server certificate.

PRI-
VATE_KEY,
PK

A private key.

PRE_SHARED_KEY,
PSK

A pre-shared key.

PRE_SHARED_KEY_ID,
PSK_ID

ID for pre-shared key.
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Storage/Retrieval Formats The tls_credentials module treats stored credentials as arbitrary
binary buffers.

For convenience, the TLS credentials shell offers four formats for providing and later retrieving
these buffers using the shell.

These formats and their (case-insensitive) keywords are as follows:

Key-
word

Meaning Behavior during storage
(cred add)

Behavior during retrieval
(cred get)

BINCredential is handled by
shell as base64 and stored
without NULL termination.

Data entered into shell will
be decoded from base64 into
raw binary before storage.
No terminator will be ap-
pended.

Stored data will be encoded
into base64 before being
printed.

BINTCredential is handled by
shell as base64 and stored
with NULL termination.

Data entered into shell will
be decoded from base64 into
raw binary and a NULL ter-
minator will be appended be-
fore storage.

NULL terminator will be
truncated from stored data
before said data is encoded
into base64 and then printed.

STRCredential is handled by
shell as literal string and
stored without NULL ter-
mination.

Text data entered into shell
will be passed into storage as-
written, without a NULL ter-
minator.

Stored data will be printed as
text. Non-printable charac-
ters will be printed as ?

STRTCredential is handled
by shell as literal string
and stored with NULL-
termination.

Text data entered into shell
will be passed into storage as-
written, with a NULL termi-
nator.

NULL terminator will be
truncated from stored data
before said data is printed as
text. Non-printable charac-
ters will be printed as ?

The BIN format can be used to install credentials of any type, since base64 can be used to encode
any concievable binary buffer. The remaining three formats are provided for convenience in
special use-cases.

For example:

• To install printable pre-shared-keys, use STR to enter the PSK without first encoding it. This
ensures it is stored without a NULL terminator.

• To install DER-formatted X.509 certificates (or other raw-binary credentials, such as non-
printable PSKs) base64-encode the binary and use the BIN format.

• To install PEM-formatted X.509 certificates or certificate chains, base64 encode the full PEM
string (including new-lines and ----BEGIN X ---- / ----END X---- markers), and then use
the BINT format to make sure the stored string is NULL-terminated. This is required because
Zephyr does not support multi-line strings in the shell. Otherwise, the STRT format could
be used for this purpose without base64 encoding. It is possible to use BIN instead if you
manually encode a NULL terminator into the base64.

Time Sensitive Networking

generic Precision Time Protocol (gPTP)

• Overview

• Supported features
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• Supported hardware

• Enabling the stack

• Application interfaces

• Testing

• API Reference

Overview This gPTP stack supports the protocol and procedures as defined in the IEEE 802.1AS-
2011 standard (Timing and Synchronization for Time-Sensitive Applications in Bridged Local
Area Networks).

Supported features The stack handles communications and state machines defined in the
IEEE 802.1AS-2011 standard. Mandatory requirements for a full-duplex point-to-point link end-
point, as defined in Annex A of the standard, are supported.

The stack is in principle capable of handling communications on multiple network interfaces
(also defined as “ports” in the standard) and thus act as a 802.1AS bridge. However, this mode of
operation has not been validated on the Zephyr OS.

Supported hardware Although the stack itself is hardware independent, Ethernet frame
timestamping support must be enabled in ethernet drivers.

Boards supported:

• frdm_k64f

• nucleo_h743zi_board

• nucleo_h745zi_q_board

• nucleo_f767zi_board

• sam_e70_xplained

• native_sim (only usable for simple testing, limited capabilities due to lack of hardware
clock)

• qemu_x86 (emulated, limited capabilities due to lack of hardware clock)

Enabling the stack The following configuration option must me enabled in prj.conf file.

• CONFIG_NET_GPTP

Application interfaces Only two Application Interfaces as defined in section 9 of the standard
are available:

• ClockTargetPhaseDiscontinuity interface (gptp_register_phase_dis_cb())

• ClockTargetEventCapture interface (gptp_event_capture())

Testing The stack has been informally tested using the OpenAVnu gPTP and Linux ptp4l dae-
mons. The gPTP sample application from the Zephyr source distribution can be used for testing.

2968 Chapter 6. Connectivity

https://standards.ieee.org/findstds/standard/802.1AS-2011.html
https://standards.ieee.org/findstds/standard/802.1AS-2011.html
https://standards.ieee.org/findstds/standard/802.1AS-2011.html
https://github.com/AVnu/gptp
http://linuxptp.sourceforge.net/


Zephyr Project Documentation, Release 3.7.99

Related code samples

gPTP
Enable gPTP support and monitor functionality using net-shell.

API Reference

group gptp
generic Precision Time Protocol (gPTP) support

Since
1.13

Version
0.1.0

Typedefs

typedef void (*gptp_phase_dis_callback_t)(uint8_t *gm_identity, uint16_t *time_base,
struct gptp_scaled_ns *last_gm_ph_change, double *last_gm_freq_change)

Define callback that is called after a phase discontinuity has been sent by the grand-
master.

Param gm_identity
A pointer to first element of a ClockIdentity array. The size of the array is
GPTP_CLOCK_ID_LEN.

Param time_base
A pointer to the value of timeBaseIndicator of the current grandmaster.

Param last_gm_ph_change
A pointer to the value of lastGmPhaseChange received from grandmaster.

Param last_gm_freq_change
A pointer to the value of lastGmFreqChange received from the grandmas-
ter.

typedef void (*gptp_port_cb_t)(int port, struct net_if *iface, void *user_data)
Callback used while iterating over gPTP ports.

Param port
Port number

Param iface
Pointer to network interface

Param user_data
A valid pointer to user data or NULL

Functions

void gptp_register_phase_dis_cb(struct gptp_phase_dis_cb *phase_dis,
gptp_phase_dis_callback_t cb)

Register a phase discontinuity callback.
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Parameters
• phase_dis – Caller specified handler for the callback.

• cb – Callback to register.

void gptp_unregister_phase_dis_cb(struct gptp_phase_dis_cb *phase_dis)
Unregister a phase discontinuity callback.

Parameters
• phase_dis – Caller specified handler for the callback.

void gptp_call_phase_dis_cb(void)
Call a phase discontinuity callback function.

int gptp_event_capture(struct net_ptp_time *slave_time, bool *gm_present)
Get gPTP time.

Parameters
• slave_time – A pointer to structure where timestamp will be saved.

• gm_present – A pointer to a boolean where status of the presence of a
grand master will be saved.

Returns
Error code. 0 if no error.

char *gptp_sprint_clock_id(const uint8_t *clk_id, char *output, size_t output_len)
Utility function to print clock id to a user supplied buffer.

Parameters
• clk_id – Clock id

• output – Output buffer

• output_len – Output buffer len

Returns
Pointer to output buffer

void gptp_foreach_port(gptp_port_cb_t cb, void *user_data)
Go through all the gPTP ports and call callback for each of them.

Parameters
• cb – User-supplied callback function to call

• user_data – User specified data

struct gptp_domain *gptp_get_domain(void)
Get gPTP domain.

This contains all the configuration / status of the gPTP domain.

Returns
Pointer to domain or NULL if not found.

void gptp_clk_src_time_invoke(struct gptp_clk_src_time_invoke_params *arg)
This interface is used by the ClockSource entity to provide time to the ClockMaster
entity of a time-aware system.

Parameters
• arg – Current state and parameters of the ClockSource entity.
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struct gptp_hdr *gptp_get_hdr(struct net_pkt *pkt)
Return pointer to gPTP packet header in network packet.

Parameters
• pkt – Network packet (received or sent)

Returns
Pointer to gPTP header.

struct gptp_scaled_ns
#include <gptp.h> Scaled Nanoseconds.

Public Members

int32_t high
High half.

int64_t low
Low half.

struct gptp_uscaled_ns
#include <gptp.h> UScaled Nanoseconds.

Public Members

uint32_t high
High half.

uint64_t low
Low half.

struct gptp_port_identity
#include <gptp.h> Port Identity.

Public Members

uint8_t clk_id[GPTP_CLOCK_ID_LEN]
Clock identity of the port.

uint16_t port_number
Number of the port.

struct gptp_flags
#include <gptp.h> gPTP message flags
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Public Members

uint8_t octets[2]
Byte access.

uint16_t all
Whole field access.

struct gptp_hdr
#include <gptp.h> gPTP message header

Public Members

uint8_t message_type
Type of the message.

uint8_t transport_specific
Transport specific, always 1.

uint8_t ptp_version
Version of the PTP, always 2.

uint8_t reserved0
Reserved field.

uint16_t message_length
Total length of the message from the header to the last TLV.

uint8_t domain_number
Domain number, always 0.

uint8_t reserved1
Reserved field.

struct gptp_flags flags
Message flags.

int64_t correction_field
Correction Field.

The content depends of the message type.

uint32_t reserved2
Reserved field.

struct gptp_port_identity port_id
Port Identity of the sender.
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uint16_t sequence_id
Sequence Id.

uint8_t control
Control value.

Sync: 0, Follow-up: 2, Others: 5.

int8_t log_msg_interval
Message Interval in Log2 for Sync and Announce messages.

struct gptp_phase_dis_cb
#include <gptp.h> Phase discontinuity callback structure.

Stores the phase discontinuity callback information. Caller must make sure that the
variable pointed by this is valid during the lifetime of registration. Typically this means
that the variable cannot be allocated from stack.

Public Members

sys_snode_t node
Node information for the slist.

gptp_phase_dis_callback_t cb
Phase discontinuity callback.

struct gptp_clk_src_time_invoke_params
#include <gptp.h> ClockSourceTime.invoke function parameters.

Parameters passed by ClockSourceTime.invoke function.

Public Members

double last_gm_freq_change
Frequency change on the last Time Base Indicator Change.

struct net_ptp_extended_time src_time
The time this function is invoked.

struct gptp_scaled_ns last_gm_phase_change
Phase change on the last Time Base Indicator Change.

uint16_t time_base_indicator
Time Base - changed only if Phase or Frequency changes.

Network time representation in the network stack
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API Reference

group net_time

Since
3.5

Version
0.1.0

Defines

NET_TIME_MAX
The largest positive time value that can be represented by net_time_t.

NET_TIME_MIN
The smallest negative time value that can be represented by net_time_t.

NET_TIME_SEC_MAX
The largest positive number of seconds that can be safely represented by net_time_t.

NET_TIME_SEC_MIN
The smallest negative number of seconds that can be safely represented by net_time_t.

Typedefs

typedef int64_t net_time_t
Any occurrence of net_time_t specifies a concept of nanosecond resolution scalar time
span, future (positive) or past (negative) relative time or absolute timestamp referred
to some local network uptime reference clock that does not wrap during uptime and is
- in a certain, well-defined sense - common to all local network interfaces, sometimes
even to remote interfaces on the same network.

This type is EXPERIMENTAL. Usage is currently restricted to representation of time
within the network subsystem.

Timed network protocols (PTP, TDMA, …) usually require several local or remote inter-
faces to share a common notion of elapsed time within well-defined tolerances. Net-
work uptime therefore differs from time represented by a single hardware counter
peripheral in that it will need to be represented in several distinct hardware periph-
erals with different frequencies, accuracy and precision. To co-operate, these hard-
ware counters will have to be “syntonized” or “disciplined” (i.e. frequency and phase
locked) with respect to a common local or remote network reference time signal. Be
aware that while syntonized clocks share the same frequency and phase, they do not
usually share the same epoch (zero-point).

This also explains why network time, if represented as a cycle value of some specific
hardware counter, will never be “precise” but only can be “good

enough” with respect to the tolerances (resolution, drift, jitter) required by a given
network protocol. All counter peripherals involved in a timed network protocol must
comply with these tolerances.
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Please use specific cycle/tick counter values rather than net_time_t whenever possible
especially when referring to the kernel system clock or values of any single counter
peripheral.

net_time_t cannot represent general clocks referred to an arbitrary epoch as it only
covers roughly +/- ~290 years. It also cannot be used to represent time according
to a more complex timescale (e.g. including leap seconds, time adjustments, com-
plex calendars or time zones). In these cases you may use timespec (C11, POSIX.1-
2001), timeval (POSIX.1-2001) or broken down time as in tm (C90). The advantage
of net_time_t over these structured time representations is lower memory footprint,
faster and simpler scalar arithmetic and easier conversion from/to low-level hardware
counter values. Also net_time_t can be used in the network stack as well as in applica-
tions while POSIX concepts cannot. Converting net_time_t from/to structured time rep-
resentations is possible in a limited way but - except for timespec - requires concepts
that must be implemented by higher-level APIs. Utility functions converting from/to
timespec will be provided as part of the net_time_t API as and when needed.

If you want to represent more coarse grained scalar time in network applications,
use time_t (C99, POSIX.1-2001) which is specified to represent seconds or suseconds_t
(POSIX.1-2001) for microsecond resolution. Kernel k_ticks_t and cycles (both specific to
Zephyr) have an unspecified resolution but are useful to represent kernel timer values
and implement high resolution spinning.

If you need even finer grained time resolution, you may want to look at (g)PTP con-
cepts, see net_ptp_extended_time.

The reason why we don’t use int64_t directly to represent scalar nanosecond resolution
times in the network stack is that it has been shown in the past that fields using generic
type will often not be used correctly (e.g. with the wrong resolution or to represent
underspecified concepts of time with unclear syntonization semantics).

Any API that exposes or consumes net_time_t values SHALL ensure that it maintains
the specified contract including all protocol specific tolerances and therefore clients
can rely on common semantics of this type. This makes times coming from different
hardware peripherals and even from different network nodes comparable within well-
defined limits and therefore net_time_t is the ideal intermediate building block for
timed network protocols.

Precision Time Protocol (PTP) time format

• Overview

• API Reference

Overview The PTP time struct can store time information in high precision format (nanosec-
onds). The extended timestamp format can store the time in fractional nanoseconds accuracy.
The PTP time format is used in generic Precision Time Protocol (gPTP) implementation.

Related code samples

PTP
Enable PTP support and monitor messages and events via logging.
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gPTP
Enable gPTP support and monitor functionality using net-shell.

API Reference

group ptp_time
Precision Time Protocol time specification.

Since
1.13

Version
0.8.0

Functions

static inline net_time_t net_ptp_time_to_ns(struct net_ptp_time *ts)
Convert a PTP timestamp to a nanosecond precision timestamp, both related to the
local network reference clock.

Note

Only timestamps representing up to ~290 years can be converted to nanosecond
timestamps. Larger timestamps will return the maximum representable nanosec-
ond precision timestamp.

Parameters
• ts – the PTP timestamp

Returns
the corresponding nanosecond precision timestamp

static inline struct net_ptp_time ns_to_net_ptp_time(net_time_t nsec)
Convert a nanosecond precision timestamp to a PTP timestamp, both related to the
local network reference clock.

Parameters
• nsec – a nanosecond precision timestamp

Returns
the corresponding PTP timestamp

struct net_ptp_time
#include <ptp_time.h> (Generalized) Precision Time Protocol Timestamp format.

This structure represents a timestamp according to the Precision Time Protocol stan-
dard (“PTP”, IEEE 1588, section 5.3.3), the Generalized Precision Time Protocol stan-
dard (“gPTP”, IEEE 802.1AS, section 6.4.3.4), or any other well-defined context in which
precision structured timestamps are required on network messages in Zephyr.

Seconds are encoded as a 48 bits unsigned integer. Nanoseconds are encoded as a 32
bits unsigned integer.

In the context of (g)PTP, timestamps designate the time, relative to a local clock (“Lo-
calClock”) at which the message timestamp point passes a reference plane marking
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the boundary between the PTP Instance and the network medium (IEEE 1855, section
7.3.4.2; IEEE 802.1AS, section 8.4.3).

The exact definitions of the message timestamp point and reference plane depends on
the network medium and use case.

For (g)PTP the media-specific message timestamp points and reference planes are de-
fined in the standard. In non-PTP contexts specific to Zephyr, timestamps are mea-
sured relative to the same local clock but with a context-specific message timestamp
point and reference plane, defined below per use case.

A “LocalClock” is a freerunning clock, embedded into a well-defined entity (e.g. a PTP
Instance) and provides a common time to that entity relative to an arbitrary epoch
(IEEE 1855, section 3.1.26, IEEE 802.1AS, section 3.16).

In Zephyr, the local clock is usually any instance of a kernel system clock driver,
counter driver, RTC API driver or low-level counter/timer peripheral (e.g. an ethernet
peripheral with hardware timestamp support or a radio timer) with sufficient preci-
sion for the context in which it is used.

See IEEE 802.1AS, Annex B for specific performance requirements regarding confor-
mance of local clocks in the gPTP context. See IEEE 1588, Annex A, section A5.4 for
general performance requirements regarding PTP local clocks. See IEEE 802.15.4-2020,
section 15.7 for requirements in the context of ranging applications and ibid., section
6.7.6 for the relation between guard times and clock accuracy which again influence
the precision required for subprotocols like CSL, TSCH, RIT, etc.

Applications that use timestamps across different subsystems or media must ensure
that they understand the definition of the respective reference planes and interpret
timestamps accordingly. Applications must further ensure that timestamps are either
all referenced to the same local clock or convert between clocks based on sufficiently
precise conversion algorithms.

Timestamps may be measured on ingress (RX timestamps) or egress (TX timestamps)
of network messages. Timestamps can also be used to schedule a network message
to a well-defined point in time in the future at which it is to be sent over the medium
(timed TX). A future timestamp and a duration, both referenced to the local clock, may
be given to specify a time window at which a network device should expect incoming
messages (RX window).

In Zephyr this timestamp structure is currently used in the following contexts:

• gPTP for Full Duplex Point-to-Point IEEE 802.3 links (IEEE 802.1AS, section 11): the
reference plane and message timestamp points are as defined in the standard.

• IEEE 802.15.4 timed TX and RX: Timestamps designate the point in time at which
the end of the last symbol of the start-of-frame delimiter (SFD) (or equivalently, the
start of the first symbol of the PHY header) is at the local antenna. The standard
also refers to this as the “RMARKER” (IEEE 802.15.4-2020, section 6.9.1) or “symbol
boundary” (ibid., section 6.5.2), depending on the context. In the context of beacon
timestamps, the difference between the timestamp measurement plane and the
reference plane is defined by the MAC PIB attribute “macSyncSymbolOffset”, ibid.,
section 8.4.3.1, table 8-94.

If further use cases are added to Zephyr using this timestamp structure, their clock
performance requirements, message timestamp points and reference plane definition
SHALL be added to the above list.

Public Members

uint64_t second
Second value.
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union net_ptp_time
Seconds encoded on 48 bits.

uint32_t nanosecond
Nanoseconds.

struct net_ptp_extended_time
#include <ptp_time.h> Generalized Precision Time Protocol Extended Timestamp for-
mat.

This structure represents an extended timestamp according to the Generalized Preci-
sion Time Protocol standard (IEEE 802.1AS), see section 6.4.3.5.

Seconds are encoded as 48 bits unsigned integer. Fractional nanoseconds are encoded
as 48 bits, their unit is 2*(-16) ns.

A precise definition of PTP timestamps and their uses in Zephyr is given in the descrip-
tion of net_ptp_time.

Public Members

uint64_t second
Second value.

union net_ptp_extended_time
Seconds encoded on 48 bits.

uint64_t fract_nsecond
Fractional nanoseconds value.

union net_ptp_extended_time
Fractional nanoseconds on 48 bits.

zperf: Network Traffic Generator

• Overview

• Sample Usage

Overview zperf is a shell utility which allows to generate network traffic in Zephyr. The tool
may be used to evaluate network bandwidth.

zperf is compatible with iPerf_2.0.5. Note that in newer iPerf versions, an error message like this
is printed and the server reported statistics are missing.

LAST PACKET NOT RECEIVED!!!

zperf can be enabled in any application, a dedicated sample is also present in Zephyr. See zperf
sample application for details.
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Sample Usage If Zephyr acts as a client, iPerf must be executed in server mode. For example,
the following command line must be used for UDP testing:

$ iperf -s -l 1K -u -V -B 2001:db8::2

For TCP testing, the command line would look like this:

$ iperf -s -l 1K -V -B 2001:db8::2

In the Zephyr console, zperf can be executed as follows:

zperf udp upload 2001:db8::2 5001 10 1K 1M

For TCP the zperf command would look like this:

zperf tcp upload 2001:db8::2 5001 10 1K 1M

If the IP addresses of Zephyr and the host machine are specified in the config file, zperf can be
started as follows:

zperf udp upload2 v6 10 1K 1M

or like this if you want to test TCP:

zperf tcp upload2 v6 10 1K 1M

If Zephyr is acting as a server, set the download mode as follows for UDP:

zperf udp download 5001

or like this for TCP:

zperf tcp download 5001

and in the host side, iPerf must be executed with the following command line if you are testing
UDP:

$ iperf -l 1K -u -V -c 2001:db8::1 -p 5001

and this if you are testing TCP:

$ iperf -l 1K -V -c 2001:db8::1 -p 5001

iPerf output can be limited by using the -b option if Zephyr is not able to receive all the packets
in orderly manner.

6.3.7 Connection Manager

Overview

Connection Manager is a collection of optional Zephyr features that aim to allow applications to
monitor and control connectivity (access to IP-capable networks) with minimal concern for the
specifics of underlying network technologies.

Using Connection Manager, applications can use a single abstract API to control network associ-
ation and monitor Internet access, and avoid excessive use of technology-specific boilerplate.

This allows an application to potentially support several very different connectivity technologies
(for example, Wi-Fi and LTE) with a single codebase.

Applications can also use Connection Manager to generically manage and use multiple connec-
tivity technologies simultaneously.
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Structure Connection Manager is split into the following two subsystems:

• Connectivity monitoring (header file include/zephyr/net/conn_mgr_monitoring.h) mon-
itors all available Zephyr network interfaces (ifaces) and triggers network management
events indicating when IP connectivity is gained or lost.

• Connectivity control (header file include/zephyr/net/conn_mgr_connectivity.h) provides
an abstract API for controlling iface network association.

network...

Application

L2

connectivity...

iface commands...

iface commands...

Connectivity Control

Connectivity Monitoring

network...

Connection Manager

Zephyr ifaces

Connectivity Implementat...

connectivity...

iface events

Text is not SVG - cannot display

Fig. 18: A simplified view of how Connection Manager integrates with Zephyr and the applica-
tion.

See here for a more detailed version.

Connectivity monitoring

Connectivity monitoring tracks all available ifaces (whether or not they support Connectivity
control) as they transition through various operational states and acquire or lose assigned IP
addresses.

Each available iface is considered ready if it meets the following criteria:

• The iface is admin-up

– This means the iface has been instructed to become operational-up (ready for use).
This is done by a call to net_if_up().

• The iface is oper-up

– This means the interface is completely ready for use; It is online, and if applicable, has
associated with a network.

– See Network interface state management for details.
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• The iface has at least one assigned IP address

– Both IPv4 and IPv6 addresses are acceptable. This condition is met as soon as one or
both of these is assigned.

– See Network Interface for details on iface IP assignment.

• The iface has not been ignored

– Ignored ifaces are always treated as unready.

– See Ignoring ifaces for more details.

Note

Typically, iface state and IP assignment are updated either by the iface’s L2 implementation
or bound connectivity implementation.

See Implement iface state reporting for details.

A ready iface ceases to be ready the moment any of the above conditions is lost.

When at least one iface is ready, the NET_EVENT_L4_CONNECTED network management event is
triggered, and IP connectivity is said to be ready.

Afterwards, ifaces can become ready or unready without firing additional events, so long as
there always remains at least one ready iface.

When there are no longer any ready ifaces left, the NET_EVENT_L4_DISCONNECTED network man-
agement event is triggered, and IP connectivity is said to be unready.

Note

Connection Manager also fires the following more specific CONNECTED / DISCONNECTED events:

• NET_EVENT_L4_IPV4_CONNECTED
• NET_EVENT_L4_IPV4_DISCONNECTED
• NET_EVENT_L4_IPV6_CONNECTED
• NET_EVENT_L4_IPV6_DISCONNECTED

These are similar to NET_EVENT_L4_CONNECTED and NET_EVENT_L4_DISCONNECTED, but specifi-
cally track whether IPv4- and IPv6-capable ifaces are ready.

Usage Connectivity monitoring is enabled if the CONFIG_NET_CONNECTION_MANAGER Kconfig op-
tion is enabled.

To receive connectivity updates, create and register a listener for the NET_EVENT_L4_CONNECTED
and NET_EVENT_L4_DISCONNECTED network management events:

/* Callback struct where the callback will be stored */
struct net_mgmt_event_callback l4_callback;

/* Callback handler */
static void l4_event_handler(struct net_mgmt_event_callback *cb,

uint32_t event, struct net_if *iface)
{

if (event == NET_EVENT_L4_CONNECTED) {
LOG_INF("Network connectivity gained!");

} else if (event == NET_EVENT_L4_DISCONNECTED) {
LOG_INF("Network connectivity lost!");

(continues on next page)
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(continued from previous page)
}

/* Otherwise, it's some other event type we didn't register for. */
}

/* Call this before Connection Manager monitoring initializes */
static void my_application_setup(void)
{

/* Configure the callback struct to respond to (at least) the L4_CONNECTED
* and L4_DISCONNECTED events.
*
*
* Note that the callback may also be triggered for events other than those␣

↪→specified here!
* (See the net_mgmt documentation)
*/
net_mgmt_init_event_callback(

&l4_callback, l4_event_handler,
NET_EVENT_L4_CONNECTED | NET_EVENT_L4_DISCONNECTED

);

/* Register the callback */
net_mgmt_add_event_callback(&l4_callback);

}

See Listening to network events for more details on listening for net_mgmt events.

Note

To avoid missing initial connectivity events, you should register your listener(s) before Con-
nection Manager monitoring initializes. See Avoiding missed notifications for strategies to
ensure this.

Avoidingmissed notifications Connectivity monitoring may trigger events immediately upon
initialization.

If your application registers its event listeners after connectivity monitoring initializes, it is pos-
sible to miss this first wave of events, and not be informed the first time network connectivity is
gained.

If this is a concern, your application should register its event listeners before connectivity moni-
toring initializes.

Connectivity monitoring initializes using the SYS_INIT APPLICATION initialization priority speci-
fied by the CONFIG_NET_CONNECTION_MANAGER_MONITOR_PRIORITY Kconfig option.

You can register your callbacks before this initialization by using SYS_INIT with an earlier ini-
tialization priority than this value, for instance priority 0:

static int my_application_setup(void)
{

/* Register callbacks here */
return 0;

}

SYS_INIT(my_application_setup, APPLICATION, 0);

If this is not feasible, you can instead request that connectivity monitoring resend the latest
connectivity events at any time by calling conn_mgr_mon_resend_status():
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static void my_late_application_setup(void)
{
/* Register callbacks here */

/* Once done, request that events be re-triggered */
conn_mgr_mon_resend_status();

}

Ignoring ifaces Applications can request that ifaces be ignored by Connection Manager by call-
ing conn_mgr_ignore_iface() with the iface to be ignored.

Alternatively, an entire L2 implementation can be ignored by calling conn_mgr_ignore_l2().

This has the effect of individually ignoring all the ifaces using that L2 implementation.

While ignored, the iface is treated by Connection Manager as though it were unready for network
traffic, no matter its actual state.

This may be useful, for instance, if your application has configured one or more ifaces that cannot
(or for whatever reason should not) be used to contact the wider Internet.

Bulk convenience functions optionally skip ignored ifaces.

See conn_mgr_ignore_iface() and conn_mgr_watch_iface() for more details.

Connectivity monitoring API Include header file include/zephyr/net/
conn_mgr_monitoring.h to access these.

group conn_mgr
Connection Manager API.

Since
2.0

Version
0.1.0

Functions

void conn_mgr_mon_resend_status(void)
Resend either NET_L4_CONNECTED or NET_L4_DISCONNECTED depending on
whether connectivity is currently available.

void conn_mgr_ignore_iface(struct net_if *iface)
Mark an iface to be ignored by conn_mgr.

Ignoring an iface forces conn_mgr to consider it unready/disconnected.

This means that events related to the iface connecting/disconnecting will not be fired,
and if the iface was connected before being ignored, events will be fired as though it
disconnected at that moment.

Parameters
• iface – iface to be ignored.
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void conn_mgr_watch_iface(struct net_if *iface)
Watch (stop ignoring) an iface.

conn_mgr will no longer be forced to consider the iface unreadly/disconnected.

Events related to the iface connecting/disconnecting will no longer be blocked, and if
the iface was connected before being watched, events will be fired as though it con-
nected in that moment.

All ifaces default to watched at boot.

Parameters
• iface – iface to no longer ignore.

bool conn_mgr_is_iface_ignored(struct net_if *iface)
Check whether the provided iface is currently ignored.

Parameters
• iface – The iface to check.

Return values
• true – if the iface is being ignored by conn_mgr.

• false – if the iface is being watched by conn_mgr.

void conn_mgr_ignore_l2(const struct net_l2 *l2)
Mark an L2 to be ignored by conn_mgr.

This is a wrapper for conn_mgr_ignore_iface that ignores all ifaces that use the L2.

Parameters
• l2 – L2 to be ignored.

void conn_mgr_watch_l2(const struct net_l2 *l2)
Watch (stop ignoring) an L2.

This is a wrapper for conn_mgr_watch_iface that watches all ifaces that use the L2.

Parameters
• l2 – L2 to watch.

Connectivity control

Many network interfaces require a network association procedure to be completed before being
usable.

For such ifaces, connectivity control can provide a generic API to request network association
(conn_mgr_if_connect()) and disassociation (conn_mgr_if_disconnect()). Network interfaces
implement support for this API by binding themselves to a connectivity implementation.

Using this API, applications can associate with networks with minimal technology-specific boil-
erplate.

Connectivity control also provides the following additional features:

• Standardized persistence and timeout behaviors during association.

• Bulk functions for controlling the admin state and network association of all available ifaces
simultaneously.

• Optional convenience automations for common connectivity actions.
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Basic operation The following sections outline the basic operation of Connection Manager’s
connectivity control.

Binding Before an iface can be commanded to associate or disassociate using Connection Man-
ager, it must first be bound to a connectivity implementation. Binding is performed by the
provider of the iface, not by the application (see Binding an iface to an implementation), and
can be thought of as an extension of the iface declaration.

Once an iface is bound, all connectivity commands passed to it (such as conn_mgr_if_connect()
or conn_mgr_if_disconnect()) will be routed to the corresponding implementation function in
the connectivity implementation.

Note

To avoid inconsistent behavior, all connectivity implementations must adhere to the imple-
mentation guidelines.

Connecting Once a bound iface is admin-up (see Network interface state management),
conn_mgr_if_connect() can be called to cause it to associate with a network.

If association succeeds, the connectivity implementation will mark the iface as operational-up
(see Network interface state management).

If association fails unrecoverably, the fatal error event will be triggered.

You can configure an optional timeout for this process.

Note

The conn_mgr_if_connect() function is intentionally minimalistic, and does not take any
kind of configuration. Each connectivity implementation should provide a way to pre-
configure or automatically configure any required association settings or credentials. See
Allow connectivity pre-configuration for details.

Connection loss If connectivity is lost due to external factors, the connectivity implementation
will mark the iface as operational-down.

Depending on whether persistence is set, the iface may then attempt to reconnect.

Manual disconnection The application can also request that connectivity be intentionally
abandoned by calling conn_mgr_if_disconnect().

In this case, the connectivity implementation will disassociate the iface from its network and
mark the iface as operational-down (seeNetwork interface statemanagement). A new connection
attempt will not be initiated, regardless of whether persistence is enabled.

Timeouts and Persistence Connection Manager requires that all connectivity implementa-
tions support the following standard key features:

• Connection timeouts

• Connection persistence
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These features describe how ifaces should behave during connect and disconnect events. You
can individually set them for each iface.

Note

It is left to connectivity implementations to successfully and accurately implement these two
features as described below. See Implementing timeouts and persistence for more details from
the connectivity implementation perspective.

Connection Timeouts When conn_mgr_if_connect() is called on an iface, a connection at-
tempt begins.

The connection attempt continues indefinitely until it succeeds, unless a timeout has been spec-
ified for the iface (using conn_mgr_if_set_timeout()).

In that case, the connection attempt will be abandoned if the timeout elapses before it succeeds.
If this happens, the timeout event is raised.

Connection Persistence Each iface also has a connection persistence setting that you can en-
able or disable by setting the CONN_MGR_IF_PERSISTENT flag with conn_mgr_binding_set_flag().

This setting specifies how the iface should handle unintentional connection loss.

If persistence is enabled, any unintentional connection loss will initiate a new connection at-
tempt, with a new timeout if applicable.

Otherwise, the iface will not attempt to reconnect.

Note

Persistence not does affect connection attempt behavior. Only the timeout setting affects this.

For instance, if a connection attempt on an iface times out, the iface will not attempt to re-
connect, even if it is persistent.

Conversely, if there is not a specified timeout, the iface will try to connect forever until it
succeeds, even if it is not persistent.

See Persistence during connection attempts for the equivalent implementation guideline.

Control events Connectivity control triggers network management events to inform the appli-
cation of important state changes.

See Trigger connectivity control events for the corresponding connectivity implementation guide-
line.

Fatal Error The NET_EVENT_CONN_IF_FATAL_ERROR event is raised when an iface encounters an
error from which it cannot recover (meaning any subsequent attempts to associate are guaran-
teed to fail, and all such attempts should be abandoned).

Handlers of this event will be passed a pointer to the iface for which the fatal error occurred.
Individual connectivity implementations may also pass an application-specific data pointer.

Timeout The NET_EVENT_CONN_IF_TIMEOUT event is raised when an iface association attempt
times out.

Handlers of this event will be passed a pointer to the iface that timed out attempting to associate.
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Listening for control events You can listen for control events as follows:

/* Declare a net_mgmt callback struct to store the callback */
struct net_mgmt_event_callback my_conn_evt_callback;

/* Declare a handler to receive control events */
static void my_conn_evt_handler(struct net_mgmt_event_callback *cb,

uint32_t event, struct net_if *iface)
{

if (event == NET_EVENT_CONN_IF_TIMEOUT) {
/* Timeout occurred, handle it */

} else if (event == NET_EVENT_CONN_IF_FATAL_ERROR) {
/* Fatal error occurred, handle it */

}

/* Otherwise, it's some other event type we didn't register for. */
}

int main()
{

/* Configure the callback struct to respond to (at least) the CONN_IF_TIMEOUT
* and CONN_IF_FATAL_ERROR events.
*
* Note that the callback may also be triggered for events other than those␣

↪→specified here!
* (See the net_mgmt documentation)
*/

net_mgmt_init_event_callback(
&conn_mgr_conn_callback, conn_mgr_conn_handler,

NET_EVENT_CONN_IF_TIMEOUT | NET_EVENT_CONN_IF_FATAL_ERROR
);

/* Register the callback */
net_mgmt_add_event_callback(&conn_mgr_conn_callback);
return 0;

}

See Listening to network events for more details on listening for net_mgmt events.

Automated behaviors There are a few actions related to connectivity that are (by default at
least) performed automatically for the user.

Automatic admin-up

In Zephyr, ifaces are automatically taken admin-up (see Network interface state management
for details on iface states) during initialization.

Applications can disable this behavior by setting the NET_IF_NO_AUTO_START interface flag
with net_if_flag_set().

Automatic connect

By default, Connection Manager will automatically connect any bound iface that becomes
admin-up.
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Applications can disable this by setting the CONN_MGR_IF_NO_AUTO_CONNECT connectivity flag
with conn_mgr_if_set_flag().

Automatic admin-down

By default, Connection Manager will automatically take any bound iface admin-down if it has
given up on associating.

Applications can disable this for all ifaces by disabling the CON-
FIG_NET_CONNECTION_MANAGER_AUTO_IF_DOWN Kconfig option, or for individual ifaces by
setting the CONN_MGR_IF_NO_AUTO_DOWN connectivity flag with conn_mgr_if_set_flag().

Connectivity control API Include header file include/zephyr/net/conn_mgr_connectivity.h
to access these.

group conn_mgr_connectivity
Connection Manager Connectivity API.

Since
3.4

Version
0.1.0

Defines

NET_EVENT_CONN_IF_TIMEOUT
net_mgmt event raised when a connection attempt times out

NET_EVENT_CONN_IF_FATAL_ERROR
net_mgmt event raised when a non-recoverable connectivity error occurs on an iface

CONN_MGR_IF_NO_TIMEOUT
Value to use with conn_mgr_if_set_timeout and conn_mgr_conn_binding::timeout to in-
dicate no timeout.

Enums

enum conn_mgr_if_flag
Per-iface connectivity flags.

Values:

enumerator CONN_MGR_IF_PERSISTENT
Persistent.
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When set, indicates that the connectivity implementation bound to this iface
should attempt to persist connectivity by automatically reconnecting after connec-
tion loss.

enumerator CONN_MGR_IF_NO_AUTO_CONNECT
No auto-connect.

When set, conn_mgr will not automatically attempt to connect this iface when it
reaches admin-up.

enumerator CONN_MGR_IF_NO_AUTO_DOWN
No auto-down.

When set, conn_mgr will not automatically take the iface
admin-down when it stops trying to connect, even if CON-
FIG_NET_CONNECTION_MANAGER_AUTO_IF_DOWN is enabled.

Functions

int conn_mgr_if_connect(struct net_if *iface)
Connect interface.

If the provided iface has been bound to a connectivity implementation, initiate net-
work connect/association.

Automatically takes the iface admin-up (by calling net_if_up) if it isn’t already.

Non-Blocking.

Parameters
• iface – Pointer to network interface

Return values
• 0 – on success.

• -ESHUTDOWN – if the iface is not admin-up.

• -ENOTSUP – if the iface does not have a connectivity implementation.

• implementation-specific – status code otherwise.

int conn_mgr_if_disconnect(struct net_if *iface)
Disconnect interface.

If the provided iface has been bound to a connectivity implementation, discon-
nect/disassociate it from the network, and cancel any pending attempts to con-
nect/associate.

Does nothing if the iface is currently admin-down.

Parameters
• iface – Pointer to network interface

Return values
• 0 – on success.

• -ENOTSUP – if the iface does not have a connectivity implementation.

• implementation-specific – status code otherwise.
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bool conn_mgr_if_is_bound(struct net_if *iface)
Check whether the provided network interface supports connectivity / has been bound
to a connectivity implementation.

Parameters
• iface – Pointer to the iface to check.

Return values
• true – if connectivity is supported (a connectivity implementation has

been bound).

• false – otherwise.

int conn_mgr_if_set_opt(struct net_if *iface, int optname, const void *optval, size_t
optlen)

Set implementation-specific connectivity options.

If the provided iface has been bound to a connectivity implementation that supports
it, implementation-specific connectivity options related to the iface.

Parameters
• iface – Pointer to the network interface.

• optname – Integer value representing the option to set. The meaning of
values is up to the conn_mgr_conn_api implementation. Some settings
may affect multiple ifaces.

• optval – Pointer to the value to be assigned to the option.

• optlen – Length (in bytes) of the value to be assigned to the option.

Return values
• 0 – if successful.

• -ENOTSUP – if conn_mgr_if_set_opt not implemented by the iface.

• -ENOBUFS – if optlen is too long.

• -EINVAL – if NULL optval pointer provided.

• -ENOPROTOOPT – if the optname is not recognized.

• implementation-specific – error code otherwise.

int conn_mgr_if_get_opt(struct net_if *iface, int optname, void *optval, size_t *optlen)
Get implementation-specific connectivity options.

If the provided iface has been bound to a connectivity implementation that supports
it, retrieves implementation-specific connectivity options related to the iface.

optlen will always be set to the total number of bytes written, regardless of whether
an error is returned, even if zero bytes were written.

Parameters
• iface – Pointer to the network interface.

• optname – Integer value representing the option to set. The meaning of
values is up to the conn_mgr_conn_api implementation. Some settings
may be shared by multiple ifaces.

• optval – Pointer to where the retrieved value should be stored.

2990 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

• optlen – Pointer to length (in bytes) of the destination buffer available
for storing the retrieved value. If the available space is less than what is
needed, -ENOBUFS is returned. If the available space is invalid, -EINVAL
is returned.

Return values
• 0 – if successful.

• -ENOTSUP – if conn_mgr_if_get_opt is not implemented by the iface.

• -ENOBUFS – if retrieval buffer is too small.

• -EINVAL – if invalid retrieval buffer length is provided, or if NULL optval
or optlen pointer provided.

• -ENOPROTOOPT – if the optname is not recognized.

• implementation-specific – error code otherwise.

bool conn_mgr_if_get_flag(struct net_if *iface, enum conn_mgr_if_flag flag)
Check the value of connectivity flags.

If the provided iface is bound to a connectivity implementation, retrieves the value of
the specified connectivity flag associated with that iface.

Parameters
• iface – - Pointer to the network interface to check.

• flag – - The flag to check.

Returns
True if the flag is set, otherwise False. Also returns False if the provided
iface is not bound to a connectivity implementation, or the requested flag
doesn’t exist.

int conn_mgr_if_set_flag(struct net_if *iface, enum conn_mgr_if_flag flag, bool value)
Set the value of a connectivity flags.

If the provided iface is bound to a connectivity implementation, sets the value of the
specified connectivity flag associated with that iface.

Parameters
• iface – - Pointer to the network interface to modify.

• flag – - The flag to set.

• value – - Whether the flag should be enabled or disabled.

Return values
• 0 – on success.

• -EINVAL – if the flag does not exist.

• -ENOTSUP – if the provided iface is not bound to a connectivity implemen-
tation.

int conn_mgr_if_get_timeout(struct net_if *iface)
Get the connectivity timeout for an iface.

If the provided iface is bound to a connectivity implementation, retrieves the timeout
setting in seconds for it.

Parameters
• iface – - Pointer to the iface to check.
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Returns
int - The connectivity timeout value (in seconds) if it could be retrieved,
otherwise CONN_MGR_IF_NO_TIMEOUT.

int conn_mgr_if_set_timeout(struct net_if *iface, int timeout)
Set the connectivity timeout for an iface.

If the provided iface is bound to a connectivity implementation, sets the timeout setting
in seconds for it.

Parameters
• iface – - Pointer to the network interface to modify.

• timeout – - The timeout value to set (in seconds). Pass
CONN_MGR_IF_NO_TIMEOUT to disable the timeout.

Return values
• 0 – on success.

• -ENOTSUP – if the provided iface is not bound to a connectivity implemen-
tation.

Bulk API Connectivity control provides several bulk functions allowing all ifaces to be con-
trolled at once.

You can restrict these functions to operate only on non-ignored ifaces if desired.

Include header file include/zephyr/net/conn_mgr_connectivity.h to access these.

group conn_mgr_connectivity_bulk
Connection Manager Bulk API.

Since
3.4

Version
0.1.0

Functions

int conn_mgr_all_if_up(bool skip_ignored)
Convenience function that takes all available ifaces into the admin-up state.

Essentially a wrapper for net_if_up.

Parameters
• skip_ignored – - If true, only affect ifaces that aren’t ignored by

conn_mgr. Otherwise, affect all ifaces.

Returns
0 if all net_if_up calls returned 0, otherwise the first nonzero value returned
by a net_if_up call.

int conn_mgr_all_if_down(bool skip_ignored)
Convenience function that takes all available ifaces into the admin-down state.

Essentially a wrapper for net_if_down.

Parameters
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• skip_ignored – - If true, only affect ifaces that aren’t ignored by
conn_mgr. Otherwise, affect all ifaces.

Returns
0 if all net_if_down calls returned 0, otherwise the first nonzero value re-
turned by a net_if_down call.

int conn_mgr_all_if_connect(bool skip_ignored)
Convenience function that takes all available ifaces into the admin-up state, and con-
nects those that support connectivity.

Essentially a wrapper for net_if_up and conn_mgr_if_connect.

Parameters
• skip_ignored – - If true, only affect ifaces that aren’t ignored by

conn_mgr. Otherwise, affect all ifaces.

Returns
0 if all net_if_up and conn_mgr_if_connect calls returned 0, otherwise the
first nonzero value returned by either net_if_up or conn_mgr_if_connect.

int conn_mgr_all_if_disconnect(bool skip_ignored)
Convenience function that disconnects all available ifaces that support connectivity
without putting them into admin-down state (unless auto-down is enabled for the
iface).

Essentially a wrapper for net_if_down.

Parameters
• skip_ignored – - If true, only affect ifaces that aren’t ignored by

conn_mgr. Otherwise, affect all ifaces.

Returns
0 if all net_if_up and conn_mgr_if_connect calls returned 0, otherwise the
first nonzero value returned by either net_if_up or conn_mgr_if_connect.

Connectivity Implementations

Overview Connectivity implementations are technology-specific modules that allow specific
Zephyr ifaces to support Connectivity Control. They are responsible for translating generic con-
nectivity control API calls into hardware-specific operations. They are also responsible for im-
plementing standardized persistence and timeout behaviors.

See the implementation guidelines for details on writing conformant connectivity implementa-
tions.

Architecture The implementation API allows connectivity implementations to be defined at
build time using CONN_MGR_CONN_DEFINE.

This creates a static instance of the conn_mgr_conn_impl struct, which then stores a reference to
the passed in conn_mgr_conn_api struct (which should be populated with implementation call-
backs).

Once defined, you can reference implementations by name and bind them to any unbound iface
using CONN_MGR_BIND_CONN. Make sure not to accidentally bind two connectivity implementa-
tions to a single iface.

Once the iface is bound, connectivity control API functions can be called on the iface, and they
will be translated to the corresponding implementation functions in conn_mgr_conn_api.

Binding an iface does not directly modify its iface struct.

6.3. Networking 2993



Zephyr Project Documentation, Release 3.7.99

Instead, an instance of conn_mgr_conn_binding is created and appended an internal iterable sec-
tion.

This binding structure will contain a reference to the bound iface, the connectivity implementa-
tion it is bound to, as well as a pointer to a per-iface context pointer.

This iterable section can then be iterated over to find out what (if any) connectivity implemen-
tation has been bound to a given iface. This search process is used by most of the functions in
the connectivity control API. As such, these functions should be called sparingly, due to their
relatively high search cost.

A single connectivity implementation may be bound to multiple ifaces. See Do not instance im-
plementations for more details.
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Zephyr ifaces (bound)...iface ifaceiface

Zephyr ifaces (unbound)...
iface ifaceiface

binding bindingbinding

Connectivity...

Connectivity...
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Connectivity Control
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network...
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Fig. 19: A detailed view of how Connection Manager integrates with Zephyr and the application.
See here for a simplified version.

Context Pointer Since a single connectivity implementation may be shared by several Zephyr
ifaces, each binding instantiates a context container (of configurable type) unique to that binding.
Each binding is then instantiated with a reference to that container, which implementations can
then use to access per-iface state information.

See also Do not access bindings without locking them and Do not instance implementations.

Defining an implementation A connectivity implementation may be defined as follows:
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/* Create the API implementation functions */
int my_connect_impl(struct conn_mgr_conn_binding *const binding) {

/* Cause your underlying technology to associate */
}
int my_disconnect_impl(struct conn_mgr_conn_binding *const binding) {

/* Cause your underlying technology to disassociate */
}
void my_init_impl(struct conn_mgr_conn_binding *const binding) {

/* Perform any required initialization for your underlying technology */
}

/* Declare the API struct */
static struct conn_mgr_conn_api my_impl_api = {

.connect = my_connect_impl,

.disconnect = my_disconnect_impl,

.init = my_init_impl,
/* ... so on */

};

/* Define the implementation (named MY_CONNECTIVITY_IMPL) */
CONN_MGR_CONN_DEFINE(MY_CONNECTIVITY_IMPL, &my_impl_api);

Note

This does not work unless you also declare the context pointer type.

Declaring an implementationpublicly Once defined, you can make a connectivity implemen-
tation available to other compilation units by declaring it (in a header file) as follows:

Listing 8: my_connectivity_header.h
CONN_MGR_CONN_DECLARE_PUBLIC(MY_CONNECTIVITY_IMPL);

The header file that contains this declaration must be included in any compilation units that
need to reference the implementation.

Declaring a context type For CONN_MGR_CONN_DEFINE to work, you must declare a correspond-
ing context pointer type. This is because all connectivity bindings contain a Context Pointer of
their associated context pointer type.

If you are using CONN_MGR_CONN_DECLARE_PUBLIC, declare this type alongside the declaration:

Listing 9: my_connectivity_impl.h
#define MY_CONNECTIVITY_IMPL_CTX_TYPE struct my_context_type *
CONN_MGR_CONN_DECLARE_PUBLIC(MY_CONNECTIVITY_IMPL);

Then, make sure to include the header file before calling CONN_MGR_CONN_DEFINE:

Listing 10: my_connectivity_impl.c
#include "my_connectivity_impl.h"

CONN_MGR_CONN_DEFINE(MY_CONNECTIVITY_IMPL, &my_impl_api);

Otherwise, it is sufficient to simply declare the context pointer type immediately before the call
to CONN_MGR_CONN_DEFINE:
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#define MY_CONNECTIVITY_IMPL_CTX_TYPE struct my_context_type *
CONN_MGR_CONN_DEFINE(MY_CONNECTIVITY_IMPL, &my_impl_api);

Note

Naming is important. Your context pointer type declaration must use the same name as your
implementation declaration, but with _CTX_TYPE appended.

In the previous example, the context type is named MY_CONNECTIVITY_IMPL_CTX_TYPE, be-
cause MY_CONNECTIVITY_IMPL was used as the connectivity implementation name.

If your connectivity implementation does not need a context pointer, simply declare the type as
void:

#define MY_CONNECTIVITY_IMPL_CTX_TYPE void *

Binding an iface to an implementation A defined connectivity implementation may be bound
to an iface by calling CONN_MGR_BIND_CONN anywhere after the iface’s device definition:

/* Define an iface */
NET_DEVICE_INIT(my_iface,

/* ... the specifics here don't matter ... */
);

/* Now bind MY_CONNECTIVITY_IMPL to that iface --
* the name used should match with the above
*/

CONN_MGR_BIND_CONN(my_iface, MY_CONNECTIVITY_IMPL);

Connectivity implementation guidelines Rather than implement all features centrally, Con-
nection Manager relies on each connectivity implementation to implement many behaviors and
features individually.

This approach allows Connection Manager to remain lean, and allows each connectivity imple-
mentation to choose the most appropriate approach to these behaviors for itself. However, it
relies on trust that all connectivity implementations will faithfully implement the features that
have been delegated to them.

To maintain consistency between all connectivity implementations, observe the following guide-
lines when writing your own implementation:

Completely implement timeout and persistence All connectivity implementations must of-
fer complete support for timeout and persistence, such that a user can disable or enable these
features, regardless of the inherent behavior of the underlying technology. In other words, no
matter how the underlying technology behaves, your implementation must make it appear to
the end user to behave exactly as specified in the Timeouts and Persistence section.

See Implementing timeouts and persistence for a detailed technical discussion on implementing
timeouts and persistence.

Conform to API specifications Each implementation API function you implement should
behave as-described in the corresponding connectivity control API function.

For example, your implementation of conn_mgr_conn_api.connect should conform to the behav-
ior described for conn_mgr_if_connect().

2996 Chapter 6. Connectivity



Zephyr Project Documentation, Release 3.7.99

Allow connectivity pre-configuration Connectivity implementations should provide means
for applications to pre-configure all necessary connection parameters (for example, network
SSID, or PSK, if applicable), before the call to conn_mgr_if_connect(). It should not be necessary
to provide this information as part of, or following the conn_mgr_if_connect() call, although
implementations should await this information if it is not provided.

Await valid connectivity configuration If network association fails because the application
pre-configured invalid connection parameters, or did not configure connection parameters at
all, this should be treated as a network failure.

In other words, the connectivity implementation should not give up on the connection attempt,
even if valid connection parameters have not been configured.

Instead, the connectivity implementation should asynchronously wait for valid connection
parameters to be configured, either indefinitely, or until the configured connectivity timeout
elapses.

Implement iface state reporting All connectivity implementations must keep bound iface
state up to date.

To be specific:

• Set the iface to dormant, carrier-down, or both during binding init.

– See Network interface state management for details regarding iface carrier and dor-
mant states.

• Update dormancy and carrier state so that the iface is non-dormant and carrier-up when-
ever (and only when) association is complete and connectivity is ready.

• Set the iface either to dormant or to carrier-down as soon as interruption of service is de-
tected.

– It is acceptable to gate this behind a small timeout (separate from the connection time-
out) for network technologies where service is commonly intermittent.

• If the technology also handles IP assignment, ensure those IP addresses are assigned to the
iface.

Note

iface state updates do not necessarily need to be performed directly by connectivity imple-
mentations.

For instance:

• IP assignment is not necessary if DHCP is used for the iface.

• The connectivity implementation does not need to update iface dormancy if the under-
lying L2 implementation already does so.

Do not use iface state as implementation state Zephyr ifaces may be accessed from other
threads without respecting the binding mutex. As such, Zephyr iface state may change unpre-
dictably during connectivity implementation callbacks.

Therefore, do not base implementation behaviors on iface state.

Keep iface state updated to reflect network availability, but do not read iface state for any pur-
pose.

If you need to keep track of dormancy or IP assignment, use a separate state variable stored in
the context pointer.
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Remain non-interferent Connectivity implementations should not prevent applications from
interacting directly with associated technology-specific APIs.

In other words, it should be possible for an application to directly use your underlying technology
without breaking your connectivity implementation.

If exceptions to this are absolutely necessary, they should be constrained to specific API calls and
should be documented.

Note

While connectivity implementations must not break, it is acceptable for implementations to
have potentially unexpected behavior if applications attempt to directly control the associa-
tion state.

For instance, if an application directly instructs an underlying technology to disassociate, it
would be acceptable for the connectivity implementation to interpret this as an unexpected
connection loss and immediately attempt to re-associate.

Remain non-blocking All connectivity implementation callbacks should be non-blocking.

For instance, calls to conn_mgr_conn_api.connect should initiate a connection process and re-
turn immediately.

One exception is conn_mgr_conn_api.init, whose implementations are permitted to block.

However, bear in mind that blocking during this callback will delay system init, so still consider
offloading time-consuming tasks to a background thread.

Make API immediately ready Connectivity implementations must be ready to receive API
calls immediately after conn_mgr_conn_api.init.

For instance, a call to conn_mgr_conn_api.connect must eventually lead to an association at-
tempt, even if called immediately after conn_mgr_conn_api.init.

If the underlying technology cannot be made ready for connect commands immediately when
conn_mgr_conn_api.init is called, calls to conn_mgr_conn_api.connectmust be queued in a non-
blocking fashion, and then executed later when ready.

Do not store state information outside the context pointer Connection Manager provides
a context pointer to each binding.

Connectivity implementations should store all state information in this context pointer.

The only exception is connectivity implementations that are meant to be bound to only a single
iface. Such implementations may use statically declared state instead.

See also Do not instance implementations.

Access ifaces only through binding structs Do not use statically declared ifaces or externally
acquire references to ifaces.

For example, do not use net_if_get_default() under the assumption that the bound iface will
be the default iface.

Instead, always use the iface pointer provided by the relevant binding struct. See also Do
not access bindings without locking them.
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Make implementations optional at compile-time Connectivity implementations should pro-
vide a Kconfig option to enable or disable the implementation without affecting bound iface
availability.

In other words, it should be possible to configure builds that include Connectivity Manager, as
well as the iface that would have been bound to the implementation, but not the implementation
itself, nor its binding.

Do not instance implementations Do not declare a separate connectivity implementation for
every iface you are going to bind to.

Instead, bind one global connectivity implementation to all of your ifaces, and use the context
pointer to store state relevant to individual ifaces.

See also Do not access bindings without locking them and Access ifaces only through binding
structs.

Do not access bindings without locking them Bindings may be accessed and modified at
random by multiple threads, so modifying or reading from a binding without first locking it
may lead to unpredictable behavior.

This applies to all descendents of the binding, including anything in the context container.

Make sure to unlock the binding when you are done accessing it.

Note

A possible exception to this rule is if the resource in question is inherently thread-safe.

However, be careful taking advantage of this exception. It may still be possible to create a
race condition, for instance when accessing multiple thread-safe resources simultaneously.

Therefore, it is recommended to simply always lock the binding, whether or not the resource
being accessed is inherently thread-safe.

Do not disable built-in features Do not attempt to prevent the use of built-in features (such
as Timeouts and Persistence or Automated behaviors).

All connectivity implementations must fully support these features. Implementations must not
attempt to force certain features to be always enabled or always disabled.

Trigger connectivity control events Connectivity control networkmanagement events are not
triggered automatically by Connection Manager.

Connectivity implementations must trigger these events themselves.

Trigger NET_EVENT_CONN_CMD_IF_TIMEOUT when a connection timeout occurs. See Timeout for
details.

Trigger NET_EVENT_CONN_IF_FATAL_ERROR when a fatal (non-recoverable) connection error oc-
curs. See Fatal Error for details.

See Network Management for details on firing network management events.

Implementing timeouts and persistence First, see Timeouts and Persistence for a high-level
description of the expected behavior of timeouts and persistence.

Connectivity implementations must fully conform to that description, regardless of the behavior
of the underlying connectivity technology.
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Sometimes this means writing extra logic in the connectivity implementation to fake certain
behaviors. The following sections discuss various common edge-cases and nuances and how to
handle them.

Inherently persistent technologies If the underlying technology automatically attempts to
reconnect or retry connection after connection loss or failure, the connectivity implementation
must manually cancel such attempts when they are in conflict with timeout or persistence set-
tings.

For example:

• If the underlying technology automatically attempts to reconnect after losing connection,
and persistence is disabled for the iface, the connectivity implementation should immedi-
ately cancel this reconnection attempt.

• If a connection attempt times out on an iface whose underlying technology does not have
a built-in timeout, the connectivity implementation must simulate a timeout by cancelling
the connection attempt manually.

Technologiess that give up on connection attempts If the underlying technology has no
mechanism to retry connection attempts, or would give up on them before the user-configured
timeout, or would not reconnect after connection loss, the connectivity implementation must
manually re-request connection to counteract these deviances.

• If your underlying technology is not persistent, you must manually trigger reconnect at-
tempts when persistence is enabled.

• If your underlying technology does not support a timeout, you must manually cancel con-
nection attempts if the timeout is enabled.

• If your underlying technology forces a timeout, you must manually trigger a new connec-
tion attempts if that timeout is shorter than the Connection Manager timeout.

Technologies with association retry Many underlying technologies do not usually associate
in a single attempt.

Instead, these underlying technologies may need to make multiple back-to-back association at-
tempts in a row, usually with a small delay.

In these situations, the connectivity implementation should treat this series of back-to-back as-
sociation sub-attempts as a single unified connection attempt.

For instance, after a sub-attempt failure, persistence being disabled should not prevent further
sub-attempts, since they all count as one single overall connection attempt. See also Persistence
during connection attempts.

At which point a series of failed sub-attempts should be considered a failure of the connection
attempt as a whole is up to each implementation to decide.

If the connection attempt crosses this threshold, but the configured timeout has not yet elapsed,
or there is no timeout, sub-attempts should continue.

Persistence during connection attempts Persistence should not affect any aspect of imple-
mentation behavior during a connection attempt. Persistence should only affect whether or not
connection attempts are automatically triggered after a connection loss.

The configured timeout should fully determine whether connection retry should be performed.
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ImplementationAPI Include header file include/zephyr/net/conn_mgr_connectivity_impl.
h to access these.

Only for use by connectivity implementations.

group conn_mgr_connectivity_impl
Connection Manager Connectivity Implementation API.

Since
3.4

Version
0.1.0

Defines

CONN_MGR_CONN_DEFINE(conn_id, conn_api)
Define a conn_mgr connectivity implementation that can be bound to network devices.

Parameters
• conn_id – The name of the new connectivity implementation

• conn_api – A pointer to a conn_mgr_conn_api struct

CONN_MGR_CONN_DECLARE_PUBLIC(conn_id)
Helper macro to make a conn_mgr connectivity implementation publicly available.

CONN_MGR_BIND_CONN_INST(dev_id, inst, conn_id)
Associate a connectivity implementation with an existing network device instance.

Parameters
• dev_id – Network device id.

• inst – Network device instance.

• conn_id – Name of the connectivity implementation to associate.

CONN_MGR_BIND_CONN(dev_id, conn_id)
Associate a connectivity implementation with an existing network device.

Parameters
• dev_id – Network device id.

• conn_id – Name of the connectivity implementation to associate.

Functions

static inline struct conn_mgr_conn_binding *conn_mgr_if_get_binding(struct net_if
*iface)

Retrieves the conn_mgr binding struct for a provided iface if it exists.

Bindings for connectivity implementations with missing API structs are ignored.

For use only by connectivity implementations.

Parameters
• iface – - bound network interface to obtain the binding struct for.

6.3. Networking 3001



Zephyr Project Documentation, Release 3.7.99

Returns
struct conn_mgr_conn_binding* Pointer to the retrieved binding struct if it
exists, NULL otherwise.

static inline void conn_mgr_binding_lock(struct conn_mgr_conn_binding *binding)
Lock the passed-in binding, making it safe to access.

Call this whenever accessing binding data, unless inside a conn_mgr_conn_api callback,
where it is called automatically by conn_mgr.

Reentrant.

For use only by connectivity implementations.

Parameters
• binding – - Binding to lock

static inline void conn_mgr_binding_unlock(struct conn_mgr_conn_binding *binding)
Unlocks the passed-in binding.

Call this after any call to conn_mgr_binding_lock once done accessing binding data.

Reentrant.

For use only by connectivity implementations.

Parameters
• binding – - Binding to unlock

static inline void conn_mgr_binding_set_flag(struct conn_mgr_conn_binding *binding,
enum conn_mgr_if_flag flag, bool value)

Set the value of the specified connectivity flag for the provided binding.

Can be used from any thread or callback without calling conn_mgr_binding_lock.

For use only by connectivity implementations

Parameters
• binding – The binding to check

• flag – The flag to check

• value – New value for the specified flag

static inline bool conn_mgr_binding_get_flag(struct conn_mgr_conn_binding *binding,
enum conn_mgr_if_flag flag)

Check the value of the specified connectivity flag for the provided binding.

Can be used from any thread or callback without calling conn_mgr_binding_lock.

For use only by connectivity implementations

Parameters
• binding – The binding to check

• flag – The flag to check

Returns
bool The value of the specified flag

struct conn_mgr_conn_api
#include <conn_mgr_connectivity_impl.h> Connectivity Manager Connectivity API
structure.

Used to provide generic access to network association parameters and procedures
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Public Members

int (*connect)(struct conn_mgr_conn_binding *const binding)
When called, the connectivity implementation should start attempting to establish
connectivity (association with a network) for the bound iface pointed to by if_conn-
>iface.

Must be non-blocking.

Called by conn_mgr_if_connect.

int (*disconnect)(struct conn_mgr_conn_binding *const binding)
When called, the connectivity implementation should disconnect (disassociate), or
stop any in-progress attempts to associate to a network, the bound iface pointed to
by if_conn->iface.

Must be non-blocking.

Called by conn_mgr_if_disconnect.

void (*init)(struct conn_mgr_conn_binding *const binding)
Called once for each iface that has been bound to a connectivity implementation
using this API.

Connectivity implementations should use this callback to perform any required
per-bound-iface initialization.

Implementations may choose to gracefully handle invalid buffer lengths with par-
tial writes, rather than raise errors, if deemed appropriate.

int (*set_opt)(struct conn_mgr_conn_binding *const binding, int optname, const void
*optval, size_t optlen)

Implementation callback for conn_mgr_if_set_opt.

Used to set implementation-specific connectivity settings.

Calls to conn_mgr_if_set_opt on an iface will result in calls to this callback with the
conn_mgr_conn_binding struct bound to that iface.

It is up to the connectivity implementation to interpret optname. Options can be
specific to the bound iface (pointed to by if_conn->iface), or can apply to the whole
connectivity implementation.

See the description of conn_mgr_if_set_opt for more details. set_opt implementa-
tions should conform to that description.

Implementations may choose to gracefully handle invalid buffer lengths with par-
tial reads, rather than raise errors, if deemed appropriate.

int (*get_opt)(struct conn_mgr_conn_binding *const binding, int optname, void
*optval, size_t *optlen)

Implementation callback for conn_mgr_if_get_opt.

Used to retrieve implementation-specific connectivity settings.

Calls to conn_mgr_if_get_opt on an iface will result in calls to this callback with the
conn_mgr_conn_binding struct bound to that iface.

It is up to the connectivity implementation to interpret optname. Options can be
specific to the bound iface (pointed to by if_conn->iface), or can apply to the whole
connectivity implementation.
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See the description of conn_mgr_if_get_opt for more details. get_opt implementa-
tions should conform to that description.

struct conn_mgr_conn_impl
#include <conn_mgr_connectivity_impl.h> Connectivity Implementation struct.

Declares a conn_mgr connectivity layer implementation with the provided API

Public Members

struct conn_mgr_conn_api *api
The connectivity API used by the implementation.

struct conn_mgr_conn_binding
#include <conn_mgr_connectivity_impl.h> Connectivity Manager network interface
binding structure.

Binds a conn_mgr connectivity implementation to an iface / network device. Stores
per-iface state for the connectivity implementation.

Generic connectivity state

uint32_t flags
Connectivity flags.

Public boolean state and configuration values supported by all bindings. See
conn_mgr_if_flag for options.

int timeout
Timeout (seconds)

Indicates to the connectivity implementation how long it should attempt to estab-
lish connectivity for during a connection attempt before giving up.

The connectivity implementation should give up on establishing connectivity after
this timeout, even if persistence is enabled.

Set to CONN_MGR_IF_NO_TIMEOUT to indicate that no timeout should be used.

Public Members

struct net_if *iface
The network interface the connectivity implementation is bound to.

const struct conn_mgr_conn_impl *impl
The connectivity implementation the network device is bound to.

void *ctx
Pointer to private, per-iface connectivity context.
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6.4 LoRa and LoRaWAN

6.4.1 Overview

LoRa (abbrev. for Long Range) is a proprietary low-power wireless communication protocol
developed by the Semtech Corporation.

LoRa acts as the physical layer (PHY) based on the chirp spread spectrum (CSS) modulation tech-
nique.

LoRaWAN (for Long Range Wide Area Network) defines a networking layer on top of the LoRa
PHY.

Zephyr provides APIs for LoRa to send raw data packets directly over the wireless interface as
well as APIs for LoRaWAN to connect the end device to the internet through a gateway.

The Zephyr implementation is based on Semtech’s LoRaMac-node library, which is included as
a Zephyr module.

The LoRaWAN specification is published by the LoRa Alliance.

6.4.2 Configuration Options

LoRa PHY

Related configuration options can be found under drivers/lora/Kconfig.

• CONFIG_LORA
• CONFIG_LORA_SHELL
• CONFIG_LORA_INIT_PRIORITY

LoRaWAN

Related configuration options can be found under subsys/lorawan/Kconfig.

• CONFIG_LORAWAN
• CONFIG_LORAWAN_SYSTEM_MAX_RX_ERROR
• CONFIG_LORAMAC_REGION_AS923
• CONFIG_LORAMAC_REGION_AU915
• CONFIG_LORAMAC_REGION_CN470
• CONFIG_LORAMAC_REGION_CN779
• CONFIG_LORAMAC_REGION_EU433
• CONFIG_LORAMAC_REGION_EU868
• CONFIG_LORAMAC_REGION_KR920
• CONFIG_LORAMAC_REGION_IN865
• CONFIG_LORAMAC_REGION_US915
• CONFIG_LORAMAC_REGION_RU864
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6.4.3 API Reference

LoRa PHY

Related code samples

LoRa receive
Receive packets in both synchronous and asynchronous mode using the LoRa radio.

LoRa send
Transmit a preconfigured payload every second using the LoRa radio.

group lora_api

Since
2.2

Version
0.1.0

Enums

enum lora_signal_bandwidth
LoRa signal bandwidth.

Values:

enumerator BW_125_KHZ = 0

enumerator BW_250_KHZ

enumerator BW_500_KHZ

enum lora_datarate
LoRa data-rate.

Values:

enumerator SF_6 = 6

enumerator SF_7

enumerator SF_8

enumerator SF_9

enumerator SF_10

enumerator SF_11
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enumerator SF_12

enum lora_coding_rate
LoRa coding rate.

Values:

enumerator CR_4_5 = 1

enumerator CR_4_6 = 2

enumerator CR_4_7 = 3

enumerator CR_4_8 = 4

Functions

static inline int lora_config(const struct device *dev, struct lora_modem_config *config)
Configure the LoRa modem.

Parameters
• dev – LoRa device

• config – Data structure containing the intended configuration for the
modem

Returns
0 on success, negative on error

static inline int lora_send(const struct device *dev, uint8_t *data, uint32_t data_len)
Send data over LoRa.

Note

This blocks until transmission is complete.

Parameters
• dev – LoRa device

• data – Data to be sent

• data_len – Length of the data to be sent

Returns
0 on success, negative on error

static inline int lora_send_async(const struct device *dev, uint8_t *data, uint32_t data_len,
struct k_poll_signal *async)

Asynchronously send data over LoRa.

Note

This returns immediately after starting transmission, and locks the LoRa modem
until the transmission completes.
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Parameters
• dev – LoRa device

• data – Data to be sent

• data_len – Length of the data to be sent

• async – A pointer to a valid and ready to be signaled struct k_poll_signal.
(Note: if NULL this function will not notify the end of the transmission).

Returns
0 on success, negative on error

static inline int lora_recv(const struct device *dev, uint8_t *data, uint8_t size, k_timeout_t
timeout, int16_t *rssi, int8_t *snr)

Receive data over LoRa.

Note

This is a blocking call.

Parameters
• dev – LoRa device

• data – Buffer to hold received data

• size – Size of the buffer to hold the received data. Max size allowed is
255.

• timeout – Duration to wait for a packet.

• rssi – RSSI of received data

• snr – SNR of received data

Returns
Length of the data received on success, negative on error

static inline int lora_recv_async(const struct device *dev, lora_recv_cb cb)
Receive data asynchronously over LoRa.

Receive packets continuously under the configuration previously setup by lora_config.

Reception is cancelled by calling this function again with cb = NULL. This can be done
within the callback handler.

Parameters
• dev – Modem to receive data on.

• cb – Callback to run on receiving data. If NULL, any pending asyn-
chronous receptions will be cancelled.

Returns
0 when reception successfully setup, negative on error

static inline int lora_test_cw(const struct device *dev, uint32_t frequency, int8_t
tx_power, uint16_t duration)

Transmit an unmodulated continuous wave at a given frequency.
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Note

Only use this functionality in a test setup where the transmission does not interfere
with other devices.

Parameters
• dev – LoRa device

• frequency – Output frequency (Hertz)

• tx_power – TX power (dBm)

• duration – Transmission duration in seconds.

Returns
0 on success, negative on error

struct lora_modem_config
#include <lora.h> Structure containing the configuration of a LoRa modem.

Public Members

uint32_t frequency
Frequency in Hz to use for transceiving.

enum lora_signal_bandwidth bandwidth
The bandwidth to use for transceiving.

enum lora_datarate datarate
The data-rate to use for transceiving.

enum lora_coding_rate coding_rate
The coding rate to use for transceiving.

uint16_t preamble_len
Length of the preamble.

int8_t tx_power
TX-power in dBm to use for transmission.

bool tx
Set to true for transmission, false for receiving.

bool iq_inverted
Invert the In-Phase and Quadrature (IQ) signals.

Normally this should be set to false. In advanced use-cases where a differentation
is needed between “uplink” and “downlink” traffic, the IQ can be inverted to create
two different channels on the same frequency
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bool public_network
Sets the sync-byte to use:

• false: for using the private network sync-byte
• true: for using the public network sync-byte The public network sync-byte is

only intended for advanced usage. Normally the private network sync-byte
should be used for peer to peer communications and the LoRaWAN APIs should
be used for interacting with a public network.

LoRaWAN

Related code samples

LoRaWAN FUOTA
Perform a LoRaWAN firmware-upgrade over the air (FUOTA) operation.

LoRaWAN class A device
Join a LoRaWAN network and send a message periodically.

group lorawan_api

Since
2.5

Version
0.1.0

Defines

LW_RECV_PORT_ANY
Flag to indicate receiving on any port.

Typedefs

typedef uint8_t (*lorawan_battery_level_cb_t)(void)
Defines the battery level callback handler function signature.

Retval 0
if the node is connected to an external power source

Retval 1..254
battery level, where 1 is the minimum and 254 is the maximum value

Retval 255
if the node was not able to measure the battery level

typedef void (*lorawan_dr_changed_cb_t)(enum lorawan_datarate dr)
Defines the datarate changed callback handler function signature.

Param dr
Updated datarate.
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Enums

enum lorawan_class
LoRaWAN class types.

Values:

enumerator LORAWAN_CLASS_A = 0x00
Class A device.

enumerator LORAWAN_CLASS_B = 0x01
Class B device.

enumerator LORAWAN_CLASS_C = 0x02
Class C device.

enum lorawan_act_type
LoRaWAN activation types.

Values:

enumerator LORAWAN_ACT_OTAA = 0
Over-the-Air Activation (OTAA)

enumerator LORAWAN_ACT_ABP
Activation by Personalization (ABP)

enum lorawan_channels_mask_size
LoRaWAN channels mask sizes.

Values:

enumerator LORAWAN_CHANNELS_MASK_SIZE_AS923 = 1
Region AS923 mask size.

enumerator LORAWAN_CHANNELS_MASK_SIZE_AU915 = 6
Region AU915 mask size.

enumerator LORAWAN_CHANNELS_MASK_SIZE_CN470 = 6
Region CN470 mask size.

enumerator LORAWAN_CHANNELS_MASK_SIZE_CN779 = 1
Region CN779 mask size.

enumerator LORAWAN_CHANNELS_MASK_SIZE_EU433 = 1
Region EU433 mask size.

enumerator LORAWAN_CHANNELS_MASK_SIZE_EU868 = 1
Region EU868 mask size.
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enumerator LORAWAN_CHANNELS_MASK_SIZE_KR920 = 1
Region KR920 mask size.

enumerator LORAWAN_CHANNELS_MASK_SIZE_IN865 = 1
Region IN865 mask size.

enumerator LORAWAN_CHANNELS_MASK_SIZE_US915 = 6
Region US915 mask size.

enumerator LORAWAN_CHANNELS_MASK_SIZE_RU864 = 1
Region RU864 mask size.

enum lorawan_datarate
LoRaWAN datarate types.

Values:

enumerator LORAWAN_DR_0 = 0
DR0 data rate.

enumerator LORAWAN_DR_1
DR1 data rate.

enumerator LORAWAN_DR_2
DR2 data rate.

enumerator LORAWAN_DR_3
DR3 data rate.

enumerator LORAWAN_DR_4
DR4 data rate.

enumerator LORAWAN_DR_5
DR5 data rate.

enumerator LORAWAN_DR_6
DR6 data rate.

enumerator LORAWAN_DR_7
DR7 data rate.

enumerator LORAWAN_DR_8
DR8 data rate.

enumerator LORAWAN_DR_9
DR9 data rate.

enumerator LORAWAN_DR_10
DR10 data rate.
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enumerator LORAWAN_DR_11
DR11 data rate.

enumerator LORAWAN_DR_12
DR12 data rate.

enumerator LORAWAN_DR_13
DR13 data rate.

enumerator LORAWAN_DR_14
DR14 data rate.

enumerator LORAWAN_DR_15
DR15 data rate.

enum lorawan_region
LoRaWAN region types.

Values:

enumerator LORAWAN_REGION_AS923
Asia 923 MHz frequency band.

enumerator LORAWAN_REGION_AU915
Australia 915 MHz frequency band.

enumerator LORAWAN_REGION_CN470
China 470 MHz frequency band.

enumerator LORAWAN_REGION_CN779
China 779 MHz frequency band.

enumerator LORAWAN_REGION_EU433
Europe 433 MHz frequency band.

enumerator LORAWAN_REGION_EU868
Europe 868 MHz frequency band.

enumerator LORAWAN_REGION_KR920
South Korea 920 MHz frequency band.

enumerator LORAWAN_REGION_IN865
India 865 MHz frequency band.

enumerator LORAWAN_REGION_US915
United States 915 MHz frequency band.

enumerator LORAWAN_REGION_RU864
Russia 864 MHz frequency band.
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enum lorawan_message_type
LoRaWAN message types.

Values:

enumerator LORAWAN_MSG_UNCONFIRMED = 0
Unconfirmed message.

enumerator LORAWAN_MSG_CONFIRMED
Confirmed message.

Functions

void lorawan_register_battery_level_callback(lorawan_battery_level_cb_t cb)
Register a battery level callback function.

Provide the LoRaWAN stack with a function to be called whenever a battery level needs
to be read.

Should no callback be provided the lorawan backend will report 255.

Parameters
• cb – Pointer to the battery level function

void lorawan_register_downlink_callback(struct lorawan_downlink_cb *cb)
Register a callback to be run on downlink packets.

Parameters
• cb – Pointer to structure containing callback parameters

void lorawan_register_dr_changed_callback(lorawan_dr_changed_cb_t cb)
Register a callback to be called when the datarate changes.

The callback is called once upon successfully joining a network and again each time
the datarate changes due to ADR.

Parameters
• cb – Pointer to datarate update callback

int lorawan_join(const struct lorawan_join_config *config)
Join the LoRaWAN network.

Join the LoRaWAN network using OTAA or AWB.

Parameters
• config – Configuration to be used

Returns
0 if successful, negative errno code if failure

int lorawan_start(void)
Start the LoRaWAN stack.

This function need to be called before joining the network.

Returns
0 if successful, negative errno code if failure
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int lorawan_send(uint8_t port, uint8_t *data, uint8_t len, enum lorawan_message_type
type)

Send data to the LoRaWAN network.

Send data to the connected LoRaWAN network.

Parameters
• port – Port to be used for sending data. Must be set if the payload is not

empty.

• data – Data buffer to be sent

• len – Length of the buffer to be sent. Maximum length of this buffer is
255 bytes but the actual payload size varies with region and datarate.

• type – Specifies if the message shall be confirmed or unconfirmed. Must
be one of lorawan_message_type.

Returns
0 if successful, negative errno code if failure

int lorawan_set_class(enum lorawan_class dev_class)
Set the current device class.

Change the current device class. This function may be called before or after a network
connection has been established.

Parameters
• dev_class – New device class

Returns
0 if successful, negative errno code if failure

int lorawan_set_conf_msg_tries(uint8_t tries)
Set the number of tries used for transmissions.

Parameters
• tries – Number of tries to be used

Returns
0 if successful, negative errno code if failure

void lorawan_enable_adr(bool enable)
Enable Adaptive Data Rate (ADR)

Control whether adaptive data rate (ADR) is enabled. When ADR is enabled, the data
rate is treated as a default data rate that will be used if the ADR algorithm has not
established a data rate. ADR should normally only be enabled for devices with stable
RF conditions (i.e., devices in a mostly static location).

Parameters
• enable – Enable or Disable adaptive data rate.

int lorawan_set_channels_mask(uint16_t *channels_mask, size_t channels_mask_size)
Set the channels mask.

Change the default channels mask. When mask is not changed, all the channels can be
used for data transmission. Some Network Servers don’t use all the channels, in this
case, the channels mask must be provided.

Parameters
• channels_mask – Buffer with channels mask to be used.

• channels_mask_size – Size of channels mask buffer.
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Return values
• 0 – successful

• -EINVAL – channels mask or channels mask size is wrong

int lorawan_set_datarate(enum lorawan_datarate dr)
Set the default data rate.

Change the default data rate.

Parameters
• dr – Data rate used for transmissions

Returns
0 if successful, negative errno code if failure

enum lorawan_datarate lorawan_get_min_datarate(void)
Get the minimum possible datarate.

The minimum possible datarate may change in response to a TxParamSetupReq com-
mand from the network server.

Returns
Minimum possible data rate

void lorawan_get_payload_sizes(uint8_t *max_next_payload_size, uint8_t
*max_payload_size)

Get the current payload sizes.

Query the current payload sizes. The maximum payload size varies with datarate,
while the current payload size can be less due to MAC layer commands which are in-
serted into uplink packets.

Parameters
• max_next_payload_size – Maximum payload size for the next transmis-

sion

• max_payload_size – Maximum payload size for this datarate

int lorawan_set_region(enum lorawan_region region)
Set the region and frequency to be used.

Control the LoRa region and frequency settings. This should be called before lo-
rawan_start(). If you only have support for a single region selected via Kconfig, this
function does not need to be called at all.

Parameters
• region – The region to be selected

Returns
0 if successful, negative errno otherwise

struct lorawan_join_otaa
#include <lorawan.h> LoRaWAN join parameters for over-the-Air activation (OTAA)

Note that all of the fields use LoRaWAN 1.1 terminology.

All parameters are optional if a secure element is present in which case the values
stored in the secure element will be used instead.
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Public Members

uint8_t *join_eui
Join EUI.

uint8_t *nwk_key
Network Key.

uint8_t *app_key
Application Key.

uint16_t dev_nonce
Device Nonce.

Starting with LoRaWAN 1.0.4 the DevNonce must be monotonically increasing for
each OTAA join with the same EUI. The DevNonce should be stored in non-volatile
memory by the application.

struct lorawan_join_abp
#include <lorawan.h> LoRaWAN join parameters for activation by personalization
(ABP)

Public Members

uint32_t dev_addr
Device address on the network.

uint8_t *app_skey
Application session key.

uint8_t *nwk_skey
Network session key.

uint8_t *app_eui
Application EUI.

struct lorawan_join_config
#include <lorawan.h> LoRaWAN join parameters.

Public Members

struct lorawan_join_otaa otaa
OTAA join parameters.

struct lorawan_join_abp abp
ABP join parameters.
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union lorawan_join_config
Join parameters.

uint8_t *dev_eui
Device EUI.

Optional if a secure element is present.

enum lorawan_act_type mode
Activation mode.

struct lorawan_downlink_cb
#include <lorawan.h> LoRaWAN downlink callback parameters.

Public Members

uint16_t port
Port to handle messages for.

• Port 0: TX packet acknowledgements
• Ports 1-255: Standard downlink port
• LW_RECV_PORT_ANY: All downlinks

void (*cb)(uint8_t port, bool data_pending, int16_t rssi, int8_t snr, uint8_t len, const
uint8_t *data)

Callback function to run on downlink data.

Note

Callbacks are run on the system workqueue, and should therefore be as short
as possible.

Param port
Port message was sent on

Param data_pending
Network server has more downlink packets pending

Param rssi
Received signal strength in dBm

Param snr
Signal to Noise ratio in dBm

Param len
Length of data received, will be 0 for ACKs

Param data
Data received, will be NULL for ACKs

sys_snode_t node
Node for callback list.
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6.5 USB

USB device support

6.5.1 USB device support

• Overview

• Supported USB classes

– Audio

– Bluetooth HCI USB transport layer

– CDC ACM

* Console over CDC ACM UART

* CDC ACM UART as backend

* POSIX default tty ECHO mitigation

– DFU

– USB Human Interface Devices (HID) support

– Mass Storage Class

– Networking

• Binary Device Object Store (BOS) support

• Implementing a non-standard USB class

• Interface number and endpoint address assignment

• Testing over USPIP in native_sim

• USB Vendor and Product identifiers

Overview

The USB device stack is a hardware independent interface between USB device controller driver
and USB device class drivers or customer applications. It is a port of the LPCUSB device stack
and has been modified and expanded over time. It provides the following functionalities:

• Uses the USB device controller driver API provided by the device controller drivers to inter-
act with the USB device controller.

• Responds to standard device requests and returns standard descriptors, essentially han-
dling ‘Chapter 9’ processing, specifically the standard device requests in table 9-3 from the
universal serial bus specification revision 2.0.

• Provides a programming interface to be used by USB device classes or customer applica-
tions. The APIs is described in include/zephyr/usb/usb_device.h

Note

It is planned to deprecate all APIs listed in USB device support APIs and the functions that
depend on them between Zephyr v3.7.0 and v4.0.0, and remove them in v4.2.0. The new USB
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device support, represented by the APIs in New USB device support APIs, will become the
default in Zephyr v4.0.0.

Supported USB classes

Audio There is an experimental implementation of the Audio class. It follows specification
version 1.00 (bcdADC 0x0100) and supports synchronous synchronisation type only. See usb-
audio-headphones-microphone and usb-audio-headset samples for reference.

Bluetooth HCI USB transport layer Bluetooth HCI USB transport layer implementation uses
HCI RAW channel to expose HCI interface to the host. It is not fully in line with the description
in the Bluetooth specification and consists only of an interface with the endpoint configuration:

• HCI commands through control endpoint (host-to-device only)

• HCI events through interrupt IN endpoint

• ACL data through one bulk IN and one bulk OUT endpoints

A second interface for the voice channels has not been implemented as there is no support for
this type in Bluetooth. It is not a big problem under Linux if HCI USB transport layer is the only
interface that appears in the configuration, the btusb driver would not try to claim a second
(isochronous) interface. The consequence is that if HCI USB is used in a composite configuration
and is the first interface, then the Linux btusb driver will claim both the first and the next in-
terface, preventing other composite functions from working. Because of this problem, HCI USB
should not be used in a composite configuration. This problem is fixed in the implementation
for new USB support.

See bluetooth-hci-usb-sample sample for reference.

CDC ACM The CDC ACM class is used as backend for different subsystems in Zephyr. How-
ever, its configuration may not be easy for the inexperienced user. Below is a description of the
different use cases and some pitfalls.

The interface for CDC ACM user is Universal Asynchronous Receiver-Transmitter (UART) driver
API. But there are two important differences in behavior to a real UART controller:

• Data transfer is only possible after the USB device stack has been initialized and started,
until then any data is discarded

• If device is connected to the host, it still needs an application on the host side which requests
the data

• The CDC ACM poll out implementation follows the API and blocks when the TX ring buffer
is full only if the hw-flow-control property is enabled and called from a non-ISR context.

The devicetree compatible property for CDC ACM UART is zephyr,cdc-acm-uart. CDC ACM sup-
port is automatically selected when USB device support is enabled and a compatible node in the
devicetree sources is present. If necessary, CDC ACM support can be explicitly disabled by CON-
FIG_USB_CDC_ACM. About four CDC ACM UART instances can be defined and used, limited by the
maximum number of supported endpoints on the controller.

CDC ACM UART node is supposed to be child of a USB device controller node. Since the des-
ignation of the controller nodes varies from vendor to vendor, and our samples and applica-
tion should be as generic as possible, the default USB device controller is usually assigned an
zephyr_udc0 node label. Often, CDC ACM UART is described in a devicetree overlay file and
looks like this:
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&zephyr_udc0 {
cdc_acm_uart0: cdc_acm_uart0 {

compatible = "zephyr,cdc-acm-uart";
label = "CDC_ACM_0";

};
};

Sample usb-cdc-acm has similar overlay files. And since no special properties are present, it may
seem overkill to use devicetree to describe CDC ACM UART. The motivation behind using device-
tree is the easy interchangeability of a real UART controller and CDC ACM UART in applications.

Console over CDC ACMUART With the CDC ACM UART node from above and zephyr,console
property of the chosen node, we can describe that CDC ACM UART is to be used with the console.
A similar overlay file is used by the usb-cdc-acm-console sample.

/ {
chosen {

zephyr,console = &cdc_acm_uart0;
};

};

&zephyr_udc0 {
cdc_acm_uart0: cdc_acm_uart0 {

compatible = "zephyr,cdc-acm-uart";
label = "CDC_ACM_0";

};
};

Before the application uses the console, it is recommended to wait for the DTR signal:

const struct device *const dev = DEVICE_DT_GET(DT_CHOSEN(zephyr_console));
uint32_t dtr = 0;

if (usb_enable(NULL)) {
return;

}

while (!dtr) {
uart_line_ctrl_get(dev, UART_LINE_CTRL_DTR, &dtr);
k_sleep(K_MSEC(100));

}

printk("nuqneH\n");

CDC ACM UART as backend As for the console sample, it is possible to configure CDC ACM
UART as backend for other subsystems by setting Chosen nodes properties.

List of few Zephyr specific chosen properties which can be used to select CDC ACM UART as
backend for a subsystem or application:

• zephyr,bt-c2h-uart used in Bluetooth, for example see bluetooth-hci-uart-sample

• zephyr,ot-uart used in OpenThread, for example see coprocessor

• zephyr,shell-uart used by shell for serial backend, for example see sam-
ples/subsys/shell/shell_module

• zephyr,uart-mcumgr used by smp-svr sample
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POSIX default tty ECHO mitigation POSIX systems, like Linux, default to enabling ECHO on
tty devices. Host side application can disable ECHO by calling open() on the tty device and is-
suing ioctl() (preferably via tcsetattr()) to disable echo if it is not desired. Unfortunately,
there is an inherent race between the open() and ioctl() where the ECHO is enabled and any
characters received (even if host application does not call read()) will be echoed back. This is-
sue is especially visible when the CDC ACM port is used without any real UART on the other side
because there is no arbitrary delay due to baud rate.

To mitigate the issue, Zephyr CDC ACM implementation arms IN endpoint with ZLP after device
is configured. When the host reads the ZLP, which is pretty much the best indication that host
application has opened the tty device, Zephyr will force CONFIG_CDC_ACM_TX_DELAY_MS millisec-
ond delay before real payload is sent. This should allow sufficient time for first, and only first,
application that opens the tty device to disable ECHO if ECHO is not desired. If ECHO is not de-
sired at all from CDC ACM device it is best to set up udev rule to disable ECHO as soon as device
is connected.

ECHO is particurarly unwanted when CDC ACM instance is used for Zephyr shell, because the
control characters to set color sent back to shell are interpreted as (invalid) command and user
will see garbage as a result. While minicom does disable ECHO by default, on exit with reset
it will restore the termios settings to whatever was set on entry. Therefore, if minicom is the
first application to open the tty device, the exit with reset will enable ECHO back and thus set
up a problem for the next application (which cannot be mitigated at Zephyr side). To prevent
the issue it is recommended either to leave minicom without reset or to disable ECHO before
minicom is started.

DFU USB DFU class implementation is tightly coupled to Device Firmware Upgrade and MCU-
Boot API. This means that the target platform must support the Flash Image API.

See usb-dfu sample for reference.

USBHuman Interface Devices (HID) support HID support abuses Device DriverModel simply
to allow applications to use the device_get_binding(). Note that there is no HID device API as
such, instead the interface is provided by hid_ops. The default instance name is HID_n, where n
can be {0, 1, 2, …} depending on the CONFIG_USB_HID_DEVICE_COUNT.

Each HID instance requires a HID report descriptor. The interface to the core and the report
descriptor must be registered using usb_hid_register_device().

As the USB HID specification is not only used by the USB subsystem, the USB HID API reference
is split into two parts, Human Interface Devices (HID) and USB HID Class API. HID helper macros
from Human Interface Devices (HID) should be used to compose a HID report descriptor. Macro
names correspond to those used in the USB HID specification.

For the HID class interface, an IN interrupt endpoint is required for each instance, an OUT in-
terrupt endpoint is optional. Thus, the minimum implementation requirement for hid_ops is to
provide int_in_ready callback.

#define REPORT_ID 1
static bool configured;
static const struct device *hdev;

static void int_in_ready_cb(const struct device *dev)
{

static uint8_t report[2] = {REPORT_ID, 0};

if (hid_int_ep_write(hdev, report, sizeof(report), NULL)) {
LOG_ERR("Failed to submit report");

} else {
report[1]++;

}
(continues on next page)
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(continued from previous page)
}

static void status_cb(enum usb_dc_status_code status, const uint8_t *param)
{

if (status == USB_DC_RESET) {
configured = false;

}

if (status == USB_DC_CONFIGURED && !configured) {
int_in_ready_cb(hdev);
configured = true;

}
}

static const uint8_t hid_report_desc[] = {
HID_USAGE_PAGE(HID_USAGE_GEN_DESKTOP),
HID_USAGE(HID_USAGE_GEN_DESKTOP_UNDEFINED),
HID_COLLECTION(HID_COLLECTION_APPLICATION),
HID_LOGICAL_MIN8(0x00),
HID_LOGICAL_MAX16(0xFF, 0x00),
HID_REPORT_ID(REPORT_ID),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_USAGE(HID_USAGE_GEN_DESKTOP_UNDEFINED),
HID_INPUT(0x02),
HID_END_COLLECTION,

};

static const struct hid_ops my_ops = {
.int_in_ready = int_in_ready_cb,

};

int main(void)
{

int ret;

hdev = device_get_binding("HID_0");
if (hdev == NULL) {

return -ENODEV;
}

usb_hid_register_device(hdev, hid_report_desc, sizeof(hid_report_desc),
&my_ops);

ret = usb_hid_init(hdev);
if (ret) {

return ret;
}

return usb_enable(status_cb);
}

If the application wishes to receive output reports via the OUT interrupt endpoint, it
must enable CONFIG_ENABLE_HID_INT_OUT_EP and provide int_out_ready callback. The dis-
advantage of this is that Kconfig options such as CONFIG_ENABLE_HID_INT_OUT_EP or CON-
FIG_HID_INTERRUPT_EP_MPS apply to all instances. This design issue will be fixed in the HID class
implementation for the new USB support.

See usb-hid or usb-hid-mouse sample for reference.
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Mass Storage Class MSC follows Bulk-Only Transport specification and uses Disk Access to ac-
cess and expose a RAM disk, emulated block device on a flash partition, or SD Card to the host.
Only one disk instance can be exported at a time.

The disc to be used by the implementation is set by the CONFIG_MASS_STORAGE_DISK_NAME and
should be the same as the name used by the disc access driver that the application wants
to expose to the host. SD card disk drivers use options CONFIG_MMC_VOLUME_NAME or CON-
FIG_SDMMC_VOLUME_NAME, and flash and RAM disk drivers use node property disk-name to set
the disk name.

For the emulated block device on a flash partition, the flash partition and flash disk to be
used must be described in the devicetree. If a storage partition is already described at the
board level, application devicetree overlay must also delete storage_partition node first. CON-
FIG_MASS_STORAGE_DISK_NAME should be the same as disk-name property.

/delete-node/ &storage_partition;

&mx25r64 {
partitions {

compatible = "fixed-partitions";
#address-cells = <1>;
#size-cells = <1>;

storage_partition: partition@0 {
label = "storage";
reg = <0x00000000 0x00020000>;

};
};

};

/ {
msc_disk0 {

compatible = "zephyr,flash-disk";
partition = <&storage_partition>;
disk-name = "NAND";
cache-size = <4096>;

};
};

The disk-property “NAND” may be confusing, but it is simply how some file systems identifies
the disc. Therefore, if the application also accesses the file system on the exposed disc, default
names should be used, see usb-mass sample for reference.

Networking There are three implementations that work in a similar way, providing a virtual
Ethernet connection between the remote (USB host) and Zephyr network support.

• CDC ECM class, enabled with CONFIG_USB_DEVICE_NETWORK_ECM
• CDC EEM class, enabled with CONFIG_USB_DEVICE_NETWORK_EEM
• RNDIS support, enabled with CONFIG_USB_DEVICE_NETWORK_RNDIS

See zperf or socket-dumb-http-server for reference. Typically, users will need to add a configu-
ration file overlay to the build, such as samples/net/zperf/overlay-netusb.conf.

Applications using RNDIS support should enable CONFIG_USB_DEVICE_OS_DESC for a better user
experience on a host running Microsoft Windows OS.

Binary Device Object Store (BOS) support

BOS handling can be enabled with Kconfig option CONFIG_USB_DEVICE_BOS. This option also has
the effect of changing device descriptor bcdUSB to 0210. The application should register descrip-
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tors such as Capability Descriptor using usb_bos_register_cap(). Registered descriptors are
added to the root BOS descriptor and handled by the stack.

See webusb sample for reference.

Implementing a non-standard USB class

The configuration of USB device is done in the stack layer.

The following structures and callbacks need to be defined:

• Part of USB Descriptor table

• USB Endpoint configuration table

• USB Device configuration structure

• Endpoint callbacks

• Optionally class, vendor and custom handlers

For example, for the USB loopback application:

1 struct usb_loopback_config {
2 struct usb_if_descriptor if0;
3 struct usb_ep_descriptor if0_out_ep;
4 struct usb_ep_descriptor if0_in_ep;
5 } __packed;
6

7 USBD_CLASS_DESCR_DEFINE(primary, 0) struct usb_loopback_config loopback_cfg = {
8 /* Interface descriptor 0 */
9 .if0 = {

10 .bLength = sizeof(struct usb_if_descriptor),
11 .bDescriptorType = USB_DESC_INTERFACE,
12 .bInterfaceNumber = 0,
13 .bAlternateSetting = 0,
14 .bNumEndpoints = 2,
15 .bInterfaceClass = USB_BCC_VENDOR,
16 .bInterfaceSubClass = 0,
17 .bInterfaceProtocol = 0,
18 .iInterface = 0,
19 },
20

21 /* Data Endpoint OUT */
22 .if0_out_ep = {
23 .bLength = sizeof(struct usb_ep_descriptor),
24 .bDescriptorType = USB_DESC_ENDPOINT,
25 .bEndpointAddress = LOOPBACK_OUT_EP_ADDR,
26 .bmAttributes = USB_DC_EP_BULK,
27 .wMaxPacketSize = sys_cpu_to_le16(CONFIG_LOOPBACK_BULK_EP_MPS),
28 .bInterval = 0x00,
29 },
30

31 /* Data Endpoint IN */
32 .if0_in_ep = {
33 .bLength = sizeof(struct usb_ep_descriptor),
34 .bDescriptorType = USB_DESC_ENDPOINT,
35 .bEndpointAddress = LOOPBACK_IN_EP_ADDR,
36 .bmAttributes = USB_DC_EP_BULK,
37 .wMaxPacketSize = sys_cpu_to_le16(CONFIG_LOOPBACK_BULK_EP_MPS),
38 .bInterval = 0x00,
39 },
40 };

Endpoint configuration:
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1 static struct usb_ep_cfg_data ep_cfg[] = {
2 {
3 .ep_cb = loopback_out_cb,
4 .ep_addr = LOOPBACK_OUT_EP_ADDR,
5 },
6 {
7 .ep_cb = loopback_in_cb,
8 .ep_addr = LOOPBACK_IN_EP_ADDR,
9 },

10 };

USB Device configuration structure:

1 USBD_DEFINE_CFG_DATA(loopback_config) = {
2 .usb_device_description = NULL,
3 .interface_config = loopback_interface_config,
4 .interface_descriptor = &loopback_cfg.if0,
5 .cb_usb_status = loopback_status_cb,
6 .interface = {
7 .class_handler = NULL,
8 .custom_handler = NULL,
9 .vendor_handler = loopback_vendor_handler,

10 },
11 .num_endpoints = ARRAY_SIZE(ep_cfg),
12 .endpoint = ep_cfg,
13 };

The vendor device requests are forwarded by the USB stack core driver to the class driver
through the registered vendor handler.

For the loopback class driver, loopback_vendor_handler() processes the vendor requests:

1 static int loopback_vendor_handler(struct usb_setup_packet *setup,
2 int32_t *len, uint8_t **data)
3 {
4 LOG_DBG("Class request: bRequest 0x%x bmRequestType 0x%x len %d",
5 setup->bRequest, setup->bmRequestType, *len);
6

7 if (setup->RequestType.recipient != USB_REQTYPE_RECIPIENT_DEVICE) {
8 return -ENOTSUP;
9 }

10

11 if (usb_reqtype_is_to_device(setup) &&
12 setup->bRequest == 0x5b) {
13 LOG_DBG("Host-to-Device, data %p", *data);
14 /*
15 * Copy request data in loopback_buf buffer and reuse
16 * it later in control device-to-host transfer.
17 */
18 memcpy(loopback_buf, *data,
19 MIN(sizeof(loopback_buf), setup->wLength));
20 return 0;
21 }
22

23 if ((usb_reqtype_is_to_host(setup)) &&
24 (setup->bRequest == 0x5c)) {
25 LOG_DBG("Device-to-Host, wLength %d, data %p",
26 setup->wLength, *data);
27 *data = loopback_buf;
28 *len = MIN(sizeof(loopback_buf), setup->wLength);
29 return 0;
30 }

(continues on next page)
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(continued from previous page)
31

32 return -ENOTSUP;
33 }

The class driver waits for the USB_DC_CONFIGURED device status code before transmitting any
data.

Interface number and endpoint address assignment

In USB terminology, a function is a device that provides a capability to the host, such as a HID
class device that implements a keyboard. A function contains a collection of interfaces; at least
one interface is required. An interface may contain device endpoints; for example, at least one
input endpoint is required to implement a HID class device, and no endpoints are required to
implement a USB DFU class. A USB device that combines functions is a multifunction USB device,
for example, a combination of a HID class device and a CDC ACM device.

With Zephyr RTOS USB support, various combinations are possible with built-in USB
classes/functions or custom user implementations. The limitation is the number of available
device endpoints. Each device endpoint is uniquely addressable. The endpoint address is a com-
bination of endpoint direction and endpoint number, a four-bit value. Endpoint number zero
is used for the default control method to initialize and configure a USB device. By specification,
a maximum of 15 IN and 15 OUT device endpoints are also available for use in functions. The
actual number depends on the device controller used. Not all controllers support the maximum
number of endpoints and all endpoint types. For example, a device controller might support one
IN and one OUT isochronous endpoint, but only for endpoint number 8, resulting in endpoint
addresses 0x88 and 0x08. Also, one controller may be able to have IN/OUT endpoints on the same
endpoint number, interrupt IN endpoint 0x81 and bulk OUT endpoint 0x01, while the other may
only be able to handle one endpoint per endpoint number. Information about the number of
interfaces, interface associations, endpoint types, and addresses is provided to the host by the
interface, interface specific, and endpoint descriptors.

Host driver for specific function, uses interface and endpoint descriptor to obtain endpoint ad-
dresses, types, and other properties. This allows function host drivers to be generic, for example,
a multi-function device consisting of one or more CDC ACM and one or more CDC ECM class im-
plementations is possible and no specific drivers are required.

Interface and endpoint descriptors of built-in USB class/function implementations in Zephyr
RTOS typically have default interface numbers and endpoint addresses assigned in ascending
order. During initialization, default interface numbers may be reassigned based on the number
of interfaces in a given configuration. Endpoint addresses are reassigned based on controller
capabilities, since certain endpoint combinations are not possible with every controller, and the
number of interfaces in a given configuration. This also means that the device side class/function
in the Zephyr RTOS must check the actual interface and endpoint descriptor values at runtime.
This mechanism also allows as to provide generic samples and generic multifunction samples
that are limited only by the resources provided by the controller, such as the number of end-
points and the size of the endpoint FIFOs.

There may be host drivers for a specific function, for example in the Linux Kernel, where the
function driver does not read interface and endpoint descriptors to check interface numbers or
endpoint addresses, but instead uses hardcoded values. Therefore, the host driver cannot be
used in a generic way, meaning it cannot be used with different device controllers and different
device configurations in combination with other functions. This may also be because the driver
is designed for a specific hardware and is not intended to be used with a clone of this specific
hardware. On the contrary, if the driver is generic in nature and should work with different
hardware variants, then it must not use hardcoded interface numbers and endpoint addresses.
It is not possible to disable endpoint reassignment in Zephyr RTOS, which may prevent you from
implementing a hardware-clone firmware. Instead, if possible, the host driver implementation
should be fixed to use values from the interface and endpoint descriptor.
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Testing over USPIP in native_sim

A virtual USB controller implemented through USBIP might be used to test the USB device stack.
Follow the general build procedure to build the USB sample for the native_sim configuration.

Run built sample with:

west build -t run

In a terminal window, run the following command to list USB devices:

$ usbip list -r localhost
Exportable USB devices
======================
- 127.0.0.1

1-1: unknown vendor : unknown product (2fe3:0100)
: /sys/devices/pci0000:00/0000:00:01.2/usb1/1-1
: (Defined at Interface level) (00/00/00)
: 0 - Vendor Specific Class / unknown subclass / unknown protocol (ff/00/00)

In a terminal window, run the following command to attach the USB device:

$ sudo usbip attach -r localhost -b 1-1

The USB device should be connected to your Linux host, and verified with the following com-
mands:

$ sudo usbip port
Imported USB devices
====================
Port 00: <Port in Use> at Full Speed(12Mbps)

unknown vendor : unknown product (2fe3:0100)
7-1 -> usbip://localhost:3240/1-1

-> remote bus/dev 001/002
$ lsusb -d 2fe3:0100
Bus 007 Device 004: ID 2fe3:0100

USB Vendor and Product identifiers

The USB Vendor ID for the Zephyr project is 0x2FE3. This USB Vendor ID must not be used when
a vendor integrates Zephyr USB device support into its own product.

Each USB sample has its own unique Product ID. The USB maintainer, if one is assigned, or oth-
erwise the Zephyr Technical Steering Committee, may allocate other USB Product IDs based on
well-motivated and documented requests.

The following Product IDs are currently used:
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Sample PID
usb-cdc-acm 0x0001
usb-cdc-acm-composite 0x0002
Reserved (previously: usb-hid-cdc) 0x0003
usb-cdc-acm-console 0x0004
usb-dfu (Run-Time) 0x0005
usb-hid 0x0006
usb-hid-mouse 0x0007
usb-mass 0x0008
testusb-app 0x0009
webusb 0x000A
bluetooth-hci-usb-sample 0x000B
bluetooth-hci-usb-h4-sample 0x000C
wpan-usb 0x000D
uac2-explicit-feedback 0x000E
usb-dfu (DFU Mode) 0xFFFF

The USB device descriptor field bcdDevice (Device Release Number) represents the Zephyr kernel
major and minor versions as a binary coded decimal value.

6.5.2 USB device support APIs

USB device controller driver API

The USB device controller driver API is described in include/zephyr/drivers/usb/usb_dc.h and
sometimes referred to as the usb_dc API.

This API has some limitations by design, it does not follow Device Driver Model and is being
replaced by USB device controller (UDC) driver API.

API reference

group _usb_device_controller_api
USB Device Controller API.

Typedefs

typedef void (*usb_dc_ep_callback)(uint8_t ep, enum usb_dc_ep_cb_status_code cb_status)
Callback function signature for the USB Endpoint status.

typedef void (*usb_dc_status_callback)(enum usb_dc_status_code cb_status, const
uint8_t *param)

Callback function signature for the device.

Enums

enum usb_dc_status_code
USB Driver Status Codes.

Status codes reported by the registered device status callback.
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Values:

enumerator USB_DC_ERROR
USB error reported by the controller.

enumerator USB_DC_RESET
USB reset.

enumerator USB_DC_CONNECTED
USB connection established, hardware enumeration is completed.

enumerator USB_DC_CONFIGURED
USB configuration done.

enumerator USB_DC_DISCONNECTED
USB connection lost.

enumerator USB_DC_SUSPEND
USB connection suspended by the HOST.

enumerator USB_DC_RESUME
USB connection resumed by the HOST.

enumerator USB_DC_INTERFACE
USB interface selected.

enumerator USB_DC_SET_HALT
Set Feature ENDPOINT_HALT received.

enumerator USB_DC_CLEAR_HALT
Clear Feature ENDPOINT_HALT received.

enumerator USB_DC_SOF
Start of Frame received.

enumerator USB_DC_UNKNOWN
Initial USB connection status.

enum usb_dc_ep_cb_status_code
USB Endpoint Callback Status Codes.

Status Codes reported by the registered endpoint callback.

Values:

enumerator USB_DC_EP_SETUP
SETUP received.

enumerator USB_DC_EP_DATA_OUT
Out transaction on this EP, data is available for read.
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enumerator USB_DC_EP_DATA_IN
In transaction done on this EP.

enum usb_dc_ep_transfer_type
USB Endpoint Transfer Type.

Values:

enumerator USB_DC_EP_CONTROL = 0
Control type endpoint.

enumerator USB_DC_EP_ISOCHRONOUS
Isochronous type endpoint.

enumerator USB_DC_EP_BULK
Bulk type endpoint.

enumerator USB_DC_EP_INTERRUPT
Interrupt type endpoint

enum usb_dc_ep_synchronozation_type
USB Endpoint Synchronization Type.

Note

Valid only for Isochronous Endpoints

Values:

enumerator USB_DC_EP_NO_SYNCHRONIZATION = (0U « 2U)
No Synchronization.

enumerator USB_DC_EP_ASYNCHRONOUS = (1U « 2U)
Asynchronous.

enumerator USB_DC_EP_ADAPTIVE = (2U « 2U)
Adaptive.

enumerator USB_DC_EP_SYNCHRONOUS = (3U « 2U)
Synchronous.

Functions

int usb_dc_attach(void)
Attach USB for device connection.

Function to attach USB for device connection. Upon success, the USB PLL is enabled,
and the USB device is now capable of transmitting and receiving on the USB bus and
of generating interrupts.
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Returns
0 on success, negative errno code on fail.

int usb_dc_detach(void)
Detach the USB device.

Function to detach the USB device. Upon success, the USB hardware PLL is powered
down and USB communication is disabled.

Returns
0 on success, negative errno code on fail.

int usb_dc_reset(void)
Reset the USB device.

This function returns the USB device and firmware back to it’s initial state. N.B. the
USB PLL is handled by the usb_detach function

Returns
0 on success, negative errno code on fail.

int usb_dc_set_address(const uint8_t addr)
Set USB device address.

Parameters
• addr – [in] Device address

Returns
0 on success, negative errno code on fail.

void usb_dc_set_status_callback(const usb_dc_status_callback cb)
Set USB device controller status callback.

Function to set USB device controller status callback. The registered callback is used
to report changes in the status of the device controller. The status code are described
by the usb_dc_status_code enumeration.

Parameters
• cb – [in] Callback function

int usb_dc_ep_check_cap(const struct usb_dc_ep_cfg_data *const cfg)
check endpoint capabilities

Function to check capabilities of an endpoint. usb_dc_ep_cfg_data structure provides
the endpoint configuration parameters: endpoint address, endpoint maximum packet
size and endpoint type. The driver should check endpoint capabilities and return 0 if
the endpoint configuration is possible.

Parameters
• cfg – [in] Endpoint config

Returns
0 on success, negative errno code on fail.

int usb_dc_ep_configure(const struct usb_dc_ep_cfg_data *const cfg)
Configure endpoint.

Function to configure an endpoint. usb_dc_ep_cfg_data structure provides the end-
point configuration parameters: endpoint address, endpoint maximum packet size
and endpoint type.

Parameters
• cfg – [in] Endpoint config
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Returns
0 on success, negative errno code on fail.

int usb_dc_ep_set_stall(const uint8_t ep)
Set stall condition for the selected endpoint.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

Returns
0 on success, negative errno code on fail.

int usb_dc_ep_clear_stall(const uint8_t ep)
Clear stall condition for the selected endpoint.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

Returns
0 on success, negative errno code on fail.

int usb_dc_ep_is_stalled(const uint8_t ep, uint8_t *const stalled)
Check if the selected endpoint is stalled.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

• stalled – [out] Endpoint stall status

Returns
0 on success, negative errno code on fail.

int usb_dc_ep_halt(const uint8_t ep)
Halt the selected endpoint.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

Returns
0 on success, negative errno code on fail.

int usb_dc_ep_enable(const uint8_t ep)
Enable the selected endpoint.

Function to enable the selected endpoint. Upon success interrupts are enabled for the
corresponding endpoint and the endpoint is ready for transmitting/receiving data.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

Returns
0 on success, negative errno code on fail.

int usb_dc_ep_disable(const uint8_t ep)
Disable the selected endpoint.

Function to disable the selected endpoint. Upon success interrupts are disabled for the
corresponding endpoint and the endpoint is no longer able for transmitting/receiving
data.
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Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

Returns
0 on success, negative errno code on fail.

int usb_dc_ep_flush(const uint8_t ep)
Flush the selected endpoint.

This function flushes the FIFOs for the selected endpoint.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

Returns
0 on success, negative errno code on fail.

int usb_dc_ep_write(const uint8_t ep, const uint8_t *const data, const uint32_t data_len,
uint32_t *const ret_bytes)

Write data to the specified endpoint.

This function is called to write data to the specified endpoint. The supplied
usb_ep_callback function will be called when data is transmitted out.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

• data – [in] Pointer to data to write

• data_len – [in] Length of the data requested to write. This may be zero
for a zero length status packet.

• ret_bytes – [out] Bytes scheduled for transmission. This value may be
NULL if the application expects all bytes to be written

Returns
0 on success, negative errno code on fail.

int usb_dc_ep_read(const uint8_t ep, uint8_t *const data, const uint32_t max_data_len,
uint32_t *const read_bytes)

Read data from the specified endpoint.

This function is called by the endpoint handler function, after an OUT interrupt has
been received for that EP. The application must only call this function through the
supplied usb_ep_callback function. This function clears the ENDPOINT NAK, if all data
in the endpoint FIFO has been read, so as to accept more data from host.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

• data – [in] Pointer to data buffer to write to

• max_data_len – [in] Max length of data to read

• read_bytes – [out] Number of bytes read. If data is NULL and
max_data_len is 0 the number of bytes available for read should be re-
turned.

Returns
0 on success, negative errno code on fail.
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int usb_dc_ep_set_callback(const uint8_t ep, const usb_dc_ep_callback cb)
Set callback function for the specified endpoint.

Function to set callback function for notification of data received and available to ap-
plication or transmit done on the selected endpoint, NULL if callback not required by
application code. The callback status code is described by usb_dc_ep_cb_status_code.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

• cb – [in] Callback function

Returns
0 on success, negative errno code on fail.

int usb_dc_ep_read_wait(uint8_t ep, uint8_t *data, uint32_t max_data_len, uint32_t
*read_bytes)

Read data from the specified endpoint.

This is similar to usb_dc_ep_read, the difference being that, it doesn’t clear the end-
point NAKs so that the consumer is not bogged down by further upcalls till he is
done with the processing of the data. The caller should reactivate ep by invoking
usb_dc_ep_read_continue() do so.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

• data – [in] Pointer to data buffer to write to

• max_data_len – [in] Max length of data to read

• read_bytes – [out] Number of bytes read. If data is NULL and
max_data_len is 0 the number of bytes available for read should be re-
turned.

Returns
0 on success, negative errno code on fail.

int usb_dc_ep_read_continue(uint8_t ep)
Continue reading data from the endpoint.

Clear the endpoint NAK and enable the endpoint to accept more data from the host.
Usually called after usb_dc_ep_read_wait() when the consumer is fine to accept more
data. Thus these calls together act as a flow control mechanism.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

Returns
0 on success, negative errno code on fail.

int usb_dc_ep_mps(uint8_t ep)
Get endpoint max packet size.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

Returns
Endpoint max packet size (mps)
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int usb_dc_wakeup_request(void)
Start the host wake up procedure.

Function to wake up the host if it’s currently in sleep mode.

Returns
0 on success, negative errno code on fail.

struct usb_dc_ep_cfg_data
#include <usb_dc.h> USB Endpoint Configuration.

Structure containing the USB endpoint configuration.

Public Members

uint8_t ep_addr
The number associated with the EP in the device configuration structure IN EP =
0x80 | <endpoint number> OUT EP = 0x00 | <endpoint number>

uint16_t ep_mps
Endpoint max packet size.

enum usb_dc_ep_transfer_type ep_type
Endpoint Transfer Type.

May be Bulk, Interrupt, Control or Isochronous

USB device stack API

API reference There are two ways to transmit data, using the ‘low’ level read/write API or the
‘high’ level transfer API.

Low level API
To transmit data to the host, the class driver should call usb_write(). Upon completion
the registered endpoint callback will be called. Before sending another packet the class
driver should wait for the completion of the previous write. When data is received, the
registered endpoint callback is called. usb_read() should be used for retrieving the re-
ceived data. For CDC ACM sample driver this happens via the OUT bulk endpoint handler
(cdc_acm_bulk_out) mentioned in the endpoint array (cdc_acm_ep_data).

High level API
The usb_transfer method can be used to transfer data to/from the host. The transfer API will
automatically split the data transmission into one or more USB transaction(s), depending
endpoint max packet size. The class driver does not have to implement endpoint callback
and should set this callback to the generic usb_transfer_ep_callback.

Related code samples

802.15.4 USB
Implement a device that exposes an IEEE 802.15.4 radio over USB.

Console over USB CDC ACM
Output ”Hello World!” to the console over USB CDC ACM.

USB Audio headset
Implement a USB Audio headset device with audio IN/OUT loopback.
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USB Audio microphone & headphones
Implement a USB Audio microphone + headphones device with audio IN/OUT loopback.

USB CDC-ACM
Use USB CDC-ACM driver to implement a serial port echo.

USB CDC-ACM composite
Implement a composite USB device exposing two serial ports using USB CDC-ACM driver.

USB DFU (Device Firmware Upgrade)
Implement device firmware upgrade using the USB DFU class driver.

USB HID (Human Interface Device)
Use USB HID driver to enumerate as a raw HID device.

USB HID mouse
Implement a basic HID mouse device.

USB Mass Storage
Expose board’s RAM or FLASH as a USB disk using USB Mass Storage driver.

USB testing application
Test USB device drivers using a loopback function.

WebUSB
Receive and echo data from a web page using WebUSB API.

group _usb_device_core_api
USB Device Core Layer API.

Defines

USB_TRANS_READ

USB_TRANS_WRITE

USB_TRANS_NO_ZLP

USB_DEVICE_BOS_DESC_DEFINE_CAP
Helper macro to place the BOS compatibility descriptor in the right memory section.

Typedefs

typedef void (*usb_ep_callback)(uint8_t ep, enum usb_dc_ep_cb_status_code cb_status)
Callback function signature for the USB Endpoint status.

typedef int (*usb_request_handler)(struct usb_setup_packet *setup, int32_t *transfer_len,
uint8_t **payload_data)

Callback function signature for class specific requests.

Function which handles Class specific requests corresponding to an interface number
specified in the device descriptor table. For host to device direction the ‘len’ and ‘pay-
load_data’ contain the length of the received data and the pointer to the received data
respectively. For device to host class requests, ‘len’ and ‘payload_data’ should be set
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by the callback function with the length and the address of the data to be transmitted
buffer respectively.

typedef void (*usb_interface_config)(struct usb_desc_header *head, uint8_t
bInterfaceNumber)

Function for interface runtime configuration.

typedef void (*usb_transfer_callback)(uint8_t ep, int tsize, void *priv)
Callback function signature for transfer completion.

Functions

int usb_set_config(const uint8_t *usb_descriptor)
Configure USB controller.

Function to configure USB controller. Configuration parameters must be valid or an
error is returned

Parameters
• usb_descriptor – [in] USB descriptor table

Returns
0 on success, negative errno code on fail

int usb_deconfig(void)
Deconfigure USB controller.

This function returns the USB device to it’s initial state

Returns
0 on success, negative errno code on fail

int usb_enable(usb_dc_status_callback status_cb)
Enable the USB subsystem and associated hardware.

This function initializes the USB core subsystem and enables the corresponding hard-
ware so that it can begin transmitting and receiving on the USB bus, as well as gener-
ating interrupts.

Class-specific initialization and registration must be performed by the user before in-
voking this, so that any data or events on the bus are processed correctly by the asso-
ciated class handling code.

Parameters
• status_cb – [in] Callback registered by user to notify about USB device

controller state.

Returns
0 on success, negative errno code on fail.

int usb_disable(void)
Disable the USB device.

Function to disable the USB device. Upon success, the specified USB interface is clock
gated in hardware, it is no longer capable of generating interrupts.

Returns
0 on success, negative errno code on fail
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int usb_write(uint8_t ep, const uint8_t *data, uint32_t data_len, uint32_t *bytes_ret)
Write data to the specified endpoint.

Function to write data to the specified endpoint. The supplied usb_ep_callback will be
called when transmission is done.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

• data – [in] Pointer to data to write

• data_len – [in] Length of data requested to write. This may be zero for
a zero length status packet.

• bytes_ret – [out] Bytes written to the EP FIFO. This value may be NULL
if the application expects all bytes to be written

Returns
0 on success, negative errno code on fail

int usb_read(uint8_t ep, uint8_t *data, uint32_t max_data_len, uint32_t *ret_bytes)
Read data from the specified endpoint.

This function is called by the Endpoint handler function, after an OUT interrupt has
been received for that EP. The application must only call this function through the
supplied usb_ep_callback function.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

• data – [in] Pointer to data buffer to write to

• max_data_len – [in] Max length of data to read

• ret_bytes – [out] Number of bytes read. If data is NULL and
max_data_len is 0 the number of bytes available for read is returned.

Returns
0 on success, negative errno code on fail

int usb_ep_set_stall(uint8_t ep)
Set STALL condition on the specified endpoint.

This function is called by USB device class handler code to set stall condition on end-
point.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

Returns
0 on success, negative errno code on fail

int usb_ep_clear_stall(uint8_t ep)
Clears STALL condition on the specified endpoint.

This function is called by USB device class handler code to clear stall condition on end-
point.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table
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Returns
0 on success, negative errno code on fail

int usb_ep_read_wait(uint8_t ep, uint8_t *data, uint32_t max_data_len, uint32_t
*read_bytes)

Read data from the specified endpoint.

This is similar to usb_ep_read, the difference being that, it doesn’t clear the end-
point NAKs so that the consumer is not bogged down by further upcalls till he is
done with the processing of the data. The caller should reactivate ep by invoking
usb_ep_read_continue() do so.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

• data – [in] pointer to data buffer to write to

• max_data_len – [in] max length of data to read

• read_bytes – [out] Number of bytes read. If data is NULL and
max_data_len is 0 the number of bytes available for read should be re-
turned.

Returns
0 on success, negative errno code on fail.

int usb_ep_read_continue(uint8_t ep)
Continue reading data from the endpoint.

Clear the endpoint NAK and enable the endpoint to accept more data from the host.
Usually called after usb_ep_read_wait() when the consumer is fine to accept more data.
Thus these calls together acts as flow control mechanism.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

Returns
0 on success, negative errno code on fail.

void usb_transfer_ep_callback(uint8_t ep, enum usb_dc_ep_cb_status_code)
Transfer management endpoint callback.

If a USB class driver wants to use high-level transfer functions, driver needs to register
this callback as usb endpoint callback.

int usb_transfer(uint8_t ep, uint8_t *data, size_t dlen, unsigned int flags,
usb_transfer_callback cb, void *priv)

Start a transfer.

Start a usb transfer to/from the data buffer. This function is asynchronous and can be
executed in IRQ context. The provided callback will be called on transfer completion
(or error) in thread context.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

• data – [in] Pointer to data buffer to write-to/read-from

• dlen – [in] Size of data buffer

• flags – [in] Transfer flags (USB_TRANS_READ, USB_TRANS_WRITE…)
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• cb – [in] Function called on transfer completion/failure

• priv – [in] Data passed back to the transfer completion callback

Returns
0 on success, negative errno code on fail.

int usb_transfer_sync(uint8_t ep, uint8_t *data, size_t dlen, unsigned int flags)
Start a transfer and block-wait for completion.

Synchronous version of usb_transfer, wait for transfer completion before returning. A
return value of zero can also mean that transfer was cancelled or that the endpoint is
not ready. This is due to the design of transfers and usb_dc API.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

• data – [in] Pointer to data buffer to write-to/read-from

• dlen – [in] Size of data buffer

• flags – [in] Transfer flags

Returns
number of bytes transferred on success, negative errno code on fail.

void usb_cancel_transfer(uint8_t ep)
Cancel any ongoing transfer on the specified endpoint.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

void usb_cancel_transfers(void)
Cancel all ongoing transfers.

bool usb_transfer_is_busy(uint8_t ep)
Check that transfer is ongoing for the endpoint.

Parameters
• ep – [in] Endpoint address corresponding to the one listed in the device

configuration table

Returns
true if transfer is ongoing, false otherwise.

int usb_wakeup_request(void)
Start the USB remote wakeup procedure.

Function to request a remote wakeup. This feature must be enabled in configuration,
otherwise it will always return -ENOTSUP error.

Returns
0 on success, negative errno code on fail, i.e. when the bus is already active.

bool usb_get_remote_wakeup_status(void)
Get status of the USB remote wakeup feature.

Returns
true if remote wakeup has been enabled by the host, false otherwise.
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void usb_bos_register_cap(void *hdr)
Register BOS capability descriptor.

This function should be used by the application to register BOS capability descriptors
before the USB device stack is enabled.

Parameters
• hdr – [in] Pointer to BOS capability descriptor

struct usb_ep_cfg_data
#include <usb_device.h> USB Endpoint Configuration.

This structure contains configuration for the endpoint.

Public Members

usb_ep_callback ep_cb
Callback function for notification of data received and available to application or
transmit done, NULL if callback not required by application code.

uint8_t ep_addr
The number associated with the EP in the device configuration structure IN EP =
0x80 | <endpoint number> OUT EP = 0x00 | <endpoint number>

struct usb_interface_cfg_data
#include <usb_device.h> USB Interface Configuration.

This structure contains USB interface configuration.

Public Members

usb_request_handler class_handler
Handler for USB Class specific Control (EP 0) communications.

usb_request_handler vendor_handler
Handler for USB Vendor specific commands.

usb_request_handler custom_handler
The custom request handler gets a first chance at handling the request before it is
handed over to the ‘chapter 9’ request handler.

return 0 on success, -EINVAL if the request has not been handled by the custom
handler and instead needs to be handled by the core USB stack. Any other error
code to denote failure within the custom handler.

struct usb_cfg_data
#include <usb_device.h> USB device configuration.

The Application instantiates this with given parameters added using the
“usb_set_config” function. Once this function is called changes to this structure
will result in undefined behavior. This structure may only be updated after calls to
usb_deconfig
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Public Members

const uint8_t *usb_device_description
USB device description, see http://www.beyondlogic.org/usbnutshell/usb5.shtml#
DeviceDescriptors.

void *interface_descriptor
Pointer to interface descriptor.

usb_interface_config interface_config
Function for interface runtime configuration.

void (*cb_usb_status)(struct usb_cfg_data *cfg, enum usb_dc_status_code cb_status,
const uint8_t *param)

Callback to be notified on USB connection status change.

struct usb_interface_cfg_data interface
USB interface (Class) handler and storage space.

uint8_t num_endpoints
Number of individual endpoints in the device configuration.

struct usb_ep_cfg_data *endpoint
Pointer to an array of endpoint structs of length equal to the number of EP associ-
ated with the device description, not including control endpoints.

USB HID Class API

USB device specific part for HID support defined in include/zephyr/usb/class/usb_hid.h.

Related code samples

USB HID (Human Interface Device)
Use USB HID driver to enumerate as a raw HID device.

USB HID mouse
Implement a basic HID mouse device.

API Reference

group usb_hid_device_api

Typedefs

typedef int (*hid_cb_t)(const struct device *dev, struct usb_setup_packet *setup, int32_t
*len, uint8_t **data)
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typedef void (*hid_int_ready_callback)(const struct device *dev)

typedef void (*hid_protocol_cb_t)(const struct device *dev, uint8_t protocol)

typedef void (*hid_idle_cb_t)(const struct device *dev, uint16_t report_id)

Functions

void usb_hid_register_device(const struct device *dev, const uint8_t *desc, size_t size,
const struct hid_ops *op)

Register HID device.

Parameters
• dev – [in] Pointer to USB HID device

• desc – [in] Pointer to HID report descriptor

• size – [in] Size of HID report descriptor

• op – [in] Pointer to USB HID device interrupt struct

int hid_int_ep_write(const struct device *dev, const uint8_t *data, uint32_t data_len,
uint32_t *bytes_ret)

Write to USB HID interrupt endpoint buffer.

Parameters
• dev – [in] Pointer to USB HID device

• data – [in] Pointer to data buffer

• data_len – [in] Length of data to copy

• bytes_ret – [out] Bytes written to the EP buffer.

Returns
0 on success, negative errno code on fail.

int hid_int_ep_read(const struct device *dev, uint8_t *data, uint32_t max_data_len,
uint32_t *ret_bytes)

Read from USB HID interrupt endpoint buffer.

Parameters
• dev – [in] Pointer to USB HID device

• data – [in] Pointer to data buffer

• max_data_len – [in] Max length of data to copy

• ret_bytes – [out] Number of bytes to copy. If data is NULL and
max_data_len is 0 the number of bytes available in the buffer will be
returned.

Returns
0 on success, negative errno code on fail.

int usb_hid_set_proto_code(const struct device *dev, uint8_t proto_code)
Set USB HID class Protocol Code.

Should be called before usb_hid_init().

Parameters
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• dev – [in] Pointer to USB HID device

• proto_code – [in] Protocol Code to be used for bInterfaceProtocol

Returns
0 on success, negative errno code on fail.

int usb_hid_init(const struct device *dev)
Initialize USB HID class support.

Parameters
• dev – [in] Pointer to USB HID device

Returns
0 on success, negative errno code on fail.

struct hid_ops
#include <usb_hid.h> USB HID device interface.

Binary Device Object Store (BOS) support API

API reference

group usb_bos
USB Binary Device Object Store support.

Enums

enum usb_bos_capability_types
Device capability type codes.

Values:

enumerator USB_BOS_CAPABILITY_EXTENSION = 0x02

enumerator USB_BOS_CAPABILITY_PLATFORM = 0x05

struct usb_bos_descriptor
#include <bos.h> Root BOS Descriptor.

struct usb_bos_capability_lpm
#include <bos.h> BOS USB 2.0 extension capability descriptor.

struct usb_bos_platform_descriptor
#include <bos.h> BOS platform capability descriptor.

struct usb_bos_capability_webusb
#include <bos.h> WebUSB specific part of platform capability descriptor.

struct usb_bos_capability_msos
#include <bos.h> Microsoft OS 2.0 descriptor specific part of platform capability de-
scriptor.

New experimental USB support
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6.5.3 New USB device support

Overview

USB device support consists of the USB device controller (UDC) drivers , USB device controller
(UDC) driver API, and USB device stack, USB device stack (next) API. The USB device controller
(UDC) driver API provides a generic and vendor independent interface to USB device controllers,
and although, there a is clear separation between these layers, the purpose of USB device con-
troller (UDC) driver API is to serve new Zephyr’s USB device stack exclusively.

The new device stack supports multiple device controllers, meaning that if a SoC has multiple
controllers, they can be used simultaneously. Full and high-speed device controllers are sup-
ported. It also provides support for registering multiple function or class instances to a config-
uration at runtime, or changing the configuration later. It has built-in support for several USB
classes and provides an API to implement custom USB functions.

The new USB device support is considered experimental and will replace USB device support.

Built-in functions The USB device stack has built-in USB functions. Some can be used directly
in the user application through a special API, such as HID or Audio class devices, while oth-
ers use a general Zephyr RTOS driver API, such as MSC and CDC class implementations. The
Identification string identifies a class or function instance (n) and is used as an argument to the
usbd_register_class().

Class or function User API (if any) Identification
string

USB Audio 2 class Audio Class 2 device API uac2_n
USB CDC ACM class Universal Asynchronous Receiver-

Transmitter (UART)
cdc_acm_n

USB CDC ECM class Ethernet device cdc_ecm_n
USB Mass Storage Class (MSC) USB Mass Storage Class device API msc_n
USB Human Interface De-
vices (HID)

HID device API hid_n

Bluetooth HCI USB transport
layer

HCI RAW channel bt_hci_n

Samples
• usb-hid-keyboard

• uac2-explicit-feedback

Samples ported to new USB device support To build a sample that supports both the old and
new USB device stack, set the configuration -DCONF_FILE=usbd_next_prj.conf either directly or
via west.

• bluetooth-hci-usb-sample

• usb-cdc-acm

• usb-cdc-acm-console

• usb-mass

• usb-hid-mouse

• zperf To build the sample for the new device support, set the configuration over-
lay file -DDEXTRA_CONF_FILE=overlay-usbd_next_ecm.conf and devicetree overlay file
-DDTC_OVERLAY_FILE="usbd_next_ecm.overlay either directly or via west.
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How to configure and enable USB device support

For the USB device support samples in the Zephyr project repository, we have a common file for
instantiation, configuration and initialization, samples/subsys/usb/common/sample_usbd_init.c.
The following code snippets from this file are used as examples. USB Samples Kconfig options
used in the USB samples and prefixed with SAMPLE_USBD_ have default values specific to the
Zephyr project and the scope is limited to the project samples. In the examples below, you will
need to replace these Kconfig options and other defaults with values appropriate for your appli-
cation or hardware.

The USB device stack requires a context structure to manage its properties and runtime data. The
preferred way to define a device context is to use the USBD_DEVICE_DEFINE macro. This creates a
static usbd_context variable with a given name. Any number of contexts may be instantiated. A
USB controller device can be assigned to multiple contexts, but only one context can be initialized
and used at a time. Context properties must not be directly accessed or manipulated by the
application.

/*
* Instantiate a context named sample_usbd using the default USB device
* controller, the Zephyr project vendor ID, and the sample product ID.
* Zephyr project vendor ID must not be used outside of Zephyr samples.
*/

USBD_DEVICE_DEFINE(sample_usbd,
DEVICE_DT_GET(DT_NODELABEL(zephyr_udc0)),
ZEPHYR_PROJECT_USB_VID, CONFIG_SAMPLE_USBD_PID);

Your USB device may have manufacturer, product, and serial number string de-
scriptors. To instantiate these string descriptors, the application should use
the appropriate USBD_DESC_MANUFACTURER_DEFINE, USBD_DESC_PRODUCT_DEFINE, and
USBD_DESC_SERIAL_NUMBER_DEFINE macros. String descriptors also require a single instan-
tiation of the language descriptor using the USBD_DESC_LANG_DEFINE macro.

USBD_DESC_LANG_DEFINE(sample_lang);
USBD_DESC_MANUFACTURER_DEFINE(sample_mfr, CONFIG_SAMPLE_USBD_MANUFACTURER);
USBD_DESC_PRODUCT_DEFINE(sample_product, CONFIG_SAMPLE_USBD_PRODUCT);
USBD_DESC_SERIAL_NUMBER_DEFINE(sample_sn);

String descriptors must be added to the device context at runtime before initializing the USB
device with usbd_add_descriptor().

err = usbd_add_descriptor(&sample_usbd, &sample_lang);
if (err) {

LOG_ERR("Failed to initialize language descriptor (%d)", err);
return NULL;

}

err = usbd_add_descriptor(&sample_usbd, &sample_mfr);
if (err) {

LOG_ERR("Failed to initialize manufacturer descriptor (%d)", err);
return NULL;

}

err = usbd_add_descriptor(&sample_usbd, &sample_product);
if (err) {

LOG_ERR("Failed to initialize product descriptor (%d)", err);
return NULL;

}

err = usbd_add_descriptor(&sample_usbd, &sample_sn);
if (err) {

LOG_ERR("Failed to initialize SN descriptor (%d)", err);
(continues on next page)
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(continued from previous page)
return NULL;

}

USB device requires at least one configuration instance per supported speed. The application
should use USBD_CONFIGURATION_DEFINE to instantiate a configuration. Later, USB device func-
tions are assigned to a configuration.

static const uint8_t attributes = (IS_ENABLED(CONFIG_SAMPLE_USBD_SELF_POWERED) ?
USB_SCD_SELF_POWERED : 0) |

(IS_ENABLED(CONFIG_SAMPLE_USBD_REMOTE_WAKEUP) ?
USB_SCD_REMOTE_WAKEUP : 0);

/* Full speed configuration */
USBD_CONFIGURATION_DEFINE(sample_fs_config,

attributes,
CONFIG_SAMPLE_USBD_MAX_POWER, &fs_cfg_desc);

/* High speed configuration */
USBD_CONFIGURATION_DEFINE(sample_hs_config,

attributes,
CONFIG_SAMPLE_USBD_MAX_POWER, &hs_cfg_desc);

Each configuration instance for a specific speed must be added to the device context at runtime
before the USB device is initialized using usbd_add_configuration(). Note USBD_SPEED_FS and
USBD_SPEED_HS. The first full-speed or high-speed configuration will get bConfigurationValue
one, and then further upward.

err = usbd_add_configuration(&sample_usbd, USBD_SPEED_FS,
&sample_fs_config);

if (err) {
LOG_ERR("Failed to add Full-Speed configuration");
return NULL;

}

Although we have already done a lot, this USB device has no function. A device can have mul-
tiple configurations with different set of functions at different speeds. A function or class can
be registered on a USB device before it is initialized using usbd_register_class(). The desired
configuration is specified using USBD_SPEED_FS or USBD_SPEED_HS and the configuration number.
For simple cases, usbd_register_all_classes() can be used to register all available instances.

err = usbd_register_all_classes(&sample_usbd, USBD_SPEED_FS, 1);
if (err) {

LOG_ERR("Failed to add register classes");
return NULL;

}

The last step in the preparation is to initialize the device with usbd_init(). After this, the con-
figuration of the device cannot be changed. A device can be deinitialized with usbd_shutdown()
and all instances can be reused, but the previous steps must be repeated. So it is possible to
shutdown a device, register another type of configuration or function, and initialize it again. At
the USB controller level, usbd_init() does only what is necessary to detect VBUS changes. There
are controller types where the next step is only possible if a VBUS signal is present.

A function or class implementation may require its own specific configuration steps, which
should be performed prior to initializing the USB device.

err = usbd_init(&sample_usbd);
if (err) {

LOG_ERR("Failed to initialize device support");
return NULL;

}
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The final step to enable the USB device is usbd_enable(), after that, if the USB device is connected
to a USB host controller, the host can start enumerating the device. The application can disable
the USB device using usbd_disable().

ret = usbd_enable(sample_usbd);
if (ret) {

LOG_ERR("Failed to enable device support");
return ret;

}

USB Message notifications The application can register a callback using
usbd_msg_register_cb() to receive message notification from the USB device support sub-
system. The messages are mostly about the common device state changes, and a few specific
types from the USB CDC ACM implementation.

err = usbd_msg_register_cb(&sample_usbd, msg_cb);
if (err) {

LOG_ERR("Failed to register message callback");
return NULL;

}

The helper function usbd_msg_type_string() can be used to convert usbd_msg_type to a human
readable form for logging.

If the controller supports VBUS state change detection, the battery-powered application may
want to enable the USB device only when it is connected to a host. A generic application should
use usbd_can_detect_vbus() to check for this capability.

static void msg_cb(struct usbd_context *const usbd_ctx,
const struct usbd_msg *const msg)

{
LOG_INF("USBD message: %s", usbd_msg_type_string(msg->type));

if (usbd_can_detect_vbus(usbd_ctx)) {
if (msg->type == USBD_MSG_VBUS_READY) {

if (usbd_enable(usbd_ctx)) {
LOG_ERR("Failed to enable device support");

}
}

if (msg->type == USBD_MSG_VBUS_REMOVED) {
if (usbd_disable(usbd_ctx)) {

LOG_ERR("Failed to disable device support");
}

}
}

}

6.5.4 New USB device support APIs

USB device controller (UDC) driver API

The USB device controller driver API is described in include/zephyr/drivers/usb/udc.h and re-
ferred to as the UDC driver API.

UDC driver API is experimental and is subject to change without notice. It is a replacement for
USB device controller driver API. If you wish to port an existing driver to UDC driver API, or add
a new driver, please use drivers/usb/udc/udc_skeleton.c as a starting point.
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API reference

group udc_api
New USB device controller (UDC) driver API.

Functions

static inline bool udc_is_initialized(const struct device *dev)
Checks whether the controller is initialized.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Returns
true if controller is initialized, false otherwise

static inline bool udc_is_enabled(const struct device *dev)
Checks whether the controller is enabled.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Returns
true if controller is enabled, false otherwise

static inline bool udc_is_suspended(const struct device *dev)
Checks whether the controller is suspended.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Returns
true if controller is suspended, false otherwise

int udc_init(const struct device *dev, udc_event_cb_t event_cb)
Initialize USB device controller.

Initialize USB device controller and control IN/OUT endpoint. After initialization con-
troller driver should be able to detect power state of the bus and signal power state
changes.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• event_cb – [in] Event callback from the higher layer (USB device stack)

Return values
• -EINVAL – on parameter error (no callback is passed)

• -EALREADY – already initialized

Returns
0 on success, all other values should be treated as error.

int udc_enable(const struct device *dev)
Enable USB device controller.

Enable powered USB device controller and allow host to recognize and enumerate the
device.

Parameters
• dev – [in] Pointer to device struct of the driver instance
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Return values
• -EPERM – controller is not initialized

• -EALREADY – already enabled

Returns
0 on success, all other values should be treated as error.

int udc_disable(const struct device *dev)
Disable USB device controller.

Disable enabled USB device controller. The driver should continue to detect power
state changes.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Return values
-EALREADY – already disabled

Returns
0 on success, all other values should be treated as error.

int udc_shutdown(const struct device *dev)
Poweroff USB device controller.

Shut down the controller completely to reduce energy consumption or to change the
role of the controller.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Return values
-EALREADY – controller is not initialized

Returns
0 on success, all other values should be treated as error.

static inline struct udc_device_caps udc_caps(const struct device *dev)
Get USB device controller capabilities.

Obtain the capabilities of the controller such as full speed (FS), high speed (HS), and
more.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Returns
USB device controller capabilities.

enum udc_bus_speed udc_device_speed(const struct device *dev)
Get actual USB device speed.

The function should be called after the reset event to determine the actual bus speed.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Returns
USB device controller capabilities.

static inline int udc_set_address(const struct device *dev, const uint8_t addr)
Set USB device address.

Set address of enabled USB device.
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Parameters
• dev – [in] Pointer to device struct of the driver instance

• addr – [in] USB device address

Return values
-EPERM – controller is not enabled (or not initialized)

Returns
0 on success, all other values should be treated as error.

static inline int udc_test_mode(const struct device *dev, const uint8_t mode, const bool
dryrun)

Enable Test Mode.

For compliance testing, high-speed controllers must support test modes. A particular
test is enabled by a SetFeature(TEST_MODE) request. To disable a test mode, device
needs to be power cycled.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• mode – [in] Test mode

• dryrun – [in] Verify that a particular mode can be enabled, but do not
enable test mode

Return values
-ENOTSUP – Test mode is not supported

Returns
0 on success, all other values should be treated as error.

static inline int udc_host_wakeup(const struct device *dev)
Initiate host wakeup procedure.

Initiate host wakeup. Only possible when the bus is suspended.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Return values
-EPERM – controller is not enabled (or not initialized)

Returns
0 on success, all other values should be treated as error.

int udc_ep_try_config(const struct device *dev, const uint8_t ep, const uint8_t attributes,
uint16_t *const mps, const uint8_t interval)

Try an endpoint configuration.

Try an endpoint configuration based on endpoint descriptor. This function may modify
wMaxPacketSize descriptor fields of the endpoint. All properties of the descriptor, such
as direction, and transfer type, should be set correctly. If wMaxPacketSize value is zero,
it will be updated to maximum buffer size of the endpoint.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• ep – [in] Endpoint address (same as bEndpointAddress)

• attributes – [in] Endpoint attributes (same as bmAttributes)

• mps – [in] Maximum packet size (same as wMaxPacketSize)

• interval – [in] Polling interval (same as bInterval)
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Return values
• -EINVAL – on wrong parameter

• -ENOTSUP – endpoint configuration not supported

• -ENODEV – no endpoints available

Returns
0 on success, all other values should be treated as error.

int udc_ep_enable(const struct device *dev, const uint8_t ep, const uint8_t attributes, const
uint16_t mps, const uint8_t interval)

Configure and enable endpoint.

Configure and make an endpoint ready for use. Valid for all endpoints except control
IN/OUT.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• ep – [in] Endpoint address (same as bEndpointAddress)

• attributes – [in] Endpoint attributes (same as bmAttributes)

• mps – [in] Maximum packet size (same as wMaxPacketSize)

• interval – [in] Polling interval (same as bInterval)

Return values
• -EINVAL – on wrong parameter (control IN/OUT endpoint)

• -EPERM – controller is not initialized

• -ENODEV – endpoint configuration not found

• -EALREADY – endpoint is already enabled

Returns
0 on success, all other values should be treated as error.

int udc_ep_disable(const struct device *dev, const uint8_t ep)
Disable endpoint.

Valid for all endpoints except control IN/OUT.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• ep – [in] Endpoint address

Return values
• -EINVAL – on wrong parameter (control IN/OUT endpoint)

• -ENODEV – endpoint configuration not found

• -EALREADY – endpoint is already disabled

• -EPERM – controller is not initialized

Returns
0 on success, all other values should be treated as error.

int udc_ep_set_halt(const struct device *dev, const uint8_t ep)
Halt endpoint.

Valid for all endpoints.

Parameters
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• dev – [in] Pointer to device struct of the driver instance

• ep – [in] Endpoint address

Return values
• -ENODEV – endpoint configuration not found

• -ENOTSUP – not supported (e.g. isochronous endpoint)

• -EPERM – controller is not enabled

Returns
0 on success, all other values should be treated as error.

int udc_ep_clear_halt(const struct device *dev, const uint8_t ep)
Clear endpoint halt.

Valid for all endpoints.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• ep – [in] Endpoint address

Return values
• -ENODEV – endpoint configuration not found

• -ENOTSUP – not supported (e.g. isochronous endpoint)

• -EPERM – controller is not enabled

Returns
0 on success, all other values should be treated as error.

int udc_ep_enqueue(const struct device *dev, struct net_buf *const buf)
Queue USB device controller request.

Add request to the queue. If the queue is empty, the request buffer can be claimed by
the controller immediately.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• buf – [in] Pointer to UDC request buffer

Return values
• -ENODEV – endpoint configuration not found

• -EACCES – endpoint is not enabled (TBD)

• -EBUSY – request can not be queued

• -EPERM – controller is not initialized

Returns
0 on success, all other values should be treated as error.

int udc_ep_dequeue(const struct device *dev, const uint8_t ep)
Remove all USB device controller requests from endpoint queue.

UDC_EVT_EP_REQUEST event will be generated when the driver releases claimed
buffer, no new requests will be claimed, all requests in the queue will passed as
chained list of the event variable buf. The endpoint queue is empty after that.

Parameters
• dev – [in] Pointer to device struct of the driver instance
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• ep – [in] Endpoint address

Return values
• -ENODEV – endpoint configuration not found

• -EACCES – endpoint is not disabled

• -EPERM – controller is not initialized

Returns
0 on success, all other values should be treated as error.

struct net_buf *udc_ep_buf_alloc(const struct device *dev, const uint8_t ep, const size_t
size)

Allocate UDC request buffer.

Allocate a new buffer from common request buffer pool.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• ep – [in] Endpoint address

• size – [in] Size of the request buffer

Returns
pointer to allocated request or NULL on error.

int udc_ep_buf_free(const struct device *dev, struct net_buf *const buf)
Free UDC request buffer.

Put the buffer back into the request buffer pool.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• buf – [in] Pointer to UDC request buffer

Returns
0 on success, all other values should be treated as error.

static inline void udc_ep_buf_set_zlp(struct net_buf *const buf)
Set ZLP flag in requests metadata.

The controller should send a ZLP at the end of the transfer.

Parameters
• buf – [in] Pointer to UDC request buffer

static inline struct udc_buf_info *udc_get_buf_info(const struct net_buf *const buf)
Get requests metadata.

Parameters
• buf – [in] Pointer to UDC request buffer

Returns
pointer to metadata structure.

group udc_buf
Buffer macros and definitions used in USB device support.
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Defines

UDC_BUF_ALIGN
Buffer alignment required by the UDC driver.

UDC_BUF_GRANULARITY
Buffer granularity required by the UDC driver.

UDC_STATIC_BUF_DEFINE(name, size)
Define a UDC driver-compliant static buffer.

This macro should be used if the application defines its own buffers to be used for USB
transfers.

Parameters
• name – Buffer name

• size – Buffer size

IS_UDC_ALIGNED(buf)
Verify that the buffer is aligned as required by the UDC driver.

See also

IS_ALIGNED

Parameters
• buf – Buffer pointer

UDC_BUF_POOL_VAR_DEFINE(pname, count, size, ud_size, fdestroy)
Define a new pool for UDC buffers with variable-size payloads.

This macro is similar to NET_BUF_POOL_VAR_DEFINE, but provides buffers with align-
ment and granularity suitable for use by UDC driver.

See also

NET_BUF_POOL_VAR_DEFINE

Parameters
• pname – Name of the pool variable.

• count – Number of buffers in the pool.

• size – Maximum data payload per buffer.

• ud_size – User data space to reserve per buffer.

• fdestroy – Optional destroy callback when buffer is freed.
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UDC_BUF_POOL_DEFINE(pname, count, size, ud_size, fdestroy)
Define a new pool for UDC buffers based on fixed-size data.

This macro is similar to NET_BUF_POOL_DEFINE, but provides buffers with alignment
and granularity suitable for use by UDC driver.

See also

NET_BUF_POOL_DEFINE

Parameters
• pname – Name of the pool variable.

• count – Number of buffers in the pool.

• size – Maximum data payload per buffer.

• ud_size – User data space to reserve per buffer.

• fdestroy – Optional destroy callback when buffer is freed.

USB device stack (next) API

New USB device stack API is experimental and is subject to change without notice.

Related code samples

Console over USB CDC ACM
Output ”Hello World!” to the console over USB CDC ACM.

USB Audio asynchronous explicit feedback sample
USB Audio 2 explicit feedback sample playing audio on I2S.

USB CDC-ACM
Use USB CDC-ACM driver to implement a serial port echo.

USB HID keyboard
Implement a basic HID keyboard device.

USB Mass Storage
Expose board’s RAM or FLASH as a USB disk using USB Mass Storage driver.

USB shell
Use shell commands to interact with USB device stack.

API reference

group usbd_api
New USB device stack core API.

Defines

USB_BSTRING_LENGTH(s)
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USB_STRING_DESCRIPTOR_LENGTH(s)

USBD_NUMOF_INTERFACES_MAX

USBD_CCTX_REGISTERED
USB Class instance registered flag.

USBD_DEVICE_DEFINE(device_name, udc_dev, vid, pid)
Define USB device context structure.

Macro defines a USB device structure needed by the stack to manage its proper-
ties and runtime data. The vid and pid parameters can also be changed using
usbd_device_set_vid() and usbd_device_set_pid().

Example of use:

USBD_DEVICE_DEFINE(sample_usbd,
DEVICE_DT_GET(DT_NODELABEL(zephyr_udc0)),
YOUR_VID, YOUR_PID);

Parameters
• device_name – USB device context name

• udc_dev – Pointer to UDC device structure

• vid – Vendor ID

• pid – Product ID

USBD_CONFIGURATION_DEFINE(name, attrib, power, desc_nd)
Define USB device configuration.

USB device requires at least one configuration instance per supported speed. attrib
is a combination of USB_SCD_SELF_POWERED or USB_SCD_REMOTE_WAKEUP, depending on
which characteristic the USB device should have in this configuration.

Parameters
• name – Configuration name

• attrib – Configuration characteristics. Attributes can also be updated
with usbd_config_attrib_rwup() and usbd_config_attrib_self()

• power – bMaxPower value in 2 mA units. This value can also be set with
usbd_config_maxpower()

• desc_nd – Address of the string descriptor node used to describe the con-
figuration, see USBD_DESC_CONFIG_DEFINE(). String descriptors are op-
tional and the parameter can be NULL.

USBD_DESC_LANG_DEFINE(name)
Create a string descriptor node and language string descriptor.

This macro defines a descriptor node and a string descriptor that, when added to the
device context, is automatically used as the language string descriptor zero. Both de-
scriptor node and descriptor are defined with static-storage-class specifier. Default
and currently only supported language ID is 0x0409 English (United States). If string
descriptors are used, it is necessary to add this descriptor as the first one to the USB
device context.

Parameters
• name – Language string descriptor node identifier.
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USBD_DESC_STRING_DEFINE(d_name, d_string, d_utype)
Create a string descriptor.

This macro defines a descriptor node and a string descriptor. The string literal passed
to the macro should be in the ASCII7 format. It is converted to UTF16LE format on the
host request.

Parameters
• d_name – Internal string descriptor node identifier name

• d_string – ASCII7 encoded string literal

• d_utype – String descriptor usage type

USBD_DESC_MANUFACTURER_DEFINE(d_name, d_string)
Create a string descriptor node and manufacturer string descriptor.

This macro defines a descriptor node and a string descriptor that, when added to the
device context, is automatically used as the manufacturer string descriptor. Both de-
scriptor node and descriptor are defined with static-storage-class specifier.

Parameters
• d_name – String descriptor node identifier.

• d_string – ASCII7 encoded manufacturer string literal

USBD_DESC_PRODUCT_DEFINE(d_name, d_string)
Create a string descriptor node and product string descriptor.

This macro defines a descriptor node and a string descriptor that, when added to the
device context, is automatically used as the product string descriptor. Both descriptor
node and descriptor are defined with static-storage-class specifier.

Parameters
• d_name – String descriptor node identifier.

• d_string – ASCII7 encoded product string literal

USBD_DESC_SERIAL_NUMBER_DEFINE(d_name)
Create a string descriptor node and serial number string descriptor.

This macro defines a descriptor node that, when added to the device context, is auto-
matically used as the serial number string descriptor. A valid serial number is gener-
ated from HWID (HWINFO= whenever this string descriptor is requested.

Parameters
• d_name – String descriptor node identifier.

USBD_DESC_CONFIG_DEFINE(d_name, d_string)
Create a string descriptor node for configuration descriptor.

This macro defines a descriptor node whose address can be used as an argument for
the USBD_CONFIGURATION_DEFINE() macro.

Parameters
• d_name – String descriptor node identifier.

• d_string – ASCII7 encoded configuration description string literal

USBD_DESC_BOS_DEFINE(name, len, subset)
Define BOS Device Capability descriptor node.

The application defines a BOS capability descriptor node for descriptors such as USB
2.0 Extension Descriptor.
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Parameters
• name – Descriptor node identifier

• len – Device Capability descriptor length

• subset – Pointer to a Device Capability descriptor

USBD_DEFINE_CLASS(class_name, class_api, class_priv, class_v_reqs)
Define USB device support class data.

Macro defines class (function) data, as well as corresponding node structures used in-
ternally by the stack.

Parameters
• class_name – Class name

• class_api – Pointer to struct usbd_class_api

• class_priv – Class private data

• class_v_reqs – Pointer to struct usbd_cctx_vendor_req

VENDOR_REQ_DEFINE(_reqs, _len)
Helper to declare request table of usbd_cctx_vendor_req.

Parameters
• _reqs – Pointer to the vendor request field

• _len – Number of supported vendor requests

USBD_VENDOR_REQ(_reqs...)
Helper to declare supported vendor requests.

Parameters
• _reqs – Variable number of vendor requests

Typedefs

typedef void (*usbd_msg_cb_t)(struct usbd_context *const ctx, const struct usbd_msg
*const msg)

Callback type definition for USB device message delivery.

The implementation uses the system workqueue, and a callback provided and regis-
tered by the application. The application callback is called in the context of the system
workqueue. Notification messages are stored in a queue and delivered to the callback
in sequence.

Param ctx
[in] Pointer to USB device support context

Parammsg
[in] Pointer to USB device message

Enums

enum usbd_ch9_state
USB device support middle layer runtime state.

Part of USB device states without suspended and powered states, as it is better to track
them separately.
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Values:

enumerator USBD_STATE_DEFAULT = 0

enumerator USBD_STATE_ADDRESS

enumerator USBD_STATE_CONFIGURED

enum usbd_speed
USB device speed.

Values:

enumerator USBD_SPEED_FS
Device supports or is connected to a full speed bus.

enumerator USBD_SPEED_HS
Device supports or is connected to a high speed bus

enumerator USBD_SPEED_SS
Device supports or is connected to a super speed bus.

Functions

static inline struct usbd_context *usbd_class_get_ctx(const struct usbd_class_data *const
c_data)

Get the USB device runtime context under which the class is registered.

The class implementation must use this function and not access the members of the
struct directly.

Parameters
• c_data – [in] Pointer to USB device class data

Returns
Pointer to USB device runtime context

static inline void *usbd_class_get_private(const struct usbd_class_data *const c_data)
Get class implementation private data.

The class implementation must use this function and not access the members of the
struct directly.

Parameters
• c_data – [in] Pointer to USB device class data

Returns
Pointer to class implementation private data

int usbd_add_descriptor(struct usbd_context *uds_ctx, struct usbd_desc_node *dn)
Add common USB descriptor.

Add common descriptor like string or BOS Device Capability.

Parameters
• uds_ctx – [in] Pointer to USB device support context
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• dn – [in] Pointer to USB descriptor node

Returns
0 on success, other values on fail.

uint8_t usbd_str_desc_get_idx(const struct usbd_desc_node *const desc_nd)
Get USB string descriptor index from descriptor node.

Parameters
• desc_nd – [in] Pointer to USB descriptor node

Returns
Descriptor index, 0 if descriptor is not part of any device

void usbd_remove_descriptor(struct usbd_desc_node *const desc_nd)
Remove USB string descriptor.

Remove linked USB string descriptor from any list.

Parameters
• desc_nd – [in] Pointer to USB descriptor node

int usbd_add_configuration(struct usbd_context *uds_ctx, const enum usbd_speed speed,
struct usbd_config_node *cd)

Add a USB device configuration.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• speed – [in] Speed at which this configuration operates

• cd – [in] Pointer to USB configuration node

Returns
0 on success, other values on fail.

int usbd_register_class(struct usbd_context *uds_ctx, const char *name, const enum
usbd_speed speed, uint8_t cfg)

Register an USB class instance.

An USB class implementation can have one or more instances. To identify the instances
we use device drivers API. Device names have a prefix derived from the name of the
class, for example CDC_ACM for CDC ACM class instance, and can also be easily iden-
tified in the shell. Class instance can only be registered when the USB device stack is
disabled. Registered instances are initialized at initialization of the USB device stack,
and the interface descriptors of each instance are adapted to the whole context.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• name – [in] Class instance name

• speed – [in] Configuration speed

• cfg – [in] Configuration value (bConfigurationValue)

Returns
0 on success, other values on fail.

int usbd_register_all_classes(struct usbd_context *uds_ctx, const enum usbd_speed
speed, uint8_t cfg)

Register all available USB class instances.

Register all available instances. Like usbd_register_class, but does not take the instance
name and instead registers all available instances.
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Note

This cannot be combined. If your application calls usbd_register_class for any de-
vice, configuration number, or instance, either usbd_register_class or this function
will fail.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• speed – [in] Configuration speed

• cfg – [in] Configuration value (bConfigurationValue)

Returns
0 on success, other values on fail.

int usbd_unregister_class(struct usbd_context *uds_ctx, const char *name, const enum
usbd_speed speed, uint8_t cfg)

Unregister an USB class instance.

USB class instance will be removed and will not appear on the next start of the stack.
Instance can only be unregistered when the USB device stack is disabled.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• name – [in] Class instance name

• speed – [in] Configuration speed

• cfg – [in] Configuration value (bConfigurationValue)

Returns
0 on success, other values on fail.

int usbd_unregister_all_classes(struct usbd_context *uds_ctx, const enum usbd_speed
speed, uint8_t cfg)

Unregister all available USB class instances.

Unregister all available instances. Like usbd_unregister_class, but does not take the
instance name and instead unregisters all available instances.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• speed – [in] Configuration speed

• cfg – [in] Configuration value (bConfigurationValue)

Returns
0 on success, other values on fail.

int usbd_msg_register_cb(struct usbd_context *const uds_ctx, const usbd_msg_cb_t cb)
Register USB notification message callback.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• cb – [in] Pointer to message callback function

Returns
0 on success, other values on fail.
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int usbd_init(struct usbd_context *uds_ctx)
Initialize USB device.

Initialize USB device descriptors and configuration, initialize USB device controller.
Class instances should be registered before they are involved. However, the stack
should also initialize without registered instances, even if the host would complain
about missing interfaces.

Parameters
• uds_ctx – [in] Pointer to USB device support context

Returns
0 on success, other values on fail.

int usbd_enable(struct usbd_context *uds_ctx)
Enable the USB device support and registered class instances.

This function enables the USB device support.

Parameters
• uds_ctx – [in] Pointer to USB device support context

Returns
0 on success, other values on fail.

int usbd_disable(struct usbd_context *uds_ctx)
Disable the USB device support.

This function disables the USB device support.

Parameters
• uds_ctx – [in] Pointer to USB device support context

Returns
0 on success, other values on fail.

int usbd_shutdown(struct usbd_context *const uds_ctx)
Shutdown the USB device support.

This function completely disables the USB device support.

Parameters
• uds_ctx – [in] Pointer to USB device support context

Returns
0 on success, other values on fail.

int usbd_ep_set_halt(struct usbd_context *uds_ctx, uint8_t ep)
Halt endpoint.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• ep – [in] Endpoint address

Returns
0 on success, or error from udc_ep_set_halt()

int usbd_ep_clear_halt(struct usbd_context *uds_ctx, uint8_t ep)
Clear endpoint halt.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• ep – [in] Endpoint address
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Returns
0 on success, or error from udc_ep_clear_halt()

bool usbd_ep_is_halted(struct usbd_context *uds_ctx, uint8_t ep)
Checks whether the endpoint is halted.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• ep – [in] Endpoint address

Returns
true if endpoint is halted, false otherwise

struct net_buf *usbd_ep_buf_alloc(const struct usbd_class_data *const c_data, const
uint8_t ep, const size_t size)

Allocate buffer for USB device request.

Allocate a new buffer from controller’s driver buffer pool.

Parameters
• c_data – [in] Pointer to USB device class data

• ep – [in] Endpoint address

• size – [in] Size of the request buffer

Returns
pointer to allocated request or NULL on error.

int usbd_ep_ctrl_enqueue(struct usbd_context *const uds_ctx, struct net_buf *const buf)
Queue USB device control request.

Add control request to the queue.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• buf – [in] Pointer to UDC request buffer

Returns
0 on success, all other values should be treated as error.

int usbd_ep_enqueue(const struct usbd_class_data *const c_data, struct net_buf *const
buf)

Queue USB device request.

Add request to the queue.

Parameters
• c_data – [in] Pointer to USB device class data

• buf – [in] Pointer to UDC request buffer

Returns
0 on success, or error from udc_ep_enqueue()

int usbd_ep_dequeue(struct usbd_context *uds_ctx, const uint8_t ep)
Remove all USB device controller requests from endpoint queue.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• ep – [in] Endpoint address
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Returns
0 on success, or error from udc_ep_dequeue()

int usbd_ep_buf_free(struct usbd_context *uds_ctx, struct net_buf *buf)
Free USB device request buffer.

Put the buffer back into the request buffer pool.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• buf – [in] Pointer to UDC request buffer

Returns
0 on success, all other values should be treated as error.

bool usbd_is_suspended(struct usbd_context *uds_ctx)
Checks whether the USB device controller is suspended.

Parameters
• uds_ctx – [in] Pointer to USB device support context

Returns
true if endpoint is halted, false otherwise

int usbd_wakeup_request(struct usbd_context *uds_ctx)
Initiate the USB remote wakeup (TBD)

Returns
0 on success, other values on fail.

enum usbd_speed usbd_bus_speed(const struct usbd_context *const uds_ctx)
Get actual device speed.

Parameters
• uds_ctx – [in] Pointer to a device context

Returns
Actual device speed

enum usbd_speed usbd_caps_speed(const struct usbd_context *const uds_ctx)
Get highest speed supported by the controller.

Parameters
• uds_ctx – [in] Pointer to a device context

Returns
Highest supported speed

int usbd_device_set_bcd_usb(struct usbd_context *const uds_ctx, const enum usbd_speed
speed, const uint16_t bcd)

Set USB device descriptor value bcdUSB.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• speed – [in] Speed for which the bcdUSB should be set

• bcd – [in] bcdUSB value

Returns
0 on success, other values on fail.
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int usbd_device_set_vid(struct usbd_context *const uds_ctx, const uint16_t vid)
Set USB device descriptor value idVendor.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• vid – [in] idVendor value

Returns
0 on success, other values on fail.

int usbd_device_set_pid(struct usbd_context *const uds_ctx, const uint16_t pid)
Set USB device descriptor value idProduct.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• pid – [in] idProduct value

Returns
0 on success, other values on fail.

int usbd_device_set_bcd_device(struct usbd_context *const uds_ctx, const uint16_t bcd)
Set USB device descriptor value bcdDevice.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• bcd – [in] bcdDevice value

Returns
0 on success, other values on fail.

int usbd_device_set_code_triple(struct usbd_context *const uds_ctx, const enum
usbd_speed speed, const uint8_t base_class, const
uint8_t subclass, const uint8_t protocol)

Set USB device descriptor code triple Base Class, SubClass, and Protocol.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• speed – [in] Speed for which the code triple should be set

• base_class – [in] bDeviceClass value

• subclass – [in] bDeviceSubClass value

• protocol – [in] bDeviceProtocol value

Returns
0 on success, other values on fail.

int usbd_config_attrib_rwup(struct usbd_context *const uds_ctx, const enum usbd_speed
speed, const uint8_t cfg, const bool enable)

Setup USB device configuration attribute Remote Wakeup.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• speed – [in] Configuration speed

• cfg – [in] Configuration number

• enable – [in] Sets attribute if true, clears it otherwise
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Returns
0 on success, other values on fail.

int usbd_config_attrib_self(struct usbd_context *const uds_ctx, const enum usbd_speed
speed, const uint8_t cfg, const bool enable)

Setup USB device configuration attribute Self-powered.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• speed – [in] Configuration speed

• cfg – [in] Configuration number

• enable – [in] Sets attribute if true, clears it otherwise

Returns
0 on success, other values on fail.

int usbd_config_maxpower(struct usbd_context *const uds_ctx, const enum usbd_speed
speed, const uint8_t cfg, const uint8_t power)

Setup USB device configuration power consumption.

Parameters
• uds_ctx – [in] Pointer to USB device support context

• speed – [in] Configuration speed

• cfg – [in] Configuration number

• power – [in] Maximum power consumption value (bMaxPower)

Returns
0 on success, other values on fail.

bool usbd_can_detect_vbus(struct usbd_context *const uds_ctx)
Check that the controller can detect the VBUS state change.

This can be used in a generic application to explicitly handle the VBUS detected event
after usbd_init(). For example, to call usbd_enable() after a short delay to give the PMIC
time to detect the bus, or to handle cases where usbd_enable() can only be called after
a VBUS detected event.

Parameters
• uds_ctx – [in] Pointer to USB device support context

Returns
true if controller can detect VBUS state change, false otherwise

struct usbd_str_desc_data
#include <usbd.h> Used internally to keep descriptors in order.

USBD string descriptor data

Public Members

uint8_t idx
Descriptor index, required for string descriptors.

enum usbd_str_desc_utype utype
Descriptor usage type (not bDescriptorType)
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unsigned int ascii7
The string descriptor is in ASCII7 format.

unsigned int use_hwinfo
Device stack obtains SerialNumber using the HWINFO API.

struct usbd_bos_desc_data
#include <usbd.h> USBD BOS Device Capability descriptor data.

Public Members

enum usbd_bos_desc_utype utype
Descriptor usage type (not bDescriptorType)

struct usbd_desc_node
#include <usbd.h> Descriptor node.

Descriptor node is used to manage descriptors that are not directly part of a structure,
such as string or BOS capability descriptors.

Public Members

sys_dnode_t node
slist node struct

const void *const ptr
Opaque pointer to a descriptor payload.

uint8_t bLength
Descriptor size in bytes.

uint8_t bDescriptorType
Descriptor type.

struct usbd_config_node
#include <usbd.h> Device configuration node.

Configuration node is used to manage device configurations, at least one configuration
is required. It does not have an index, instead bConfigurationValue of the descriptor
is used for identification.

Public Members

sys_snode_t node
slist node struct
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void *desc
Pointer to configuration descriptor.

struct usbd_desc_node *str_desc_nd
Optional pointer to string descriptor node.

sys_slist_t class_list
List of registered classes (functions)

struct usbd_ch9_data
#include <usbd.h> USB device support middle layer runtime data.

Public Members

struct usb_setup_packet setup
Setup packet, up-to-date for the respective control request.

int ctrl_type
Control type, internally used for stage verification.

enum usbd_ch9_state state
Protocol state of the USB device stack.

uint32_t ep_halt
Halted endpoints bitmap.

uint8_t configuration
USB device stack selected configuration.

bool post_status
Post status stage work required, e.g.

set new device address

uint8_t alternate[16U]
Array to track interfaces alternate settings.

struct usbd_status
#include <usbd.h> USB device support status.

Public Members

unsigned int initialized
USB device support is initialized.

unsigned int enabled
USB device support is enabled.
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unsigned int suspended
USB device is suspended.

unsigned int rwup
USB remote wake-up feature is enabled.

enum usbd_speed speed
USB device speed.

struct usbd_context
#include <usbd.h> USB device support runtime context.

Main structure that organizes all descriptors, configuration, and interfaces. An UDC
device must be assigned to this structure.

Public Members

const char *name
Name of the USB device.

struct k_mutex mutex
Access mutex.

const struct device *dev
Pointer to UDC device.

usbd_msg_cb_t msg_cb
Notification message recipient callback.

struct usbd_ch9_data ch9_data
Middle layer runtime data.

sys_dlist_t descriptors
slist to manage descriptors like string, BOS

sys_slist_t fs_configs
slist to manage Full-Speed device configurations

sys_slist_t hs_configs
slist to manage High-Speed device configurations

struct usbd_status status
Status of the USB device support.

void *fs_desc
Pointer to Full-Speed device descriptor.

void *hs_desc
Pointer to High-Speed device descriptor.
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struct usbd_cctx_vendor_req
#include <usbd.h> Vendor Requests Table.

Public Members

const uint8_t *reqs
Array of vendor requests supported by the class.

uint8_t len
Length of the array.

struct usbd_class_api
#include <usbd.h> USB device support class instance API.

Public Members

void (*feature_halt)(struct usbd_class_data *const c_data, uint8_t ep, bool halted)
Feature halt state update handler.

void (*update)(struct usbd_class_data *const c_data, uint8_t iface, uint8_t alternate)
Configuration update handler.

int (*control_to_dev)(struct usbd_class_data *const c_data, const struct
usb_setup_packet *const setup, const struct net_buf *const buf)

USB control request handler to device.

int (*control_to_host)(struct usbd_class_data *const c_data, const struct
usb_setup_packet *const setup, struct net_buf *const buf)

USB control request handler to host.

int (*request)(struct usbd_class_data *const c_data, struct net_buf *buf, int err)
Endpoint request completion event handler.

void (*suspended)(struct usbd_class_data *const c_data)
USB power management handler suspended.

void (*resumed)(struct usbd_class_data *const c_data)
USB power management handler resumed.

void (*sof)(struct usbd_class_data *const c_data)
Start of Frame.

void (*enable)(struct usbd_class_data *const c_data)
Class associated configuration is selected.

void (*disable)(struct usbd_class_data *const c_data)
Class associated configuration is disabled.
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int (*init)(struct usbd_class_data *const c_data)
Initialization of the class implementation.

void (*shutdown)(struct usbd_class_data *const c_data)
Shutdown of the class implementation.

void *(*get_desc)(struct usbd_class_data *const c_data, const enum usbd_speed speed)
Get function descriptor based on speed parameter.

struct usbd_class_data
#include <usbd.h> USB device support class data.

Public Members

const char *name
Name of the USB device class instance.

struct usbd_context *uds_ctx
Pointer to USB device stack context structure.

const struct usbd_class_api *api
Pointer to device support class API.

const struct usbd_cctx_vendor_req *v_reqs
Supported vendor request table, can be NULL.

void *priv
Pointer to private data.

group usbd_msg_api

Enums

enum usbd_msg_type
USB device support message types.

The first set of message types map to event types from the UDC driver API.

Values:

enumerator USBD_MSG_VBUS_READY
VBUS ready message (optional)

enumerator USBD_MSG_VBUS_REMOVED
VBUS removed message (optional)

enumerator USBD_MSG_RESUME
Device resume message.
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enumerator USBD_MSG_SUSPEND
Device suspended message.

enumerator USBD_MSG_RESET
Bus reset detected.

enumerator USBD_MSG_UDC_ERROR
Non-correctable UDC error message

enumerator USBD_MSG_STACK_ERROR
Unrecoverable device stack error message

enumerator USBD_MSG_CDC_ACM_LINE_CODING
CDC ACM Line Coding update.

enumerator USBD_MSG_CDC_ACM_CONTROL_LINE_STATE
CDC ACM Line State update.

enumerator USBD_MSG_MAX_NUMBER
Maximum number of message types.

Functions

static inline const char *usbd_msg_type_string(const enum usbd_msg_type type)
Returns the message type as a constant string.

Parameters
• type – [in] USBD message type

Returns
Message type as a constant string

struct usbd_msg
#include <usbd_msg.h> USB device message.

Public Members

enum usbd_msg_type type
Message type.

union usbd_msg
Message status, value or data.

HID device API

HID device specific API defined in include/zephyr/usb/class/usbd_hid.h.
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Related code samples

USB HID keyboard
Implement a basic HID keyboard device.

API Reference

group usbd_hid_device
USBD HID Device API.

Enums

HID report types Report types used in Get/Set Report requests.

Values:

enumerator HID_REPORT_TYPE_INPUT = 1

enumerator HID_REPORT_TYPE_OUTPUT

enumerator HID_REPORT_TYPE_FEATURE

Functions

int hid_device_register(const struct device *dev, const uint8_t *const rdesc, const
uint16_t rsize, const struct hid_device_ops *const ops)

Register HID device report descriptor and user callbacks.

The device must register report descriptor and user callbacks before USB device sup-
port is initialized and enabled.

Parameters
• dev – [in] Pointer to HID device

• rdesc – [in] Pointer to HID report descriptor

• rsize – [in] Size of HID report descriptor

• ops – [in] Pointer to HID device callbacks

int hid_device_submit_report(const struct device *dev, const uint16_t size, const uint8_t
*const report)

Submit new input report.

Submit a new input report to be sent via the interrupt IN pipe. If sync is true,
the functions will block until the report is sent. If the device does not pro-
vide input_report_done() callback, hid_device_submit_report() will be processed syn-
chronously.

Parameters
• dev – [in] Pointer to HID device

• size – [in] Size of the input report
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• report – [in] Input report buffer. Report buffer must be aligned.

Returns
0 on success, negative errno code on fail.

struct hid_device_ops
#include <usbd_hid.h> HID device user callbacks.

Each device depends on a user part that handles feature, input, and output report
processing according to the device functionality described by the report descriptor.
Which callbacks must be implemented depends on the device functionality. The USB
device part of the HID device, cannot interpret device specific report descriptor and
only handles USB specific parts, transfers and validation of requests, all reports are
opaque to it. Callbacks are called from the USB device stack thread and must not block.

Public Members

void (*iface_ready)(const struct device *dev, const bool ready)
The interface ready callback is called with the ready argument set to true when
the corresponding interface is part of the active configuration and the device can
e.g.

begin submitting input reports, and with the argument set to false when the inter-
face is no longer active. This callback is optional.

int (*get_report)(const struct device *dev, const uint8_t type, const uint8_t id, const
uint16_t len, uint8_t *const buf)

This callback is called for the HID Get Report request to get a feature, input, or
output report, which is specified by the argument type.

If there is no report ID in the report descriptor, the id argument is zero. The call-
back implementation must check the arguments, such as whether the report type
is supported and the report length, and return a negative value to indicate an un-
supported type or an error, or return the length of the report written to the buffer.

int (*set_report)(const struct device *dev, const uint8_t type, const uint8_t id, const
uint16_t len, const uint8_t *const buf)

This callback is called for the HID Set Report request to set a feature, input, or
output report, which is specified by the argument type.

If there is no report ID in the report descriptor, the id argument is zero. The call-
back implementation must check the arguments, such as whether the report type
is supported, and return a nonzero value to indicate an unsupported type or an
error.

void (*set_idle)(const struct device *dev, const uint8_t id, const uint32_t duration)
Notification to limit input report frequency.

The device should mute an input report submission until a new event occurs or
until the time specified by the duration value has elapsed. If a report ID is used in
the report descriptor, the device must store the duration and handle the specified
report accordingly. Duration time resolution is in milliseconds.

uint32_t (*get_idle)(const struct device *dev, const uint8_t id)
If a report ID is used in the report descriptor, the device must implement this call-
back and return the duration for the specified report ID.
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Duration time resolution is in milliseconds.

void (*set_protocol)(const struct device *dev, const uint8_t proto)
Notification that the host has changed the protocol from Boot Protocol(0) to Report
Protocol(1) or vice versa.

void (*input_report_done)(const struct device *dev)
Notification that input report submitted with hid_device_submit_report() has been
sent.

If the device does not use the callback, hid_device_submit_report()will be processed
synchronously.

void (*output_report)(const struct device *dev, const uint16_t len, const uint8_t
*const buf)

New output report callback.

Callback will only be called for reports received through the optional interrupt
OUT pipe. If there is no interrupt OUT pipe, output reports will be received using
set_report(). If a report ID is used in the report descriptor, the host places the ID in
the buffer first, followed by the report data.

void (*sof)(const struct device *dev)
Optional Start of Frame (SoF) event callback.

There will always be software and hardware dependent jitter and latency. This
should be used very carefully, it should not block and the execution time should
be quite short.

Audio Class 2 device API

USB Audio Class 2 device specific API defined in include/zephyr/usb/class/usbd_uac2.h.

Related code samples

USB Audio asynchronous explicit feedback sample
USB Audio 2 explicit feedback sample playing audio on I2S.

API Reference

group uac2_device
USB Audio Class 2 device API.

Defines

UAC2_ENTITY_ID(node)
Get entity ID.

Parameters
• node – node identifier
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Functions

void usbd_uac2_set_ops(const struct device *dev, const struct uac2_ops *ops, void
*user_data)

Register USB Audio 2 application callbacks.

Parameters
• dev – USB Audio 2 device instance

• ops – USB Audio 2 callback structure

• user_data – Opaque user data to pass to ops callbacks

int usbd_uac2_send(const struct device *dev, uint8_t terminal, void *data, uint16_t size)
Send audio data to output terminal.

Data buffer must be sufficiently aligned and otherwise suitable for use by UDC driver.

Parameters
• dev – USB Audio 2 device

• terminal – Output Terminal ID linked to AudioStreaming interface

• data – Buffer containing outgoing data

• size – Number of bytes to send

Returns
0 on success, negative value on error

struct uac2_ops
#include <usbd_uac2.h> USB Audio 2 application event handlers.

Public Members

void (*sof_cb)(const struct device *dev, void *user_data)
Start of Frame callback.

Notifies application about SOF event on the bus.
Param dev

USB Audio 2 device
Param user_data

Opaque user data pointer

void (*terminal_update_cb)(const struct device *dev, uint8_t terminal, bool enabled,
bool microframes, void *user_data)

Terminal update callback.

Notifies application that host has enabled or disabled a terminal.
Param dev

USB Audio 2 device
Param terminal

Terminal ID linked to AudioStreaming interface
Param enabled

True if host enabled terminal, False otherwise
Parammicroframes

True if USB connection speed uses microframes
Param user_data

Opaque user data pointer
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void *(*get_recv_buf)(const struct device *dev, uint8_t terminal, uint16_t size, void
*user_data)

Get receive buffer address.

USB stack calls this function to obtain receive buffer address for AudioStreaming
interface. The buffer is owned by USB stack until data_recv_cb callback is called.
The buffer must be sufficiently aligned and otherwise suitable for use by UDC
driver.

Param dev
USB Audio 2 device

Param terminal
Input Terminal ID linked to AudioStreaming interface

Param size
Maximum number of bytes USB stack will write to buffer.

Param user_data
Opaque user data pointer

void (*data_recv_cb)(const struct device *dev, uint8_t terminal, void *buf, uint16_t
size, void *user_data)

Data received.

This function releases buffer obtained in get_recv_buf after USB has written data
to the buffer and/or no longer needs it.

Param dev
USB Audio 2 device

Param terminal
Input Terminal ID linked to AudioStreaming interface

Param buf
Buffer previously obtained via get_recv_buf

Param size
Number of bytes written to buffer

Param user_data
Opaque user data pointer

void (*buf_release_cb)(const struct device *dev, uint8_t terminal, void *buf, void
*user_data)

Transmit buffer release callback.

This function releases buffer provided in usbd_uac2_send when the class no longer
needs it.

Param dev
USB Audio 2 device

Param terminal
Output Terminal ID linked to AudioStreaming interface

Param buf
Buffer previously provided via usbd_uac2_send

Param user_data
Opaque user data pointer

uint32_t (*feedback_cb)(const struct device *dev, uint8_t terminal, void *user_data)
Get Explicit Feedback value.

Explicit feedback value format depends terminal connection speed. If device is
High-Speed capable, it must use Q16.16 format if and only if the terminal_update_cb
was called with microframes parameter set to true. On Full-Speed only devices, or
if High-Speed capable device is operating at Full-Speed (microframes was false),
the format is Q10.14 stored on 24 least significant bits (i.e. 8 most significant bits
are ignored).
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Param dev
USB Audio 2 device

Param terminal
Input Terminal ID whose feedback should be returned

Param user_data
Opaque user data pointer

USB Mass Storage Class device API

USB Mass Storage Class device API defined in include/zephyr/usb/class/usbd_msc.h.

Related code samples

USB Mass Storage
Expose board’s RAM or FLASH as a USB disk using USB Mass Storage driver.

API Reference

group usbd_msc_device
USB Mass Storage Class device API.

Defines

USBD_DEFINE_MSC_LUN(disk_name, t10_vendor, t10_product, t10_revision)
Define USB Mass Storage Class logical unit.

Use this macro to create Logical Unit mapping in USB MSC for selected disk. Up to CON-
FIG_USBD_MSC_LUNS_PER_INSTANCE disks can be registered on single USB MSC instance.
Currently only one USB MSC instance is supported.

Parameters
• disk_name – Disk name as used in Disk Access Interface

• t10_vendor – T10 Vendor Indetification

• t10_product – T10 Product Identification

• t10_revision – T10 Product Revision Level

6.5.5 USB host support APIs

USB host controller (UHC) driver API

The USB host controller driver API is described in include/zephyr/drivers/usb/uhc.h and referred
to as the UHC driver API.

UHC driver API is experimental and is subject to change without notice.

Driver API reference

group uhc_api
USB host controller (UHC) driver API.
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Defines

UHC_STATUS_INITIALIZED
Controller is initialized by uhc_init()

UHC_STATUS_ENABLED
Controller is enabled and all API functions are available.

Typedefs

typedef int (*uhc_event_cb_t)(const struct device *dev, const struct uhc_event *const
event)

Callback to submit UHC event to higher layer.

At the higher level, the event is to be inserted into a message queue.

Param dev
[in] Pointer to device struct of the driver instance

Param event
[in] Point to event structure

Return
0 on success, all other values should be treated as error.

Enums

enum uhc_control_stage
USB control transfer stage.

Values:

enumerator UHC_CONTROL_STAGE_SETUP = 0

enumerator UHC_CONTROL_STAGE_DATA

enumerator UHC_CONTROL_STAGE_STATUS

enum uhc_event_type
USB host controller event types.

Values:

enumerator UHC_EVT_DEV_CONNECTED_LS
Low speed device connected.

enumerator UHC_EVT_DEV_CONNECTED_FS
Full speed device connected.

enumerator UHC_EVT_DEV_CONNECTED_HS
High speed device connected.
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enumerator UHC_EVT_DEV_REMOVED
Device (peripheral) removed.

enumerator UHC_EVT_RESETED
Bus reset operation finished.

enumerator UHC_EVT_SUSPENDED
Bus suspend operation finished.

enumerator UHC_EVT_RESUMED
Bus resume operation finished.

enumerator UHC_EVT_RWUP
Remote wakeup signal.

enumerator UHC_EVT_EP_REQUEST
Endpoint request result event.

enumerator UHC_EVT_ERROR
Non-correctable error event, requires attention from higher levels or application.

Functions

static inline bool uhc_is_initialized(const struct device *dev)
Checks whether the controller is initialized.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Returns
true if controller is initialized, false otherwise

static inline bool uhc_is_enabled(const struct device *dev)
Checks whether the controller is enabled.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Returns
true if controller is enabled, false otherwise

static inline int uhc_bus_reset(const struct device *dev)
Reset USB bus.

Perform USB bus reset, controller may emit UHC_EVT_RESETED at the end of reset
signaling.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Return values
-EBUSY – if the controller is already performing a bus operation

Returns
0 on success, all other values should be treated as error.
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static inline int uhc_sof_enable(const struct device *dev)
Enable Start of Frame generator.

Enable SOF generator.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Return values
-EALREADY – if already enabled

Returns
0 on success, all other values should be treated as error.

static inline int uhc_bus_suspend(const struct device *dev)
Suspend USB bus.

Disable SOF generator and emit UHC_EVT_SUSPENDED event when USB bus is sus-
pended.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Return values
-EALREADY – if already suspended

Returns
0 on success, all other values should be treated as error.

static inline int uhc_bus_resume(const struct device *dev)
Resume USB bus.

Signal resume for at least 20ms, emit UHC_EVT_RESUMED at the end of USB bus resume
signaling. The SoF generator should subsequently start within 3ms.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Return values
-EBUSY – if the controller is already performing a bus operation

Returns
0 on success, all other values should be treated as error.

struct uhc_transfer *uhc_xfer_alloc(const struct device *dev, const uint8_t addr, const
uint8_t ep, const uint8_t attrib, const uint16_t mps,
const uint16_t timeout, void *const udev, void *const
cb)

Allocate UHC transfer.

Allocate a new transfer from common transfer pool. Transfer has no buffer after allo-
cation, but can be allocated and added from different pools.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• addr – [in] Device (peripheral) address

• ep – [in] Endpoint address

• attrib – [in] Endpoint attributes

• mps – [in] Maximum packet size of the endpoint

• timeout – [in] Timeout in number of frames

• udev – [in] Opaque pointer to USB device
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• cb – [in] Transfer completion callback

Returns
pointer to allocated transfer or NULL on error.

struct uhc_transfer *uhc_xfer_alloc_with_buf(const struct device *dev, const uint8_t
addr, const uint8_t ep, const uint8_t attrib,
const uint16_t mps, const uint16_t
timeout, void *const udev, void *const cb,
size_t size)

Allocate UHC transfer with buffer.

Allocate a new transfer from common transfer pool with buffer.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• addr – [in] Device (peripheral) address

• ep – [in] Endpoint address

• attrib – [in] Endpoint attributes

• mps – [in] Maximum packet size of the endpoint

• timeout – [in] Timeout in number of frames

• udev – [in] Opaque pointer to USB device

• cb – [in] Transfer completion callback

• size – [in] Size of the buffer

Returns
pointer to allocated transfer or NULL on error.

int uhc_xfer_free(const struct device *dev, struct uhc_transfer *const xfer)
Free UHC transfer and any buffers.

Free any buffers and put the transfer back into the transfer pool.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• xfer – [in] Pointer to UHC transfer

Returns
0 on success, all other values should be treated as error.

int uhc_xfer_buf_add(const struct device *dev, struct uhc_transfer *const xfer, struct
net_buf *buf)

Add UHC transfer buffer.

Add a previously allocated buffer to the transfer.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• xfer – [in] Pointer to UHC transfer

• buf – [in] Pointer to UHC request buffer

Returns
pointer to allocated request or NULL on error.
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struct net_buf *uhc_xfer_buf_alloc(const struct device *dev, const size_t size)
Allocate UHC transfer buffer.

Allocate a new buffer from common request buffer pool and assign it to the transfer if
the xfer parameter is not NULL.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• size – [in] Size of the request buffer

Returns
pointer to allocated request or NULL on error.

void uhc_xfer_buf_free(const struct device *dev, struct net_buf *const buf)
Free UHC request buffer.

Put the buffer back into the request buffer pool.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• buf – [in] Pointer to UHC request buffer

int uhc_ep_enqueue(const struct device *dev, struct uhc_transfer *const xfer)
Queue USB host controller transfer.

Add transfer to the queue. If the queue is empty, the transfer can be claimed by the
controller immediately.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• xfer – [in] Pointer to UHC transfer

Return values
-EPERM – controller is not initialized

Returns
0 on success, all other values should be treated as error.

int uhc_ep_dequeue(const struct device *dev, struct uhc_transfer *const xfer)
Remove a USB host controller transfers from queue.

Not implemented yet.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• xfer – [in] Pointer to UHC transfer

Return values
-EPERM – controller is not initialized

Returns
0 on success, all other values should be treated as error.

int uhc_init(const struct device *dev, uhc_event_cb_t event_cb)
Initialize USB host controller.

Initialize USB host controller.

Parameters
• dev – [in] Pointer to device struct of the driver instance

• event_cb – [in] Event callback from the higher layer (USB host stack)
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Return values
• -EINVAL – on parameter error (no callback is passed)

• -EALREADY – already initialized

Returns
0 on success, all other values should be treated as error.

int uhc_enable(const struct device *dev)
Enable USB host controller.

Enable powered USB host controller and allow host stack to recognize and enumerate
devices.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Return values
• -EPERM – controller is not initialized

• -EALREADY – already enabled

Returns
0 on success, all other values should be treated as error.

int uhc_disable(const struct device *dev)
Disable USB host controller.

Disable enabled USB host controller.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Return values
-EALREADY – already disabled

Returns
0 on success, all other values should be treated as error.

int uhc_shutdown(const struct device *dev)
Poweroff USB host controller.

Shut down the controller completely to reduce energy consumption or to change the
role of the controller.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Return values
-EALREADY – controller is already uninitialized

Returns
0 on success, all other values should be treated as error.

static inline struct uhc_device_caps uhc_caps(const struct device *dev)
Get USB host controller capabilities.

Obtain the capabilities of the controller such as high speed (HS), and more.

Parameters
• dev – [in] Pointer to device struct of the driver instance

Returns
USB host controller capabilities.
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struct uhc_transfer
#include <uhc.h> UHC endpoint buffer info.

This structure is mandatory for all UHC request. It contains the meta data about the
request and FIFOs to store net_buf structures for each request.

The members of this structure should not be used directly by a higher layer (host stack).

Public Members

sys_dnode_t node
dlist node

uint8_t setup_pkt[8]
Control transfer setup packet.

struct net_buf *buf
Transfer data buffer.

uint8_t addr
Device (peripheral) address.

uint8_t ep
Endpoint to which request is associated.

uint8_t attrib
Endpoint attributes (TBD)

uint16_t mps
Maximum packet size.

uint16_t timeout
Timeout in number of frames.

unsigned int queued
Flag marks request buffer is queued.

unsigned int stage
Control stage status, up to the driver to use it or not.

void *udev
Pointer to USB device (opaque for the UHC)

void *cb
Pointer to transfer completion callback (opaque for the UHC)

int err
Transfer result, 0 on success, other values on error.
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struct uhc_event
#include <uhc.h> USB host controller event.

Common structure for all events that originate from the UHC driver and are passed to
higher layer using message queue and a callback (uhc_event_cb_t) provided by higher
layer during controller initialization (uhc_init).

Public Members

sys_snode_t node
slist node for the message queue

enum uhc_event_type type
Event type.

int status
Event status value, if any.

struct uhc_transfer *xfer
Pointer to request used only for UHC_EVT_EP_REQUEST.

const struct device *dev
Pointer to controller’s device struct.

struct uhc_device_caps
#include <uhc.h> USB host controller capabilities.

This structure is mainly intended for the USB host stack.

Public Members

uint32_t hs
USB high speed capable controller.

struct uhc_data
#include <uhc.h> Common UHC driver data structure.

Mandatory structure for each UHC controller driver. To be implemented as device’s
private data (device->data).

Public Members

struct uhc_device_caps caps
Controller capabilities.

struct k_mutex mutex
Driver access mutex.
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sys_dlist_t ctrl_xfers
dlist for control transfers

sys_dlist_t bulk_xfers
dlist for bulk transfers

uhc_event_cb_t event_cb
Callback to submit an UHC event to upper layer.

atomic_t status
USB host controller status.

void *priv
Driver private data.

USB Power Delivery support

6.5.6 USB-C device stack

The USB-C device stack is a hardware independent interface between a Type-C Port Controller
(TCPC) and customer applications. It is a port of the Google ChromeOS Type-C Port Manager
(TCPM) stack. It provides the following functionalities:

• Uses the APIs provided by the Type-C Port Controller drivers to interact with the Type-C
Port Controller.

• Provides a programming interface that’s used by a customer applications. The APIs is de-
scribed in include/zephyr/usb_c/usbc.h

Currently the device stack supports implementation of Sink only and Source only devices. Dual
Role Power (DRP) devices are not yet supported.

List of samples for different purposes.

Implementing a Sink Type-C and Power Delivery USB-C device

The configuration of a USB-C Device is done in the stack layer and devicetree.

The following devicetree, structures and callbacks need to be defined:

• Devicetree usb-c-connector node referencing a TCPC

• Devicetree vbus node referencing a VBUS measurement device

• User defined structure that encapsulates application specific data

• Policy callbacks

For example, for the Sample USB-C Sink application:

Each Physical Type-C port is represented in the devicetree by a usb-c-connector compatible node:

1 port1: usbc-port@1 {
2 compatible = "usb-c-connector";
3 reg = <1>;
4 tcpc = <&ucpd1>;
5 vbus = <&vbus1>;
6 power-role = "sink";
7 sink-pdos = <PDO_FIXED(5000, 100, 0)>;
8 };
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VBUS is measured by a device that’s referenced in the devicetree by a usb-c-vbus-adc compatible
node:

1 vbus1: vbus {
2 compatible = "zephyr,usb-c-vbus-adc";
3 io-channels = <&adc2 8>;
4 output-ohms = <49900>;
5 full-ohms = <(330000 + 49900)>;
6 };

A user defined structure is defined and later registered with the subsystem and can be accessed
from callback through an API:

1 /**
2 * @brief A structure that encapsulates Port data.
3 */
4 static struct port0_data_t {
5 /** Sink Capabilities */
6 uint32_t snk_caps[DT_PROP_LEN(USBC_PORT0_NODE, sink_pdos)];
7 /** Number of Sink Capabilities */
8 int snk_cap_cnt;
9 /** Source Capabilities */

10 uint32_t src_caps[PDO_MAX_DATA_OBJECTS];
11 /** Number of Source Capabilities */
12 int src_cap_cnt;
13 /* Power Supply Ready flag */
14 atomic_t ps_ready;
15 } port0_data = {
16 .snk_caps = {DT_FOREACH_PROP_ELEM(USBC_PORT0_NODE, sink_pdos, SINK_PDO)},
17 .snk_cap_cnt = DT_PROP_LEN(USBC_PORT0_NODE, sink_pdos),
18 .src_caps = {0},
19 .src_cap_cnt = 0,
20 .ps_ready = 0
21 };
22

These callbacks are used by the subsystem to set or get application specific data:

1 static int port0_policy_cb_get_snk_cap(const struct device *dev,
2 uint32_t **pdos,
3 int *num_pdos)
4 {
5 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
6

7 *pdos = dpm_data->snk_caps;
8 *num_pdos = dpm_data->snk_cap_cnt;
9

10 return 0;
11 }
12

13 static void port0_policy_cb_set_src_cap(const struct device *dev,
14 const uint32_t *pdos,
15 const int num_pdos)
16 {
17 struct port0_data_t *dpm_data;
18 int num;
19 int i;
20

21 dpm_data = usbc_get_dpm_data(dev);
22

23 num = num_pdos;
24 if (num > PDO_MAX_DATA_OBJECTS) {
25 num = PDO_MAX_DATA_OBJECTS;

(continues on next page)
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26 }
27

28 for (i = 0; i < num; i++) {
29 dpm_data->src_caps[i] = *(pdos + i);
30 }
31

32 dpm_data->src_cap_cnt = num;
33 }
34

35 static uint32_t port0_policy_cb_get_rdo(const struct device *dev)
36 {
37 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
38

39 return build_rdo(dpm_data);
40 }

This callback is used by the subsystem to query if a certain action can be taken:

1 bool port0_policy_check(const struct device *dev,
2 const enum usbc_policy_check_t policy_check)
3 {
4 switch (policy_check) {
5 case CHECK_POWER_ROLE_SWAP:
6 /* Reject power role swaps */
7 return false;
8 case CHECK_DATA_ROLE_SWAP_TO_DFP:
9 /* Reject data role swap to DFP */

10 return false;
11 case CHECK_DATA_ROLE_SWAP_TO_UFP:
12 /* Accept data role swap to UFP */
13 return true;
14 case CHECK_SNK_AT_DEFAULT_LEVEL:
15 /* This device is always at the default power level */
16 return true;
17 default:
18 /* Reject all other policy checks */
19 return false;
20

21 }
22 }

This callback is used by the subsystem to notify the application of an event:

1 static void port0_notify(const struct device *dev,
2 const enum usbc_policy_notify_t policy_notify)
3 {
4 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
5

6 switch (policy_notify) {
7 case PROTOCOL_ERROR:
8 break;
9 case MSG_DISCARDED:

10 break;
11 case MSG_ACCEPT_RECEIVED:
12 break;
13 case MSG_REJECTED_RECEIVED:
14 break;
15 case MSG_NOT_SUPPORTED_RECEIVED:
16 break;
17 case TRANSITION_PS:
18 atomic_set_bit(&dpm_data->ps_ready, 0);

(continues on next page)
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19 break;
20 case PD_CONNECTED:
21 break;
22 case NOT_PD_CONNECTED:
23 break;
24 case POWER_CHANGE_0A0:
25 LOG_INF("PWR 0A");
26 break;
27 case POWER_CHANGE_DEF:
28 LOG_INF("PWR DEF");
29 break;
30 case POWER_CHANGE_1A5:
31 LOG_INF("PWR 1A5");
32 break;
33 case POWER_CHANGE_3A0:
34 LOG_INF("PWR 3A0");
35 break;
36 case DATA_ROLE_IS_UFP:
37 break;
38 case DATA_ROLE_IS_DFP:
39 break;
40 case PORT_PARTNER_NOT_RESPONSIVE:
41 LOG_INF("Port Partner not PD Capable");
42 break;
43 case SNK_TRANSITION_TO_DEFAULT:
44 break;
45 case HARD_RESET_RECEIVED:
46 break;
47 case SENDER_RESPONSE_TIMEOUT:
48 break;
49 case SOURCE_CAPABILITIES_RECEIVED:
50 break;
51 }
52 }

Registering the callbacks:

1 /* Register USB-C Callbacks */
2

3 /* Register Policy Check callback */
4 usbc_set_policy_cb_check(usbc_port0, port0_policy_check);
5 /* Register Policy Notify callback */
6 usbc_set_policy_cb_notify(usbc_port0, port0_notify);
7 /* Register Policy Get Sink Capabilities callback */
8 usbc_set_policy_cb_get_snk_cap(usbc_port0, port0_policy_cb_get_snk_cap);
9 /* Register Policy Set Source Capabilities callback */

10 usbc_set_policy_cb_set_src_cap(usbc_port0, port0_policy_cb_set_src_cap);
11 /* Register Policy Get Request Data Object callback */
12 usbc_set_policy_cb_get_rdo(usbc_port0, port0_policy_cb_get_rdo);

Register the user defined structure:

1 /* Set Application port data object. This object is passed to the policy callbacks␣
↪→*/

2 port0_data.ps_ready = ATOMIC_INIT(0);
3 usbc_set_dpm_data(usbc_port0, &port0_data);

Start the USB-C subsystem:

1 /* Start the USB-C Subsystem */
2 usbc_start(usbc_port0);
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Implementing a Source Type-C and Power Delivery USB-C device

The configuration of a USB-C Device is done in the stack layer and devicetree.

Define the following devicetree, structures and callbacks:

• Devicetree usb-c-connector node referencing a TCPC

• Devicetree vbus node referencing a VBUS measurement device

• User defined structure that encapsulates application specific data

• Policy callbacks

For example, for the Sample USB-C Source application:

Each Physical Type-C port is represented in the devicetree by a usb-c-connector compatible
node:

1 port1: usbc-port@1 {
2 compatible = "usb-c-connector";
3 reg = <1>;
4 tcpc = <&ucpd1>;
5 vbus = <&vbus1>;
6 power-role = "source";
7 typec-power-opmode = "3.0A";
8 source-pdos = <PDO_FIXED(5000, 100, 0) PDO_FIXED(9000, 100, 0) PDO_

↪→FIXED(15000, 100, 0)>;
9 };

VBUS is measured by a device that’s referenced in the devicetree by a usb-c-vbus-adc compatible
node:

1 vbus1: vbus {
2 compatible = "zephyr,usb-c-vbus-adc";
3 io-channels = <&adc1 9>;
4 output-ohms = <49900>;
5 full-ohms = <(330000 + 49900)>;
6

7 /* Pin B13 is used to control VBUS Discharge for Port1 */
8 discharge-gpios = <&gpiob 13 GPIO_ACTIVE_HIGH>;
9 };

A user defined structure is defined and later registered with the subsystem and can be accessed
from callback through an API:

1 /**
2 * @brief A structure that encapsulates Port data.
3 */
4 static struct port0_data_t {
5 /** Source Capabilities */
6 uint32_t src_caps[DT_PROP_LEN(USBC_PORT0_NODE, source_pdos)];
7 /** Number of Source Capabilities */
8 int src_cap_cnt;
9 /** CC Rp value */

10 int rp;
11 /** Sink Request RDO */
12 union pd_rdo sink_request;
13 /** Requested Object Pos */
14 int obj_pos;
15 /** VCONN CC line*/
16 enum tc_cc_polarity vconn_pol;
17 /** True if power supply is ready */
18 bool ps_ready;

(continues on next page)
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19 /** True if power supply should transition to a new level */
20 bool ps_tran_start;
21 /** Log Sink Requested RDO to console */
22 atomic_t show_sink_request;
23 } port0_data = {
24 .rp = DT_ENUM_IDX(USBC_PORT0_NODE, typec_power_opmode),
25 .src_caps = {DT_FOREACH_PROP_ELEM(USBC_PORT0_NODE, source_pdos, SOURCE_PDO)},
26 .src_cap_cnt = DT_PROP_LEN(USBC_PORT0_NODE, source_pdos),
27 };
28

These callbacks are used by the subsystem to set or get application specific data:

1 /**
2 * @brief PE calls this function when it needs to set the Rp on CC
3 */
4 int port0_policy_cb_get_src_rp(const struct device *dev,
5 enum tc_rp_value *rp)
6 {
7 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
8

9 *rp = dpm_data->rp;
10

11 return 0;
12 }
13

14 /**
15 * @brief PE calls this function to Enable (5V) or Disable (0V) the
16 * Power Supply
17 */
18 int port0_policy_cb_src_en(const struct device *dev, bool en)
19 {
20 source_ctrl_set(en ? SOURCE_5V : SOURCE_0V);
21

22 return 0;
23 }
24

25 /**
26 * @brief PE calls this function to Enable or Disable VCONN
27 */
28 int port0_policy_cb_vconn_en(const struct device *dev, enum tc_cc_polarity pol, bool en)
29 {
30 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
31

32 dpm_data->vconn_pol = pol;
33

34 if (en == false) {
35 /* Disable VCONN on CC1 and CC2 */
36 vconn_ctrl_set(VCONN_OFF);
37 } else if (pol == TC_POLARITY_CC1) {
38 /* set VCONN on CC1 */
39 vconn_ctrl_set(VCONN1_ON);
40 } else {
41 /* set VCONN on CC2 */
42 vconn_ctrl_set(VCONN2_ON);
43 }
44

45 return 0;
46 }
47

48 /**
(continues on next page)
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49 * @brief PE calls this function to get the Source Caps that will be sent
50 * to the Sink
51 */
52 int port0_policy_cb_get_src_caps(const struct device *dev,
53 const uint32_t **pdos, uint32_t *num_pdos)
54 {
55 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
56

57 *pdos = dpm_data->src_caps;
58 *num_pdos = dpm_data->src_cap_cnt;
59

60 return 0;
61 }
62

63 /**
64 * @brief PE calls this function to verify that a Sink's request if valid
65 */
66 static enum usbc_snk_req_reply_t port0_policy_cb_check_sink_request(const struct device␣

↪→*dev,
67 const uint32_t request_msg)
68 {
69 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
70 union pd_fixed_supply_pdo_source pdo;
71 uint32_t obj_pos;
72 uint32_t op_current;
73

74 dpm_data->sink_request.raw_value = request_msg;
75 obj_pos = dpm_data->sink_request.fixed.object_pos;
76 op_current =
77 PD_CONVERT_FIXED_PDO_CURRENT_TO_MA(dpm_data->sink_request.fixed.operating_

↪→current);
78

79 if (obj_pos == 0 || obj_pos > dpm_data->src_cap_cnt) {
80 return SNK_REQUEST_REJECT;
81 }
82

83 pdo.raw_value = dpm_data->src_caps[obj_pos - 1];
84

85 if (dpm_data->sink_request.fixed.operating_current > pdo.max_current) {
86 return SNK_REQUEST_REJECT;
87 }
88

89 dpm_data->obj_pos = obj_pos;
90

91 atomic_set_bit(&port0_data.show_sink_request, 0);
92

93 /*
94 * Clear PS ready. This will be set to true after PS is ready after
95 * it transitions to the new level.
96 */
97 port0_data.ps_ready = false;
98

99 return SNK_REQUEST_VALID;
100 }
101

102 /**
103 * @brief PE calls this function to check if the Power Supply is at the requested
104 * level
105 */
106 static bool port0_policy_cb_is_ps_ready(const struct device *dev)
107 {

(continues on next page)
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108 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
109

110

111 /* Return true to inform that the Power Supply is ready */
112 return dpm_data->ps_ready;
113 }
114

115 /**
116 * @brief PE calls this function to check if the Present Contract is still
117 * valid
118 */
119 static bool port0_policy_cb_present_contract_is_valid(const struct device *dev,
120 const uint32_t present_contract)
121 {
122 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
123 union pd_fixed_supply_pdo_source pdo;
124 union pd_rdo request;
125 uint32_t obj_pos;
126 uint32_t op_current;
127

128 request.raw_value = present_contract;
129 obj_pos = request.fixed.object_pos;
130 op_current = PD_CONVERT_FIXED_PDO_CURRENT_TO_MA(request.fixed.operating_current);
131

132 if (obj_pos == 0 || obj_pos > dpm_data->src_cap_cnt) {
133 return false;
134 }
135

136 pdo.raw_value = dpm_data->src_caps[obj_pos - 1];
137

138 if (request.fixed.operating_current > pdo.max_current) {
139 return false;
140 }
141

142 return true;
143 }
144

This callback is used by the subsystem to query if a certain action can be taken:

1 bool port0_policy_check(const struct device *dev,
2 const enum usbc_policy_check_t policy_check)
3 {
4 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
5

6 switch (policy_check) {
7 case CHECK_POWER_ROLE_SWAP:
8 /* Reject power role swaps */
9 return false;

10 case CHECK_DATA_ROLE_SWAP_TO_DFP:
11 /* Accept data role swap to DFP */
12 return true;
13 case CHECK_DATA_ROLE_SWAP_TO_UFP:
14 /* Reject data role swap to UFP */
15 return false;
16 case CHECK_SRC_PS_AT_DEFAULT_LEVEL:
17 /*
18 * This check is sent from the PE_SRC_Transition_to_default
19 * state and requires the following:
20 * 1: Vconn should be turned ON
21 * 2: Return TRUE when Power Supply is at default level

(continues on next page)
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22 */
23

24 /* Power on VCONN */
25 vconn_ctrl_set(dpm_data->vconn_pol);
26

27 /* PS should be at default level after receiving a Hard Reset */
28 return true;
29 default:
30 /* Reject all other policy checks */
31 return false;
32

33 }
34 }

This callback is used by the subsystem to notify the application of an event:

1 static void port0_notify(const struct device *dev,
2 const enum usbc_policy_notify_t policy_notify)
3 {
4 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
5

6 switch (policy_notify) {
7 case PROTOCOL_ERROR:
8 break;
9 case MSG_DISCARDED:

10 break;
11 case MSG_ACCEPT_RECEIVED:
12 break;
13 case MSG_REJECTED_RECEIVED:
14 break;
15 case MSG_NOT_SUPPORTED_RECEIVED:
16 break;
17 case TRANSITION_PS:
18 dpm_data->ps_tran_start = true;
19 break;
20 case PD_CONNECTED:
21 break;
22 case NOT_PD_CONNECTED:
23 break;
24 case DATA_ROLE_IS_UFP:
25 break;
26 case DATA_ROLE_IS_DFP:
27 break;
28 case PORT_PARTNER_NOT_RESPONSIVE:
29 LOG_INF("Port Partner not PD Capable");
30 break;
31 case HARD_RESET_RECEIVED:
32 /*
33 * This notification is sent from the PE_SRC_Transition_to_default
34 * state and requires the following:
35 * 1: Vconn should be turned OFF
36 * 2: Reset of the local hardware
37 */
38

39 /* Power off VCONN */
40 vconn_ctrl_set(VCONN_OFF);
41 /* Transition PS to Default level */
42 source_ctrl_set(SOURCE_5V);
43 break;
44 default:
45 }
46 }
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Registering the callbacks:

1 /* Register USB-C Callbacks */
2

3 /* Register Policy Check callback */
4 usbc_set_policy_cb_check(usbc_port0, port0_policy_check);
5 /* Register Policy Notify callback */
6 usbc_set_policy_cb_notify(usbc_port0, port0_notify);
7 /* Register Policy callback to set the Rp on CC lines */
8 usbc_set_policy_cb_get_src_rp(usbc_port0, port0_policy_cb_get_src_rp);
9 /* Register Policy callback to enable or disable power supply */

10 usbc_set_policy_cb_src_en(usbc_port0, port0_policy_cb_src_en);
11 /* Register Policy callback to enable or disable vconn */
12 usbc_set_vconn_control_cb(usbc_port0, port0_policy_cb_vconn_en);
13 /* Register Policy callback to send the source caps to the sink */
14 usbc_set_policy_cb_get_src_caps(usbc_port0, port0_policy_cb_get_src_caps);
15 /* Register Policy callback to check if the sink request is valid */
16 usbc_set_policy_cb_check_sink_request(usbc_port0, port0_policy_cb_check_sink_

↪→request);
17 /* Register Policy callback to check if the power supply is ready */
18 usbc_set_policy_cb_is_ps_ready(usbc_port0, port0_policy_cb_is_ps_ready);
19 /* Register Policy callback to check if Present Contract is still valid */
20 usbc_set_policy_cb_present_contract_is_valid(usbc_port0,
21 port0_policy_cb_present_contract_is_valid);
22

Register the user defined structure:

1 /* Set Application port data object. This object is passed to the policy callbacks␣
↪→*/

2 usbc_set_dpm_data(usbc_port0, &port0_data);

Start the USB-C subsystem:

1 /* Start the USB-C Subsystem */
2 usbc_start(usbc_port0);

API reference

Related code samples

Basic USB-C Sink
Implement a USB-C Power Delivery application in the form of a USB-C Sink.

Basic USB-C Source
Implement a USB-C Power Delivery application in the form of a USB-C Source.

group _usbc_device_api
USB-C Device APIs.

Since
3.3

Version
0.1.0
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Defines

FIXED_5V_100MA_RDO
This Request Data Object (RDO) value can be returned from the policy_cb_get_rdo if
5V@100mA with the following options are sufficient for the Sink to operate.

The RDO is configured as follows: Maximum operating current 100mA Operating cur-
rent 100mA Unchunked Extended Messages Not Supported No USB Suspend Not USB
Communications Capable No capability mismatch Don’t giveback Object position 1 (5V
PDO)

Enums

enum usbc_policy_request_t
Device Policy Manager requests.

Values:

enumerator REQUEST_NOP
No request.

enumerator REQUEST_TC_DISABLED
Request Type-C layer to transition to Disabled State.

enumerator REQUEST_TC_ERROR_RECOVERY
Request Type-C layer to transition to Error Recovery State.

enumerator REQUEST_TC_END
End of Type-C requests.

enumerator REQUEST_PE_DR_SWAP
Request Policy Engine layer to perform a Data Role Swap.

enumerator REQUEST_PE_HARD_RESET_SEND
Request Policy Engine layer to send a hard reset.

enumerator REQUEST_PE_SOFT_RESET_SEND
Request Policy Engine layer to send a soft reset.

enumerator REQUEST_PE_GET_SRC_CAPS
Request Policy Engine layer to get Source Capabilities from port partner.

enumerator REQUEST_GET_SNK_CAPS
Request Policy Engine to get Sink Capabilities from port partner.

enumerator REQUEST_PE_GOTO_MIN
Request Policy Engine to request the port partner to source minimum power.
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enum usbc_policy_notify_t
Device Policy Manager notifications.

Values:

enumerator MSG_ACCEPT_RECEIVED
Power Delivery Accept message was received.

enumerator MSG_REJECTED_RECEIVED
Power Delivery Reject message was received.

enumerator MSG_DISCARDED
Power Delivery discarded the message being transmitted.

enumerator MSG_NOT_SUPPORTED_RECEIVED
Power Delivery Not Supported message was received.

enumerator DATA_ROLE_IS_UFP
Data Role has been set to Upstream Facing Port (UFP)

enumerator DATA_ROLE_IS_DFP
Data Role has been set to Downstream Facing Port (DFP)

enumerator PD_CONNECTED
A PD Explicit Contract is in place.

enumerator NOT_PD_CONNECTED
No PD Explicit Contract is in place.

enumerator TRANSITION_PS
Transition the Power Supply.

enumerator PORT_PARTNER_NOT_RESPONSIVE
Port partner is not responsive.

enumerator PROTOCOL_ERROR
Protocol Error occurred.

enumerator SNK_TRANSITION_TO_DEFAULT
Transition the Sink to default.

enumerator HARD_RESET_RECEIVED
Hard Reset Received.

enumerator POWER_CHANGE_0A0
Sink SubPower state at 0V.

enumerator POWER_CHANGE_DEF
Sink SubPower state a 5V / 500mA.
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enumerator POWER_CHANGE_1A5
Sink SubPower state a 5V / 1.5A.

enumerator POWER_CHANGE_3A0
Sink SubPower state a 5V / 3A.

enumerator SENDER_RESPONSE_TIMEOUT
Sender Response Timeout.

enumerator SOURCE_CAPABILITIES_RECEIVED
Source Capabilities Received.

enum usbc_policy_check_t
Device Policy Manager checks.

Values:

enumerator CHECK_POWER_ROLE_SWAP
Check if Power Role Swap is allowed.

enumerator CHECK_DATA_ROLE_SWAP_TO_DFP
Check if Data Role Swap to DFP is allowed.

enumerator CHECK_DATA_ROLE_SWAP_TO_UFP
Check if Data Role Swap to UFP is allowed.

enumerator CHECK_SNK_AT_DEFAULT_LEVEL
Check if Sink is at default level.

enumerator CHECK_VCONN_CONTROL
Check if should control VCONN.

enumerator CHECK_SRC_PS_AT_DEFAULT_LEVEL
Check if Source Power Supply is at default level.

enum usbc_policy_wait_t
Device Policy Manager Wait message notifications.

Values:

enumerator WAIT_SINK_REQUEST
The port partner is unable to meet the sink request at this time.

enumerator WAIT_POWER_ROLE_SWAP
The port partner is unable to do a Power Role Swap at this time.

enumerator WAIT_DATA_ROLE_SWAP
The port partner is unable to do a Data Role Swap at this time.
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enumerator WAIT_VCONN_SWAP
The port partner is unable to do a VCONN Swap at this time.

enum usbc_snk_req_reply_t
Device Policy Manager’s response to a Sink Request.

Values:

enumerator SNK_REQUEST_VALID
The sink port partner’s request can be met.

enumerator SNK_REQUEST_REJECT
The sink port partner’s request can not be met.

enumerator SNK_REQUEST_WAIT
The sink port partner’s request can be met at a later time.

Functions

int usbc_start(const struct device *dev)
Start the USB-C Subsystem.

Parameters
• dev – Runtime device structure

Return values
0 – on success

int usbc_suspend(const struct device *dev)
Suspend the USB-C Subsystem.

Parameters
• dev – Runtime device structure

Return values
0 – on success

int usbc_request(const struct device *dev, const enum usbc_policy_request_t req)
Make a request of the USB-C Subsystem.

Parameters
• dev – Runtime device structure

• req – request

Return values
0 – on success

void usbc_bypass_next_sleep(const struct device *dev)

void usbc_set_dpm_data(const struct device *dev, void *dpm_data)
Set pointer to Device Policy Manager (DPM) data.

Parameters
• dev – Runtime device structure

• dpm_data – pointer to dpm data
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void *usbc_get_dpm_data(const struct device *dev)
Get pointer to Device Policy Manager (DPM) data.

Parameters
• dev – Runtime device structure

Return values
• pointer – to dpm data that was set with usbc_set_dpm_data

• NULL – if dpm data was not set

void usbc_set_vconn_control_cb(const struct device *dev, const tcpc_vconn_control_cb_t
cb)

Set the callback used to set VCONN control.

Parameters
• dev – Runtime device structure

• cb – VCONN control callback

void usbc_set_vconn_discharge_cb(const struct device *dev, const
tcpc_vconn_discharge_cb_t cb)

Set the callback used to discharge VCONN.

Parameters
• dev – Runtime device structure

• cb – VCONN discharge callback

void usbc_set_policy_cb_check(const struct device *dev, const policy_cb_check_t cb)
Set the callback used to check a policy.

Parameters
• dev – Runtime device structure

• cb – callback

void usbc_set_policy_cb_notify(const struct device *dev, const policy_cb_notify_t cb)
Set the callback used to notify Device Policy Manager of a policy change.

Parameters
• dev – Runtime device structure

• cb – callback

void usbc_set_policy_cb_wait_notify(const struct device *dev, const
policy_cb_wait_notify_t cb)

Set the callback used to notify Device Policy Manager of WAIT message reception.

Parameters
• dev – Runtime device structure

• cb – callback

void usbc_set_policy_cb_get_snk_cap(const struct device *dev, const
policy_cb_get_snk_cap_t cb)

Set the callback used to get the Sink Capabilities.

Parameters
• dev – Runtime device structure

• cb – callback
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void usbc_set_policy_cb_set_src_cap(const struct device *dev, const
policy_cb_set_src_cap_t cb)

Set the callback used to store the received Port Partner’s Source Capabilities.

Parameters
• dev – Runtime device structure

• cb – callback

void usbc_set_policy_cb_get_rdo(const struct device *dev, const policy_cb_get_rdo_t cb)
Set the callback used to get the Request Data Object (RDO)

Parameters
• dev – Runtime device structure

• cb – callback

void usbc_set_policy_cb_is_snk_at_default(const struct device *dev, const
policy_cb_is_snk_at_default_t cb)

Set the callback used to check if the sink power supply is at the default level.

Parameters
• dev – Runtime device structure

• cb – callback

void usbc_set_policy_cb_get_src_rp(const struct device *dev, const
policy_cb_get_src_rp_t cb)

Set the callback used to get the Rp value that should be placed on the CC lines.

Parameters
• dev – USB-C Connector Instance

• cb – callback

void usbc_set_policy_cb_src_en(const struct device *dev, const policy_cb_src_en_t cb)
Set the callback used to enable VBUS.

Parameters
• dev – USB-C Connector Instance

• cb – callback

void usbc_set_policy_cb_get_src_caps(const struct device *dev, const
policy_cb_get_src_caps_t cb)

Set the callback used to get the Source Capabilities from the Device Policy Manager.

Parameters
• dev – USB-C Connector Instance

• cb – callback

void usbc_set_policy_cb_check_sink_request(const struct device *dev, const
policy_cb_check_sink_request_t cb)

Set the callback used to check if Sink request is valid.

Parameters
• dev – USB-C Connector Instance

• cb – callback
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void usbc_set_policy_cb_is_ps_ready(const struct device *dev, const
policy_cb_is_ps_ready_t cb)

Set the callback used to check if Source Power Supply is ready.

Parameters
• dev – USB-C Connector Instance

• cb – callback

void usbc_set_policy_cb_present_contract_is_valid(const struct device *dev, const
pol-
icy_cb_present_contract_is_valid_t
cb)

Set the callback to check if present Contract is still valid.

Parameters
• dev – USB-C Connector Instance

• cb – callback

void usbc_set_policy_cb_change_src_caps(const struct device *dev, const
policy_cb_change_src_caps_t cb)

Set the callback used to request that a different set of Source Caps be sent to the Sink.

Parameters
• dev – USB-C Connector Instance

• cb – callback

void usbc_set_policy_cb_set_port_partner_snk_cap(const struct device *dev, const pol-
icy_cb_set_port_partner_snk_cap_t
cb)

Set the callback used to store the Capabilities received from a Sink Port Partner.

Parameters
• dev – USB-C Connector Instance

• cb – callback

SINK callback reference

group sink_callbacks

Typedefs

typedef int (*policy_cb_get_snk_cap_t)(const struct device *dev, uint32_t **pdos, int
*num_pdos)

Callback type used to get the Sink Capabilities.

Param dev
USB-C Connector Instance

Param pdos
pointer where pdos are stored

Param num_pdos
pointer where number of pdos is stored
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Return
0 on success

typedef void (*policy_cb_set_src_cap_t)(const struct device *dev, const uint32_t *pdos,
const int num_pdos)

Callback type used to report the received Port Partner’s Source Capabilities.

Param dev
USB-C Connector Instance

Param pdos
pointer to the partner’s source pdos

Param num_pdos
number of source pdos

typedef bool (*policy_cb_check_t)(const struct device *dev, const enum
usbc_policy_check_t policy_check)

Callback type used to check a policy.

Param dev
USB-C Connector Instance

Param policy_check
policy to check

Return
true if policy is currently allowed by the device policy manager

typedef bool (*policy_cb_wait_notify_t)(const struct device *dev, const enum
usbc_policy_wait_t wait_notify)

Callback type used to notify Device Policy Manager of WAIT message reception.

Param dev
USB-C Connector Instance

Param wait_notify
wait notification

Return
return true if the PE should wait and resend the message

typedef void (*policy_cb_notify_t)(const struct device *dev, const enum
usbc_policy_notify_t policy_notify)

Callback type used to notify Device Policy Manager of a policy change.

Param dev
USB-C Connector Instance

Param policy_notify
policy notification

typedef uint32_t (*policy_cb_get_rdo_t)(const struct device *dev)
Callback type used to get the Request Data Object (RDO)

Param dev
USB-C Connector Instance

Return
RDO
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typedef bool (*policy_cb_is_snk_at_default_t)(const struct device *dev)
Callback type used to check if the sink power supply is at the default level.

Param dev
USB-C Connector Instance

Return
true if power supply is at default level

SOURCE callback reference

group source_callbacks

Typedefs

typedef int (*policy_cb_get_src_caps_t)(const struct device *dev, const uint32_t **pdos,
uint32_t *num_pdos)

Callback type used to get the Source Capabilities from the Device Policy Manager.

Param dev
USB-C Connector Instance

Param pdos
pointer to source capability pdos

Param num_pdos
pointer to number of source capability pdos

Return
0 on success

typedef enum usbc_snk_req_reply_t (*policy_cb_check_sink_request_t)(const struct
device *dev, const uint32_t request_msg)

Callback type used to check if Sink request is valid.

Param dev
USB-C Connector Instance

Param request_msg
request message to check

Return
sink request reply

typedef bool (*policy_cb_is_ps_ready_t)(const struct device *dev)
Callback type used to check if Source Power Supply is ready.

Param dev
USB-C Connector Instance

Return
true if power supply is ready, else false

typedef bool (*policy_cb_present_contract_is_valid_t)(const struct device *dev, const
uint32_t present_contract)

Callback type used to check if present Contract is still valid.
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Param dev
USB-C Connector Instance

Param present_contract
present contract

Return
true if present contract is still valid

typedef bool (*policy_cb_change_src_caps_t)(const struct device *dev)
Callback type used to request that a different set of Source Caps be sent to the Sink.

Param dev
USB-C Connector Instance

Return
true if a different set of Source Caps is available

typedef void (*policy_cb_set_port_partner_snk_cap_t)(const struct device *dev, const
uint32_t *pdos, const int num_pdos)

Callback type used to report the Capabilities received from a Sink Port Partner.

Param dev
USB-C Connector Instance

Param pdos
pointer to sink cap pdos

Param num_pdos
number of sink cap pdos

typedef int (*policy_cb_get_src_rp_t)(const struct device *dev, enum tc_rp_value *rp)
Callback type used to get the Rp value that should be placed on the CC lines.

Param dev
USB-C Connector Instance

Param rp
rp value

Return
0 on success

typedef int (*policy_cb_src_en_t)(const struct device *dev, bool en)
Callback type used to enable VBUS.

Param dev
USB-C Connector Instance

Param en
true if VBUS should be enabled, else false to disable it

Return
0 on success

Common sections related to USB support

6.5.7 Human Interface Devices (HID)

Common USB HID part that can be used outside of USB support, defined in header file in-
clude/zephyr/usb/class/hid.h.
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HID types reference

group usb_hid_definitions
hid.h API

USB HID types and values

USB_HID_VERSION
HID Specification release v1.11.

USB_DESC_HID
USB HID Class HID descriptor type.

USB_DESC_HID_REPORT
USB HID Class Report descriptor type.

USB_DESC_HID_PHYSICAL
USB HID Class physical descriptor type.

USB_HID_GET_REPORT
USB HID Class GetReport bRequest value.

USB_HID_GET_IDLE
USB HID Class GetIdle bRequest value.

USB_HID_GET_PROTOCOL
USB HID Class GetProtocol bRequest value.

USB_HID_SET_REPORT
USB HID Class SetReport bRequest value.

USB_HID_SET_IDLE
USB HID Class SetIdle bRequest value.

USB_HID_SET_PROTOCOL
USB HID Class SetProtocol bRequest value.

HID_BOOT_IFACE_CODE_NONE
USB HID Boot Interface Protocol (bInterfaceProtocol) Code None.

HID_BOOT_IFACE_CODE_KEYBOARD
USB HID Boot Interface Protocol (bInterfaceProtocol) Code Keyboard.

HID_BOOT_IFACE_CODE_MOUSE
USB HID Boot Interface Protocol (bInterfaceProtocol) Code Mouse.

HID_PROTOCOL_BOOT
USB HID Class Boot protocol code.
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HID_PROTOCOL_REPORT
USB HID Class Report protocol code.

HID_ITEM_TYPE_MAIN
HID Main item type.

HID_ITEM_TYPE_GLOBAL
HID Global item type.

HID_ITEM_TYPE_LOCAL
HID Local item type.

HID_ITEM_TAG_INPUT
HID Input item tag.

HID_ITEM_TAG_OUTPUT
HID Output item tag.

HID_ITEM_TAG_COLLECTION
HID Collection item tag.

HID_ITEM_TAG_FEATURE
HID Feature item tag.

HID_ITEM_TAG_COLLECTION_END
HID End Collection item tag.

HID_ITEM_TAG_USAGE_PAGE
HID Usage Page item tag.

HID_ITEM_TAG_LOGICAL_MIN
HID Logical Minimum item tag.

HID_ITEM_TAG_LOGICAL_MAX
HID Logical Maximum item tag.

HID_ITEM_TAG_PHYSICAL_MIN
HID Physical Minimum item tag.

HID_ITEM_TAG_PHYSICAL_MAX
HID Physical Maximum item tag.

HID_ITEM_TAG_UNIT_EXPONENT
HID Unit Exponent item tag.

HID_ITEM_TAG_UNIT
HID Unit item tag.
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HID_ITEM_TAG_REPORT_SIZE
HID Report Size item tag.

HID_ITEM_TAG_REPORT_ID
HID Report ID item tag.

HID_ITEM_TAG_REPORT_COUNT
HID Report count item tag.

HID_ITEM_TAG_USAGE
HID Usage item tag.

HID_ITEM_TAG_USAGE_MIN
HID Usage Minimum item tag.

HID_ITEM_TAG_USAGE_MAX
HID Usage Maximum item tag.

HID_COLLECTION_PHYSICAL
Physical collection type.

HID_COLLECTION_APPLICATION
Application collection type.

HID_COLLECTION_LOGICAL
Logical collection type.

HID_COLLECTION_REPORT
Report collection type.

HID_COLLECTION_NAMED_ARRAY
Named Array collection type.

HID_COLLECTION_USAGE_SWITCH
Usage Switch collection type.

HID_COLLECTION_MODIFIER
Modifier collection type.

HID_USAGE_GEN_DESKTOP
HID Generic Desktop Controls Usage page.

HID_USAGE_GEN_KEYBOARD
HID Keyboard Usage page.

HID_USAGE_GEN_LEDS
HID LEDs Usage page.
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HID_USAGE_GEN_BUTTON
HID Button Usage page.

HID_USAGE_GEN_DESKTOP_UNDEFINED
HID Generic Desktop Undefined Usage ID.

HID_USAGE_GEN_DESKTOP_POINTER
HID Generic Desktop Pointer Usage ID.

HID_USAGE_GEN_DESKTOP_MOUSE
HID Generic Desktop Mouse Usage ID.

HID_USAGE_GEN_DESKTOP_JOYSTICK
HID Generic Desktop Joystick Usage ID.

HID_USAGE_GEN_DESKTOP_GAMEPAD
HID Generic Desktop Gamepad Usage ID.

HID_USAGE_GEN_DESKTOP_KEYBOARD
HID Generic Desktop Keyboard Usage ID.

HID_USAGE_GEN_DESKTOP_KEYPAD
HID Generic Desktop Keypad Usage ID.

HID_USAGE_GEN_DESKTOP_X
HID Generic Desktop X Usage ID.

HID_USAGE_GEN_DESKTOP_Y
HID Generic Desktop Y Usage ID.

HID_USAGE_GEN_DESKTOP_WHEEL
HID Generic Desktop Wheel Usage ID.

HID items reference

group usb_hid_items

Defines

HID_ITEM(bTag, bType, bSize)
Define HID short item.

Parameters
• bTag – Item tag

• bType – Item type

• bSize – Item data size
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Returns
HID Input item

HID_INPUT(a)
Define HID Input item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(),
HID_KEYBOARD_REPORT_DESC()

Parameters
• a – Input item data

Returns
HID Input item

HID_OUTPUT(a)
Define HID Output item with the data length of one byte.

For usage examples, see HID_KEYBOARD_REPORT_DESC()

Parameters
• a – Output item data

Returns
HID Output item

HID_FEATURE(a)
Define HID Feature item with the data length of one byte.

Parameters
• a – Feature item data

Returns
HID Feature item

HID_COLLECTION(a)
Define HID Collection item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(),
HID_KEYBOARD_REPORT_DESC()

Parameters
• a – Collection item data

Returns
HID Collection item

HID_END_COLLECTION
Define HID End Collection (non-data) item.

For usage examples, see HID_MOUSE_REPORT_DESC(),
HID_KEYBOARD_REPORT_DESC()

Returns
HID End Collection item

HID_USAGE_PAGE(page)
Define HID Usage Page item.

For usage examples, see HID_MOUSE_REPORT_DESC(),
HID_KEYBOARD_REPORT_DESC()

Parameters
• page – Usage Page
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Returns
HID Usage Page item

HID_LOGICAL_MIN8(a)
Define HID Logical Minimum item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(),
HID_KEYBOARD_REPORT_DESC()

Parameters
• a – Minimum value in logical units

Returns
HID Logical Minimum item

HID_LOGICAL_MAX8(a)
Define HID Logical Maximum item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(),
HID_KEYBOARD_REPORT_DESC()

Parameters
• a – Maximum value in logical units

Returns
HID Logical Maximum item

HID_LOGICAL_MIN16(a, b)
Define HID Logical Minimum item with the data length of two bytes.

Parameters
• a – Minimum value lower byte

• b – Minimum value higher byte

Returns
HID Logical Minimum item

HID_LOGICAL_MAX16(a, b)
Define HID Logical Maximum item with the data length of two bytes.

Parameters
• a – Minimum value lower byte

• b – Minimum value higher byte

Returns
HID Logical Maximum item

HID_LOGICAL_MIN32(a, b, c, d)
Define HID Logical Minimum item with the data length of four bytes.

Parameters
• a – Minimum value lower byte

• b – Minimum value low middle byte

• c – Minimum value high middle byte

• d – Minimum value higher byte

Returns
HID Logical Minimum item
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HID_LOGICAL_MAX32(a, b, c, d)
Define HID Logical Maximum item with the data length of four bytes.

Parameters
• a – Minimum value lower byte

• b – Minimum value low middle byte

• c – Minimum value high middle byte

• d – Minimum value higher byte

Returns
HID Logical Maximum item

HID_REPORT_SIZE(size)
Define HID Report Size item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(),
HID_KEYBOARD_REPORT_DESC()

Parameters
• size – Report field size in bits

Returns
HID Report Size item

HID_REPORT_ID(id)
Define HID Report ID item with the data length of one byte.

Parameters
• id – Report ID

Returns
HID Report ID item

HID_REPORT_COUNT(count)
Define HID Report Count item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(),
HID_KEYBOARD_REPORT_DESC()

Parameters
• count – Number of data fields included in the report

Returns
HID Report Count item

HID_USAGE(idx)
Define HID Usage Index item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(),
HID_KEYBOARD_REPORT_DESC()

Parameters
• idx – Number of data fields included in the report

Returns
HID Usage Index item

HID_USAGE_MIN8(a)
Define HID Usage Minimum item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(),
HID_KEYBOARD_REPORT_DESC()
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Parameters
• a – Starting Usage

Returns
HID Usage Minimum item

HID_USAGE_MAX8(a)
Define HID Usage Maximum item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(),
HID_KEYBOARD_REPORT_DESC()

Parameters
• a – Ending Usage

Returns
HID Usage Maximum item

HID_USAGE_MIN16(a, b)
Define HID Usage Minimum item with the data length of two bytes.

For usage examples, see HID_MOUSE_REPORT_DESC(),
HID_KEYBOARD_REPORT_DESC()

Parameters
• a – Starting Usage lower byte

• b – Starting Usage higher byte

Returns
HID Usage Minimum item

HID_USAGE_MAX16(a, b)
Define HID Usage Maximum item with the data length of two bytes.

For usage examples, see HID_MOUSE_REPORT_DESC(),
HID_KEYBOARD_REPORT_DESC()

Parameters
• a – Ending Usage lower byte

• b – Ending Usage higher byte

Returns
HID Usage Maximum item

HID Mouse and Keyboard report descriptors

The pre-defined Mouse and Keyboard report descriptors can be used by a HID device implemen-
tation or simply as examples.

group usb_hid_mk_report_desc

Defines

HID_MOUSE_REPORT_DESC(bcnt)
Simple HID mouse report descriptor for n button mouse.

Parameters
• bcnt – Button count. Allowed values from 1 to 8.
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HID_KEYBOARD_REPORT_DESC()
Simple HID keyboard report descriptor.

Enums

enum hid_kbd_code
HID keyboard button codes.

Values:

enumerator HID_KEY_A = 4

enumerator HID_KEY_B = 5

enumerator HID_KEY_C = 6

enumerator HID_KEY_D = 7

enumerator HID_KEY_E = 8

enumerator HID_KEY_F = 9

enumerator HID_KEY_G = 10

enumerator HID_KEY_H = 11

enumerator HID_KEY_I = 12

enumerator HID_KEY_J = 13

enumerator HID_KEY_K = 14

enumerator HID_KEY_L = 15

enumerator HID_KEY_M = 16

enumerator HID_KEY_N = 17

enumerator HID_KEY_O = 18

enumerator HID_KEY_P = 19

enumerator HID_KEY_Q = 20

enumerator HID_KEY_R = 21
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enumerator HID_KEY_S = 22

enumerator HID_KEY_T = 23

enumerator HID_KEY_U = 24

enumerator HID_KEY_V = 25

enumerator HID_KEY_W = 26

enumerator HID_KEY_X = 27

enumerator HID_KEY_Y = 28

enumerator HID_KEY_Z = 29

enumerator HID_KEY_1 = 30

enumerator HID_KEY_2 = 31

enumerator HID_KEY_3 = 32

enumerator HID_KEY_4 = 33

enumerator HID_KEY_5 = 34

enumerator HID_KEY_6 = 35

enumerator HID_KEY_7 = 36

enumerator HID_KEY_8 = 37

enumerator HID_KEY_9 = 38

enumerator HID_KEY_0 = 39

enumerator HID_KEY_ENTER = 40

enumerator HID_KEY_ESC = 41

enumerator HID_KEY_BACKSPACE = 42

enumerator HID_KEY_TAB = 43

enumerator HID_KEY_SPACE = 44
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enumerator HID_KEY_MINUS = 45

enumerator HID_KEY_EQUAL = 46

enumerator HID_KEY_LEFTBRACE = 47

enumerator HID_KEY_RIGHTBRACE = 48

enumerator HID_KEY_BACKSLASH = 49

enumerator HID_KEY_HASH = 50

enumerator HID_KEY_SEMICOLON = 51

enumerator HID_KEY_APOSTROPHE = 52

enumerator HID_KEY_GRAVE = 53

enumerator HID_KEY_COMMA = 54

enumerator HID_KEY_DOT = 55

enumerator HID_KEY_SLASH = 56

enumerator HID_KEY_CAPSLOCK = 57

enumerator HID_KEY_F1 = 58

enumerator HID_KEY_F2 = 59

enumerator HID_KEY_F3 = 60

enumerator HID_KEY_F4 = 61

enumerator HID_KEY_F5 = 62

enumerator HID_KEY_F6 = 63

enumerator HID_KEY_F7 = 64

enumerator HID_KEY_F8 = 65

enumerator HID_KEY_F9 = 66

enumerator HID_KEY_F10 = 67
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enumerator HID_KEY_F11 = 68

enumerator HID_KEY_F12 = 69

enumerator HID_KEY_SYSRQ = 70

enumerator HID_KEY_SCROLLLOCK = 71

enumerator HID_KEY_PAUSE = 72

enumerator HID_KEY_INSERT = 73

enumerator HID_KEY_HOME = 74

enumerator HID_KEY_PAGEUP = 75

enumerator HID_KEY_DELETE = 76

enumerator HID_KEY_END = 77

enumerator HID_KEY_PAGEDOWN = 78

enumerator HID_KEY_RIGHT = 79

enumerator HID_KEY_LEFT = 80

enumerator HID_KEY_DOWN = 81

enumerator HID_KEY_UP = 82

enumerator HID_KEY_NUMLOCK = 83

enumerator HID_KEY_KPSLASH = 84

enumerator HID_KEY_KPASTERISK = 85

enumerator HID_KEY_KPMINUS = 86

enumerator HID_KEY_KPPLUS = 87

enumerator HID_KEY_KPENTER = 88

enumerator HID_KEY_KP_1 = 89

enumerator HID_KEY_KP_2 = 90
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enumerator HID_KEY_KP_3 = 91

enumerator HID_KEY_KP_4 = 92

enumerator HID_KEY_KP_5 = 93

enumerator HID_KEY_KP_6 = 94

enumerator HID_KEY_KP_7 = 95

enumerator HID_KEY_KP_8 = 96

enumerator HID_KEY_KP_9 = 97

enumerator HID_KEY_KP_0 = 98

enum hid_kbd_modifier
HID keyboard modifiers.

Values:

enumerator HID_KBD_MODIFIER_NONE = 0x00

enumerator HID_KBD_MODIFIER_LEFT_CTRL = 0x01

enumerator HID_KBD_MODIFIER_LEFT_SHIFT = 0x02

enumerator HID_KBD_MODIFIER_LEFT_ALT = 0x04

enumerator HID_KBD_MODIFIER_LEFT_UI = 0x08

enumerator HID_KBD_MODIFIER_RIGHT_CTRL = 0x10

enumerator HID_KBD_MODIFIER_RIGHT_SHIFT = 0x20

enumerator HID_KBD_MODIFIER_RIGHT_ALT = 0x40

enumerator HID_KBD_MODIFIER_RIGHT_UI = 0x80

enum hid_kbd_led
HID keyboard LEDs.

Values:

enumerator HID_KBD_LED_NUM_LOCK = 0x01

enumerator HID_KBD_LED_CAPS_LOCK = 0x02
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enumerator HID_KBD_LED_SCROLL_LOCK = 0x04

enumerator HID_KBD_LED_COMPOSE = 0x08

enumerator HID_KBD_LED_KANA = 0x10
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Chapter 7

Hardware Support

7.1 Architecture-related Guides

7.1.1 Zephyr support status on ARC processors

Overview

This page describes current state of Zephyr for ARC processors and some future plans. Please
note that

• plans are given without exact deadlines

• software features require corresponding hardware to be present and configured the proper
way

• not all the features can be enabled at the same time

Support status

Legend: Y - yes, supported; N - no, not supported; WIP - Work In Progress; TBD - to be decided
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Processor families
EM HS3x/4x VPX HS5x HS6x

Port status up-
streamed

up-
streamed

up-
streamed6

up-
streamed

up-
streamed

Features
Closely coupled memories (ICCM, DCCM)1 Y Y Y TBD TBD
Execution with caches - Instruction/Data,
L1/L2 caches

Y Y Y Y Y

Hardware-assisted unaligned memory
access

Y2 Y Y Y Y

Regular interrupts with multiple priority
levels, direct interrupts

Y Y Y Y Y

Fast interrupts, separate register banks
for fast interrupts

Y Y TBD N N

Hardware floating point unit (FPU) Y Y TBD6 TBD TBD
Symmetric multiprocessing (SMP) sup-
port, switch-based

N/A Y TBD Y Y

Hardware-assisted stack checking Y Y Y N N
Hardware-assisted atomic operations N/A Y Y Y Y
DSP ISA Y N3 TBD6 TBD TBD
DSP AGU/XY extensions Y N3 N/A TBD TBD
Userspace Y Y N TBD TBD
Memory protection unit (MPU) Y Y TBD N N
Memory management unit (MMU) N/A N TBD N N
SecureShield Y N/A N/A N/A N/A
Single-thread kernel support5 Y Y Y Y Y
Toolchains
GNU (open source GCC-based) Y Y N Y Y
MetaWare (proprietary Clang-based) Y Y Y Y Y
Simulators
QEMU (open source)4 Y Y N Y Y
nSIM (proprietary, provided by
MetaWare Development Tools)

Y Y Y Y Y

Notes

7.1.2 Arm Cortex-M Developer Guide

Overview

This page contains detailed information about the status of the Arm Cortex-M architecture port-
ing in the Zephyr RTOS and describes key aspects when developing Zephyr applications for Arm
Cortex-M-based platforms.

6 currently only ARC VPX scalar port is supported. The support of VPX vector pipeline, VCCM, STU is not included in
this port, and require additional development and / or other runtime integration.

1 usage of CCMs is limited on SMP systems
2 except the systems with secure features (SecureShield) due to HW limitation
3 We only support save/restore ACCL/ACCH registers in task’s context. Rest of DSP/AGU registers save/restore isn’t

implemented but kernel itself does not use these registers. This allows single task per core to use DSP/AGU safely.
5 Single-thread kernel is support only for single core targets
4 QEMU doesn’t support all the ARC processor’s HW features. For the detailed info please check the ARC QEMU docu-

mentation
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Key supported features

The table below summarizes the status of key OS features in the different Arm Cortex-M imple-
mentation variants.

Processor families
Architecture variant Arm v6-

M
Arm v7-M Arm v8-

M
Arm
v8.1-
M

M0/M1M0+ M3 M4 M7 M23 M33 M55
OS Features
Programmable fault IRQ
priorities

Y N Y Y Y N Y Y

Single-thread kernel
support

Y Y Y Y Y Y Y Y

Thread local storage
support

Y Y Y Y Y Y Y Y

Interrupt handling
Regular inter-
rupts

Y Y Y Y Y Y Y Y

Dynamic inter-
rupts

Y Y Y Y Y Y Y Y

Direct interrupts Y Y Y Y Y Y Y Y
Zero Latency in-
terrupts

N N Y Y Y Y Y Y

CPU idling Y Y Y Y Y Y Y Y
Native system timer (Sy-
sTick)

N1 Y Y Y Y Y Y Y

Memory protection
User mode N Y Y Y Y Y Y Y
HW stack protec-
tion (MPU)

N N Y Y Y Y Y Y

HW-assisted
stack limit
checking

N N N N N Y2 Y Y

HW-assisted null-
pointer dereference
detection

N N Y Y Y Y Y Y

HW-assisted atomic op-
erations

N N Y Y Y N Y Y

Support for non-
cacheable regions

N N Y Y Y N Y Y

Execute SRAM functions N N Y Y Y N Y Y
Floating Point Services N N N Y Y N Y Y
DSP ISA N N N Y Y N Y Y
Trusted-Execution

Native
TrustZone-M
support

N N N N N Y Y Y

TF-M integration N N N N N N Y N
Code relocation Y Y Y Y Y Y Y Y
SW-based vector table
relaying

Y Y Y Y Y Y Y Y

HW-assisted timing
functions

N N Y Y Y N Y Y
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Notes

OS features

Threads

Thread stack alignment Each Zephyr thread is defined with its own stack mem-
ory. By default, Cortex-M enforces a double word thread stack alignment, see CON-
FIG_STACK_ALIGN_DOUBLE_WORD. If MPU-based HW-assisted stack overflow detection
(CONFIG_MPU_STACK_GUARD) is enabled, thread stacks need to be aligned with a larger
value, reflected by CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE. In Arm v6-M and Arm
v7-M architecture variants, thread stacks are additionally required to align with a value
equal to their size, in applications that need to support user mode (CONFIG_USERSPACE).
The thread stack sizes in that case need to be a power of two. This is all reflected by CON-
FIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT, that is enforced in Arm v6-M and Arm v7-M
builds with user mode support.

Stackpointers While executing in thread mode the processor is using the Process Stack Pointer
(PSP). The processor uses the Main Stack Pointer (MSP) while executing in handler mode, that is,
while servicing exceptions and HW interrupts. Using PSP in thread mode facilitates thread stack
pointer manipulation during thread context switching, without affecting the current execution
context flow in handler mode.

In Arm Cortex-M builds a single interrupt stack memory is shared among exceptions and in-
terrupts. The size of the interrupt stack needs to be selected taking into consideration nested
interrupts, each pushing an additional stack frame. Developers can modify the interrupt stack
size using CONFIG_ISR_STACK_SIZE.

The interrupt stack is also used during early boot so the kernel can initialize the main thread’s
stack before switching to the main thread.

Thread context switching In Arm Cortex-M builds, the PendSV exception is used in order to
trigger a context switch to a different thread. PendSV exception is always present in Cortex-M
implementations. PendSV is configured with the lowest possible interrupt priority level, in all
Cortex-M variants. The main reasons for that design are

• to utilize the tail chaining feature of Cortex-M processors, and thus limit the number of
context switch operations that occur.

• to not impact the interrupt latency observed by HW interrupts.

As a result, context switch in Cortex-M is non-atomic, i.e. it may be preempted by HW interrupts,
however, a context-switch operation must be completed before a new thread context-switch may
start.

Typically a thread context-switch will perform the following operations

• When switching-out the current thread, the processor stores

– the callee-saved registers (R4 - R11) in the thread’s container for callee-saved registers,
which is located in kernel memory

– the thread’s current operation mode

* user or privileged execution mode

* presence of an active floating point context
1 SysTick is optional in Cortex-M1
2 Stack limit checking only in Secure builds in Cortex-M23
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* the EXC_RETURN value of the current handler context (PendSV)

– the floating point callee-saved registers (S16 - S31) in the thread’s container for FP
callee-saved registers, if the current thread has an active FP context

– the PSP of the current thread which points to the beginning of the current thread’s
exception stack frame. The latter contains the caller-saved context and the return ad-
dress of the switched-out thread.

• When switching-in a new thread the processor

– restores the new thread’s callee-saved registers from the thread’s container for callee-
saved registers

– restores the new thread’s operation mode

– restores the FP callee-saved registers if the switched-in thread had an active FP context
before being switched-out

– re-programs the dynamic MPU regions to allow a user thread access its stack and ap-
plication memories, and/or programs a stack-overflow MPU guard at the bottom of the
thread’s privileged stack

– restores the PSP for the incoming thread and re-programs the stack pointer limit reg-
ister (if applicable, see CONFIG_BUILTIN_STACK_GUARD)

– optionally does a stack limit checking for the switched-in thread, if sentinel-based stack
limit checking is enabled (see CONFIG_STACK_SENTINEL).

PendSV exception return sequence restores the new thread’s caller-saved registers and the re-
turn address, as part of unstacking the exception stack frame.

The implementation of the context-switch mechanism is present in arch/arm/core/cortex_m/
swap_helper.S.

Stack limit checking (Arm v8-M) Armv8-M and Armv8.1-M variants support stack limit
checking using the MSPLIM and PSPLIM core registers. The feature is enabled when CON-
FIG_BUILTIN_STACK_GUARD is set. When stack limit checking is enabled, both the thread’s privi-
leged or user stack, as well as the interrupt stack are guarded by PSPLIM and MSPLIM registers,
respectively. MSPLIM is configured once during kernel boot, while PSLIM is re-programmed
during every thread context-switch or during system calls, when the thread switches from using
its default stack to using its privileged stack, and vice versa. PSPLIM re-programming

• has a relatively low runtime overhead (programming is done with MSR instructions)

• does not impact interrupt latency

• does not require any memory areas to be reserved for stack guards

• does not make use of MPU regions

It is, therefore, considered as a lightweight but very efficient stack overflow detection mechanism
in Cortex-M applications.

Stack overflows trigger the dedicated UsageFault exception provided by Arm v8-M.

Interrupt handling features This section describes certain aspects around exception and in-
terrupt handling in Arm Cortex-M.

Interrupt priority levels The number of available (configurable) interrupt priority levels is
determined by the number of implemented interrupt priority bits in NVIC; this needs to be de-
scribed for each Cortex-M platform using DeviceTree:
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&nvic {
arm,num-irq-priority-bits = <#priority-bits>;

};

Reserved priority levels A number of interrupt priority levels are reserved for the OS.

By design, system fault exceptions have the highest priority level. In Baseline Cortex-M, this is
actually enforced by hardware, as HardFault is the only available processor fault exception, and
its priority is higher than any configurable exception priority.

In Mainline Cortex-M, the available fault exceptions (e.g. MemManage-
Fault, UsageFault, etc.) are assigned the highest configurable priority level.
(CONFIG_CPU_CORTEX_M_HAS_PROGRAMMABLE_FAULT_PRIOS signifies explicitly that the Cortex-
M implementation supports configurable fault priorities.)

This priority level is never shared with HW interrupts (an exception to this rule is described be-
low). As a result, processor faults occurring in regular ISRs will be handled by the corresponding
fault handler and will not escalate to a HardFault, similar to processor faults occurring in thread
mode.

SVC exception is normally configured with the highest configurable priority level (an exception
to this rule will be described below). SVCs are used by the Zephyr kernel to dispatch system calls,
trigger runtime system errors (e.g. Kernel oops or panic), or implement IRQ offloading.

In Baseline Cortex-M the priority level of SVC may be shared with other exceptions or HW in-
terrupts that are also given the highest configurable priority level (As a result of this, kernel
runtime errors during interrupt handling will escalate to HardFault. Additional logic in the fault
handling routines ensures that such runtime errors are detected successfully).

In Mainline Cortex-M, however, the SVC priority level is reserved, thus normally it is only shared
with the fault exceptions of configurable priority. This simplifies the fault handling routines in
Mainline Cortex-M architecture, since runtime kernel errors are serviced by the SVC handler (i.e
no HardFault escalation, even if the kernel errors occur in ISR context).

HW interrupts in Mainline Cortex-M builds are allocated a priority level lower than the SVC.

One exception to the above rules is when Zephyr applications support Zero Latency Interrupts
(ZLIs). Such interrupts are designed to have a priority level higher than any HW or system inter-
rupt. If the ZLI feature is enabled in Mainline Cortex-M builds (see CONFIG_ZERO_LATENCY_IRQS),
then

• ZLIs are assigned the highest configurable priority level

• SVCs are assigned the second highest configurable priority level

• Regular HW interrupts are assigned priority levels lower than SVC.

The priority level configuration in Cortex-M is implemented in include/zephyr/arch/arm/
cortex_m/exception.h.

Locking and unlocking IRQs In Baseline Cortex-M locking interrupts is implemented using
the PRIMASK register.

arch_irq_lock()

will set the PRIMASK register to 1, eventually, masking all IRQs with configurable priority. While
this fulfils the OS requirement of locking interrupts, the consequence is that kernel runtime er-
rors (triggering SVCs) will escalate to HardFault.

In Mainline Cortex-M locking interrupts is implemented using the BASEPRI register (Mainline
Cortex-M builds select CONFIG_CPU_CORTEX_M_HAS_BASEPRI to signify that BASEPRI register is im-
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plemented.). By modifying BASEPRI (or BASEPRI_MAX) arch_irq_lock() masks all system and HW
interrupts with the exception of

• SVCs

• processor faults

• ZLIs

This allows zero latency interrupts to be triggered inside OS critical sections. Additionally, this
allows system (processor and kernel) faults to be handled by Zephyr in exactly the same way,
regardless of whether IRQs have been locked or not when the error occurs. It also allows for
system calls to be dispatched while IRQs are locked.

Note

Mainline Cortex-M fault handling is designed and configured in a way that all processor and
kernel faults are handled by the corresponding exception handlers and never result in Hard-
Fault escalation. In other words, a HardFault may only occur in Zephyr applications that have
modified the default fault handling configurations. The main reason for this design was to
reserve the HardFault exception for handling exceptional error conditions in safety critical
applications.

Dynamic direct interrupts Cortex-M builds support the installation of direct interrupt ser-
vice routines during runtime. Direct interrupts are designed for performance-critical interrupt
handling and do not go through all of the common Zephyr interrupt handling code.

Direct dynamic interrupts are enabled via switching on CONFIG_DYNAMIC_DIRECT_INTERRUPTS.

Note that enabling direct dynamic interrupts requires enabling support for dynamic interrupts
in the kernel, as well (see CONFIG_DYNAMIC_INTERRUPTS).

Zero Latency interrupts As described above, in Mainline Cortex-M applications, the Zephyr
kernel reserves the highest configurable interrupt priority level for its own use (SVC). SVCs will
not be masked by interrupt locking. Zero-latency interrupt can be used to set up an interrupt
at the highest interrupt priority which will not be blocked by interrupt locking. To use the ZLI
feature CONFIG_ZERO_LATENCY_IRQS needs to be enabled.

Zero latency IRQs have minimal interrupt latency, as they will always preempt regular HW or
system interrupts.

Note, however, that since ZLI ISRs will run at a priority level higher than the kernel exceptions
they cannot use any kernel functionality. Additionally, since the ZLI interrupt priority level is
equal to processor fault priority level, faults occurring in ZLI ISRs will escalate to HardFault and
will not be handled in the same way as regular processor faults. Developers need to be aware of
this limitation.

CPU Idling The Cortex-M architecture port implements both k_cpu_idle() and
k_cpu_atomic_idle(). The implementation is present in arch/arm/core/cortex_m/cpu_idle.c.

In both implementations, the processor will attempt to put the core to low power mode. In
k_cpu_idle() the processor ends up executing WFI (Wait For Interrupt) instruction, while in
k_cpu_atomic_idle() the processor will execute a WFE (Wait For Event) instruction.

When using the CPU idling API in Cortex-M it is important to note the following:

• Both k_cpu_idle() and k_cpu_atomic_idle() are assumed to be invoked with interrupts
locked. This is taken care of by the kernel if the APIs are called by the idle thread.
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• After waking up from low power mode, both functions will restore interrupts uncondition-
ally, that is, regardless of the interrupt lock status before the CPU idle API was called.

The Zephyr CPU Idling mechanism is detailed in CPU Idling.

Memory protection features This section describes certain aspects around memory protec-
tion features in Arm Cortex-M applications.

User mode system calls User mode is supported in Cortex-M platforms that implement the
standard (Arm) MPU or a similar core peripheral logic for memory access policy configuration
and control, such as the NXP MPU for Kinetis platforms. (Currently, CONFIG_ARCH_HAS_USERSPACE
is selected if CONFIG_ARM_MPU is enabled by the user in the board default Kconfig settings).

A thread performs a system call by triggering a (synchronous) SVC exception, where

• up to 5 arguments are placed on registers R1 - R5

• system call ID is placed on register R6.

The SVC Handler will branch to the system call preparation logic, which will perform the follow-
ing operations

• switch the thread’s PSP to point to the beginning of the thread’s privileged stack area, op-
tionally reprogramming the PSPLIM if stack limit checking is enabled

• modify CONTROL register to switch to privileged mode

• modify the return address in the SVC exception stack frame, so that after exception return
the system call dispatcher is executed (in thread privileged mode)

Once the system call execution is completed the system call dispatcher will restore the user’s
original PSP and PSPLIM and switch the CONTROL register back to unprivileged mode before
returning back to the caller of the system call.

System calls execute in thread mode and can be preempted by interrupts at any time. A thread
may also be context-switched-out while doing a system call; the system call will resume as soon
as the thread is switched-in again.

The system call dispatcher executes at SVC priority, therefore it cannot be preempted by HW
interrupts (with the exception of ZLIs), which may observe some additional interrupt latency if
they occur during a system call preparation.

MPU-assisted stack overflow detection Cortex-M platforms with MPU may enable CON-
FIG_MPU_STACK_GUARD to enable the MPU-based stack overflow detection mechanism. The fol-
lowing points need to be considered when enabling the MPU stack guards

• stack overflows are triggering processor faults as soon as they occur

• the mechanism is essential for detecting stack overflows in supervisor threads, or user
threads in privileged mode; stack overflows in threads in user mode will always be de-
tected regardless of CONFIG_MPU_STACK_GUARD being set.

• stack overflows are always detected, however, the mechanism does not guarantee that no
memory corruption occurs when supervisor threads overflow their stack memory

• CONFIG_MPU_STACK_GUARDwill normally reserve one MPU region for programming the stack
guard (in certain Arm v8-M configurations with CONFIG_MPU_GAP_FILLING enabled 2 MPU
regions are required to implement the guard feature)

• MPU guards are re-programmed at every context-switch, adding a small overhead to the
thread swap routine. Compared, however, to the CONFIG_BUILTIN_STACK_GUARD feature, no
re-programming occurs during system calls.
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• When CONFIG_HW_STACK_PROTECTION is enabled on Arm v8-M platforms the native stack
limit checking mechanism is used by default instead of the MPU-based stack over-
flow detection mechanism; users may override this setting by manually enabling CON-
FIG_MPU_STACK_GUARD in these scenarios.

Memory map and MPU considerations

FixedMPU regions By default, when CONFIG_ARM_MPU is enabled a set of fixed MPU regions are
programmed during system boot.

• One MPU region programs the entire flash area as read-execute. User can override this
setting by enabling CONFIG_MPU_ALLOW_FLASH_WRITE, which programs the flash with RWX
permissions. If CONFIG_USERSPACE is enabled unprivileged access on the entire flash area
is allowed.

• One MPU region programs the entire SRAM area with privileged-only RW permissions. That
is, an MPU region is utilized to disallow execute permissions on SRAM. (An exception to
this setting is when CONFIG_MPU_GAP_FILLING is disabled (Arm v8-M only); in that case no
SRAM MPU programming is done so the access is determined by the default Arm memory
map policies, allowing for privileged-only RWX permissions on SRAM).

• All the memory regions defined in the devicetree with the property zephyr,memory-attr
defining the MPU permissions for the memory region. See the next section for more details.

The above MPU regions are defined in arch/arm/core/mpu/arm_mpu_regions.c. Alternative MPU
configurations are allowed by enabling CONFIG_CPU_HAS_CUSTOM_FIXED_SOC_MPU_REGIONS. When
enabled, this option signifies that the Cortex-M SoC will define and configure its own fixed MPU
regions in the SoC definition.

Fixed MPU regions defined in devicetree When the property zephyr,memory-attr is present
in a memory node, a new MPU region will be allocated and programmed during system boot.
When used with the zephyr,memory-region devicetree compatible, it will result in a linker sec-
tion being generated associated to that MPU region.

For example, to define a new non-cacheable memory region in devicetree:

sram_no_cache: memory@20300000 {
compatible = "zephyr,memory-region", "mmio-sram";
reg = <0x20300000 0x100000>;
zephyr,memory-region = "SRAM_NO_CACHE";
zephyr,memory-attr = <( DT_MEM_ARM(ATTR_MPU_RAM_NOCACHE) )>;

};

This will automatically create a new MPU entry in with the correct name, base, size and attributes
gathered directly from the devicetree.

Static MPU regions Additional static MPU regions may be programmed once during system
boot. These regions are required to enable certain features

• a RX region to allow execution from SRAM, when CONFIG_ARCH_HAS_RAMFUNC_SUPPORT is
enabled and users have defined functions to execute from SRAM.

• a RX region for relocating text sections to SRAM, when CONFIG_CODE_DATA_RELOCATION_SRAM
is enabled

• a no-cache region to allow for a none-cacheable SRAM area, when CONFIG_NOCACHE_MEMORY
is enabled

• a possibly unprivileged RW region for GCOV code coverage accounting area, when CON-
FIG_COVERAGE_GCOV is enabled
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• a no-access region to implement null pointer dereference detection, when CON-
FIG_NULL_POINTER_EXCEPTION_DETECTION_MPU is enabled

The boundaries of these static MPU regions are derived from symbols exposed by the linker, in
include/linker/linker-defs.h.

Dynamic MPU regions Certain thread-specific MPU regions may be re-programmed dynami-
cally, at each thread context switch:

• an unprivileged RW region for the current thread’s stack area (for user threads)

• a read-only region for the MPU stack guard

• unprivileged RW regions for the partitions of the current thread’s application memory do-
main.

Considerations The number of available MPU regions for a Cortex-M platform is a limited
resource. Most platforms have 8 MPU regions, while some Cortex-M33 or Cortex-M7 platforms
may have up to 16 MPU regions. Therefore there is a relatively strict limitation on how many
fixed, static and dynamic MPU regions may be programmed simultaneously. For platforms with
8 available MPU regions it might not be possible to enable all the aforementioned features that
require MPU region programming. In most practical applications, however, only a certain set of
features is required and 8 MPU regions are, in many cases, sufficient.

In Arm v8-M processors the MPU architecture does not allow programmed MPU regions to over-
lap. CONFIG_MPU_GAP_FILLING controls whether the fixed MPU region covering the entire SRAM
is programmed. When it does, a full SRAM area partitioning is required, in order to program the
static and the dynamic MPU regions. This increases the total number of required MPU regions.
When CONFIG_MPU_GAP_FILLING is not enabled the fixed MPU region covering the entire SRAM
is not programmed, thus, the static and dynamic regions are simply programmed on top of the
always-existing background region (full-SRAM partitioning is not required). Note, however, that
the background SRAM region allows execution from SRAM, so when CONFIG_MPU_GAP_FILLING
is not set Zephyr is not protected against attacks that attempt to execute malicious code from
SRAM.

Floating point Services Both unshared and shared FP registers mode are supported in Cortex-
M (see Floating Point Services for more details).

When FPU support is enabled in the build (CONFIG_FPU is enabled), the sharing FP registers
mode (CONFIG_FPU_SHARING) is enabled by default. This is done as some compiler configurations
may activate a floating point context by generating FP instructions for any thread, regardless
of whether floating point calculations are performed, and that context must be preserved when
switching such threads in and out.

The developers can still disable the FP sharing mode in their application projects, and switch to
Unshared FP registers mode, if it is guaranteed that the image code does not generate FP instruc-
tions outside the single thread context that is allowed (and supposed) to do so.

Under FPU sharing mode, the callee-saved FPU registers are saved and restored in context-
switch, if the corresponding threads have an active FP context. This adds some runtime overhead
on the swap routine. In addition to the runtime overhead, the sharing FPU mode

• requires additional memory for each thread to save the callee-saved FP registers

• requires additional stack memory for each thread, to stack the caller-saved FP registers,
upon exception entry, if an FP context is active. Note, however, that since lazy stacking is
enabled, there is no runtime overhead of FP context stacking in regular interrupts (FP state
preservation is only activated in the swap routine in PendSV interrupt).
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Misc

Chain-loadable images Cortex-M applications may either be standalone images or chain-
loadable, for instance, by a bootloader. Application images chain-loadable by bootloaders (or
other applications) normally occupy a specific area in the flash denoted as their code partition.
CONFIG_USE_DT_CODE_PARTITION will ensure that a Zephyr chain-loadable image will be linked
into its code partition, specified in DeviceTree.

HW initialization at boot In order to boot properly, chain-loaded applications may require
that the core Arm hardware registers and peripherals are initialized in their reset values. En-
abling CONFIG_INIT_ARCH_HW_AT_BOOT Zephyr to force the initialization of the internal Cortex-M
architectural state during boot to the reset values as specified by the corresponding Arm archi-
tecture manual.

Software vector relaying In Cortex-M platforms that implement the VTOR register (see CON-
FIG_CPU_CORTEX_M_HAS_VTOR), chain-loadable images relocate the Cortex-M vector table by up-
dating the VTOR register with the offset of the image vector table.

Baseline Cortex-M platforms without VTOR register might not be able to relocate their vector
table which remains at a fixed location. Therefore, a chain-loadable image will require an alter-
native way to route HW interrupts and system exceptions to its own vector table; this is achieved
with software vector relaying.

When a bootloader image enables CONFIG_SW_VECTOR_RELAY it is able to relay exceptions and
interrupts based on a vector table pointer that is set by the chain-loadable application. The latter
sets the CONFIG_SW_VECTOR_RELAY_CLIENT option to instruct the boot sequence to set the vector
table pointer in SRAM so that the bootloader can forward the exceptions and interrupts to the
chain-loadable image’s software vector table.

While this feature is intended for processors without VTOR register, it may also be used in Main-
line Cortex-M platforms.

Code relocation Cortex-M support the code relocation feature. When CON-
FIG_CODE_DATA_RELOCATION_SRAM is selected, Zephyr will relocate .text, data and .bss sections
from the specified files and place it in SRAM. It is possible to relocate only parts of the code
sections into SRAM, without relocating the whole image text and data sections. More details on
the code relocation feature can be found in Code And Data Relocation.

Linking Cortex-M applications

Most Cortex-M platforms make use of the default Cortex-M GCC linker script in include/zephyr/
arch/arm/cortex_m/scripts/linker.ld, although it is possible for platforms to use a custom
linker script as well.

CMSIS

Cortex-M CMSIS headers are hosted in a standalone module repository: zephyrproject-
rtos/cmsis.

CONFIG_CPU_CORTEX_M selects CONFIG_HAS_CMSIS_CORE to signify that CMSIS headers are available
for all supported Cortex-M variants.
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Testing

A list of unit tests for the Cortex-M porting and miscellaneous features is present in tests/arch/
arm/. The tests suites are continuously extended and new test suites are added, in an effort to
increase the coverage of the Cortex-M architecture support in Zephyr.

QEMU

We use QEMU to verify the implemented features of the Cortex-M architecture port in Zephyr.
Adequate coverage is achieved by defining and utilizing a list of QEMU targets, each with a spe-
cific architecture variant and Arm peripheral support list.

The table below lists the QEMU platform targets defined in Zephyr along with the corresponding
Cortex-M implementation variant and the peripherals these targets emulate.

QEMU target
Architecture
variant

Arm v6-M Arm v7-M Arm v8-M Arm v8.1-
M

qemu_cortex_m0qemu_cortex_m3mps2_an385 mps2_an521 mps3_an547
Emulated fea-
tures
NVIC Y Y Y Y Y
BASEPRI N Y Y Y Y
SysTick N Y Y Y Y
MPU N N Y Y Y
FPU N N N Y N
SPLIM N N N Y Y
TrustZone-M N N N Y N

Maintainers & Collaborators

The status of the Arm Cortex-M architecture port in Zephyr is: maintained. The updated list of
maintainers and collaborators for Cortex-M can be found in MAINTAINERS.yml.

7.1.3 Zephyr support status on RISC-V processors

Overview

This page describes current state of Zephyr for RISC-V processors. Currently, there’s support
for some boards, as well as Qemu support and support for some FPGA implementations such as
neorv32 and litex_vexriscv.

Zephyr support includes PMP, user mode, several ISA extensions as well as semihosting.

User mode and PMP support

When the platform has Physical Memory Protection (PMP) support, enabling it on Zephyr allows
user space support and stack protection to be selected.
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ISA extensions

It’s possible to set in Zephyr which ISA extensions (RV32/64I(E)MAFD(G)QC) are available on a
given platform, by setting the appropriate RISCV_ISA_* kconfig. Look at arch/riscv/Kconfig.
isa for more information.

Note that Zephyr SDK toolchain support may not be defined for all combinations.

SMP support

SMP is supported on RISC-V, but currently only on Qemu platforms. In order to test the SMP
support, one can use qemu_riscv32_smp or qemu_riscv64_smp boards.

7.1.4 Semihosting Guide

Overview

Semihosting is a mechanism that enables code running on ARM and RISC-V targets to communi-
cate and use the Input/Output facilities on a host computer that is running a debugger or emu-
lator.

More complete documentation on the available functionality is available at the ARM Github doc-
umentation.

The RISC-V functionality borrows from the ARM definitions, as described at the RISC-V Github
documentation.

File Operations

Semihosting enables files on the host computer to be opened, read, and modified by an applica-
tion. This can be useful when attempting to validate the behaviour of code across datasets that
are larger than what can fit into ROM of an emulated platform. File paths can be either absolute,
or relative to the directory of the running process.

const char *path = "./data.bin";
long file_len, bytes_read, fd;
uint8_t buffer[16];

/* Open the data file for reading */
fd = semihost_open(path, SEMIHOST_OPEN_RB);
if (fd < 0) {

return -ENOENT;
}
/* Read all data from the file */
file_len = semihost_flen(fd);
while(file_len > 0) {

bytes_read = semihost_read(fd, buffer, MIN(file_len, sizeof(buffer)));
if (bytes_read < 0) {

break;
}
/* Process read data */
do_data_processing(buffer, bytes_read);
/* Update remaining length */
file_len -= bytes_read;

}
/* Close the file */
semihost_close(fd);
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7.1.5 Additional Functionality

Additional functionality is available by running semihosting instructions directly with semi-
host_exec() with one of the instructions defined in semihost_instr. For complete documen-
tation on the required arguments and return codes, see the ARM Github documentation.

API Reference

group semihost

Enums

enum semihost_instr
Semihosting instructions.

Values:

enumerator SEMIHOST_OPEN = 0x01
Open a file or stream on the host system.

enumerator SEMIHOST_ISTTY = 0x09
Check whether a file is associated with a stream/terminal.

enumerator SEMIHOST_WRITE = 0x05
Write to a file or stream.

enumerator SEMIHOST_READ = 0x06
Read from a file at the current cursor position.

enumerator SEMIHOST_CLOSE = 0x02
Closes a file on the host which has been opened by SEMIHOST_OPEN.

enumerator SEMIHOST_FLEN = 0x0C
Get the length of a file.

enumerator SEMIHOST_SEEK = 0x0A
Set the file cursor to a given position in a file.

enumerator SEMIHOST_TMPNAM = 0x0D
Get a temporary absolute file path to create a temporary file.

enumerator SEMIHOST_REMOVE = 0x0E
Remove a file on the host system.

Possibly insecure!

enumerator SEMIHOST_RENAME = 0x0F
Rename a file on the host system.

Possibly insecure!
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enumerator SEMIHOST_WRITEC = 0x03
Write one character to the debug terminal.

enumerator SEMIHOST_WRITE0 = 0x04
Write a NULL terminated string to the debug terminal.

enumerator SEMIHOST_READC = 0x07
Read one character from the debug terminal.

enumerator SEMIHOST_CLOCK = 0x10

enumerator SEMIHOST_ELAPSED = 0x30

enumerator SEMIHOST_TICKFREQ = 0x31

enumerator SEMIHOST_TIME = 0x11

enumerator SEMIHOST_ERRNO = 0x13
Retrieve the errno variable from semihosting operations.

enumerator SEMIHOST_GET_CMDLINE = 0x15
Get commandline parameters for the application to run with.

enumerator SEMIHOST_HEAPINFO = 0x16

enumerator SEMIHOST_ISERROR = 0x08

enumerator SEMIHOST_SYSTEM = 0x12

enum semihost_open_mode
Modes to open a file with.

Behaviour corresponds to equivalent fopen strings. i.e. SEMIHOST_OPEN_RB_PLUS ==
“rb+”

Values:

enumerator SEMIHOST_OPEN_R = 0

enumerator SEMIHOST_OPEN_RB = 1

enumerator SEMIHOST_OPEN_R_PLUS = 2

enumerator SEMIHOST_OPEN_RB_PLUS = 3

enumerator SEMIHOST_OPEN_W = 4

enumerator SEMIHOST_OPEN_WB = 5
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enumerator SEMIHOST_OPEN_W_PLUS = 6

enumerator SEMIHOST_OPEN_WB_PLUS = 7

enumerator SEMIHOST_OPEN_A = 8

enumerator SEMIHOST_OPEN_AB = 9

enumerator SEMIHOST_OPEN_A_PLUS = 10

enumerator SEMIHOST_OPEN_AB_PLUS = 11

Functions

long semihost_exec(enum semihost_instr instr, void *args)
Manually execute a semihosting instruction.

Parameters
• instr – instruction code to run

• args – instruction specific arguments

Returns
integer return code of instruction

char semihost_poll_in(void)
Read a byte from the console.

Returns
char byte read from the console.

void semihost_poll_out(char c)
Write a byte to the console.

Parameters
• c – byte to write to console

long semihost_open(const char *path, long mode)
Open a file on the host system.

Parameters
• path – file path to open. Can be absolute or relative to current directory

of the running process.

• mode – value from semihost_open_mode.

Return values
• handle – positive handle on success.

• -1 – on failure.

long semihost_close(long fd)
Close a file.

Parameters
• fd – handle returned by semihost_open.
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Return values
• 0 – on success.

• -1 – on failure.

long semihost_flen(long fd)
Query the size of a file.

Parameters
• fd – handle returned by semihost_open.

Return values
• positive – file size on success.

• -1 – on failure.

long semihost_seek(long fd, long offset)
Seeks to an absolute position in a file.

Parameters
• fd – handle returned by semihost_open.

• offset – offset from the start of the file in bytes.

Return values
• 0 – on success.

• -errno – negative error code on failure.

long semihost_read(long fd, void *buf, long len)
Read the contents of a file into a buffer.

Parameters
• fd – handle returned by semihost_open.

• buf – buffer to read data into.

• len – number of bytes to read.

Return values
• read – number of bytes read on success.

• -errno – negative error code on failure.

long semihost_write(long fd, const void *buf, long len)
Write the contents of a buffer into a file.

Parameters
• fd – handle returned by semihost_open.

• buf – buffer to write data from.

• len – number of bytes to write.

Return values
• 0 – on success.

• -errno – negative error code on failure.
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7.1.6 x86 Developer Guide

Overview

This page contains information on certain aspects when developing for x86-based platforms.

Virtual Memory

During very early boot, page tables are loaded so technically the kernel is executing in virtual
address space. By default, physical and virtual memory are identity mapped and thus giving
the appearance of execution taking place in physical address space. The physical address space
is marked by kconfig CONFIG_SRAM_BASE_ADDRESS and CONFIG_SRAM_SIZE while the virtual ad-
dress space is marked by CONFIG_KERNEL_VM_BASE and CONFIG_KERNEL_VM_SIZE. Note that CON-
FIG_SRAM_OFFSET controls where the Zephyr kernel is being placed in the memory, and its coun-
terpart CONFIG_KERNEL_VM_OFFSET.

Separate Virtual Address Space from Physical Address Space On 32-bit x86, it is possible
to have separate physical and virtual address space. Code and data are linked in virtual ad-
dress space, but are still loaded in physical memory. However, during boot, code and data must
be available and also addressable in physical address space before vm_enter inside arch/x86/
core/ia32/crt0.S. After vm_enter, code execution is done via virtual addresses and data can be
referred via their virtual addresses. This is possible as the page table generation script (arch/
x86/gen_mmu.py) identity maps the physical addresses at the page directory level, in addition to
mapping virtual addresses to the physical memory. Later in the boot process, the entries for iden-
tity mapping at the page directory level are cleared in z_x86_mmu_init(), effectively removing
the identity mapping of physical memory. This unmapping must be done for userspace isolation
or else they would be able to access restricted memory via physical addresses. Since the identity
mapping is done at the page directory level, there is no need to allocate additional space for the
page table. However, additional space may still be required for additional page directory table.

There are restrictions on where virtual address space can be:

• Physical and virtual address spaces must be disjoint. This is required as the entries in page
directory table will be cleared. If they are not disjoint, it would clear the entries needed for
virtual addresses.

– If CONFIG_X86_PAE is enabled (=y), each address space must reside in their own 1GB
region, due to each entry of PDP (Page Directory Pointer) covers 1GB of memory. For
example:

* Assuming CONFIG_SRAM_OFFSET and CONFIG_KERNEL_VM_OFFSET are both 0x0.

* CONFIG_SRAM_BASE_ADDRESS == 0x00000000 and CONFIG_KERNEL_VM_BASE =
0x40000000 is valid, while

* CONFIG_SRAM_BASE_ADDRESS == 0x00000000 and CONFIG_KERNEL_VM_BASE =
0x20000000 is not.

– If CONFIG_X86_PAE is disabled (=n), each address space must reside in their own 4MB
region, due to each entry of PD (Page Directory) covers 4MB of memory.

– Both CONFIG_SRAM_BASE_ADDRESS and CONFIG_KERNEL_VM_BASE must also align with the
starting addresses of targeted regions.

Specifying Additional Memory Mappings at Build Time

The page table generation script (arch/x86/gen_mmu.py) generates the necessary multi-level page
tables for code execution and data access using the kernel image produced by the first linker
pass. Additional command line arguments can be passed to the script to generate additional
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memory mappings. This is useful for static mappings and/or device MMIO access during very
early boot. To pass extra command line arguments to the script, populate a CMake list named
X86_EXTRA_GEN_MMU_ARGUMENTS in the board configuration file. Here is an example:

set(X86_EXTRA_GEN_MMU_ARGUMENTS
--map 0xA0000000,0x2000
--map 0x80000000,0x400000,LWUX,0xB0000000)

The argument --map takes the following value: <physical address>,<size>[,<flags:LUWX>[,
<virtual address>]], where:

• <physical address> is the physical address of the mapping. (Required)

• <size> is the size of the region to be mapped. (Required)

• <flags> is the flag associated with the mapping: (Optional)

– L: Large page at the page directory level.

– U: Allow userspace access.

– W: Read/write.

– X: Allow execution.

– D: Cache disabled.

* Default is small page (4KB), supervisor only, read only, and execution disabled.

• <virtual address is the virtual address of the mapping. (Optional)

Note that specifying additional memory mappings requires larger storage space
for the pre-allocated page tables (both kernel and per-domain tables). CON-
FIG_X86_EXTRA_PAGE_TABLE_PAGES is needed to specify how many more memory pages to
be reserved for the page tables. If the needed space is not exactly the same as required space,
the gen_mmu.py script will print out a message indicating what needs to be the value for the
kconfig.

7.1.7 Xtensa Developer Guide

Overview

This page contains information on certain aspects when developing for Xtensa-based platforms.

HiFi Audio Engine DSP

The kernel allows threads to use the HiFi Audio Engine DSP registers on boards that support
these registers. The kernel only supports the use of the HiFi registers by threads and not ISRs.

Note

Presently, only the Intel ADSP ACE hardware platforms are configured for HiFi support by
default.

Concepts The kernel can be configured for an application to leverage the services provided by
the Xtensa HiFi Audio Engine DSP. Three modes of operation are supported, which are described
below.
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No HiFi registers mode This mode is used when the application has no threads that use the
HiFi registers. It is the kernel’s default HiFi services mode.

Unshared HiFi registers mode This mode is used when the application has only a single
thread that uses the HiFi registers. The HiFi registers are left unchanged whenever a context
switch occurs.

Note

The behavior is undefined, if two or more threads attempt to use the HiFi registers, as the
kernel does not attempt to detect (nor prevent) multiple threads from using these registers.

Shared HiFi registers mode This mode is used when the application has two or more threads
that use HiFi registers. When enabled, the kernel automatically allows all threads to use the HiFi
registers. During each thread context switch, the kernel saves the outgoing thread’s HiFi registers
and loads the incoming thread’s HiFi registers, regardless of whether the thread utilizes them or
not.

Additional stack space may be required for each thread to account for the extra registers that
must be saved.

Configuration Options The unshared HiFi registers mode is selected when configuration op-
tion CONFIG_XTENSA_HIFI_SHARING is disabled but configuration options CONFIG_XTENSA_HIFI3
and/or CONFIG_XTENSA_HIFI4 are enabled.

The shared HiFi registers mode is selected when the configuration option CON-
FIG_XTENSA_HIFI_SHARING is enabled in addition to configuration options CONFIG_XTENSA_HIFI3
and/or CONFIG_XTENSA_HIFI4. Threads must have sufficient stack space for saving the HiFi
register values during context switches as described above.

7.2 Barriers API

group barrier_apis

Since
3.4

Version
0.1.0

Functions

ALWAYS_INLINE static void barrier_dmem_fence_full(void)
Full/sequentially-consistent data memory barrier.

This routine acts as a synchronization fence between threads and prevents re-ordering
of data accesses instructions across the barrier instruction.
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ALWAYS_INLINE static void barrier_dsync_fence_full(void)
Full/sequentially-consistent data synchronization barrier.

This routine acts as a synchronization fence between threads and prevents re-
ordering of data accesses instructions across the barrier instruction like bar-
rier_dmem_fence_full(), but has the additional effect of blocking execution of any fur-
ther instructions, not just loads or stores, or both, until synchronization is complete.

Note

When not supported by hardware or architecture, this instruction falls back to a
full/sequentially-consistent data memory barrier.

ALWAYS_INLINE static void barrier_isync_fence_full(void)
Full/sequentially-consistent instruction synchronization barrier.

This routine is used to guarantee that any subsequent instructions are fetched and to
ensure any previously executed context-changing operations, such as writes to sys-
tem control registers, have completed by the time the routine completes. In hardware
terms, this might mean that the instruction pipeline is flushed, for example.

Note

When not supported by hardware or architecture, this instruction falls back to a
compiler barrier.

7.3 Cache Interface

This is a high-level guide to cache interface and Kconfig options related to cache controllers. See
Cache API for API reference material.

Zephyr has different Kconfig options to control how the cache controller is implemented and
controlled.

• CONFIG_CPU_HAS_DCACHE / CONFIG_CPU_HAS_ICACHE: these hidden options should be selected
at SoC / platform level when the CPU actually supports a data or instruction cache. The
cache controller can be in the core or can be an external cache controller for which a driver
is provided.

These options have the goal to document an available feature and should be set whether
we plan to support and use the caches in Zephyr or not.

• CONFIG_DCACHE / CONFIG_ICACHE: these options must be selected when support for data or
instruction cache is present and working in zephyr.

All the code paths related to cache control must be conditionally enabled depending on
these symbols. When the symbol is set the cache is considered enabled and used.

These symbols say nothing about the actual API interface exposed to the user. For example
a platform using the data cache can enable the CONFIG_DCACHE symbol and use some HAL
exported function in some platform-specific code to enable and manage the d-cache.

• CONFIG_CACHE_MANAGEMENT: this option must be selected when the cache operations are ex-
posed to the user through a standard API (see Cache API).

When this option is enabled we assume that all the cache functions are implemented in the
architectural code or in an external cache controller driver.
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• CONFIG_ARCH_CACHE/CONFIG_EXTERNAL_CACHE: mutually exclusive options for CACHE_TYPE
used to define whether the cache operations are implemented at arch level or using an
external cache controller with a provided driver.

– CONFIG_ARCH_CACHE: the cache API is implemented by the arch code

– CONFIG_EXTERNAL_CACHE: the cache API is implemented by a driver that supports the ex-
ternal cache controller. In this case the driver must be located as usual in the drivers/
cache/ directory

7.3.1 Cache API

group cache_interface

Functions

ALWAYS_INLINE static void sys_cache_data_enable(void)
Enable the d-cache.

Enable the data cache

ALWAYS_INLINE static void sys_cache_data_disable(void)
Disable the d-cache.

Disable the data cache

ALWAYS_INLINE static void sys_cache_instr_enable(void)
Enable the i-cache.

Enable the instruction cache

ALWAYS_INLINE static void sys_cache_instr_disable(void)
Disable the i-cache.

Disable the instruction cache

ALWAYS_INLINE static int sys_cache_data_flush_all(void)
Flush the d-cache.

Flush the whole data cache.

Return values
• 0 – If succeeded.

• -ENOTSUP – If not supported.

• -errno – Negative errno for other failures.

ALWAYS_INLINE static int sys_cache_instr_flush_all(void)
Flush the i-cache.

Flush the whole instruction cache.

Return values
• 0 – If succeeded.

• -ENOTSUP – If not supported.

• -errno – Negative errno for other failures.
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ALWAYS_INLINE static int sys_cache_data_invd_all(void)
Invalidate the d-cache.

Invalidate the whole data cache.

Return values
• 0 – If succeeded.

• -ENOTSUP – If not supported.

• -errno – Negative errno for other failures.

ALWAYS_INLINE static int sys_cache_instr_invd_all(void)
Invalidate the i-cache.

Invalidate the whole instruction cache.

Return values
• 0 – If succeeded.

• -ENOTSUP – If not supported.

• -errno – Negative errno for other failures.

ALWAYS_INLINE static int sys_cache_data_flush_and_invd_all(void)
Flush and Invalidate the d-cache.

Flush and Invalidate the whole data cache.

Return values
• 0 – If succeeded.

• -ENOTSUP – If not supported.

• -errno – Negative errno for other failures.

ALWAYS_INLINE static int sys_cache_instr_flush_and_invd_all(void)
Flush and Invalidate the i-cache.

Flush and Invalidate the whole instruction cache.

Return values
• 0 – If succeeded.

• -ENOTSUP – If not supported.

• -errno – Negative errno for other failures.

int sys_cache_data_flush_range(void *addr, size_t size)
Flush an address range in the d-cache.

Flush the specified address range of the data cache.

Note

the cache operations act on cache line. When multiple data structures share the
same cache line being flushed, all the portions of the data structures sharing the
same line will be flushed. This is usually not a problem because writing back is a
non-destructive process that could be triggered by hardware at any time, so having
an aligned addr or a padded size is not strictly necessary.

Parameters
• addr – Starting address to flush.
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• size – Range size.

Return values
• 0 – If succeeded.

• -ENOTSUP – If not supported.

• -errno – Negative errno for other failures.

ALWAYS_INLINE static int sys_cache_instr_flush_range(void *addr, size_t size)
Flush an address range in the i-cache.

Flush the specified address range of the instruction cache.

Note

the cache operations act on cache line. When multiple data structures share the
same cache line being flushed, all the portions of the data structures sharing the
same line will be flushed. This is usually not a problem because writing back is a
non-destructive process that could be triggered by hardware at any time, so having
an aligned addr or a padded size is not strictly necessary.

Parameters
• addr – Starting address to flush.

• size – Range size.

Return values
• 0 – If succeeded.

• -ENOTSUP – If not supported.

• -errno – Negative errno for other failures.

int sys_cache_data_invd_range(void *addr, size_t size)
Invalidate an address range in the d-cache.

Invalidate the specified address range of the data cache.

Note

the cache operations act on cache line. When multiple data structures share the
same cache line being invalidated, all the portions of the non-read-only data struc-
tures sharing the same line will be invalidated as well. This is a destructive process
that could lead to data loss and/or corruption. When addr is not aligned to the cache
line and/or size is not a multiple of the cache line size the behaviour is undefined.

Parameters
• addr – Starting address to invalidate.

• size – Range size.

Return values
• 0 – If succeeded.

• -ENOTSUP – If not supported.

• -errno – Negative errno for other failures.
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ALWAYS_INLINE static int sys_cache_instr_invd_range(void *addr, size_t size)
Invalidate an address range in the i-cache.

Invalidate the specified address range of the instruction cache.

Note

the cache operations act on cache line. When multiple data structures share the
same cache line being invalidated, all the portions of the non-read-only data struc-
tures sharing the same line will be invalidated as well. This is a destructive process
that could lead to data loss and/or corruption. When addr is not aligned to the cache
line and/or size is not a multiple of the cache line size the behaviour is undefined.

Parameters
• addr – Starting address to invalidate.

• size – Range size.

Return values
• 0 – If succeeded.

• -ENOTSUP – If not supported.

• -errno – Negative errno for other failures.

int sys_cache_data_flush_and_invd_range(void *addr, size_t size)
Flush and Invalidate an address range in the d-cache.

Flush and Invalidate the specified address range of the data cache.

Note

the cache operations act on cache line. When multiple data structures share the
same cache line being flushed, all the portions of the data structures sharing the
same line will be flushed before being invalidated. This is usually not a problem be-
cause writing back is a non-destructive process that could be triggered by hardware
at any time, so having an aligned addr or a padded size is not strictly necessary.

Parameters
• addr – Starting address to flush and invalidate.

• size – Range size.

Return values
• 0 – If succeeded.

• -ENOTSUP – If not supported.

• -errno – Negative errno for other failures.

ALWAYS_INLINE static int sys_cache_instr_flush_and_invd_range(void *addr, size_t
size)

Flush and Invalidate an address range in the i-cache.

Flush and Invalidate the specified address range of the instruction cache.
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Note

the cache operations act on cache line. When multiple data structures share the
same cache line being flushed, all the portions of the data structures sharing the
same line will be flushed before being invalidated. This is usually not a problem be-
cause writing back is a non-destructive process that could be triggered by hardware
at any time, so having an aligned addr or a padded size is not strictly necessary.

Parameters
• addr – Starting address to flush and invalidate.

• size – Range size.

Return values
• 0 – If succeeded.

• -ENOTSUP – If not supported.

• -errno – Negative errno for other failures.

ALWAYS_INLINE static size_t sys_cache_data_line_size_get(void)
Get the d-cache line size.

The API is provided to get the data cache line.

The cache line size is calculated (in order of priority):

• At run-time when CONFIG_DCACHE_LINE_SIZE_DETECT is set.

• At compile time using the value set in CONFIG_DCACHE_LINE_SIZE .

• At compile time using the d-cache-line-size CPU0 property of the DT.

• 0 otherwise

Return values
• size – Size of the d-cache line.

• 0 – If the d-cache is not enabled.

ALWAYS_INLINE static size_t sys_cache_instr_line_size_get(void)
Get the i-cache line size.

The API is provided to get the instruction cache line.

The cache line size is calculated (in order of priority):

• At run-time when CONFIG_ICACHE_LINE_SIZE_DETECT is set.

• At compile time using the value set in CONFIG_ICACHE_LINE_SIZE .

• At compile time using the i-cache-line-size CPU0 property of the DT.

• 0 otherwise

Return values
• size – Size of the d-cache line.

• 0 – If the d-cache is not enabled.
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ALWAYS_INLINE static bool sys_cache_is_ptr_cached(void *ptr)
Test if a pointer is in cached region.

Some hardware may map the same physical memory twice so that it can be seen in both
(incoherent) cached mappings and a coherent “shared” area. This tests if a particular
pointer is within the cached, coherent area.

Parameters
• ptr – Pointer

Return values
• True – if pointer is in cached region.

• False – if pointer is not in cached region.

ALWAYS_INLINE static bool sys_cache_is_ptr_uncached(void *ptr)
Test if a pointer is in un-cached region.

Some hardware may map the same physical memory twice so that it can be seen in both
(incoherent) cached mappings and a coherent “shared” area. This tests if a particular
pointer is within the un-cached, incoherent area.

Parameters
• ptr – Pointer

Return values
• True – if pointer is not in cached region.

• False – if pointer is in cached region.

ALWAYS_INLINE static void *sys_cache_cached_ptr_get(void *ptr)
Return cached pointer to a RAM address.

This function takes a pointer to any addressable object (either in cacheable memory
or not) and returns a pointer that can be used to refer to the same memory through
the L1 data cache. Data read through the resulting pointer will reflect locally cached
values on the current CPU if they exist, and writes will go first into the cache and be
written back later.

See also

arch_uncached_ptr()

Note

This API returns the same pointer if CONFIG_CACHE_DOUBLEMAP is not enabled.

Parameters
• ptr – A pointer to a valid C object

Returns
A pointer to the same object via the L1 dcache
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ALWAYS_INLINE static void *sys_cache_uncached_ptr_get(void *ptr)
Return uncached pointer to a RAM address.

This function takes a pointer to any addressable object (either in cacheable memory
or not) and returns a pointer that can be used to refer to the same memory while
bypassing the L1 data cache. Data in the L1 cache will not be inspected nor modified
by the access.

See also

arch_cached_ptr()

Note

This API returns the same pointer if CONFIG_CACHE_DOUBLEMAP is not enabled.

Parameters
• ptr – A pointer to a valid C object

Returns
A pointer to the same object bypassing the L1 dcache

7.4 Zephyr’s device emulators/simulators

7.4.1 Overview

Zephyr includes in its codebase a set of device emulators/simulators. With this we refer to SW
components which are built together with the embedded SW and present themselves as devices
of a given class to the rest of the system.

These device emulators/simulators can be built for any target which has sufficient RAM and flash,
even if some may have extra functionality which is only available in some targets.

Note

Zephyr also includes and uses many other types of simulators/emulators, including CPU and
platform simulators, radio simulators, and several build targets which allow running the
embedded code in the development host.
Some of Zephyr communication controllers/drivers include also either loopback modes or
loopback devices.
This page does not cover any of these.

Note

Drivers which are specific to some platform, like for example the native_sim specific drivers
which emulate a peripheral class by connecting to host APIs are not covered by this page.
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7.4.2 Available Emulators

ADC emulator
• A fake driver which pretends to be actual ADC, and can be used for testing higher-level

API for ADC devices.

• Main Kconfig option: CONFIG_ADC_EMUL
• DT binding: zephyr,adc-emul

DMA emulator
• Emulated DMA controller

• Main Kconfig option: CONFIG_DMA_EMUL
• DT binding: zephyr,dma-emul

EEPROM emulator
• Emulate an EEPROM on a flash partition

• Main Kconfig option: CONFIG_EEPROM_EMULATOR
• DT binding: zephyr,emu-eeprom

EEPROM simulator
• Emulate an EEPROM on RAM

• Main Kconfig option: CONFIG_EEPROM_SIMULATOR
• DT binding: zephyr,sim-eeprom
• Note: For native targets it is also possible to keep the content as a file on the host filesys-

tem.

External bus and bus connected peripheral emulators
• Documentation

• Allow emulating external buses like I2C or SPI and peripherals connected to them.

Flash simulator
• Emulate a flash on RAM

• Main Kconfig option: CONFIG_FLASH_SIMULATOR
• DT binding: zephyr,sim-flash
• Note: For native targets it is also possible to keep the content as a file on the host filesys-

tem. Check the native_sim flash simulator section.

GPIO emulator
• Emulated GPIO controllers which can be driven from SW

• Main Kconfig option: CONFIG_GPIO_EMUL
• DT binding: zephyr,gpio-emul

I2C emulator
• Emulated I2C bus. See bus emulators.

• Main Kconfig option: CONFIG_I2C_EMUL
• DT binding: zephyr,i2c-emul-controller

RTC emulator
• Emulated RTC peripheral. See RTC emulated device section
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• Main Kconfig option: CONFIG_RTC_EMUL
• DT binding: zephyr,rtc-emul

SPI emulator
• Emulated SPI bus. See bus emulators.

• Main Kconfig option: CONFIG_SPI_EMUL
• DT binding: zephyr,spi-emul-controller

MSPI emulator
• Emulated MSPI bus. See bus emulators.

• Main Kconfig option: CONFIG_MSPI_EMUL
• DT binding: zephyr,mspi-emul-controller

UART emulator
• Emulated UART bus. See bus emulators.

• Main Kconfig option: CONFIG_UART_EMUL
• DT binding: zephyr,uart-emul

7.5 External Bus and Bus Connected Peripherals Emulators

7.5.1 Overview

Zephyr supports a simple emulator framework to support testing of external peripheral drivers
without requiring real hardware.

Emulators are used to emulate external hardware devices, to support testing of various subsys-
tems. For example, it is possible to write an emulator for an I2C compass such that it appears on
the I2C bus and can be used just like a real hardware device.

Emulators often implement special features for testing. For example a compass may support
returning bogus data if the I2C bus speed is too high, or may return invalid measurements if
calibration has not yet been completed. This allows for testing that high-level code can handle
these situations correctly. Test coverage can therefore approach 100% if all failure conditions
are emulated.

7.5.2 Concept

The diagram below shows application code / high-level tests at the top. This is the ultimate ap-
plication we want to run.

Below that are peripheral drivers, such as the AT24 EEPROM driver. We can test peripheral
drivers using an emulation driver connected via a emulated I2C controller/emulator which
passes I2C traffic from the AT24 driver to the AT24 simulator.

Separately we can test the STM32 and NXP I2C drivers on real hardware using API tests. These
require some sort of device attached to the bus, but with this, we can validate much of the driver
functionality.

Putting the two together, we can test the application and peripheral code entirely on native_sim.
Since we know that the I2C driver on the real hardware works, we should expect the application
and peripheral drivers to work on the real hardware also.

Using the above framework we can test an entire application (e.g. Embedded Controller) on
native_sim using emulators for all non-chip drivers.
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Application...

Peripheral drivers

Bus controller em...

Peripheral...

API tests

STM32 drivers NXP drivers

STM32... NXP...

Text is not SVG - cannot display

With this approach we can:

• Write individual tests for each driver (green), covering all failure modes, error conditions,
etc.

• Ensure 100% test coverage for drivers (green)

• Write tests for combinations of drivers, such as GPIOs provided by an I2C GPIO expander
driver talking over an I2C bus, with the GPIOs controlling a charger. All of this can work in
the emulated environment or on real hardware.

• Write a complex application that ties together all of these pieces and runs on native_sim.
We can develop on a host, use source-level debugging, etc.

• Transfer the application to any board which provides the required features (e.g. I2C,
enough GPIOs), by adding Kconfig and devicetree fragments.

7.5.3 Creating a Device Driver Emulator

The emulator subsystem is modeled on the Device DriverModel. You create an emulator instance
using one of the EMUL_DT_DEFINE() or EMUL_DT_INST_DEFINE() APIs.

Emulators for peripheral devices reuse the same devicetree node as the real device driver. This
means that your emulator defines DT_DRV_COMPAT using the same compat value from the real
driver.

/* From drivers/sensor/bm160/bm160.c */
#define DT_DRV_COMPAT bosch_bmi160

/* From drivers/sensor/bmi160/emul_bmi160.c */
#define DT_DRV_COMPAT bosch_bmi160

The EMUL_DT_DEFINE() function accepts two API types:
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1. bus_api - This points to the API for the upstream bus that the emulator connects to. The
bus_api parameter is required. The supported emulated bus types include I2C, SPI, eSPI,
and MSPI.

2. _backend_api - This points to the device-class specific backend API for the emulator. The
_backend_api parameter is optional.

The diagram below demonstrates the logical organization of the bus_api and _backend_apiusing
the BC1.2 charging detector driver as the model device-class.

Tests

BC1.2 Driver API

Diodes... Mediatek BC1....

I2C controlle...

Diodes BC1.2... Mediatek BC1....

bus_api

BC1.2 Backend API

_backend API
Text is not SVG - cannot display

The real code is shown in green, while the emulator code is shown in yellow.

The bus_api connects the BC1.2 emulators to the native_sim I2C controller. The real BC1.2
drivers are unchanged and operate exactly as if there was a physical I2C controller present in
the system. The native_sim I2C controller uses the bus_api to initiate register reads and writes
to the emulator.

The _backend_api provides a mechanism for tests to manipulate the emulator out of band. Each
device class defines it’s own API functions. The backend API functions focus on high-level be-
havior and do not provide hooks for specific emulators.

In the case of the BC1.2 charging detector the backend API provides functions to simulate con-
necting and disconnecting a charger to the emulated BC1.2 device. Each emulator is responsible
for updating the correct vendor specific registers and potentially signalling an interrupt.

Example test flow:

1. Test registers BC1.2 detection callback using the Zephyr BC1.2 driver API.

2. Test connects a charger using the BC1.2 emulator backend.

3. Test verifies B1.2 detection callback invoked with correct charger type.

4. Test disconnects a charger using the BC1.2 emulator backend.
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With this architecture, the same test can be used will all supported drivers in the same driver
class.

7.5.4 Available Emulators

Zephyr includes the following emulators:

• I2C emulator driver, allowing drivers to be connected to an emulator so that tests can be
performed without access to the real hardware

• SPI emulator driver, which does the same for SPI

• eSPI emulator driver, which does the same for eSPI. The emulator is being developed to
support more functionalities.

• MSPI emulator driver, allowing drivers to be connected to an emulator so that tests can be
performed without access to the real hardware.

7.5.5 Samples

Here are some examples present in Zephyr:

1. Bosch BMI160 sensor driver connected via both I2C and SPI to an emulator:

west build -b native_sim tests/drivers/sensor/accel/

2. The same test can be built with a second EEPROM which is an Atmel AT24 EEPROM driver
connected via I2C an emulator:

west build -b native_sim tests/drivers/eeprom/api -- -DDTC_OVERLAY_FILE=at2x_emul.
↪→overlay -DOVERLAY_CONFIG=at2x_emul.conf

API Reference

group io_emulators
Emulators used to test drivers and higher-level code that uses them.

Defines

EMUL_DT_NAME_GET(node_id)
Use the devicetree node identifier as a unique name.

Parameters
• node_id – A devicetree node identifier

EMUL_DT_DEFINE(node_id, init_fn, data_ptr, cfg_ptr, bus_api, _backend_api)
Define a new emulator.

This adds a new struct emul to the linker list of emulations. This is typically used in
your emulator’s DT_INST_FOREACH_STATUS_OKAY() clause.

Parameters
• node_id – Node ID of the driver to emulate (e.g. DT_DRV_INST(n)); the

node_id MUST have a corresponding DEVICE_DT_DEFINE().
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• init_fn – function to call to initialise the emulator (see emul_init type-
def)

• data_ptr – emulator-specific data

• cfg_ptr – emulator-specific configuration data

• bus_api – emulator-specific bus api

• _backend_api – emulator-specific backend api

EMUL_DT_INST_DEFINE(inst, ...)
Like EMUL_DT_DEFINE(), but uses an instance of a DT_DRV_COMPAT compatible in-
stead of a node identifier.

Parameters
• inst – instance number. The node_id argument to EMUL_DT_DEFINE is

set to DT_DRV_INST(inst).

• ... – other parameters as expected by EMUL_DT_DEFINE.

EMUL_DT_GET(node_id)
Get a const struct emul* from a devicetree node identifier.

Returns a pointer to an emulator object created from a devicetree node, if any device
was allocated by an emulator implementation.

If no such device was allocated, this will fail at linker time. If you get an error that looks
like undefined reference to __device_dts_ord_<N>, that is what happened. Check to
make sure your emulator implementation is being compiled, usually by enabling the
Kconfig options it requires.

Parameters
• node_id – A devicetree node identifier

Returns
A pointer to the emul object created for that node

EMUL_DT_GET_OR_NULL(node_id)
Utility macro to obtain an optional reference to an emulator.

If the node identifier refers to a node with status okay, this returns
EMUL_DT_GET(node_id). Otherwise, it returns NULL.

Parameters
• node_id – A devicetree node identifier

Returns
a emul reference for the node identifier, which may be NULL.

Typedefs

typedef int (*emul_init_t)(const struct emul *emul, const struct device *parent)
Standard callback for emulator initialisation providing the initialiser record and the
device that calls the emulator functions.

Param emul
Emulator to init

Param parent
Parent device that is using the emulator
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Enums

enum emul_bus_type
The types of supported buses.

Values:

enumerator EMUL_BUS_TYPE_I2C

enumerator EMUL_BUS_TYPE_ESPI

enumerator EMUL_BUS_TYPE_SPI

enumerator EMUL_BUS_TYPE_MSPI

enumerator EMUL_BUS_TYPE_UART

enumerator EMUL_BUS_TYPE_NONE

Functions

int emul_init_for_bus(const struct device *dev)
Set up a list of emulators.

Parameters
• dev – Device the emulators are attached to (e.g. an I2C controller)

Returns
0 if OK

Returns
negative value on error

const struct emul *emul_get_binding(const char *name)
Retrieve the emul structure for an emulator by name.

Emulator objects are created via the EMUL_DT_DEFINE() macro and placed in mem-
ory by the linker. If the emulator structure is needed for custom API calls, it can be
retrieved by the name that the emulator exposes to the system (this is the devicetree
node’s label by default).

Parameters
• name – Emulator name to search for. A null pointer, or a pointer to an

empty string, will cause NULL to be returned.

Returns
pointer to emulator structure; NULL if not found or cannot be used.

struct emul_link_for_bus
#include <emul.h> Structure uniquely identifying a device to be emulated.

struct emul_list_for_bus
#include <emul.h> List of emulators attached to a bus.
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Public Members

const struct emul_link_for_bus *children
Identifiers for children of the node.

unsigned int num_children
Number of children of the node.

struct no_bus_emul
#include <emul.h> Emulator API stub when an emulator is not actually placed on a bus.

struct emul
#include <emul.h> An emulator instance - represents the target emulated de-
vice/peripheral that is interacted with through an emulated bus.

Instances of emulated bus nodes (e.g. i2c_emul) and emulators (i.e. struct emul) are
exactly 1..1

Public Members

emul_init_t init
function used to initialise the emulator state

const struct device *dev
handle to the device for which this provides low-level emulation

const void *cfg
Emulator-specific configuration data.

void *data
Emulator-specific data.

enum emul_bus_type bus_type
The bus type that the emulator is attached to.

const void *backend_api
Address of the API structure exposed by the emulator instance.

union bus
#include <emul.h> Pointer to the emulated bus node.

Public Members

struct i2c_emul *i2c

struct espi_emul *espi
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struct spi_emul *spi

struct mspi_emul *mspi

struct uart_emul *uart

struct no_bus_emul *none

7.6 Peripherals

7.6.1 1-Wire Bus

Overview

1-Wire is a low speed half-duplex serial bus using only a single wire plus ground for both
data transmission and device power supply. Similarly to I2C, 1-Wire uses a bidirectional open-
collector data line, and is a single master multidrop bus. This means one master initiates all data
exchanges with the slave devices. The 1-Wire bus supports longer bus lines than I2C, while it
reaches speeds of up to 15.4 kbps in standard mode and up to 125 kbps in overdrive mode. Reli-
able communication in standard speed configuration is possible with 10 nodes over a bus length
of 100 meters. Using overdrive speed, 3 nodes on a bus of 10 meters length are expected to work
solid. Optimized timing parameters and fewer nodes on the bus may allow to reach larger bus
extents.

The implementation details are specified in the BOOK OF IBUTTON STANDARDS.

1-Wire...

1-Wire...

1-Wire... 1-Wire...

1-Wire

VCC

RWPU

GND
Text is not SVG - cannot display

Fig. 1: A typical 1-Wire bus topology

W1 Master API Zephyr’s 1-Wire Master API is used to interact with 1-Wire slave devices like
temperature sensors and serial memories.

In Zephyr this API is split into the following layers.

• The link layer handles basic communication functions such as bus reset, presence detect
and bit transfer operations. It is the only hardware-dependent layer in Zephyr. This layer
is supported by a driver using the Zephyr Universal Asynchronous Receiver-Transmitter
(UART) interface, which should work on most Zephyr platforms. In the future, a GPIO/Timer
based driver and hardware specific drivers might be added.

• The 1-Wire network layer handles all means for slave identification and bus arbitration.
This includes ROM commands like Match ROM, or Search ROM.
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– All slave devices have a unique 64-bit identification number, which includes a 8-bit
1-Wire Family Code and a 8-bit CRC.

– In order to find slaves on the bus, the standard specifies an search algorithm which suc-
cessively detects all slaves on the bus. This algorithm is described in detail by Maxim’s
Applicationnote 187.

• Transport layer and Presentation layer functions are not implemented in the generic 1-Wire
driver and therefore must be handled in individual slave drivers.

The 1-Wire API is considered experimental.

Configuration Options

Related configuration options:

• CONFIG_W1
• CONFIG_W1_NET

API Reference

1-Wire data link layer

group w1_data_link
1-Wire data link layer

Functions

int w1_reset_bus(const struct device *dev)
Reset the 1-Wire bus to prepare slaves for communication.

This routine resets all 1-Wire bus slaves such that they are ready to receive a command.
Connected slaves answer with a presence pulse once they are ready to receive data.

In case the driver supports both standard speed and overdrive speed, the reset routine
takes care of sendig either a short or a long reset pulse depending on the current state.
The speed can be changed using w1_configure().

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

Return values
• 0 – If no slaves answer with a present pulse.

• 1 – If at least one slave answers with a present pulse.

• -errno – Negative error code on error.

int w1_read_bit(const struct device *dev)
Read a single bit from the 1-Wire bus.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

Return values
• rx_bit – The read bit value on success.

• -errno – Negative error code on error.
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int w1_write_bit(const struct device *dev, const bool bit)
Write a single bit to the 1-Wire bus.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

• bit – Transmitting bit value 1 or 0.

Return values
• 0 – If successful.

• -errno – Negative error code on error.

int w1_read_byte(const struct device *dev)
Read a single byte from the 1-Wire bus.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

Return values
• rx_byte – The read byte value on success.

• -errno – Negative error code on error.

int w1_write_byte(const struct device *dev, uint8_t byte)
Write a single byte to the 1-Wire bus.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

• byte – Transmitting byte.

Return values
• 0 – If successful.

• -errno – Negative error code on error.

int w1_read_block(const struct device *dev, uint8_t *buffer, size_t len)
Read a block of data from the 1-Wire bus.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

• buffer – [out] Pointer to receive buffer.

• len – Length of receiving buffer (in bytes).

Return values
• 0 – If successful.

• -errno – Negative error code on error.

int w1_write_block(const struct device *dev, const uint8_t *buffer, size_t len)
Write a block of data from the 1-Wire bus.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

• buffer – [in] Pointer to transmitting buffer.

• len – Length of transmitting buffer (in bytes).

Return values
• 0 – If successful.
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• -errno – Negative error code on error.

size_t w1_get_slave_count(const struct device *dev)
Get the number of slaves on the bus.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

Return values
• slave_count – Positive Number of connected 1-Wire slaves on success.

• -errno – Negative error code on error.

int w1_configure(const struct device *dev, enum w1_settings_type type, uint32_t value)
Configure parameters of the 1-Wire master.

Allowed configuration parameters are defined in enum w1_settings_type, but master
devices may not support all types.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

• type – Enum specifying the setting type.

• value – The new value for the passed settings type.

Return values
• 0 – If successful.

• -ENOTSUP – The master doesn’t support the configuration of the supplied
type.

• -EIO – General input / output error, failed to configure master devices.

1-Wire network layer

group w1_network
1-Wire network layer

1-Wire ROM Commands

W1_CMD_SKIP_ROM
This command allows the bus master to read the slave devices without providing their
ROM code.

W1_CMD_MATCH_ROM
This command allows the bus master to address a specific slave device by providing
its ROM code.

W1_CMD_RESUME
This command allows the bus master to resume a previous read out from where it left
off.

W1_CMD_READ_ROM
This command allows the bus master to read the ROM code from a single slave device.

This command should be used when there is only a single slave device on the bus.
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W1_CMD_SEARCH_ROM
This command allows the bus master to discover the addresses (i.e., ROM codes) of all
slave devices on the bus.

W1_CMD_SEARCH_ALARM
This command allows the bus master to identify which devices have experienced an
alarm condition.

W1_CMD_OVERDRIVE_SKIP_ROM
This command allows the bus master to address all devices on the bus and then switch
them to overdrive speed.

W1_CMD_OVERDRIVE_MATCH_ROM
This command allows the bus master to address a specific device and switch it to over-
drive speed.

CRC Defines

W1_CRC8_SEED
Seed value used to calculate the 1-Wire 8-bit crc.

W1_CRC8_POLYNOMIAL
Polynomial used to calculate the 1-Wire 8-bit crc.

W1_CRC16_SEED
Seed value used to calculate the 1-Wire 16-bit crc.

W1_CRC16_POLYNOMIAL
Polynomial used to calculate the 1-Wire 16-bit crc.

Defines

W1_SEARCH_ALL_FAMILIES
This flag can be passed to searches in order to not filter on family ID.

W1_ROM_INIT_ZERO
Initialize all w1_rom struct members to zero.

Typedefs

typedef void (*w1_search_callback_t)(struct w1_rom rom, void *user_data)
Define the application callback handler function signature for searches.

Param rom
found The ROM of the found slave.

Param user_data
User data provided to the w1_search_bus() call.
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Functions

int w1_read_rom(const struct device *dev, struct w1_rom *rom)
Read Peripheral 64-bit ROM.

This procedure allows the 1-Wire bus master to read the peripherals’ 64-bit ROM with-
out using the Search ROM procedure. This command can be used as long as not more
than a single peripheral is connected to the bus. Otherwise data collisions occur and a
faulty ROM is read.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

• rom – [out] Pointer to the ROM structure.

Return values
• 0 – If successful.

• -ENODEV – In case no slave responds to reset.

• -errno – Other negative error code in case of invalid crc and communi-
cation errors.

int w1_match_rom(const struct device *dev, const struct w1_slave_config *config)
Select a specific slave by broadcasting a selected ROM.

This routine allows the 1-Wire bus master to select a slave identified by its unique ROM,
such that the next command will target only this single selected slave.

This command is only necessary in multidrop environments, otherwise the Skip ROM
command can be issued. Once a slave has been selected, to reduce the communication
overhead, the resume command can be used instead of this command to communicate
with the selected slave.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

• config – [in] Pointer to the slave specific 1-Wire config.

Return values
• 0 – If successful.

• -ENODEV – In case no slave responds to reset.

• -errno – Other negative error code on error.

int w1_resume_command(const struct device *dev)
Select the slave last addressed with a Match ROM or Search ROM command.

This routine allows the 1-Wire bus master to re-select a slave device that was already
addressed using a Match ROM or Search ROM command.

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
• 0 – If successful.

• -ENODEV – In case no slave responds to reset.

• -errno – Other negative error code on error.
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int w1_skip_rom(const struct device *dev, const struct w1_slave_config *config)
Select all slaves regardless of ROM.

This routine sets up the bus slaves to receive a command. It is usually used when there
is only one peripheral on the bus to avoid the overhead of the Match ROM command.
But it can also be used to concurrently write to all slave devices.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

• config – [in] Pointer to the slave specific 1-Wire config.

Return values
• 0 – If successful.

• -ENODEV – In case no slave responds to reset.

• -errno – Other negative error code on error.

int w1_reset_select(const struct device *dev, const struct w1_slave_config *config)
In single drop configurations use Skip Select command, otherwise use Match ROM com-
mand.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

• config – [in] Pointer to the slave specific 1-Wire config.

Return values
• 0 – If successful.

• -ENODEV – In case no slave responds to reset.

• -errno – Other negative error code on error.

int w1_write_read(const struct device *dev, const struct w1_slave_config *config, const
uint8_t *write_buf, size_t write_len, uint8_t *read_buf, size_t read_len)

Write then read data from the 1-Wire slave with matching ROM.

This routine uses w1_reset_select to select the given ROM. Then writes given data and
reads the response back from the slave.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

• config – [in] Pointer to the slave specific 1-Wire config.

• write_buf – [in] Pointer to the data to be written.

• write_len – Number of bytes to write.

• read_buf – [out] Pointer to storage for read data.

• read_len – Number of bytes to read.

Return values
• 0 – If successful.

• -ENODEV – In case no slave responds to reset.

• -errno – Other negative error code on error.
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int w1_search_bus(const struct device *dev, uint8_t command, uint8_t family,
w1_search_callback_t callback, void *user_data)

Search 1-wire slaves on the bus.

This function searches slaves on the 1-wire bus, with the possibility to search either
all slaves or only slaves that have an active alarm state. If a callback is passed, the
callback is called for each found slave.

The algorithm mostly follows the suggestions of https://pdfserv.maximintegrated.com/
en/an/AN187.pdf

Note: Filtering on families is not supported.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

• command – Can either be W1_SEARCH_ALARM or W1_SEARCH_ROM.

• family – W1_SEARCH_ALL_FAMILIES searcheas all families, filtering on
a specific family is not yet supported.

• callback – Application callback handler function to be called for each
found slave.

• user_data – [in] User data to pass to the application callback handler
function.

Return values
• slave_count – Number of slaves found.

• -errno – Negative error code on error.

static inline int w1_search_rom(const struct device *dev, w1_search_callback_t callback,
void *user_data)

Search for 1-Wire slave on bus.

This routine can discover unknown slaves on the bus by scanning for the unique 64-bit
registration number.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

• callback – Application callback handler function to be called for each
found slave.

• user_data – [in] User data to pass to the application callback handler
function.

Return values
• slave_count – Number of slaves found.

• -errno – Negative error code on error.

static inline int w1_search_alarm(const struct device *dev, w1_search_callback_t callback,
void *user_data)

Search for 1-Wire slaves with an active alarm.

This routine searches 1-Wire slaves on the bus, which currently have an active alarm.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

• callback – Application callback handler function to be called for each
found slave.
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• user_data – [in] User data to pass to the application callback handler
function.

Return values
• slave_count – Number of slaves found.

• -errno – Negative error code on error.

static inline uint64_t w1_rom_to_uint64(const struct w1_rom *rom)
Function to convert a w1_rom struct to an uint64_t.

Parameters
• rom – [in] Pointer to the ROM struct.

Return values
rom64 – The ROM converted to an unsigned integer in endianness.

static inline void w1_uint64_to_rom(const uint64_t rom64, struct w1_rom *rom)
Function to write an uint64_t to struct w1_rom pointer.

Parameters
• rom64 – Unsigned 64 bit integer representing the ROM in host endianness.

• rom – [out] The ROM struct pointer.

static inline uint8_t w1_crc8(const uint8_t *src, size_t len)
Compute CRC-8 chacksum as defined in the 1-Wire specification.

The 1-Wire of CRC 8 variant is using 0x31 as its polynomial with the initial value set to
0x00. This CRC is used to check the correctness of the unique 56-bit ROM.

Parameters
• src – [in] Input bytes for the computation.

• len – Length of the input in bytes.

Return values
crc – The computed CRC8 value.

static inline uint16_t w1_crc16(const uint16_t seed, const uint8_t *src, const size_t len)
Compute 1-Wire variant of CRC 16.

The 16-bit 1-Wire crc variant is using the reflected polynomial function X^16 +
X^15 * + X^2 + 1 with the initial value set to 0x0000. See also APPLICATION
NOTE 27: “UNDERSTANDING AND USING CYCLIC REDUNDANCY CHECKS WITH
MAXIM 1-WIRE AND IBUTTON PRODUCTS” https://www.maximintegrated.com/en/
design/technical-documents/app-notes/2/27.html

Parameters
• seed – Init value for the CRC, it is usually set to 0x0000.

• src – [in] Input bytes for the computation.

• len – Length of the input in bytes.

Return values
crc – The computed CRC16 value.

struct w1_rom
#include <w1.h> w1_rom struct.
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Public Members

uint8_t family
The 1-Wire family code identifying the slave device type.

An incomplete list of family codes is available at: https://www.maximintegrated.
com/en/app-notes/index.mvp/id/155 others are documented in the respective de-
vice data sheet.

uint8_t serial[6]
The serial together with the family code composes the unique 56-bit id.

uint8_t crc
8-bit checksum of the 56-bit unique id.

struct w1_slave_config
#include <w1.h> Node specific 1-wire configuration struct.

This struct is passed to network functions, such that they can configure the bus to ad-
dress the specific slave using the selected speed.

Public Members

struct w1_rom rom
Unique 1-Wire ROM.

uint32_t overdrive
overdrive speed is used if set to 1.

1-Wire generic functions and helpers Functions that are not directly related to any of the
networking layers.

Related code samples

1-Wire scanner
Scan for 1-Wire devices and print their family ID and serial number.

group w1_interface
1-Wire Interface

Since
3.2

Version
0.1.0

Enums
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enum w1_settings_type
Defines the 1-Wire master settings types, which are runtime configurable.

Values:

enumerator W1_SETTING_SPEED
Overdrive speed is enabled in case a value of 1 is passed and disabled passing 0.

enumerator W1_SETTING_STRONG_PULLUP
The strong pullup resistor is activated immediately after the next written data
block by passing a value of 1, and deactivated passing 0.

enumerator W1_SETINGS_TYPE_COUNT
Number of different settings types.

Functions

static inline int w1_lock_bus(const struct device *dev)
Lock the 1-wire bus to prevent simultaneous access.

This routine locks the bus to prevent simultaneous access from different threads. The
calling thread waits until the bus becomes available. A thread is permitted to lock a
mutex it has already locked.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

Return values
• 0 – If successful.

• -errno – Negative error code on error.

static inline int w1_unlock_bus(const struct device *dev)
Unlock the 1-wire bus.

This routine unlocks the bus to permit access to bus line.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

Return values
• 0 – If successful.

• -errno – Negative error code on error.

7.6.2 Analog-to-Digital Converter (ADC)

Overview

API Reference
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Related code samples

Analog-to-Digital Converter (ADC) sequence sample
Read analog inputs from ADC channels, using a sequence.

Analog-to-Digital Converter (ADC) with devicetree
Read analog inputs from ADC channels.

group adc_interface
ADC driver APIs.

Since
1.0

Version
1.0.0

Defines

ADC_CHANNEL_CFG_DT(node_id)
Get ADC channel configuration from a given devicetree node.

This returns a static initializer for a struct adc_channel_cfg filled with data from a
given devicetree node.

Example devicetree fragment:

&adc {
#address-cells = <1>;
#size-cells = <0>;

channel@0 {
reg = <0>;
zephyr,gain = "ADC_GAIN_1_6";
zephyr,reference = "ADC_REF_INTERNAL";
zephyr,acquisition-time = <ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 20)>;
zephyr,input-positive = <NRF_SAADC_AIN6>;
zephyr,input-negative = <NRF_SAADC_AIN7>;

};

channel@1 {
reg = <1>;
zephyr,gain = "ADC_GAIN_1_6";
zephyr,reference = "ADC_REF_INTERNAL";
zephyr,acquisition-time = <ADC_ACQ_TIME_DEFAULT>;
zephyr,input-positive = <NRF_SAADC_AIN0>;

};
};

Example usage:

static const struct adc_channel_cfg ch0_cfg_dt =
ADC_CHANNEL_CFG_DT(DT_CHILD(DT_NODELABEL(adc), channel_0));

static const struct adc_channel_cfg ch1_cfg_dt =
ADC_CHANNEL_CFG_DT(DT_CHILD(DT_NODELABEL(adc), channel_1));

// Initializes 'ch0_cfg_dt' to:
(continues on next page)
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(continued from previous page)
// {
// .channel_id = 0,
// .gain = ADC_GAIN_1_6,
// .reference = ADC_REF_INTERNAL,
// .acquisition_time = ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 20),
// .differential = true,
// .input_positive = NRF_SAADC_AIN6,
// .input-negative = NRF_SAADC_AIN7,
// }
// and 'ch1_cfg_dt' to:
// {
// .channel_id = 1,
// .gain = ADC_GAIN_1_6,
// .reference = ADC_REF_INTERNAL,
// .acquisition_time = ADC_ACQ_TIME_DEFAULT,
// .input_positive = NRF_SAADC_AIN0,
// }

Parameters
• node_id – Devicetree node identifier.

Returns
Static initializer for an adc_channel_cfg structure.

ADC_DT_SPEC_GET_BY_NAME(node_id, name)
Get ADC io-channel information from devicetree by name.

This returns a static initializer for an adc_dt_spec structure given a devicetree node
and a channel name. The node must have the “io-channels” property defined.

Example devicetree fragment:

/ {
zephyr,user {

io-channels = <&adc0 1>, <&adc0 3>;
io-channel-names = "A0", "A1";

};
};

&adc0 {
#address-cells = <1>;
#size-cells = <0>;

channel@3 {
reg = <3>;
zephyr,gain = "ADC_GAIN_1_5";
zephyr,reference = "ADC_REF_VDD_1_4";
zephyr,vref-mv = <750>;
zephyr,acquisition-time = <ADC_ACQ_TIME_DEFAULT>;
zephyr,resolution = <12>;
zephyr,oversampling = <4>;

};
};

Example usage:

static const struct adc_dt_spec adc_chan0 =
ADC_DT_SPEC_GET_BY_NAME(DT_PATH(zephyr_user), a0);

static const struct adc_dt_spec adc_chan1 =
ADC_DT_SPEC_GET_BY_NAME(DT_PATH(zephyr_user), a1);

(continues on next page)
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(continued from previous page)

// Initializes 'adc_chan0' to:
// {
// .dev = DEVICE_DT_GET(DT_NODELABEL(adc0)),
// .channel_id = 1,
// }
// and 'adc_chan1' to:
// {
// .dev = DEVICE_DT_GET(DT_NODELABEL(adc0)),
// .channel_id = 3,
// .channel_cfg_dt_node_exists = true,
// .channel_cfg = {
// .channel_id = 3,
// .gain = ADC_GAIN_1_5,
// .reference = ADC_REF_VDD_1_4,
// .acquisition_time = ADC_ACQ_TIME_DEFAULT,
// },
// .vref_mv = 750,
// .resolution = 12,
// .oversampling = 4,
// }

Parameters
• node_id – Devicetree node identifier.

• name – Channel name.

Returns
Static initializer for an adc_dt_spec structure.

ADC_DT_SPEC_INST_GET_BY_NAME(inst, name)
Get ADC io-channel information from a DT_DRV_COMPAT devicetree instance by name.

See also

ADC_DT_SPEC_GET_BY_NAME()

Parameters
• inst – DT_DRV_COMPAT instance number

• name – Channel name.

Returns
Static initializer for an adc_dt_spec structure.

ADC_DT_SPEC_GET_BY_IDX(node_id, idx)
Get ADC io-channel information from devicetree.

This returns a static initializer for an adc_dt_spec structure given a devicetree node
and a channel index. The node must have the “io-channels” property defined.

Example devicetree fragment:

/ {
zephyr,user {

io-channels = <&adc0 1>, <&adc0 3>;
};

(continues on next page)
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(continued from previous page)
};

&adc0 {
#address-cells = <1>;
#size-cells = <0>;

channel@3 {
reg = <3>;
zephyr,gain = "ADC_GAIN_1_5";
zephyr,reference = "ADC_REF_VDD_1_4";
zephyr,vref-mv = <750>;
zephyr,acquisition-time = <ADC_ACQ_TIME_DEFAULT>;
zephyr,resolution = <12>;
zephyr,oversampling = <4>;

};
};

Example usage:

static const struct adc_dt_spec adc_chan0 =
ADC_DT_SPEC_GET_BY_IDX(DT_PATH(zephyr_user), 0);

static const struct adc_dt_spec adc_chan1 =
ADC_DT_SPEC_GET_BY_IDX(DT_PATH(zephyr_user), 1);

// Initializes 'adc_chan0' to:
// {
// .dev = DEVICE_DT_GET(DT_NODELABEL(adc0)),
// .channel_id = 1,
// }
// and 'adc_chan1' to:
// {
// .dev = DEVICE_DT_GET(DT_NODELABEL(adc0)),
// .channel_id = 3,
// .channel_cfg_dt_node_exists = true,
// .channel_cfg = {
// .channel_id = 3,
// .gain = ADC_GAIN_1_5,
// .reference = ADC_REF_VDD_1_4,
// .acquisition_time = ADC_ACQ_TIME_DEFAULT,
// },
// .vref_mv = 750,
// .resolution = 12,
// .oversampling = 4,
// }

See also

ADC_DT_SPEC_GET()

Parameters
• node_id – Devicetree node identifier.

• idx – Channel index.

Returns
Static initializer for an adc_dt_spec structure.
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ADC_DT_SPEC_INST_GET_BY_IDX(inst, idx)
Get ADC io-channel information from a DT_DRV_COMPAT devicetree instance.

See also

ADC_DT_SPEC_GET_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• idx – Channel index.

Returns
Static initializer for an adc_dt_spec structure.

ADC_DT_SPEC_GET(node_id)
Equivalent to ADC_DT_SPEC_GET_BY_IDX(node_id, 0).

See also

ADC_DT_SPEC_GET_BY_IDX()

Parameters
• node_id – Devicetree node identifier.

Returns
Static initializer for an adc_dt_spec structure.

ADC_DT_SPEC_INST_GET(inst)
Equivalent to ADC_DT_SPEC_INST_GET_BY_IDX(inst, 0).

See also

ADC_DT_SPEC_GET()

Parameters
• inst – DT_DRV_COMPAT instance number

Returns
Static initializer for an adc_dt_spec structure.

Typedefs

typedef enum adc_action (*adc_sequence_callback)(const struct device *dev, const struct
adc_sequence *sequence, uint16_t sampling_index)

Type definition of the optional callback function to be called after a requested sampling
is done.
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Param dev
Pointer to the device structure for the driver instance.

Param sequence
Pointer to the sequence structure that triggered the sampling. This parame-
ter points to a copy of the structure that was supplied to the call that started
the sampling sequence, thus it cannot be used with the CONTAINER_OF()
macro to retrieve some other data associated with the sequence. Instead,
the adc_sequence_options::user_data field should be used for such purpose.

Param sampling_index
Index (0-65535) of the sampling done.

Return
Action to be performed by the driver. See adc_action.

typedef int (*adc_api_channel_setup)(const struct device *dev, const struct
adc_channel_cfg *channel_cfg)

Type definition of ADC API function for configuring a channel.

See adc_channel_setup() for argument descriptions.

typedef int (*adc_api_read)(const struct device *dev, const struct adc_sequence *sequence)
Type definition of ADC API function for setting a read request.

See adc_read() for argument descriptions.

typedef int (*adc_api_read_async)(const struct device *dev, const struct adc_sequence
*sequence, struct k_poll_signal *async)

Type definition of ADC API function for setting an asynchronous read request.

See adc_read_async() for argument descriptions.

Enums

enum adc_gain
ADC channel gain factors.

Values:

enumerator ADC_GAIN_1_6
x 1/6.

enumerator ADC_GAIN_1_5
x 1/5.

enumerator ADC_GAIN_1_4
x 1/4.

enumerator ADC_GAIN_1_3
x 1/3.

enumerator ADC_GAIN_2_5
x 2/5.

7.6. Peripherals 3175



Zephyr Project Documentation, Release 3.7.99

enumerator ADC_GAIN_1_2
x 1/2.

enumerator ADC_GAIN_2_3
x 2/3.

enumerator ADC_GAIN_4_5
x 4/5.

enumerator ADC_GAIN_1
x 1.

enumerator ADC_GAIN_2
x 2.

enumerator ADC_GAIN_3
x 3.

enumerator ADC_GAIN_4
x 4.

enumerator ADC_GAIN_6
x 6.

enumerator ADC_GAIN_8
x 8.

enumerator ADC_GAIN_12
x 12.

enumerator ADC_GAIN_16
x 16.

enumerator ADC_GAIN_24
x 24.

enumerator ADC_GAIN_32
x 32.

enumerator ADC_GAIN_64
x 64.

enumerator ADC_GAIN_128
x 128.

enum adc_reference
ADC references.

Values:
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enumerator ADC_REF_VDD_1
VDD.

enumerator ADC_REF_VDD_1_2
VDD/2.

enumerator ADC_REF_VDD_1_3
VDD/3.

enumerator ADC_REF_VDD_1_4
VDD/4.

enumerator ADC_REF_INTERNAL
Internal.

enumerator ADC_REF_EXTERNAL0
External, input 0.

enumerator ADC_REF_EXTERNAL1
External, input 1.

enum adc_action
Action to be performed after a sampling is done.

Values:

enumerator ADC_ACTION_CONTINUE = 0
The sequence should be continued normally.

enumerator ADC_ACTION_REPEAT
The sampling should be repeated.

New samples or sample should be read from the ADC and written in the same place
as the recent ones.

enumerator ADC_ACTION_FINISH
The sequence should be finished immediately.

Functions

int adc_gain_invert(enum adc_gain gain, int32_t *value)
Invert the application of gain to a measurement value.

For example, if the gain passed in is ADC_GAIN_1_6 and the referenced value is 10, the
value after the function returns is 60.

Parameters
• gain – the gain used to amplify the input signal.

• value – a pointer to a value that initially has the effect of the applied gain
but has that effect removed when this function successfully returns. If
the gain cannot be reversed the value remains unchanged.
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Return values
• 0 – if the gain was successfully reversed

• -EINVAL – if the gain could not be interpreted

int adc_channel_setup(const struct device *dev, const struct adc_channel_cfg
*channel_cfg)

Configure an ADC channel.

It is required to call this function and configure each channel before it is selected for
a read request.

Parameters
• dev – Pointer to the device structure for the driver instance.

• channel_cfg – Channel configuration.

Return values
• 0 – On success.

• -EINVAL – If a parameter with an invalid value has been provided.

static inline int adc_channel_setup_dt(const struct adc_dt_spec *spec)
Configure an ADC channel from a struct adc_dt_spec.

See also

adc_channel_setup()

Parameters
• spec – ADC specification from Devicetree.

Returns
A value from adc_channel_setup() or -ENOTSUP if information from Device-
tree is not valid.

int adc_read(const struct device *dev, const struct adc_sequence *sequence)
Set a read request.

If invoked from user mode, any sequence struct options for callback must be NULL.

Parameters
• dev – Pointer to the device structure for the driver instance.

• sequence – Structure specifying requested sequence of samplings.

Return values
• 0 – On success.

• -EINVAL – If a parameter with an invalid value has been provided.

• -ENOMEM – If the provided buffer is to small to hold the results of all re-
quested samplings.

• -ENOTSUP – If the requested mode of operation is not supported.
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• -EBUSY – If another sampling was triggered while the previous one was
still in progress. This may occur only when samplings are done with
intervals, and it indicates that the selected interval was too small. All
requested samples are written in the buffer, but at least some of them
were taken with an extra delay compared to what was scheduled.

static inline int adc_read_dt(const struct adc_dt_spec *spec, const struct adc_sequence
*sequence)

Set a read request from a struct adc_dt_spec.

See also

adc_read()

Parameters
• spec – ADC specification from Devicetree.

• sequence – Structure specifying requested sequence of samplings.

Returns
A value from adc_read().

int adc_read_async(const struct device *dev, const struct adc_sequence *sequence, struct
k_poll_signal *async)

Set an asynchronous read request.

If invoked from user mode, any sequence struct options for callback must be NULL.

Note

This function is available only if CONFIG_ADC_ASYNC is selected.

Parameters
• dev – Pointer to the device structure for the driver instance.

• sequence – Structure specifying requested sequence of samplings.

• async – Pointer to a valid and ready to be signaled struct k_poll_signal.
(Note: if NULL this function will not notify the end of the transaction,
and whether it went successfully or not).

Returns
0 on success, negative error code otherwise. See adc_read() for a list of
possible error codes.

static inline uint16_t adc_ref_internal(const struct device *dev)
Get the internal reference voltage.

Returns the voltage corresponding to ADC_REF_INTERNAL, measured in millivolts.

Returns
a positive value is the reference voltage value. Returns zero if reference
voltage information is not available.
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static inline int adc_raw_to_millivolts(int32_t ref_mv, enum adc_gain gain, uint8_t
resolution, int32_t *valp)

Convert a raw ADC value to millivolts.

This function performs the necessary conversion to transform a raw ADC measure-
ment to a voltage in millivolts.

Parameters
• ref_mv – the reference voltage used for the measurement, in millivolts.

This may be from adc_ref_internal() or a known external reference.

• gain – the ADC gain configuration used to sample the input

• resolution – the number of bits in the absolute value of the sample.
For differential sampling this needs to be one less than the resolution
in struct adc_sequence.

• valp – pointer to the raw measurement value on input, and the corre-
sponding millivolt value on successful conversion. If conversion fails the
stored value is left unchanged.

Return values
• 0 – on successful conversion

• -EINVAL – if the gain is not reversible

static inline int adc_raw_to_millivolts_dt(const struct adc_dt_spec *spec, int32_t *valp)
Convert a raw ADC value to millivolts using information stored in a struct adc_dt_spec.

See also

adc_raw_to_millivolts()

Parameters
• spec – [in] ADC specification from Devicetree.

• valp – [inout] Pointer to the raw measurement value on input, and the
corresponding millivolt value on successful conversion. If conversion
fails the stored value is left unchanged.

Returns
A value from adc_raw_to_millivolts() or -ENOTSUP if information from De-
vicetree is not valid.

static inline int adc_sequence_init_dt(const struct adc_dt_spec *spec, struct adc_sequence
*seq)

Initialize a struct adc_sequence from information stored in struct adc_dt_spec.

Note that this function only initializes the following fields:

• adc_sequence::channels

• adc_sequence::resolution

• adc_sequence::oversampling

Other fields should be initialized by the caller.

Parameters
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• spec – [in] ADC specification from Devicetree.

• seq – [out] Sequence to initialize.

Return values
• 0 – On success

• -ENOTSUP – If spec does not have valid channel configuration

static inline bool adc_is_ready_dt(const struct adc_dt_spec *spec)
Validate that the ADC device is ready.

Parameters
• spec – ADC specification from devicetree

Return values
true – if the ADC device is ready for use and false otherwise.

struct adc_channel_cfg
#include <adc.h> Structure for specifying the configuration of an ADC channel.

Public Members

enum adc_gain gain
Gain selection.

enum adc_reference reference
Reference selection.

uint16_t acquisition_time
Acquisition time.

Use the ADC_ACQ_TIME macro to compose the value for this field or pass
ADC_ACQ_TIME_DEFAULT to use the default setting for a given hardware (e.g.
when the hardware does not allow to configure the acquisition time). Particular
drivers do not necessarily support all the possible units. Value range is 0-16383 for
a given unit.

uint8_t channel_id
Channel identifier.

This value primarily identifies the channel within the ADC API - when a read re-
quest is done, the corresponding bit in the “channels” field of the “adc_sequence”
structure must be set to include this channel in the sampling. For hardware that
does not allow selection of analog inputs for given channels, but rather have dedi-
cated ones, this value also selects the physical ADC input to be used in the sampling.
Otherwise, when it is needed to explicitly select an analog input for the channel,
or two inputs when the channel is a differential one, the selection is done in “in-
put_positive” and “input_negative” fields. Particular drivers indicate which one of
the above two cases they support by selecting or not a special hidden Kconfig op-
tion named ADC_CONFIGURABLE_INPUTS. If this option is not selected, the macro
CONFIG_ADC_CONFIGURABLE_INPUTS is not defined and consequently the men-
tioned two fields are not present in this structure. While this API allows identifiers
from range 0-31, particular drivers may support only a limited number of channel
identifiers (dependent on the underlying hardware capabilities or configured via
a dedicated Kconfig option).
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uint8_t differential
Channel type: single-ended or differential.

struct adc_dt_spec
#include <adc.h> Container for ADC channel information specified in devicetree.

See also

ADC_DT_SPEC_GET_BY_IDX

See also

ADC_DT_SPEC_GET

Public Members

const struct device *dev
Pointer to the device structure for the ADC driver instance used by this io-channel.

uint8_t channel_id
ADC channel identifier used by this io-channel.

bool channel_cfg_dt_node_exists
Flag indicating whether configuration of the associated ADC channel is provided
as a child node of the corresponding ADC controller in devicetree.

struct adc_channel_cfg channel_cfg
Configuration of the associated ADC channel specified in devicetree.

This field is valid only when channel_cfg_dt_node_exists is set to true.

uint16_t vref_mv
Voltage of the reference selected for the channel or 0 if this value is not provided
in devicetree.

This field is valid only when channel_cfg_dt_node_exists is set to true.

uint8_t resolution
ADC resolution to be used for that channel.

This field is valid only when channel_cfg_dt_node_exists is set to true.

uint8_t oversampling
Oversampling setting to be used for that channel.

This field is valid only when channel_cfg_dt_node_exists is set to true.

struct adc_sequence_options
#include <adc.h> Structure defining additional options for an ADC sampling sequence.
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Public Members

uint32_t interval_us
Interval between consecutive samplings (in microseconds), 0 means sample as fast
as possible, without involving any timer.

The accuracy of this interval is dependent on the implementation of a given driver.
The default routine that handles the intervals uses a kernel timer for this purpose,
thus, it has the accuracy of the kernel’s system clock. Particular drivers may use
some dedicated hardware timers and achieve a better precision.

adc_sequence_callback callback
Callback function to be called after each sampling is done.

Optional - set to NULL if it is not needed.

void *user_data
Pointer to user data.

It can be used to associate the sequence with any other data that is needed in the
callback function.

uint16_t extra_samplings
Number of extra samplings to perform (the total number of samplings is 1 + ex-
tra_samplings).

struct adc_sequence
#include <adc.h> Structure defining an ADC sampling sequence.

Public Members

const struct adc_sequence_options *options
Pointer to a structure defining additional options for the sequence.

If NULL, the sequence consists of a single sampling.

uint32_t channels
Bit-mask indicating the channels to be included in each sampling of this sequence.

All selected channels must be configured with adc_channel_setup() before they are
used in a sequence. The least significant bit corresponds to channel 0.

void *buffer
Pointer to a buffer where the samples are to be written.

Samples from subsequent samplings are written sequentially in the buffer. The
number of samples written for each sampling is determined by the number of
channels selected in the “channels” field. The values written to the buffer rep-
resent a sample from each selected channel starting from the one with the lowest
ID. The buffer must be of an appropriate size, taking into account the number of
selected channels and the ADC resolution used, as well as the number of samplings
contained in the sequence.
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size_t buffer_size
Specifies the actual size of the buffer pointed by the “buffer” field (in bytes).

The driver must ensure that samples are not written beyond the limit and it must
return an error if the buffer turns out to be not large enough to hold all the re-
quested samples.

uint8_t resolution
ADC resolution.

For single-ended channels the sample values are from range: 0 .. 2^resolution - 1,
for differential ones:

• 2^(resolution-1) .. 2^(resolution-1) - 1.

uint8_t oversampling
Oversampling setting.

Each sample is averaged from 2^oversampling conversion results. This feature
may be unsupported by a given ADC hardware, or in a specific mode (e.g. when
sampling multiple channels).

bool calibrate
Perform calibration before the reading is taken if requested.

The impact of channel configuration on the calibration process is specific to the un-
derlying hardware. ADC implementations that do not support calibration should
ignore this flag.

struct adc_driver_api
#include <adc.h> ADC driver API.

This is the mandatory API any ADC driver needs to expose.

7.6.3 Auxiliary Display (auxdisplay)

Overview

Auxiliary Displays are text-based displays that have simple interfaces for displaying textual, nu-
meric or alphanumeric data, as opposed to the Display Interface, auxiliary displays do not sup-
port custom graphical output to displays (and most often monochrome), the most advanced cus-
tom feature supported is generation of custom characters. These inexpensive displays are com-
monly found with various configurations and sizes, a common display size is 16 characters by 2
lines.

This API is unstable and subject to change.

Configuration Options

Related configuration options:

• CONFIG_AUXDISPLAY
• CONFIG_AUXDISPLAY_INIT_PRIORITY
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API Reference

Related code samples

Auxiliary display
Output ”Hello World” to an auxiliary display.

group auxdisplay_interface
Auxiliary (Text) Display Interface.

Since
3.4

Version
0.1.0

Defines

AUXDISPLAY_LIGHT_NOT_SUPPORTED
Used for minimum and maximum brightness/backlight values if not supported.

Typedefs

typedef uint32_t auxdisplay_mode_t
Used to describe the mode of an auxiliary (text) display.

Enums

enum auxdisplay_position
Used for moving the cursor or display position.

Values:

enumerator AUXDISPLAY_POSITION_ABSOLUTE = 0
Moves to specified X,Y position.

enumerator AUXDISPLAY_POSITION_RELATIVE
Shifts current position by +/- X,Y position, does not take display direction into con-
sideration.

enumerator AUXDISPLAY_POSITION_RELATIVE_DIRECTION
Shifts current position by +/- X,Y position, takes display direction into considera-
tion.

enumerator AUXDISPLAY_POSITION_COUNT
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enum auxdisplay_direction
Used for setting character append position.

Values:

enumerator AUXDISPLAY_DIRECTION_RIGHT = 0
Each character will be placed to the right of existing characters.

enumerator AUXDISPLAY_DIRECTION_LEFT
Each character will be placed to the left of existing characters.

enumerator AUXDISPLAY_DIRECTION_COUNT

Functions

int auxdisplay_display_on(const struct device *dev)
Turn display on.

Parameters
• dev – Auxiliary display device instance

Return values
• 0 – on success.

• -ENOSYS – if not supported/implemented.

• -errno – Negative errno code on other failure.

int auxdisplay_display_off(const struct device *dev)
Turn display off.

Parameters
• dev – Auxiliary display device instance

Return values
• 0 – on success.

• -ENOSYS – if not supported/implemented.

• -errno – Negative errno code on other failure.

int auxdisplay_cursor_set_enabled(const struct device *dev, bool enabled)
Set cursor enabled status on an auxiliary display.

Parameters
• dev – Auxiliary display device instance

• enabled – True to enable cursor, false to disable

Return values
• 0 – on success.

• -ENOSYS – if not supported/implemented.

• -errno – Negative errno code on other failure.
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int auxdisplay_position_blinking_set_enabled(const struct device *dev, bool enabled)
Set cursor blinking status on an auxiliary display.

Parameters
• dev – Auxiliary display device instance

• enabled – Set to true to enable blinking position, false to disable

Return values
• 0 – on success.

• -ENOSYS – if not supported/implemented.

• -errno – Negative errno code on other failure.

int auxdisplay_cursor_shift_set(const struct device *dev, uint8_t direction, bool
display_shift)

Set cursor shift after character write and display shift.

Parameters
• dev – Auxiliary display device instance

• direction – Sets the direction of the display when characters are written

• display_shift – If true, will shift the display when characters are written
(which makes it look like the display is moving, not the cursor)

Return values
• 0 – on success.

• -ENOSYS – if not supported/implemented.

• -EINVAL – if provided argument is invalid.

• -errno – Negative errno code on other failure.

int auxdisplay_cursor_position_set(const struct device *dev, enum auxdisplay_position
type, int16_t x, int16_t y)

Set cursor (and write position) on an auxiliary display.

Parameters
• dev – Auxiliary display device instance

• type – Type of move, absolute or offset

• x – Exact or offset X position

• y – Exact or offset Y position

Return values
• 0 – on success.

• -ENOSYS – if not supported/implemented.

• -EINVAL – if provided argument is invalid.

• -errno – Negative errno code on other failure.

int auxdisplay_cursor_position_get(const struct device *dev, int16_t *x, int16_t *y)
Get current cursor on an auxiliary display.

Parameters
• dev – Auxiliary display device instance

• x – Will be updated with the exact X position
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• y – Will be updated with the exact Y position

Return values
• 0 – on success.

• -ENOSYS – if not supported/implemented.

• -EINVAL – if provided argument is invalid.

• -errno – Negative errno code on other failure.

int auxdisplay_display_position_set(const struct device *dev, enum
auxdisplay_position type, int16_t x, int16_t y)

Set display position on an auxiliary display.

Parameters
• dev – Auxiliary display device instance

• type – Type of move, absolute or offset

• x – Exact or offset X position

• y – Exact or offset Y position

Return values
• 0 – on success.

• -ENOSYS – if not supported/implemented.

• -EINVAL – if provided argument is invalid.

• -errno – Negative errno code on other failure.

int auxdisplay_display_position_get(const struct device *dev, int16_t *x, int16_t *y)
Get current display position on an auxiliary display.

Parameters
• dev – Auxiliary display device instance

• x – Will be updated with the exact X position

• y – Will be updated with the exact Y position

Return values
• 0 – on success.

• -ENOSYS – if not supported/implemented.

• -EINVAL – if provided argument is invalid.

• -errno – Negative errno code on other failure.

int auxdisplay_capabilities_get(const struct device *dev, struct auxdisplay_capabilities
*capabilities)

Fetch capabilities (and details) of auxiliary display.

Parameters
• dev – Auxiliary display device instance

• capabilities – Will be updated with the details of the auxiliary display

Return values
• 0 – on success.

• -errno – Negative errno code on other failure.
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int auxdisplay_clear(const struct device *dev)
Clear display of auxiliary display and return to home position (note that this does not
reset the display configuration, e.g.

custom characters and display mode will persist).

Parameters
• dev – Auxiliary display device instance

Return values
• 0 – on success.

• -errno – Negative errno code on other failure.

int auxdisplay_brightness_get(const struct device *dev, uint8_t *brightness)
Get the current brightness level of an auxiliary display.

Parameters
• dev – Auxiliary display device instance

• brightness – Will be updated with the current brightness

Return values
• 0 – on success.

• -ENOSYS – if not supported/implemented.

• -errno – Negative errno code on other failure.

int auxdisplay_brightness_set(const struct device *dev, uint8_t brightness)
Update the brightness level of an auxiliary display.

Parameters
• dev – Auxiliary display device instance

• brightness – The brightness level to set

Return values
• 0 – on success.

• -ENOSYS – if not supported/implemented.

• -EINVAL – if provided argument is invalid.

• -errno – Negative errno code on other failure.

int auxdisplay_backlight_get(const struct device *dev, uint8_t *backlight)
Get the backlight level details of an auxiliary display.

Parameters
• dev – Auxiliary display device instance

• backlight – Will be updated with the current backlight level

Return values
• 0 – on success.

• -ENOSYS – if not supported/implemented.

• -errno – Negative errno code on other failure.
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int auxdisplay_backlight_set(const struct device *dev, uint8_t backlight)
Update the backlight level of an auxiliary display.

Parameters
• dev – Auxiliary display device instance

• backlight – The backlight level to set

Return values
• 0 – on success.

• -ENOSYS – if not supported/implemented.

• -EINVAL – if provided argument is invalid.

• -errno – Negative errno code on other failure.

int auxdisplay_is_busy(const struct device *dev)
Check if an auxiliary display driver is busy.

Parameters
• dev – Auxiliary display device instance

Return values
• 1 – on success and display busy.

• 0 – on success and display not busy.

• -ENOSYS – if not supported/implemented.

• -errno – Negative errno code on other failure.

int auxdisplay_custom_character_set(const struct device *dev, struct
auxdisplay_character *character)

Sets a custom character in the display, the custom character struct must contain the
pixel data for the custom character to add and valid custom character index, if suc-
cessful then the character_code variable in the struct will be set to the character code
that can be used with the auxdisplay_write() function to show it.

A character must be valid for a display consisting of a uint8 array of size character
width by character height, values should be 0x00 for pixel off or 0xff for pixel on, if
a display supports shades then values between 0x00 and 0xff may be used (display
driver dependent).

Parameters
• dev – Auxiliary display device instance

• character – Pointer to custom character structure

Return values
• 0 – on success.

• -ENOSYS – if not supported/implemented.

• -EINVAL – if provided argument is invalid.

• -errno – Negative errno code on other failure.

int auxdisplay_write(const struct device *dev, const uint8_t *data, uint16_t len)
Write data to auxiliary display screen at current position.

Parameters
• dev – Auxiliary display device instance

• data – Text data to write
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• len – Length of text data to write

Return values
• 0 – on success.

• -EINVAL – if provided argument is invalid.

• -errno – Negative errno code on other failure.

int auxdisplay_custom_command(const struct device *dev, struct auxdisplay_custom_data
*data)

Send a custom command to the display (if supported by driver)

Parameters
• dev – Auxiliary display device instance

• data – Custom command structure (this may be extended by specific
drivers)

Return values
• 0 – on success.

• -ENOSYS – if not supported/implemented.

• -EINVAL – if provided argument is invalid.

• -errno – Negative errno code on other failure.

struct auxdisplay_light
#include <auxdisplay.h> Light levels for brightness and/or backlight.

If not supported by a display/driver, both minimum and maximum will be AUXDIS-
PLAY_LIGHT_NOT_SUPPORTED.

Public Members

uint8_t minimum
Minimum light level supported.

uint8_t maximum
Maximum light level supported.

struct auxdisplay_capabilities
#include <auxdisplay.h> Structure holding display capabilities.

Public Members

uint16_t columns
Number of character columns.

uint16_t rows
Number of character rows.
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auxdisplay_mode_t mode
Display-specific data (e.g.

4-bit or 8-bit mode for HD44780-based displays)

struct auxdisplay_light brightness
Brightness details for display (if supported)

struct auxdisplay_light backlight
Backlight details for display (if supported)

uint8_t custom_characters
Number of custom characters supported by display (0 if unsupported)

uint8_t custom_character_width
Width (in pixels) of a custom character, supplied custom characters should match.

uint8_t custom_character_height
Height (in pixels) of a custom character, supplied custom characters should match.

struct auxdisplay_custom_data
#include <auxdisplay.h> Structure for a custom command.

This may be extended by specific drivers.

Public Members

uint8_t *data
Raw command data to be sent.

uint16_t len
Length of supplied data.

uint32_t options
Display-driver specific options for command.

struct auxdisplay_character
#include <auxdisplay.h> Structure for a custom character.

Public Members

uint8_t index
Custom character index on the display.

uint8_t *data
Custom character pixel data, a character must be valid for a display consisting of a
uint8 array of size character width by character height, values should be 0x00 for
pixel off or 0xff for pixel on, if a display supports shades then values between 0x00
and 0xff may be used (display driver dependent).
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uint8_t character_code
Will be updated with custom character index to use in the display write function
to disaplay this custom character.

7.6.4 Audio

Audio Codec

Overview The Audio Codec API provides access to digital audio codecs.

Configuration Options Related configuration options:

• CONFIG_AUDIO_CODEC

API Reference

group audio_codec_interface
Abstraction for audio codecs.

Since
1.13

Version
0.1.0

Typedefs

typedef void (*audio_codec_error_callback_t)(const struct device *dev, uint32_t errors)
Callback for error interrupt.

Param dev
Pointer to the codec device

Param errors
Device errors (bitmask of audio_codec_error_type values)

Enums

enum audio_pcm_rate_t
PCM audio sample rates.

Values:

enumerator AUDIO_PCM_RATE_8K = 8000
8 kHz sample rate

enumerator AUDIO_PCM_RATE_16K = 16000
16 kHz sample rate
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enumerator AUDIO_PCM_RATE_24K = 24000
24 kHz sample rate

enumerator AUDIO_PCM_RATE_32K = 32000
32 kHz sample rate

enumerator AUDIO_PCM_RATE_44P1K = 44100
44.1 kHz sample rate

enumerator AUDIO_PCM_RATE_48K = 48000
48 kHz sample rate

enumerator AUDIO_PCM_RATE_96K = 96000
96 kHz sample rate

enumerator AUDIO_PCM_RATE_192K = 192000
192 kHz sample rate

enum audio_pcm_width_t
PCM audio sample bit widths.

Values:

enumerator AUDIO_PCM_WIDTH_16_BITS = 16
16-bit sample width

enumerator AUDIO_PCM_WIDTH_20_BITS = 20
20-bit sample width

enumerator AUDIO_PCM_WIDTH_24_BITS = 24
24-bit sample width

enumerator AUDIO_PCM_WIDTH_32_BITS = 32
32-bit sample width

enum audio_dai_type_t
Digital Audio Interface (DAI) type.

Values:

enumerator AUDIO_DAI_TYPE_I2S
I2S Interface.

enumerator AUDIO_DAI_TYPE_INVALID
Other interfaces can be added here.

enum audio_property_t
Codec properties that can be set by audio_codec_set_property().

Values:
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enumerator AUDIO_PROPERTY_OUTPUT_VOLUME
Output volume.

enumerator AUDIO_PROPERTY_OUTPUT_MUTE
Output mute/unmute.

enum audio_channel_t
Audio channel identifiers to use in audio_codec_set_property().

Values:

enumerator AUDIO_CHANNEL_FRONT_LEFT
Front left channel.

enumerator AUDIO_CHANNEL_FRONT_RIGHT
Front right channel.

enumerator AUDIO_CHANNEL_LFE
Low frequency effect channel.

enumerator AUDIO_CHANNEL_FRONT_CENTER
Front center channel.

enumerator AUDIO_CHANNEL_REAR_LEFT
Rear left channel.

enumerator AUDIO_CHANNEL_REAR_RIGHT
Rear right channel.

enumerator AUDIO_CHANNEL_REAR_CENTER
Rear center channel.

enumerator AUDIO_CHANNEL_SIDE_LEFT
Side left channel.

enumerator AUDIO_CHANNEL_SIDE_RIGHT
Side right channel.

enumerator AUDIO_CHANNEL_ALL
All channels.

enum audio_codec_error_type
Codec error type.

Values:

enumerator AUDIO_CODEC_ERROR_OVERCURRENT = BIT(0)
Output over-current.
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enumerator AUDIO_CODEC_ERROR_OVERTEMPERATURE = BIT(1)
Codec over-temperature.

enumerator AUDIO_CODEC_ERROR_UNDERVOLTAGE = BIT(2)
Power low voltage.

enumerator AUDIO_CODEC_ERROR_OVERVOLTAGE = BIT(3)
Power high voltage.

enumerator AUDIO_CODEC_ERROR_DC = BIT(4)
Output direct-current.

Functions

static inline int audio_codec_configure(const struct device *dev, struct audio_codec_cfg
*cfg)

Configure the audio codec.

Configure the audio codec device according to the configuration parameters provided
as input

Parameters
• dev – Pointer to the device structure for codec driver instance.

• cfg – Pointer to the structure containing the codec configuration.

Returns
0 on success, negative error code on failure

static inline void audio_codec_start_output(const struct device *dev)
Set codec to start output audio playback.

Setup the audio codec device to start the audio playback

Parameters
• dev – Pointer to the device structure for codec driver instance.

static inline void audio_codec_stop_output(const struct device *dev)
Set codec to stop output audio playback.

Setup the audio codec device to stop the audio playback

Parameters
• dev – Pointer to the device structure for codec driver instance.

static inline int audio_codec_set_property(const struct device *dev, audio_property_t
property, audio_channel_t channel,
audio_property_value_t val)

Set a codec property defined by audio_property_t.

Set a property such as volume level, clock configuration etc.

Parameters
• dev – Pointer to the device structure for codec driver instance.

• property – The codec property to set

• channel – The audio channel for which the property has to be set
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• val – pointer to a property value of type audio_codec_property_value_t

Returns
0 on success, negative error code on failure

static inline int audio_codec_apply_properties(const struct device *dev)
Atomically apply any cached properties.

Following one or more invocations of audio_codec_set_property, that may have been
cached by the driver, audio_codec_apply_properties can be invoked to apply all the
properties as atomic as possible

Parameters
• dev – Pointer to the device structure for codec driver instance.

Returns
0 on success, negative error code on failure

static inline int audio_codec_clear_errors(const struct device *dev)
Clear any codec errors.

Clear all codec errors. If an error interrupt exists, it will be de-asserted.

Parameters
• dev – Pointer to the device structure for codec driver instance.

Returns
0 on success, negative error code on failure

static inline int audio_codec_register_error_callback(const struct device *dev,
audio_codec_error_callback_t cb)

Register a callback function for codec error.

The callback will be called from a thread, so I2C or SPI operations are safe. However,
the thread’s stack is limited and defined by the driver. It is currently up to the caller to
ensure that the callback does not overflow the stack.

Parameters
• dev – Pointer to the audio codec device

• cb – The function that should be called when an error is detected fires

Returns
0 if successful, negative errno code if failure.

union audio_dai_cfg_t
#include <codec.h> Digital Audio Interface Configuration.

Configuration is dependent on DAI type

Public Members

struct i2s_config i2s
I2S configuration.

struct audio_codec_cfg
#include <codec.h> Codec configuration parameters.
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Public Members

uint32_t mclk_freq
MCLK input frequency in Hz.

audio_dai_type_t dai_type
Digital interface type.

audio_dai_cfg_t dai_cfg
DAI configuration info.

union audio_property_value_t
#include <codec.h> Codec property values.

Public Members

int vol
Volume level in 0.5dB resolution.

bool mute
Mute if true, unmute if false.

Digital Microphone (DMIC)

Overview The audio DMIC interface provides access to digital microphones.

Configuration Options Related configuration options:

• CONFIG_AUDIO_DMIC

Related code samples

Digital Microphone (DMIC)
Perform PDM transfers using different configurations.

X-NUCLEO-IKS02A1 shield - MEMS microphone
Acquire audio using the digital MEMS microphone on X-NUCLEO-IKS02A1 shield.

API Reference

group audio_dmic_interface
Abstraction for digital microphones.

Since
1.13

Version
0.1.0
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Enums

enum dmic_state
DMIC driver states.

Values:

enumerator DMIC_STATE_UNINIT
Uninitialized.

enumerator DMIC_STATE_INITIALIZED
Initialized.

enumerator DMIC_STATE_CONFIGURED
Configured.

enumerator DMIC_STATE_ACTIVE
Active.

enumerator DMIC_STATE_PAUSED
Paused.

enumerator DMIC_STATE_ERROR
Error.

enum dmic_trigger
DMIC driver trigger commands.

Values:

enumerator DMIC_TRIGGER_STOP
Stop stream.

enumerator DMIC_TRIGGER_START
Start stream.

enumerator DMIC_TRIGGER_PAUSE
Pause stream.

enumerator DMIC_TRIGGER_RELEASE
Release paused stream.

enumerator DMIC_TRIGGER_RESET
Reset stream.

enum pdm_lr
PDM Channels LEFT / RIGHT.

Values:
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enumerator PDM_CHAN_LEFT
Left channel.

enumerator PDM_CHAN_RIGHT
Right channel.

Functions

static inline uint32_t dmic_build_channel_map(uint8_t channel, uint8_t pdm, enum
pdm_lr lr)

Build the channel map to populate struct pdm_chan_cfg.

Returns the map of PDM controller and LEFT/RIGHT channel shifted to the bit position
corresponding to the input logical channel value

Parameters
• channel – The logical channel number

• pdm – The PDM hardware controller number

• lr – LEFT/RIGHT channel within the chosen PDM hardware controller

Returns
Bit-map containing the PDM and L/R channel information

static inline void dmic_parse_channel_map(uint32_t channel_map_lo, uint32_t
channel_map_hi, uint8_t channel, uint8_t
*pdm, enum pdm_lr *lr)

Helper function to parse the channel map in pdm_chan_cfg.

Returns the PDM controller and LEFT/RIGHT channel corresponding to the channel
map and the logical channel provided as input

Parameters
• channel_map_lo – Lower order/significant bits of the channel map

• channel_map_hi – Higher order/significant bits of the channel map

• channel – The logical channel number

• pdm – Pointer to the PDM hardware controller number

• lr – Pointer to the LEFT/RIGHT channel within the PDM controller

static inline uint32_t dmic_build_clk_skew_map(uint8_t pdm, uint8_t skew)
Build a bit map of clock skew values for each PDM channel.

Returns the bit-map of clock skew value shifted to the bit position corresponding to the
input PDM controller value

Parameters
• pdm – The PDM hardware controller number

• skew – The skew to apply for the clock output from the PDM controller

Returns
Bit-map containing the clock skew information
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static inline int dmic_configure(const struct device *dev, struct dmic_cfg *cfg)
Configure the DMIC driver and controller(s)

Configures the DMIC driver device according to the number of channels, channel map-
ping, PDM I/O configuration, PCM stream configuration, etc.

Parameters
• dev – Pointer to the device structure for DMIC driver instance

• cfg – Pointer to the structure containing the DMIC configuration

Returns
0 on success, a negative error code on failure

static inline int dmic_trigger(const struct device *dev, enum dmic_trigger cmd)
Send a command to the DMIC driver.

Sends a command to the driver to perform a specific action

Parameters
• dev – Pointer to the device structure for DMIC driver instance

• cmd – The command to be sent to the driver instance

Returns
0 on success, a negative error code on failure

static inline int dmic_read(const struct device *dev, uint8_t stream, void **buffer, size_t
*size, int32_t timeout)

Read received decimated PCM data stream.

Optionally waits for audio to be received and provides the received audio buffer from
the requested stream

Parameters
• dev – Pointer to the device structure for DMIC driver instance

• stream – Stream identifier

• buffer – Pointer to the received buffer address

• size – Pointer to the received buffer size

• timeout – Timeout in milliseconds to wait in case audio is not yet re-
ceived, or SYS_FOREVER_MS

Returns
0 on success, a negative error code on failure

struct pdm_io_cfg
#include <dmic.h> PDM Input/Output signal configuration.

Parameters common to all PDM controllers

uint32_t min_pdm_clk_freq
Minimum clock frequency supported by the mic.

uint32_t max_pdm_clk_freq
Maximum clock frequency supported by the mic.
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uint8_t min_pdm_clk_dc
Minimum duty cycle in % supported by the mic.

uint8_t max_pdm_clk_dc
Maximum duty cycle in % supported by the mic.

Parameters unique to each PDM controller

uint8_t pdm_clk_pol
Bit mask to optionally invert PDM clock.

uint8_t pdm_data_pol
Bit mask to optionally invert mic data.

uint32_t pdm_clk_skew
Collection of clock skew values for each PDM port.

struct pcm_stream_cfg
#include <dmic.h>Configuration of the PCM streams to be output by the PDM hardware.

Note

if either pcm_rate or pcm_width is set to 0 for a stream, the stream would be disabled

Public Members

uint32_t pcm_rate
PCM sample rate of stream.

uint8_t pcm_width
PCM sample width of stream.

uint16_t block_size
PCM sample block size per transfer.

struct k_mem_slab *mem_slab
SLAB for DMIC driver to allocate buffers for stream.

struct pdm_chan_cfg
#include <dmic.h> Mapping/ordering of the PDM channels to logical PCM output chan-
nel.

Since each controller can have 2 audio channels (stereo), there can be a total of 8x2=16
channels. The actual number of channels shall be described in act_num_chan.

If 2 streams are enabled, the channel order will be the same for both streams.

Each channel is described as a 4-bit number, the least significant bit indicates
LEFT/RIGHT selection of the PDM controller.
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The most significant 3 bits indicate the PDM controller number:

• bits 0-3 are for channel 0, bit 0 indicates LEFT or RIGHT

• bits 4-7 are for channel 1, bit 4 indicates LEFT or RIGHT and so on.

CONSTRAINT: The LEFT and RIGHT channels of EACH PDM controller needs to be ad-
jacent to each other.

Requested channel map

uint32_t req_chan_map_lo
Channels 0 to 7.

uint32_t req_chan_map_hi
Channels 8 to 15.

Actual channel map that the driver could configure

uint32_t act_chan_map_lo
Channels 0 to 7.

uint32_t act_chan_map_hi
Channels 8 to 15.

Public Members

uint8_t req_num_chan
Requested number of channels.

uint8_t act_num_chan
Actual number of channels that the driver could configure.

uint8_t req_num_streams
Requested number of streams for each channel.

uint8_t act_num_streams
Actual number of streams that the driver could configure.

struct dmic_cfg
#include <dmic.h> Input configuration structure for the DMIC configuration API.

Public Members

struct pcm_stream_cfg *streams
Array of pcm_stream_cfg for application to provide configuration for each stream.
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Inter-IC Sound (I2S) Bus

Overview The I2S (Inter-IC Sound) API provides support for the standard I2S interface as well
as common non-standard extensions such as PCM Short/Long Frame Sync and Left/Right Justified
Data Formats.

Configuration Options Related configuration options:

• CONFIG_I2S

Related code samples

I2S echo
Process an audio stream to add an echo effect.

I2S output
Send I2S output stream

USB Audio asynchronous explicit feedback sample
USB Audio 2 explicit feedback sample playing audio on I2S.

API Reference

group i2s_interface
I2S (Inter-IC Sound) Interface.

Since
1.9

Version
1.0.0

The I2S API provides support for the standard I2S interface standard as well as common
non-standard extensions such as PCM Short/Long Frame Sync, Left/Right Justified Data For-
mat.

Defines

I2S_FMT_DATA_FORMAT_SHIFT
Data Format bit field position.

I2S_FMT_DATA_FORMAT_MASK
Data Format bit field mask.

I2S_FMT_DATA_FORMAT_I2S
Standard I2S Data Format.

Serial data is transmitted in two’s complement with the MSB first. Both Word Select
(WS) and Serial Data (SD) signals are sampled on the rising edge of the clock signal
(SCK). The MSB is always sent one clock period after the WS changes. Left channel
data are sent first indicated by WS = 0, followed by right channel data indicated by WS
= 1.
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-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-.
SCK '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '

-. .-------------------------------.
WS '-------------------------------' '----

-.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.
SD | |MSB| |...| |LSB| x |...| x |MSB| |...| |LSB| x |...| x |

-'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'
| Left channel | Right channel |

I2S_FMT_DATA_FORMAT_PCM_SHORT
PCM Short Frame Sync Data Format.

Serial data is transmitted in two’s complement with the MSB first. Both Word Select
(WS) and Serial Data (SD) signals are sampled on the falling edge of the clock signal
(SCK). The falling edge of the frame sync signal (WS) indicates the start of the PCM
word. The frame sync is one clock cycle long. An arbitrary number of data words can
be sent in one frame.

.-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-.
SCK -' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-

.---. .---.
WS -' '- -' '-

-.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---
SD | |MSB| |...| |LSB|MSB| |...| |LSB|MSB| |...| |LSB|

-'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---
| Word 1 | Word 2 | Word 3 | Word n |

I2S_FMT_DATA_FORMAT_PCM_LONG
PCM Long Frame Sync Data Format.

Serial data is transmitted in two’s complement with the MSB first. Both Word Select
(WS) and Serial Data (SD) signals are sampled on the falling edge of the clock signal
(SCK). The rising edge of the frame sync signal (WS) indicates the start of the PCM
word. The frame sync has an arbitrary length, however it has to fall before the start
of the next frame. An arbitrary number of data words can be sent in one frame.

.-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-.
SCK -' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-

.--- ---. ---. ---. .---
WS -' '- '- '- -'

-.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---
SD | |MSB| |...| |LSB|MSB| |...| |LSB|MSB| |...| |LSB|

-'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---
| Word 1 | Word 2 | Word 3 | Word n |

I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED
Left Justified Data Format.

Serial data is transmitted in two’s complement with the MSB first. Both Word Select
(WS) and Serial Data (SD) signals are sampled on the rising edge of the clock signal
(SCK). The bits within the data word are left justified such that the MSB is always sent in
the clock period following the WS transition. Left channel data are sent first indicated
by WS = 1, followed by right channel data indicated by WS = 0.

.-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-.
SCK -' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-

.-------------------------------. .-
WS ---' '-------------------------------'

(continues on next page)
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(continued from previous page)
---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.-

SD |MSB| |...| |LSB| x |...| x |MSB| |...| |LSB| x |...| x |
---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'-

| Left channel | Right channel |

I2S_FMT_DATA_FORMAT_RIGHT_JUSTIFIED
Right Justified Data Format.

Serial data is transmitted in two’s complement with the MSB first. Both Word Select
(WS) and Serial Data (SD) signals are sampled on the rising edge of the clock signal
(SCK). The bits within the data word are right justified such that the LSB is always
sent in the clock period preceding the WS transition. Left channel data are sent first
indicated by WS = 1, followed by right channel data indicated by WS = 0.

.-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-.
SCK -' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-

.-------------------------------. .-
WS ---' '-------------------------------'

---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.-
SD | x |...| x |MSB| |...| |LSB| x |...| x |MSB| |...| |LSB|

---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'-
| Left channel | Right channel |

I2S_FMT_DATA_ORDER_MSB
Send MSB first.

I2S_FMT_DATA_ORDER_LSB
Send LSB first.

I2S_FMT_DATA_ORDER_INV
Invert bit ordering, send LSB first.

I2S_FMT_CLK_FORMAT_SHIFT
Data Format bit field position.

I2S_FMT_CLK_FORMAT_MASK
Data Format bit field mask.

I2S_FMT_BIT_CLK_INV
Invert bit clock.

I2S_FMT_FRAME_CLK_INV
Invert frame clock.

I2S_FMT_CLK_NF_NB
Normal Frame, Normal Bit Clk.

I2S_FMT_CLK_NF_IB
Normal Frame, Inverted Bit Clk.

I2S_FMT_CLK_IF_NB
Inverted Frame, Normal Bit Clk.
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I2S_FMT_CLK_IF_IB
Inverted Frame, Inverted Bit Clk.

I2S_OPT_BIT_CLK_CONT
Run bit clock continuously.

I2S_OPT_BIT_CLK_GATED
Run bit clock when sending data only.

I2S_OPT_BIT_CLK_MASTER
I2S driver is bit clock master.

I2S_OPT_BIT_CLK_SLAVE
I2S driver is bit clock slave.

I2S_OPT_FRAME_CLK_MASTER
I2S driver is frame clock master.

I2S_OPT_FRAME_CLK_SLAVE
I2S driver is frame clock slave.

I2S_OPT_LOOPBACK
Loop back mode.

In loop back mode RX input will be connected internally to TX output. This is used
primarily for testing.

I2S_OPT_PINGPONG
Ping pong mode.

In ping pong mode TX output will keep alternating between a ping buffer and a pong
buffer. This is normally used in audio streams when one buffer is being populated
while the other is being played (DMAed) and vice versa. So, in this mode, 2 sets of
buffers fixed in size are used. Static Arrays are used to achieve this and hence they are
never freed.

Typedefs

typedef uint8_t i2s_fmt_t
I2S data stream format options.

typedef uint8_t i2s_opt_t
I2S configuration options.

Enums

enum i2s_dir
I2C Direction.

Values:
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enumerator I2S_DIR_RX
Receive data.

enumerator I2S_DIR_TX
Transmit data.

enumerator I2S_DIR_BOTH
Both receive and transmit data.

enum i2s_state
Interface state.

Values:

enumerator I2S_STATE_NOT_READY
The interface is not ready.

The interface was initialized but is not yet ready to receive /
transmit data. Call i2s_configure() to configure interface and change
its state to READY.

enumerator I2S_STATE_READY
The interface is ready to receive / transmit data.

enumerator I2S_STATE_RUNNING
The interface is receiving / transmitting data.

enumerator I2S_STATE_STOPPING
The interface is draining its transmit queue.

enumerator I2S_STATE_ERROR
TX buffer underrun or RX buffer overrun has occurred.

enum i2s_trigger_cmd
Trigger command.

Values:

enumerator I2S_TRIGGER_START
Start the transmission / reception of data.

If I2S_DIR_TX is set some data has to be queued for transmission by
the i2s_write() function. This trigger can be used in READY state
only and changes the interface state to RUNNING.

enumerator I2S_TRIGGER_STOP
Stop the transmission / reception of data.

Stop the transmission / reception of data at the end of the current
memory block. This trigger can be used in RUNNING state only and at
first changes the interface state to STOPPING. When the current TX /
RX block is transmitted / received the state is changed to READY.

(continues on next page)
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(continued from previous page)
Subsequent START trigger will resume transmission / reception where
it stopped.

enumerator I2S_TRIGGER_DRAIN
Empty the transmit queue.

Send all data in the transmit queue and stop the transmission.
If the trigger is applied to the RX queue it has the same effect as
I2S_TRIGGER_STOP. This trigger can be used in RUNNING state only and
at first changes the interface state to STOPPING. When all TX blocks
are transmitted the state is changed to READY.

enumerator I2S_TRIGGER_DROP
Discard the transmit / receive queue.

Stop the transmission / reception immediately and discard the
contents of the respective queue. This trigger can be used in any
state other than NOT_READY and changes the interface state to READY.

enumerator I2S_TRIGGER_PREPARE
Prepare the queues after underrun/overrun error has occurred.

This trigger can be used in ERROR state only and changes the
interface state to READY.

Functions

int i2s_configure(const struct device *dev, enum i2s_dir dir, const struct i2s_config *cfg)
Configure operation of a host I2S controller.

The dir parameter specifies if Transmit (TX) or Receive (RX) direction will be config-
ured by data provided via cfg parameter.

The function can be called in NOT_READY or READY state only. If executed successfully
the function will change the interface state to READY.

If the function is called with the parameter cfg->frame_clk_freq set to 0 the interface
state will be changed to NOT_READY.

Parameters
• dev – Pointer to the device structure for the driver instance.

• dir – Stream direction: RX, TX, or both, as defined by I2S_DIR_*. The
I2S_DIR_BOTH value may not be supported by some drivers. For those,
the RX and TX streams need to be configured separately.

• cfg – Pointer to the structure containing configuration parameters.

Return values
• 0 – If successful.

• -EINVAL – Invalid argument.

• -ENOSYS – I2S_DIR_BOTH value is not supported.
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static inline const struct i2s_config *i2s_config_get(const struct device *dev, enum
i2s_dir dir)

Fetch configuration information of a host I2S controller.

Parameters
• dev – Pointer to the device structure for the driver instance

• dir – Stream direction: RX or TX as defined by I2S_DIR_*

Return values
Pointer – to the structure containing configuration parameters, or NULL if
un-configured

static inline int i2s_read(const struct device *dev, void **mem_block, size_t *size)
Read data from the RX queue.

Data received by the I2S interface is stored in the RX queue consisting of memory
blocks preallocated by this function from rx_mem_slab (as defined by i2s_configure).
Ownership of the RX memory block is passed on to the user application which has to
release it.

The data is read in chunks equal to the size of the memory block. If the interface is in
READY state the number of bytes read can be smaller.

If there is no data in the RX queue the function will block waiting for the next RX
memory block to fill in. This operation can timeout as defined by i2s_configure. If the
timeout value is set to K_NO_WAIT the function is non-blocking.

Reading from the RX queue is possible in any state other than NOT_READY. If the in-
terface is in the ERROR state it is still possible to read all the valid data stored in RX
queue. Afterwards the function will return -EIO error.

Parameters
• dev – Pointer to the device structure for the driver instance.

• mem_block – Pointer to the RX memory block containing received data.

• size – Pointer to the variable storing the number of bytes read.

Return values
• 0 – If successful.

• -EIO – The interface is in NOT_READY or ERROR state and there are no
more data blocks in the RX queue.

• -EBUSY – Returned without waiting.

• -EAGAIN – Waiting period timed out.

int i2s_buf_read(const struct device *dev, void *buf, size_t *size)
Read data from the RX queue into a provided buffer.

Data received by the I2S interface is stored in the RX queue consisting of memory
blocks preallocated by this function from rx_mem_slab (as defined by i2s_configure).
Calling this function removes one block from the queue which is copied into the pro-
vided buffer and then freed.

The provided buffer must be large enough to contain a full memory block of data,
which is parameterized for the channel via i2s_configure().

This function is otherwise equivalent to i2s_read().

Parameters
• dev – Pointer to the device structure for the driver instance.
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• buf – Destination buffer for read data, which must be at least the as large
as the configured memory block size for the RX channel.

• size – Pointer to the variable storing the number of bytes read.

Return values
• 0 – If successful.

• -EIO – The interface is in NOT_READY or ERROR state and there are no
more data blocks in the RX queue.

• -EBUSY – Returned without waiting.

• -EAGAIN – Waiting period timed out.

static inline int i2s_write(const struct device *dev, void *mem_block, size_t size)
Write data to the TX queue.

Data to be sent by the I2S interface is stored first in the TX queue. TX queue con-
sists of memory blocks preallocated by the user from tx_mem_slab (as defined by
i2s_configure). This function takes ownership of the memory block and will release
it when all data are transmitted.

If there are no free slots in the TX queue the function will block waiting for the next
TX memory block to be send and removed from the queue. This operation can timeout
as defined by i2s_configure. If the timeout value is set to K_NO_WAIT the function is
non-blocking.

Writing to the TX queue is only possible if the interface is in READY or RUNNING state.

Parameters
• dev – Pointer to the device structure for the driver instance.

• mem_block – Pointer to the TX memory block containing data to be sent.

• size – Number of bytes to write. This value has to be equal or smaller
than the size of the memory block.

Return values
• 0 – If successful.

• -EIO – The interface is not in READY or RUNNING state.

• -EBUSY – Returned without waiting.

• -EAGAIN – Waiting period timed out.

int i2s_buf_write(const struct device *dev, void *buf, size_t size)
Write data to the TX queue from a provided buffer.

This function acquires a memory block from the I2S channel TX queue and copies the
provided data buffer into it. It is otherwise equivalent to i2s_write().

Parameters
• dev – Pointer to the device structure for the driver instance.

• buf – Pointer to a buffer containing the data to transmit.

• size – Number of bytes to write. This value has to be equal or smaller
than the size of the channel’s TX memory block configuration.

Return values
• 0 – If successful.

• -EIO – The interface is not in READY or RUNNING state.

• -EBUSY – Returned without waiting.
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• -EAGAIN – Waiting period timed out.

• -ENOMEM – No memory in TX slab queue.

• -EINVAL – Size parameter larger than TX queue memory block.

int i2s_trigger(const struct device *dev, enum i2s_dir dir, enum i2s_trigger_cmd cmd)
Send a trigger command.

Parameters
• dev – Pointer to the device structure for the driver instance.

• dir – Stream direction: RX, TX, or both, as defined by I2S_DIR_*. The
I2S_DIR_BOTH value may not be supported by some drivers. For those,
triggering need to be done separately for the RX and TX streams.

• cmd – Trigger command.

Return values
• 0 – If successful.

• -EINVAL – Invalid argument.

• -EIO – The trigger cannot be executed in the current state or a DMA chan-
nel cannot be allocated.

• -ENOMEM – RX/TX memory block not available.

• -ENOSYS – I2S_DIR_BOTH value is not supported.

struct i2s_config
#include <i2s.h> Interface configuration options.

Memory slab pointed to by the mem_slab field has to be defined and initialized by the
user. For I2S driver to function correctly number of memory blocks in a slab has to be
at least 2 per queue. Size of the memory block should be multiple of frame_size where
frame_size = (channels * word_size_bytes). As an example 16 bit word will occupy 2
bytes, 24 or 32 bit word will occupy 4 bytes.

Please check Zephyr Kernel Primer for more information on memory slabs.

Remark

When I2S data format is selected parameter channels is ignored, number of words
in a frame is always 2.

Public Members

uint8_t word_size
Number of bits representing one data word.

uint8_t channels
Number of words per frame.

i2s_fmt_t format
Data stream format as defined by I2S_FMT_* constants.
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i2s_opt_t options
Configuration options as defined by I2S_OPT_* constants.

uint32_t frame_clk_freq
Frame clock (WS) frequency, this is sampling rate.

struct k_mem_slab *mem_slab
Memory slab to store RX/TX data.

size_t block_size
Size of one RX/TX memory block (buffer) in bytes.

int32_t timeout
Read/Write timeout.

Number of milliseconds to wait in case TX queue is full or RX queue is empty, or 0,
or SYS_FOREVER_MS.

Digital Audio Interface (DAI)

Overview The DAI (Digital Audio Interface) is a generic high level API for audio drivers. It can
be configured with bespoke data for vendor specific configuration.

Configuration Options Related configuration options:

• CONFIG_DAI

API Reference

group dai_interface
DAI Interface.

Since
3.1

Version
0.1.0

The DAI API provides support for the standard I2S (SSP) and its common variants. It sup-
ports also DMIC, HDA and SDW backends. The API has a config function with bespoke data
argument for device/vendor specific config. There are also optional timestamping functions
to get device specific audio clock time.

Defines

DAI_FORMAT_CLOCK_PROVIDER_MASK
Used to extract the clock configuration from the format attribute of struct dai_config.

DAI_FORMAT_PROTOCOL_MASK
Used to extract the protocol from the format attribute of struct dai_config.
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DAI_FORMAT_CLOCK_INVERSION_MASK
Used to extract the clock inversion from the format attribute of struct dai_config.

Enums

enum dai_clock_provider
DAI clock configurations.

This is used to describe all of the possible clock-related configurations w.r.t the DAI and
the codec.

Values:

enumerator DAI_CBP_CFP = (0 « 12)
codec BLCK provider, codec FSYNC provider

codec BCLK consumer, codec FSYNC provider

enumerator DAI_CBC_CFP = (2 « 12)
codec BCLK provider, codec FSYNC consumer

enumerator DAI_CBP_CFC = (3 « 12)
codec BCLK consumer, codec FSYNC consumer

enumerator DAI_CBC_CFC = (4 « 12)

enum dai_protocol
DAI protocol.

The communication between the DAI and the CODEC may use different protocols de-
pending on the scenario.

Values:

enumerator DAI_PROTO_I2S = 1
I2S.

enumerator DAI_PROTO_RIGHT_J
Right Justified.

enumerator DAI_PROTO_LEFT_J
Left Justified.

enumerator DAI_PROTO_DSP_A
TDM, FSYNC asserted 1 BCLK early.

enumerator DAI_PROTO_DSP_B
TDM, FSYNC asserted at the same time as MSB.

enumerator DAI_PROTO_PDM
Pulse Density Modulation.
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enum dai_clock_inversion
DAI clock inversion.

Some applications may require a different clock polarity (FSYNC/BCLK) compared to
the default one chosen based on the protocol.

Values:

enumerator DAI_INVERSION_NB_NF = 0
no BCLK inversion, no FSYNC inversion

no BCLK inversion, FSYNC inversion

enumerator DAI_INVERSION_NB_IF = (2 « 8)
BCLK inversion, no FSYNC inversion.

enumerator DAI_INVERSION_IB_NF = (3 « 8)
BCLK inversion, FSYNC inversion.

enumerator DAI_INVERSION_IB_IF = (4 « 8)

enum dai_type
Types of DAI.

The type of the DAI. This ID type is used to configure bespoke DAI HW settings.

DAIs have a lot of physical link feature variability and therefore need different con-
figuration data to cater for different use cases. We usually need to pass extra bespoke
configuration prior to DAI start.

Values:

enumerator DAI_LEGACY_I2S = 0
Legacy I2S compatible with i2s.h.

enumerator DAI_INTEL_SSP
Intel SSP.

enumerator DAI_INTEL_DMIC
Intel DMIC.

enumerator DAI_INTEL_HDA
Intel HD/A.

enumerator DAI_INTEL_ALH
Intel ALH.

enumerator DAI_IMX_SAI
i.MX SAI

enumerator DAI_IMX_ESAI
i.MX ESAI
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enumerator DAI_AMD_BT
Amd BT.

enumerator DAI_AMD_SP
Amd SP.

enumerator DAI_AMD_DMIC
Amd DMIC.

enumerator DAI_MEDIATEK_AFE
Mtk AFE.

enumerator DAI_INTEL_SSP_NHLT
nhlt ssp

enumerator DAI_INTEL_DMIC_NHLT
nhlt ssp

enumerator DAI_INTEL_HDA_NHLT
nhlt Intel HD/A

enumerator DAI_INTEL_ALH_NHLT
nhlt Intel ALH

enum dai_dir
DAI Direction.

Values:

enumerator DAI_DIR_TX = 0
Transmit data.

enumerator DAI_DIR_RX
Receive data.

enumerator DAI_DIR_BOTH
Both receive and transmit data.

enum dai_state
Interface state.

Values:

enumerator DAI_STATE_NOT_READY = 0
The interface is not ready.

The interface was initialized but is not yet ready to receive /
transmit data. Call dai_config_set() to configure interface and change
its state to READY.
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enumerator DAI_STATE_READY
The interface is ready to receive / transmit data.

enumerator DAI_STATE_RUNNING
The interface is receiving / transmitting data.

enumerator DAI_STATE_PRE_RUNNING
The interface is clocking but not receiving / transmitting data.

enumerator DAI_STATE_PAUSED
The interface paused.

enumerator DAI_STATE_STOPPING
The interface is draining its transmit queue.

enumerator DAI_STATE_ERROR
TX buffer underrun or RX buffer overrun has occurred.

enum dai_trigger_cmd
Trigger command.

Values:

enumerator DAI_TRIGGER_START = 0
Start the transmission / reception of data.

If DAI_DIR_TX is set some data has to be queued for transmission by
the dai_write() function. This trigger can be used in READY state
only and changes the interface state to RUNNING.

enumerator DAI_TRIGGER_PRE_START
Optional - Pre Start the transmission / reception of data.

Allows the DAI and downstream codecs to prepare for audio Tx/Rx by
starting any required clocks for downstream PLL/FLL locking.

enumerator DAI_TRIGGER_STOP
Stop the transmission / reception of data.

Stop the transmission / reception of data at the end of the current
memory block. This trigger can be used in RUNNING state only and at
first changes the interface state to STOPPING. When the current TX /
RX block is transmitted / received the state is changed to READY.
Subsequent START trigger will resume transmission / reception where
it stopped.

enumerator DAI_TRIGGER_PAUSE
Pause the transmission / reception of data.

Pause the transmission / reception of data at the end of the current
memory block. Behavior is implementation specific but usually this
state doesn't completely stop the clocks or transmission. The DAI could
be transmitting 0's (silence), but it is not consuming data from outside.
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enumerator DAI_TRIGGER_POST_STOP
Optional - Post Stop the transmission / reception of data.

Allows the DAI and downstream codecs to shutdown cleanly after audio
Tx/Rx by stopping any required clocks for downstream audio completion.

enumerator DAI_TRIGGER_DRAIN
Empty the transmit queue.

Send all data in the transmit queue and stop the transmission.
If the trigger is applied to the RX queue it has the same effect as
DAI_TRIGGER_STOP. This trigger can be used in RUNNING state only and
at first changes the interface state to STOPPING. When all TX blocks
are transmitted the state is changed to READY.

enumerator DAI_TRIGGER_DROP
Discard the transmit / receive queue.

Stop the transmission / reception immediately and discard the
contents of the respective queue. This trigger can be used in any
state other than NOT_READY and changes the interface state to READY.

enumerator DAI_TRIGGER_PREPARE
Prepare the queues after underrun/overrun error has occurred.

This trigger can be used in ERROR state only and changes the
interface state to READY.

enumerator DAI_TRIGGER_RESET
Reset.

This trigger frees resources and moves the driver back to initial
state.

enumerator DAI_TRIGGER_COPY
Copy.

This trigger prepares for data copying.

Functions

static inline int dai_probe(const struct device *dev)
Probe operation of DAI driver.

The function will be called to power up the device and update for example possible
reference count of the users. It can be used also to initialize internal variables and
memory allocation.

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
0 – If successful.
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static inline int dai_remove(const struct device *dev)
Remove operation of DAI driver.

The function will be called to unregister/unbind the device, for example to power down
the device or decrease the usage reference count.

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
0 – If successful.

static inline int dai_config_set(const struct device *dev, const struct dai_config *cfg,
const void *bespoke_cfg)

Configure operation of a DAI driver.

The dir parameter specifies if Transmit (TX) or Receive (RX) direction will be config-
ured by data provided via cfg parameter.

The function can be called in NOT_READY or READY state only. If executed successfully
the function will change the interface state to READY.

If the function is called with the parameter cfg->frame_clk_freq set to 0 the interface
state will be changed to NOT_READY.

Parameters
• dev – Pointer to the device structure for the driver instance.

• cfg – Pointer to the structure containing configuration parameters.

• bespoke_cfg – Pointer to the structure containing bespoke config.

Return values
• 0 – If successful.

• -EINVAL – Invalid argument.

• -ENOSYS – DAI_DIR_BOTH value is not supported.

static inline int dai_config_get(const struct device *dev, struct dai_config *cfg, enum
dai_dir dir)

Fetch configuration information of a DAI driver.

Parameters
• dev – Pointer to the device structure for the driver instance

• cfg – Pointer to the config structure to be filled by the instance

• dir – Stream direction: RX or TX as defined by DAI_DIR_*

Return values
0 – if success, negative if invalid parameters or DAI un-configured

static inline const struct dai_properties *dai_get_properties(const struct device *dev,
enum dai_dir dir, int
stream_id)

Fetch properties of a DAI driver.

Parameters
• dev – Pointer to the device structure for the driver instance

• dir – Stream direction: RX or TX as defined by DAI_DIR_*

• stream_id – Stream id: some drivers may have stream specific proper-
ties, this id specifies the stream.
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Return values
Pointer – to the structure containing properties, or NULL if error or no
properties

static inline int dai_trigger(const struct device *dev, enum dai_dir dir, enum
dai_trigger_cmd cmd)

Send a trigger command.

Parameters
• dev – Pointer to the device structure for the driver instance.

• dir – Stream direction: RX, TX, or both, as defined by DAI_DIR_*. The
DAI_DIR_BOTH value may not be supported by some drivers. For those,
triggering need to be done separately for the RX and TX streams.

• cmd – Trigger command.

Return values
• 0 – If successful.

• -EINVAL – Invalid argument.

• -EIO – The trigger cannot be executed in the current state or a DMA chan-
nel cannot be allocated.

• -ENOMEM – RX/TX memory block not available.

• -ENOSYS – DAI_DIR_BOTH value is not supported.

static inline int dai_ts_config(const struct device *dev, struct dai_ts_cfg *cfg)
Configures timestamping in attached DAI.

Optional method.

Parameters
• dev – Component device.

• cfg – Timestamp config.

Return values
0 – If successful.

static inline int dai_ts_start(const struct device *dev, struct dai_ts_cfg *cfg)
Starts timestamping.

Optional method

Parameters
• dev – Component device.

• cfg – Timestamp config.

Return values
0 – If successful.

static inline int dai_ts_stop(const struct device *dev, struct dai_ts_cfg *cfg)
Stops timestamping.

Optional method.

Parameters
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• dev – Component device.

• cfg – Timestamp config.

Return values
0 – If successful.

static inline int dai_ts_get(const struct device *dev, struct dai_ts_cfg *cfg, struct
dai_ts_data *tsd)

Gets timestamp.

Optional method.

Parameters
• dev – Component device.

• cfg – Timestamp config.

• tsd – Receives timestamp data.

Return values
0 – If successful.

static inline int dai_config_update(const struct device *dev, const void *bespoke_cfg,
size_t size)

Update DAI configuration at runtime.

This function updates the configuration of a DAI interface at runtime. It allows set-
ting bespoke configuration parameters that are specific to the DAI implementation, en-
abling updates outside of the regular flow with the full configuration blob. The details
of the bespoke configuration are specific to each DAI implementation. This function
should only be called when the DAI is in the READY state, ensuring that the configura-
tion updates are applied before data transmission or reception begins.

Parameters
• dev – Pointer to the device structure for the driver instance.

• bespoke_cfg – Pointer to the buffer containing bespoke configuration pa-
rameters.

• size – Size of the bespoke_cfg buffer in bytes.

Return values
• 0 – If successful.

• -ENOSYS – If the configuration update operation is not implemented.

• Negative – errno code if failure.

struct dai_properties
#include <dai.h> DAI properties.

This struct is used with APIs get_properties function to query DAI properties like fifo
address and dma handshake. These are needed for example to setup dma outside the
driver code.

Public Members
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uint32_t fifo_address
Fifo hw address for e.g.

when connecting to dma.

uint32_t fifo_depth
Fifo depth.

uint32_t dma_hs_id
DMA handshake id.

uint32_t reg_init_delay
Delay for initializing registers.

int stream_id
Stream ID.

struct dai_config
#include <dai.h> Main DAI config structure.

Generic DAI interface configuration options.

Public Members

enum dai_type type
Type of the DAI.

uint32_t dai_index
Index of the DAI.

uint8_t channels
Number of audio channels, words in frame.

uint32_t rate
Frame clock (WS) frequency, sampling rate.

uint16_t format
DAI specific data stream format.

uint8_t options
DAI specific configuration options.

uint8_t word_size
Number of bits representing one data word.

size_t block_size
Size of one RX/TX memory block (buffer) in bytes.
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uint16_t link_config
DAI specific link configuration.

tdm slot group number

struct dai_ts_cfg
#include <dai.h> DAI timestamp configuration.

Public Members

uint32_t walclk_rate
Rate in Hz, e.g.

19200000

int type
Type of the DAI (SSP, DMIC, HDA, etc.).

int direction
Direction (playback/capture)

int index
Index for SSPx to select correct timestamp register.

int dma_id
DMA instance id.

int dma_chan_index
Used DMA channel index.

int dma_chan_count
Number of channels in single DMA.

struct dai_ts_data
#include <dai.h> DAI timestamp data.

Public Members

uint64_t walclk
Wall clock.

uint64_t sample
Sample count.

uint32_t walclk_rate
Rate in Hz, e.g.

19200000
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7.6.5 Battery Backed RAM (BBRAM)

The BBRAM APIs allow interfacing with the unique properties of this memory region. The fol-
lowing common types of BBRAM properties are easily accessed via this API:

• IBBR (invalid) state - check that the BBRAM is not corrupt.

• VSBY (voltage standby) state - check if the BBRAM is using standby voltage.

• VCC (active power) state - check if the BBRAM is on normal power.

• Size - get the size (in bytes) of the BBRAM region.

Along with these, the API provides a means for reading and writing to the memory region via
bbram_read() and bbram_write() respectively. Both functions are expected to only succeed if
the BBRAM is in a valid state and the operation is bounded to the memory region.

API Reference

group bbram_interface
BBRAM Interface.

Typedefs

typedef int (*bbram_api_check_invalid_t)(const struct device *dev)
API template to check if the BBRAM is invalid.

See also

bbram_check_invalid

typedef int (*bbram_api_check_standby_power_t)(const struct device *dev)
API template to check for standby power failure.

See also

bbram_check_standby_power

typedef int (*bbram_api_check_power_t)(const struct device *dev)
API template to check for V CC1 power failure.

See also

bbram_check_power
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typedef int (*bbram_api_get_size_t)(const struct device *dev, size_t *size)
API template to check the size of the BBRAM.

See also

bbram_get_size

typedef int (*bbram_api_read_t)(const struct device *dev, size_t offset, size_t size, uint8_t
*data)

API template to read from BBRAM.

See also

bbram_read

typedef int (*bbram_api_write_t)(const struct device *dev, size_t offset, size_t size, const
uint8_t *data)

API template to write to BBRAM.

See also

bbram_write

Functions

int bbram_check_invalid(const struct device *dev)
Check if BBRAM is invalid.

Check if “Invalid Battery-Backed RAM” status is set then reset the status bit. This may
occur as a result to low voltage at the VBAT pin.

Parameters
• dev – [in] BBRAM device pointer.

Returns
0 if the Battery-Backed RAM data is valid, -EFAULT otherwise.

int bbram_check_standby_power(const struct device *dev)
Check for standby (Volt SBY) power failure.

Check if the V standby power domain is turned on after it was off then reset the status
bit.

Parameters
• dev – [in] BBRAM device pointer.

Returns
0 if V SBY power domain is in normal operation.
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int bbram_check_power(const struct device *dev)
Check for V CC1 power failure.

This will return an error if the V CC1 power domain is turned on after it was off and
reset the status bit.

Parameters
• dev – [in] BBRAM device pointer.

Returns
0 if the V CC1 power domain is in normal operation, -EFAULT otherwise.

int bbram_get_size(const struct device *dev, size_t *size)
Get the size of the BBRAM (in bytes).

Parameters
• dev – [in] BBRAM device pointer.

• size – [out] Pointer to write the size to.

Returns
0 for success, -EFAULT otherwise.

int bbram_read(const struct device *dev, size_t offset, size_t size, uint8_t *data)
Read bytes from BBRAM.

Parameters
• dev – [in] The BBRAM device pointer to read from.

• offset – [in] The offset into the RAM address to start reading from.

• size – [in] The number of bytes to read.

• data – [out] The buffer to load the data into.

Returns
0 on success, -EFAULT if the address range is out of bounds.

int bbram_write(const struct device *dev, size_t offset, size_t size, const uint8_t *data)
Write bytes to BBRAM.

Parameters
• dev – [in] The BBRAM device pointer to write to.

• offset – [in] The offset into the RAM address to start writing to.

• size – [in] The number of bytes to write.

• data – [out] Pointer to the start of data to write.

Returns
0 on success, -EFAULT if the address range is out of bounds.

int bbram_emul_set_invalid(const struct device *dev, bool is_invalid)
Set the emulated BBRAM driver’s invalid state.

Calling this will affect the emulated behavior of bbram_check_invalid().

Parameters
• dev – [in] The emulated device to modify

• is_invalid – [in] The new invalid state

Returns
0 on success, negative values on error.
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int bbram_emul_set_standby_power_state(const struct device *dev, bool failure)
Set the emulated BBRAM driver’s standby power state.

Calling this will affect the emulated behavior of bbram_check_standby_power().

Parameters
• dev – [in] The emulated device to modify

• failure – [in]Whether or not standby power failure should be emulated

Returns
0 on success, negative values on error.

int bbram_emul_set_power_state(const struct device *dev, bool failure)
Set the emulated BBRAM driver’s power state.

Calling this will affect the emulated behavior of bbram_check_power().

Parameters
• dev – [in] The emulated device to modify

• failure – [in] Whether or not a power failure should be emulated

Returns
0 on success, negative values on error.

struct bbram_driver_api
#include <bbram.h>

7.6.6 BC1.2 Devices (Experimental)

The Battery Charging specification, currently at revision 1.2, is commonly referred to as just
BC1.2. BC1.2 defines limits and detection mechanisms for USB devices to draw current exceeding
the USB 2.0 specification limit of 0.5A, 2.5W.

The BC1.2 specification uses the term Charging Port for the device that supplies VBUS on the
USB connection and the term Portable Device for the device that sinks current from the USB
connection.

Note that the BC1.2 Specification uses the acronym PD for Portable Device. This should not be
confused with the USB-C Power Delivery, which also uses the acronym PD.

On many devices, BC1.2 is the fallback mechanism to determine the connected charger capability
on USB type C ports when the attached type-C partner does not support Power Delivery.

Key parameters from the BC1.2 Specification include:

Parameter Symbol Range
Allowed PD (portable device) Current Draw from Charging Port IDEV_CHG 1.5 A
Charging Downstream Port Rated Current ICDP 1.5 - 5.0 A
Maximum Configured Current when connected to a SDP ICFG_MAX 500 mA
Dedicated Charging Port Rated Current IDCP 1.5 - 5.0 A
Suspend current ISUSP 2.5 mA
Unit load current IUNIT 100 mA

While the ICDP and IDCP rated currents go up to 5.0 A, the BC1.2 current is limited by the
IDEV_CHG parameter. So the BC1.2 support is capped at 1.5 A in the Zephyr implementation
when using portable-device mode.
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Basic Operation

The BC1.2 device driver provides only two APIs, bc12_set_role() and bc12_set_result_cb().

The application calls bc12_set_role() to transition the BC1.2 device to either a disconnected,
portable-device, or charging port mode.

For the disconnected state, the BC1.2 driver powers down the detection chip. The power down
operation is vendor specific.

The application calls bc12_set_role() with the type set to BC12_PORTABLE_DEVICE when both
the following conditions are true:

• The application configured the port as an upstream facing port, i.e. a USB device port.

• The application detects VBUS on the USB connection.

For portable-device mode, the BC1.2 driver powers up the detection chip and starts charger de-
tection. At completion of the charger detection, the BC1.2 driver notifies the callback registered
with bc12_set_result_cb(). By default, the BC1.2 driver clamps the current to 1.5A to comply
with the BC1.2 specification.

To comply with the USB 2.0 specification, when the driver detects a SDP (Standard Downstream
Port) charging partner or if BC1.2 detection fails, the driver reports the available current as ISUSP
(2.5 mA). The application may increase the current draw to IUNIT (100 mA) when the connected
USB host resumes the USB bus and may increase the current draw to ICFG_MAX (500 mA) when
the USB host configures the USB device.

Charging port mode is used by the application when the USB port is configured as a downstream
facing port, i.e. a USB host port. For charging port mode, the BC1.2 driver powers up the de-
tection chip and configures the charger type specified by a devicetree property. If the driver
supports detection of plug and unplug events, the BC1.2 driver notifies the callback registered
with bc12_set_result_cb() to indicate the current connection state of the portable device part-
ner.

Configuration Options

Related configuration options:

• CONFIG_USB_BC12

API Reference

group b12_interface
BC1.2 driver APIs.

BC1.2 constants

BC12_CHARGER_VOLTAGE_UV
BC1.2 USB charger voltage.

BC12_CHARGER_MIN_CURR_UA
BC1.2 USB charger minimum current.

Set to match the Isusp of 2.5 mA parameter. This is returned by the driver when either
BC1.2 detection fails, or the attached partner is a SDP (standard downstream port).
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The application may increase the current draw after determining the USB device state
of suspended/unconfigured/configured. Suspended: 2.5 mA Unconfigured: 100 mA
Configured: 500 mA (USB 2.0)

BC12_CHARGER_MAX_CURR_UA
BC1.2 USB charger maximum current.

Typedefs

typedef void (*bc12_callback_t)(const struct device *dev, struct bc12_partner_state *state,
void *user_data)

BC1.2 callback for charger configuration.

Param dev
BC1.2 device which is notifying of the new charger state.

Param state
Current state of the BC1.2 client, including BC1.2 type detected, voltage, and
current limits. If NULL, then the partner charger is disconnected or the
BC1.2 device is operating in host mode.

Param user_data
Requester supplied data which is passed along to the callback.

Enums

enum bc12_role
BC1.2 device role.

Values:

enumerator BC12_DISCONNECTED

enumerator BC12_PORTABLE_DEVICE

enumerator BC12_CHARGING_PORT

enum bc12_type
BC1.2 charging partner type.

Values:

enumerator BC12_TYPE_NONE
No partner connected.

enumerator BC12_TYPE_SDP
Standard Downstream Port.

enumerator BC12_TYPE_DCP
Dedicated Charging Port.
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enumerator BC12_TYPE_CDP
Charging Downstream Port.

enumerator BC12_TYPE_PROPRIETARY
Proprietary charging port.

enumerator BC12_TYPE_UNKNOWN
Unknown charging port, BC1.2 detection failed.

enumerator BC12_TYPE_COUNT
Count of valid BC12 types.

Functions

int bc12_set_role(const struct device *dev, enum bc12_role role)
Set the BC1.2 role.

Parameters
• dev – Pointer to the device structure for the BC1.2 driver instance.

• role – New role for the BC1.2 device.

Return values
• 0 – If successful.

• -EIO – general input/output error.

int bc12_set_result_cb(const struct device *dev, bc12_callback_t cb, void *user_data)
Register a callback for BC1.2 results.

Parameters
• dev – Pointer to the device structure for the BC1.2 driver instance.

• cb – Function pointer for the result callback.

• user_data – Requester supplied data which is passed along to the call-
back.

Return values
• 0 – If successful.

• -EIO – general input/output error.

struct bc12_partner_state
#include <usb_bc12.h> BC1.2 detected partner state.

Param bc12_role
Current role of the BC1.2 device.

Param type
Charging partner type. Valid when bc12_role is BC12_PORTABLE_DEVICE.

Param current_ma
Current, in uA, that the charging partner provides. Valid when bc12_role
is BC12_PORTABLE_DEVICE.

Param voltage_mv
Voltage, in uV, that the charging partner provides. Valid when bc12_role is
BC12_PORTABLE_DEVICE.
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Param pd_partner_connected
True if a PD partner is currently connected. Valid when bc12_role is
BC12_CHARGING_PORT.

group b12_emulator_backend
BC1.2 backend emulator APIs.

Functions

static inline int bc12_emul_set_charging_partner(const struct emul *target, enum
bc12_type partner_type)

Set the charging partner type connected to the BC1.2 device.

The corresponding BC1.2 emulator updates the vendor specific registers to simulate
connection of the specified charging partner type. The emulator also generates an
interrupt for processing by the real driver, if supported.

Parameters
• target – Pointer to the emulator structure for the BC1.2 emulator in-

stance.

• partner_type – The simulated partner type. Set to BC12_TYPE_NONE to
disconnect the charging partner.

Return values
• 0 – If successful.

• -EINVAL – if the partner type is not supported.

static inline int bc12_emul_set_pd_partner(const struct emul *target, bool connected)
Set the portable device partner state.

The corresponding BC1.2 emulator updates the vendor specific registers to simulate
connection or disconnection of a portable device partner. The emulator also generates
an interrupt for processing by the real driver, if supported.

Parameters
• target – Pointer to the emulator structure for the BC1.2 emulator in-

stance.

• connected – If true, emulate a connection of a portable device partner. If
false, emulate a disconnect event.

Return values
• 0 – If successful.

• -EINVAL – if the connection/disconnection of PD partner is not supported.

7.6.7 Clock Control

Overview

The clock control API provides access to clocks in the system, including the ability to turn them
on and off.
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Configuration Options

Related configuration options:

• CONFIG_CLOCK_CONTROL

API Reference

Related code samples

LiteX clock control driver
Use LiteX clock control driver to generate multiple clock signals.

group clock_control_interface
Clock Control Interface.

Since
1.0

Version
1.0.0

Defines

CLOCK_CONTROL_SUBSYS_ALL

Typedefs

typedef void *clock_control_subsys_t
clock_control_subsys_t is a type to identify a clock controller sub-system.

Such data pointed is opaque and relevant only to the clock controller driver instance
being used.

typedef void *clock_control_subsys_rate_t
clock_control_subsys_rate_t is a type to identify a clock controller sub-system rate.

Such data pointed is opaque and relevant only to set the clock controller rate of the
driver instance being used.

typedef void (*clock_control_cb_t)(const struct device *dev, clock_control_subsys_t
subsys, void *user_data)

Callback called on clock started.

Param dev
Device structure whose driver controls the clock.

Param subsys
Opaque data representing the clock.

Param user_data
User data.
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typedef int (*clock_control)(const struct device *dev, clock_control_subsys_t sys)

typedef int (*clock_control_get)(const struct device *dev, clock_control_subsys_t sys,
uint32_t *rate)

typedef int (*clock_control_async_on_fn)(const struct device *dev, clock_control_subsys_t
sys, clock_control_cb_t cb, void *user_data)

typedef enum clock_control_status (*clock_control_get_status_fn)(const struct device
*dev, clock_control_subsys_t sys)

typedef int (*clock_control_set)(const struct device *dev, clock_control_subsys_t sys,
clock_control_subsys_rate_t rate)

typedef int (*clock_control_configure_fn)(const struct device *dev,
clock_control_subsys_t sys, void *data)

Enums

enum clock_control_status
Current clock status.

Values:

enumerator CLOCK_CONTROL_STATUS_STARTING

enumerator CLOCK_CONTROL_STATUS_OFF

enumerator CLOCK_CONTROL_STATUS_ON

enumerator CLOCK_CONTROL_STATUS_UNKNOWN

Functions

static inline int clock_control_on(const struct device *dev, clock_control_subsys_t sys)
Enable a clock controlled by the device.

On success, the clock is enabled and ready when this function returns. This function
may sleep, and thus can only be called from thread context.

Use clock_control_async_on() for non-blocking operation.

Parameters
• dev – Device structure whose driver controls the clock.

• sys – Opaque data representing the clock.

Returns
0 on success, negative errno on failure.
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static inline int clock_control_off(const struct device *dev, clock_control_subsys_t sys)
Disable a clock controlled by the device.

This function is non-blocking and can be called from any context. On success, the clock
is disabled when this function returns.

Parameters
• dev – Device structure whose driver controls the clock

• sys – Opaque data representing the clock

Returns
0 on success, negative errno on failure.

static inline int clock_control_async_on(const struct device *dev, clock_control_subsys_t
sys, clock_control_cb_t cb, void *user_data)

Request clock to start with notification when clock has been started.

Function is non-blocking and can be called from any context. User callback is called
when clock is started.

Parameters
• dev – Device.

• sys – A pointer to an opaque data representing the sub-system.

• cb – Callback.

• user_data – User context passed to the callback.

Return values
• 0 – if start is successfully initiated.

• -EALREADY – if clock was already started and is starting or running.

• -ENOTSUP – If the requested mode of operation is not supported.

• -ENOSYS – if the interface is not implemented.

• other – negative errno on vendor specific error.

static inline enum clock_control_status clock_control_get_status(const struct device
*dev,
clock_control_subsys_t
sys)

Get clock status.

Parameters
• dev – Device.

• sys – A pointer to an opaque data representing the sub-system.

Returns
Status.

static inline int clock_control_get_rate(const struct device *dev, clock_control_subsys_t
sys, uint32_t *rate)

Obtain the clock rate of given sub-system.

Parameters
• dev – Pointer to the device structure for the clock controller driver in-

stance

• sys – A pointer to an opaque data representing the sub-system

• rate – [out] Subsystem clock rate
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Return values
• 0 – on successful rate reading.

• -EAGAIN – if rate cannot be read. Some drivers do not support returning
the rate when the clock is off.

• -ENOTSUP – if reading the clock rate is not supported for the given sub-
system.

• -ENOSYS – if the interface is not implemented.

static inline int clock_control_set_rate(const struct device *dev, clock_control_subsys_t
sys, clock_control_subsys_rate_t rate)

Set the rate of the clock controlled by the device.

On success, the new clock rate is set and ready when this function returns. This func-
tion may sleep, and thus can only be called from thread context.

Parameters
• dev – Device structure whose driver controls the clock.

• sys – Opaque data representing the clock.

• rate – Opaque data representing the clock rate to be used.

Return values
• -EALREADY – if clock was already in the given rate.

• -ENOTSUP – If the requested mode of operation is not supported.

• -ENOSYS – if the interface is not implemented.

• other – negative errno on vendor specific error.

static inline int clock_control_configure(const struct device *dev, clock_control_subsys_t
sys, void *data)

Configure a source clock.

This function is non-blocking and can be called from any context. On success, the se-
lected clock is configured as per caller’s request.

It is caller’s responsibility to ensure that subsequent calls to the API provide the right
information to allows clock_control driver to perform the right action (such as using
the right clock source on clock_control_get_rate call).

data is implementation specific and could be used to convey supplementary informa-
tion required for expected clock configuration.

Parameters
• dev – Device structure whose driver controls the clock

• sys – Opaque data representing the clock

• data – Opaque data providing additional input for clock configuration

Return values
• 0 – On success

• -ENOSYS – If the device driver does not implement this call

• -errno – Other negative errno on failure.

struct clock_control_driver_api
#include <clock_control.h>

7.6. Peripherals 3235



Zephyr Project Documentation, Release 3.7.99

7.6.8 Controller Area Network (CAN)

CAN Controller

• Overview

• Sending

• Receiving

• Setting the bitrate

• SocketCAN

• Samples

• CAN Controller API Reference

Overview Controller Area Network is a two-wire serial bus specified by the Bosch CAN Specifi-
cation, Bosch CAN with Flexible Data-Rate specification and the ISO 11898-1:2003 standard. CAN
is mostly known for its application in the automotive domain. However, it is also used in home
and industrial automation and other products.

Warning

CAN controllers can only initialize when the bus is in the idle (recessive) state for at least 11
recessive bits. Therefore you have to make sure that CAN RX is high, at least for a short time.
This is also necessary for loopback mode.

The bit-timing as defined in ISO 11898-1:2003 looks as following:

A single bit is split into four segments.

• Sync_Seg: The nodes synchronize at the edge of the Sync_Seg. It is always one time quantum
in length.

• Prop_Seg: The signal propagation delay of the bus and other delays of the transceiver and
node.

• Phase_Seg1 and Phase_Seg2 :Define the sampling point. The bit is sampled at the end of
Phase_Seg1.

The bit-rate is calculated from the time of a time quantum and the values defined above. A bit
has the length of Sync_Seg plus Prop_Seg plus Phase_Seg1 plus Phase_Seg2 multiplied by the time
of single time quantum. The bit-rate is the inverse of the length of a single bit.

A bit is sampled at the sampling point. The sample point is between Phase_Seg1 and PhaseSeg2
and therefore is a parameter that the user needs to choose. The CiA recommends setting the
sample point to 87.5% of the bit.

The resynchronization jump width (SJW) defines the amount of time quantum the sample point
can be moved. The sample point is moved when resynchronization is needed.
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The timing parameters (SJW, bitrate and sampling point, or bitrate, Prop_Seg, Phase_Seg1and
Phase_Seg2) are initially set from the device-tree and can be changed at run-time from the timing-
API.

CAN uses so-called identifiers to identify the frame instead of addresses to identify a node. This
identifier can either have 11-bit width (Standard or Basic Frame) or 29-bit in case of an Extended
Frame. The Zephyr CAN API supports both Standard and Extended identifiers concurrently. A
CAN frame starts with a dominant Start Of Frame bit. After that, the identifiers follow. This
phase is called the arbitration phase. During the arbitration phase, write collisions are allowed.
They resolve by the fact that dominant bits override recessive bits. Nodes monitor the bus and
notice when their transmission is being overridden and in case, abort their transmission. This
effectively gives lower number identifiers priority over higher number identifiers.

Filters are used to whitelist identifiers that are of interest for the specific node. An identifier
that doesn’t match any filter is ignored. Filters can either match exactly or a specified part of the
identifier. This method is called masking. As an example, a mask with 11 bits set for standard
or 29 bits set for extended identifiers must match perfectly. Bits that are set to zero in the mask
are ignored when matching an identifier. Most CAN controllers implement a limited number of
filters in hardware. The number of filters is also limited in Kconfig to save memory.

Errors may occur during transmission. In case a node detects an erroneous frame, it partially
overrides the current frame with an error-frame. Error-frames can either be error passive or
error active, depending on the state of the controller. In case the controller is in error active state,
it sends six consecutive dominant bits, which is a violation of the stuffing rule that all nodes can
detect. The sender may resend the frame right after.

An initialized node can be in one of the following states:

• Error-active

• Error-passive

• Bus-off

After initialization, the node is in the error-active state. In this state, the node is allowed to send
active error frames, ACK, and overload frames. Every node has a receive- and transmit-error
counter. If either the receive- or the transmit-error counter exceeds 127, the node changes to
error-passive state. In this state, the node is not allowed to send error-active frames anymore.
If the transmit-error counter increases further to 255, the node changes to the bus-off state. In
this state, the node is not allowed to send any dominant bits to the bus. Nodes in the bus-off state
may recover after receiving 128 occurrences of 11 concurrent recessive bits.

You can read more about CAN bus in this CAN Wikipedia article.

Zephyr supports following CAN features:

• Standard and Extended Identifiers

• Filters with Masking

• Loopback and Silent mode

• Remote Request

Sending The following code snippets show how to send data.

This basic sample sends a CAN frame with standard identifier 0x123 and eight bytes of data.
When passing NULL as the callback, as shown in this example, the send function blocks until the
frame is sent and acknowledged by at least one other node or an error occurred. The timeout
only takes effect on acquiring a mailbox. When a transmitting mailbox is assigned, sending
cannot be canceled.

struct can_frame frame = {
.flags = 0,

(continues on next page)
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(continued from previous page)
.id = 0x123,
.dlc = 8,
.data = {1,2,3,4,5,6,7,8}

};
const struct device *const can_dev = DEVICE_DT_GET(DT_CHOSEN(zephyr_canbus));
int ret;

ret = can_send(can_dev, &frame, K_MSEC(100), NULL, NULL);
if (ret != 0) {

LOG_ERR("Sending failed [%d]", ret);
}

This example shows how to send a frame with extended identifier 0x1234567 and two bytes of
data. The provided callback is called when the message is sent, or an error occurred. Passing
K_FOREVER to the timeout causes the function to block until a transfer mailbox is assigned to the
frame or an error occurred. It does not block until the message is sent like the example above.

void tx_callback(const struct device *dev, int error, void *user_data)
{

char *sender = (char *)user_data;

if (error != 0) {
LOG_ERR("Sending failed [%d]\nSender: %s\n", error, sender);

}
}

int send_function(const struct device *can_dev)
{

struct can_frame frame = {
.flags = CAN_FRAME_IDE,
.id = 0x1234567,
.dlc = 2

};

frame.data[0] = 1;
frame.data[1] = 2;

return can_send(can_dev, &frame, K_FOREVER, tx_callback, "Sender 1");
}

Receiving Frames are only received when they match a filter. The following code snippets
show how to receive frames by adding filters.

Here we have an example for a receiving callback as used for can_add_rx_filter(). The user
data argument is passed when the filter is added.

void rx_callback_function(const struct device *dev, struct can_frame *frame, void *user_
↪→data)
{

... do something with the frame ...
}

The following snippet shows how to add a filter with a callback function. It is the most efficient
but also the most critical way to receive messages. The callback function is called from an in-
terrupt context, which means that the callback function should be as short as possible and must
not block. Adding callback functions is not allowed from userspace context.

The filter for this example is configured to match the identifier 0x123 exactly.
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const struct can_filter my_filter = {
.flags = 0U,
.id = 0x123,
.mask = CAN_STD_ID_MASK

};
int filter_id;
const struct device *const can_dev = DEVICE_DT_GET(DT_CHOSEN(zephyr_canbus));

filter_id = can_add_rx_filter(can_dev, rx_callback_function, callback_arg, &my_filter);
if (filter_id < 0) {
LOG_ERR("Unable to add rx filter [%d]", filter_id);

}

Here an example for can_add_rx_filter_msgq() is shown. With this function, it is possible to
receive frames synchronously. This function can be called from userspace context. The size of
the message queue should be as big as the expected backlog.

The filter for this example is configured to match the extended identifier 0x1234567 exactly.

const struct can_filter my_filter = {
.flags = CAN_FILTER_IDE,
.id = 0x1234567,
.mask = CAN_EXT_ID_MASK

};
CAN_MSGQ_DEFINE(my_can_msgq, 2);
struct can_frame rx_frame;
int filter_id;
const struct device *const can_dev = DEVICE_DT_GET(DT_CHOSEN(zephyr_canbus));

filter_id = can_add_rx_filter_msgq(can_dev, &my_can_msgq, &my_filter);
if (filter_id < 0) {
LOG_ERR("Unable to add rx msgq [%d]", filter_id);
return;

}

while (true) {
k_msgq_get(&my_can_msgq, &rx_frame, K_FOREVER);
... do something with the frame ...

}

can_remove_rx_filter() removes the given filter.

can_remove_rx_filter(can_dev, filter_id);

Setting the bitrate The bitrate and sampling point is initially set at runtime. To change it from
the application, one can use the can_set_timing() API. The can_calc_timing() function can
calculate timing from a bitrate and sampling point in permille. The following example sets the
bitrate to 250k baud with the sampling point at 87.5%.

struct can_timing timing;
const struct device *const can_dev = DEVICE_DT_GET(DT_CHOSEN(zephyr_canbus));
int ret;

ret = can_calc_timing(can_dev, &timing, 250000, 875);
if (ret > 0) {
LOG_INF("Sample-Point error: %d", ret);

}

if (ret < 0) {
LOG_ERR("Failed to calc a valid timing");

(continues on next page)
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(continued from previous page)
return;

}

ret = can_stop(can_dev);
if (ret != 0) {
LOG_ERR("Failed to stop CAN controller");

}

ret = can_set_timing(can_dev, &timing);
if (ret != 0) {
LOG_ERR("Failed to set timing");

}

ret = can_start(can_dev);
if (ret != 0) {
LOG_ERR("Failed to start CAN controller");

}

A similar API exists for calculating and setting the timing for the data phase for CAN FD capable
controllers. See can_set_timing_data() and can_calc_timing_data().

SocketCAN Zephyr additionally supports SocketCAN, a BSD socket implementation of the
Zephyr CAN API. SocketCAN brings the convenience of the well-known BSD Socket API to Con-
troller Area Networks. It is compatible with the Linux SocketCAN implementation, where many
other high-level CAN projects build on top. Note that frames are routed to the network stack
instead of passed directly, which adds some computation and memory overhead.

Samples We have two ready-to-build samples demonstrating use of the Zephyr CAN API:
Zephyr CAN counter sample and SocketCAN sample.

Related code samples

Controller Area Network (CAN) babbling node
Simulate a babbling CAN node.

Controller Area Network (CAN) counter
Send and receive CAN messages.

CAN Controller API Reference

group can_interface
CAN Interface.

Since
1.12

Version
1.1.0

CAN controller configuration
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int can_get_core_clock(const struct device *dev, uint32_t *rate)
Get the CAN core clock rate.

Returns the CAN core clock rate. One minimum time quantum (mtq) is 1/(core clock
rate). The CAN core clock can be further divided by the CAN clock prescaler (see the
can_timing struct), providing the time quantum (tq).

Parameters
• dev – Pointer to the device structure for the driver instance.

• rate – [out] CAN core clock rate in Hz.

Returns
0 on success, or a negative error code on error

uint32_t can_get_bitrate_min(const struct device *dev)
Get minimum supported bitrate.

Get the minimum supported bitrate for the CAN controller/transceiver combination.

Parameters
• dev – Pointer to the device structure for the driver instance.

Returns
Minimum supported bitrate in bits/s

static inline int can_get_min_bitrate(const struct device *dev, uint32_t *min_bitrate)
Get minimum supported bitrate.

Get the minimum supported bitrate for the CAN controller/transceiver combination.

Deprecated:
Use can_get_bitrate_min() instead.

Parameters
• dev – Pointer to the device structure for the driver instance.

• min_bitrate – [out] Minimum supported bitrate in bits/s

Return values
• -EIO – General input/output error.

• -ENOSYS – If this function is not implemented by the driver.

uint32_t can_get_bitrate_max(const struct device *dev)
Get maximum supported bitrate.

Get the maximum supported bitrate for the CAN controller/transceiver combination.

Parameters
• dev – Pointer to the device structure for the driver instance.

Returns
Maximum supported bitrate in bits/s

static inline int can_get_max_bitrate(const struct device *dev, uint32_t *max_bitrate)
Get maximum supported bitrate.

Get the maximum supported bitrate for the CAN controller/transceiver combination.
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Deprecated:
Use can_get_bitrate_max() instead.

Parameters
• dev – Pointer to the device structure for the driver instance.

• max_bitrate – [out] Maximum supported bitrate in bits/s

Return values
• 0 – If successful.

• -EIO – General input/output error.

• -ENOSYS – If this function is not implemented by the driver.

const struct can_timing *can_get_timing_min(const struct device *dev)
Get the minimum supported timing parameter values.

Parameters
• dev – Pointer to the device structure for the driver instance.

Returns
Pointer to the minimum supported timing parameter values.

const struct can_timing *can_get_timing_max(const struct device *dev)
Get the maximum supported timing parameter values.

Parameters
• dev – Pointer to the device structure for the driver instance.

Returns
Pointer to the maximum supported timing parameter values.

int can_calc_timing(const struct device *dev, struct can_timing *res, uint32_t bitrate,
uint16_t sample_pnt)

Calculate timing parameters from bitrate and sample point.

Calculate the timing parameters from a given bitrate in bits/s and the sampling point
in permill (1/1000) of the entire bit time. The bitrate must always match perfectly. If
no result can be reached for the given parameters, -EINVAL is returned.

If the sample point is set to 0, this function defaults to a sample point of 75.0% for bi-
trates over 800 kbit/s, 80.0% for bitrates over 500 kbit/s, and 87.5% for all other bitrates.

Note

The requested sample_pnt will not always be matched perfectly. The algorithm cal-
culates the best possible match.

Parameters
• dev – Pointer to the device structure for the driver instance.

• res – [out] Result is written into the can_timing struct provided.

• bitrate – Target bitrate in bits/s.

• sample_pnt – Sample point in permille of the entire bit time or 0 for au-
tomatic sample point location.

Return values
• 0 – or positive sample point error on success.
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• -EINVAL – if the requested bitrate or sample point is out of range.

• -ENOTSUP – if the requested bitrate is not supported.

• -EIO – if can_get_core_clock() is not available.

const struct can_timing *can_get_timing_data_min(const struct device *dev)
Get the minimum supported timing parameter values for the data phase.

Same as can_get_timing_min() but for the minimum values for the data phase.

Note

CONFIG_CAN_FD_MODE must be selected for this function to be available.

Parameters
• dev – Pointer to the device structure for the driver instance.

Returns
Pointer to the minimum supported timing parameter values, or NULL if
CAN FD support is not implemented by the driver.

const struct can_timing *can_get_timing_data_max(const struct device *dev)
Get the maximum supported timing parameter values for the data phase.

Same as can_get_timing_max() but for the maximum values for the data phase.

Note

CONFIG_CAN_FD_MODE must be selected for this function to be available.

Parameters
• dev – Pointer to the device structure for the driver instance.

Returns
Pointer to the maximum supported timing parameter values, or NULL if
CAN FD support is not implemented by the driver.

int can_calc_timing_data(const struct device *dev, struct can_timing *res, uint32_t
bitrate, uint16_t sample_pnt)

Calculate timing parameters for the data phase.

Same as can_calc_timing() but with the maximum and minimum values from the data
phase.

Note

CONFIG_CAN_FD_MODE must be selected for this function to be available.

Parameters
• dev – Pointer to the device structure for the driver instance.

• res – [out] Result is written into the can_timing struct provided.

• bitrate – Target bitrate for the data phase in bits/s

• sample_pnt – Sample point for the data phase in permille of the entire bit
time or 0 for automatic sample point location.
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Return values
• 0 – or positive sample point error on success.

• -EINVAL – if the requested bitrate or sample point is out of range.

• -ENOTSUP – if the requested bitrate is not supported.

• -EIO – if can_get_core_clock() is not available.

int can_set_timing_data(const struct device *dev, const struct can_timing *timing_data)
Configure the bus timing for the data phase of a CAN FD controller.

See also

can_set_timing()

Note

CONFIG_CAN_FD_MODE must be selected for this function to be available.

Parameters
• dev – Pointer to the device structure for the driver instance.

• timing_data – Bus timings for data phase

Return values
• 0 – If successful.

• -EBUSY – if the CAN controller is not in stopped state.

• -EIO – General input/output error, failed to configure device.

• -ENOTSUP – if the timing parameters are not supported by the driver.

• -ENOSYS – if CAN FD support is not implemented by the driver.

int can_set_bitrate_data(const struct device *dev, uint32_t bitrate_data)
Set the bitrate for the data phase of the CAN FD controller.

CAN in Automation (CiA) 301 v4.2.0 recommends a sample point location of 87.5% per-
cent for all bitrates. However, some CAN controllers have difficulties meeting this for
higher bitrates.

This function defaults to using a sample point of 75.0% for bitrates over 800 kbit/s,
80.0% for bitrates over 500 kbit/s, and 87.5% for all other bitrates. This is in line with
the sample point locations used by the Linux kernel.

See also

can_set_bitrate()

Note

CONFIG_CAN_FD_MODE must be selected for this function to be available.
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Parameters
• dev – Pointer to the device structure for the driver instance.

• bitrate_data – Desired data phase bitrate.

Return values
• 0 – If successful.

• -EBUSY – if the CAN controller is not in stopped state.

• -EINVAL – if the requested bitrate is out of range.

• -ENOTSUP – if the requested bitrate not supported by the CAN con-
troller/transceiver combination.

• -ERANGE – if the resulting sample point is off by more than +/- 5%.

• -EIO – General input/output error, failed to set bitrate.

int can_calc_prescaler(const struct device *dev, struct can_timing *timing, uint32_t
bitrate)

Fill in the prescaler value for a given bitrate and timing.

Fill the prescaler value in the timing struct. The sjw, prop_seg, phase_seg1 and
phase_seg2 must be given.

The returned bitrate error is remainder of the division of the clock rate by the bitrate
times the timing segments.

Deprecated:
This function allows for bitrate errors, but bitrate errors between nodes on the
same network leads to them drifting apart after the start-of-frame (SOF) synchro-
nization has taken place.

Parameters
• dev – Pointer to the device structure for the driver instance.

• timing – Result is written into the can_timing struct provided.

• bitrate – Target bitrate.

Return values
• 0 – or positive bitrate error.

• Negative – error code on error.

int can_set_timing(const struct device *dev, const struct can_timing *timing)
Configure the bus timing of a CAN controller.

See also

can_set_timing_data()

Parameters
• dev – Pointer to the device structure for the driver instance.

• timing – Bus timings.

Return values
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• 0 – If successful.

• -EBUSY – if the CAN controller is not in stopped state.

• -ENOTSUP – if the timing parameters are not supported by the driver.

• -EIO – General input/output error, failed to configure device.

int can_get_capabilities(const struct device *dev, can_mode_t *cap)
Get the supported modes of the CAN controller.

The returned capabilities may not necessarily be supported at the same time (e.g. some
CAN controllers support both CAN_MODE_LOOPBACK and CAN_MODE_LISTENONLY, but not
at the same time).

Parameters
• dev – Pointer to the device structure for the driver instance.

• cap – [out] Supported capabilities.

Return values
• 0 – If successful.

• -EIO – General input/output error, failed to get capabilities.

const struct device *can_get_transceiver(const struct device *dev)
Get the CAN transceiver associated with the CAN controller.

Get a pointer to the device structure for the CAN transceiver associated with the CAN
controller.

Parameters
• dev – Pointer to the device structure for the driver instance.

Returns
Pointer to the device structure for the associated CAN transceiver driver
instance, or NULL if no transceiver is associated.

int can_start(const struct device *dev)
Start the CAN controller.

Bring the CAN controller out of CAN_STATE_STOPPED. This will reset the RX/TX error
counters, enable the CAN controller to participate in CAN communication, and enable
the CAN transceiver, if supported.

Starting the CAN controller resets all the CAN controller statistics.

See also

can_stop()

See also

can_transceiver_enable()

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
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• 0 – if successful.

• -EALREADY – if the device is already started.

• -EIO – General input/output error, failed to start device.

int can_stop(const struct device *dev)
Stop the CAN controller.

Bring the CAN controller into CAN_STATE_STOPPED. This will disallow the CAN controller
from participating in CAN communication, abort any pending CAN frame transmis-
sions, and disable the CAN transceiver, if supported.

See also

can_start()

See also

can_transceiver_disable()

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
• 0 – if successful.

• -EALREADY – if the device is already stopped.

• -EIO – General input/output error, failed to stop device.

int can_set_mode(const struct device *dev, can_mode_t mode)
Set the CAN controller to the given operation mode.

Parameters
• dev – Pointer to the device structure for the driver instance.

• mode – Operation mode.

Return values
• 0 – If successful.

• -EBUSY – if the CAN controller is not in stopped state.

• -EIO – General input/output error, failed to configure device.

can_mode_t can_get_mode(const struct device *dev)
Get the operation mode of the CAN controller.

Parameters
• dev – Pointer to the device structure for the driver instance.

Returns
Current operation mode.
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int can_set_bitrate(const struct device *dev, uint32_t bitrate)
Set the bitrate of the CAN controller.

CAN in Automation (CiA) 301 v4.2.0 recommends a sample point location of 87.5% per-
cent for all bitrates. However, some CAN controllers have difficulties meeting this for
higher bitrates.

This function defaults to using a sample point of 75.0% for bitrates over 800 kbit/s,
80.0% for bitrates over 500 kbit/s, and 87.5% for all other bitrates. This is in line with
the sample point locations used by the Linux kernel.

See also

can_set_bitrate_data()

Parameters
• dev – Pointer to the device structure for the driver instance.

• bitrate – Desired arbitration phase bitrate.

Return values
• 0 – If successful.

• -EBUSY – if the CAN controller is not in stopped state.

• -EINVAL – if the requested bitrate is out of range.

• -ENOTSUP – if the requested bitrate not supported by the CAN con-
troller/transceiver combination.

• -ERANGE – if the resulting sample point is off by more than +/- 5%.

• -EIO – General input/output error, failed to set bitrate.

Transmitting CAN frames

int can_send(const struct device *dev, const struct can_frame *frame, k_timeout_t timeout,
can_tx_callback_t callback, void *user_data)

Queue a CAN frame for transmission on the CAN bus.

Queue a CAN frame for transmission on the CAN bus with optional timeout and com-
pletion callback function.

Queued CAN frames are transmitted in order according to the their priority:

• The lower the CAN-ID, the higher the priority.

• Data frames have higher priority than Remote Transmission Request (RTR) frames
with identical CAN-IDs.

• Frames with standard (11-bit) identifiers have higher priority than frames with
extended (29-bit) identifiers with identical base IDs (the higher 11 bits of the ex-
tended identifier).

• Transmission order for queued frames with the same priority is hardware depen-
dent.
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By default, the CAN controller will automatically retry transmission in case of lost bus
arbitration or missing acknowledge. Some CAN controllers support disabling auto-
matic retransmissions via CAN_MODE_ONE_SHOT.

Note

If transmitting segmented messages spanning multiple CAN frames with identical
CAN-IDs, the sender must ensure to only queue one frame at a time if FIFO order is
required.

Parameters
• dev – Pointer to the device structure for the driver instance.

• frame – CAN frame to transmit.

• timeout – Timeout waiting for a empty TX mailbox or K_FOREVER.

• callback – Optional callback for when the frame was sent or a transmis-
sion error occurred. If NULL, this function is blocking until frame is sent.
The callback must be NULL if called from user mode.

• user_data – User data to pass to callback function.

Return values
• 0 – if successful.

• -EINVAL – if an invalid parameter was passed to the function.

• -ENOTSUP – if an unsupported parameter was passed to the function.

• -ENETDOWN – if the CAN controller is in stopped state.

• -ENETUNREACH – if the CAN controller is in bus-off state.

• -EBUSY – if CAN bus arbitration was lost (only applicable if automatic
retransmissions are disabled).

• -EIO – if a general transmit error occurred (e.g. missing ACK if automatic
retransmissions are disabled).

• -EAGAIN – on timeout.

Receiving CAN frames

int can_add_rx_filter(const struct device *dev, can_rx_callback_t callback, void
*user_data, const struct can_filter *filter)

Add a callback function for a given CAN filter.

Add a callback to CAN identifiers specified by a filter. When a received CAN frame
matching the filter is received by the CAN controller, the callback function is called in
interrupt context.

If a received frame matches more than one filter (i.e., the filter IDs/masks or flags over-
lap), the priority of the match is hardware dependent.

The same callback function can be used for multiple filters.

Parameters
• dev – Pointer to the device structure for the driver instance.

• callback – This function is called by the CAN controller driver whenever
a frame matching the filter is received.
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• user_data – User data to pass to callback function.

• filter – Pointer to a can_filter structure defining the filter.

Return values
• filter_id – on success.

• -ENOSPC – if there are no free filters.

• -EINVAL – if the requested filter type is invalid.

• -ENOTSUP – if the requested filter type is not supported.

int can_add_rx_filter_msgq(const struct device *dev, struct k_msgq *msgq, const struct
can_filter *filter)

Simple wrapper function for adding a message queue for a given filter.

Wrapper function for can_add_rx_filter() which puts received CAN frames matching
the filter in a message queue instead of calling a callback.

If a received frame matches more than one filter (i.e., the filter IDs/masks or flags over-
lap), the priority of the match is hardware dependent.

The same message queue can be used for multiple filters.

Note

The message queue must be initialized before calling this function and the caller
must have appropriate permissions on it.

Warning

Message queue overruns are silently ignored and overrun frames discarded.
Custom error handling can be implemented by using can_add_rx_filter() and
k_msgq_put() directly.

Parameters
• dev – Pointer to the device structure for the driver instance.

• msgq – Pointer to the already initialized k_msgq struct.

• filter – Pointer to a can_filter structure defining the filter.

Return values
• filter_id – on success.

• -ENOSPC – if there are no free filters.

• -ENOTSUP – if the requested filter type is not supported.

void can_remove_rx_filter(const struct device *dev, int filter_id)
Remove a CAN RX filter.

This routine removes a CAN RX filter based on the filter ID returned by
can_add_rx_filter() or can_add_rx_filter_msgq().

Parameters
• dev – Pointer to the device structure for the driver instance.

• filter_id – Filter ID
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int can_get_max_filters(const struct device *dev, bool ide)
Get maximum number of RX filters.

Get the maximum number of concurrent RX filters for the CAN controller.

Parameters
• dev – Pointer to the device structure for the driver instance.

• ide – Get the maximum standard (11-bit) CAN ID filters if false, or ex-
tended (29-bit) CAN ID filters if true.

Return values
• Positive – number of maximum concurrent filters.

• -EIO – General input/output error.

• -ENOSYS – If this function is not implemented by the driver.

CAN_MSGQ_DEFINE(name, max_frames)
Statically define and initialize a CAN RX message queue.

The message queue’s ring buffer contains space for max_frames CAN frames.

See also

can_add_rx_filter_msgq()

Parameters
• name – Name of the message queue.

• max_frames – Maximum number of CAN frames that can be queued.

CAN bus error reporting and handling

int can_get_state(const struct device *dev, enum can_state *state, struct can_bus_err_cnt
*err_cnt)

Get current CAN controller state.

Returns the current state and optionally the error counter values of the CAN controller.

Parameters
• dev – Pointer to the device structure for the driver instance.

• state – [out] Pointer to the state destination enum or NULL.

• err_cnt – [out] Pointer to the err_cnt destination structure or NULL.

Return values
• 0 – If successful.

• -EIO – General input/output error, failed to get state.

int can_recover(const struct device *dev, k_timeout_t timeout)
Recover from bus-off state.

Recover the CAN controller from bus-off state to error-active state.
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Note

CONFIG_CAN_MANUAL_RECOVERY_MODE must be enabled for this function to be avail-
able.

Parameters
• dev – Pointer to the device structure for the driver instance.

• timeout – Timeout for waiting for the recovery or K_FOREVER.

Return values
• 0 – on success.

• -ENOTSUP – if the CAN controller is not in manual recovery mode.

• -ENETDOWN – if the CAN controller is in stopped state.

• -EAGAIN – on timeout.

• -ENOSYS – If this function is not implemented by the driver.

static inline void can_set_state_change_callback(const struct device *dev,
can_state_change_callback_t callback,
void *user_data)

Set a callback for CAN controller state change events.

Set the callback for CAN controller state change events. The callback function will be
called in interrupt context.

Only one callback can be registered per controller. Calling this function again over-
rides any previously registered callback.

Parameters
• dev – Pointer to the device structure for the driver instance.

• callback – Callback function.

• user_data – User data to pass to callback function.

CAN statistics

uint32_t can_stats_get_bit_errors(const struct device *dev)
Get the bit error counter for a CAN device.

The bit error counter is incremented when the CAN controller is unable to transmit
either a dominant or a recessive bit.

Note

CONFIG_CAN_STATS must be selected for this function to be available.

Parameters
• dev – Pointer to the device structure for the driver instance.

Returns
bit error counter
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uint32_t can_stats_get_bit0_errors(const struct device *dev)
Get the bit0 error counter for a CAN device.

The bit0 error counter is incremented when the CAN controller is unable to transmit
a dominant bit.

See also

can_stats_get_bit_errors()

Note

CONFIG_CAN_STATS must be selected for this function to be available.

Parameters
• dev – Pointer to the device structure for the driver instance.

Returns
bit0 error counter

uint32_t can_stats_get_bit1_errors(const struct device *dev)
Get the bit1 error counter for a CAN device.

The bit1 error counter is incremented when the CAN controller is unable to transmit
a recessive bit.

See also

can_stats_get_bit_errors()

Note

CONFIG_CAN_STATS must be selected for this function to be available.

Parameters
• dev – Pointer to the device structure for the driver instance.

Returns
bit1 error counter

uint32_t can_stats_get_stuff_errors(const struct device *dev)
Get the stuffing error counter for a CAN device.

The stuffing error counter is incremented when the CAN controller detects a bit stuffing
error.

Note

CONFIG_CAN_STATS must be selected for this function to be available.
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Parameters
• dev – Pointer to the device structure for the driver instance.

Returns
stuffing error counter

uint32_t can_stats_get_crc_errors(const struct device *dev)
Get the CRC error counter for a CAN device.

The CRC error counter is incremented when the CAN controller detects a frame with
an invalid CRC.

Note

CONFIG_CAN_STATS must be selected for this function to be available.

Parameters
• dev – Pointer to the device structure for the driver instance.

Returns
CRC error counter

uint32_t can_stats_get_form_errors(const struct device *dev)
Get the form error counter for a CAN device.

The form error counter is incremented when the CAN controller detects a fixed-form
bit field containing illegal bits.

Note

CONFIG_CAN_STATS must be selected for this function to be available.

Parameters
• dev – Pointer to the device structure for the driver instance.

Returns
form error counter

uint32_t can_stats_get_ack_errors(const struct device *dev)
Get the acknowledge error counter for a CAN device.

The acknowledge error counter is incremented when the CAN controller does not mon-
itor a dominant bit in the ACK slot.

Note

CONFIG_CAN_STATS must be selected for this function to be available.

Parameters
• dev – Pointer to the device structure for the driver instance.

Returns
acknowledge error counter
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uint32_t can_stats_get_rx_overruns(const struct device *dev)
Get the RX overrun counter for a CAN device.

The RX overrun counter is incremented when the CAN controller receives a CAN frame
matching an installed filter but lacks the capacity to store it (either due to an already
full RX mailbox or a full RX FIFO).

Note

CONFIG_CAN_STATS must be selected for this function to be available.

Parameters
• dev – Pointer to the device structure for the driver instance.

Returns
RX overrun counter

CAN utility functions

static inline uint8_t can_dlc_to_bytes(uint8_t dlc)
Convert from Data Length Code (DLC) to the number of data bytes.

Parameters
• dlc – Data Length Code (DLC).

Return values
Number – of bytes.

static inline uint8_t can_bytes_to_dlc(uint8_t num_bytes)
Convert from number of bytes to Data Length Code (DLC)

Parameters
• num_bytes – Number of bytes.

Return values
Data – Length Code (DLC).

static inline bool can_frame_matches_filter(const struct can_frame *frame, const struct
can_filter *filter)

Check if a CAN frame matches a CAN filter.

Parameters
• frame – CAN frame.

• filter – CAN filter.

Returns
true if the CAN frame matches the CAN filter, false otherwise

CAN frame definitions

CAN_STD_ID_MASK
Bit mask for a standard (11-bit) CAN identifier.
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CAN_MAX_STD_ID
Maximum value for a standard (11-bit) CAN identifier.

Deprecated:
Use CAN_STD_ID_MASK instead.

CAN_EXT_ID_MASK
Bit mask for an extended (29-bit) CAN identifier.

CAN_MAX_EXT_ID
Maximum value for an extended (29-bit) CAN identifier.

Deprecated:
Use CAN_EXT_ID_MASK instead.

CAN_MAX_DLC
Maximum data length code for CAN 2.0A/2.0B.

CANFD_MAX_DLC
Maximum data length code for CAN FD.

CAN controller mode flags

CAN_MODE_NORMAL
Normal mode.

CAN_MODE_LOOPBACK
Controller is in loopback mode (receives own frames).

CAN_MODE_LISTENONLY
Controller is not allowed to send dominant bits.

CAN_MODE_FD
Controller allows transmitting/receiving CAN FD frames.

CAN_MODE_ONE_SHOT
Controller does not retransmit in case of lost arbitration or missing ACK.

CAN_MODE_3_SAMPLES
Controller uses triple sampling mode.

CAN_MODE_MANUAL_RECOVERY
Controller requires manual recovery after entering bus-off state.
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CAN frame flags

CAN_FRAME_IDE
Frame uses extended (29-bit) CAN ID.

CAN_FRAME_RTR
Frame is a Remote Transmission Request (RTR)

CAN_FRAME_FDF
Frame uses CAN FD format (FDF)

CAN_FRAME_BRS
Frame uses CAN FD Baud Rate Switch (BRS).

Only valid in combination with CAN_FRAME_FDF.

CAN_FRAME_ESI
CAN FD Error State Indicator (ESI).

Indicates that the transmitting node is in error-passive state. Only valid in combination
with CAN_FRAME_FDF.

CAN filter flags

CAN_FILTER_IDE
Filter matches frames with extended (29-bit) CAN IDs.

Defines

CAN_STATS_BIT_ERROR_INC(dev_)
Increment the bit error counter for a CAN device.

The bit error counter is incremented when the CAN controller is unable to transmit
either a dominant or a recessive bit.

See also

CAN_STATS_BIT0_ERROR_INC()

See also

CAN_STATS_BIT1_ERROR_INC()
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Note

This error counter should only be incremented if the CAN controller is unable to
distinguish between failure to transmit a dominant versus failure to transmit a re-
cessive bit. If the CAN controller supports distinguishing between the two, the bit0
or bit1 error counter shall be incremented instead.

Parameters
• dev_ – Pointer to the device structure for the driver instance.

CAN_STATS_BIT0_ERROR_INC(dev_)
Increment the bit0 error counter for a CAN device.

The bit0 error counter is incremented when the CAN controller is unable to transmit
a dominant bit.

Incrementing this counter will automatically increment the bit error counter.

See also

CAN_STATS_BIT_ERROR_INC()

Parameters
• dev_ – Pointer to the device structure for the driver instance.

CAN_STATS_BIT1_ERROR_INC(dev_)
Increment the bit1 (recessive) error counter for a CAN device.

The bit1 error counter is incremented when the CAN controller is unable to transmit
a recessive bit.

Incrementing this counter will automatically increment the bit error counter.

See also

CAN_STATS_BIT_ERROR_INC()

Parameters
• dev_ – Pointer to the device structure for the driver instance.

CAN_STATS_STUFF_ERROR_INC(dev_)
Increment the stuffing error counter for a CAN device.

The stuffing error counter is incremented when the CAN controller detects a bit stuffing
error.

Parameters
• dev_ – Pointer to the device structure for the driver instance.

CAN_STATS_CRC_ERROR_INC(dev_)
Increment the CRC error counter for a CAN device.

The CRC error counter is incremented when the CAN controller detects a frame with
an invalid CRC.

Parameters
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• dev_ – Pointer to the device structure for the driver instance.

CAN_STATS_FORM_ERROR_INC(dev_)
Increment the form error counter for a CAN device.

The form error counter is incremented when the CAN controller detects a fixed-form
bit field containing illegal bits.

Parameters
• dev_ – Pointer to the device structure for the driver instance.

CAN_STATS_ACK_ERROR_INC(dev_)
Increment the acknowledge error counter for a CAN device.

The acknowledge error counter is incremented when the CAN controller does not mon-
itor a dominant bit in the ACK slot.

Parameters
• dev_ – Pointer to the device structure for the driver instance.

CAN_STATS_RX_OVERRUN_INC(dev_)
Increment the RX overrun counter for a CAN device.

The RX overrun counter is incremented when the CAN controller receives a CAN frame
matching an installed filter but lacks the capacity to store it (either due to an already
full RX mailbox or a full RX FIFO).

Parameters
• dev_ – Pointer to the device structure for the driver instance.

CAN_STATS_RESET(dev_)
Zero all statistics for a CAN device.

The driver is responsible for resetting the statistics before starting the CAN controller.

Parameters
• dev_ – Pointer to the device structure for the driver instance.

CAN_DEVICE_DT_DEFINE(node_id, init_fn, pm, data, config, level, prio, api, ...)
Like DEVICE_DT_DEFINE() with CAN device specifics.

Defines a device which implements the CAN API. May generate a custom device_state
container struct and init_fn wrapper when needed depending on CONFIG_CAN_STATS .

Parameters
• node_id – The devicetree node identifier.

• init_fn – Name of the init function of the driver.

• pm – PM device resources reference (NULL if device does not use PM).

• data – Pointer to the device’s private data.

• config – The address to the structure containing the configuration infor-
mation for this instance of the driver.

• level – The initialization level. See SYS_INIT() for details.

• prio – Priority within the selected initialization level. See SYS_INIT() for
details.

• api – Provides an initial pointer to the API function struct used by the
driver. Can be NULL.
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CAN_DEVICE_DT_INST_DEFINE(inst, ...)
Like CAN_DEVICE_DT_DEFINE() for an instance of a DT_DRV_COMPAT compatible.

Parameters
• inst – Instance number. This is replaced by DT_DRV_COMPAT(inst) in the

call to CAN_DEVICE_DT_DEFINE().

• ... – Other parameters as expected by CAN_DEVICE_DT_DEFINE().

Typedefs

typedef uint32_t can_mode_t
Provides a type to hold CAN controller configuration flags.

The lower 24 bits are reserved for common CAN controller mode flags. The upper 8
bits are reserved for CAN controller/driver specific flags.

See also

CAN_MODE_FLAGS.

typedef void (*can_tx_callback_t)(const struct device *dev, int error, void *user_data)
Defines the application callback handler function signature.

Param dev
Pointer to the device structure for the driver instance.

Param error
Status of the performed send operation. See the list of return values for
can_send() for value descriptions.

Param user_data
User data provided when the frame was sent.

typedef void (*can_rx_callback_t)(const struct device *dev, struct can_frame *frame, void
*user_data)

Defines the application callback handler function signature for receiving.

Param dev
Pointer to the device structure for the driver instance.

Param frame
Received frame.

Param user_data
User data provided when the filter was added.

typedef void (*can_state_change_callback_t)(const struct device *dev, enum can_state
state, struct can_bus_err_cnt err_cnt, void *user_data)

Defines the state change callback handler function signature.

Param dev
Pointer to the device structure for the driver instance.

Param state
State of the CAN controller.
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Param err_cnt
CAN controller error counter values.

Param user_data
User data provided the callback was set.

Enums

enum can_state
Defines the state of the CAN controller.

Values:

enumerator CAN_STATE_ERROR_ACTIVE
Error-active state (RX/TX error count < 96).

enumerator CAN_STATE_ERROR_WARNING
Error-warning state (RX/TX error count < 128).

enumerator CAN_STATE_ERROR_PASSIVE
Error-passive state (RX/TX error count < 256).

enumerator CAN_STATE_BUS_OFF
Bus-off state (RX/TX error count >= 256).

enumerator CAN_STATE_STOPPED
CAN controller is stopped and does not participate in CAN communication.

struct can_frame
#include <can.h> CAN frame structure.

Public Members

uint32_t id
Standard (11-bit) or extended (29-bit) CAN identifier.

uint8_t dlc
Data Length Code (DLC) indicating data length in bytes.

uint8_t flags
Flags.

See also

CAN_FRAME_FLAGS.
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uint16_t timestamp
Captured value of the free-running timer in the CAN controller when this frame
was received.

The timer is incremented every bit time and captured at the start of frame bit (SOF).

Note

CONFIG_CAN_RX_TIMESTAMP must be selected for this field to be available.

uint8_t data[CAN_MAX_DLEN]
Payload data accessed as unsigned 8 bit values.

uint32_t data_32[DIV_ROUND_UP(CAN_MAX_DLEN, sizeof(uint32_t))]
Payload data accessed as unsigned 32 bit values.

union can_frame
The frame payload data.

struct can_filter
#include <can.h> CAN filter structure.

Public Members

uint32_t id
CAN identifier to match.

uint32_t mask
CAN identifier matching mask.

If a bit in this mask is 0, the value of the corresponding bit in the id field is ignored
by the filter.

uint8_t flags
Flags.

See also

CAN_FILTER_FLAGS.

struct can_bus_err_cnt
#include <can.h> CAN controller error counters.

Public Members
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uint8_t tx_err_cnt
Value of the CAN controller transmit error counter.

uint8_t rx_err_cnt
Value of the CAN controller receive error counter.

struct can_timing
#include <can.h> CAN bus timing structure.

This struct is used to pass bus timing values to the configuration and bitrate calculation
functions.

The propagation segment represents the time of the signal propagation. Phase segment
1 and phase segment 2 define the sampling point. The prop_seg and phase_seg1 values
affect the sampling point in the same way and some controllers only have a register
for the sum of those two. The sync segment always has a length of 1 time quantum (see
below).

+---------+----------+------------+------------+
|sync_seg | prop_seg | phase_seg1 | phase_seg2 |
+---------+----------+------------+------------+

^
Sampling-Point

1 time quantum (tq) has the length of 1/(core_clock / prescaler). The bitrate is defined
by the core clock divided by the prescaler and the sum of the segments:

br = (core_clock / prescaler) / (1 + prop_seg + phase_seg1 + phase_seg2)

The Synchronization Jump Width (SJW) defines the amount of time quanta the sample
point can be moved. The sample point is moved when resynchronization is needed.

Public Members

uint16_t sjw
Synchronisation jump width.

uint16_t prop_seg
Propagation segment.

uint16_t phase_seg1
Phase segment 1.

uint16_t phase_seg2
Phase segment 2.

uint16_t prescaler
Prescaler value.

struct can_device_state
#include <can.h> CAN specific device state which allows for CAN device class specific
additions.
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Public Members

struct device_state devstate
Common device state.

struct stats_can stats
CAN device statistics.

CAN Transceiver

• Overview

• CAN Transceiver API Reference

Overview A CAN transceiver is an external device that converts the logic level signals from the
CAN controller to the bus-levels. The bus lines are called CAN High (CAN H) and CAN Low (CAN L).
The transmit wire from the controller to the transceiver is called CAN TX, and the receive wire is
called CAN RX. These wires use the logic levels whereas the bus-level is interpreted differentially
between CAN H and CAN L. The bus can be either in the recessive (logical one) or dominant
(logical zero) state. The recessive state is when both lines, CAN H and CAN L, are roughly at the
same voltage level. This state is also the idle state. To write a dominant bit to the bus, open-
drain transistors tie CAN H to Vdd and CAN L to ground. The first and last node use a 120-ohm
resistor between CAN H and CAN L to terminate the bus. The dominant state always overrides
the recessive state. This structure is called a wired-AND.

CAN Transceiver API Reference

group can_transceiver
CAN Transceiver Driver APIs.

Since
3.1
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Version
0.1.0

Functions

static inline int can_transceiver_enable(const struct device *dev, can_mode_t mode)
Enable CAN transceiver.

Enable the CAN transceiver.

See also

can_start()

Note

The CAN transceiver is controlled by the CAN controller driver and should not nor-
mally be controlled by the application.

Parameters
• dev – Pointer to the device structure for the driver instance.

• mode – Operation mode.

Return values
• 0 – If successful.

• -EIO – General input/output error, failed to enable device.

static inline int can_transceiver_disable(const struct device *dev)
Disable CAN transceiver.

Disable the CAN transceiver.

See also

can_stop()

Note

The CAN transceiver is controlled by the CAN controller driver and should not nor-
mally be controlled by the application.

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
• 0 – If successful.

• -EIO – General input/output error, failed to disable device.
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CAN Shell

• Overview

• Inspection

• Configuration

• Receiving

• Sending

• Bus Recovery

Overview The CAN shell provides a can command with a set of subcommands for the shell
module. It allows for testing and exploring the CAN Controller driver API through an interactive
interface without having to write a dedicated application. The CAN shell can also be enabled in
existing applications to aid in interactive debugging of CAN issues.

The CAN shell provides access to most CAN controller features, including inspection, configura-
tion, sending and receiving of CAN frames, and bus recovery.

In order to enable the CAN shell, the following Kconfig options must be enabled:

• CONFIG_SHELL
• CONFIG_CAN
• CONFIG_CAN_SHELL

The following Kconfig options enable additional subcommands and features of the can com-
mand:

• CONFIG_CAN_FD_MODE enables CAN FD specific subcommands (e.g. for setting the timing for
the CAN FD data phase).

• CONFIG_CAN_RX_TIMESTAMP enables printing of timestamps for received CAN frames.

• CONFIG_CAN_STATS enables printing of various statistics for the CAN controller in the can
show subcommand. This depends on CONFIG_STATS being enabled as well.

• CONFIG_CAN_MANUAL_RECOVERY_MODE enables the can recover subcommand.

For example, building the hello_world sample for the frdm_k64f with the CAN shell and CAN
statistics enabled:

# From the root of the zephyr repository
west build -b frdm_k64f samples/hello_world -- -DCONFIG_SHELL=y -DCONFIG_CAN=y -DCONFIG_CAN_
↪→SHELL=y -DCONFIG_STATS=y -DCONFIG_CAN_STATS=y

See the shell documentation for general instructions on how to connect and interact with the
shell. The CAN shell comes with built-in help (unless CONFIG_SHELL_HELP is disabled). The built-
in help messages can be printed by passing -h or --help to the can command or any of its sub-
commands. All subcommands also support tab-completion of their arguments.

Tip

All of the CAN shell subcommands take the name of a CAN controller as their first argument,
which also supports tab-completion. A list of all devices available can be obtained using the
device list shell command when CONFIG_DEVICE_SHELL is enabled. The examples below all
use the device name can@0.
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Inspection The properties of a given CAN controller can be inspected using the can show sub-
command as shown below. The properties include the core CAN clock rate, the maximum sup-
ported bitrate, the number of RX filters supported, capabilities, current mode, current state, er-
ror counters, timing limits, and more:

uart:~$ can show can@0
core clock: 144000000 Hz
max bitrate: 5000000 bps
max std filters: 15
max ext filters: 15
capabilities: normal loopback listen-only fd
mode: normal
state: stopped
rx errors: 0
tx errors: 0
timing: sjw 1..128, prop_seg 0..0, phase_seg1 2..256, phase_seg2 2..128, prescaler␣
↪→1..512
timing data: sjw 1..16, prop_seg 0..0, phase_seg1 1..32, phase_seg2 1..16, prescaler 1..
↪→32
transceiver: passive/none
statistics:
bit errors: 0
bit0 errors: 0
bit1 errors: 0

stuff errors: 0
crc errors: 0
form errors: 0
ack errors: 0
rx overruns: 0

Note

The statistics are only printed if CONFIG_CAN_STATS is enabled.

Configuration The CAN shell allows for configuring the CAN controller mode and timing, along
with starting and stopping the processing of CAN frames.

Note

The CAN controller mode and timing can only be changed while the CAN controller is stopped,
which is the initial setting upon boot-up. The initial CAN controller mode is set to nor-
mal and the initial timing is set according to the bitrate, sample-point, bitrate-data, and
sample-point-data Devicetree properties.

Timing The classic CAN bitrate/CAN FD arbitration phase bitrate can be configured using the
can bitrate subcommand as shown below. The bitrate is specified in bits per second.

uart:~$ can bitrate can@0 125000
setting bitrate to 125000 bps

If CONFIG_CAN_FD_MODE is enabled, the data phase bitrate can be configured using the can dbi-
trate subcommand as shown below. The bitrate is specified in bits per second.

uart:~$ can dbitrate can@0 1000000
setting data bitrate to 1000000 bps
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Both of these subcommands allow specifying an optional sample point in per mille and a
(Re)Synchronization Jump Width (SJW) in Time Quanta as positional arguments. Refer to the
interactive help of the subcommands for more details.

It is also possible to configure the raw bit timing using the can timing and can dtiming subcom-
mands. Refer to the interactive help output for these subcommands for details on the required
arguments.

Mode The CAN shell allows for setting the mode of the CAN controller using the can mode sub-
command. An example for enabling loopback mode is shown below.

uart:~$ can mode can@0 loopback
setting mode 0x00000001

The subcommand accepts multiple modes given on the same command line (e.g. can mode can@0
fd loopback for setting CAN FD and loopback mode). Vendor-specific modes can be specified in
hexadecimal.

Starting and Stopping After the timing and mode has been configured as needed, the CAN
controller can be started using the can start subcommand as shown below. This will enable
reception and transmission of CAN frames.

uart:~$ can start can@0
starting can@0

Prior to reconfiguring the timing or mode, the CAN controller needs to be stopped using the can
stop subcommand as shown below:

uart:~$ can stop can@0
stopping can@0

Receiving In order to receive CAN frames, one or more CAN RX filters need to be configured.
CAN RX filters are added using the can filter add subcommand as shown below. The sub-
command accepts a CAN ID in hexadecimal format along with an optional CAN ID mask, also
in hexadecimal format, for setting which bits in the CAN ID are to be matched. Refer to the
interactive help output for this subcommand for further details on the supported arguments.

uart:~$ can filter add can@0 010
adding filter with standard (11-bit) CAN ID 0x010, CAN ID mask 0x7ff, data frames 1, RTR␣
↪→frames 0, CAN FD frames 0
filter ID: 0

The filter ID (0 in the example above) returned is to be used when removing the CAN RX filter.

Received CAN frames matching the added filter(s) are printed to the shell. A few examples are
shown below:

# Dev Flags ID Size Data bytes
can0 -- 010 [8] 01 02 03 04 05 06 07 08
can0 B- 010 [08] 01 02 03 04 05 06 07 08
can0 BP 010 [03] 01 aa bb
can0 -- 00000010 [0]
can0 -- 010 [1] 20
can0 -- 010 [8] remote transmission request

The columns have the following meaning:

• Dev

– Name of the device receiving the frame.
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• Flags

– B: The frame has the CAN FD Baud Rate Switch (BRS) flag set.

– P: The frame has the CAN FD Error State Indicator (ESI) flag set. The transmitting node
is in error-passive state.

– -: Unset flag.

• ID

– 010: The standard (11-bit) CAN ID of the frame in hexadecimal format, here 10h.

– 00000010: The extended (29-bit) CAN ID of the frame in hexadecimal format, here 10h.

• Size

– [8]: The number of frame data bytes in decimal format, here a classic CAN frame with
8 data bytes.

– [08]: The number of frame data bytes in decimal format, here a CAN FD frame with 8
data bytes.

• Data bytes

– 01 02 03 04 05 06 07 08: The frame data bytes in hexadecimal format, here the
numbers from 1 through 8.

– remote transmission request: The frame is a Remote Transmission Request (RTR)
frame and thus carries no data bytes.

Tip

If CONFIG_CAN_RX_TIMESTAMP is enabled, each line will be prepended with a timestamp from
the free-running timestamp counter in the CAN controller.

Configured CAN RX filters can be removed again using the can filter remove subcommand
as shown below. The filter ID is the ID returned by the can filter add subcommand (0 in the
example below).

uart:~$ can filter remove can@0 0
removing filter with ID 0

Sending CAN frames can be queued for transmission using the can send subcommand as
shown below. The subcommand accepts a CAN ID in hexadecimal format and optionally a num-
ber of data bytes, also specified in hexadecimal. Refer to the interactive help output for this
subcommand for further details on the supported arguments.

uart:~$ can send can@0 010 1 2 3 4 5 6 7 8
enqueuing CAN frame #2 with standard (11-bit) CAN ID 0x010, RTR 0, CAN FD 0, BRS 0, DLC 8
CAN frame #2 successfully sent

Bus Recovery The can recover subcommand can be used for initiating manual recovery from
a CAN bus-off event as shown below:

uart:~$ can recover can@0
recovering, no timeout

The subcommand accepts an optional bus recovery timeout in milliseconds. If no timeout is
specified, the command will wait indefinitely for the bus recovery to succeed.
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Note

The recover subcommand is only available if CONFIG_CAN_MANUAL_RECOVERY_MODE is enabled.

7.6.9 Chargers

The charger subsystem exposes an API to uniformly access battery charger devices.

A charger device, or charger peripheral, is a device used to take external power provided to
the system as an input and provide power as an output downstream to the battery pack(s) and
system. The charger device can exist as a module, an integrated circuit, or as a functional block
in a power management integrated circuit (PMIC).

The action of charging a battery pack is referred to as a charge cycle. When the charge cycle is
executed the battery pack is charged according to the charge profile configured on the charger
device. The charge profile is defined in the battery pack’s specification that is provided by the
manufacturer. On charger devices with a control port, the charge profile can be configured by
the host controller by setting the relevant properties, and can be adjusted at runtime to respond
to environmental changes.

Basic Operation

Initiating a Charge Cycle A charge cycle is initiated or terminated using
charger_charge_enable().

Properties Fundamentally, a property is a configurable setting, state, or quantity that a charger
device can measure.

Chargers typically support multiple properties, such as temperature readings of the battery-pack
or present-time current/voltage.

Properties are fetched by the client one at a time using charger_get_prop(). Properties are set
by the client one at a time using charger_set_prop().

API Reference

Related code samples

Charger
Charge a battery using the charger driver API.

group charger_interface
Charger Interface.

Typedefs

typedef uint16_t charger_prop_t
A charger property’s identifier.

See charger_property for a list of identifiers
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typedef void (*charger_status_notifier_t)(enum charger_status status)
The charger status change callback to notify the system.

Param status
Current charging state

typedef void (*charger_online_notifier_t)(enum charger_online online)
The charger online change callback to notify the system.

Param online
Current external supply state

typedef int (*charger_get_property_t)(const struct device *dev, const charger_prop_t
prop, union charger_propval *val)

Callback API for getting a charger property.

See charger_get_property() for argument description

typedef int (*charger_set_property_t)(const struct device *dev, const charger_prop_t
prop, const union charger_propval *val)

Callback API for setting a charger property.

See charger_set_property() for argument description

typedef int (*charger_charge_enable_t)(const struct device *dev, const bool enable)
Callback API enabling or disabling a charge cycle.

See charger_charge_enable() for argument description

Enums

enum charger_property
Runtime Dynamic Battery Parameters.

Values:

enumerator CHARGER_PROP_ONLINE = 0
Indicates if external supply is present for the charger.

Value should be of type enum charger_online

enumerator CHARGER_PROP_PRESENT
Reports whether or not a battery is present.

Value should be of type bool

enumerator CHARGER_PROP_STATUS
Represents the charging status of the charger.

Value should be of type enum charger_status

enumerator CHARGER_PROP_CHARGE_TYPE
Represents the charging algo type of the charger.

Value should be of type enum charger_charge_type
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enumerator CHARGER_PROP_HEALTH
Represents the health of the charger.

Value should be of type enum charger_health

enumerator CHARGER_PROP_CONSTANT_CHARGE_CURRENT_UA
Configuration of current sink used for charging in µA.

enumerator CHARGER_PROP_PRECHARGE_CURRENT_UA
Configuration of current sink used for conditioning in µA.

enumerator CHARGER_PROP_CHARGE_TERM_CURRENT_UA
Configuration of charge termination target in µA.

enumerator CHARGER_PROP_CONSTANT_CHARGE_VOLTAGE_UV
Configuration of charge voltage regulation target in µV.

enumerator CHARGER_PROP_INPUT_REGULATION_CURRENT_UA
Configuration of the input current regulation target in µA.

This value is a rising current threshold that is regulated by reducing the charge
current output

enumerator CHARGER_PROP_INPUT_REGULATION_VOLTAGE_UV
Configuration of the input voltage regulation target in µV.

This value is a falling voltage threshold that is regulated by reducing the charge
current output

enumerator CHARGER_PROP_INPUT_CURRENT_NOTIFICATION
Configuration to issue a notification to the system based on the input current level
and timing.

Value should be of type struct charger_current_notifier

enumerator CHARGER_PROP_DISCHARGE_CURRENT_NOTIFICATION
Configuration to issue a notification to the system based on the battery discharge
current level and timing.

Value should be of type struct charger_current_notifier

enumerator CHARGER_PROP_SYSTEM_VOLTAGE_NOTIFICATION_UV
Configuration of the falling system voltage threshold where a notification is issued
to the system, measured in µV.

enumerator CHARGER_PROP_STATUS_NOTIFICATION
Configuration to issue a notification to the system based on the charger status
change.

Value should be of type charger_status_notifier_t

enumerator CHARGER_PROP_ONLINE_NOTIFICATION
Configuration to issue a notification to the system based on the charger online
change.
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Value should be of type charger_online_notifier_t

enumerator CHARGER_PROP_COMMON_COUNT
Reserved to demark end of common charger properties.

enumerator CHARGER_PROP_CUSTOM_BEGIN = CHARGER_PROP_COMMON_COUNT + 1
Reserved to demark downstream custom properties - use this value as the actual
value may change over future versions of this API.

enumerator CHARGER_PROP_MAX = UINT16_MAX
Reserved to demark end of valid enum properties.

enum charger_online
External supply states.

Values:

enumerator CHARGER_ONLINE_OFFLINE = 0
External supply not present.

enumerator CHARGER_ONLINE_FIXED
External supply is present and of fixed output.

enumerator CHARGER_ONLINE_PROGRAMMABLE
External supply is present and of programmable output.

enum charger_status
Charging states.

Values:

enumerator CHARGER_STATUS_UNKNOWN = 0
Charging device state is unknown.

enumerator CHARGER_STATUS_CHARGING
Charging device is charging a battery.

enumerator CHARGER_STATUS_DISCHARGING
Charging device is not able to charge a battery.

enumerator CHARGER_STATUS_NOT_CHARGING
Charging device is not charging a battery.

enumerator CHARGER_STATUS_FULL
The battery is full and the charging device will not attempt charging.

enum charger_charge_type
Charge algorithm types.

Values:
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enumerator CHARGER_CHARGE_TYPE_UNKNOWN = 0
Charge type is unknown.

enumerator CHARGER_CHARGE_TYPE_NONE
Charging is not occurring.

enumerator CHARGER_CHARGE_TYPE_TRICKLE
Charging is occurring at the slowest desired charge rate, typically for battery de-
tection or preconditioning.

enumerator CHARGER_CHARGE_TYPE_FAST
Charging is occurring at the fastest desired charge rate.

enumerator CHARGER_CHARGE_TYPE_STANDARD
Charging is occurring at a moderate charge rate.

enumerator CHARGER_CHARGE_TYPE_ADAPTIVE

enumerator CHARGER_CHARGE_TYPE_LONGLIFE

enumerator CHARGER_CHARGE_TYPE_BYPASS

enum charger_health
Charger health conditions.

These conditions determine the ability to, or the rate of, charge

Values:

enumerator CHARGER_HEALTH_UNKNOWN = 0
Charger health condition is unknown.

enumerator CHARGER_HEALTH_GOOD
Charger health condition is good.

enumerator CHARGER_HEALTH_OVERHEAT
The charger device is overheated.

enumerator CHARGER_HEALTH_OVERVOLTAGE
The battery voltage has exceeded its overvoltage threshold.

enumerator CHARGER_HEALTH_UNSPEC_FAILURE
The battery or charger device is experiencing an unspecified failure.

enumerator CHARGER_HEALTH_COLD
The battery temperature is below the “cold” threshold.

enumerator CHARGER_HEALTH_WATCHDOG_TIMER_EXPIRE
The charger device’s watchdog timer has expired.
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enumerator CHARGER_HEALTH_SAFETY_TIMER_EXPIRE
The charger device’s safety timer has expired.

enumerator CHARGER_HEALTH_CALIBRATION_REQUIRED
The charger device requires calibration.

enumerator CHARGER_HEALTH_WARM
The battery temperature is in the “warm” range.

enumerator CHARGER_HEALTH_COOL
The battery temperature is in the “cool” range.

enumerator CHARGER_HEALTH_HOT
The battery temperature is below the “hot” threshold.

enumerator CHARGER_HEALTH_NO_BATTERY
The charger device does not detect a battery.

enum charger_notification_severity
Charger severity levels for system notifications.

Values:

enumerator CHARGER_SEVERITY_PEAK = 0
Most severe level, typically triggered instantaneously.

enumerator CHARGER_SEVERITY_CRITICAL
More severe than the warning level, less severe than peak.

enumerator CHARGER_SEVERITY_WARNING
Base severity level.

Functions

int charger_get_prop(const struct device *dev, const charger_prop_t prop, union
charger_propval *val)

Fetch a battery charger property.

Parameters
• dev – Pointer to the battery charger device

• prop – Charger property to get

• val – Pointer to charger_propval union

Return values
• 0 – if successful

• < – 0 if getting property failed
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int charger_set_prop(const struct device *dev, const charger_prop_t prop, const union
charger_propval *val)

Set a battery charger property.

Parameters
• dev – Pointer to the battery charger device

• prop – Charger property to set

• val – Pointer to charger_propval union

Return values
• 0 – if successful

• < – 0 if setting property failed

int charger_charge_enable(const struct device *dev, const bool enable)
Enable or disable a charge cycle.

Parameters
• dev – Pointer to the battery charger device

• enable – true enables a charge cycle, false disables a charge cycle

Return values
• 0 – if successful

• -EIO – if communication with the charger failed

• -EINVAL – if the conditions for initiating charging are invalid

struct charger_current_notifier
#include <charger.h> The input current thresholds for the charger to notify the system.

Public Members

uint8_t severity
The severity of the notification where CHARGER_SEVERITY_PEAK is the most se-
vere.

uint32_t current_ua
The current threshold to be exceeded.

uint32_t duration_us
The duration of excess current before notifying the system.

union charger_propval
#include <charger.h> container for a charger_property value

Public Members

enum charger_online online
CHARGER_PROP_ONLINE.
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bool present
CHARGER_PROP_PRESENT.

enum charger_status status
CHARGER_PROP_STATUS.

enum charger_charge_type charge_type
CHARGER_PROP_CHARGE_TYPE.

enum charger_health health
CHARGER_PROP_HEALTH.

uint32_t const_charge_current_ua
CHARGER_PROP_CONSTANT_CHARGE_CURRENT_UA.

uint32_t precharge_current_ua
CHARGER_PROP_PRECHARGE_CURRENT_UA.

uint32_t charge_term_current_ua
CHARGER_PROP_CHARGE_TERM_CURRENT_UA.

uint32_t const_charge_voltage_uv
CHARGER_PROP_CONSTANT_CHARGE_VOLTAGE_UV.

uint32_t input_current_regulation_current_ua
CHARGER_PROP_INPUT_REGULATION_CURRENT_UA.

uint32_t input_voltage_regulation_voltage_uv
CHARGER_PROP_INPUT_REGULATION_VOLTAGE_UV.

struct charger_current_notifier input_current_notification
CHARGER_PROP_INPUT_CURRENT_NOTIFICATION.

struct charger_current_notifier discharge_current_notification
CHARGER_PROP_DISCHARGE_CURRENT_NOTIFICATION.

uint32_t system_voltage_notification
CHARGER_PROP_SYSTEM_VOLTAGE_NOTIFICATION_UV.

charger_status_notifier_t status_notification
CHARGER_PROP_STATUS_NOTIFICATION.

charger_online_notifier_t online_notification
CHARGER_PROP_ONLINE_NOTIFICATION.

struct charger_driver_api
#include <charger.h> Charging device API.

Caching is entirely on the onus of the client
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7.6.10 Coredump Device

Overview

The coredump device is a pseudo-device driver with two types.A COREDUMP_TYPE_MEMCPY
type exposes device tree bindings for memory address/size values to be included in any dump.
And the driver exposes an API to add/remove dump memory regions at runtime. A CORE-
DUMP_TYPE_CALLBACK device requires exactly one entry in the memory-regions array with
a size of 0 and a desired size. The driver will statically allocate memory of the desired size and
provide an API to register a callback function to fill that memory when a dump occurs.

Configuration Options

Related configuration options:

• CONFIG_COREDUMP_DEVICE

API Reference

group coredump_device_interface
Coredump pseudo-device driver APIs.

Typedefs

typedef void (*coredump_dump_callback_t)(uintptr_t dump_area, size_t dump_area_size)
Callback that occurs at dump time, data copied into dump_area will be included in the
dump that is generated.

Param dump_area
Pointer to area to copy data into for inclusion in dump

Param dump_area_size
Size of available memory at dump_area

Functions

static inline bool coredump_device_register_memory(const struct device *dev, struct
coredump_mem_region_node
*region)

Register a region of memory to be stored in core dump at the time it is generated.

Parameters
• dev – Pointer to the device structure for the driver instance.

• region – Struct describing memory to be collected

Returns
true if registration succeeded

Returns
false if registration failed
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static inline bool coredump_device_unregister_memory(const struct device *dev, struct
coredump_mem_region_node
*region)

Unregister a region of memory to be stored in core dump at the time it is generated.

Parameters
• dev – Pointer to the device structure for the driver instance.

• region – Struct describing memory to be collected

Returns
true if unregistration succeeded

Returns
false if unregistration failed

static inline bool coredump_device_register_callback(const struct device *dev,
coredump_dump_callback_t
callback)

Register a callback to be invoked at dump time.

Parameters
• dev – Pointer to the device structure for the driver instance.

• callback – Callback to be invoked at dump time

Returns
true if registration succeeded

Returns
false if registration failed

struct coredump_mem_region_node
#include <coredump.h> Structure describing a region in memory that may be stored in
core dump at the time it is generated.

Instances of this are passed to the coredump_device_register_memory() and core-
dump_device_unregister_memory() functions to indicate addition and removal of mem-
ory regions to be captured

Public Members

sys_snode_t node
Node of single-linked list, do not modify.

uintptr_t start
Address of start of memory region.

size_t size
Size of memory region.

7.6.11 Counter

Overview
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API Reference

Related code samples

Counter Alarm
Implement an alarm application using the counter API.

DS3231 TCXO RTC
Interact with a DS3231 real-time clock using the counter API and dedicated driver API.

group counter_interface
Counter Interface.

Since
1.14

Version
0.8.0

Counter device capabilities

COUNTER_CONFIG_INFO_COUNT_UP
Counter count up flag.

Flags used by counter_top_cfg.

COUNTER_TOP_CFG_DONT_RESET
Flag preventing counter reset when top value is changed.

If flags is set then counter is free running while top value is updated, otherwise counter
is reset (see counter_set_top_value()).

COUNTER_TOP_CFG_RESET_WHEN_LATE
Flag instructing counter to reset itself if changing top value results in counter going
out of new top value bound.

See COUNTER_TOP_CFG_DONT_RESET.

Alarm configuration flags

Used in alarm configuration structure (counter_alarm_cfg).

COUNTER_ALARM_CFG_ABSOLUTE
Counter alarm absolute value flag.

Ticks relation to counter value. If set ticks are treated as absolute value, else it is rela-
tive to the counter reading performed during the call.
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COUNTER_ALARM_CFG_EXPIRE_WHEN_LATE
Alarm flag enabling immediate expiration when driver detects that absolute alarm
was set too late.

Alarm callback must be called from the same context as if it was set on time.

Counter guard period flags

Used by counter_set_guard_period and counter_get_guard_period.

COUNTER_GUARD_PERIOD_LATE_TO_SET
Identifies guard period needed for detection of late setting of absolute alarm (see
counter_set_channel_alarm).

Typedefs

typedef void (*counter_alarm_callback_t)(const struct device *dev, uint8_t chan_id,
uint32_t ticks, void *user_data)

Alarm callback.

Param dev
Pointer to the device structure for the driver instance.

Param chan_id
Channel ID.

Param ticks
Counter value that triggered the alarm.

Param user_data
User data.

typedef void (*counter_top_callback_t)(const struct device *dev, void *user_data)
Callback called when counter turns around.

Param dev
Pointer to the device structure for the driver instance.

Param user_data
User data provided in counter_set_top_value.

typedef int (*counter_api_start)(const struct device *dev)

typedef int (*counter_api_stop)(const struct device *dev)

typedef int (*counter_api_get_value)(const struct device *dev, uint32_t *ticks)

typedef int (*counter_api_get_value_64)(const struct device *dev, uint64_t *ticks)

typedef int (*counter_api_set_alarm)(const struct device *dev, uint8_t chan_id, const
struct counter_alarm_cfg *alarm_cfg)

typedef int (*counter_api_cancel_alarm)(const struct device *dev, uint8_t chan_id)
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typedef int (*counter_api_set_top_value)(const struct device *dev, const struct
counter_top_cfg *cfg)

typedef uint32_t (*counter_api_get_pending_int)(const struct device *dev)

typedef uint32_t (*counter_api_get_top_value)(const struct device *dev)

typedef uint32_t (*counter_api_get_guard_period)(const struct device *dev, uint32_t
flags)

typedef int (*counter_api_set_guard_period)(const struct device *dev, uint32_t ticks,
uint32_t flags)

typedef uint32_t (*counter_api_get_freq)(const struct device *dev)

Functions

bool counter_is_counting_up(const struct device *dev)
Function to check if counter is counting up.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

Return values
• true – if counter is counting up.

• false – if counter is counting down.

uint8_t counter_get_num_of_channels(const struct device *dev)
Function to get number of alarm channels.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

Returns
Number of alarm channels.

uint32_t counter_get_frequency(const struct device *dev)
Function to get counter frequency.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

Returns
Frequency of the counter in Hz, or zero if the counter does not have a fixed
frequency.

uint32_t counter_us_to_ticks(const struct device *dev, uint64_t us)
Function to convert microseconds to ticks.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

• us – [in] Microseconds.

Returns
Converted ticks. Ticks will be saturated if exceed 32 bits.
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uint64_t counter_ticks_to_us(const struct device *dev, uint32_t ticks)
Function to convert ticks to microseconds.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

• ticks – [in] Ticks.

Returns
Converted microseconds.

uint32_t counter_get_max_top_value(const struct device *dev)
Function to retrieve maximum top value that can be set.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

Returns
Max top value.

int counter_start(const struct device *dev)
Start counter device in free running mode.

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
• 0 – If successful.

• Negative – errno code if failure.

int counter_stop(const struct device *dev)
Stop counter device.

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
• 0 – If successful.

• -ENOTSUP – if the device doesn’t support stopping the counter.

int counter_get_value(const struct device *dev, uint32_t *ticks)
Get current counter value.

Parameters
• dev – Pointer to the device structure for the driver instance.

• ticks – Pointer to where to store the current counter value

Return values
• 0 – If successful.

• Negative – error code on failure getting the counter value

int counter_get_value_64(const struct device *dev, uint64_t *ticks)
Get current counter 64-bit value.

Parameters
• dev – Pointer to the device structure for the driver instance.

• ticks – Pointer to where to store the current counter value

Return values
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• 0 – If successful.

• Negative – error code on failure getting the counter value

int counter_set_channel_alarm(const struct device *dev, uint8_t chan_id, const struct
counter_alarm_cfg *alarm_cfg)

Set a single shot alarm on a channel.

After expiration alarm can be set again, disabling is not needed. When alarm expi-
ration handler is called, channel is considered available and can be set again in that
context.

Note

API is not thread safe.

Parameters
• dev – Pointer to the device structure for the driver instance.

• chan_id – Channel ID.

• alarm_cfg – Alarm configuration.

Return values
• 0 – If successful.

• -ENOTSUP – if request is not supported (device does not support interrupts
or requested channel).

• -EINVAL – if alarm settings are invalid.

• -ETIME – if absolute alarm was set too late.

• -EBUSY – if alarm is already active.

int counter_cancel_channel_alarm(const struct device *dev, uint8_t chan_id)
Cancel an alarm on a channel.

Note

API is not thread safe.

Parameters
• dev – Pointer to the device structure for the driver instance.

• chan_id – Channel ID.

Return values
• 0 – If successful.

• -ENOTSUP – if request is not supported or the counter was not started yet.

int counter_set_top_value(const struct device *dev, const struct counter_top_cfg *cfg)
Set counter top value.

Function sets top value and optionally resets the counter to 0 or top value depending
on counter direction. On turnaround, counter can be reset and optional callback is
periodically called. Top value can only be changed when there is no active channel
alarm.
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COUNTER_TOP_CFG_DONT_RESET prevents counter reset. When counter is running
while top value is updated, it is possible that counter progresses outside the new top
value. In that case, error is returned and optionally driver can reset the counter (see
COUNTER_TOP_CFG_RESET_WHEN_LATE).

Parameters
• dev – Pointer to the device structure for the driver instance.

• cfg – Configuration. Cannot be NULL.

Return values
• 0 – If successful.

• -ENOTSUP – if request is not supported (e.g. top value cannot be changed
or counter cannot/must be reset during top value update).

• -EBUSY – if any alarm is active.

• -ETIME – if COUNTER_TOP_CFG_DONT_RESET was set and new top value
is smaller than current counter value (counter counting up).

int counter_get_pending_int(const struct device *dev)
Function to get pending interrupts.

The purpose of this function is to return the interrupt status register for the device.
This is especially useful when waking up from low power states to check the wake up
source.

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
• 1 – if any counter interrupt is pending.

• 0 – if no counter interrupt is pending.

uint32_t counter_get_top_value(const struct device *dev)
Function to retrieve current top value.

Parameters
• dev – [in] Pointer to the device structure for the driver instance.

Returns
Top value.

int counter_set_guard_period(const struct device *dev, uint32_t ticks, uint32_t flags)
Set guard period in counter ticks.

When setting an absolute alarm value close to the current counter value there is a
risk that the counter will have counted past the given absolute value before the driver
manages to activate the alarm. If this would go unnoticed then the alarm would only
expire after the timer has wrapped and reached the given absolute value again after
a full timer period. This could take a long time in case of a 32 bit timer. Setting a
sufficiently large guard period will help the driver detect unambiguously whether it is
late or not.

The guard period should be as many counter ticks as the driver will need at
most to actually activate the alarm after the driver API has been called. If the
driver finds that the counter has just passed beyond the given absolute tick value
but is still close enough to fall within the guard period, it will assume that it is
“late”, i.e. that the intended expiry time has already passed. Depending on the
COUNTER_ALARM_CFG_EXPIRE_WHEN_LATE flag the driver will either ignore the
alarm or expire it immediately in such a case.
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If, however, the counter is past the given absolute tick value but outside the guard
period, then the driver will assume that this is intentional and let the counter wrap
around to/from zero before it expires.

More precisely:

• When counting upwards (see COUNTER_CONFIG_INFO_COUNT_UP) the given ab-
solute tick value must be above (now + guard_period) % top_value to be accepted
by the driver.

• When counting downwards, the given absolute tick value must be less than (now
+ top_value - guard_period) % top_value to be accepted.

Examples:

• counting upwards, now = 4950, top value = 5000, guard period = 100: absolute tick
value >= (4950 + 100) % 5000 = 50

• counting downwards, now = 50, top value = 5000, guard period = 100: absolute tick
value <= (50 + 5000 - * 100) % 5000 = 4950

If you need only short alarm periods, you can set the guard period very high (e.g. half
of the counter top value) which will make it highly unlikely that the counter will ever
unintentionally wrap.

The guard period is set to 0 on initialization (no protection).

Parameters
• dev – Pointer to the device structure for the driver instance.

• ticks – Guard period in counter ticks.

• flags – See COUNTER_GUARD_PERIOD_FLAGS.

Return values
• 0 – if successful.

• -ENOTSUP – if function or flags are not supported.

• -EINVAL – if ticks value is invalid.

uint32_t counter_get_guard_period(const struct device *dev, uint32_t flags)
Return guard period.

See also

counter_set_guard_period.

Parameters
• dev – Pointer to the device structure for the driver instance.

• flags – See COUNTER_GUARD_PERIOD_FLAGS.

Returns
Guard period given in counter ticks or 0 if function or flags are not sup-
ported.
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struct counter_alarm_cfg
#include <counter.h> Alarm callback structure.

Public Members

counter_alarm_callback_t callback
Callback called on alarm (cannot be NULL).

uint32_t ticks
Number of ticks that triggers the alarm.

It can be relative (to now) or an absolute value (see
COUNTER_ALARM_CFG_ABSOLUTE). Both, relative and absolute, alarm values can
be any value between zero and the current top value (see counter_get_top_value).
When setting an absolute alarm value close to the current counter value there
is a risk that the counter will have counted past the given absolute value be-
fore the driver manages to activate the alarm. Therefore a guard period can
be defined that lets the driver decide unambiguously whether it is late or not
(see counter_set_guard_period). If the counter is clock driven then ticks can be
converted to microseconds (see counter_ticks_to_us). Alternatively, the counter
implementation may count asynchronous events.

void *user_data
User data returned in callback.

uint32_t flags
Alarm flags (see COUNTER_ALARM_FLAGS).

struct counter_top_cfg
#include <counter.h> Top value configuration structure.

Public Members

uint32_t ticks
Top value.

counter_top_callback_t callback
Callback function (can be NULL).

void *user_data
User data passed to callback function (not valid if callback is NULL).

uint32_t flags
Flags (see COUNTER_TOP_FLAGS).

struct counter_config_info
#include <counter.h> Structure with generic counter features.
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Public Members

uint32_t max_top_value
Maximal (default) top value on which counter is reset (cleared or reloaded).

uint32_t freq
Frequency of the source clock if synchronous events are counted.

uint8_t flags
Flags (see COUNTER_FLAGS).

uint8_t channels
Number of channels that can be used for setting alarm.

See also

counter_set_channel_alarm

struct counter_driver_api
#include <counter.h>

7.6.12 Digital-to-Analog Converter (DAC)

Overview

The DAC API provides access to Digital-to-Analog Converter (DAC) devices.

Configuration Options

Related configuration options:

• CONFIG_DAC

API Reference

Related code samples

Digital-to-Analog Converter (DAC)
Generate an analog sawtooth signal using the DAC driver API.

group dac_interface
DAC driver APIs.

Since
2.3

3288 Chapter 7. Hardware Support



Zephyr Project Documentation, Release 3.7.99

Version
0.8.0

Functions

int dac_channel_setup(const struct device *dev, const struct dac_channel_cfg
*channel_cfg)

Configure a DAC channel.

It is required to call this function and configure each channel before it is selected for
a write request.

Parameters
• dev – Pointer to the device structure for the driver instance.

• channel_cfg – Channel configuration.

Return values
• 0 – On success.

• -EINVAL – If a parameter with an invalid value has been provided.

• -ENOTSUP – If the requested resolution is not supported.

int dac_write_value(const struct device *dev, uint8_t channel, uint32_t value)
Write a single value to a DAC channel.

Parameters
• dev – Pointer to the device structure for the driver instance.

• channel – Number of the channel to be used.

• value – Data to be written to DAC output registers.

Return values
• 0 – On success.

• -EINVAL – If a parameter with an invalid value has been provided.

struct dac_channel_cfg
#include <dac.h> Structure for specifying the configuration of a DAC channel.

Public Members

uint8_t channel_id
Channel identifier of the DAC that should be configured.

uint8_t resolution
Desired resolution of the DAC (depends on device capabilities).

bool buffered
Enable output buffer for this channel.

This is relevant for instance if the output is directly connected to the load, without
an amplifierin between. The actual details on this are hardware dependent.
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7.6.13 Direct Memory Access (DMA)

Overview

Direct Memory Access (Controller) is a commonly provided type of co-processor that can typically
offload transferring data to and from peripherals and memory.

The DMA API is not a portable API and really cannot be as each DMA has unique memory re-
quirements, peripheral interactions, and features. The API in effect provides a union of all useful
DMA functionality drivers have needed in the tree. It can still be a good abstraction, with care,
for peripheral devices for vendors where the DMA IP might be very similar but have slight vari-
ances.

Driver Implementation Expectations

Synchronization and Ownership From an API point of view, a DMA channel is a single-owner
object, meaning the drivers should not attempt to wrap a channel with kernel synchronization
primitives such as mutexes or semaphores. If DMA channels require mutating shared registers,
those register updates should be wrapped in a spin lock.

This enables the entire API to be low-cost and callable from any call context, including ISRs where
it may be very useful to start/stop/suspend/resume/reload a channel transfer.

Transfer Descriptor Memory Management Drivers should not attempt to use heap alloca-
tions of any kind. If object pools are needed for transfer descriptors then those should be setup
in a way that does not break the promise of ISR-allowable calls. Many drivers choose to create a
simple static descriptor array per channel with the size of the descriptor array adjustable using
Kconfig.

Channel StateMachine Expectations DMA channels should be viewed as state machines that
the DMA API provides transition events for in the form of API calls. Every driver is expected to
maintain its own channel state tracking. The busy state of the channel should be inspectable at
any time with dma_get_status().

A diagram showing those expectated possible state transitions and their API calls is provided
here for reference.

API Reference

group dma_interface
DMA Interface.

Since
1.5

Version
1.0.0

Defines
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Configured

dma_config

dma_stop

Running

dma_start dma_stop

dma_startdma_resume

Suspended

dma_suspend

dma_stop

dma_resume

dma_suspend

Fig. 2: DMA state finite state machine
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DMA_STATUS_COMPLETE
The DMA callback event has occurred at the completion of a transfer list.

DMA_STATUS_BLOCK
The DMA callback has occurred at the completion of a single transfer block in a transfer
list.

DMA_MAGIC
Magic code to identify context content.

DMA_BUF_ADDR_ALIGNMENT(node)
Get the device tree property describing the buffer address alignment.

Useful when statically defining or allocating buffers for DMA usage where memory
alignment often matters.

Parameters
• node – Node identifier, e.g. DT_NODELABEL(dma_0)

Returns
alignment Memory byte alignment required for DMA buffers

DMA_BUF_SIZE_ALIGNMENT(node)
Get the device tree property describing the buffer size alignment.

Useful when statically defining or allocating buffers for DMA usage where memory
alignment often matters.

Parameters
• node – Node identifier, e.g. DT_NODELABEL(dma_0)

Returns
alignment Memory byte alignment required for DMA buffers

DMA_COPY_ALIGNMENT(node)
Get the device tree property describing the minimal chunk of data possible to be
copied.

Parameters
• node – Node identifier, e.g. DT_NODELABEL(dma_0)

Returns
minimal Minimal chunk of data possible to be copied

Typedefs

typedef void (*dma_callback_t)(const struct device *dev, void *user_data, uint32_t
channel, int status)

Callback function for DMA transfer completion.

If enabled, callback function will be invoked at transfer or block completion, or
when an error happens. In circular mode, status indicates that the DMA device
has reached either the end of the buffer (DMA_STATUS_COMPLETE) or a water mark
(DMA_STATUS_BLOCK).

Param dev
Pointer to the DMA device calling the callback.
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Param user_data
A pointer to some user data or NULL

Param channel
The channel number

Param status
Status of the transfer

• DMA_STATUS_COMPLETE buffer fully consumed

• DMA_STATUS_BLOCK buffer consumption reached a configured block or
water mark

• A negative errno otherwise

Enums

enum dma_channel_direction
DMA channel direction.

Values:

enumerator MEMORY_TO_MEMORY = 0x0
Memory to memory.

enumerator MEMORY_TO_PERIPHERAL
Memory to peripheral.

enumerator PERIPHERAL_TO_MEMORY
Peripheral to memory.

enumerator PERIPHERAL_TO_PERIPHERAL
Peripheral to peripheral.

enumerator HOST_TO_MEMORY
Host to memory.

enumerator MEMORY_TO_HOST
Memory to host.

enumerator DMA_CHANNEL_DIRECTION_COMMON_COUNT
Number of all common channel directions.

enumerator DMA_CHANNEL_DIRECTION_PRIV_START =
DMA_CHANNEL_DIRECTION_COMMON_COUNT

This and higher values are dma controller or soc specific.

Refer to the specified dma driver header file.

enumerator DMA_CHANNEL_DIRECTION_MAX = 0x7
Maximum allowed value (3 bit field!)
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enum dma_addr_adj
DMA address adjustment.

Valid values for source_addr_adj and dest_addr_adj

Values:

enumerator DMA_ADDR_ADJ_INCREMENT
Increment the address.

enumerator DMA_ADDR_ADJ_DECREMENT
Decrement the address.

enumerator DMA_ADDR_ADJ_NO_CHANGE
No change the address.

enum dma_channel_filter
DMA channel attributes.

Values:

enumerator DMA_CHANNEL_NORMAL

enumerator DMA_CHANNEL_PERIODIC

enum dma_attribute_type
DMA attributes.

Values:

enumerator DMA_ATTR_BUFFER_ADDRESS_ALIGNMENT

enumerator DMA_ATTR_BUFFER_SIZE_ALIGNMENT

enumerator DMA_ATTR_COPY_ALIGNMENT

enumerator DMA_ATTR_MAX_BLOCK_COUNT

Functions

static inline int dma_config(const struct device *dev, uint32_t channel, struct dma_config
*config)

Configure individual channel for DMA transfer.

Parameters
• dev – Pointer to the device structure for the driver instance.

• channel – Numeric identification of the channel to configure

• config – Data structure containing the intended configuration for the se-
lected channel

Return values
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• 0 – if successful.

• Negative – errno code if failure.

static inline int dma_reload(const struct device *dev, uint32_t channel, uint32_t src,
uint32_t dst, size_t size)

Reload buffer(s) for a DMA channel.

Parameters
• dev – Pointer to the device structure for the driver instance.

• channel – Numeric identification of the channel to configure selected
channel

• src – source address for the DMA transfer

• dst – destination address for the DMA transfer

• size – size of DMA transfer

Return values
• 0 – if successful.

• Negative – errno code if failure.

int dma_start(const struct device *dev, uint32_t channel)
Enables DMA channel and starts the transfer, the channel must be configured before-
hand.

Implementations must check the validity of the channel ID passed in and return -
EINVAL if it is invalid.

Start is allowed on channels that have already been started and must report success.

Function properties (list may not be complete)
isr-ok

Parameters
• dev – Pointer to the device structure for the driver instance.

• channel – Numeric identification of the channel where the transfer will
be processed

Return values
• 0 – if successful.

• Negative – errno code if failure.

int dma_stop(const struct device *dev, uint32_t channel)
Stops the DMA transfer and disables the channel.

Implementations must check the validity of the channel ID passed in and return -
EINVAL if it is invalid.

Stop is allowed on channels that have already been stopped and must report success.

Function properties (list may not be complete)
isr-ok

Parameters
• dev – Pointer to the device structure for the driver instance.

7.6. Peripherals 3295



Zephyr Project Documentation, Release 3.7.99

• channel – Numeric identification of the channel where the transfer was
being processed

Return values
• 0 – if successful.

• Negative – errno code if failure.

int dma_suspend(const struct device *dev, uint32_t channel)
Suspend a DMA channel transfer.

Implementations must check the validity of the channel state and ID passed in and
return -EINVAL if either are invalid.

Function properties (list may not be complete)
isr-ok

Parameters
• dev – Pointer to the device structure for the driver instance.

• channel – Numeric identification of the channel to suspend

Return values
• 0 – If successful.

• -ENOSYS – If not implemented.

• -EINVAL – If invalid channel id or state.

• -errno – Other negative errno code failure.

int dma_resume(const struct device *dev, uint32_t channel)
Resume a DMA channel transfer.

Implementations must check the validity of the channel state and ID passed in and
return -EINVAL if either are invalid.

Function properties (list may not be complete)
isr-ok

Parameters
• dev – Pointer to the device structure for the driver instance.

• channel – Numeric identification of the channel to resume

Return values
• 0 – If successful.

• -ENOSYS – If not implemented

• -EINVAL – If invalid channel id or state.

• -errno – Other negative errno code failure.

int dma_request_channel(const struct device *dev, void *filter_param)
request DMA channel.

request DMA channel resources return -EINVAL if there is no valid channel available.
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Function properties (list may not be complete)
isr-ok

Parameters
• dev – Pointer to the device structure for the driver instance.

• filter_param – filter function parameter

Return values
• dma – channel if successful.

• Negative – errno code if failure.

void dma_release_channel(const struct device *dev, uint32_t channel)
release DMA channel.

release DMA channel resources

Function properties (list may not be complete)
isr-ok

Parameters
• dev – Pointer to the device structure for the driver instance.

• channel – channel number

int dma_chan_filter(const struct device *dev, int channel, void *filter_param)
DMA channel filter.

filter channel by attribute

Parameters
• dev – Pointer to the device structure for the driver instance.

• channel – channel number

• filter_param – filter attribute

Return values
Negative – errno code if not support

static inline int dma_get_status(const struct device *dev, uint32_t channel, struct
dma_status *stat)

get current runtime status of DMA transfer

Implementations must check the validity of the channel ID passed in and return -
EINVAL if it is invalid or -ENOSYS if not supported.

Function properties (list may not be complete)
isr-ok

Parameters
• dev – Pointer to the device structure for the driver instance.

• channel – Numeric identification of the channel where the transfer was
being processed

• stat – a non-NULL dma_status object for storing DMA status

Return values
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• non-negative – if successful.

• Negative – errno code if failure.

static inline int dma_get_attribute(const struct device *dev, uint32_t type, uint32_t
*value)

get attribute of a dma controller

This function allows to get a device specific static or runtime attribute like required
address and size alignment of a buffer. Implementations must check the validity of
the type passed in and return -EINVAL if it is invalid or -ENOSYS if not supported.

Function properties (list may not be complete)
isr-ok

Parameters
• dev – Pointer to the device structure for the driver instance.

• type – Numeric identification of the attribute

• value – A non-NULL pointer to the variable where the read value is to be
placed

Return values
• non-negative – if successful.

• Negative – errno code if failure.

static inline uint32_t dma_width_index(uint32_t size)
Look-up generic width index to be used in registers.

Warning

This look-up works for most controllers, but may not work for yours. Ensure your
controller expects the most common register bit values before using this conve-
nience function. If your controller does not support these values, you will have
to write your own look-up inside the controller driver.

Parameters
• size – width of bus (in bytes)

Return values
common – DMA index to be placed into registers.

static inline uint32_t dma_burst_index(uint32_t burst)
Look-up generic burst index to be used in registers.

Warning

This look-up works for most controllers, but may not work for yours. Ensure your
controller expects the most common register bit values before using this conve-
nience function. If your controller does not support these values, you will have
to write your own look-up inside the controller driver.

Parameters
• burst – number of bytes to be sent in a single burst
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Return values
common – DMA index to be placed into registers.

struct dma_block_config
#include <dma.h> DMA block configuration structure.

Aside from source address, destination address, and block size many of these options
are hardware and driver dependent.

Public Members

uint32_t source_address
block starting address at source

uint32_t dest_address
block starting address at destination

uint32_t source_gather_interval
Address adjustment at gather boundary.

uint32_t dest_scatter_interval
Address adjustment at scatter boundary.

uint16_t dest_scatter_count
Continuous transfer count between scatter boundaries.

uint16_t source_gather_count
Continuous transfer count between gather boundaries.

uint32_t block_size
Number of bytes to be transferred for this block.

struct dma_block_config *next_block
Pointer to next block in a transfer list.

uint16_t source_gather_en
Enable source gathering when set to 1.

uint16_t dest_scatter_en
Enable destination scattering when set to 1.

uint16_t source_addr_adj
Source address adjustment option.

• 0b00 increment
• 0b01 decrement
• 0b10 no change
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uint16_t dest_addr_adj
Destination address adjustment.

• 0b00 increment
• 0b01 decrement
• 0b10 no change

uint16_t source_reload_en
Reload source address at the end of block transfer.

uint16_t dest_reload_en
Reload destination address at the end of block transfer.

uint16_t fifo_mode_control
FIFO fill before starting transfer, HW specific meaning.

uint16_t flow_control_mode
Transfer flow control mode.

• 0b0 source request service upon data availability
• 0b1 source request postponed until destination request happens

struct dma_config
#include <dma.h> DMA configuration structure.

Public Members

uint32_t dma_slot
Which peripheral and direction, HW specific.

uint32_t channel_direction
Direction the transfers are occurring.

• 0b000 memory to memory,
• 0b001 memory to peripheral,
• 0b010 peripheral to memory,
• 0b011 peripheral to peripheral,
• 0b100 host to memory
• 0b101 memory to host
• others hardware specific

uint32_t complete_callback_en
Completion callback enable.

• 0b0 callback invoked at transfer list completion only
• 0b1 callback invoked at completion of each block
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uint32_t error_callback_dis
Error callback disable.

• 0b0 error callback enabled
• 0b1 error callback disabled

uint32_t source_handshake
Source handshake, HW specific.

• 0b0 HW
• 0b1 SW

uint32_t dest_handshake
Destination handshake, HW specific.

• 0b0 HW
• 0b1 SW

uint32_t channel_priority
Channel priority for arbitration, HW specific.

uint32_t source_chaining_en
Source chaining enable, HW specific.

uint32_t dest_chaining_en
Destination chaining enable, HW specific.

uint32_t linked_channel
Linked channel, HW specific.

uint32_t cyclic
Cyclic transfer list, HW specific.

uint32_t source_data_size
Width of source data (in bytes)

uint32_t dest_data_size
Width of destination data (in bytes)

uint32_t source_burst_length
Source burst length in bytes.

uint32_t dest_burst_length
Destination burst length in bytes.

uint32_t block_count
Number of blocks in transfer list.
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struct dma_block_config *head_block
Pointer to the first block in the transfer list.

void *user_data
Optional attached user data for callbacks.

dma_callback_t dma_callback
Optional callback for completion and error events.

struct dma_status
#include <dma.h> DMA runtime status structure.

Public Members

bool busy
Is the current DMA transfer busy or idle.

enum dma_channel_direction dir
Direction for the transfer.

uint32_t pending_length
Pending length to be transferred in bytes, HW specific.

uint32_t free
Available buffers space, HW specific.

uint32_t write_position
Write position in circular DMA buffer, HW specific.

uint32_t read_position
Read position in circular DMA buffer, HW specific.

uint64_t total_copied
Total copied, HW specific.

struct dma_context
#include <dma.h> DMA context structure Note: the dma_context shall be the first mem-
ber of DMA client driver Data, got by dev->data.

Public Members

int32_t magic
magic code to identify the context

int dma_channels
number of dma channels
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atomic_t *atomic
atomic holding bit flags for each channel to mark as used/unused

7.6.14 Display Interface

API Reference

Related code samples

Display
Draw basic rectangles on a display device.

LVGL basic sample
Display a ”Hello World” and react to user input using LVGL.

LVGL demos
Run LVGL built-in demos.

LVGL line chart with accelerometer data
Display acceleration data on a real-time chart using LVGL.

Generic Display Interface

group display_interface
Display Interface.

Since
1.14

Version
0.8.0

Defines

DISPLAY_BITS_PER_PIXEL(fmt)
Bits required per pixel for display format.

This macro expands to the number of bits required for a given display format. It can
be used to allocate a framebuffer based on a given display format type

Typedefs

typedef int (*display_blanking_on_api)(const struct device *dev)
Callback API to turn on display blanking See display_blanking_on() for argument de-
scription.

typedef int (*display_blanking_off_api)(const struct device *dev)
Callback API to turn off display blanking See display_blanking_off() for argument de-
scription.
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typedef int (*display_write_api)(const struct device *dev, const uint16_t x, const uint16_t
y, const struct display_buffer_descriptor *desc, const void *buf)

Callback API for writing data to the display See display_write() for argument descrip-
tion.

typedef int (*display_read_api)(const struct device *dev, const uint16_t x, const uint16_t y,
const struct display_buffer_descriptor *desc, void *buf)

Callback API for reading data from the display See display_read() for argument descrip-
tion.

typedef void *(*display_get_framebuffer_api)(const struct device *dev)
Callback API to get framebuffer pointer See display_get_framebuffer() for argument de-
scription.

typedef int (*display_set_brightness_api)(const struct device *dev, const uint8_t
brightness)

Callback API to set display brightness See display_set_brightness() for argument de-
scription.

typedef int (*display_set_contrast_api)(const struct device *dev, const uint8_t contrast)
Callback API to set display contrast See display_set_contrast() for argument description.

typedef void (*display_get_capabilities_api)(const struct device *dev, struct
display_capabilities *capabilities)

Callback API to get display capabilities See display_get_capabilities() for argument de-
scription.

typedef int (*display_set_pixel_format_api)(const struct device *dev, const enum
display_pixel_format pixel_format)

Callback API to set pixel format used by the display See display_set_pixel_format() for
argument description.

typedef int (*display_set_orientation_api)(const struct device *dev, const enum
display_orientation orientation)

Callback API to set orientation used by the display See display_set_orientation() for ar-
gument description.

Enums

enum display_pixel_format
Display pixel formats.

Display pixel format enumeration.

In case a pixel format consists out of multiple bytes the byte order is big endian.

Values:

enumerator PIXEL_FORMAT_RGB_888 = BIT(0)
24-bit RGB
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enumerator PIXEL_FORMAT_MONO01 = BIT(1)
Monochrome (0=Black 1=White)

enumerator PIXEL_FORMAT_MONO10 = BIT(2)
Monochrome (1=Black 0=White)

enumerator PIXEL_FORMAT_ARGB_8888 = BIT(3)
32-bit ARGB

enumerator PIXEL_FORMAT_RGB_565 = BIT(4)
16-bit RGB

enumerator PIXEL_FORMAT_BGR_565 = BIT(5)
16-bit BGR

enum display_screen_info
Display screen information.

Values:

enumerator SCREEN_INFO_MONO_VTILED = BIT(0)
If selected, one octet represents 8 pixels ordered vertically, otherwise ordered hor-
izontally.

enumerator SCREEN_INFO_MONO_MSB_FIRST = BIT(1)
If selected, the MSB represents the first pixel, otherwise MSB represents the last
pixel.

enumerator SCREEN_INFO_EPD = BIT(2)
Electrophoretic Display.

enumerator SCREEN_INFO_DOUBLE_BUFFER = BIT(3)
Screen has two alternating ram buffers.

enumerator SCREEN_INFO_X_ALIGNMENT_WIDTH = BIT(4)
Screen has x alignment constrained to width.

enum display_orientation
Enumeration with possible display orientation.

Values:

enumerator DISPLAY_ORIENTATION_NORMAL
No rotation.

enumerator DISPLAY_ORIENTATION_ROTATED_90
Rotated 90 degrees clockwise.

enumerator DISPLAY_ORIENTATION_ROTATED_180
Rotated 180 degrees clockwise.
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enumerator DISPLAY_ORIENTATION_ROTATED_270
Rotated 270 degrees clockwise.

Functions

static inline int display_write(const struct device *dev, const uint16_t x, const uint16_t y,
const struct display_buffer_descriptor *desc, const void
*buf)

Write data to display.

Parameters
• dev – Pointer to device structure

• x – x Coordinate of the upper left corner where to write the buffer

• y – y Coordinate of the upper left corner where to write the buffer

• desc – Pointer to a structure describing the buffer layout

• buf – Pointer to buffer array

Return values
0 – on success else negative errno code.

static inline int display_read(const struct device *dev, const uint16_t x, const uint16_t y,
const struct display_buffer_descriptor *desc, void *buf)

Read data from display.

Parameters
• dev – Pointer to device structure

• x – x Coordinate of the upper left corner where to read from

• y – y Coordinate of the upper left corner where to read from

• desc – Pointer to a structure describing the buffer layout

• buf – Pointer to buffer array

Return values
• 0 – on success else negative errno code.

• -ENOSYS – if not implemented.

static inline void *display_get_framebuffer(const struct device *dev)
Get pointer to framebuffer for direct access.

Parameters
• dev – Pointer to device structure

Return values
Pointer – to frame buffer or NULL if direct framebuffer access is not sup-
ported

static inline int display_blanking_on(const struct device *dev)
Turn display blanking on.

This function blanks the complete display. The content of the frame buffer will be
retained while blanking is enabled and the frame buffer will be accessible for read
and write operations.

In case backlight control is supported by the driver the backlight is turned off. The
backlight configuration is retained and accessible for configuration.
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In case the driver supports display blanking the initial state of the driver would be the
same as if this function was called.

Parameters
• dev – Pointer to device structure

Return values
• 0 – on success else negative errno code.

• -ENOSYS – if not implemented.

static inline int display_blanking_off(const struct device *dev)
Turn display blanking off.

Restore the frame buffer content to the display. In case backlight control is supported
by the driver the backlight configuration is restored.

Parameters
• dev – Pointer to device structure

Return values
• 0 – on success else negative errno code.

• -ENOSYS – if not implemented.

static inline int display_set_brightness(const struct device *dev, uint8_t brightness)
Set the brightness of the display.

Set the brightness of the display in steps of 1/256, where 255 is full brightness and 0 is
minimal.

Parameters
• dev – Pointer to device structure

• brightness – Brightness in steps of 1/256

Return values
• 0 – on success else negative errno code.

• -ENOSYS – if not implemented.

static inline int display_set_contrast(const struct device *dev, uint8_t contrast)
Set the contrast of the display.

Set the contrast of the display in steps of 1/256, where 255 is maximum difference and
0 is minimal.

Parameters
• dev – Pointer to device structure

• contrast – Contrast in steps of 1/256

Return values
• 0 – on success else negative errno code.

• -ENOSYS – if not implemented.

static inline void display_get_capabilities(const struct device *dev, struct
display_capabilities *capabilities)

Get display capabilities.

Parameters
• dev – Pointer to device structure
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• capabilities – Pointer to capabilities structure to populate

static inline int display_set_pixel_format(const struct device *dev, const enum
display_pixel_format pixel_format)

Set pixel format used by the display.

Parameters
• dev – Pointer to device structure

• pixel_format – Pixel format to be used by display

Return values
• 0 – on success else negative errno code.

• -ENOSYS – if not implemented.

static inline int display_set_orientation(const struct device *dev, const enum
display_orientation orientation)

Set display orientation.

Parameters
• dev – Pointer to device structure

• orientation – Orientation to be used by display

Return values
• 0 – on success else negative errno code.

• -ENOSYS – if not implemented.

struct display_capabilities
#include <display.h> Structure holding display capabilities.

Public Members

uint16_t x_resolution
Display resolution in the X direction.

uint16_t y_resolution
Display resolution in the Y direction.

uint32_t supported_pixel_formats
Bitwise or of pixel formats supported by the display.

uint32_t screen_info
Information about display panel.

enum display_pixel_format current_pixel_format
Currently active pixel format for the display.

enum display_orientation current_orientation
Current display orientation.

struct display_buffer_descriptor
#include <display.h> Structure to describe display data buffer layout.
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Public Members

uint32_t buf_size
Data buffer size in bytes.

uint16_t width
Data buffer row width in pixels.

uint16_t height
Data buffer column height in pixels.

uint16_t pitch
Number of pixels between consecutive rows in the data buffer.

struct display_driver_api
#include <display.h> Display driver API API which a display driver should expose.

Related code samples

Grove LCD
Display an incrementing counter and change the backlight color.

Grove LCD Display

group grove_display
Grove display APIs.

Defines

GLCD_DS_DISPLAY_ON

GLCD_DS_DISPLAY_OFF

GLCD_DS_CURSOR_ON

GLCD_DS_CURSOR_OFF

GLCD_DS_BLINK_ON

GLCD_DS_BLINK_OFF

GLCD_IS_SHIFT_INCREMENT

GLCD_IS_SHIFT_DECREMENT
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GLCD_IS_ENTRY_LEFT

GLCD_IS_ENTRY_RIGHT

GLCD_FS_8BIT_MODE

GLCD_FS_ROWS_2

GLCD_FS_ROWS_1

GLCD_FS_DOT_SIZE_BIG

GLCD_FS_DOT_SIZE_LITTLE

GROVE_RGB_WHITE

GROVE_RGB_RED

GROVE_RGB_GREEN

GROVE_RGB_BLUE

Functions

void glcd_print(const struct device *dev, char *data, uint32_t size)
Send text to the screen.

Parameters
• dev – Pointer to device structure for driver instance.

• data – the ASCII text to display

• size – the length of the text in bytes

void glcd_cursor_pos_set(const struct device *dev, uint8_t col, uint8_t row)
Set text cursor position for next additions.

Parameters
• dev – Pointer to device structure for driver instance.

• col – the column for the cursor to be moved to (0-15)

• row – the row it should be moved to (0 or 1)

void glcd_clear(const struct device *dev)
Clear the current display.

Parameters
• dev – Pointer to device structure for driver instance.
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void glcd_display_state_set(const struct device *dev, uint8_t opt)
Function to change the display state.

This function provides the user the ability to change the state of the display as per
needed. Controlling things like powering on or off the screen, the option to display the
cursor or not, and the ability to blink the cursor.

Parameters
• dev – Pointer to device structure for driver instance.

• opt – An 8bit bitmask of GLCD_DS_* options.

uint8_t glcd_display_state_get(const struct device *dev)
return the display feature set associated with the device

Parameters
• dev – the Grove LCD to get the display features set

Returns
the display feature set associated with the device.

void glcd_input_state_set(const struct device *dev, uint8_t opt)
Function to change the input state.

This function provides the user the ability to change the state of the text input. Con-
trolling things like text entry from the left or right side, and how far to increment on
new text

Parameters
• dev – Pointer to device structure for driver instance.

• opt – A bitmask of GLCD_IS_* options

uint8_t glcd_input_state_get(const struct device *dev)
return the input set associated with the device

Parameters
• dev – the Grove LCD to get the input features set

Returns
the input set associated with the device.

void glcd_function_set(const struct device *dev, uint8_t opt)
Function to set the functional state of the display.

This function provides the user the ability to change the state of the display as per
needed. Controlling things like the number of rows, dot size, and text display quality.

Parameters
• dev – Pointer to device structure for driver instance.

• opt – A bitmask of GLCD_FS_* options

uint8_t glcd_function_get(const struct device *dev)
return the function set associated with the device

Parameters
• dev – the Grove LCD to get the functions set

Returns
the function features set associated with the device.
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void glcd_color_select(const struct device *dev, uint8_t color)
Set LCD background to a predefined color.

Parameters
• dev – Pointer to device structure for driver instance.

• color – One of the predefined color options

void glcd_color_set(const struct device *dev, uint8_t r, uint8_t g, uint8_t b)
Set LCD background to custom RGB color value.

Parameters
• dev – Pointer to device structure for driver instance.

• r – A numeric value for the red color (max is 255)

• g – A numeric value for the green color (max is 255)

• b – A numeric value for the blue color (max is 255)

BBC micro:bit Display

group mb_display
BBC micro:bit display APIs.

Defines

MB_IMAGE(_rows...)
Generate an image object from a given array rows/columns.

This helper takes an array of 5 rows, each consisting of 5 0/1 values which correspond
to the columns of that row. The value 0 means the pixel is disabled whereas a 1 means
the pixel is enabled.

The pixels go from left to right and top to bottom, i.e. top-left corner is the first row’s
first value, top-right is the first rows last value, and bottom-right corner is the last value
of the last (5th) row. As an example, the following would create a smiley face image:

Parameters
• _rows – Each of the 5 rows represented as a 5-value column array.

Returns
Image bitmap that can be passed e.g. to mb_display_image().

Enums

enum mb_display_mode
Display mode.

First 16 bits are reserved for modes, last 16 for flags.

Values:

enumerator MB_DISPLAY_MODE_DEFAULT
Default mode (“single” for images, “scroll” for text).
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enumerator MB_DISPLAY_MODE_SINGLE
Display images sequentially, one at a time.

enumerator MB_DISPLAY_MODE_SCROLL
Display images by scrolling.

enumerator MB_DISPLAY_FLAG_LOOP = BIT(16)
Loop back to the beginning when reaching the last image.

Functions

struct mb_display *mb_display_get(void)
Get a pointer to the BBC micro:bit display object.

Returns
Pointer to display object.

void mb_display_image(struct mb_display *disp, uint32_t mode, int32_t duration, const
struct mb_image *img, uint8_t img_count)

Display one or more images on the BBC micro:bit LED display.

This function takes an array of one or more images and renders them sequentially on
the micro:bit display. The call is asynchronous, i.e. the processing of the display hap-
pens in the background. If there is another image being displayed it will be canceled
and the new one takes over.

Parameters
• disp – Display object.

• mode – One of the MB_DISPLAY_MODE_* options.

• duration – Duration how long to show each image (in milliseconds), or
SYS_FOREVER_MS.

• img – Array of image bitmaps (struct mb_image objects).

• img_count – Number of images in ‘img’ array.

void mb_display_print(struct mb_display *disp, uint32_t mode, int32_t duration, const
char *fmt, ...)

Print a string of characters on the BBC micro:bit LED display.

This function takes a printf-style format string and outputs it in a scrolling fashion to
the display.

The call is asynchronous, i.e. the processing of the display happens in the background.
If there is another image or string being displayed it will be canceled and the new one
takes over.

Parameters
• disp – Display object.

• mode – One of the MB_DISPLAY_MODE_* options.

• duration – Duration how long to show each character (in milliseconds),
or SYS_FOREVER_MS.

• fmt – printf-style format string

• ... – Optional list of format arguments.
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void mb_display_stop(struct mb_display *disp)
Stop the ongoing display of an image.

Parameters
• disp – Display object.

struct mb_image
#include <mb_display.h> Representation of a BBC micro:bit display image.

This struct should normally not be used directly, rather created using the MB_IMAGE()
macro.

Related code samples

Character Framebuffer shell module
Use the CFB shell module to interact with a monochrome display.

Character frame buffer
Display character strings using the Character Frame Buffer (CFB).

Custom fonts
Generate and use a custom font.

Monochrome Character Framebuffer

group monochrome_character_framebuffer
Public Monochrome Character Framebuffer API.

Defines

FONT_ENTRY_DEFINE(_name, _width, _height, _caps, _data, _fc, _lc)
Macro for creating a font entry.

Parameters
• _name – Name of the font entry.

• _width – Width of the font in pixels

• _height – Height of the font in pixels.

• _caps – Font capabilities.

• _data – Raw data of the font.

• _fc – Character mapped to first font element.

• _lc – Character mapped to last font element.

Enums

enum cfb_display_param
Values:

enumerator CFB_DISPLAY_HEIGH = 0
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enumerator CFB_DISPLAY_WIDTH

enumerator CFB_DISPLAY_PPT

enumerator CFB_DISPLAY_ROWS

enumerator CFB_DISPLAY_COLS

enum cfb_font_caps
Values:

enumerator CFB_FONT_MONO_VPACKED = BIT(0)

enumerator CFB_FONT_MONO_HPACKED = BIT(1)

enumerator CFB_FONT_MSB_FIRST = BIT(2)

Functions

int cfb_print(const struct device *dev, const char *const str, uint16_t x, uint16_t y)
Print a string into the framebuffer.

Parameters
• dev – Pointer to device structure for driver instance

• str – String to print

• x – Position in X direction of the beginning of the string

• y – Position in Y direction of the beginning of the string

Returns
0 on success, negative value otherwise

int cfb_draw_text(const struct device *dev, const char *const str, int16_t x, int16_t y)
Print a string into the framebuffer.

For compare to cfb_print, cfb_draw_text accept non tile-aligned coords and not line
wrapping.

Parameters
• dev – Pointer to device structure for driver instance

• str – String to print

• x – Position in X direction of the beginning of the string

• y – Position in Y direction of the beginning of the string

Returns
0 on success, negative value otherwise

int cfb_draw_point(const struct device *dev, const struct cfb_position *pos)
Draw a point.

Parameters
• dev – Pointer to device structure for driver instance
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• pos – position of the point

Returns
0 on success, negative value otherwise

int cfb_draw_line(const struct device *dev, const struct cfb_position *start, const struct
cfb_position *end)

Draw a line.

Parameters
• dev – Pointer to device structure for driver instance

• start – start position of the line

• end – end position of the line

Returns
0 on success, negative value otherwise

int cfb_draw_rect(const struct device *dev, const struct cfb_position *start, const struct
cfb_position *end)

Draw a rectangle.

Parameters
• dev – Pointer to device structure for driver instance

• start – Top-Left position of the rectangle

• end – Bottom-Right position of the rectangle

Returns
0 on success, negative value otherwise

int cfb_framebuffer_clear(const struct device *dev, bool clear_display)
Clear framebuffer.

Parameters
• dev – Pointer to device structure for driver instance

• clear_display – Clear the display as well

Returns
0 on success, negative value otherwise

int cfb_framebuffer_invert(const struct device *dev)
Invert Pixels.

Parameters
• dev – Pointer to device structure for driver instance

Returns
0 on success, negative value otherwise

int cfb_invert_area(const struct device *dev, uint16_t x, uint16_t y, uint16_t width,
uint16_t height)

Invert Pixels in selected area.

Parameters
• dev – Pointer to device structure for driver instance

• x – Position in X direction of the beginning of area

• y – Position in Y direction of the beginning of area

• width – Width of area in pixels
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• height – Height of area in pixels

Returns
0 on success, negative value otherwise

int cfb_framebuffer_finalize(const struct device *dev)
Finalize framebuffer and write it to display RAM, invert or reorder pixels if necessary.

Parameters
• dev – Pointer to device structure for driver instance

Returns
0 on success, negative value otherwise

int cfb_get_display_parameter(const struct device *dev, enum cfb_display_param)
Get display parameter.

Parameters
• dev – Pointer to device structure for driver instance

• cfb_display_param – One of the display parameters

Returns
Display parameter value

int cfb_framebuffer_set_font(const struct device *dev, uint8_t idx)
Set font.

Parameters
• dev – Pointer to device structure for driver instance

• idx – Font index

Returns
0 on success, negative value otherwise

int cfb_set_kerning(const struct device *dev, int8_t kerning)
Set font kerning (spacing between individual letters).

Parameters
• dev – Pointer to device structure for driver instance

• kerning – Font kerning

Returns
0 on success, negative value otherwise

int cfb_get_font_size(const struct device *dev, uint8_t idx, uint8_t *width, uint8_t
*height)

Get font size.

Parameters
• dev – Pointer to device structure for driver instance

• idx – Font index

• width – Pointers to the variable where the font width will be stored.

• height – Pointers to the variable where the font height will be stored.

Returns
0 on success, negative value otherwise
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int cfb_get_numof_fonts(const struct device *dev)
Get number of fonts.

Parameters
• dev – Pointer to device structure for driver instance

Returns
number of fonts

int cfb_framebuffer_init(const struct device *dev)
Initialize Character Framebuffer.

Parameters
• dev – Pointer to device structure for driver instance

Returns
0 on success, negative value otherwise

void cfb_framebuffer_deinit(const struct device *dev)
Deinitialize Character Framebuffer.

Parameters
• dev – Pointer to device structure for driver instance

struct cfb_font
#include <cfb.h>

struct cfb_position
#include <cfb.h>

7.6.15 Electrically Erasable Programmable Read-Only Memory (EEPROM)

Overview

EEPROMs have an erase block size of 1 byte, a long lifetime, and allow overwriting data on byte-
by-byte access.

EEPROM API

Overview The EEPROM API provides read and write access to Electrically Erasable Pro-
grammable Read-Only Memory (EEPROM) devices.

Configuration Options Related configuration options:

• CONFIG_EEPROM

Related code samples

EEPROM
Store a boot count value in EEPROM.

API Reference
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group eeprom_interface
EEPROM Interface.

Since
2.1

Version
1.0.0

Functions

int eeprom_read(const struct device *dev, off_t offset, void *data, size_t len)
Read data from EEPROM.

Parameters
• dev – EEPROM device

• offset – Address offset to read from.

• data – Buffer to store read data.

• len – Number of bytes to read.

Returns
0 on success, negative errno code on failure.

int eeprom_write(const struct device *dev, off_t offset, const void *data, size_t len)
Write data to EEPROM.

Parameters
• dev – EEPROM device

• offset – Address offset to write data to.

• data – Buffer with data to write.

• len – Number of bytes to write.

Returns
0 on success, negative errno code on failure.

size_t eeprom_get_size(const struct device *dev)
Get the size of the EEPROM in bytes.

Parameters
• dev – EEPROM device.

Returns
EEPROM size in bytes.

EEPROM Shell

• Overview

• EEPROM Size

• Writing Data

• Reading Data
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Overview The EEPROM shell provides an eeprom command with a set of subcommands for
the shell module. It allows testing and exploring the EEPROM driver API through an interactive
interface without having to write a dedicated application. The EEPROM shell can also be enabled
in existing applications to aid in interactive debugging of EEPROM issues.

In order to enable the EEPROM shell, the following Kconfig options must be enabled:

• CONFIG_SHELL
• CONFIG_EEPROM
• CONFIG_EEPROM_SHELL

For example, building the hello_world sample for the native_sim with the EEPROM shell:

# From the root of the zephyr repository
west build -b native_sim samples/hello_world -- -DCONFIG_SHELL=y -DCONFIG_EEPROM=y -DCONFIG_
↪→EEPROM_SHELL=y

See the shell documentation for general instructions on how to connect and interact with the
shell. The EEPROM shell comes with built-in help (unless CONFIG_SHELL_HELP is disabled). The
built-in help messages can be printed by passing -h or --help to the eeprom command or any of
its subcommands. All subcommands also support tab-completion of their arguments.

Tip

All of the EEPROM shell subcommands take the name of an EEPROM peripheral as their first
argument, which also supports tab-completion. A list of all devices available can be obtained
using the device list shell command when CONFIG_DEVICE_SHELL is enabled. The examples
below all use the device name eeprom@0.

EEPROM Size The size of an EEPROM can be inspected using the eeprom size subcommand as
shown below:

uart:~$ eeprom size eeprom@0
32768 bytes

Writing Data Data can be written to an EEPROM using the eeprom write subcommand. This
subcommand takes at least three arguments; the EEPROM device name, the offset to start writing
to, and at least one data byte. In the following example, the hexadecimal sequence of bytes 0x0d
0x0e 0x0a 0x0d 0x0b 0x0e 0x0e 0x0f is written to offset 0x0:

uart:~$ eeprom write eeprom@0 0x0 0x0d 0x0e 0x0a 0x0d 0x0b 0x0e 0x0e 0x0f
Writing 8 bytes to EEPROM...
Verifying...
Verify OK

It is also possible to fill a portion of the EEPROM with the same pattern using the eeprom fill
subcommand. In the following example, the pattern 0xaa is written to 16 bytes starting at offset
0x8:

uart:~$ eeprom fill eeprom@0 0x8 16 0xaa
Writing 16 bytes of 0xaa to EEPROM...
Verifying...
Verify OK
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Reading Data Data can be read from an EEPROM using the eeprom read subcommand. This
subcommand takes three arguments; the EEPROM device name, the offset to start reading from,
and the number of bytes to read:

uart:~$ eeprom read eeprom@0 0x0 8
Reading 8 bytes from EEPROM, offset 0...
00000000: 0d 0e 0a 0d 0b 0e 0e 0f |........ |

7.6.16 Enhanced Serial Peripheral Interface (eSPI) Bus

Overview

The eSPI (enhanced serial peripheral interface) is a serial bus that is based on SPI. It also features
a four-wire interface (receive, transmit, clock and target select) and three configurations: single
IO, dual IO and quad IO.

The technical advancements include lower voltage signal levels (1.8V vs. 3.3V), lower pin count,
and the frequency is twice as fast (66MHz vs. 33MHz) Because of its enhancements, the eSPI is
used to replace the LPC (lower pin count) interface, SPI, SMBus and sideband signals.

See eSPI interface specification for additional details.

API Reference

Related code samples

Enhanced Serial Peripheral Interface (eSPI)
Use eSPI to connect to a slave device and exchange virtual wire packets.

group espi_interface
eSPI Driver APIs

eSPI SAF Driver APIs

Defines

ESPI_VWIRE_SIGNAL_OCB_0

ESPI_VWIRE_SIGNAL_OCB_1

ESPI_VWIRE_SIGNAL_OCB_2

ESPI_VWIRE_SIGNAL_OCB_3

HOST_KBC_EVT_IBF

HOST_KBC_EVT_OBE
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Typedefs

typedef void (*espi_callback_handler_t)(const struct device *dev, struct espi_callback
*cb, struct espi_event espi_evt)

Define the application callback handler function signature.

Param dev
Device struct for the eSPI device.

Param cb
Original struct espi_callback owning this handler.

Param espi_evt
event details that trigger the callback handler.

Enums

enum espi_io_mode
eSPI I/O mode capabilities

Values:

enumerator ESPI_IO_MODE_SINGLE_LINE = BIT(0)

enumerator ESPI_IO_MODE_DUAL_LINES = BIT(1)

enumerator ESPI_IO_MODE_QUAD_LINES = BIT(2)

enum espi_channel
eSPI channel.

+----------------------------------------------------------------------+
| |
| eSPI controller +-------------+ |
| +-----------+ | Power | +----------+ |
| |Out of band| | management | | GPIO | |
| +------------+ |processor | | controller | | sources | |
| | SPI flash | +-----------+ +-------------+ +----------+ |
| | controller | | | | |
| +------------+ | | | |
| | | | +--------+ +---------------+ |
| | | | | | |
| | | +-----+ +--------+ +----------+ +----v-----+ |
| | | | | LPC | | Tunneled | | Tunneled | |
| | | | | bridge | | SMBus | | GPIO | |
| | | | +--------+ +----------+ +----------+ |
| | | | | | | |
| | | | ------+ | | |
| | | | | | | |
| | | +------v-----+ +---v-------v-------------v----+ |
| | | | eSPI Flash | | eSPI protocol block | |
| | | | access +--->+ | |
| | | +------------+ +------------------------------+ |
| | | | |
| | +-----------+ | |
| | v v |

(continues on next page)
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(continued from previous page)
| | XXXXXXXXXXXXXXXXXXXXXXX |
| | XXXXXXXXXXXXXXXXXXXXX |
| | XXXXXXXXXXXXXXXXXXX |
+----------------------------------------------------------------------+

| |
v +-----------------+

+---------+ | | | | | |
| Flash | | | | | | |
+---------+ | + + + + | eSPI bus

| CH0 CH1 CH2 CH3 | (logical channels)
| + + + + |
| | | | | |
+-----------------+

|
+-----------------------------------------------------------------------+
| eSPI target |
| |
| CH0 | CH1 | CH2 | CH3 |
| eSPI endpoint | VWIRE | OOB | Flash |
+-----------------------------------------------------------------------+

Identifies each eSPI logical channel supported by eSPI controller Each channel allows
independent traffic, but the assignment of channel type to channel number is fixed.

Note that generic commands are not associated with any channel, so traffic over eSPI
can occur if all channels are disabled or not ready

Values:

enumerator ESPI_CHANNEL_PERIPHERAL = BIT(0)

enumerator ESPI_CHANNEL_VWIRE = BIT(1)

enumerator ESPI_CHANNEL_OOB = BIT(2)

enumerator ESPI_CHANNEL_FLASH = BIT(3)

enum espi_bus_event
eSPI bus event.

eSPI bus event to indicate events for which user can register callbacks

Values:

enumerator ESPI_BUS_RESET = BIT(0)
Indicates the eSPI bus was reset either via eSPI reset pin.

eSPI drivers should convey the eSPI reset status to eSPI driver clients following
eSPI specification reset pin convention: 0-eSPI bus in reset, 1-eSPI bus out-of-reset

Note: There is no need to send this callback for in-band reset.

enumerator ESPI_BUS_EVENT_CHANNEL_READY = BIT(1)
Indicates the eSPI HW has received channel enable notification from eSPI host,
once the eSPI channel is signal as ready to the eSPI host, eSPI drivers should convey
the eSPI channel ready to eSPI driver client via this event.
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enumerator ESPI_BUS_EVENT_VWIRE_RECEIVED = BIT(2)
Indicates the eSPI HW has received a virtual wire message from eSPI host.

eSPI drivers should convey the eSPI virtual wire latest status.

enumerator ESPI_BUS_EVENT_OOB_RECEIVED = BIT(3)
Indicates the eSPI HW has received a Out-of-band package from eSPI host.

enumerator ESPI_BUS_PERIPHERAL_NOTIFICATION = BIT(4)
Indicates the eSPI HW has received a peripheral eSPI host event.

eSPI drivers should convey the peripheral type.

enumerator ESPI_BUS_TAF_NOTIFICATION = BIT(5)

enum espi_pc_event
eSPI peripheral channel events.

eSPI peripheral channel event types to indicate users.

Values:

enumerator ESPI_PC_EVT_BUS_CHANNEL_READY = BIT(0)

enumerator ESPI_PC_EVT_BUS_MASTER_ENABLE = BIT(1)

enum espi_virtual_peripheral
eSPI peripheral notification type.

eSPI peripheral notification event details to indicate which peripheral trigger the eSPI
callback

Values:

enumerator ESPI_PERIPHERAL_UART

enumerator ESPI_PERIPHERAL_8042_KBC

enumerator ESPI_PERIPHERAL_HOST_IO

enumerator ESPI_PERIPHERAL_DEBUG_PORT80

enumerator ESPI_PERIPHERAL_HOST_IO_PVT

enum espi_cycle_type
eSPI cycle types supported over eSPI peripheral channel

Values:

enumerator ESPI_CYCLE_MEMORY_READ32

enumerator ESPI_CYCLE_MEMORY_READ64
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enumerator ESPI_CYCLE_MEMORY_WRITE32

enumerator ESPI_CYCLE_MEMORY_WRITE64

enumerator ESPI_CYCLE_MESSAGE_NODATA

enumerator ESPI_CYCLE_MESSAGE_DATA

enumerator ESPI_CYCLE_OK_COMPLETION_NODATA

enumerator ESPI_CYCLE_OKCOMPLETION_DATA

enumerator ESPI_CYCLE_NOK_COMPLETION_NODATA

enum espi_vwire_signal
eSPI system platform signals that can be send or receive through virtual wire channel

Values:

enumerator ESPI_VWIRE_SIGNAL_SLP_S3

enumerator ESPI_VWIRE_SIGNAL_SLP_S4

enumerator ESPI_VWIRE_SIGNAL_SLP_S5

enumerator ESPI_VWIRE_SIGNAL_OOB_RST_WARN

enumerator ESPI_VWIRE_SIGNAL_PLTRST

enumerator ESPI_VWIRE_SIGNAL_SUS_STAT

enumerator ESPI_VWIRE_SIGNAL_NMIOUT

enumerator ESPI_VWIRE_SIGNAL_SMIOUT

enumerator ESPI_VWIRE_SIGNAL_HOST_RST_WARN

enumerator ESPI_VWIRE_SIGNAL_SLP_A

enumerator ESPI_VWIRE_SIGNAL_SUS_PWRDN_ACK

enumerator ESPI_VWIRE_SIGNAL_SUS_WARN

enumerator ESPI_VWIRE_SIGNAL_SLP_WLAN

enumerator ESPI_VWIRE_SIGNAL_SLP_LAN
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enumerator ESPI_VWIRE_SIGNAL_HOST_C10

enumerator ESPI_VWIRE_SIGNAL_DNX_WARN

enumerator ESPI_VWIRE_SIGNAL_PME

enumerator ESPI_VWIRE_SIGNAL_WAKE

enumerator ESPI_VWIRE_SIGNAL_OOB_RST_ACK

enumerator ESPI_VWIRE_SIGNAL_TARGET_BOOT_STS

enumerator ESPI_VWIRE_SIGNAL_ERR_NON_FATAL

enumerator ESPI_VWIRE_SIGNAL_ERR_FATAL

enumerator ESPI_VWIRE_SIGNAL_TARGET_BOOT_DONE

enumerator ESPI_VWIRE_SIGNAL_HOST_RST_ACK

enumerator ESPI_VWIRE_SIGNAL_RST_CPU_INIT

enumerator ESPI_VWIRE_SIGNAL_SMI

enumerator ESPI_VWIRE_SIGNAL_SCI

enumerator ESPI_VWIRE_SIGNAL_DNX_ACK

enumerator ESPI_VWIRE_SIGNAL_SUS_ACK

enumerator ESPI_VWIRE_SIGNAL_TARGET_GPIO_0

enumerator ESPI_VWIRE_SIGNAL_TARGET_GPIO_1

enumerator ESPI_VWIRE_SIGNAL_TARGET_GPIO_2

enumerator ESPI_VWIRE_SIGNAL_TARGET_GPIO_3

enumerator ESPI_VWIRE_SIGNAL_TARGET_GPIO_4

enumerator ESPI_VWIRE_SIGNAL_TARGET_GPIO_5

enumerator ESPI_VWIRE_SIGNAL_TARGET_GPIO_6

enumerator ESPI_VWIRE_SIGNAL_TARGET_GPIO_7
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enumerator ESPI_VWIRE_SIGNAL_TARGET_GPIO_8

enumerator ESPI_VWIRE_SIGNAL_TARGET_GPIO_9

enumerator ESPI_VWIRE_SIGNAL_TARGET_GPIO_10

enumerator ESPI_VWIRE_SIGNAL_TARGET_GPIO_11

enumerator ESPI_VWIRE_SIGNAL_COUNT

enum lpc_peripheral_opcode
Values:

enumerator E8042_OBF_HAS_CHAR = 0x50

enumerator E8042_IBF_HAS_CHAR

enumerator E8042_WRITE_KB_CHAR

enumerator E8042_WRITE_MB_CHAR

enumerator E8042_RESUME_IRQ

enumerator E8042_PAUSE_IRQ

enumerator E8042_CLEAR_OBF

enumerator E8042_READ_KB_STS

enumerator E8042_SET_FLAG

enumerator E8042_CLEAR_FLAG

enumerator EACPI_OBF_HAS_CHAR = EACPI_START_OPCODE

enumerator EACPI_IBF_HAS_CHAR

enumerator EACPI_WRITE_CHAR

enumerator EACPI_READ_STS

enumerator EACPI_WRITE_STS

7.6. Peripherals 3327



Zephyr Project Documentation, Release 3.7.99

Functions

int espi_config(const struct device *dev, struct espi_cfg *cfg)
Configure operation of a eSPI controller.

This routine provides a generic interface to override eSPI controller capabilities.

If this eSPI controller is acting as target, the values set here will be discovered as part
through the GET_CONFIGURATION command issued by the eSPI controller during ini-
tialization.

If this eSPI controller is acting as controller, the values set here will be used by eSPI
controller to determine minimum common capabilities with eSPI target then send via
SET_CONFIGURATION command.

+---------+ +---------+ +------+ +---------+ +---------+
| eSPI | | eSPI | | eSPI | | eSPI | | eSPI |
| target | | driver | | bus | | driver | | host |
+--------+ +---------+ +------+ +---------+ +---------+

| | | | |
| espi_config | Set eSPI | Set eSPI | espi_config |
+--------------+ ctrl regs | cap ctrl reg| +-----------+
| +-------+ | +--------+ |
| |<------+ | +------->| |
| | | | |
| | | | |
| | | GET_CONFIGURATION | |
| | +<------------------+ |
| |<-----------| | |
| | eSPI caps | | |
| |----------->+ response | |
| | |------------------>+ |
| | | | |
| | | SET_CONFIGURATION | |
| | +<------------------+ |
| | | accept | |
| | +------------------>+ |
+ + + + +

Parameters
• dev – Pointer to the device structure for the driver instance.

• cfg – the device runtime configuration for the eSPI controller.

Return values
• 0 – If successful.

• -EIO – General input / output error, failed to configure device.

• -EINVAL – invalid capabilities, failed to configure device.

• -ENOTSUP – capability not supported by eSPI target.

bool espi_get_channel_status(const struct device *dev, enum espi_channel ch)
Query to see if it a channel is ready.

This routine allows to check if logical channel is ready before use. Note that queries
for channels not supported will always return false.

Parameters
• dev – Pointer to the device structure for the driver instance.

• ch – the eSPI channel for which status is to be retrieved.

3328 Chapter 7. Hardware Support



Zephyr Project Documentation, Release 3.7.99

Return values
• true – If eSPI channel is ready.

• false – otherwise.

int espi_read_request(const struct device *dev, struct espi_request_packet *req)
Sends memory, I/O or message read request over eSPI.

This routines provides a generic interface to send a read request packet.

Parameters
• dev – Pointer to the device structure for the driver instance.

• req – Address of structure representing a memory, I/O or message read
request.

Return values
• 0 – If successful.

• -ENOTSUP – if eSPI controller doesn’t support raw packets and instead low
memory transactions are handled by controller hardware directly.

• -EIO – General input / output error, failed to send over the bus.

int espi_write_request(const struct device *dev, struct espi_request_packet *req)
Sends memory, I/O or message write request over eSPI.

This routines provides a generic interface to send a write request packet.

Parameters
• dev – Pointer to the device structure for the driver instance.

• req – Address of structure representing a memory, I/O or message write
request.

Return values
• 0 – If successful.

• -ENOTSUP – if eSPI controller doesn’t support raw packets and instead low
memory transactions are handled by controller hardware directly.

• -EINVAL – General input / output error, failed to send over the bus.

int espi_read_lpc_request(const struct device *dev, enum lpc_peripheral_opcode op,
uint32_t *data)

Reads SOC data from a LPC peripheral with information updated over eSPI.

This routine provides a generic interface to read a block whose information was up-
dated by an eSPI transaction. Reading may trigger a transaction. The eSPI packet is
assembled by the HW block.

Parameters
• dev – Pointer to the device structure for the driver instance.

• op – Enum representing opcode for peripheral type and read request.

• data – Parameter to be read from to the LPC peripheral.

Return values
• 0 – If successful.

• -ENOTSUP – if eSPI peripheral is off or not supported.

• -EINVAL – for unimplemented lpc opcode, but in range.
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int espi_write_lpc_request(const struct device *dev, enum lpc_peripheral_opcode op,
uint32_t *data)

Writes data to a LPC peripheral which generates an eSPI transaction.

This routine provides a generic interface to write data to a block which triggers an eSPI
transaction. The eSPI packet is assembled by the HW block.

Parameters
• dev – Pointer to the device structure for the driver instance.

• op – Enum representing an opcode for peripheral type and write request.

• data – Represents the parameter passed to the LPC peripheral.

Return values
• 0 – If successful.

• -ENOTSUP – if eSPI peripheral is off or not supported.

• -EINVAL – for unimplemented lpc opcode, but in range.

int espi_send_vwire(const struct device *dev, enum espi_vwire_signal signal, uint8_t
level)

Sends system/platform signal as a virtual wire packet.

This routines provides a generic interface to send a virtual wire packet from target to
controller.

Parameters
• dev – Pointer to the device structure for the driver instance.

• signal – The signal to be send to eSPI controller.

• level – The level of signal requested LOW or HIGH.

Return values
• 0 – If successful.

• -EIO – General input / output error, failed to send over the bus.

int espi_receive_vwire(const struct device *dev, enum espi_vwire_signal signal, uint8_t
*level)

Retrieves level status for a signal encapsulated in a virtual wire.

This routines provides a generic interface to request a virtual wire packet from eSPI
controller and retrieve the signal level.

Parameters
• dev – Pointer to the device structure for the driver instance.

• signal – the signal to be requested from eSPI controller.

• level – the level of signal requested 0b LOW, 1b HIGH.

Return values
-EIO – General input / output error, failed request to controller.

int espi_send_oob(const struct device *dev, struct espi_oob_packet *pckt)
Sends SMBus transaction (out-of-band) packet over eSPI bus.

This routines provides an interface to encapsulate a SMBus transaction and send into
packet over eSPI bus

Parameters
• dev – Pointer to the device structure for the driver instance.
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• pckt – Address of the packet representation of SMBus transaction.

Return values
-EIO – General input / output error, failed request to controller.

int espi_receive_oob(const struct device *dev, struct espi_oob_packet *pckt)
Receives SMBus transaction (out-of-band) packet from eSPI bus.

This routines provides an interface to receive and decoded a SMBus transaction from
eSPI bus

Parameters
• dev – Pointer to the device structure for the driver instance.

• pckt – Address of the packet representation of SMBus transaction.

Return values
-EIO – General input / output error, failed request to controller.

int espi_read_flash(const struct device *dev, struct espi_flash_packet *pckt)
Sends a read request packet for shared flash.

This routines provides an interface to send a request to read the flash component
shared between the eSPI controller and eSPI targets.

Parameters
• dev – Pointer to the device structure for the driver instance.

• pckt – Address of the representation of read flash transaction.

Return values
• -ENOTSUP – eSPI flash logical channel transactions not supported.

• -EBUSY – eSPI flash channel is not ready or disabled by controller.

• -EIO – General input / output error, failed request to controller.

int espi_write_flash(const struct device *dev, struct espi_flash_packet *pckt)
Sends a write request packet for shared flash.

This routines provides an interface to send a request to write to the flash components
shared between the eSPI controller and eSPI targets.

Parameters
• dev – Pointer to the device structure for the driver instance.

• pckt – Address of the representation of write flash transaction.

Return values
• -ENOTSUP – eSPI flash logical channel transactions not supported.

• -EBUSY – eSPI flash channel is not ready or disabled by controller.

• -EIO – General input / output error, failed request to controller.

int espi_flash_erase(const struct device *dev, struct espi_flash_packet *pckt)
Sends a write request packet for shared flash.

This routines provides an interface to send a request to write to the flash components
shared between the eSPI controller and eSPI targets.

Parameters
• dev – Pointer to the device structure for the driver instance.

• pckt – Address of the representation of write flash transaction.

Return values
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• -ENOTSUP – eSPI flash logical channel transactions not supported.

• -EBUSY – eSPI flash channel is not ready or disabled by controller.

• -EIO – General input / output error, failed request to controller.

static inline void espi_init_callback(struct espi_callback *callback,
espi_callback_handler_t handler, enum
espi_bus_event evt_type)

Callback model.

+-------+ +-------------+ +------+ +---------+
| App | | eSPI driver | | HW | |eSPI Host|
+---+---+ +-------+-----+ +---+--+ +----+----+

| | | |
| espi_init_callback | | |
+----------------------------> | | |
| espi_add_callback | |
+----------------------------->+ |
| | | eSPI reset | eSPI host
| | IRQ +<------------+ resets the
| | <-----------+ | bus
|<-----------------------------| | |
| Report eSPI bus reset | Processed | |
| | within the | |
| | driver | |
| | | |
| | | VW CH ready| eSPI host
| | IRQ +<------------+ enables VW
| | <-----------+ | channel
| | | |
| | Processed | |
| | within the | |
| | driver | |
| | | |
| | | Memory I/O | Peripheral
| | <-------------+ event
| +<------------+ |
+<-----------------------------+ callback | |
| Report peripheral event | | |
| and data for the event | | |
| | | |
| | | SLP_S5 | eSPI host
| | <-------------+ send VWire
| +<------------+ |
+<-----------------------------+ callback | |
| App enables/configures | | |
| discrete regulator | | |
| | | |
| espi_send_vwire_signal | | |
+------------------------------>------------>|------------>|
| | | |
| | | HOST_RST | eSPI host
| | <-------------+ send VWire
| +<------------+ |
+<-----------------------------+ callback | |
| App reset host-related | | |
| data structures | | |
| | | |
| | | C10 | eSPI host
| | +<------------+ send VWire
| <-------------+ |
<------------------------------+ | |

(continues on next page)
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(continued from previous page)
| App executes | | |
+ power mgmt policy | | |

Helper to initialize a struct espi_callback properly.

Parameters
• callback – A valid Application’s callback structure pointer.

• handler – A valid handler function pointer.

• evt_type – indicates the eSPI event relevant for the handler. for
VWIRE_RECEIVED event the data will indicate the new level asserted

static inline int espi_add_callback(const struct device *dev, struct espi_callback
*callback)

Add an application callback.

Note: enables to add as many callback as needed on the same device.

Note

Callbacks may be added to the device from within a callback handler invocation,
but whether they are invoked for the current eSPI event is not specified.

Parameters
• dev – Pointer to the device structure for the driver instance.

• callback – A valid Application’s callback structure pointer.

Returns
0 if successful, negative errno code on failure.

static inline int espi_remove_callback(const struct device *dev, struct espi_callback
*callback)

Remove an application callback.

Note: enables to remove as many callbacks as added through espi_add_callback().

Warning

It is explicitly permitted, within a callback handler, to remove the registration for
the callback that is running, i.e. callback. Attempts to remove other registrations
on the same device may result in undefined behavior, including failure to invoke
callbacks that remain registered and unintended invocation of removed callbacks.

Parameters
• dev – Pointer to the device structure for the driver instance.

• callback – A valid application’s callback structure pointer.

Returns
0 if successful, negative errno code on failure.
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int espi_saf_config(const struct device *dev, const struct espi_saf_cfg *cfg)
Configure operation of a eSPI controller.

This routine provides a generic interface to override eSPI controller capabilities.

If this eSPI controller is acting as slave, the values set here will be discovered as part
through the GET_CONFIGURATION command issued by the eSPI master during initial-
ization.

If this eSPI controller is acting as master, the values set here will be used by eSPI
master to determine minimum common capabilities with eSPI slave then send via
SET_CONFIGURATION command.

+--------+ +---------+ +------+ +---------+ +---------+
| eSPI | | eSPI | | eSPI | | eSPI | | eSPI |
| slave | | driver | | bus | | driver | | host |
+--------+ +---------+ +------+ +---------+ +---------+

| | | | |
| espi_config | Set eSPI | Set eSPI | espi_config |
+--------------+ ctrl regs | cap ctrl reg| +-----------+
| +-------+ | +--------+ |
| |<------+ | +------->| |
| | | | |
| | | | |
| | | GET_CONFIGURATION | |
| | +<------------------+ |
| |<-----------| | |
| | eSPI caps | | |
| |----------->+ response | |
| | |------------------>+ |
| | | | |
| | | SET_CONFIGURATION | |
| | +<------------------+ |
| | | accept | |
| | +------------------>+ |
+ + + + +

Parameters
• dev – Pointer to the device structure for the driver instance.

• cfg – the device runtime configuration for the eSPI controller.

Return values
• 0 – If successful.

• -EIO – General input / output error, failed to configure device.

• -EINVAL – invalid capabilities, failed to configure device.

• -ENOTSUP – capability not supported by eSPI slave.

int espi_saf_set_protection_regions(const struct device *dev, const struct
espi_saf_protection *pr)

Set one or more SAF protection regions.

This routine provides an interface to override the default flash protection regions of
the SAF controller.

Parameters
• dev – Pointer to the device structure for the driver instance.

• pr – Pointer to the SAF protection region structure.

Return values
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• 0 – If successful.

• -EIO – General input / output error, failed to configure device.

• -EINVAL – invalid capabilities, failed to configure device.

• -ENOTSUP – capability not supported by eSPI slave.

int espi_saf_activate(const struct device *dev)
Activate SAF block.

This routine activates the SAF block and should only be called after SAF has been con-
figured and the eSPI Master has enabled the Flash Channel.

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
• 0 – If successful

• -EINVAL – if failed to activate SAF.

bool espi_saf_get_channel_status(const struct device *dev)
Query to see if SAF is ready.

This routine allows to check if SAF is ready before use.

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
• true – If eSPI SAF is ready.

• false – otherwise.

int espi_saf_flash_read(const struct device *dev, struct espi_saf_packet *pckt)
Sends a read request packet for slave attached flash.

This routines provides an interface to send a request to read the flash component
shared between the eSPI master and eSPI slaves.

Parameters
• dev – Pointer to the device structure for the driver instance.

• pckt – Address of the representation of read flash transaction.

Return values
• -ENOTSUP – eSPI flash logical channel transactions not supported.

• -EBUSY – eSPI flash channel is not ready or disabled by master.

• -EIO – General input / output error, failed request to master.

int espi_saf_flash_write(const struct device *dev, struct espi_saf_packet *pckt)
Sends a write request packet for slave attached flash.

This routines provides an interface to send a request to write to the flash components
shared between the eSPI master and eSPI slaves.

Parameters
• dev – Pointer to the device structure for the driver instance.

• pckt – Address of the representation of write flash transaction.

Return values
• -ENOTSUP – eSPI flash logical channel transactions not supported.

7.6. Peripherals 3335



Zephyr Project Documentation, Release 3.7.99

• -EBUSY – eSPI flash channel is not ready or disabled by master.

• -EIO – General input / output error, failed request to master.

int espi_saf_flash_erase(const struct device *dev, struct espi_saf_packet *pckt)
Sends a write request packet for slave attached flash.

This routines provides an interface to send a request to write to the flash components
shared between the eSPI master and eSPI slaves.

Parameters
• dev – Pointer to the device structure for the driver instance.

• pckt – Address of the representation of erase flash transaction.

Return values
• -ENOTSUP – eSPI flash logical channel transactions not supported.

• -EBUSY – eSPI flash channel is not ready or disabled by master.

• -EIO – General input / output error, failed request to master.

int espi_saf_flash_unsuccess(const struct device *dev, struct espi_saf_packet *pckt)
Response unsuccessful completion for slave attached flash.

This routines provides an interface to response that transaction is invalid and return
unsuccessful completion from target to controller.

Parameters
• dev – Pointer to the device structure for the driver instance.

• pckt – Address of the representation of flash transaction.

Return values
• -ENOTSUP – eSPI flash logical channel transactions not supported.

• -EBUSY – eSPI flash channel is not ready or disabled by master.

• -EIO – General input / output error, failed request to master.

static inline void espi_saf_init_callback(struct espi_callback *callback,
espi_callback_handler_t handler, enum
espi_bus_event evt_type)

Callback model.

+-------+ +-------------+ +------+ +---------+
| App | | eSPI driver | | HW | |eSPI Host|
+---+---+ +-------+-----+ +---+--+ +----+----+

| | | |
| espi_init_callback | | |
+----------------------------> | | |
| espi_add_callback | |
+----------------------------->+ |
| | | eSPI reset | eSPI host
| | IRQ +<------------+ resets the
| | <-----------+ | bus
| | | |
| | Processed | |
| | within the | |
| | driver | |
| | | |

| | | VW CH ready| eSPI host
| | IRQ +<------------+ enables VW

(continues on next page)
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(continued from previous page)
| | <-----------+ | channel
| | | |
| | Processed | |
| | within the | |
| | driver | |
| | | |
| | | Memory I/O | Peripheral
| | <-------------+ event
| +<------------+ |
+<-----------------------------+ callback | |
| Report peripheral event | | |
| and data for the event | | |
| | | |
| | | SLP_S5 | eSPI host
| | <-------------+ send VWire
| +<------------+ |
+<-----------------------------+ callback | |
| App enables/configures | | |
| discrete regulator | | |
| | | |
| espi_send_vwire_signal | | |
+------------------------------>------------>|------------>|
| | | |
| | | HOST_RST | eSPI host
| | <-------------+ send VWire
| +<------------+ |
+<-----------------------------+ callback | |
| App reset host-related | | |
| data structures | | |
| | | |
| | | C10 | eSPI host
| | +<------------+ send VWire
| <-------------+ |
<------------------------------+ | |
| App executes | | |
+ power mgmt policy | | |

Helper to initialize a struct espi_callback properly.

Parameters
• callback – A valid Application’s callback structure pointer.

• handler – A valid handler function pointer.

• evt_type – indicates the eSPI event relevant for the handler. for
VWIRE_RECEIVED event the data will indicate the new level asserted

static inline int espi_saf_add_callback(const struct device *dev, struct espi_callback
*callback)

Add an application callback.

Note: enables to add as many callback as needed on the same device.

Note

Callbacks may be added to the device from within a callback handler invocation,
but whether they are invoked for the current eSPI event is not specified.

Parameters
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• dev – Pointer to the device structure for the driver instance.

• callback – A valid Application’s callback structure pointer.

Returns
0 if successful, negative errno code on failure.

static inline int espi_saf_remove_callback(const struct device *dev, struct espi_callback
*callback)

Remove an application callback.

Note: enables to remove as many callbacks as added through espi_add_callback().

Warning

It is explicitly permitted, within a callback handler, to remove the registration for
the callback that is running, i.e. callback. Attempts to remove other registrations
on the same device may result in undefined behavior, including failure to invoke
callbacks that remain registered and unintended invocation of removed callbacks.

Parameters
• dev – Pointer to the device structure for the driver instance.

• callback – A valid application’s callback structure pointer.

Returns
0 if successful, negative errno code on failure.

struct espi_evt_data_kbc
#include <espi.h> Bit field definition of evt_data in struct espi_event for KBC.

struct espi_evt_data_acpi
#include <espi.h> Bit field definition of evt_data in struct espi_event for ACPI.

struct espi_event
#include <espi.h> eSPI event

Public Members

enum espi_bus_event evt_type
Event type.

uint32_t evt_details
Additional details for bus event type.

uint32_t evt_data
Data associated to the event.

struct espi_cfg
#include <espi.h> eSPI bus configuration parameters
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Public Members

enum espi_io_mode io_caps
Supported I/O mode.

enum espi_channel channel_caps
Supported channels.

uint8_t max_freq
Maximum supported frequency in MHz.

struct espi_request_packet
#include <espi.h> eSPI peripheral request packet format

struct espi_oob_packet
#include <espi.h> eSPI out-of-band transaction packet format

For Tx packet, eSPI driver client shall specify the OOB payload data and its length in
bytes. For Rx packet, eSPI driver client shall indicate the maximum number of bytes
that can receive, while the eSPI driver should update the length field with the actual
data received/available.

In all cases, the length does not include OOB header size 3 bytes.

struct espi_flash_packet
#include <espi.h> eSPI flash transactions packet format

struct espi_saf_cfg
#include <espi_saf.h> eSPI SAF configuration parameters

struct espi_saf_packet
#include <espi_saf.h> eSPI SAF transaction packet format

7.6.17 Entropy

Overview

The entropy API provides functions to retrieve entropy values from entropy hardware present on
the platform. The entropy APIs are provided for use by the random subsystem and cryptographic
services. They are not suitable to be used as random number generation functions.

API Reference

group entropy_interface
Entropy Interface.

Since
1.10

Version
1.0.0
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Defines

ENTROPY_BUSYWAIT
Driver is allowed to busy-wait for random data to be ready.

Typedefs

typedef int (*entropy_get_entropy_t)(const struct device *dev, uint8_t *buffer, uint16_t
length)

Callback API to get entropy.

See entropy_get_entropy() for argument description

Note

This call has to be thread safe to satisfy requirements of the random subsystem.

typedef int (*entropy_get_entropy_isr_t)(const struct device *dev, uint8_t *buffer,
uint16_t length, uint32_t flags)

Callback API to get entropy from an ISR.

See entropy_get_entropy_isr() for argument description

Functions

int entropy_get_entropy(const struct device *dev, uint8_t *buffer, uint16_t length)
Fills a buffer with entropy.

Blocks if required in order to generate the necessary random data.

Parameters
• dev – Pointer to the entropy device.

• buffer – Buffer to fill with entropy.

• length – Buffer length.

Return values
• 0 – on success.

• -ERRNO – errno code on error.

static inline int entropy_get_entropy_isr(const struct device *dev, uint8_t *buffer,
uint16_t length, uint32_t flags)

Fills a buffer with entropy in a non-blocking or busy-wait manner.

Callable from ISRs.

Parameters
• dev – Pointer to the device structure.

• buffer – Buffer to fill with entropy.

• length – Buffer length.
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• flags – Flags to modify the behavior of the call.

Return values
number – of bytes filled with entropy or -error.

struct entropy_driver_api
#include <entropy.h> Entropy driver API structure.

This is the mandatory API any Entropy driver needs to expose.

7.6.18 Error Detection And Correction (EDAC)

Error Detection And Correction is a mechanism used to detect and correct errors while storing
or reading data.

In Band Error Correction Code (IBECC)

Overview The mechanism initially found in Intel Elkhart Lake SOCs and later boards is an
integrated memory controller with IBECC.

The In-Band Error Correction Code (IBECC) improves reliability by providing error detection and
correction. IBECC can work for all or for specific regions of physical memory space. The IBECC
is useful for memory technologies that do not support the out-of-band ECC.

IBECC adds memory overhead of 1/32 of the memory. This memory is not accessible and used to
store ECC syndrome data. IBECC converts read / write transactions to two separate transactions:
one for actual data and another for cache line containing ECC value.

There is a debug feature IBECC Error Injection which helps to debug and verify IBECC function-
ality. ECC errors are injected on the write path and cause ECC errors on the read path.

IBECC Configuration There are three IBECC operation modes which can be selected by Boot-
loader. They are listed below:

• OPERATION_MODE = 0x0 sets functional mode to protect requests based on address range

• OPERATION_MODE = 0x1 sets functional mode to all requests not be protected and to ignore
range checks

• OPERATION_MODE = 0x2 sets functional mode to protect all requests and ignore range
checks

IBECC operational mode is configured through BIOS or Bootloader. For operation mode 0 there
are more BIOS configuration options such as memory regions.

Due to high security risk Error Injection capability should not be enabled for production. Error
Injection is only enabled for tests.

IBECC Logging IBECC logs the following fields:

• Error Address

• Error Syndrome

• Error Type

– Correctable Error (CE) - error is detected and corrected by IBECC module.

– Uncorrectable Error (UE) - error is detected by IBECC module and not automatically
corrected.
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The IBECC driver provides error type for the higher-level application to implement desired policy
with respect for handling those memory errors. Error syndrome is not used in the IBECC driver
but provided to higher-level application.

Usage notes Exceptional care needs to be taken with Non Maskable Interrupt (NMI). NMI will
arrive at any time, even if the local CPU has disabled interrupts. That means that no locking
mechanism can protect code against an NMI happening. Zephyr’s IPC mechanisms universally
use local IRQ locking as the base layer for all higher-level synchronization primitives. So, you
cannot share anything that is “protected” by a lock with an NMI, because the protection does not
work. The only tool you have available for synchronization in the Zephyr API that works against
an NMI is the atomic layer. This also applies to callback function which is called by NMI handler.

Configuration option Related configuration option:

• CONFIG_EDAC_IBECC

Configuration option

Related configuration option:

• CONFIG_EDAC

API Reference

Related code samples

EDAC shell
Test error detection and correction (EDAC) using shell commands.

group edac

Since
2.5

Version
0.8.0

Optional interfaces

EDAC Optional Interfaces

static inline int edac_inject_set_param1(const struct device *dev, uint64_t value)
Set injection parameter param1.

Set first error injection parameter value.

Parameters
• dev – Pointer to the device structure

• value – First injection parameter

Return values
• -ENOSYS – if the optional interface is not implemented
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• 0 – on success, other error code otherwise

static inline int edac_inject_get_param1(const struct device *dev, uint64_t *value)
Get injection parameter param1.

Get first error injection parameter value.

Parameters
• dev – Pointer to the device structure

• value – Pointer to the first injection parameter

Return values
• -ENOSYS – if the optional interface is not implemented

• 0 – on success, error code otherwise

static inline int edac_inject_set_param2(const struct device *dev, uint64_t value)
Set injection parameter param2.

Set second error injection parameter value.

Parameters
• dev – Pointer to the device structure

• value – Second injection parameter

Return values
• -ENOSYS – if the optional interface is not implemented

• 0 – on success, error code otherwise

static inline int edac_inject_get_param2(const struct device *dev, uint64_t *value)
Get injection parameter param2.

Parameters
• dev – Pointer to the device structure

• value – Pointer to the second injection parameter

Return values
• -ENOSYS – if the optional interface is not implemented

• 0 – on success, error code otherwise

static inline int edac_inject_set_error_type(const struct device *dev, uint32_t
error_type)

Set error type value.

Set the value of error type to be injected

Parameters
• dev – Pointer to the device structure

• error_type – Error type value

Return values
• -ENOSYS – if the optional interface is not implemented

• 0 – on success, error code otherwise
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static inline int edac_inject_get_error_type(const struct device *dev, uint32_t
*error_type)

Get error type value.

Get the value of error type to be injected

Parameters
• dev – Pointer to the device structure

• error_type – Pointer to error type value

Return values
• -ENOSYS – if the optional interface is not implemented

• 0 – on success, error code otherwise

static inline int edac_inject_error_trigger(const struct device *dev)
Set injection control.

Trigger error injection.

Parameters
• dev – Pointer to the device structure

Return values
• -ENOSYS – if the optional interface is not implemented

• 0 – on success, error code otherwise

Mandatory interfaces

EDAC Mandatory Interfaces

static inline int edac_ecc_error_log_get(const struct device *dev, uint64_t *value)
Get ECC Error Log.

Read value of ECC Error Log.

Parameters
• dev – Pointer to the device structure

• value – Pointer to the ECC Error Log value

Return values
• 0 – on success, error code otherwise

• -ENOSYS – if the mandatory interface is not implemented

static inline int edac_ecc_error_log_clear(const struct device *dev)
Clear ECC Error Log.

Clear value of ECC Error Log.

Parameters
• dev – Pointer to the device structure

Return values
• 0 – on success, error code otherwise

• -ENOSYS – if the mandatory interface is not implemented
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static inline int edac_parity_error_log_get(const struct device *dev, uint64_t *value)
Get Parity Error Log.

Read value of Parity Error Log.

Parameters
• dev – Pointer to the device structure

• value – Pointer to the parity Error Log value

Return values
• 0 – on success, error code otherwise

• -ENOSYS – if the mandatory interface is not implemented

static inline int edac_parity_error_log_clear(const struct device *dev)
Clear Parity Error Log.

Clear value of Parity Error Log.

Parameters
• dev – Pointer to the device structure

Return values
• 0 – on success, error code otherwise

• -ENOSYS – if the mandatory interface is not implemented

static inline int edac_errors_cor_get(const struct device *dev)
Get number of correctable errors.

Parameters
• dev – Pointer to the device structure

Return values
• num – Number of correctable errors

• -ENOSYS – if the mandatory interface is not implemented

static inline int edac_errors_uc_get(const struct device *dev)
Get number of uncorrectable errors.

Parameters
• dev – Pointer to the device structure

Return values
• num – Number of uncorrectable errors

• -ENOSYS – if the mandatory interface is not implemented

static inline int edac_notify_callback_set(const struct device *dev,
edac_notify_callback_f cb)

Register callback function for memory error exception.

This callback runs in interrupt context

Parameters
• dev – EDAC driver device to install callback

• cb – Callback function pointer

Return values
• 0 – on success, error code otherwise
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• -ENOSYS – if the mandatory interface is not implemented

Enums

enum edac_error_type
EDAC error type.

Values:

enumerator EDAC_ERROR_TYPE_DRAM_COR = BIT(0)
Correctable error type.

enumerator EDAC_ERROR_TYPE_DRAM_UC = BIT(1)
Uncorrectable error type.

7.6.19 Flash

Overview

Flash offset concept
Offsets used by the user API are expressed in relation to the flash memory beginning address.
This rule shall be applied to all flash controller regular memory that layout is accessible via API
for retrieving the layout of pages (see CONFIG_FLASH_PAGE_LAYOUT).

An exception from the rule may be applied to a vendor-specific flash dedicated-purpose region
(such a region obviously can’t be covered under API for retrieving the layout of pages).

User API Reference

Related code samples

AT45 DataFlash driver
Use the AT45 family DataFlash driver to interact with the flash memory over SPI.

ESP32 Flash Memory-Mapped
Write data into scratch area and read it using flash API and memory-mapped pointer.

Flash shell
Explore a flash device using shell commands.

JEDEC MSPI-NOR flash
Use the flash API to interact with a MSPI NOR serial flash memory device.

JEDEC SPI-NOR flash
Use the flash API to interact with an SPI NOR serial flash memory device.

JESD216 flash
Use the JESD216 flash API to extract information from a compatible serial memory de-
vice.

nRF SoC Internal Storage
Use the flash API to interact with the SoC flash.
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group flash_interface
FLASH Interface.

Since
1.2

Version
1.0.0

Defines

FLASH_ERASE_C_EXPLICIT
Set for ordinary Flash where erase is needed before write of random data.

FLASH_ERASE_CAPS_UNSET
Reserved for users as initializer for variables that will later store capabilities.

FLASH_ERASE_C_SUPPORTED

FLASH_ERASE_C_VAL_BIT

FLASH_ERASE_UNIFORM_PAGE

FLASH_EX_OP_VENDOR_BASE

FLASH_EX_OP_IS_VENDOR(c)

Typedefs

typedef bool (*flash_page_cb)(const struct flash_pages_info *info, void *data)
Callback type for iterating over flash pages present on a device.

The callback should return true to continue iterating, and false to halt.

See also

flash_page_foreach()

Param info
Information for current page

Param data
Private data for callback

Return
True to continue iteration, false to halt iteration.
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Enums

enum flash_ex_op_types
Enumeration for extra flash operations.

Values:

enumerator FLASH_EX_OP_RESET = 0

Functions

static inline int flash_params_get_erase_cap(const struct flash_parameters *p)

int flash_read(const struct device *dev, off_t offset, void *data, size_t len)
Read data from flash.

All flash drivers support reads without alignment restrictions on the read offset, the
read size, or the destination address.

Parameters
• dev – : flash dev

• offset – : Offset (byte aligned) to read

• data – : Buffer to store read data

• len – : Number of bytes to read.

Returns
0 on success, negative errno code on fail.

int flash_write(const struct device *dev, off_t offset, const void *data, size_t len)
Write buffer into flash memory.

All flash drivers support a source buffer located either in RAM or SoC flash, without
alignment restrictions on the source address. Write size and offset must be multiples
of the minimum write block size supported by the driver.

Any necessary write protection management is performed by the driver write imple-
mentation itself.

Parameters
• dev – : flash device

• offset – : starting offset for the write

• data – : data to write

• len – : Number of bytes to write

Returns
0 on success, negative errno code on fail.

int flash_erase(const struct device *dev, off_t offset, size_t size)
Erase part or all of a flash memory.

Acceptable values of erase size and offset are subject to hardware-specific multiples of
page size and offset. Please check the API implemented by the underlying sub driver,
for example by using flash_get_page_info_by_offs() if that is supported by your flash
driver.

Any necessary erase protection management is performed by the driver erase imple-
mentation itself.
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The function should be used only for devices that are really explicit erase devices; in
case when code relies on erasing device, i.e. setting it to erase-value, prior to some
operations, but should work with explicit erase and RAM non-volatile devices, then
flash_flatten should rather be used.

See also

flash_flatten()

See also

flash_get_page_info_by_offs()

See also

flash_get_page_info_by_idx()

Parameters
• dev – : flash device

• offset – : erase area starting offset

• size – : size of area to be erased

Returns
0 on success, negative errno code on fail.

int flash_fill(const struct device *dev, uint8_t val, off_t offset, size_t size)
Fill selected range of device with specified value.

Utility function that allows to fill specified range on a device with provided value. The
offset and size of range need to be aligned to a write block size of a device.

Parameters
• dev – : flash device

• val – : value to use for filling the range

• offset – : offset of the range to fill

• size – : size of the range

Returns
0 on success, negative errno code on fail.

int flash_flatten(const struct device *dev, off_t offset, size_t size)
Erase part or all of a flash memory or level it.

If device is explicit erase type device or device driver provides erase callback, the call-
back of the device is called, in which it behaves the same way as flash_erase. If a
device does not require explicit erase, either because it has no erase at all or has auto-
erase/erase-on-write, and does not provide erase callback then erase is emulated by
leveling selected device memory area with erase_value assigned to device.

Erase page offset and size are constrains of paged, explicit erase devices, but can be
relaxed with devices without such requirement, which means that it is up to user code
to make sure they are correct as the function will return on, if these constrains are
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not met, -EINVAL for paged device, but may succeed on non-explicit erase devices. For
RAM non-volatile devices the erase pages are emulated, at this point, to allow smooth
transition for code relying on device being paged to function properly; but this is com-
pletely software constrain.

Generally: if your code previously required device to be erase prior to some actions to
work, replace flash_erase calls with this function; but if your code can work with non-
volatile RAM type devices, without emulating erase, you should rather have different
path of execution for page-erase, i.e. Flash, devices and call flash_erase for them.

See also

flash_erase()

Parameters
• dev – : flash device

• offset – : erase area starting offset

• size – : size of area to be erased

Returns
0 on success, negative errno code on fail.

int flash_get_page_info_by_offs(const struct device *dev, off_t offset, struct
flash_pages_info *info)

Get the size and start offset of flash page at certain flash offset.

Parameters
• dev – flash device

• offset – Offset within the page

• info – Page Info structure to be filled

Returns
0 on success, -EINVAL if page of the offset doesn’t exist.

int flash_get_page_info_by_idx(const struct device *dev, uint32_t page_index, struct
flash_pages_info *info)

Get the size and start offset of flash page of certain index.

Parameters
• dev – flash device

• page_index – Index of the page. Index are counted from 0.

• info – Page Info structure to be filled

Returns
0 on success, -EINVAL if page of the index doesn’t exist.

size_t flash_get_page_count(const struct device *dev)
Get the total number of flash pages.

Parameters
• dev – flash device

Returns
Number of flash pages.
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void flash_page_foreach(const struct device *dev, flash_page_cb cb, void *data)
Iterate over all flash pages on a device.

This routine iterates over all flash pages on the given device, ordered by increasing
start offset. For each page, it invokes the given callback, passing it the page’s informa-
tion and a private data object.

Parameters
• dev – Device whose pages to iterate over

• cb – Callback to invoke for each flash page

• data – Private data for callback function

int flash_sfdp_read(const struct device *dev, off_t offset, void *data, size_t len)
Read data from Serial Flash Discoverable Parameters.

This routine reads data from a serial flash device compatible with the JEDEC JESD216
standard for encoding flash memory characteristics.

Availability of this API is conditional on selecting CONFIG_FLASH_JESD216_API and sup-
port of that functionality in the driver underlying dev.

Parameters
• dev – device from which parameters will be read

• offset – address within the SFDP region containing data of interest

• data – where the data to be read will be placed

• len – the number of bytes of data to be read

Return values
• 0 – on success

• -ENOTSUP – if the flash driver does not support SFDP access

• negative – values for other errors.

int flash_read_jedec_id(const struct device *dev, uint8_t *id)
Read the JEDEC ID from a compatible flash device.

Parameters
• dev – device from which id will be read

• id – pointer to a buffer of at least 3 bytes into which id will be stored

Return values
• 0 – on successful store of 3-byte JEDEC id

• -ENOTSUP – if flash driver doesn’t support this function

• negative – values for other errors

size_t flash_get_write_block_size(const struct device *dev)
Get the minimum write block size supported by the driver.

The write block size supported by the driver might differ from the write block size of
memory used because the driver might implements write-modify algorithm.

Parameters
• dev – flash device

Returns
write block size in bytes.
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const struct flash_parameters *flash_get_parameters(const struct device *dev)
Get pointer to flash_parameters structure.

Returned pointer points to a structure that should be considered constant through a
runtime, regardless if it is defined in RAM or Flash. Developer is free to cache the
structure pointer or copy its contents.

Returns
pointer to flash_parameters structure characteristic for the device.

int flash_ex_op(const struct device *dev, uint16_t code, const uintptr_t in, void *out)
Execute flash extended operation on given device.

Besides of standard flash operations like write or erase, flash controllers also support
additional features like write protection or readout protection. These features are not
available in every flash controller, what’s more controllers can implement it in a dif-
ferent way.

It doesn’t make sense to add a separate flash API function for every flash controller
feature, because it could be unique (supported on small number of flash controllers)
or the API won’t be able to represent the same feature on every flash controller.

Parameters
• dev – Flash device

• code – Operation which will be executed on the device.

• in – Pointer to input data used by operation. If operation doesn’t need
any input data it could be NULL.

• out – Pointer to operation output data. If operation doesn’t produce any
output it could be NULL.

Return values
• 0 – on success.

• -ENOTSUP – if given device doesn’t support extended operation.

• -ENOSYS – if support for extended operations is not enabled in Kconfig

• negative – value on extended operation errors.

struct flash_parameters
#include <flash.h> Flash memory parameters.

Contents of this structure suppose to be filled in during flash device initialization and
stay constant through a runtime.

Public Members

const size_t write_block_size
Minimal write alignment and size.

uint8_t erase_value
Value the device is filled in erased areas.

struct flash_pages_info
#include <flash.h>
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Implementation interface API Reference

group flash_internal_interface
FLASH internal Interface.

Typedefs

typedef int (*flash_api_read)(const struct device *dev, off_t offset, void *data, size_t len)

typedef int (*flash_api_write)(const struct device *dev, off_t offset, const void *data,
size_t len)

Flash write implementation handler type.

Note

Any necessary write protection management must be performed by the driver, with
the driver responsible for ensuring the “write-protect” after the operation com-
pletes (successfully or not) matches the write-protect state when the operation was
started.

typedef int (*flash_api_erase)(const struct device *dev, off_t offset, size_t size)
Flash erase implementation handler type.

The callback is optional for RAM non-volatile devices, which do not require erase by
design, but may be provided if it allows device to work more effectively, or if device
has a support for internal fill operation the erase in driver uses.

Note

Any necessary erase protection management must be performed by the driver, with
the driver responsible for ensuring the “erase-protect” after the operation com-
pletes (successfully or not) matches the erase-protect state when the operation was
started.

typedef const struct flash_parameters *(*flash_api_get_parameters)(const struct device
*dev)

typedef void (*flash_api_pages_layout)(const struct device *dev, const struct
flash_pages_layout **layout, size_t *layout_size)

Retrieve a flash device’s layout.

A flash device layout is a run-length encoded description of the pages on the device.
(Here, “page” means the smallest erasable area on the flash device.)

For flash memories which have uniform page sizes, this routine returns an array of
length 1, which specifies the page size and number of pages in the memory.

Layouts for flash memories with nonuniform page sizes will be returned as an array
with multiple elements, each of which describes a group of pages that all have the
same size. In this case, the sequence of array elements specifies the order in which
these groups occur on the device.
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Param dev
Flash device whose layout to retrieve.

Param layout
The flash layout will be returned in this argument.

Param layout_size
The number of elements in the returned layout.

typedef int (*flash_api_sfdp_read)(const struct device *dev, off_t offset, void *data, size_t
len)

typedef int (*flash_api_read_jedec_id)(const struct device *dev, uint8_t *id)

typedef int (*flash_api_ex_op)(const struct device *dev, uint16_t code, const uintptr_t in,
void *out)

struct flash_pages_layout
#include <flash.h>

struct flash_driver_api
#include <flash.h>

7.6.20 Fuel Gauge

The fuel gauge subsystem exposes an API to uniformly access battery fuel gauge devices. Cur-
rently, only reading data is supported.

Note: This API is currently experimental and this doc will be significantly changed as new fea-
tures are added to the API.

Basic Operation

Properties Fundamentally, a property is a quantity that a fuel gauge device can measure.

Fuel gauges typically support multiple properties, such as temperature readings of the battery-
pack or present-time current/voltage.

Properties are fetched by the client one at a time using fuel_gauge_get_prop(), or fetched in a
batch using fuel_gauge_get_props().

Properties are set by the client one at a time using fuel_gauge_set_prop(), or set in a batch using
fuel_gauge_set_props().

Battery Cutoff Many fuel gauges embedded within battery packs expose a register address
that when written to with a specific payload will do a battery cutoff. This battery cutoff is often
referred to as ship, shelf, or sleep mode due to its utility in reducing battery drain while devices
are stored or shipped.

The fuel gauge API exposes battery cutoff with the fuel_gauge_battery_cutoff() function.

Caching The Fuel Gauge API explicitly provides no caching for its clients.
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API Reference

group fuel_gauge_interface
Fuel Gauge Interface.

Since
3.3

Version
0.1.0

Defines

SBS_GAUGE_MANUFACTURER_NAME_MAX_SIZE
Data structures for reading SBS buffer properties.

SBS_GAUGE_DEVICE_NAME_MAX_SIZE

SBS_GAUGE_DEVICE_CHEMISTRY_MAX_SIZE

Typedefs

typedef uint16_t fuel_gauge_prop_t

typedef int (*fuel_gauge_get_property_t)(const struct device *dev, fuel_gauge_prop_t
prop, union fuel_gauge_prop_val *val)

Callback API for getting a fuel_gauge property.

See fuel_gauge_get_property() for argument description

typedef int (*fuel_gauge_set_property_t)(const struct device *dev, fuel_gauge_prop_t
prop, union fuel_gauge_prop_val val)

Callback API for setting a fuel_gauge property.

See fuel_gauge_set_property() for argument description

typedef int (*fuel_gauge_get_buffer_property_t)(const struct device *dev,
fuel_gauge_prop_t prop_type, void *dst, size_t dst_len)

Callback API for getting a fuel_gauge buffer property.

See fuel_gauge_get_buffer_property() for argument description

typedef int (*fuel_gauge_battery_cutoff_t)(const struct device *dev)
Callback API for doing a battery cutoff.

See fuel_gauge_battery_cutoff() for argument description
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Enums

enum fuel_gauge_prop_type
Values:

enumerator FUEL_GAUGE_AVG_CURRENT = 0
Runtime Dynamic Battery Parameters.

Provide a 1 minute average of the current on the battery. Does not check for
flags or whether those values are bad readings. See driver instance header for
details on implementation and how the average is calculated. Units in uA nega-
tive=discharging

enumerator FUEL_GAUGE_BATTERY_CUTOFF
Used to cutoff the battery from the system - useful for storage/shipping of devices.

enumerator FUEL_GAUGE_CURRENT
Battery current (uA); negative=discharging.

enumerator FUEL_GAUGE_CHARGE_CUTOFF
Whether the battery underlying the fuel-gauge is cut off from charge.

enumerator FUEL_GAUGE_CYCLE_COUNT
Cycle count in 1/100ths (number of charge/discharge cycles)

enumerator FUEL_GAUGE_CONNECT_STATE
Connect state of battery.

enumerator FUEL_GAUGE_FLAGS
General Error/Runtime Flags.

enumerator FUEL_GAUGE_FULL_CHARGE_CAPACITY
Full Charge Capacity in uAh (might change in some implementations to determine
wear)

enumerator FUEL_GAUGE_PRESENT_STATE
Is the battery physically present.

enumerator FUEL_GAUGE_REMAINING_CAPACITY
Remaining capacity in uAh.

enumerator FUEL_GAUGE_RUNTIME_TO_EMPTY
Remaining battery life time in minutes.

enumerator FUEL_GAUGE_RUNTIME_TO_FULL
Remaining time in minutes until battery reaches full charge.

enumerator FUEL_GAUGE_SBS_MFR_ACCESS
Retrieve word from SBS1.1 ManufactuerAccess.
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enumerator FUEL_GAUGE_ABSOLUTE_STATE_OF_CHARGE
Absolute state of charge (percent, 0-100) - expressed as % of design capacity.

enumerator FUEL_GAUGE_RELATIVE_STATE_OF_CHARGE
Relative state of charge (percent, 0-100) - expressed as % of full charge capacity.

enumerator FUEL_GAUGE_TEMPERATURE
Temperature in 0.1 K.

enumerator FUEL_GAUGE_VOLTAGE
Battery voltage (uV)

enumerator FUEL_GAUGE_SBS_MODE
Battery Mode (flags)

enumerator FUEL_GAUGE_CHARGE_CURRENT
Battery desired Max Charging Current (uA)

enumerator FUEL_GAUGE_CHARGE_VOLTAGE
Battery desired Max Charging Voltage (uV)

enumerator FUEL_GAUGE_STATUS
Alarm, Status and Error codes (flags)

enumerator FUEL_GAUGE_DESIGN_CAPACITY
Design Capacity (mAh or 10mWh)

enumerator FUEL_GAUGE_DESIGN_VOLTAGE
Design Voltage (mV)

enumerator FUEL_GAUGE_SBS_ATRATE
AtRate (mA or 10 mW)

enumerator FUEL_GAUGE_SBS_ATRATE_TIME_TO_FULL
AtRateTimeToFull (minutes)

enumerator FUEL_GAUGE_SBS_ATRATE_TIME_TO_EMPTY
AtRateTimeToEmpty (minutes)

enumerator FUEL_GAUGE_SBS_ATRATE_OK
AtRateOK (boolean)

enumerator FUEL_GAUGE_SBS_REMAINING_CAPACITY_ALARM
Remaining Capacity Alarm (mAh or 10mWh)

enumerator FUEL_GAUGE_SBS_REMAINING_TIME_ALARM
Remaining Time Alarm (minutes)
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enumerator FUEL_GAUGE_MANUFACTURER_NAME
Manufacturer of pack (1 byte length + 20 bytes data)

enumerator FUEL_GAUGE_DEVICE_NAME
Name of pack (1 byte length + 20 bytes data)

enumerator FUEL_GAUGE_DEVICE_CHEMISTRY
Chemistry (1 byte length + 4 bytes data)

enumerator FUEL_GAUGE_COMMON_COUNT
Reserved to demark end of common fuel gauge properties.

enumerator FUEL_GAUGE_CUSTOM_BEGIN
Reserved to demark downstream custom properties - use this value as the actual
value may change over future versions of this API.

enumerator FUEL_GAUGE_PROP_MAX = UINT16_MAX
Reserved to demark end of valid enum properties.

Functions

int fuel_gauge_get_prop(const struct device *dev, fuel_gauge_prop_t prop, union
fuel_gauge_prop_val *val)

Fetch a battery fuel-gauge property.

Parameters
• dev – Pointer to the battery fuel-gauge device

• prop – Type of property to be fetched from device

• val – pointer to a union fuel_gauge_prop_val where the property is read
into from the fuel gauge device.

Returns
0 if successful, negative errno code if failure.

int fuel_gauge_get_props(const struct device *dev, fuel_gauge_prop_t *props, union
fuel_gauge_prop_val *vals, size_t len)

Fetch multiple battery fuel-gauge properties.

The default implementation is the same as calling fuel_gauge_get_prop()multiple times.
A driver may implement the get_properties field of the fuel gauge driver APIs struct
to override this implementation.

Parameters
• dev – Pointer to the battery fuel-gauge device

• props – Array of the type of property to be fetched from device, each
index corresponds to the same index of the vals input array.

• vals – Pointer to array of union fuel_gauge_prop_val where the property
is read into from the fuel gauge device. The vals array is not permuted.

• len – number of properties in props & vals array

Returns
0 if successful, negative errno code of first failing property
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int fuel_gauge_set_prop(const struct device *dev, fuel_gauge_prop_t prop, union
fuel_gauge_prop_val val)

Set a battery fuel-gauge property.

Parameters
• dev – Pointer to the battery fuel-gauge device

• prop – Type of property that’s being set

• val – Value to set associated prop property.

Returns
0 if successful, negative errno code of first failing property

int fuel_gauge_set_props(const struct device *dev, fuel_gauge_prop_t *props, union
fuel_gauge_prop_val *vals, size_t len)

Set a battery fuel-gauge property.

Parameters
• dev – Pointer to the battery fuel-gauge device

• props – Array of the type of property to be set, each index corresponds
to the same index of the vals input array.

• vals – Pointer to array of union fuel_gauge_prop_val where the property
is written the fuel gauge device. The vals array is not permuted.

• len – number of properties in props array

Returns
return=0 if successful. Otherwise, return array index of failing property.

int fuel_gauge_get_buffer_prop(const struct device *dev, fuel_gauge_prop_t prop_type,
void *dst, size_t dst_len)

Fetch a battery fuel-gauge buffer property.

Parameters
• dev – Pointer to the battery fuel-gauge device

• prop_type – Type of property to be fetched from device

• dst – byte array or struct that will hold the buffer data that is read from
the fuel gauge

• dst_len – the length of the destination array in bytes

Returns
return=0 if successful, return < 0 if getting property failed, return 0 on suc-
cess

int fuel_gauge_battery_cutoff(const struct device *dev)
Have fuel gauge cutoff its associated battery.

Parameters
• dev – Pointer to the battery fuel-gauge device

Returns
return=0 if successful and battery cutoff is now in process, return < 0 if
failed to do battery cutoff.

union fuel_gauge_prop_val
#include <fuel_gauge.h> Property field to value/type union.
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Public Members

int avg_current
FUEL_GAUGE_AVG_CURRENT.

bool cutoff
FUEL_GAUGE_CHARGE_CUTOFF.

int current
FUEL_GAUGE_CURRENT.

uint32_t cycle_count
FUEL_GAUGE_CYCLE_COUNT.

uint32_t flags
FUEL_GAUGE_FLAGS.

uint32_t full_charge_capacity
FUEL_GAUGE_FULL_CHARGE_CAPACITY.

uint32_t remaining_capacity
FUEL_GAUGE_REMAINING_CAPACITY.

uint32_t runtime_to_empty
FUEL_GAUGE_RUNTIME_TO_EMPTY.

uint32_t runtime_to_full
FUEL_GAUGE_RUNTIME_TO_FULL.

uint16_t sbs_mfr_access_word
FUEL_GAUGE_SBS_MFR_ACCESS.

uint8_t absolute_state_of_charge
FUEL_GAUGE_ABSOLUTE_STATE_OF_CHARGE.

uint8_t relative_state_of_charge
FUEL_GAUGE_RELATIVE_STATE_OF_CHARGE.

uint16_t temperature
FUEL_GAUGE_TEMPERATURE.

int voltage
FUEL_GAUGE_VOLTAGE.

uint16_t sbs_mode
FUEL_GAUGE_SBS_MODE.

uint32_t chg_current
FUEL_GAUGE_CHARGE_CURRENT.
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uint32_t chg_voltage
FUEL_GAUGE_CHARGE_VOLTAGE.

uint16_t fg_status
FUEL_GAUGE_STATUS.

uint16_t design_cap
FUEL_GAUGE_DESIGN_CAPACITY.

uint16_t design_volt
FUEL_GAUGE_DESIGN_VOLTAGE.

int16_t sbs_at_rate
FUEL_GAUGE_SBS_ATRATE.

uint16_t sbs_at_rate_time_to_full
FUEL_GAUGE_SBS_ATRATE_TIME_TO_FULL.

uint16_t sbs_at_rate_time_to_empty
FUEL_GAUGE_SBS_ATRATE_TIME_TO_EMPTY

bool sbs_at_rate_ok
FUEL_GAUGE_SBS_ATRATE_OK.

uint16_t sbs_remaining_capacity_alarm
FUEL_GAUGE_SBS_REMAINING_CAPACITY_ALARM.

uint16_t sbs_remaining_time_alarm
FUEL_GAUGE_SBS_REMAINING_TIME_ALARM.

struct sbs_gauge_manufacturer_name
#include <fuel_gauge.h>

struct sbs_gauge_device_name
#include <fuel_gauge.h>

struct sbs_gauge_device_chemistry
#include <fuel_gauge.h>

struct fuel_gauge_driver_api
#include <fuel_gauge.h>

Public Members

fuel_gauge_get_property_t get_property
Note: Historically this API allowed drivers to implement a custom multi-get/set
property function, this was added so drivers could potentially optimize batch read
with their specific chip.
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However, it was removed because of no existing concrete case upstream. If this
need is demonstrated, we can add this back in as an API field.

group fuel_gauge_emulator_backend
Fuel gauge backend emulator APIs.

Functions

int emul_fuel_gauge_set_battery_charging(const struct emul *target, uint32_t uV, int
uA)

Set charging for fuel gauge associated battery.

Set how much the battery associated with a fuel gauge IC is charging or discharging.
Where voltage is always positive and a positive or negative current denotes charging
or discharging, respectively.

Parameters
• target – Pointer to the emulator structure for the fuel gauge emulator

instance.

• uV – Microvolts describing the battery voltage.

• uA – Microamps describing the battery current where negative is dis-
charging.

Return values
• 0 – If successful.

• -EINVAL – if mV or mA are 0.

int emul_fuel_gauge_is_battery_cutoff(const struct emul *target, bool *cutoff)
Check if the battery has been cut off.

Parameters
• target – Pointer to the emulator structure for the fuel gauge emulator

instance.

• cutoff – Pointer to bool storing variable.

Return values
• 0 – If successful.

• -ENOTSUP – if not supported by emulator.

7.6.21 GNSS (Global Navigation Satellite System)

Overview

GNSS is a general term which covers satellite systems used for navigation, like GPS (Global Posi-
tioning System). GNSS services are usually accessed through GNSS modems which receive and
process GNSS signals to determine their position, or more specifically, their antennas position.
They usually additionally provide a precise time synchronization mechanism, commonly named
PPS (Pulse-Per-Second).
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Subsystem support

The GNSS subsystem is based on the Modem modules. The GNSS subsystem covers everything
from sending and receiving commands to and from the modem, to parsing, creating and pro-
cessing NMEA0183 messages.

Adding support for additional NMEA0183 based GNSS modems requires little more than imple-
menting power management and configuration for the specific GNSS modem.

Adding support for GNSS modems which use other protocols and/or buses than the usual
NMEA0183 over UART is possible, but will require a bit more work from the driver developer.

Configuration Options

Related configuration options:

• CONFIG_GNSS
• CONFIG_GNSS_SATELLITES
• CONFIG_GNSS_DUMP_TO_LOG

Navigation Reference

Related code samples

GNSS
Connect to a GNSS device to obtain time, navigation data, and satellite information.

group navigation
Navigation utilities.

Functions

int navigation_distance(uint64_t *distance, const struct navigation_data *p1, const
struct navigation_data *p2)

Calculate the distance between two navigation points along the surface of the sphere
they are relative to.

Parameters
• distance – Destination for calculated distance in millimeters

• p1 – First navigation point

• p2 – Second navigation point

Returns
0 if successful

Returns
-EINVAL if either navigation point is invalid

int navigation_bearing(uint32_t *bearing, const struct navigation_data *from, const
struct navigation_data *to)

Calculate the bearing from one navigation point to another.

Parameters
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• bearing – Destination for calculated bearing angle in millidegrees

• from – First navigation point

• to – Second navigation point

Returns
0 if successful

Returns
-EINVAL if either navigation point is invalid

struct navigation_data
#include <navigation.h> Navigation data structure.

The structure describes the momentary navigation details of a point relative to a
sphere (commonly Earth)

Public Members

int64_t latitude
Latitudal position in nanodegrees (0 to +-180E9)

int64_t longitude
Longitudal position in nanodegrees (0 to +-180E9)

uint32_t bearing
Bearing angle in millidegrees (0 to 360E3)

uint32_t speed
Speed in millimeters per second.

int32_t altitude
Altitude in millimeters.

GNSS API Reference

Related code samples

GNSS
Connect to a GNSS device to obtain time, navigation data, and satellite information.

group gnss_interface
GNSS Interface.

Since
3.6

Version
0.1.0
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Defines

GNSS_DATA_CALLBACK_DEFINE(_dev, _callback)
Register a callback structure for GNSS data published.

Parameters
• _dev – Device pointer

• _callback – The callback function

GNSS_SATELLITES_CALLBACK_DEFINE(_dev, _callback)
Register a callback structure for GNSS satellites published.

Parameters
• _dev – Device pointer

• _callback – The callback function

Typedefs

typedef int (*gnss_set_fix_rate_t)(const struct device *dev, uint32_t fix_interval_ms)
API for setting fix rate.

typedef int (*gnss_get_fix_rate_t)(const struct device *dev, uint32_t *fix_interval_ms)
API for getting fix rate.

typedef int (*gnss_set_periodic_config_t)(const struct device *dev, const struct
gnss_periodic_config *periodic_config)

API for setting periodic tracking configuration.

typedef int (*gnss_get_periodic_config_t)(const struct device *dev, struct
gnss_periodic_config *periodic_config)

API for setting periodic tracking configuration.

typedef int (*gnss_set_navigation_mode_t)(const struct device *dev, enum
gnss_navigation_mode mode)

API for setting navigation mode.

typedef int (*gnss_get_navigation_mode_t)(const struct device *dev, enum
gnss_navigation_mode *mode)

API for getting navigation mode.

typedef uint32_t gnss_systems_t
Type storing bitmask of GNSS systems.

typedef int (*gnss_set_enabled_systems_t)(const struct device *dev, gnss_systems_t
systems)

API for enabling systems.

typedef int (*gnss_get_enabled_systems_t)(const struct device *dev, gnss_systems_t
*systems)

API for getting enabled systems.
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typedef int (*gnss_get_supported_systems_t)(const struct device *dev, gnss_systems_t
*systems)

API for getting enabled systems.

typedef void (*gnss_data_callback_t)(const struct device *dev, const struct gnss_data
*data)

Template for GNSS data callback.

typedef void (*gnss_satellites_callback_t)(const struct device *dev, const struct
gnss_satellite *satellites, uint16_t size)

Template for GNSS satellites callback.

Enums

enum gnss_pps_mode
GNSS PPS modes.

Values:

enumerator GNSS_PPS_MODE_DISABLED = 0
PPS output disabled.

enumerator GNSS_PPS_MODE_ENABLED = 1
PPS output always enabled.

enumerator GNSS_PPS_MODE_ENABLED_AFTER_LOCK = 2
PPS output enabled from first lock.

enumerator GNSS_PPS_MODE_ENABLED_WHILE_LOCKED = 3
PPS output enabled while locked.

enum gnss_navigation_mode
GNSS navigation modes.

Values:

enumerator GNSS_NAVIGATION_MODE_ZERO_DYNAMICS = 0
Dynamics have no impact on tracking.

enumerator GNSS_NAVIGATION_MODE_LOW_DYNAMICS = 1
Low dynamics have higher impact on tracking.

enumerator GNSS_NAVIGATION_MODE_BALANCED_DYNAMICS = 2
Low and high dynamics have equal impact on tracking.

enumerator GNSS_NAVIGATION_MODE_HIGH_DYNAMICS = 3
High dynamics have higher impact on tracking.
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enum gnss_system
Systems contained in gnss_systems_t.

Values:

enumerator GNSS_SYSTEM_GPS = BIT(0)
Global Positioning System (GPS)

enumerator GNSS_SYSTEM_GLONASS = BIT(1)
GLObal NAvigation Satellite System (GLONASS)

enumerator GNSS_SYSTEM_GALILEO = BIT(2)
Galileo.

enumerator GNSS_SYSTEM_BEIDOU = BIT(3)
BeiDou Navigation Satellite System.

enumerator GNSS_SYSTEM_QZSS = BIT(4)
Quasi-Zenith Satellite System (QZSS)

enumerator GNSS_SYSTEM_IRNSS = BIT(5)
Indian Regional Navigation Satellite System (IRNSS)

enumerator GNSS_SYSTEM_SBAS = BIT(6)
Satellite-Based Augmentation System (SBAS)

enumerator GNSS_SYSTEM_IMES = BIT(7)
Indoor Messaging System (IMES)

enum gnss_fix_status
GNSS fix status.

Values:

enumerator GNSS_FIX_STATUS_NO_FIX = 0
No GNSS fix acquired.

enumerator GNSS_FIX_STATUS_GNSS_FIX = 1
GNSS fix acquired.

enumerator GNSS_FIX_STATUS_DGNSS_FIX = 2
Differential GNSS fix acquired.

enumerator GNSS_FIX_STATUS_ESTIMATED_FIX = 3
Estimated fix acquired.

enum gnss_fix_quality
GNSS fix quality.

Values:
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enumerator GNSS_FIX_QUALITY_INVALID = 0
Invalid fix.

enumerator GNSS_FIX_QUALITY_GNSS_SPS = 1
Standard positioning service.

enumerator GNSS_FIX_QUALITY_DGNSS = 2
Differential GNSS.

enumerator GNSS_FIX_QUALITY_GNSS_PPS = 3
Precise positioning service.

enumerator GNSS_FIX_QUALITY_RTK = 4
Real-time kinematic.

enumerator GNSS_FIX_QUALITY_FLOAT_RTK = 5
Floating real-time kinematic.

enumerator GNSS_FIX_QUALITY_ESTIMATED = 6
Estimated fix.

Functions

int gnss_set_fix_rate(const struct device *dev, uint32_t fix_interval_ms)
Set the GNSS fix rate.

Parameters
• dev – Device instance

• fix_interval_ms – Fix interval to set in milliseconds

Returns
0 if successful

Returns
-errno negative errno code on failure

int gnss_get_fix_rate(const struct device *dev, uint32_t *fix_interval_ms)
Get the GNSS fix rate.

Parameters
• dev – Device instance

• fix_interval_ms – Destination for fix interval in milliseconds

Returns
0 if successful

Returns
-errno negative errno code on failure

int gnss_set_periodic_config(const struct device *dev, const struct gnss_periodic_config
*config)

Set the GNSS periodic tracking configuration.

Parameters
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• dev – Device instance

• config – Periodic tracking configuration to set

Returns
0 if successful

Returns
-errno negative errno code on failure

int gnss_get_periodic_config(const struct device *dev, struct gnss_periodic_config
*config)

Get the GNSS periodic tracking configuration.

Parameters
• dev – Device instance

• config – Destination for periodic tracking configuration

Returns
0 if successful

Returns
-errno negative errno code on failure

int gnss_set_navigation_mode(const struct device *dev, enum gnss_navigation_mode
mode)

Set the GNSS navigation mode.

Parameters
• dev – Device instance

• mode – Navigation mode to set

Returns
0 if successful

Returns
-errno negative errno code on failure

int gnss_get_navigation_mode(const struct device *dev, enum gnss_navigation_mode
*mode)

Get the GNSS navigation mode.

Parameters
• dev – Device instance

• mode – Destination for navigation mode

Returns
0 if successful

Returns
-errno negative errno code on failure

int gnss_set_enabled_systems(const struct device *dev, gnss_systems_t systems)
Set enabled GNSS systems.

Parameters
• dev – Device instance

• systems – Systems to enable

Returns
0 if successful
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Returns
-errno negative errno code on failure

int gnss_get_enabled_systems(const struct device *dev, gnss_systems_t *systems)
Get enabled GNSS systems.

Parameters
• dev – Device instance

• systems – Destination for enabled systems

Returns
0 if successful

Returns
-errno negative errno code on failure

int gnss_get_supported_systems(const struct device *dev, gnss_systems_t *systems)
Get supported GNSS systems.

Parameters
• dev – Device instance

• systems – Destination for supported systems

Returns
0 if successful

Returns
-errno negative errno code on failure

struct gnss_periodic_config
#include <gnss.h> GNSS periodic tracking configuration.

Note

Setting either active_time or inactive_time to 0 will disable periodic function.

Public Members

uint32_t active_time_ms
The time the GNSS will spend in the active state in ms.

uint32_t inactive_time_ms
The time the GNSS will spend in the inactive state in ms.

struct gnss_info
#include <gnss.h> GNSS info data structure.

Public Members

uint16_t satellites_cnt
Number of satellites being tracked.
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uint32_t hdop
Horizontal dilution of precision in 1/1000.

enum gnss_fix_status fix_status
The fix status.

enum gnss_fix_quality fix_quality
The fix quality.

struct gnss_time
#include <gnss.h> GNSS time data structure.

Public Members

uint8_t hour
Hour [0, 23].

uint8_t minute
Minute [0, 59].

uint16_t millisecond
Millisecond [0, 60999].

uint8_t month_day
Day of month [1, 31].

uint8_t month
Month [1, 12].

uint8_t century_year
Year [0, 99].

struct gnss_driver_api
#include <gnss.h> GNSS API structure.

struct gnss_data
#include <gnss.h> GNSS data structure.

Public Members

struct navigation_data nav_data
Navigation data acquired.

struct gnss_info info
GNSS info when navigation data was acquired.
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struct gnss_time utc
UTC time when data was acquired.

struct gnss_data_callback
#include <gnss.h> GNSS callback structure.

Public Members

const struct device *dev
Filter callback to GNSS data from this device if not NULL.

gnss_data_callback_t callback
Callback called when GNSS data is published.

struct gnss_satellite
#include <gnss.h> GNSS satellite structure.

Public Members

uint8_t prn
Pseudo-random noise sequence.

uint8_t snr
Signal-to-noise ratio in dB.

uint8_t elevation
Elevation in degrees [0, 90].

uint16_t azimuth
Azimuth relative to True North in degrees [0, 359].

enum gnss_system system
System of satellite.

uint8_t is_tracked
True if satellite is being tracked.

struct gnss_satellites_callback
#include <gnss.h> GNSS callback structure.

Public Members

const struct device *dev
Filter callback to GNSS data from this device if not NULL.
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gnss_satellites_callback_t callback
Callback called when GNSS satellites is published.

7.6.22 General-Purpose Input/Output (GPIO)

Overview

Configuration Options

Related configuration options:

• CONFIG_GPIO

API Reference

Related code samples

Basic thread manipulation
Spawn multiple threads that blink LEDs and print information to the console.

Blinky
Blink an LED forever using the GPIO API.

Button
Handle GPIO inputs with interrupts.

GPIO with custom Devicetree binding
Use custom Devicetree binding to control a GPIO.

HD44780 LCD controller
Control an HD44780-based LCD display using GPIO pins.

X-NUCLEO-53L0A1 shield
Interact with the 7-segment display and VL53L0X ranging sensor of an X-NUCLEO-
53L0A1 shield.

group gpio_interface
GPIO Driver APIs.

Since
1.0

Version
1.0.0

GPIO input/output configuration flags

GPIO_INPUT
Enables pin as input.

GPIO_OUTPUT
Enables pin as output, no change to the output state.
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GPIO_DISCONNECTED
Disables pin for both input and output.

GPIO_OUTPUT_LOW
Configures GPIO pin as output and initializes it to a low state.

GPIO_OUTPUT_HIGH
Configures GPIO pin as output and initializes it to a high state.

GPIO_OUTPUT_INACTIVE
Configures GPIO pin as output and initializes it to a logic 0.

GPIO_OUTPUT_ACTIVE
Configures GPIO pin as output and initializes it to a logic 1.

GPIO interrupt configuration flags

The GPIO_INT_* flags are used to specify how input GPIO pins will trigger interrupts.

The interrupts can be sensitive to pin physical or logical level. Interrupts sensitive to pin
logical level take into account GPIO_ACTIVE_LOW flag. If a pin was configured as Active
Low, physical level low will be considered as logical level 1 (an active state), physical level
high will be considered as logical level 0 (an inactive state). The GPIO controller should
reset the interrupt status, such as clearing the pending bit, etc, when configuring the inter-
rupt triggering properties. Applications should use the GPIO_INT_MODE_ENABLE_ONLY and
GPIO_INT_MODE_DISABLE_ONLY flags to enable and disable interrupts on the pin without
changing any GPIO settings.

GPIO_INT_DISABLE
Disables GPIO pin interrupt.

GPIO_INT_EDGE_RISING
Configures GPIO interrupt to be triggered on pin rising edge and enables it.

GPIO_INT_EDGE_FALLING
Configures GPIO interrupt to be triggered on pin falling edge and enables it.

GPIO_INT_EDGE_BOTH
Configures GPIO interrupt to be triggered on pin rising or falling edge and enables it.

GPIO_INT_LEVEL_LOW
Configures GPIO interrupt to be triggered on pin physical level low and enables it.

GPIO_INT_LEVEL_HIGH
Configures GPIO interrupt to be triggered on pin physical level high and enables it.

GPIO_INT_EDGE_TO_INACTIVE
Configures GPIO interrupt to be triggered on pin state change to logical level 0 and
enables it.
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GPIO_INT_EDGE_TO_ACTIVE
Configures GPIO interrupt to be triggered on pin state change to logical level 1 and
enables it.

GPIO_INT_LEVEL_INACTIVE
Configures GPIO interrupt to be triggered on pin logical level 0 and enables it.

GPIO_INT_LEVEL_ACTIVE
Configures GPIO interrupt to be triggered on pin logical level 1 and enables it.

GPIO pin active level flags

GPIO_ACTIVE_LOW
GPIO pin is active (has logical value ‘1’) in low state.

GPIO_ACTIVE_HIGH
GPIO pin is active (has logical value ‘1’) in high state.

GPIO pin drive flags

GPIO_OPEN_DRAIN
Configures GPIO output in open drain mode (wired AND).

Note

‘Open Drain’ mode also known as ‘Open Collector’ is an output configuration which
behaves like a switch that is either connected to ground or disconnected.

GPIO_OPEN_SOURCE
Configures GPIO output in open source mode (wired OR).

Note

‘Open Source’ is a term used by software engineers to describe output mode op-
posite to ‘Open Drain’. It behaves like a switch that is either connected to power
supply or disconnected. There exist no corresponding hardware schematic and the
term is generally unknown to hardware engineers.

GPIO pin bias flags

GPIO_PULL_UP
Enables GPIO pin pull-up.

GPIO_PULL_DOWN
Enable GPIO pin pull-down.
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Unnamed Group

STM32_GPIO_WKUP
STM32 GPIO specific flags.

The driver flags are encoded in the 8 upper bits of gpio_dt_flags_t as follows:

• Bit 8: Configure a GPIO pin to power on the system after Poweroff. Configures a
GPIO pin to power on the system after Poweroff. This flag is reserved to GPIO pins
that are associated with wake-up pins in STM32 PWR devicetree node, through the
property “wkup-gpios”.

Defines

GPIO_DT_SPEC_GET_BY_IDX(node_id, prop, idx)
Static initializer for a gpio_dt_spec.

This returns a static initializer for a gpio_dt_spec structure given a devicetree node
identifier, a property specifying a GPIO and an index.

Example devicetree fragment:

n: node {
foo-gpios = <&gpio0 1 GPIO_ACTIVE_LOW>,

<&gpio1 2 GPIO_ACTIVE_LOW>;
}

Example usage:

const struct gpio_dt_spec spec = GPIO_DT_SPEC_GET_BY_IDX(DT_NODELABEL(n),
foo_gpios, 1);

// Initializes 'spec' to:
// {
// .port = DEVICE_DT_GET(DT_NODELABEL(gpio1)),
// .pin = 2,
// .dt_flags = GPIO_ACTIVE_LOW
// }

The ‘gpio’ field must still be checked for readiness, e.g. using device_is_ready(). It is an
error to use this macro unless the node exists, has the given property, and that property
specifies a GPIO controller, pin number, and flags as shown above.

Parameters
• node_id – devicetree node identifier

• prop – lowercase-and-underscores property name

• idx – logical index into “prop”

Returns
static initializer for a struct gpio_dt_spec for the property

GPIO_DT_SPEC_GET_BY_IDX_OR(node_id, prop, idx, default_value)
Like GPIO_DT_SPEC_GET_BY_IDX(), with a fallback to a default value.

If the devicetree node identifier ‘node_id’ refers to a node with a property ‘prop’, this
expands to GPIO_DT_SPEC_GET_BY_IDX(node_id, prop, idx). The default_value pa-
rameter is not expanded in this case.

Otherwise, this expands to default_value.
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Parameters
• node_id – devicetree node identifier

• prop – lowercase-and-underscores property name

• idx – logical index into “prop”

• default_value – fallback value to expand to

Returns
static initializer for a struct gpio_dt_spec for the property, or default_value
if the node or property do not exist

GPIO_DT_SPEC_GET(node_id, prop)
Equivalent to GPIO_DT_SPEC_GET_BY_IDX(node_id, prop, 0).

See also

GPIO_DT_SPEC_GET_BY_IDX()

Parameters
• node_id – devicetree node identifier

• prop – lowercase-and-underscores property name

Returns
static initializer for a struct gpio_dt_spec for the property

GPIO_DT_SPEC_GET_OR(node_id, prop, default_value)
Equivalent to GPIO_DT_SPEC_GET_BY_IDX_OR(node_id, prop, 0, default_value).

See also

GPIO_DT_SPEC_GET_BY_IDX_OR()

Parameters
• node_id – devicetree node identifier

• prop – lowercase-and-underscores property name

• default_value – fallback value to expand to

Returns
static initializer for a struct gpio_dt_spec for the property

GPIO_DT_SPEC_INST_GET_BY_IDX(inst, prop, idx)
Static initializer for a gpio_dt_spec from a DT_DRV_COMPAT instance’s GPIO property
at an index.

See also

GPIO_DT_SPEC_GET_BY_IDX()
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Parameters
• inst – DT_DRV_COMPAT instance number

• prop – lowercase-and-underscores property name

• idx – logical index into “prop”

Returns
static initializer for a struct gpio_dt_spec for the property

GPIO_DT_SPEC_INST_GET_BY_IDX_OR(inst, prop, idx, default_value)
Static initializer for a gpio_dt_spec from a DT_DRV_COMPAT instance’s GPIO property
at an index, with fallback.

See also

GPIO_DT_SPEC_GET_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• prop – lowercase-and-underscores property name

• idx – logical index into “prop”

• default_value – fallback value to expand to

Returns
static initializer for a struct gpio_dt_spec for the property

GPIO_DT_SPEC_INST_GET(inst, prop)
Equivalent to GPIO_DT_SPEC_INST_GET_BY_IDX(inst, prop, 0).

See also

GPIO_DT_SPEC_INST_GET_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• prop – lowercase-and-underscores property name

Returns
static initializer for a struct gpio_dt_spec for the property

GPIO_DT_SPEC_INST_GET_OR(inst, prop, default_value)
Equivalent to GPIO_DT_SPEC_INST_GET_BY_IDX_OR(inst, prop, 0, default_value).

See also

GPIO_DT_SPEC_INST_GET_BY_IDX()

Parameters
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• inst – DT_DRV_COMPAT instance number

• prop – lowercase-and-underscores property name

• default_value – fallback value to expand to

Returns
static initializer for a struct gpio_dt_spec for the property

GPIO_DT_RESERVED_RANGES_NGPIOS(node_id, ngpios)
Makes a bitmask of reserved GPIOs from DT "gpio-reserved-ranges" property and
"ngpios" argument.

This macro returns the value as a bitmask of the "gpio-reserved-ranges" property.
This property defines the disabled (or ‘reserved’) GPIOs in the range 0…ngpios-1 and is
specified as an array of value’s pairs that define the start offset and size of the reserved
ranges.

For example, setting “gpio-reserved-ranges = <3 2>, <10 1>;” means that GPIO offsets 3,
4 and 10 cannot be used even if ngpios = <18>.

The implementation constraint is inherited from common DT limitations: a maximum
of 64 pairs can be used (with result limited to bitsize of gpio_port_pins_t type).

NB: Due to the nature of C macros, some incorrect tuple definitions (for example, over-
lapping or out of range) will produce undefined results.

Also be aware that if ngpios is less than 32 (bit size of DT int type), then all unused
MSBs outside the range defined by ngpios will be marked as reserved too.

Example devicetree fragment:

a {
compatible = "some,gpio-controller";
ngpios = <32>;
gpio-reserved-ranges = <0 4>, <5 3>, <9 5>, <11 2>, <15 2>,

<18 2>, <21 1>, <23 1>, <25 4>, <30 2>;
};

b {
compatible = "some,gpio-controller";
ngpios = <18>;
gpio-reserved-ranges = <3 2>, <10 1>;

};

Example usage:

struct some_config {
uint32_t ngpios;
uint32_t gpios_reserved;

};

static const struct some_config dev_cfg_a = {
.ngpios = DT_PROP_OR(DT_LABEL(a), ngpios, 0),
.gpios_reserved = GPIO_DT_RESERVED_RANGES_NGPIOS(DT_LABEL(a),

DT_PROP(DT_LABEL(a), ngpios)),
};

static const struct some_config dev_cfg_b = {
.ngpios = DT_PROP_OR(DT_LABEL(b), ngpios, 0),
.gpios_reserved = GPIO_DT_RESERVED_RANGES_NGPIOS(DT_LABEL(b),

DT_PROP(DT_LABEL(b), ngpios)),
};

This expands to:
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struct some_config {
uint32_t ngpios;
uint32_t gpios_reserved;

};

static const struct some_config dev_cfg_a = {
.ngpios = 32,
.gpios_reserved = 0xdeadbeef,

// 0b1101 1110 1010 1101 1011 1110 1110 1111

static const struct some_config dev_cfg_b = {
.ngpios = 18,
.gpios_reserved = 0xfffc0418,

// 0b1111 1111 1111 1100 0000 0100 0001 1000
// unused MSBs were marked as reserved too

};

Parameters
• node_id – GPIO controller node identifier.

• ngpios – number of GPIOs.

Returns
the bitmask of reserved gpios

GPIO_DT_RESERVED_RANGES(node_id)
Makes a bitmask of reserved GPIOs from the "gpio-reserved-ranges" and "ngpios"
DT properties values.

Parameters
• node_id – GPIO controller node identifier.

Returns
the bitmask of reserved gpios

GPIO_DT_INST_RESERVED_RANGES_NGPIOS(inst, ngpios)
Makes a bitmask of reserved GPIOs from a DT_DRV_COMPAT instance’s
"gpio-reserved-ranges" property and "ngpios" argument.

See also

GPIO_DT_RESERVED_RANGES()

Parameters
• inst – DT_DRV_COMPAT instance number

• ngpios – number of GPIOs

Returns
the bitmask of reserved gpios

GPIO_DT_INST_RESERVED_RANGES(inst)
Make a bitmask of reserved GPIOs from a DT_DRV_COMPAT instance’s GPIO
"gpio-reserved-ranges" and "ngpios" properties.
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See also

GPIO_DT_RESERVED_RANGES()

Parameters
• inst – DT_DRV_COMPAT instance number

Returns
the bitmask of reserved gpios

GPIO_DT_PORT_PIN_MASK_NGPIOS_EXC(node_id, ngpios)
Makes a bitmask of allowed GPIOs from DT "gpio-reserved-ranges" property and
"ngpios" argument.

This macro is paired with GPIO_DT_RESERVED_RANGES_NGPIOS(), however unlike
the latter, it returns a bitmask of ALLOWED gpios.

Example devicetree fragment:

a {
compatible = "some,gpio-controller";
ngpios = <32>;
gpio-reserved-ranges = <0 8>, <9 5>, <15 16>;

};

Example usage:

struct some_config {
uint32_t port_pin_mask;

};

static const struct some_config dev_cfg = {
.port_pin_mask = GPIO_DT_PORT_PIN_MASK_NGPIOS_EXC(

DT_LABEL(a), 32),
};

This expands to:

struct some_config {
uint32_t port_pin_mask;

};

static const struct some_config dev_cfg = {
.port_pin_mask = 0x80004100,

// 0b1000 0000 0000 0000 0100 0001 00000 000
};

Parameters
• node_id – GPIO controller node identifier.

• ngpios – number of GPIOs

Returns
the bitmask of allowed gpios

GPIO_DT_INST_PORT_PIN_MASK_NGPIOS_EXC(inst, ngpios)
Makes a bitmask of allowed GPIOs from a DT_DRV_COMPAT instance’s
"gpio-reserved-ranges" property and "ngpios" argument.
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See also

GPIO_DT_NGPIOS_PORT_PIN_MASK_EXC()

Parameters
• inst – DT_DRV_COMPAT instance number

• ngpios – number of GPIOs

Returns
the bitmask of allowed gpios

GPIO_MAX_PINS_PER_PORT
Maximum number of pins that are supported by gpio_port_pins_t.

GPIO_DT_FLAGS_MASK
Mask for DT GPIO flags.

GPIO_INT_WAKEUP
Configures GPIO interrupt to wakeup the system from low power mode.

Typedefs

typedef uint32_t gpio_port_pins_t
Identifies a set of pins associated with a port.

The pin with index n is present in the set if and only if the bit identified by (1U « n) is
set.

typedef uint32_t gpio_port_value_t
Provides values for a set of pins associated with a port.

The value for a pin with index n is high (physical mode) or active (logical mode) if
and only if the bit identified by (1U « n) is set. Otherwise the value for the pin is low
(physical mode) or inactive (logical mode).

Values of this type are often paired with a gpio_port_pins_t value that specifies which
encoded pin values are valid for the operation.

typedef uint8_t gpio_pin_t
Provides a type to hold a GPIO pin index.

This reduced-size type is sufficient to record a pin number, e.g. from a devicetree GPIOS
property.

typedef uint16_t gpio_dt_flags_t
Provides a type to hold GPIO devicetree flags.

All GPIO flags that can be expressed in devicetree fit in the low 16 bits of the full flags
field, so use a reduced-size type to record that part of a GPIOS property.

The lower 8 bits are used for standard flags. The upper 8 bits are reserved for SoC
specific flags.
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typedef uint32_t gpio_flags_t
Provides a type to hold GPIO configuration flags.

This type is sufficient to hold all flags used to control GPIO configuration, whether pin
or interrupt.

typedef void (*gpio_callback_handler_t)(const struct device *port, struct gpio_callback
*cb, gpio_port_pins_t pins)

Define the application callback handler function signature.

Note: cb pointer can be used to retrieve private data through CONTAINER_OF() if orig-
inal struct gpio_callback is stored in another private structure.

Param port
Device struct for the GPIO device.

Param cb
Original struct gpio_callback owning this handler

Param pins
Mask of pins that triggers the callback handler

Functions

static inline bool gpio_is_ready_dt(const struct gpio_dt_spec *spec)
Validate that GPIO port is ready.

Parameters
• spec – GPIO specification from devicetree

Return values
• true – if the GPIO spec is ready for use.

• false – if the GPIO spec is not ready for use.

int gpio_pin_interrupt_configure(const struct device *port, gpio_pin_t pin, gpio_flags_t
flags)

Configure pin interrupt.

Note

This function can also be used to configure interrupts on pins not controlled directly
by the GPIO module. That is, pins which are routed to other modules such as I2C,
SPI, UART.

Parameters
• port – Pointer to device structure for the driver instance.

• pin – Pin number.

• flags – Interrupt configuration flags as defined by GPIO_INT_*.

Return values
• 0 – If successful.

• -ENOSYS – If the operation is not implemented by the driver.
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• -ENOTSUP – If any of the configuration options is not supported (unless
otherwise directed by flag documentation).

• -EINVAL – Invalid argument.

• -EBUSY – Interrupt line required to configure pin interrupt is already in
use.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_interrupt_configure_dt(const struct gpio_dt_spec *spec,
gpio_flags_t flags)

Configure pin interrupts from a gpio_dt_spec.

This is equivalent to:

gpio_pin_interrupt_configure(spec->port, spec->pin, flags);

The spec->dt_flags value is not used.

Parameters
• spec – GPIO specification from devicetree

• flags – interrupt configuration flags

Returns
a value from gpio_pin_interrupt_configure()

int gpio_pin_configure(const struct device *port, gpio_pin_t pin, gpio_flags_t flags)
Configure a single pin.

Parameters
• port – Pointer to device structure for the driver instance.

• pin – Pin number to configure.

• flags – Flags for pin configuration: ‘GPIO input/output configuration
flags’, ‘GPIO pin drive flags’, ‘GPIO pin bias flags’.

Return values
• 0 – If successful.

• -ENOTSUP – if any of the configuration options is not supported (unless
otherwise directed by flag documentation).

• -EINVAL – Invalid argument.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_configure_dt(const struct gpio_dt_spec *spec, gpio_flags_t
extra_flags)

Configure a single pin from a gpio_dt_spec and some extra flags.

This is equivalent to:

gpio_pin_configure(spec->port, spec->pin, spec->dt_flags | extra_flags);

Parameters
• spec – GPIO specification from devicetree

• extra_flags – additional flags
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Returns
a value from gpio_pin_configure()

int gpio_port_get_direction(const struct device *port, gpio_port_pins_t map,
gpio_port_pins_t *inputs, gpio_port_pins_t *outputs)

Get direction of select pins in a port.

Retrieve direction of each pin specified in map.

If inputs or outputs is NULL, then this function does not get the respective input or
output direction information.

Parameters
• port – Pointer to the device structure for the driver instance.

• map – Bitmap of pin directions to query.

• inputs – Pointer to a variable where input directions will be stored.

• outputs – Pointer to a variable where output directions will be stored.

Return values
• 0 – If successful.

• -ENOSYS – if the underlying driver does not support this call.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_is_input(const struct device *port, gpio_pin_t pin)
Check if pin is configured for input.

Parameters
• port – Pointer to device structure for the driver instance.

• pin – Pin number to query the direction of

Return values
• 1 – if pin is configured as GPIO_INPUT.

• 0 – if pin is not configured as GPIO_INPUT.

• -ENOSYS – if the underlying driver does not support this call.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_is_input_dt(const struct gpio_dt_spec *spec)
Check if a single pin from gpio_dt_spec is configured for input.

This is equivalent to:

gpio_pin_is_input(spec->port, spec->pin);

Parameters
• spec – GPIO specification from devicetree.

Returns
A value from gpio_pin_is_input().
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static inline int gpio_pin_is_output(const struct device *port, gpio_pin_t pin)
Check if pin is configured for output.

Parameters
• port – Pointer to device structure for the driver instance.

• pin – Pin number to query the direction of

Return values
• 1 – if pin is configured as GPIO_OUTPUT.

• 0 – if pin is not configured as GPIO_OUTPUT.

• -ENOSYS – if the underlying driver does not support this call.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_is_output_dt(const struct gpio_dt_spec *spec)
Check if a single pin from gpio_dt_spec is configured for output.

This is equivalent to:

gpio_pin_is_output(spec->port, spec->pin);

Parameters
• spec – GPIO specification from devicetree.

Returns
A value from gpio_pin_is_output().

int gpio_pin_get_config(const struct device *port, gpio_pin_t pin, gpio_flags_t *flags)
Get a configuration of a single pin.

Parameters
• port – Pointer to device structure for the driver instance.

• pin – Pin number which configuration is get.

• flags – Pointer to variable in which the current configuration will be
stored if function is successful.

Return values
• 0 – If successful.

• -ENOSYS – if getting current pin configuration is not implemented by the
driver.

• -EINVAL – Invalid argument.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_get_config_dt(const struct gpio_dt_spec *spec, gpio_flags_t
*flags)

Get a configuration of a single pin from a gpio_dt_spec.

This is equivalent to:

gpio_pin_get_config(spec->port, spec->pin, flags);

Parameters
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• spec – GPIO specification from devicetree

• flags – Pointer to variable in which the current configuration will be
stored if function is successful.

Returns
a value from gpio_pin_configure()

int gpio_port_get_raw(const struct device *port, gpio_port_value_t *value)
Get physical level of all input pins in a port.

A low physical level on the pin will be interpreted as value 0. A high physical level will
be interpreted as value 1. This function ignores GPIO_ACTIVE_LOW flag.

Value of a pin with index n will be represented by bit n in the returned port value.

Parameters
• port – Pointer to the device structure for the driver instance.

• value – Pointer to a variable where pin values will be stored.

Return values
• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_port_get(const struct device *port, gpio_port_value_t *value)
Get logical level of all input pins in a port.

Get logical level of an input pin taking into account GPIO_ACTIVE_LOW flag. If pin is
configured as Active High, a low physical level will be interpreted as logical value 0. If
pin is configured as Active Low, a low physical level will be interpreted as logical value
1.

Value of a pin with index n will be represented by bit n in the returned port value.

Parameters
• port – Pointer to the device structure for the driver instance.

• value – Pointer to a variable where pin values will be stored.

Return values
• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

int gpio_port_set_masked_raw(const struct device *port, gpio_port_pins_t mask,
gpio_port_value_t value)

Set physical level of output pins in a port.

Writing value 0 to the pin will set it to a low physical level. Writing value 1 will set it
to a high physical level. This function ignores GPIO_ACTIVE_LOW flag.

Pin with index n is represented by bit n in mask and value parameter.

Parameters
• port – Pointer to the device structure for the driver instance.

• mask – Mask indicating which pins will be modified.

• value – Value assigned to the output pins.

Return values
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• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_port_set_masked(const struct device *port, gpio_port_pins_t mask,
gpio_port_value_t value)

Set logical level of output pins in a port.

Set logical level of an output pin taking into account GPIO_ACTIVE_LOW flag. Value 0
sets the pin in logical 0 / inactive state. Value 1 sets the pin in logical 1 / active state.
If pin is configured as Active High, the default, setting it in inactive state will force the
pin to a low physical level. If pin is configured as Active Low, setting it in inactive state
will force the pin to a high physical level.

Pin with index n is represented by bit n in mask and value parameter.

Parameters
• port – Pointer to the device structure for the driver instance.

• mask – Mask indicating which pins will be modified.

• value – Value assigned to the output pins.

Return values
• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

int gpio_port_set_bits_raw(const struct device *port, gpio_port_pins_t pins)
Set physical level of selected output pins to high.

Parameters
• port – Pointer to the device structure for the driver instance.

• pins – Value indicating which pins will be modified.

Return values
• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_port_set_bits(const struct device *port, gpio_port_pins_t pins)
Set logical level of selected output pins to active.

Parameters
• port – Pointer to the device structure for the driver instance.

• pins – Value indicating which pins will be modified.

Return values
• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

int gpio_port_clear_bits_raw(const struct device *port, gpio_port_pins_t pins)
Set physical level of selected output pins to low.

Parameters
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• port – Pointer to the device structure for the driver instance.

• pins – Value indicating which pins will be modified.

Return values
• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_port_clear_bits(const struct device *port, gpio_port_pins_t pins)
Set logical level of selected output pins to inactive.

Parameters
• port – Pointer to the device structure for the driver instance.

• pins – Value indicating which pins will be modified.

Return values
• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

int gpio_port_toggle_bits(const struct device *port, gpio_port_pins_t pins)
Toggle level of selected output pins.

Parameters
• port – Pointer to the device structure for the driver instance.

• pins – Value indicating which pins will be modified.

Return values
• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_port_set_clr_bits_raw(const struct device *port, gpio_port_pins_t
set_pins, gpio_port_pins_t clear_pins)

Set physical level of selected output pins.

Parameters
• port – Pointer to the device structure for the driver instance.

• set_pins – Value indicating which pins will be set to high.

• clear_pins – Value indicating which pins will be set to low.

Return values
• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_port_set_clr_bits(const struct device *port, gpio_port_pins_t
set_pins, gpio_port_pins_t clear_pins)

Set logical level of selected output pins.

Parameters
• port – Pointer to the device structure for the driver instance.
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• set_pins – Value indicating which pins will be set to active.

• clear_pins – Value indicating which pins will be set to inactive.

Return values
• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_get_raw(const struct device *port, gpio_pin_t pin)
Get physical level of an input pin.

A low physical level on the pin will be interpreted as value 0. A high physical level will
be interpreted as value 1. This function ignores GPIO_ACTIVE_LOW flag.

Parameters
• port – Pointer to the device structure for the driver instance.

• pin – Pin number.

Return values
• 1 – If pin physical level is high.

• 0 – If pin physical level is low.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_get(const struct device *port, gpio_pin_t pin)
Get logical level of an input pin.

Get logical level of an input pin taking into account GPIO_ACTIVE_LOW flag. If pin is
configured as Active High, a low physical level will be interpreted as logical value 0. If
pin is configured as Active Low, a low physical level will be interpreted as logical value
1.

Note: If pin is configured as Active High, the default, gpio_pin_get() function is equiva-
lent to gpio_pin_get_raw().

Parameters
• port – Pointer to the device structure for the driver instance.

• pin – Pin number.

Return values
• 1 – If pin logical value is 1 / active.

• 0 – If pin logical value is 0 / inactive.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_get_dt(const struct gpio_dt_spec *spec)
Get logical level of an input pin from a gpio_dt_spec.

This is equivalent to:

gpio_pin_get(spec->port, spec->pin);

Parameters
• spec – GPIO specification from devicetree
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Returns
a value from gpio_pin_get()

static inline int gpio_pin_set_raw(const struct device *port, gpio_pin_t pin, int value)
Set physical level of an output pin.

Writing value 0 to the pin will set it to a low physical level. Writing any value other
than 0 will set it to a high physical level. This function ignores GPIO_ACTIVE_LOW flag.

Parameters
• port – Pointer to the device structure for the driver instance.

• pin – Pin number.

• value – Value assigned to the pin.

Return values
• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_set(const struct device *port, gpio_pin_t pin, int value)
Set logical level of an output pin.

Set logical level of an output pin taking into account GPIO_ACTIVE_LOW flag. Value 0
sets the pin in logical 0 / inactive state. Any value other than 0 sets the pin in logical 1
/ active state. If pin is configured as Active High, the default, setting it in inactive state
will force the pin to a low physical level. If pin is configured as Active Low, setting it
in inactive state will force the pin to a high physical level.

Note: If pin is configured as Active High, gpio_pin_set() function is equivalent to
gpio_pin_set_raw().

Parameters
• port – Pointer to the device structure for the driver instance.

• pin – Pin number.

• value – Value assigned to the pin.

Return values
• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_set_dt(const struct gpio_dt_spec *spec, int value)
Set logical level of a output pin from a gpio_dt_spec.

This is equivalent to:

gpio_pin_set(spec->port, spec->pin, value);

Parameters
• spec – GPIO specification from devicetree

• value – Value assigned to the pin.

Returns
a value from gpio_pin_set()
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static inline int gpio_pin_toggle(const struct device *port, gpio_pin_t pin)
Toggle pin level.

Parameters
• port – Pointer to the device structure for the driver instance.

• pin – Pin number.

Return values
• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_toggle_dt(const struct gpio_dt_spec *spec)
Toggle pin level from a gpio_dt_spec.

This is equivalent to:

gpio_pin_toggle(spec->port, spec->pin);

Parameters
• spec – GPIO specification from devicetree

Returns
a value from gpio_pin_toggle()

static inline void gpio_init_callback(struct gpio_callback *callback,
gpio_callback_handler_t handler, gpio_port_pins_t
pin_mask)

Helper to initialize a struct gpio_callback properly.

Parameters
• callback – A valid Application’s callback structure pointer.

• handler – A valid handler function pointer.

• pin_mask – A bit mask of relevant pins for the handler

static inline int gpio_add_callback(const struct device *port, struct gpio_callback
*callback)

Add an application callback.

Note: enables to add as many callback as needed on the same port.

Note

Callbacks may be added to the device from within a callback handler invocation,
but whether they are invoked for the current GPIO event is not specified.

Parameters
• port – Pointer to the device structure for the driver instance.

• callback – A valid Application’s callback structure pointer.

Return values
• 0 – If successful
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• -ENOSYS – If driver does not implement the operation

• -errno – Other negative errno code on failure.

static inline int gpio_add_callback_dt(const struct gpio_dt_spec *spec, struct
gpio_callback *callback)

Add an application callback.

This is equivalent to:

gpio_add_callback(spec->port, callback);

Parameters
• spec – GPIO specification from devicetree.

• callback – A valid application’s callback structure pointer.

Returns
a value from gpio_add_callback().

static inline int gpio_remove_callback(const struct device *port, struct gpio_callback
*callback)

Remove an application callback.

Note: enables to remove as many callbacks as added through gpio_add_callback().

Warning

It is explicitly permitted, within a callback handler, to remove the registration for
the callback that is running, i.e. callback. Attempts to remove other registrations
on the same device may result in undefined behavior, including failure to invoke
callbacks that remain registered and unintended invocation of removed callbacks.

Parameters
• port – Pointer to the device structure for the driver instance.

• callback – A valid application’s callback structure pointer.

Return values
• 0 – If successful

• -ENOSYS – If driver does not implement the operation

• -errno – Other negative errno code on failure.

static inline int gpio_remove_callback_dt(const struct gpio_dt_spec *spec, struct
gpio_callback *callback)

Remove an application callback.

This is equivalent to:

gpio_remove_callback(spec->port, callback);

Parameters
• spec – GPIO specification from devicetree.

• callback – A valid application’s callback structure pointer.
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Returns
a value from gpio_remove_callback().

int gpio_get_pending_int(const struct device *dev)
Function to get pending interrupts.

The purpose of this function is to return the interrupt status register for the device.
This is especially useful when waking up from low power states to check the wake up
source.

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
• status – != 0 if at least one gpio interrupt is pending.

• 0 – if no gpio interrupt is pending.

• -ENOSYS – If driver does not implement the operation

struct gpio_dt_spec
#include <gpio.h> Container for GPIO pin information specified in devicetree.

This type contains a pointer to a GPIO device, pin number for a pin controlled by that
device, and the subset of pin configuration flags which may be given in devicetree.

See also

GPIO_DT_SPEC_GET_BY_IDX

See also

GPIO_DT_SPEC_GET_BY_IDX_OR

See also

GPIO_DT_SPEC_GET

See also

GPIO_DT_SPEC_GET_OR

Public Members

const struct device *port
GPIO device controlling the pin.

gpio_pin_t pin
The pin’s number on the device.
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gpio_dt_flags_t dt_flags
The pin’s configuration flags as specified in devicetree.

struct gpio_driver_config
#include <gpio.h> This structure is common to all GPIO drivers and is expected to be
the first element in the object pointed to by the config field in the device structure.

Public Members

gpio_port_pins_t port_pin_mask
Mask identifying pins supported by the controller.

Initialization of this mask is the responsibility of device instance generation in the
driver.

struct gpio_driver_data
#include <gpio.h> This structure is common to all GPIO drivers and is expected to be
the first element in the driver’s struct driver_data declaration.

Public Members

gpio_port_pins_t invert
Mask identifying pins that are configured as active low.

Management of this mask is the responsibility of the wrapper functions in this
header.

struct gpio_callback
#include <gpio.h> GPIO callback structure.

Used to register a callback in the driver instance callback list. As many callbacks
as needed can be added as long as each of them are unique pointers of struct
gpio_callback. Beware such structure should not be allocated on stack.

Note: To help setting it, see gpio_init_callback() below

Public Members

sys_snode_t node
This is meant to be used in the driver and the user should not mess with it (see
drivers/gpio/gpio_utils.h)

gpio_callback_handler_t handler
Actual callback function being called when relevant.

gpio_port_pins_t pin_mask
A mask of pins the callback is interested in, if 0 the callback will never be called.

Such pin_mask can be modified whenever necessary by the owner, and thus will
affect the handler being called or not. The selected pins must be configured to
trigger an interrupt.
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7.6.23 Hardware Information

Overview

The HW Info API provides access to hardware information such as device identifiers and reset
cause flags.

Reset cause flags can be used to determine why the device was reset; for example due to a watch-
dog timeout or due to power cycling. Different devices support different subset of flags. Use
hwinfo_get_supported_reset_cause() to retrieve the flags that are supported by that device.

Configuration Options

Related configuration options:

• CONFIG_HWINFO

API Reference

group hwinfo_interface
Hardware Information Interface.

Since
1.14

Version
1.0.0

Reset cause flags

RESET_PIN
External pin.

RESET_SOFTWARE
Software reset.

RESET_BROWNOUT
Brownout (drop in voltage)

RESET_POR
Power-on reset (POR)

RESET_WATCHDOG
Watchdog timer expiration.

RESET_DEBUG
Debug event.
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RESET_SECURITY
Security violation.

RESET_LOW_POWER_WAKE
Waking up from low power mode.

RESET_CPU_LOCKUP
CPU lock-up detected.

RESET_PARITY
Parity error.

RESET_PLL
PLL error.

RESET_CLOCK
Clock error.

RESET_HARDWARE
Hardware reset.

RESET_USER
User reset.

RESET_TEMPERATURE
Temperature reset.

Functions

ssize_t hwinfo_get_device_id(uint8_t *buffer, size_t length)
Copy the device id to a buffer.

This routine copies “length” number of bytes of the device ID to the buffer. If the device
ID is smaller than length, the rest of the buffer is left unchanged. The ID depends on
the hardware and is not guaranteed unique.

Drivers are responsible for ensuring that the ID data structure is a sequence of bytes.
The returned ID value is not supposed to be interpreted based on vendor-specific as-
sumptions of byte order. It should express the identifier as a raw byte sequence, doing
any endian conversion necessary so that a hex representation of the bytes produces
the intended serial number.

Parameters
• buffer – Buffer to write the ID to.

• length – Max length of the buffer.

Return values
• size – of the device ID copied.

• -ENOSYS – if there is no implementation for the particular device.

• any – negative value on driver specific errors.
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int hwinfo_get_device_eui64(uint8_t *buffer)
Copy the device EUI64 to a buffer.

This routine copies the device EUI64 (8 bytes) to the buffer. The EUI64 depends on the
hardware and is guaranteed unique.

Parameters
• buffer – Buffer of 8 bytes to write the ID to.

Return values
• zero – if successful.

• -ENOSYS – if there is no implementation for the particular device.

• any – negative value on driver specific errors.

int hwinfo_get_reset_cause(uint32_t *cause)
Retrieve cause of device reset.

This routine retrieves the flags that indicate why the device was reset.

On some platforms the reset cause flags accumulate between successive resets and
this routine may return multiple flags indicating all reset causes since the device was
powered on. If you need to retrieve the cause only for the most recent reset call
hwinfo_clear_reset_cause after calling this routine to clear the hardware flags be-
fore the next reset event.

Successive calls to this routine will return the same value, unless
hwinfo_clear_reset_cause has been called.

Parameters
• cause – OR’d reset cause flags

Return values
• zero – if successful.

• -ENOSYS – if there is no implementation for the particular device.

• any – negative value on driver specific errors.

int hwinfo_clear_reset_cause(void)
Clear cause of device reset.

Clears reset cause flags.

Return values
• zero – if successful.

• -ENOSYS – if there is no implementation for the particular device.

• any – negative value on driver specific errors.

int hwinfo_get_supported_reset_cause(uint32_t *supported)
Get supported reset cause flags.

Retrieves all reset_cause flags that are supported by this device.

Parameters
• supported – OR’d reset cause flags that are supported

Return values
• zero – if successful.
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• -ENOSYS – if there is no implementation for the particular device.

• any – negative value on driver specific errors.

7.6.24 I2C EEPROM Target

Overview

API Reference

group i2c_eeprom_target_api
I2C EEPROM Target Driver API.

Since
1.13

Version
1.0.0

Functions

int eeprom_target_program(const struct device *dev, const uint8_t *eeprom_data,
unsigned int length)

Program memory of the virtual EEPROM.

Parameters
• dev – Pointer to the device structure for the driver instance.

• eeprom_data – Pointer of data to program into the virtual eeprom mem-
ory

• length – Length of data to program into the virtual eeprom memory

Return values
• 0 – If successful.

• -EINVAL – Invalid data size

int eeprom_target_read(const struct device *dev, uint8_t *eeprom_data, unsigned int
offset)

Read single byte of virtual EEPROM memory.

Parameters
• dev – Pointer to the device structure for the driver instance.

• eeprom_data – Pointer of byte where to store the virtual eeprom memory

• offset – Offset into EEPROM memory where to read the byte

Return values
• 0 – If successful.

• -EINVAL – Invalid data pointer or offset
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int eeprom_target_set_addr(const struct device *dev, uint8_t addr)
Change the address of eeprom target at runtime.

Parameters
• dev – Pointer to the device structure for the driver instance.

• addr – New address to assign to the eeprom target device

Return values
• 0 – Is successful

• -EINVAL – If parameters are invalid

• -EIO – General input / output error during i2c_taget_register

• -ENOSYS – If target mode is not implemented

7.6.25 Improved Inter-Integrated Circuit (I3C) Bus

I3C (Improved Inter-Integrated Circuit) is a two-signal shared peripheral interface bus. Devices
on the bus can operate in two roles: as a “controller” that initiates transactions and controls the
clock, or as a “target” that responds to transaction commands.

Currently, the API is based on I3C Specification version 1.1.1.

• I3C Controller API

– In-Band Interrupt (IBI)

– Device Tree

– Device Drivers for I3C Devices

– I2C Devices under I3C Bus

• Configuration Options

• API Reference

I3C Controller API

Zephyr’s I3C controller API is used when an I3C controller controls the bus, in particularly the
start and stop conditions and the clock. This is the most common mode, used to interact with I3C
target devices such as sensors.

Due to the nature of the I3C, there are devices on the bus where they may not have addresses
when powered on. Therefore, an additional dynamic address assignment needs to be carried
out by the I3C controller. Because of this, the controller needs to maintain separate structures
to keep track of device status. This can be done at build time, for example, by creating arrays of
device descriptors for both I3C and I2C devices:

static struct i3c_device_desc i3c_device_array[] = I3C_DEVICE_ARRAY_DT_INST(inst);
static struct i3c_i2c_device_desc i2c_device_array[] = I3C_I2C_DEVICE_ARRAY_DT_INST(inst);

The macros I3C_DEVICE_ARRAY_DT_INST and I3C_I2C_DEVICE_ARRAY_DT_INST are helper macros
to aid in create arrays of device descriptors corresponding to the devicetree nodes under the I3C
controller.

Here is a list of generic steps for initializing the I3C controller and the I3C bus inside the device
driver initialization function:
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1. Initialize the data structure of the I3C controller device driver instance. The usual device
defining macros such as DEVICE_DT_INST_DEFINE can be used, and the initialization func-
tion provided as a parameter to the macro.

• The i3c_addr_slots and i3c_dev_list are structures to aid in address assignments
and device list management. If this is being used, this struct needs to be initialized by
calling i3c_addr_slots_init(). These two structures can also be used with various
helper functions.

• Initialize the device descriptors if needed by the controller driver.

2. Initialize the hardware, including but not limited to:

• Setup pin mux and directions.

• Setup the clock for the controller.

• Power on the hardware.

• Configure the hardware (e.g. SCL clock frequency).

3. Perform bus initialization. There is a generic helper function, i3c_bus_init(), which per-
forms the following steps. This function can be used if the controller does not require any
special handling during bus initialization.

1. Do RSTDAA to reset dynamic addresses of connected devices. If any connected devices
have already been assigned an address, the bookkeeping data structures do not have
records of these, for example, at power-on. So it is a good idea to reset and assign them
new addresses.

2. Do DISEC to disable any events from devices.

3. Do SETDASA to use static addresses as dynamic address if so desired.

• SETAASA may not be supported for all connected devices to assign static addresses
as dynamic addresses.

• BCR and DCR need to be obtained separately to populate the relevant fields in the
I3C target device descriptor struct.

4. Do ENTDAA to start dynamic address assignment, if there are still devices without ad-
dresses.

• If there is a device waiting for address, it will send its Provisioned ID, BCR, and
DCR back. Match the received Provisioned ID to the list of registered I3C devices.

– If there is a match, assign an address (either from the stated static address if
SETDASA has not been done, or use a free address).

* Also, set the BCR and DCR fields in the device descriptor struct.

– If there is no match, depending on policy, it can be assigned a free address, or
the device driver can stop the assignment process and errors out.

* Note that the I3C API requires device descriptor to function. A device without
a device descriptor cannot be accessed through the API.

• This step can be skipped if there is no connected devices requiring DAA.

5. These are optional but highly recommended:

• Do GETMRL and GETMWL to get maximum read/write length.

• Do GETMXDS to get maximum read/write speed and maximum read turnaround
time.

• The helper function, i3c_bus_init(), would retrieve basic device information
such as BCR, DCR, MRL and MWL.

6. Do ENEC to re-enable events from devices.
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• The helper function, i3c_bus_init(), only re-enables hot-join events. IBI event
should only be enabled when enabling IBI of a device.

In-Band Interrupt (IBI) If a target device can generate In-Band Interrupt (IBI), the controller
needs to be made aware of it.

• i3c_ibi_enable() to enable IBI of a target device.

– Some controller hardware have IBI slots which need to be programmed so that the
controller can recognize incoming IBIs from a particular target device.

* If the hardware has IBI slots, i3c_ibi_enable() needs to program those IBI slots.

* Note that there are usually limited IBI slots on the controller so this operation may
fail.

– The implementation in driver should also send the ENEC command to enable interrupt
of this target device.

• i3c_ibi_disable() to disable IBI of a target device.

– If controller hardware makes use of IBI slots, this will remove description of the target
device from the slots.

– The implementation in driver should also send the DISEC command to disable inter-
rupt of this target device.

Device Tree Here is an example for defining a I3C controller in device tree:

i3c0: i3c@10000 {
compatible = "vendor,i3c";

#address-cells = < 0x3 >;
#size-cells = < 0x0 >;

reg = < 0x10000 0x1000 >;
interrupts = < 0x1F 0x0 >;

pinctrl-0 = < &pinmux-i3c >;
pinctrl-names = "default";

i2c-scl-hz = < 400000 >;

i3c-scl-hz = < 12000000 >;

status = "okay";

i3c-dev0: i3c-dev0@420000ABCD12345678 {
compatible = "vendor,i3c-dev";

reg = < 0x42 0xABCD 0x12345678 >;

status = "okay";
};

i2c-dev0: i2c-dev0@380000000000000050 {
compatible = "vendor-i2c-dev";

reg = < 0x38 0x0 0x50 >;

status = "okay";
};

};

3402 Chapter 7. Hardware Support



Zephyr Project Documentation, Release 3.7.99

I3C Devices For I3C devices, the reg property has 3 elements:

• The first one is the static address of the device.

– Can be zero if static address is not used. Address will be assigned during DAA (Dynamic
Address Assignment).

– If non-zero and property assigned-address is not set, this will be the address of the
device after SETDASA (Set Dynamic Address from Static Address) is issued.

• Second element is the upper 16-bit of the Provisioned ID (PID) which contains the man-
ufacturer ID left-shifted by 1. This is the bits 33-47 (zero-based) of the 48-bit Provisioned
ID.

• Third element contains the lower 32-bit of the Provisioned ID which is a combination of the
part ID (left-shifted by 16, bits 16-31 of the PID) and the instance ID (left-shifted by 12, bits
12-15 of the PID).

Note that the unit-address (the part after @) must match the reg property fully where each ele-
ment is treated as 32-bit integer, combining to form a 96-bit integer. This is required for properly
generating device tree macros.

I2C Devices For I2C devices where the device driver has support for working under I3C bus,
the device node can be described as a child of the I3C controller. If the device driver is written
to only work with I2C controllers, define the node under the I2C virtual controller as described
below. Otherwise, the reg property, similar to I3C devices, has 3 elements:

• The first one is the static address of the device. This must be a valid address as I2C devices
do not support dynamic address assignment.

• Second element is always zero.

– This is used by various helper macros to determine whether the device tree entry cor-
responds to a I2C device.

• Third element is the LVR (Legacy Virtual Register):

– bit[31:8] are unused.

– bit[7:5] are the I2C device index:

* Index 0
· I3C device has a 50 ns spike filter where it is not affected by high frequency on

SCL.

* Index 1
· I2C device does not have a 50 ns spike filter but can work with high frequency

on SCL.

* Index 2
· I3C device does not have a 50 ns spike filter and cannot work with high fre-

quency on SCL.

– bit[4] is the I2C mode indicator:

* 0 is FM+ mode.

* 1 is FM mode.

Similar to I3C devices, the unit-address must match the reg property fully where each element
is treated as 32-bit integer, combining to form a 96-bit integer.
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Device Drivers for I3C Devices All of the transfer functions of I3C controller API require the
use of device descriptors, i3c_device_desc. This struct contains runtime information about
a I3C device, such as, its dynamic address, BCR, DCR, MRL and MWL. Therefore, the device
driver of a I3C device should grab a pointer to this device descriptor from the controller using
i3c_device_find(). This function takes an ID parameter of type i3c_device_id for matching.
The returned pointer can then be used in subsequent API calls to the controller.

I2C Devices under I3C Bus Since I3C is backward compatible with I2C, the I3C controller API
can accommodate I2C API calls without modifications if the controller device driver implements
the I2C API. This has the advantage of using existing I2C devices without any modifications to
their device drivers. However, since the I3C controller API works on device descriptors, any
calls to I2C API will need to look up the corresponding device descriptor from the I2C device
address. This adds a bit of processing cost to any I2C API calls.

On the other hand, a device driver can be extended to utilize native I2C device support via the
I3C controller API. During device initialization, i3c_i2c_device_find() needs to be called to
retrieve the pointer to the device descriptor. This pointer can be used in subsequent API calls.

Note that, with either methods mentioned above, the devicetree node of the I2C device must be
declared according to I3C standard:

The I2C virtual controller device driver provides a way to interface I2C devices on the I3C bus
where the associated device drivers can be used as-is without modifications. This requires
adding an intermediate node in the device tree:

i3c0: i3c@10000 {
<... I3C controller related properties ...>
<... Nodes of I3C devices, if any ...>

i2c-dev0: i2c-dev0@420000000000000050 {
compatible = "vendor-i2c-dev";

reg = < 0x42 0x0 0x50 >;

status = "okay";
};

};

Configuration Options

Related configuration options:

• CONFIG_I3C
• CONFIG_I3C_USE_GROUP_ADDR
• CONFIG_I3C_USE_IBI
• CONFIG_I3C_IBI_MAX_PAYLOAD_SIZE
• CONFIG_I3C_CONTROLLER_INIT_PRIORITY

API Reference

group i3c_interface
I3C Interface.
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Since
3.2

Version
0.1.0

Bus Characteristic Register (BCR)

• BCR[7:6]: Device Role

– 0: I3C Target

– 1: I3C Controller capable

– 2: Reserved

– 3: Reserved

• BCR[5]: Advanced Capabilities

– 0: Does not support optional advanced capabilities.

– 1: Supports optional advanced capabilities which can be viewed via GETCAPS CCC.

• BCR[4]: Virtual Target Support

– 0: Is not a virtual target.

– 1: Is a virtual target.

• BCR[3]: Offline Capable

– 0: Will always response to I3C commands.

– 1: Will not always response to I3C commands.

• BCR[2]: IBI Payload

– 0: No data bytes following the accepted IBI.

– 1: One data byte (MDB, Mandatory Data Byte) follows the accepted IBI. Additional
data bytes may also follows.

• BCR[1]: IBI Request Capable

– 0: Not capable

– 1: Capable

• BCR[0]: Max Data Speed Limitation

– 0: No Limitation

– 1: Limitation obtained via GETMXDS CCC.

I3C_BCR_MAX_DATA_SPEED_LIMIT
Max Data Speed Limitation bit.

0 - No Limitation. 1 - Limitation obtained via GETMXDS CCC.

I3C_BCR_IBI_REQUEST_CAPABLE
IBI Request Capable bit.
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I3C_BCR_IBI_PAYLOAD_HAS_DATA_BYTE
IBI Payload bit.

0 - No data bytes following the accepted IBI. 1 - One data byte (MDB, Mandatory Data
Byte) follows the accepted IBI. Additional data bytes may also follows.

I3C_BCR_OFFLINE_CAPABLE
Offline Capable bit.

0 - Will always respond to I3C commands. 1 - Will not always respond to I3C commands.

I3C_BCR_VIRTUAL_TARGET
Virtual Target Support bit.

0 - Is not a virtual target. 1 - Is a virtual target.

I3C_BCR_ADV_CAPABILITIES
Advanced Capabilities bit.

0 - Does not support optional advanced capabilities. 1 - Supports optional advanced
capabilities which can be viewed via GETCAPS CCC.

I3C_BCR_DEVICE_ROLE_I3C_TARGET
Device Role - I3C Target.

I3C_BCR_DEVICE_ROLE_I3C_CONTROLLER_CAPABLE
Device Role - I3C Controller Capable.

I3C_BCR_DEVICE_ROLE_MASK
Device Role bit shift mask.

I3C_BCR_DEVICE_ROLE(bcr)
Device Role.

Obtain Device Role value from the BCR value obtained via GETBCR.

Parameters
• bcr – BCR value

Legacy Virtual Register (LVR)

Legacy Virtual Register (LVR)

• LVR[7:5]: I2C device index:

– 0: I2C device has a 50 ns spike filter where it is not affected by high frequency on
SCL.

– 1: I2C device does not have a 50 ns spike filter but can work with high frequency
on SCL.

– 2: I2C device does not have a 50 ns spike filter and cannot work with high fre-
quency on SCL.

• LVR[4]: I2C mode indicator:

– 0: FM+ mode

– 1: FM mode
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• LVR[3:0]: Reserved.

I3C_LVR_I2C_FM_PLUS_MODE
I2C FM+ Mode.

I3C_LVR_I2C_FM_MODE
I2C FM Mode.

I3C_LVR_I2C_MODE_MASK
I2C Mode Indicator bitmask.

I3C_LVR_I2C_MODE(lvr)
I2C Mode.

Obtain I2C Mode value from the LVR value.

Parameters
• lvr – LVR value

I3C_LVR_I2C_DEV_IDX_0
I2C Device Index 0.

I2C device has a 50 ns spike filter where it is not affected by high frequency on SCL.

I3C_LVR_I2C_DEV_IDX_1
I2C Device Index 1.

I2C device does not have a 50 ns spike filter but can work with high frequency on SCL.

I3C_LVR_I2C_DEV_IDX_2
I2C Device Index 2.

I2C device does not have a 50 ns spike filter and cannot work with high frequency on
SCL.

I3C_LVR_I2C_DEV_IDX_MASK
I2C Device Index bitmask.

I3C_LVR_I2C_DEV_IDX(lvr)
I2C Device Index.

Obtain I2C Device Index value from the LVR value.

Parameters
• lvr – LVR value

Defines

I3C_DEVICE_ID(pid)
Structure initializer for i3c_device_id from PID.

This helper macro expands to a static initializer for a i3c_device_id by populating the
PID (Provisioned ID) field.

Parameters
• pid – Provisioned ID.
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Enums

enum i3c_bus_mode
I3C bus mode.

Values:

enumerator I3C_BUS_MODE_PURE
Only I3C devices are on the bus.

enumerator I3C_BUS_MODE_MIXED_FAST
Both I3C and legacy I2C devices are on the bus.

The I2C devices have 50ns spike filter on SCL.

enumerator I3C_BUS_MODE_MIXED_LIMITED
Both I3C and legacy I2C devices are on the bus.

The I2C devices do not have 50ns spike filter on SCL and can tolerate maximum
SDR SCL clock frequency.

enumerator I3C_BUS_MODE_MIXED_SLOW
Both I3C and legacy I2C devices are on the bus.

The I2C devices do not have 50ns spike filter on SCL but cannot tolerate maximum
SDR SCL clock frequency.

enumerator I3C_BUS_MODE_MAX = I3C_BUS_MODE_MIXED_SLOW

enumerator I3C_BUS_MODE_INVALID

enum i3c_i2c_speed_type
I2C bus speed under I3C bus.

Only FM and FM+ modes are supported for I2C devices under I3C bus.

Values:

enumerator I3C_I2C_SPEED_FM
I2C FM mode.

enumerator I3C_I2C_SPEED_FMPLUS
I2C FM+ mode.

enumerator I3C_I2C_SPEED_MAX = I3C_I2C_SPEED_FMPLUS

enumerator I3C_I2C_SPEED_INVALID

enum i3c_data_rate
I3C data rate.

I3C data transfer rate defined by the I3C specification.

Values:
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enumerator I3C_DATA_RATE_SDR
Single Data Rate messaging.

enumerator I3C_DATA_RATE_HDR_DDR
High Data Rate - Double Data Rate messaging.

enumerator I3C_DATA_RATE_HDR_TSL
High Data Rate - Ternary Symbol Legacy-inclusive-Bus.

enumerator I3C_DATA_RATE_HDR_TSP
High Data Rate - Ternary Symbol for Pure Bus.

enumerator I3C_DATA_RATE_HDR_BT
High Data Rate - Bulk Transport.

enumerator I3C_DATA_RATE_MAX = I3C_DATA_RATE_HDR_BT

enumerator I3C_DATA_RATE_INVALID

enum i3c_sdr_controller_error_codes
I3C SDR Controller Error Codes.

These are error codes defined by the I3C specification.

I3C_ERROR_CE_UNKNOWN and I3C_ERROR_CE_NONE are not official error codes ac-
cording to the specification. These are there simply to aid in error handling during
interactions with the I3C drivers and subsystem.

Values:

enumerator I3C_ERROR_CE0
Transaction after sending CCC.

enumerator I3C_ERROR_CE1
Monitoring Error.

enumerator I3C_ERROR_CE2
No response to broadcast address (0x7E)

enumerator I3C_ERROR_CE3
Failed Controller Handoff.

enumerator I3C_ERROR_CE_UNKNOWN
Unknown error (not official error code)

enumerator I3C_ERROR_CE_NONE
No error (not official error code)

enumerator I3C_ERROR_CE_MAX = I3C_ERROR_CE_UNKNOWN
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enumerator I3C_ERROR_CE_INVALID

enum i3c_sdr_target_error_codes
I3C SDR Target Error Codes.

These are error codes defined by the I3C specification.

I3C_ERROR_TE_UNKNOWN and I3C_ERROR_TE_NONE are not official error codes ac-
cording to the specification. These are there simply to aid in error handling during
interactions with the I3C drivers and subsystem.

Values:

enumerator I3C_ERROR_TE0
Invalid Broadcast Address or Dynamic Address after DA assignment.

enumerator I3C_ERROR_TE1
CCC Code.

enumerator I3C_ERROR_TE2
Write Data.

enumerator I3C_ERROR_TE3
Assigned Address during Dynamic Address Arbitration.

enumerator I3C_ERROR_TE4
0x7E/R missing after RESTART during Dynamic Address Arbitration

enumerator I3C_ERROR_TE5
Transaction after detecting CCC.

enumerator I3C_ERROR_TE6
Monitoring Error.

enumerator I3C_ERROR_DBR
Dead Bus Recovery.

enumerator I3C_ERROR_TE_UNKNOWN
Unknown error (not official error code)

enumerator I3C_ERROR_TE_NONE
No error (not official error code)

enumerator I3C_ERROR_TE_MAX = I3C_ERROR_TE_UNKNOWN

enumerator I3C_ERROR_TE_INVALID

enum i3c_config_type
Type of configuration being passed to configure function.

Values:
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enumerator I3C_CONFIG_CONTROLLER

enumerator I3C_CONFIG_TARGET

enumerator I3C_CONFIG_CUSTOM

Functions

struct i3c_device_desc *i3c_dev_list_find(const struct i3c_dev_list *dev_list, const struct
i3c_device_id *id)

Find a I3C target device descriptor by ID.

This finds the I3C target device descriptor in the device list matching the provided ID
struct (id).

Parameters
• dev_list – Pointer to the device list struct.

• id – Pointer to I3C device ID struct.

Returns
Pointer to the I3C target device descriptor, or NULL if none is found.

struct i3c_device_desc *i3c_dev_list_i3c_addr_find(struct i3c_dev_attached_list
*dev_list, uint8_t addr)

Find a I3C target device descriptor by dynamic address.

This finds the I3C target device descriptor in the attached device list matching the dy-
namic address (addr)

Parameters
• dev_list – Pointer to the device list struct.

• addr – Dynamic address to be matched.

Returns
Pointer to the I3C target device descriptor, or NULL if none is found.

struct i3c_i2c_device_desc *i3c_dev_list_i2c_addr_find(struct i3c_dev_attached_list
*dev_list, uint16_t addr)

Find a I2C target device descriptor by address.

This finds the I2C target device descriptor in the attached device list matching the ad-
dress (addr)

Parameters
• dev_list – Pointer to the device list struct.

• addr – Address to be matched.

Returns
Pointer to the I2C target device descriptor, or NULL if none is found.

int i3c_determine_default_addr(struct i3c_device_desc *target, uint8_t *addr)
Helper function to find the default address an i3c device is attached with.

This is a helper function to find the default address the device will be loaded with.
This could be either it’s static address, a requested dynamic address, or just a dynamic
address that is available

Parameters
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• target – [in] The pointer of the device descriptor

• addr – [out] Address to be assigned to target device.

Return values
• 0 – if successful.

• -EINVAL – if the expected default address is already in use

int i3c_dev_list_daa_addr_helper(struct i3c_addr_slots *addr_slots, const struct
i3c_dev_list *dev_list, uint64_t pid, bool must_match,
bool assigned_okay, struct i3c_device_desc **target,
uint8_t *addr)

Helper function to find a usable address during ENTDAA.

This is a helper function to find a usable address during Dynamic Address Assign-
ment. Given the PID (pid), it will search through the device list for the matching de-
vice descriptor. If the device descriptor indicates that there is a preferred address (i.e.
assigned-address in device tree, i3c_device_desc::init_dynamic_addr), this preferred ad-
dress will be returned if this address is still available. If it is not available, another free
address will be returned.

If must_match is true, the PID (pid) must match one of the device in the device list.

If must_match is false, this will return an arbitrary address. This is useful when not all
devices are described in device tree. Or else, the DAA process cannot proceed since
there is no address to be assigned.

If assigned_okay is true, it will return the same address already assigned to the device
(i3c_device_desc::dynamic_addr). If no address has been assigned, it behaves as if as-
signed_okay is false. This is useful for assigning the same address to the same device
(for example, hot-join after device coming back from suspend).

If assigned_okay is false, the device cannot have an address assigned already (that
i3c_device_desc::dynamic_addr is not zero). This is mainly used during the initial DAA.

Parameters
• addr_slots – [in] Pointer to address slots struct.

• dev_list – [in] Pointer to the device list struct.

• pid – [in] Provisioned ID of device to be assigned address.

• must_match – [in] True if PID must match devices in the device list. False
otherwise.

• assigned_okay – [in] True if it is okay to return the address already as-
signed to the target matching the PID (pid).

• target – [out] Store the pointer of the device descriptor if it matches the
incoming PID (pid).

• addr – [out] Address to be assigned to target device.

Return values
• 0 – if successful.

• -ENODEV – if no device matches the PID (pid) in the device list and
must_match is true.

• -EINVAL – if the device matching PID (pid) already has an address as-
signed or invalid function arguments.

static inline int i3c_configure(const struct device *dev, enum i3c_config_type type, void
*config)

Configure the I3C hardware.
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Parameters
• dev – Pointer to controller device driver instance.

• type – Type of configuration parameters being passed in config.

• config – Pointer to the configuration parameters.

Return values
• 0 – If successful.

• -EINVAL – If invalid configure parameters.

• -EIO – General Input/Output errors.

• -ENOSYS – If not implemented.

static inline int i3c_config_get(const struct device *dev, enum i3c_config_type type, void
*config)

Get configuration of the I3C hardware.

This provides a way to get the current configuration of the I3C hardware.

This can return cached config or probed hardware parameters, but it has to be up to
date with current configuration.

Note that if type is I3C_CONFIG_CUSTOM, config must contain the ID of the parameter
to be retrieved.

Parameters
• dev – [in] Pointer to controller device driver instance.

• type – [in] Type of configuration parameters being passed in config.

• config – [inout] Pointer to the configuration parameters.

Return values
• 0 – If successful.

• -EIO – General Input/Output errors.

• -ENOSYS – If not implemented.

static inline int i3c_recover_bus(const struct device *dev)
Attempt bus recovery on the I3C bus.

This routine asks the controller to attempt bus recovery.

Return values
• 0 – If successful.

• -EBUSY – If bus recovery fails.

• -EIO – General input / output error.

• -ENOSYS – Bus recovery is not supported by the controller driver.

int i3c_attach_i3c_device(struct i3c_device_desc *target)
Attach an I3C device.

Called to attach a I3C device to the addresses. This is typically called before a SETDASA
or ENTDAA to reserve the addresses. This will also call the optional api to update any
registers within the driver if implemented.
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Warning

Use cases involving multiple writers to the i3c/i2c devices must prevent concurrent
write operations, either by preventing all writers from being preempted or by using
a mutex to govern writes to the i3c/i2c devices.

Parameters
• target – Pointer to the target device descriptor

Return values
• 0 – If successful.

• -EINVAL – If address is not available or if the device has already been
attached before

int i3c_reattach_i3c_device(struct i3c_device_desc *target, uint8_t old_dyn_addr)
Reattach I3C device.

called after every time an I3C device has its address changed. It can be because the
device has been powered down and has lost its address, or it can happen when a de-
vice had a static address and has been assigned a dynamic address with SETDASA or
a dynamic address has been updated with SETNEWDA. This will also call the optional
api to update any registers within the driver if implemented.

Warning

Use cases involving multiple writers to the i3c/i2c devices must prevent concurrent
write operations, either by preventing all writers from being preempted or by using
a mutex to govern writes to the i3c/i2c devices.

Parameters
• target – Pointer to the target device descriptor

• old_dyn_addr – The old dynamic address of target device, 0 if there was
no old dynamic address

Return values
• 0 – If successful.

• -EINVAL – If address is not available

int i3c_detach_i3c_device(struct i3c_device_desc *target)
Detach I3C Device.

called to remove an I3C device and to free up the address that it used. If it’s dynamic
address was not set, then it assumed that SETDASA failed and will free it’s static addr.
This will also call the optional api to update any registers within the driver if imple-
mented.

Warning

Use cases involving multiple writers to the i3c/i2c devices must prevent concurrent
write operations, either by preventing all writers from being preempted or by using
a mutex to govern writes to the i3c/i2c devices.

Parameters

3414 Chapter 7. Hardware Support



Zephyr Project Documentation, Release 3.7.99

• target – Pointer to the target device descriptor

Return values
• 0 – If successful.

• -EINVAL – If device is already detached

int i3c_attach_i2c_device(struct i3c_i2c_device_desc *target)
Attach an I2C device.

Called to attach a I2C device to the addresses. This will also call the optional api to
update any registers within the driver if implemented.

Warning

Use cases involving multiple writers to the i3c/i2c devices must prevent concurrent
write operations, either by preventing all writers from being preempted or by using
a mutex to govern writes to the i3c/i2c devices.

Parameters
• target – Pointer to the target device descriptor

Return values
• 0 – If successful.

• -EINVAL – If address is not available or if the device has already been
attached before

int i3c_detach_i2c_device(struct i3c_i2c_device_desc *target)
Detach I2C Device.

called to remove an I2C device and to free up the address that it used. This will also
call the optional api to update any registers within the driver if implemented.

Warning

Use cases involving multiple writers to the i3c/i2c devices must prevent concurrent
write operations, either by preventing all writers from being preempted or by using
a mutex to govern writes to the i3c/i2c devices.

Parameters
• target – Pointer to the target device descriptor

Return values
• 0 – If successful.

• -EINVAL – If device is already detached

static inline int i3c_do_daa(const struct device *dev)
Perform Dynamic Address Assignment on the I3C bus.

This routine asks the controller to perform dynamic address assignment where the
controller belongs. Only the active controller of the bus should do this.
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Note

For controller driver implementation, the controller should perform SETDASA to
allow static addresses to be the dynamic addresses before actually doing ENTDAA.

Parameters
• dev – Pointer to the device structure for the controller driver instance.

Return values
• 0 – If successful.

• -EBUSY – Bus is busy.

• -EIO – General input / output error.

• -ENODEV – If a provisioned ID does not match to any target devices in the
registered device list.

• -ENOSPC – No more free addresses can be assigned to target.

• -ENOSYS – Dynamic address assignment is not supported by the controller
driver.

int i3c_do_ccc(const struct device *dev, struct i3c_ccc_payload *payload)
Send CCC to the bus.

Parameters
• dev – Pointer to the device structure for the controller driver instance.

• payload – Pointer to the structure describing the CCC payload.

Return values
• 0 – If successful.

• -EBUSY – Bus is busy.

• -EIO – General Input / output error.

• -EINVAL – Invalid valid set in the payload structure.

• -ENOSYS – Not implemented.

static inline struct i3c_device_desc *i3c_device_find(const struct device *dev, const struct
i3c_device_id *id)

Find a registered I3C target device.

Controller only API.

This returns the I3C device descriptor of the I3C device matching the incoming id.

Parameters
• dev – Pointer to controller device driver instance.

• id – Pointer to I3C device ID.

Returns
Pointer to I3C device descriptor, or NULL if no I3C device found matching
incoming id.

int i3c_bus_init(const struct device *dev, const struct i3c_dev_list *i3c_dev_list)
Generic helper function to perform bus initialization.

Parameters
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• dev – Pointer to controller device driver instance.

• i3c_dev_list – Pointer to I3C device list.

Return values
• 0 – If successful.

• -EBUSY – Bus is busy.

• -EIO – General input / output error.

• -ENODEV – If a provisioned ID does not match to any target devices in the
registered device list.

• -ENOSPC – No more free addresses can be assigned to target.

• -ENOSYS – Dynamic address assignment is not supported by the controller
driver.

int i3c_device_basic_info_get(struct i3c_device_desc *target)
Get basic information from device and update device descriptor.

This retrieves some basic information:

• Bus Characteristics Register (GETBCR)

• Device Characteristics Register (GETDCR)

• Max Read Length (GETMRL)

• Max Write Length (GETMWL) from the device and update the corresponding fields
of the device descriptor.

This only updates the field(s) in device descriptor only if CCC operations succeed.

Parameters
• target – [inout] I3C target device descriptor.

Return values
• 0 – if successful.

• -EIO – General Input/Output error.

struct i3c_config_controller
#include <i3c.h> Configuration parameters for I3C hardware to act as controller.

Public Members

bool is_secondary
True if the controller is to be the secondary controller of the bus.

False to be the primary controller.

uint32_t i3c
SCL frequency (in Hz) for I3C transfers.

uint32_t i2c
SCL frequency (in Hz) for I2C transfers.
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uint8_t supported_hdr
Bit mask of supported HDR modes (0 - 7).

This can be used to enable or disable HDR mode supported by the hardware at
runtime.

struct i3c_config_custom
#include <i3c.h> Custom I3C configuration parameters.

This can be used to configure the I3C hardware on parameters not covered by
i3c_config_controller or i3c_config_target. Mostly used to configure vendor specific pa-
rameters of the I3C hardware.

Public Members

uint32_t id
ID of the configuration parameter.

uintptr_t val
Value of configuration parameter.

void *ptr
Pointer to configuration parameter.

Mainly used to pointer to a struct that the device driver understands.

struct i3c_device_id
#include <i3c.h> Structure used for matching I3C devices.

Public Members

const uint64_t pid
Device Provisioned ID.

struct i3c_device_desc
#include <i3c.h> Structure describing a I3C target device.

Instances of this are passed to the I3C controller device APIs, for example:

• i3c_device_register() to tell the controller of a target device.

• i3c_transfers() to initiate data transfers between controller and target device.

Fields bus, pid and static_addr must be initialized by the module that implements the
target device behavior prior to passing the object reference to I3C controller device
APIs. static_addr can be zero if target device does not have static address.

Internal field node should not be initialized or modified manually.

Public Members
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const struct device *const bus
I3C bus to which this target device is attached.

const struct device *const dev
Device driver instance of the I3C device.

const uint64_t pid
Device Provisioned ID.

const uint8_t static_addr
Static address for this target device.

0 if static address is not being used, and only dynamic address is used. This means
that the target device must go through ENTDAA (Dynamic Address Assignment) to
get a dynamic address before it can communicate with the controller. This means
SETAASA and SETDASA CCC cannot be used to set dynamic address on the target
device (as both are to tell target device to use static address as dynamic address).

const uint8_t init_dynamic_addr
Initial dynamic address.

This is specified in the device tree property “assigned-address” to indicate the de-
sired dynamic address during address assignment (SETDASA and ENTDAA).

0 if there is no preference.

uint8_t dynamic_addr
Dynamic Address for this target device used for communication.

This is to be set by the controller driver in one of the following situations:
• During Dynamic Address Assignment (during ENTDAA)
• Reset Dynamic Address Assignment (RSTDAA)
• Set All Addresses to Static Addresses (SETAASA)
• Set New Dynamic Address (SETNEWDA)
• Set Dynamic Address from Static Address (SETDASA)

0 if address has not been assigned.

uint8_t group_addr
Group address for this target device.

Set during:
• Reset Group Address(es) (RSTGRPA)
• Set Group Address (SETGRPA)

0 if group address has not been assigned. Only available if CON-
FIG_I3C_USE_GROUP_ADDR is set.

uint8_t bcr
Bus Characteristic Register (BCR)

See also

I3C_BCR
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uint8_t dcr
Device Characteristic Register (DCR)

Describes the type of device. Refer to official documentation on what this number
means.

uint8_t maxrd
Maximum Read Speed.

uint8_t maxwr
Maximum Write Speed.

uint32_t max_read_turnaround
Maximum Read turnaround time in microseconds.

uint16_t mrl
Maximum Read Length.

uint16_t mwl
Maximum Write Length.

uint8_t max_ibi
Maximum IBI Payload Size.

Valid only if BCR[2] is 1.

uint8_t gethdrcap
I3C v1.0 HDR Capabilities (I3C_CCC_GETCAPS1_*)

• Bit[0]: HDR-DDR
• Bit[1]: HDR-TSP
• Bit[2]: HDR-TSL
• Bit[7:3]: Reserved

uint8_t getcap1
I3C v1.1+ GETCAPS1 (I3C_CCC_GETCAPS1_*)

• Bit[0]: HDR-DDR
• Bit[1]: HDR-TSP
• Bit[2]: HDR-TSL
• Bit[3]: HDR-BT
• Bit[7:4]: Reserved

uint8_t getcap2
GETCAPS2 (I3C_CCC_GETCAPS2_*)

• Bit[3:0]: I3C 1.x Specification Version
• Bit[5:4]: Group Address Capabilities
• Bit[6]: HDR-DDR Write Abort
• Bit[7]: HDR-DDR Abort CRC

3420 Chapter 7. Hardware Support



Zephyr Project Documentation, Release 3.7.99

uint8_t getcap3
GETCAPS3 (I3C_CCC_GETCAPS3_*)

• Bit[0]: Multi-Lane (ML) Data Transfer Support
• Bit[1]: Device to Device Transfer (D2DXFER) Support
• Bit[2]: Device to Device Transfer (D2DXFER) IBI Capable
• Bit[3]: Defining Byte Support in GETCAPS
• Bit[4]: Defining Byte Support in GETSTATUS
• Bit[5]: HDR-BT CRC-32 Support
• Bit[6]: IBI MDB Support for Pending Read Notification
• Bit[7]: Reserved

uint8_t getcap4
GETCAPS4.

• Bit[7:0]: Reserved

struct i3c_device_desc getcaps
Describes advanced (Target) capabilities and features.

i3c_target_ibi_cb_t ibi_cb
In-Band Interrupt (IBI) callback.

Only available if CONFIG_I3C_USE_IBI is set.

struct i3c_i2c_device_desc
#include <i3c.h> Structure describing a I2C device on I3C bus.

Instances of this are passed to the I3C controller device APIs, for example: ()
i3c_i2c_device_register() to tell the controller of an I2C device. () i3c_i2c_transfers()
to initiate data transfers between controller and I2C device.

Fields other than node must be initialized by the module that implements the device
behavior prior to passing the object reference to I3C controller device APIs.

Public Members

const struct device *bus
I3C bus to which this I2C device is attached.

const uint16_t addr
Static address for this I2C device.

const uint8_t lvr
Legacy Virtual Register (LVR)

See also

I3C_LVR
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struct i3c_dev_attached_list
#include <i3c.h> Structure for describing attached devices for a controller.

This contains slists of attached I3C and I2C devices.

This is a helper struct that can be used by controller device driver to aid in device
management.

Public Members

struct i3c_addr_slots addr_slots
Address slots:

• Aid in dynamic address assignment.
• Quick way to find out if a target address is a I3C or I2C device.

sys_slist_t i3c
Linked list of attached I3C devices.

sys_slist_t i2c
Linked list of attached I2C devices.

struct i3c_dev_list
#include <i3c.h> Structure for describing known devices for a controller.

This contains arrays of known I3C and I2C devices.

This is a helper struct that can be used by controller device driver to aid in device
management.

Public Members

struct i3c_device_desc *const i3c
Pointer to array of known I3C devices.

struct i3c_i2c_device_desc *const i2c
Pointer to array of known I2C devices.

const uint8_t num_i3c
Number of I3C devices in array.

const uint8_t num_i2c
Number of I2C devices in array.

struct i3c_driver_config
#include <i3c.h> This structure is common to all I3C drivers and is expected to be the
first element in the object pointed to by the config field in the device structure.
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Public Members

struct i3c_dev_list dev_list
I3C/I2C device list struct.

struct i3c_driver_data
#include <i3c.h> This structure is common to all I3C drivers and is expected to be the
first element in the driver’s struct driver_data declaration.

Public Members

struct i3c_config_controller ctrl_config
Controller Configuration.

struct i3c_dev_attached_list attached_dev
Attached I3C/I2C devices and addresses.

group i3c_ccc
I3C Common Command Codes.

Defines

I3C_CCC_BROADCAST_MAX_ID
Maximum CCC ID for broadcast.

I3C_CCC_ENEC(broadcast)
Enable Events Command.

Parameters
• broadcast – True if broadcast, false if direct.

I3C_CCC_DISEC(broadcast)
Disable Events Command.

Parameters
• broadcast – True if broadcast, false if direct.

I3C_CCC_ENTAS(as, broadcast)
Enter Activity State.

Parameters
• as – Desired activity state

• broadcast – True if broadcast, false if direct.

I3C_CCC_ENTAS0(broadcast)
Enter Activity State 0.

Parameters
• broadcast – True if broadcast, false if direct.
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I3C_CCC_ENTAS1(broadcast)
Enter Activity State 1.

Parameters
• broadcast – True if broadcast, false if direct.

I3C_CCC_ENTAS2(broadcast)
Enter Activity State 2.

Parameters
• broadcast – True if broadcast, false if direct.

I3C_CCC_ENTAS3(broadcast)
Enter Activity State 3.

Parameters
• broadcast – True if broadcast, false if direct.

I3C_CCC_RSTDAA
Reset Dynamic Address Assignment (Broadcast)

I3C_CCC_ENTDAA
Enter Dynamic Address Assignment (Broadcast)

I3C_CCC_DEFTGTS
Define List of Targets (Broadcast)

I3C_CCC_SETMWL(broadcast)
Set Max Write Length (Broadcast or Direct)

Parameters
• broadcast – True if broadcast, false if direct.

I3C_CCC_SETMRL(broadcast)
Set Max Read Length (Broadcast or Direct)

Parameters
• broadcast – True if broadcast, false if direct.

I3C_CCC_ENTTM
Enter Test Mode (Broadcast)

I3C_CCC_SETBUSCON
Set Bus Context (Broadcast)

I3C_CCC_ENDXFER(broadcast)
Data Transfer Ending Procedure Control.

Parameters
• broadcast – True if broadcast, false if direct.

I3C_CCC_ENTHDR(x)
Enter HDR Mode (HDR-DDR) (Broadcast)

I3C_CCC_ENTHDR0
Enter HDR Mode 0 (HDR-DDR) (Broadcast)
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I3C_CCC_ENTHDR1
Enter HDR Mode 1 (HDR-TSP) (Broadcast)

I3C_CCC_ENTHDR2
Enter HDR Mode 2 (HDR-TSL) (Broadcast)

I3C_CCC_ENTHDR3
Enter HDR Mode 3 (HDR-BT) (Broadcast)

I3C_CCC_ENTHDR4
Enter HDR Mode 4 (Broadcast)

I3C_CCC_ENTHDR5
Enter HDR Mode 5 (Broadcast)

I3C_CCC_ENTHDR6
Enter HDR Mode 6 (Broadcast)

I3C_CCC_ENTHDR7
Enter HDR Mode 7 (Broadcast)

I3C_CCC_SETXTIME(broadcast)
Exchange Timing Information (Broadcast or Direct)

Parameters
• broadcast – True if broadcast, false if direct.

I3C_CCC_SETAASA
Set All Addresses to Static Addresses (Broadcast)

I3C_CCC_RSTACT(broadcast)
Target Reset Action.

Parameters
• broadcast – True if broadcast, false if direct.

I3C_CCC_DEFGRPA
Define List of Group Address (Broadcast)

I3C_CCC_RSTGRPA(broadcast)
Reset Group Address.

Parameters
• broadcast – True if broadcast, false if direct.

I3C_CCC_MLANE(broadcast)
Multi-Lane Data Transfer Control (Broadcast)

I3C_CCC_VENDOR(broadcast, id)
Vendor/Standard Extension.

Parameters
• broadcast – True if broadcast, false if direct.

• id – Extension ID.
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I3C_CCC_SETDASA
Set Dynamic Address from Static Address (Direct)

I3C_CCC_SETNEWDA
Set New Dynamic Address (Direct)

I3C_CCC_GETMWL
Get Max Write Length (Direct)

I3C_CCC_GETMRL
Get Max Read Length (Direct)

I3C_CCC_GETPID
Get Provisioned ID (Direct)

I3C_CCC_GETBCR
Get Bus Characteristics Register (Direct)

I3C_CCC_GETDCR
Get Device Characteristics Register (Direct)

I3C_CCC_GETSTATUS
Get Device Status (Direct)

I3C_CCC_GETACCCR
Get Accept Controller Role (Direct)

I3C_CCC_SETBRGTGT
Set Bridge Targets (Direct)

I3C_CCC_GETMXDS
Get Max Data Speed (Direct)

I3C_CCC_GETCAPS
Get Optional Feature Capabilities (Direct)

I3C_CCC_SETROUTE
Set Route (Direct)

I3C_CCC_D2DXFER
Device to Device(s) Tunneling Control (Direct)

I3C_CCC_GETXTIME
Get Exchange Timing Information (Direct)

I3C_CCC_SETGRPA
Set Group Address (Direct)
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I3C_CCC_ENEC_EVT_ENINTR
Enable Events (ENEC) - Target Interrupt Requests.

I3C_CCC_ENEC_EVT_ENCR
Enable Events (ENEC) - Controller Role Requests.

I3C_CCC_ENEC_EVT_ENHJ
Enable Events (ENEC) - Hot-Join Event.

I3C_CCC_ENEC_EVT_ALL

I3C_CCC_DISEC_EVT_DISINTR
Disable Events (DISEC) - Target Interrupt Requests.

I3C_CCC_DISEC_EVT_DISCR
Disable Events (DISEC) - Controller Role Requests.

I3C_CCC_DISEC_EVT_DISHJ
Disable Events (DISEC) - Hot-Join Event.

I3C_CCC_DISEC_EVT_ALL

I3C_CCC_EVT_INTR
Events - Target Interrupt Requests.

I3C_CCC_EVT_CR
Events - Controller Role Requests.

I3C_CCC_EVT_HJ
Events - Hot-Join Event.

I3C_CCC_EVT_ALL
Bitmask for all events.

I3C_CCC_GETSTATUS_PROTOCOL_ERR
GETSTATUS Format 1 - Protocol Error bit.

I3C_CCC_GETSTATUS_ACTIVITY_MODE_MASK
GETSTATUS Format 1 - Activity Mode bitmask.

I3C_CCC_GETSTATUS_ACTIVITY_MODE(status)
GETSTATUS Format 1 - Activity Mode.

Obtain Activity Mode from GETSTATUS Format 1 value obtained via GETSTATUS.

Parameters
• status – GETSTATUS Format 1 value

I3C_CCC_GETSTATUS_NUM_INT_MASK
GETSTATUS Format 1 - Number of Pending Interrupts bitmask.
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I3C_CCC_GETSTATUS_NUM_INT(status)
GETSTATUS Format 1 - Number of Pending Interrupts.

Obtain Number of Pending Interrupts from GETSTATUS Format 1 value obtained via
GETSTATUS.

Parameters
• status – GETSTATUS Format 1 value

I3C_CCC_GETSTATUS_PRECR_DEEP_SLEEP_DETECTED
GETSTATUS Format 2 - PERCR - Deep Sleep Detected bit.

I3C_CCC_GETSTATUS_PRECR_HANDOFF_DELAY_NACK
GETSTATUS Format 2 - PERCR - Handoff Delay NACK.

I3C_CCC_GETMXDS_MAX_SDR_FSCL_MAX
Get Max Data Speed (GETMXDS) - Default Max Sustained Data Rate.

I3C_CCC_GETMXDS_MAX_SDR_FSCL_8MHZ
Get Max Data Speed (GETMXDS) - 8MHz Max Sustained Data Rate.

I3C_CCC_GETMXDS_MAX_SDR_FSCL_6MHZ
Get Max Data Speed (GETMXDS) - 6MHz Max Sustained Data Rate.

I3C_CCC_GETMXDS_MAX_SDR_FSCL_4MHZ
Get Max Data Speed (GETMXDS) - 4MHz Max Sustained Data Rate.

I3C_CCC_GETMXDS_MAX_SDR_FSCL_2MHZ
Get Max Data Speed (GETMXDS) - 2MHz Max Sustained Data Rate.

I3C_CCC_GETMXDS_TSCO_8NS
Get Max Data Speed (GETMXDS) - Clock to Data Turnaround <= 8ns.

I3C_CCC_GETMXDS_TSCO_9NS
Get Max Data Speed (GETMXDS) - Clock to Data Turnaround <= 9ns.

I3C_CCC_GETMXDS_TSCO_10NS
Get Max Data Speed (GETMXDS) - Clock to Data Turnaround <= 10ns.

I3C_CCC_GETMXDS_TSCO_11NS
Get Max Data Speed (GETMXDS) - Clock to Data Turnaround <= 11ns.

I3C_CCC_GETMXDS_TSCO_12NS
Get Max Data Speed (GETMXDS) - Clock to Data Turnaround <= 12ns.

I3C_CCC_GETMXDS_TSCO_GT_12NS
Get Max Data Speed (GETMXDS) - Clock to Data Turnaround > 12ns.

I3C_CCC_GETMXDS_MAXWR_DEFINING_BYTE_SUPPORT
Get Max Data Speed (GETMXDS) - maxWr - Optional Defining Byte Support.
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I3C_CCC_GETMXDS_MAXWR_MAX_SDR_FSCL_MASK
Get Max Data Speed (GETMXDS) - Max Sustained Data Rate bitmask.

I3C_CCC_GETMXDS_MAXWR_MAX_SDR_FSCL(maxwr)
Get Max Data Speed (GETMXDS) - maxWr - Max Sustained Data Rate.

Obtain Max Sustained Data Rate value from GETMXDS maxWr value obtained via GET-
MXDS.

Parameters
• maxwr – GETMXDS maxWr value.

I3C_CCC_GETMXDS_MAXRD_W2R_PERMITS_STOP_BETWEEN
Get Max Data Speed (GETMXDS) - maxRd - Write-to-Read Permits Stop Between.

I3C_CCC_GETMXDS_MAXRD_TSCO_MASK
Get Max Data Speed (GETMXDS) - maxRd - Clock to Data Turnaround bitmask.

I3C_CCC_GETMXDS_MAXRD_TSCO(maxrd)
Get Max Data Speed (GETMXDS) - maxRd - Clock to Data Turnaround.

Obtain Clock to Data Turnaround value from GETMXDS maxRd value obtained via
GETMXDS.

Parameters
• maxrd – GETMXDS maxRd value.

I3C_CCC_GETMXDS_MAXRD_MAX_SDR_FSCL_MASK
Get Max Data Speed (GETMXDS) - maxRd - Max Sustained Data Rate bitmask.

I3C_CCC_GETMXDS_MAXRD_MAX_SDR_FSCL(maxrd)
Get Max Data Speed (GETMXDS) - maxRd - Max Sustained Data Rate.

Obtain Max Sustained Data Rate value from GETMXDS maxRd value obtained via GET-
MXDS.

Parameters
• maxrd – GETMXDS maxRd value.

I3C_CCC_GETMXDS_CRDHLY1_SET_BUS_ACT_STATE
Get Max Data Speed (GETMXDS) - CRDHLY1 - Set Bus Activity State bit shift value.

I3C_CCC_GETMXDS_CRDHLY1_CTRL_HANDOFF_ACT_STATE_MASK
Get Max Data Speed (GETMXDS) - CRDHLY1 - Controller Handoff Activity State bitmask.

I3C_CCC_GETMXDS_CRDHLY1_CTRL_HANDOFF_ACT_STATE(crhdly1)
Get Max Data Speed (GETMXDS) - CRDHLY1 - Controller Handoff Activity State.

Obtain Controller Handoff Activity State value from GETMXDS value obtained via GET-
MXDS.

Parameters
• crhdly1 – GETMXDS value.

I3C_CCC_GETCAPS1_HDR_DDR
Get Optional Feature Capabilities Byte 1 (GETCAPS) Format 1 - HDR-DDR mode bit.
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I3C_CCC_GETCAPS1_HDR_TSP
Get Optional Feature Capabilities Byte 1 (GETCAPS) Format 1 - HDR-TSP mode bit.

I3C_CCC_GETCAPS1_HDR_TSL
Get Optional Feature Capabilities Byte 1 (GETCAPS) Format 1 - HDR-TSL mode bit.

I3C_CCC_GETCAPS1_HDR_BT
Get Optional Feature Capabilities Byte 1 (GETCAPS) Format 1 - HDR-BT mode bit.

I3C_CCC_GETCAPS1_HDR_MODE(x)
Get Optional Feature Capabilities Byte 1 (GETCAPS) - HDR Mode.

Get the bit corresponding to HDR mode.

Parameters
• x – HDR mode

I3C_CCC_GETCAPS1_HDR_MODE0
Get Optional Feature Capabilities Byte 1 (GETCAPS) Format 1 - HDR Mode 0.

I3C_CCC_GETCAPS1_HDR_MODE1
Get Optional Feature Capabilities Byte 1 (GETCAPS) Format 1 - HDR Mode 1.

I3C_CCC_GETCAPS1_HDR_MODE2
Get Optional Feature Capabilities Byte 1 (GETCAPS) Format 1 - HDR Mode 2.

I3C_CCC_GETCAPS1_HDR_MODE3
Get Optional Feature Capabilities Byte 1 (GETCAPS) Format 1 - HDR Mode 3.

I3C_CCC_GETCAPS1_HDR_MODE4
Get Optional Feature Capabilities Byte 1 (GETCAPS) Format 1 - HDR Mode 4.

I3C_CCC_GETCAPS1_HDR_MODE5
Get Optional Feature Capabilities Byte 1 (GETCAPS) Format 1 - HDR Mode 5.

I3C_CCC_GETCAPS1_HDR_MODE6
Get Optional Feature Capabilities Byte 1 (GETCAPS) Format 1 - HDR Mode 6.

I3C_CCC_GETCAPS1_HDR_MODE7
Get Optional Feature Capabilities Byte 1 (GETCAPS) Format 1 - HDR Mode 7.

I3C_CCC_GETCAPS2_HDRDDR_WRITE_ABORT
Get Optional Feature Capabilities Byte 2 (GETCAPS) Format 1 - HDR-DDR Write Abort
bit.

I3C_CCC_GETCAPS2_HDRDDR_ABORT_CRC
Get Optional Feature Capabilities Byte 2 (GETCAPS) Format 1 - HDR-DDR Abort CRC bit.

I3C_CCC_GETCAPS2_GRPADDR_CAP_MASK
Get Optional Feature Capabilities Byte 2 (GETCAPS) Format 1 - Group Address Capabil-
ities bitmask.
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I3C_CCC_GETCAPS2_GRPADDR_CAP(getcaps2)
Get Optional Feature Capabilities Byte 2 (GETCAPS) Format 1 - Group Address Capabil-
ities.

Obtain Group Address Capabilities value from GETCAPS Format 1 value obtained via
GETCAPS.

Parameters
• getcaps2 – GETCAPS2 value.

I3C_CCC_GETCAPS2_SPEC_VER_MASK
Get Optional Feature Capabilities Byte 2 (GETCAPS) Format 1 - I3C 1.x Specification
Version bitmask.

I3C_CCC_GETCAPS2_SPEC_VER(getcaps2)
Get Optional Feature Capabilities Byte 2 (GETCAPS) Format 1 - I3C 1.x Specification
Version.

Obtain I3C 1.x Specification Version value from GETCAPS Format 1 value obtained via
GETCAPS.

Parameters
• getcaps2 – GETCAPS2 value.

I3C_CCC_GETCAPS3_MLANE_SUPPORT
Get Optional Feature Capabilities Byte 3 (GETCAPS) Format 1 - Multi-Lane Data Trans-
fer Support bit.

I3C_CCC_GETCAPS3_D2DXFER_SUPPORT
Get Optional Feature Capabilities Byte 3 (GETCAPS) Format 1 - Device to Device Trans-
fer (D2DXFER) Support bit.

I3C_CCC_GETCAPS3_D2DXFER_IBI_CAPABLE
Get Optional Feature Capabilities Byte 3 (GETCAPS) Format 1 - Device to Device Trans-
fer (D2DXFER) IBI Capable bit.

I3C_CCC_GETCAPS3_GETCAPS_DEFINING_BYTE_SUPPORT
Get Optional Feature Capabilities Byte 3 (GETCAPS) Format 1 - Defining Byte Support
in GETCAPS bit.

I3C_CCC_GETCAPS3_GETSTATUS_DEFINING_BYTE_SUPPORT
Get Optional Feature Capabilities Byte 3 (GETCAPS) Format 1 - Defining Byte Support
in GETSTATUS bit.

I3C_CCC_GETCAPS3_HDRBT_CRC32_SUPPORT
Get Optional Feature Capabilities Byte 3 (GETCAPS) Format 1 - HDR-BT CRC-32 Support
bit.

I3C_CCC_GETCAPS3_IBI_MDR_PENDING_READ_NOTIFICATION
Get Optional Feature Capabilities Byte 3 (GETCAPS) Format 1 - IBI MDB Support for
Pending Read Notification bit.

I3C_CCC_GETCAPS_TESTPAT1
Get Fixed Test Pattern (GETCAPS) Format 2 - Fixed Test Pattern Byte 1.
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I3C_CCC_GETCAPS_TESTPAT2
Get Fixed Test Pattern (GETCAPS) Format 2 - Fixed Test Pattern Byte 2.

I3C_CCC_GETCAPS_TESTPAT3
Get Fixed Test Pattern (GETCAPS) Format 2 - Fixed Test Pattern Byte 3.

I3C_CCC_GETCAPS_TESTPAT4
Get Fixed Test Pattern (GETCAPS) Format 2 - Fixed Test Pattern Byte 4.

I3C_CCC_GETCAPS_TESTPAT
Get Fixed Test Pattern (GETCAPS) Format 2 - Fixed Test Pattern Word in Big Endian.

I3C_CCC_GETCAPS_CRCAPS1_HJ_SUPPORT
Get Controller Handoff Capabilities Byte 1 (GETCAPS) Format 2 - Hot-Join Support.

I3C_CCC_GETCAPS_CRCAPS1_GRP_MANAGEMENT_SUPPORT
Get Controller Handoff Capabilities Byte 1 (GETCAPS) Format 2 - Group Management
Support.

I3C_CCC_GETCAPS_CRCAPS1_ML_SUPPORT
Get Controller Handoff Capabilities Byte 1 (GETCAPS) Format 2 - Multi-Lane Support.

I3C_CCC_GETCAPS_CRCAPS2_IBI_TIR_SUPPORT
Get Controller Handoff Capabilities Byte 2 (GETCAPS) Format 2 - In-Band Interrupt Sup-
port.

I3C_CCC_GETCAPS_CRCAPS2_CONTROLLER_PASSBACK
Get Controller Handoff Capabilities Byte 2 (GETCAPS) Format 2 - Controller Pass-Back.

I3C_CCC_GETCAPS_CRCAPS2_DEEP_SLEEP_CAPABLE
Get Controller Handoff Capabilities Byte 2 (GETCAPS) Format 2 - Deep Sleep Capable.

I3C_CCC_GETCAPS_CRCAPS2_DELAYED_CONTROLLER_HANDOFF
Get Controller Handoff Capabilities Byte 2 (GETCAPS) Format 2 - Deep Sleep Capable.

I3C_CCC_GETCAPS_VTCAP1_VITRUAL_TARGET_TYPE_MASK
Get Capabilities (GETCAPS) - VTCAP1 - Virtual Target Type bitmask.

I3C_CCC_GETCAPS_VTCAP1_VITRUAL_TARGET_TYPE(vtcap1)
Get Capabilities (GETCAPS) - VTCAP1 - Virtual Target Type.

Obtain Virtual Target Type value from VTCAP1 value obtained via GETCAPS format 2
VTCAP def byte.

Parameters
• vtcap1 – VTCAP1 value.

I3C_CCC_GETCAPS_VTCAP1_SIDE_EFFECTS
Get Virtual Target Capabilities Byte 1 (GETCAPS) Format 2 - Side Effects.
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I3C_CCC_GETCAPS_VTCAP1_SHARED_PERIPH_DETECT
Get Virtual Target Capabilities Byte 1 (GETCAPS) Format 2 - Shared Peripheral Detect.

I3C_CCC_GETCAPS_VTCAP2_INTERRUPT_REQUESTS_MASK
Get Capabilities (GETCAPS) - VTCAP2 - Interrupt Requests bitmask.

I3C_CCC_GETCAPS_VTCAP2_INTERRUPT_REQUESTS(vtcap2)
Get Capabilities (GETCAPS) - VTCAP2 - Interrupt Requests.

Obtain Interrupt Requests value from VTCAP2 value obtained via GETCAPS format 2
VTCAP def byte.

Parameters
• vtcap2 – VTCAP2 value.

I3C_CCC_GETCAPS_VTCAP2_ADDRESS_REMAPPING
Get Virtual Target Capabilities Byte 2 (GETCAPS) Format 2 - Address Remapping.

I3C_CCC_GETCAPS_VTCAP2_BUS_CONTEXT_AND_COND_MASK
Get Capabilities (GETCAPS) - VTCAP2 - Bus Context and Condition bitmask.

I3C_CCC_GETCAPS_VTCAP2_BUS_CONTEXT_AND_COND(vtcap2)
Get Capabilities (GETCAPS) - VTCAP2 - Bus Context and Condition.

Obtain Bus Context and Condition value from VTCAP2 value obtained via GETCAPS
format 2 VTCAP def byte.

Parameters
• vtcap2 – VTCAP2 value.

Enums

enum i3c_ccc_getstatus_fmt
Indicate which format of GETSTATUS to use.

Values:

enumerator GETSTATUS_FORMAT_1
GETSTATUS Format 1.

enumerator GETSTATUS_FORMAT_2
GETSTATUS Format 2.

enum i3c_ccc_getstatus_defbyte
Defining byte values for GETSTATUS Format 2.

Values:

enumerator GETSTATUS_FORMAT_2_TGTSTAT = 0x00U
Target status.

enumerator GETSTATUS_FORMAT_2_PRECR = 0x91U
PRECR - Alternate status format describing Controller-capable device.
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enumerator GETSTATUS_FORMAT_2_INVALID = 0x100U
Invalid defining byte.

enum i3c_ccc_getcaps_fmt
Indicate which format of GETCAPS to use.

Values:

enumerator GETCAPS_FORMAT_1
GETCAPS Format 1.

enumerator GETCAPS_FORMAT_2
GETCAPS Format 2.

enum i3c_ccc_getcaps_defbyte
Enum for I3C Get Capabilities (GETCAPS) Format 2 Defining Byte Values.

Values:

enumerator GETCAPS_FORMAT_2_TGTCAPS = 0x00U
Standard Target capabilities and features.

enumerator GETCAPS_FORMAT_2_TESTPAT = 0x5AU
Fixed 32b test pattern.

enumerator GETCAPS_FORMAT_2_CRCAPS = 0x91U
Controller handoff capabilities and features.

enumerator GETCAPS_FORMAT_2_VTCAPS = 0x93U
Virtual Target capabilities and features.

enumerator GETCAPS_FORMAT_2_DBGCAPS = 0xD7U
Debug-capable Device capabilities and features.

enumerator GETCAPS_FORMAT_2_INVALID = 0x100
Invalid defining byte.

enum i3c_ccc_rstact_defining_byte
Enum for I3C Reset Action (RSTACT) Defining Byte Values.

Values:

enumerator I3C_CCC_RSTACT_NO_RESET = 0x00U
No Reset on Target Reset Pattern.

enumerator I3C_CCC_RSTACT_PERIPHERAL_ONLY = 0x01U
Reset the I3C Peripheral Only.

enumerator I3C_CCC_RSTACT_RESET_WHOLE_TARGET = 0x02U
Reset the Whole Target.
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enumerator I3C_CCC_RSTACT_DEBUG_NETWORK_ADAPTER = 0x03U
Debug Network Adapter Reset.

enumerator I3C_CCC_RSTACT_VIRTUAL_TARGET_DETECT = 0x04U
Virtual Target Detect.

Functions

static inline bool i3c_ccc_is_payload_broadcast(const struct i3c_ccc_payload *payload)
Test if I3C CCC payload is for broadcast.

This tests if the CCC payload is for broadcast.

Parameters
• payload – [in] Pointer to the CCC payload.

Return values
• true – if payload target is broadcast

• false – if payload target is direct

int i3c_ccc_do_getbcr(struct i3c_device_desc *target, struct i3c_ccc_getbcr *bcr)
Get BCR from a target.

Helper function to get BCR (Bus Characteristic Register) from target device.

See also

i3c_do_ccc

Parameters
• target – [in] Pointer to the target device descriptor.

• bcr – [out] Pointer to the BCR payload structure.

Returns

int i3c_ccc_do_getdcr(struct i3c_device_desc *target, struct i3c_ccc_getdcr *dcr)
Get DCR from a target.

Helper function to get DCR (Device Characteristic Register) from target device.

See also

i3c_do_ccc

Parameters
• target – [in] Pointer to the target device descriptor.

• dcr – [out] Pointer to the DCR payload structure.

Returns
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int i3c_ccc_do_getpid(struct i3c_device_desc *target, struct i3c_ccc_getpid *pid)
Get PID from a target.

Helper function to get PID (Provisioned ID) from target device.

See also

i3c_do_ccc

Parameters
• target – [in] Pointer to the target device descriptor.

• pid – [out] Pointer to the PID payload structure.

Returns

int i3c_ccc_do_rstact_all(const struct device *controller, enum
i3c_ccc_rstact_defining_byte action)

Broadcast RSTACT to reset I3C Peripheral.

Helper function to broadcast Target Reset Action (RSTACT) to all connected targets to
Reset the I3C Peripheral Only (0x01).

See also

i3c_do_ccc

Parameters
• controller – [in] Pointer to the controller device driver instance.

• action – [in] What reset action to perform.

Returns

int i3c_ccc_do_rstdaa_all(const struct device *controller)
Broadcast RSTDAA to reset dynamic addresses for all targets.

Helper function to reset dynamic addresses of all connected targets.

See also

i3c_do_ccc

Parameters
• controller – [in] Pointer to the controller device driver instance.

Returns
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int i3c_ccc_do_setdasa(const struct i3c_device_desc *target)
Set Dynamic Address from Static Address for a target.

Helper function to do SETDASA (Set Dynamic Address from Static Address) for a par-
ticular target.

Note this does not update target with the new dynamic address.

See also

i3c_do_ccc

Parameters
• target – [in] Pointer to the target device descriptor where the device is

configured with a static address.

Returns

int i3c_ccc_do_setnewda(const struct i3c_device_desc *target, struct i3c_ccc_address
new_da)

Set New Dynamic Address for a target.

Helper function to do SETNEWDA(Set New Dynamic Address) for a particular target.

Note this does not update target with the new dynamic address.

See also

i3c_do_ccc

Parameters
• target – [in] Pointer to the target device descriptor where the device is

configured with a static address.

• new_da – [in] Pointer to the new_da struct.

Returns

int i3c_ccc_do_events_all_set(const struct device *controller, bool enable, struct
i3c_ccc_events *events)

Broadcast ENEC/DISEC to enable/disable target events.

Helper function to broadcast Target Events Command to enable or disable target
events (ENEC/DISEC).

See also

i3c_do_ccc

Parameters
• controller – [in] Pointer to the controller device driver instance.
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• enable – [in] ENEC if true, DISEC if false.

• events – [in] Pointer to the event struct.

Returns

int i3c_ccc_do_events_set(struct i3c_device_desc *target, bool enable, struct
i3c_ccc_events *events)

Direct CCC ENEC/DISEC to enable/disable target events.

Helper function to send Target Events Command to enable or disable target events
(ENEC/DISEC) on a single target.

See also

i3c_do_ccc

Parameters
• target – [in] Pointer to the target device descriptor.

• enable – [in] ENEC if true, DISEC if false.

• events – [in] Pointer to the event struct.

Returns

int i3c_ccc_do_setmwl_all(const struct device *controller, const struct i3c_ccc_mwl
*mwl)

Broadcast SETMWL to Set Maximum Write Length.

Helper function to do SETMWL (Set Maximum Write Length) to all connected targets.

See also

i3c_do_ccc

Parameters
• controller – [in] Pointer to the controller device driver instance.

• mwl – [in] Pointer to SETMWL payload.

Returns

int i3c_ccc_do_setmwl(const struct i3c_device_desc *target, const struct i3c_ccc_mwl
*mwl)

Single target SETMWL to Set Maximum Write Length.

Helper function to do SETMWL (Set Maximum Write Length) to one target.

See also

i3c_do_ccc

3438 Chapter 7. Hardware Support



Zephyr Project Documentation, Release 3.7.99

Parameters
• target – [in] Pointer to the target device descriptor.

• mwl – [in] Pointer to SETMWL payload.

Returns

int i3c_ccc_do_getmwl(const struct i3c_device_desc *target, struct i3c_ccc_mwl *mwl)
Single target GETMWL to Get Maximum Write Length.

Helper function to do GETMWL (Get Maximum Write Length) of one target.

See also

i3c_do_ccc

Parameters
• target – [in] Pointer to the target device descriptor.

• mwl – [out] Pointer to GETMWL payload.

Returns

int i3c_ccc_do_setmrl_all(const struct device *controller, const struct i3c_ccc_mrl *mrl,
bool has_ibi_size)

Broadcast SETMRL to Set Maximum Read Length.

Helper function to do SETMRL (Set Maximum Read Length) to all connected targets.

See also

i3c_do_ccc

Parameters
• controller – [in] Pointer to the controller device driver instance.

• mrl – [in] Pointer to SETMRL payload.

• has_ibi_size – [in] True if also sending the optional IBI payload size.
False if not sending.

Returns

int i3c_ccc_do_setmrl(const struct i3c_device_desc *target, const struct i3c_ccc_mrl *mrl)
Single target SETMRL to Set Maximum Read Length.

Helper function to do SETMRL (Set Maximum Read Length) to one target.

Note this uses the BCR of the target to determine whether to send the optional IBI pay-
load size.

See also

i3c_do_ccc
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Parameters
• target – [in] Pointer to the target device descriptor.

• mrl – [in] Pointer to SETMRL payload.

Returns

int i3c_ccc_do_getmrl(const struct i3c_device_desc *target, struct i3c_ccc_mrl *mrl)
Single target GETMRL to Get Maximum Read Length.

Helper function to do GETMRL (Get Maximum Read Length) of one target.

Note this uses the BCR of the target to determine whether to send the optional IBI pay-
load size.

See also

i3c_do_ccc

Parameters
• target – [in] Pointer to the target device descriptor.

• mrl – [out] Pointer to GETMRL payload.

Returns

int i3c_ccc_do_getstatus(const struct i3c_device_desc *target, union i3c_ccc_getstatus
*status, enum i3c_ccc_getstatus_fmt fmt, enum
i3c_ccc_getstatus_defbyte defbyte)

Single target GETSTATUS to Get Target Status.

Helper function to do GETSTATUS (Get Target Status) of one target.

Note this uses the BCR of the target to determine whether to send the optional IBI pay-
load size.

See also

i3c_do_ccc

Parameters
• target – [in] Pointer to the target device descriptor.

• status – [out] Pointer to GETSTATUS payload.

• fmt – [in] Which GETSTATUS to use.

• defbyte – [in] Defining Byte if using format 2.

Returns

static inline int i3c_ccc_do_getstatus_fmt1(const struct i3c_device_desc *target, union
i3c_ccc_getstatus *status)

Single target GETSTATUS to Get Target Status (Format 1).

Helper function to do GETSTATUS (Get Target Status, format 1) of one target.
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See also

i3c_do_ccc

Parameters
• target – [in] Pointer to the target device descriptor.

• status – [out] Pointer to GETSTATUS payload.

Returns

static inline int i3c_ccc_do_getstatus_fmt2(const struct i3c_device_desc *target, union
i3c_ccc_getstatus *status, enum
i3c_ccc_getstatus_defbyte defbyte)

Single target GETSTATUS to Get Target Status (Format 2).

Helper function to do GETSTATUS (Get Target Status, format 2) of one target.

See also

i3c_do_ccc

Parameters
• target – [in] Pointer to the target device descriptor.

• status – [out] Pointer to GETSTATUS payload.

• defbyte – [in] Defining Byte for GETSTATUS format 2.

Returns

int i3c_ccc_do_getcaps(const struct i3c_device_desc *target, union i3c_ccc_getcaps *caps,
enum i3c_ccc_getcaps_fmt fmt, enum i3c_ccc_getcaps_defbyte
defbyte)

Single target GETCAPS to Get Target Status.

Helper function to do GETCAPS (Get Capabilities) of one target.

This should only be supported if Advanced Capabilities Bit of the BCR is set

See also

i3c_do_ccc

Parameters
• target – [in] Pointer to the target device descriptor.

• caps – [out] Pointer to GETCAPS payload.

• fmt – [in] Which GETCAPS to use.

• defbyte – [in] Defining Byte if using format 2.

Returns
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static inline int i3c_ccc_do_getcaps_fmt1(const struct i3c_device_desc *target, union
i3c_ccc_getcaps *caps)

Single target GETCAPS to Get Capabilities (Format 1).

Helper function to do GETCAPS (Get Capabilities, format 1) of one target.

See also

i3c_do_ccc

Parameters
• target – [in] Pointer to the target device descriptor.

• caps – [out] Pointer to GETCAPS payload.

Returns

static inline int i3c_ccc_do_getcaps_fmt2(const struct i3c_device_desc *target, union
i3c_ccc_getcaps *caps, enum
i3c_ccc_getcaps_defbyte defbyte)

Single target GETCAPS to Get Capabilities (Format 2).

Helper function to do GETCAPS (Get Capabilities, format 2) of one target.

See also

i3c_do_ccc

Parameters
• target – [in] Pointer to the target device descriptor.

• caps – [out] Pointer to GETCAPS payload.

• defbyte – [in] Defining Byte for GETCAPS format 2.

Returns

struct i3c_ccc_target_payload
#include <ccc.h> Payload structure for Direct CCC to one target.

Public Members

uint8_t addr
Target address.

uint8_t rnw
0 for Write, 1 for Read
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uint8_t *data
• For Write CCC, pointer to the byte array of data to be sent, which may contain

the Sub-Command Byte and additional data.
• For Read CCC, pointer to the byte buffer for data to be read into.

size_t data_len
Length in bytes for data.

size_t num_xfer
Total number of bytes transferred.

A Target can issue an EoD or the Controller can abort a transfer before the length
of the buffer. It is expected for the driver to write to this after the transfer.

struct i3c_ccc_payload
#include <ccc.h> Payload structure for one CCC transaction.

Public Members

uint8_t id
The CCC ID (I3C_CCC_*).

uint8_t *data
Pointer to byte array of data for this CCC.

This is the bytes following the CCC command in CCC frame. Set to NULL if no asso-
ciated data.

size_t data_len
Length in bytes for optional data array.

size_t num_xfer
Total number of bytes transferred.

A Controller can abort a transfer before the length of the buffer. It is expected for
the driver to write to this after the transfer.

struct i3c_ccc_target_payload *payloads
Array of struct i3c_ccc_target_payload.

Each element describes the target and associated payloads for this CCC.

Use with Direct CCC.

size_t num_targets
Number of targets.

struct i3c_ccc_events
#include <ccc.h> Payload for ENEC/DISEC CCC (Target Events Command).
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Public Members

uint8_t events
Event byte:

• Bit[0]: ENINT/DISINT:
– Target Interrupt Requests

• Bit[1]: ENCR/DISCR:
– Controller Role Requests

• Bit[3]: ENHJ/DISHJ:
– Hot-Join Event

struct i3c_ccc_mwl
#include <ccc.h> Payload for SETMWL/GETMWL CCC (Set/Get Maximum Write Length).

Note

For drivers and help functions, the raw data coming back from target device is in
big endian. This needs to be translated back to CPU endianness before passing back
to function caller.

Public Members

uint16_t len
Maximum Write Length.

struct i3c_ccc_mrl
#include <ccc.h> Payload for SETMRL/GETMRL CCC (Set/Get Maximum Read Length).

Note

For drivers and help functions, the raw data coming back from target device is in
big endian. This needs to be translated back to CPU endianness before passing back
to function caller.

Public Members

uint16_t len
Maximum Read Length.

uint8_t ibi_len
Optional IBI Payload Size.

struct i3c_ccc_deftgts_active_controller
#include <ccc.h> The active controller part of payload for DEFTGTS CCC.

This is used by DEFTGTS (Define List of Targets) CCC to describe the active controller
on the I3C bus.
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Public Members

uint8_t addr
Dynamic Address of Active Controller.

uint8_t dcr
Device Characteristic Register of Active Controller.

uint8_t bcr
Bus Characteristic Register of Active Controller.

uint8_t static_addr
Static Address of Active Controller.

struct i3c_ccc_deftgts_target
#include <ccc.h> The target device part of payload for DEFTGTS CCC.

This is used by DEFTGTS (Define List of Targets) CCC to describe the existing target
devices on the I3C bus.

Public Members

uint8_t addr
Dynamic Address of a target device, or a group address.

uint8_t dcr
Device Characteristic Register of a I3C target device or a group.

uint8_t lvr
Legacy Virtual Register for legacy I2C device.

uint8_t bcr
Bus Characteristic Register of a target device or a group.

uint8_t static_addr
Static Address of a target device or a group.

struct i3c_ccc_deftgts
#include <ccc.h> Payload for DEFTGTS CCC (Define List of Targets).

Note

i3c_ccc_deftgts_target is an array of targets, where the number of elements is
dependent on the number of I3C targets on the bus. Please have enough space for
both read and write of this CCC.
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Public Members

struct i3c_ccc_deftgts_active_controller active_controller
Data describing the active controller.

struct i3c_ccc_deftgts_target targets[]
Data describing the target(s) on the bus.

struct i3c_ccc_address
#include <ccc.h> Payload for a single device address.

This is used for:

• SETDASA (Set Dynamic Address from Static Address)

• SETNEWDA (Set New Dynamic Address)

• SETGRPA (Set Group Address)

• GETACCCR (Get Accept Controller Role)

Note that the target address is encoded within struct i3c_ccc_target_payload instead of
being encoded in this payload.

Public Members

uint8_t addr
• For SETDASA, Static Address to be assigned as Dynamic Address.
• For SETNEWDA, new Dynamic Address to be assigned.
• For SETGRPA, new Group Address to be set.
• For GETACCCR, the correct address of Secondary Controller.

Note

For SETDATA, SETNEWDA and SETGRAP, the address is left-shift by 1, and bit[0]
is always 0.

Note

Fpr SET GETACCCR, the address is left-shift by 1, and bit[0] is the calculated odd
parity bit.

struct i3c_ccc_getpid
#include <ccc.h> Payload for GETPID CCC (Get Provisioned ID).

Public Members

uint8_t pid[6]
48-bit Provisioned ID.
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Note

Data is big-endian where first byte is MSB.

struct i3c_ccc_getbcr
#include <ccc.h> Payload for GETBCR CCC (Get Bus Characteristics Register).

Public Members

uint8_t bcr
Bus Characteristics Register.

struct i3c_ccc_getdcr
#include <ccc.h> Payload for GETDCR CCC (Get Device Characteristics Register).

Public Members

uint8_t dcr
Device Characteristics Register.

union i3c_ccc_getstatus
#include <ccc.h> Payload for GETSTATUS CCC (Get Device Status).

Public Members

uint16_t status
Device Status.

• Bit[15:8]: Reserved.
• Bit[7:6]: Activity Mode.
• Bit[5]: Protocol Error.
• Bit[4]: Reserved.
• Bit[3:0]: Number of Pending Interrupts.

Note

For drivers and help functions, the raw data coming back from target device
is in big endian. This needs to be translated back to CPU endianness before
passing back to function caller.

struct i3c_ccc_getstatus fmt1

uint16_t tgtstat
Defining Byte 0x00: TGTSTAT.
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See also

i3c_ccc_getstatus::fmt1::status

uint16_t precr
Defining Byte 0x91: PRECR.

• Bit[15:8]: Vendor Reserved
• Bit[7:2]: Reserved
• Bit[1]: Handoff Delay NACK
• Bit[0]: Deep Sleep Detected

Note

For drivers and help functions, the raw data coming back from target device
is in big endian. This needs to be translated back to CPU endianness before
passing back to function caller.

uint16_t raw_u16

union i3c_ccc_getstatus fmt2

struct i3c_ccc_setbrgtgt_tgt
#include <ccc.h> One Bridged Target for SETBRGTGT payload.

Public Members

uint8_t addr
Dynamic address of the bridged target.

Note

The address is left-shift by 1, and bit[0] is always 0.

uint16_t id
16-bit ID for the bridged target.

Note

For drivers and help functions, the raw data coming back from target device
is in big endian. This needs to be translated back to CPU endianness before
passing back to function caller.

struct i3c_ccc_setbrgtgt
#include <ccc.h> Payload for SETBRGTGT CCC (Set Bridge Targets).

Note that the bridge target address is encoded within struct i3c_ccc_target_payload in-
stead of being encoded in this payload.
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Public Members

uint8_t count
Number of bridged targets.

struct i3c_ccc_setbrgtgt_tgt targets[]
Array of bridged targets.

union i3c_ccc_getmxds
#include <ccc.h> Payload for GETMXDS CCC (Get Max Data Speed).

Note

This is only for GETMXDS Format 1 and Format 2.

Public Members

uint8_t maxwr
maxWr

uint8_t maxrd
maxRd

struct i3c_ccc_getmxds fmt1

uint8_t maxrdturn[3]
Maximum Read Turnaround Time in microsecond.

This is in little-endian where first byte is LSB.

struct i3c_ccc_getmxds fmt2

uint8_t wrrdturn
Defining Byte 0x00: WRRDTURN.

See also

i3c_ccc_getmxds::fmt2

uint8_t crhdly1
Defining Byte 0x91: CRHDLY.

• Bit[2]: Set Bus Activity State
• Bit[1:0]: Controller Handoff Activity State
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struct i3c_ccc_getmxds fmt3

union i3c_ccc_getcaps
#include <ccc.h> Payload for GETCAPS CCC (Get Optional Feature Capabilities).

Note

Only supports GETCAPS Format 1 and Format 2. In I3C v1.0 this was GETHDRCAP
which only returned a single byte which is the same as the GETCAPS1 byte.

Public Members

uint8_t gethdrcap
I3C v1.0 HDR Capabilities.

• Bit[0]: HDR-DDR
• Bit[1]: HDR-TSP
• Bit[2]: HDR-TSL
• Bit[7:3]: Reserved

uint8_t getcaps[4]
I3C v1.1+ Device Capabilities Byte 1 GETCAPS1.

• Bit[0]: HDR-DDR
• Bit[1]: HDR-TSP
• Bit[2]: HDR-TSL
• Bit[3]: HDR-BT
• Bit[7:4]: Reserved Byte 2 GETCAPS2
• Bit[3:0]: I3C 1.x Specification Version
• Bit[5:4]: Group Address Capabilities
• Bit[6]: HDR-DDR Write Abort
• Bit[7]: HDR-DDR Abort CRC Byte 3 GETCAPS3
• Bit[0]: Multi-Lane (ML) Data Transfer Support
• Bit[1]: Device to Device Transfer (D2DXFER) Support
• Bit[2]: Device to Device Transfer (D2DXFER) IBI Capable
• Bit[3]: Defining Byte Support in GETCAPS
• Bit[4]: Defining Byte Support in GETSTATUS
• Bit[5]: HDR-BT CRC-32 Support
• Bit[6]: IBI MDB Support for Pending Read Notification
• Bit[7]: Reserved Byte 4 GETCAPS4
• Bit[7:0]: Reserved

union i3c_ccc_getcaps fmt1

uint8_t tgtcaps[4]
Defining Byte 0x00: TGTCAPS.
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See also

i3c_ccc_getcaps::fmt1::getcaps

uint32_t testpat
Defining Byte 0x5A: TESTPAT.

Note

should always be 0xA55AA55A in big endian

uint8_t crcaps[2]
Defining Byte 0x91: CRCAPS Byte 1 CRCAPS1.

• Bit[0]: Hot-Join Support
• Bit[1]: Group Management Support
• Bit[2]: Multi-Lane Support Byte 2 CRCAPS2
• Bit[0]: In-Band Interrupt Support
• Bit[1]: Controller Pass-Back
• Bit[2]: Deep Sleep Capable
• Bit[3]: Delayed Controller Handoff

uint8_t vtcaps[2]
Defining Byte 0x93: VTCAPS Byte 1 VTCAPS1.

• Bit[2:0]: Virtual Target Type
• Bit[4]: Side Effects
• Bit[5]: Shared Peripheral Detect Byte 2 VTCAPS2
• Bit[1:0]: Interrupt Requests
• Bit[2]: Address Remapping
• Bit[4:3]: Bus Context and Conditions

union i3c_ccc_getcaps fmt2

group i3c_addresses
I3C Address-related Helper Code.

Defines

I3C_BROADCAST_ADDR
Broadcast Address on I3C bus.

I3C_MAX_ADDR
Maximum value of device addresses.

Enums
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enum i3c_addr_slot_status
Enum to indicate whether an address is reserved, has I2C/I3C device attached, or no
device attached.

Values:

enumerator I3C_ADDR_SLOT_STATUS_FREE = 0U
Address has not device attached.

enumerator I3C_ADDR_SLOT_STATUS_RSVD
Address is reserved.

enumerator I3C_ADDR_SLOT_STATUS_I3C_DEV
Address is associated with an I3C device.

enumerator I3C_ADDR_SLOT_STATUS_I2C_DEV
Address is associated with an I2C device.

enumerator I3C_ADDR_SLOT_STATUS_MASK = 0x03U
Bit masks used to filter status bits.

Functions

int i3c_addr_slots_init(const struct device *dev)
Initialize the I3C address slots struct.

This clears out the assigned address bits, and set the reserved address bits according
to the I3C specification.

Parameters
• dev – Pointer to controller device driver instance.

Return values
• 0 – if successful.

• -EINVAL – if duplicate addresses.

void i3c_addr_slots_set(struct i3c_addr_slots *slots, uint8_t dev_addr, enum
i3c_addr_slot_status status)

Set the address status of a device.

Parameters
• slots – Pointer to the address slots structure.

• dev_addr – Device address.

• status – New status for the address dev_addr.

enum i3c_addr_slot_status i3c_addr_slots_status(struct i3c_addr_slots *slots, uint8_t
dev_addr)

Get the address status of a device.

Parameters
• slots – Pointer to the address slots structure.

• dev_addr – Device address.
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Returns
Address status for the address dev_addr.

bool i3c_addr_slots_is_free(struct i3c_addr_slots *slots, uint8_t dev_addr)
Check if the address is free.

Parameters
• slots – Pointer to the address slots structure.

• dev_addr – Device address.

Return values
• true – if address is free.

• false – if address is not free.

uint8_t i3c_addr_slots_next_free_find(struct i3c_addr_slots *slots, uint8_t start_addr)
Find the next free address.

This can be used to find the next free address that can be assigned to a new device.

Parameters
• slots – Pointer to the address slots structure.

• start_addr – Where to start searching

Returns
The next free address, or 0 if none found.

static inline void i3c_addr_slots_mark_free(struct i3c_addr_slots *addr_slots, uint8_t
addr)

Mark the address as free (not used) in device list.

Parameters
• addr_slots – Pointer to the address slots struct.

• addr – Device address.

static inline void i3c_addr_slots_mark_rsvd(struct i3c_addr_slots *addr_slots, uint8_t
addr)

Mark the address as reserved in device list.

Parameters
• addr_slots – Pointer to the address slots struct.

• addr – Device address.

static inline void i3c_addr_slots_mark_i3c(struct i3c_addr_slots *addr_slots, uint8_t
addr)

Mark the address as I3C device in device list.

Parameters
• addr_slots – Pointer to the address slots struct.

• addr – Device address.

static inline void i3c_addr_slots_mark_i2c(struct i3c_addr_slots *addr_slots, uint8_t
addr)

Mark the address as I2C device in device list.

Parameters
• addr_slots – Pointer to the address slots struct.

• addr – Device address.
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struct i3c_addr_slots
#include <addresses.h> Structure to keep track of addresses on I3C bus.

group i3c_target_device
I3C Target Device API.

Functions

static inline int i3c_target_tx_write(const struct device *dev, uint8_t *buf, uint16_t len,
uint8_t hdr_mode)

Writes to the target’s TX FIFO.

Write to the TX FIFO dev I3C bus driver using the provided buffer and length. Some
I3C targets will NACK read requests until data is written to the TX FIFO. This function
will write as much as it can to the FIFO return the total number of bytes written. It is
then up to the application to utalize the target callbacks to write the remaining data.
Negative returns indicate error.

Most of the existing hardware allows simultaneous support for master and target
mode. This is however not guaranteed.

Parameters
• dev – Pointer to the device structure for an I3C controller driver config-

ured in target mode.

• buf – Pointer to the buffer

• len – Length of the buffer

• hdr_mode – HDR mode see I3C_MSG_HDR_MODE*
Return values

• Total – number of bytes written

• -ENOTSUP – Not in Target Mode or HDR Mode not supported

• -ENOSPC – No space in Tx FIFO

• -ENOSYS – If target mode is not implemented

static inline int i3c_target_register(const struct device *dev, struct i3c_target_config
*cfg)

Registers the provided config as target device of a controller.

Enable I3C target mode for the dev I3C bus driver using the provided config struct
(cfg) containing the functions and parameters to send bus events. The I3C target will
be registered at the address provided as i3c_target_config::address struct member. Any
I3C bus events related to the target mode will be passed onto I3C target device driver
via a set of callback functions provided in the ‘callbacks’ struct member.

Most of the existing hardware allows simultaneous support for master and target
mode. This is however not guaranteed.

Parameters
• dev – Pointer to the device structure for an I3C controller driver config-

ured in target mode.

• cfg – Config struct with functions and parameters used by the I3C target
driver to send bus events

Return values
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• 0 – Is successful

• -EINVAL – If parameters are invalid

• -EIO – General input / output error.

• -ENOSYS – If target mode is not implemented

static inline int i3c_target_unregister(const struct device *dev, struct i3c_target_config
*cfg)

Unregisters the provided config as target device.

This routine disables I3C target mode for the dev I3C bus driver using the provided
config struct (cfg) containing the functions and parameters to send bus events.

Parameters
• dev – Pointer to the device structure for an I3C controller driver config-

ured in target mode.

• cfg – Config struct with functions and parameters used by the I3C target
driver to send bus events

Return values
• 0 – Is successful

• -EINVAL – If parameters are invalid

• -ENOSYS – If target mode is not implemented

struct i3c_config_target
#include <target_device.h> Configuration parameters for I3C hardware to act as target
device.

This can also be used to configure the controller if it is to act as a secondary controller
on the bus.

Public Members

bool enable
If the hardware is to act as a target device on the bus.

uint8_t static_addr
I3C target address.

Used used when operates as secondary controller or as a target device.

uint64_t pid
Provisioned ID.

bool pid_random
True if lower 32-bit of Provisioned ID is random.

This sets the bit 32 of Provisioned ID which means the lower 32-bit is random value.

uint8_t bcr
Bus Characteristics Register (BCR).
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uint8_t dcr
Device Characteristics Register (DCR).

uint16_t max_read_len
Maximum Read Length (MRL).

uint16_t max_write_len
Maximum Write Length (MWL).

uint8_t supported_hdr
Bit mask of supported HDR modes (0 - 7).

This can be used to enable or disable HDR mode supported by the hardware at
runtime.

struct i3c_target_config
#include <target_device.h> Structure describing a device that supports the I3C target
API.

Instances of this are passed to the i3c_target_register() and i3c_target_unregister() func-
tions to indicate addition and removal of a target device, respective.

Fields other than node must be initialized by the module that implements the device
behavior prior to passing the object reference to i3c_target_register().

Public Members

uint8_t flags
Flags for the target device defined by I3C_TARGET_FLAGS_* constants.

uint8_t address
Address for this target device.

const struct i3c_target_callbacks *callbacks
Callback functions.

struct i3c_target_callbacks
#include <target_device.h>

Public Members

int (*write_requested_cb)(struct i3c_target_config *config)
Function called when a write to the device is initiated.

This function is invoked by the controller when the bus completes a start condition
for a write operation to the address associated with a particular device.

A success return shall cause the controller to ACK the next byte received. An error
return shall cause the controller to NACK the next byte received.

Param config
Configuration structure associated with the device to which the operation
is addressed.
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Return
0 if the write is accepted, or a negative error code.

int (*write_received_cb)(struct i3c_target_config *config, uint8_t val)
Function called when a write to the device is continued.

This function is invoked by the controller when it completes reception of a byte of
data in an ongoing write operation to the device.

A success return shall cause the controller to ACK the next byte received. An error
return shall cause the controller to NACK the next byte received.

Param config
Configuration structure associated with the device to which the operation
is addressed.

Param val
the byte received by the controller.

Return
0 if more data can be accepted, or a negative error code.

int (*read_requested_cb)(struct i3c_target_config *config, uint8_t *val)
Function called when a read from the device is initiated.

This function is invoked by the controller when the bus completes a start condition
for a read operation from the address associated with a particular device.

The value returned in val will be transmitted. A success return shall cause the
controller to react to additional read operations. An error return shall cause the
controller to ignore bus operations until a new start condition is received.

Param config
Configuration structure associated with the device to which the operation
is addressed.

Param val
Pointer to storage for the first byte of data to return for the read request.

Return
0 if more data can be requested, or a negative error code.

int (*read_processed_cb)(struct i3c_target_config *config, uint8_t *val)
Function called when a read from the device is continued.

This function is invoked by the controller when the bus is ready to provide addi-
tional data for a read operation from the address associated with the device device.

The value returned in val will be transmitted. A success return shall cause the
controller to react to additional read operations. An error return shall cause the
controller to ignore bus operations until a new start condition is received.

Param config
Configuration structure associated with the device to which the operation
is addressed.

Param val
Pointer to storage for the next byte of data to return for the read request.

Return
0 if data has been provided, or a negative error code.

int (*stop_cb)(struct i3c_target_config *config)
Function called when a stop condition is observed after a start condition addressed
to a particular device.

This function is invoked by the controller when the bus is ready to provide addi-
tional data for a read operation from the address associated with the device device.
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After the function returns the controller shall enter a state where it is ready to react
to new start conditions.

Param config
Configuration structure associated with the device to which the operation
is addressed.

Return
Ignored.

struct i3c_target_driver_api
#include <target_device.h>

7.6.26 Inter-Integrated Circuit (I2C) Bus

Overview

Note

The terminology used in Zephyr I2C APIs follows that of the NXP I2C Bus Specification Rev
7.0. These changed from previous revisions as of its release October 1, 2021.

I2C (Inter-Integrated Circuit, pronounced “eye squared see”) is a commonly-used two-signal
shared peripheral interface bus. Many system-on-chip solutions provide controllers that com-
municate on an I2C bus. Devices on the bus can operate in two roles: as a “controller” that
initiates transactions and controls the clock, or as a “target” that responds to transaction com-
mands. A I2C controller on a given SoC will generally support the controller role, and some will
also support the target mode. Zephyr has API for both roles.

I2C Controller API Zephyr’s I2C controller API is used when an I2C peripheral controls the bus,
in particularly the start and stop conditions and the clock. This is the most common mode, used
to interact with I2C devices like sensors and serial memory.

This API is supported in all in-tree I2C peripheral drivers and is considered stable.

I2C Target API Zephyr’s I2C target API is used when an I2C peripheral responds to transactions
initiated by a different controller on the bus. It might be used for a Zephyr application with
transducer roles that are controlled by another device such as a host processor.

This API is supported in very few in-tree I2C peripheral drivers. The API is considered experi-
mental, as it is not compatible with the capabilities of all I2C peripherals supported in controller
mode.

Configuration Options

Related configuration options:

• CONFIG_I2C

API Reference
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Related code samples

I2C Custom Target
Setup a custom I2C target on the I2C interface.

I2C Target
Setup an I2C target on the I2C interface.

STM32 I2C V2 timings

group i2c_interface
I2C Interface.

Since
1.0

Version
1.0.0

Defines

I2C_SPEED_STANDARD
I2C Standard Speed: 100 kHz.

I2C_SPEED_FAST
I2C Fast Speed: 400 kHz.

I2C_SPEED_FAST_PLUS
I2C Fast Plus Speed: 1 MHz.

I2C_SPEED_HIGH
I2C High Speed: 3.4 MHz.

I2C_SPEED_ULTRA
I2C Ultra Fast Speed: 5 MHz.

I2C_SPEED_DT
Device Tree specified speed.

I2C_SPEED_SHIFT

I2C_SPEED_SET(speed)

I2C_SPEED_MASK

I2C_SPEED_GET(cfg)

I2C_ADDR_10_BITS
Use 10-bit addressing.

DEPRECATED - Use I2C_MSG_ADDR_10_BITS instead.
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I2C_MODE_CONTROLLER
Peripheral to act as Controller.

I2C_DT_SPEC_GET_ON_I3C(node_id)
Structure initializer for i2c_dt_spec from devicetree (on I3C bus)

This helper macro expands to a static initializer for a struct i2c_dt_spec by reading
the relevant bus and address data from the devicetree.

Parameters
• node_id – Devicetree node identifier for the I2C device whose struct
i2c_dt_spec to create an initializer for

I2C_DT_SPEC_GET_ON_I2C(node_id)
Structure initializer for i2c_dt_spec from devicetree (on I2C bus)

This helper macro expands to a static initializer for a struct i2c_dt_spec by reading
the relevant bus and address data from the devicetree.

Parameters
• node_id – Devicetree node identifier for the I2C device whose struct
i2c_dt_spec to create an initializer for

I2C_DT_SPEC_GET(node_id)
Structure initializer for i2c_dt_spec from devicetree.

This helper macro expands to a static initializer for a struct i2c_dt_spec by reading
the relevant bus and address data from the devicetree.

Parameters
• node_id – Devicetree node identifier for the I2C device whose struct
i2c_dt_spec to create an initializer for

I2C_DT_SPEC_INST_GET(inst)
Structure initializer for i2c_dt_spec from devicetree instance.

This is equivalent to I2C_DT_SPEC_GET(DT_DRV_INST(inst)).

Parameters
• inst – Devicetree instance number

I2C_MSG_WRITE
Write message to I2C bus.

I2C_MSG_READ
Read message from I2C bus.

I2C_MSG_STOP
Send STOP after this message.

I2C_MSG_RESTART
RESTART I2C transaction for this message.

Note

Not all I2C drivers have or require explicit support for this feature. Some drivers
require this be present on a read message that follows a write, or vice-versa. Some
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drivers will merge adjacent fragments into a single transaction using this flag; some
will not.

I2C_MSG_ADDR_10_BITS
Use 10-bit addressing for this message.

Note

Not all SoC I2C implementations support this feature.

I2C_TARGET_FLAGS_ADDR_10_BITS
Target device responds to 10-bit addressing.

I2C_DEVICE_DT_DEFINE(node_id, init_fn, pm, data, config, level, prio, api, ...)
Like DEVICE_DT_DEFINE() with I2C specifics.

Defines a device which implements the I2C API. May generate a custom de-
vice_state container struct and init_fn wrapper when needed depending on I2C CON-
FIG_I2C_STATS .

Parameters
• node_id – The devicetree node identifier.

• init_fn – Name of the init function of the driver. Can be NULL.

• pm – PM device resources reference (NULL if device does not use PM).

• data – Pointer to the device’s private data.

• config – The address to the structure containing the configuration infor-
mation for this instance of the driver.

• level – The initialization level. See SYS_INIT() for details.

• prio – Priority within the selected initialization level. See SYS_INIT() for
details.

• api – Provides an initial pointer to the API function struct used by the
driver. Can be NULL.

I2C_DEVICE_DT_INST_DEFINE(inst, ...)
Like I2C_DEVICE_DT_DEFINE() for an instance of a DT_DRV_COMPAT compatible.

Parameters
• inst – instance number. This is replaced by DT_DRV_COMPAT(inst) in the

call to I2C_DEVICE_DT_DEFINE().

• ... – other parameters as expected by I2C_DEVICE_DT_DEFINE().

I2C_DT_IODEV_DEFINE(name, node_id)
Define an iodev for a given dt node on the bus.

These do not need to be shared globally but doing so will save a small amount of mem-
ory.

Parameters
• name – Symbolic name of the iodev to define

• node_id – Devicetree node identifier
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I2C_IODEV_DEFINE(name, _bus, _addr)
Define an iodev for a given i2c device on a bus.

These do not need to be shared globally but doing so will save a small amount of mem-
ory.

Parameters
• name – Symbolic name of the iodev to define

• _bus – Node ID for I2C bus

• _addr – I2C target address

Typedefs

typedef void (*i2c_callback_t)(const struct device *dev, int result, void *data)
I2C callback for asynchronous transfer requests.

Param dev
I2C device which is notifying of transfer completion or error

Param result
Result code of the transfer request. 0 is success, -errno for failure.

Param data
Transfer requester supplied data which is passed along to the callback.

typedef int (*i2c_target_write_requested_cb_t)(struct i2c_target_config *config)
Function called when a write to the device is initiated.

This function is invoked by the controller when the bus completes a start condition for
a write operation to the address associated with a particular device.

A success return shall cause the controller to ACK the next byte received. An error
return shall cause the controller to NACK the next byte received.

Param config
the configuration structure associated with the device to which the opera-
tion is addressed.

Return
0 if the write is accepted, or a negative error code.

typedef int (*i2c_target_write_received_cb_t)(struct i2c_target_config *config, uint8_t
val)

Function called when a write to the device is continued.

This function is invoked by the controller when it completes reception of a byte of data
in an ongoing write operation to the device.

A success return shall cause the controller to ACK the next byte received. An error
return shall cause the controller to NACK the next byte received.

Param config
the configuration structure associated with the device to which the opera-
tion is addressed.

Param val
the byte received by the controller.

Return
0 if more data can be accepted, or a negative error code.
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typedef int (*i2c_target_read_requested_cb_t)(struct i2c_target_config *config, uint8_t
*val)

Function called when a read from the device is initiated.

This function is invoked by the controller when the bus completes a start condition for
a read operation from the address associated with a particular device.

The value returned in *val will be transmitted. A success return shall cause the con-
troller to react to additional read operations. An error return shall cause the controller
to ignore bus operations until a new start condition is received.

Param config
the configuration structure associated with the device to which the opera-
tion is addressed.

Param val
pointer to storage for the first byte of data to return for the read request.

Return
0 if more data can be requested, or a negative error code.

typedef int (*i2c_target_read_processed_cb_t)(struct i2c_target_config *config, uint8_t
*val)

Function called when a read from the device is continued.

This function is invoked by the controller when the bus is ready to provide additional
data for a read operation from the address associated with the device device.

The value returned in *val will be transmitted. A success return shall cause the con-
troller to react to additional read operations. An error return shall cause the controller
to ignore bus operations until a new start condition is received.

Param config
the configuration structure associated with the device to which the opera-
tion is addressed.

Param val
pointer to storage for the next byte of data to return for the read request.

Return
0 if data has been provided, or a negative error code.

typedef int (*i2c_target_stop_cb_t)(struct i2c_target_config *config)
Function called when a stop condition is observed after a start condition addressed to
a particular device.

This function is invoked by the controller when the bus is ready to provide additional
data for a read operation from the address associated with the device device. After the
function returns the controller shall enter a state where it is ready to react to new start
conditions.

Param config
the configuration structure associated with the device to which the opera-
tion is addressed.

Return
Ignored.

Functions
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static inline bool i2c_is_ready_dt(const struct i2c_dt_spec *spec)
Validate that I2C bus is ready.

Parameters
• spec – I2C specification from devicetree

Return values
• true – if the I2C bus is ready for use.

• false – if the I2C bus is not ready for use.

static inline bool i2c_is_read_op(struct i2c_msg *msg)
Check if the current message is a read operation.

Parameters
• msg – The message to check

Returns
true if the I2C message is sa read operation

Returns
false if the I2C message is a write operation

void i2c_dump_msgs_rw(const struct device *dev, const struct i2c_msg *msgs, uint8_t
num_msgs, uint16_t addr, bool dump_read)

Dump out an I2C message.

Dumps out a list of I2C messages. For any that are writes (W), the data is displayed in
hex. Setting dump_read will dump the data for read messages too, which only makes
sense when called after the messages have been processed.

It looks something like this (with name “testing”):

D: I2C msg: testing, addr=56
D: W len=01: 06
D: W len=0e:
D: contents:
D: 00 01 02 03 04 05 06 07 |........
D: 08 09 0a 0b 0c 0d |......
D: W len=01: 0f
D: R len=01: 6c

Parameters
• dev – Target for the messages being sent. Its name will be printed in the

log.

• msgs – Array of messages to dump.

• num_msgs – Number of messages to dump.

• addr – Address of the I2C target device.

• dump_read – Dump data from I2C reads, otherwise only writes have data
dumped.

static inline void i2c_dump_msgs(const struct device *dev, const struct i2c_msg *msgs,
uint8_t num_msgs, uint16_t addr)

Dump out an I2C message, before it is executed.

This is equivalent to:

i2c_dump_msgs_rw(dev, msgs, num_msgs, addr, false);
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The read messages’ data isn’t dumped.

Parameters
• dev – Target for the messages being sent. Its name will be printed in the

log.

• msgs – Array of messages to dump.

• num_msgs – Number of messages to dump.

• addr – Address of the I2C target device.

static inline void i2c_xfer_stats(const struct device *dev, struct i2c_msg *msgs, uint8_t
num_msgs)

Updates the i2c stats for i2c transfers.

Parameters
• dev – I2C device to update stats for

• msgs – Array of struct i2c_msg

• num_msgs – Number of i2c_msgs

int i2c_configure(const struct device *dev, uint32_t dev_config)
Configure operation of a host controller.

Parameters
• dev – Pointer to the device structure for the driver instance.

• dev_config – Bit-packed 32-bit value to the device runtime configuration
for the I2C controller.

Return values
• 0 – If successful.

• -EIO – General input / output error, failed to configure device.

int i2c_get_config(const struct device *dev, uint32_t *dev_config)
Get configuration of a host controller.

This routine provides a way to get current configuration. It is allowed to call the func-
tion before i2c_configure, because some I2C ports can be configured during init pro-
cess. However, if the I2C port is not configured, i2c_get_config returns an error.

i2c_get_config can return cached config or probe hardware, but it has to be up to date
with current configuration.

Parameters
• dev – Pointer to the device structure for the driver instance.

• dev_config – Pointer to return bit-packed 32-bit value of the I2C con-
troller configuration.

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ERANGE – Configured I2C frequency is invalid.

• -ENOSYS – If get config is not implemented
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int i2c_transfer(const struct device *dev, struct i2c_msg *msgs, uint8_t num_msgs,
uint16_t addr)

Perform data transfer to another I2C device in controller mode.

This routine provides a generic interface to perform data transfer to another I2C device
synchronously. Use i2c_read()/i2c_write() for simple read or write.

The array of message msgs must not be NULL. The number of message num_msgs may
be zero,in which case no transfer occurs.

Note

Not all scatter/gather transactions can be supported by all drivers. As an ex-
ample, a gather write (multiple consecutive i2c_msg buffers all configured for
I2C_MSG_WRITE) may be packed into a single transaction by some drivers, but oth-
ers may emit each fragment as a distinct write transaction, which will not produce
the same behavior. See the documentation of struct i2c_msg for limitations on
support for multi-message bus transactions.

Note

The last message in the scatter/gather transaction implies a STOP whether or not
it is explicitly set. This ensures the bus is in a good state for the next transaction
which may be from a different call context.

Parameters
• dev – Pointer to the device structure for an I2C controller driver config-

ured in controller mode.

• msgs – Array of messages to transfer.

• num_msgs – Number of messages to transfer.

• addr – Address of the I2C target device.

Return values
• 0 – If successful.

• -EIO – General input / output error.

static inline int i2c_transfer_cb(const struct device *dev, struct i2c_msg *msgs, uint8_t
num_msgs, uint16_t addr, i2c_callback_t cb, void
*userdata)

Perform data transfer to another I2C device in controller mode.

This routine provides a generic interface to perform data transfer to another I2C device
asynchronously with a callback completion.

See also

i2c_transfer()

Function properties (list may not be complete)
isr-ok
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Parameters
• dev – Pointer to the device structure for an I2C controller driver config-

ured in controller mode.

• msgs – Array of messages to transfer, must live until callback completes.

• num_msgs – Number of messages to transfer.

• addr – Address of the I2C target device.

• cb – Function pointer for completion callback.

• userdata – Userdata passed to callback.

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ENOSYS – If transfer async is not implemented

• -EWOULDBLOCK – If the device is temporarily busy doing another transfer

static inline int i2c_transfer_cb_dt(const struct i2c_dt_spec *spec, struct i2c_msg *msgs,
uint8_t num_msgs, i2c_callback_t cb, void *userdata)

Perform data transfer to another I2C device in master mode asynchronously.

This is equivalent to:

i2c_transfer_cb(spec->bus, msgs, num_msgs, spec->addr, cb, userdata);

Parameters
• spec – I2C specification from devicetree.

• msgs – Array of messages to transfer.

• num_msgs – Number of messages to transfer.

• cb – Function pointer for completion callback.

• userdata – Userdata passed to callback.

Returns
a value from i2c_transfer_cb()

static inline int i2c_write_read_cb(const struct device *dev, struct i2c_msg *msgs, uint8_t
num_msgs, uint16_t addr, const void *write_buf,
size_t num_write, void *read_buf, size_t num_read,
i2c_callback_t cb, void *userdata)

Write then read data from an I2C device asynchronously.

This supports the common operation “this is what I want”, “now give

it to me” transaction pair through a combined write-then-read bus transaction but us-
ing i2c_transfer_cb. This helper function expects caller to pass a message pointer with
2 and only 2 size.

Parameters
• dev – Pointer to the device structure for an I2C controller driver config-

ured in master mode.

• msgs – Array of messages to transfer.
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• num_msgs – Number of messages to transfer.

• addr – Address of the I2C device

• write_buf – Pointer to the data to be written

• num_write – Number of bytes to write

• read_buf – Pointer to storage for read data

• num_read – Number of bytes to read

• cb – Function pointer for completion callback.

• userdata – Userdata passed to callback.

Return values
• 0 – if successful

• negative – on error.

static inline int i2c_write_read_cb_dt(const struct i2c_dt_spec *spec, struct i2c_msg
*msgs, uint8_t num_msgs, const void *write_buf,
size_t num_write, void *read_buf, size_t
num_read, i2c_callback_t cb, void *userdata)

Write then read data from an I2C device asynchronously.

This is equivalent to:

i2c_write_read_cb(spec->bus, msgs, num_msgs,
spec->addr, write_buf,
num_write, read_buf, num_read);

Parameters
• spec – I2C specification from devicetree.

• msgs – Array of messages to transfer.

• num_msgs – Number of messages to transfer.

• write_buf – Pointer to the data to be written

• num_write – Number of bytes to write

• read_buf – Pointer to storage for read data

• num_read – Number of bytes to read

• cb – Function pointer for completion callback.

• userdata – Userdata passed to callback.

Returns
a value from i2c_write_read_cb()

static inline int i2c_transfer_signal(const struct device *dev, struct i2c_msg *msgs,
uint8_t num_msgs, uint16_t addr, struct
k_poll_signal *sig)

Perform data transfer to another I2C device in controller mode.

This routine provides a generic interface to perform data transfer to another I2C device
asynchronously with a k_poll_signal completion.
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See also

i2c_transfer_cb()

Function properties (list may not be complete)
isr-ok

Parameters
• dev – Pointer to the device structure for an I2C controller driver config-

ured in controller mode.

• msgs – Array of messages to transfer, must live until callback completes.

• num_msgs – Number of messages to transfer.

• addr – Address of the I2C target device.

• sig – Signal to notify of transfer completion.

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ENOSYS – If transfer async is not implemented

• -EWOULDBLOCK – If the device is temporarily busy doing another transfer

static inline void i2c_iodev_submit(struct rtio_iodev_sqe *iodev_sqe)
Submit request(s) to an I2C device with RTIO.

Parameters
• iodev_sqe – Prepared submissions queue entry connected to an iodev

defined by I2C_DT_IODEV_DEFINE.

struct rtio_sqe *i2c_rtio_copy(struct rtio *r, struct rtio_iodev *iodev, const struct i2c_msg
*msgs, uint8_t num_msgs)

Copy the i2c_msgs into a set of RTIO requests.

Parameters
• r – RTIO context

• iodev – RTIO IODev to target for the submissions

• msgs – Array of messages

• num_msgs – Number of i2c msgs in array

Return values
• sqe – Last submission in the queue added

• NULL – Not enough memory in the context to copy the requests

static inline int i2c_transfer_dt(const struct i2c_dt_spec *spec, struct i2c_msg *msgs,
uint8_t num_msgs)

Perform data transfer to another I2C device in controller mode.

This is equivalent to:

i2c_transfer(spec->bus, msgs, num_msgs, spec->addr);

Parameters
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• spec – I2C specification from devicetree.

• msgs – Array of messages to transfer.

• num_msgs – Number of messages to transfer.

Returns
a value from i2c_transfer()

int i2c_recover_bus(const struct device *dev)
Recover the I2C bus.

Attempt to recover the I2C bus.

Parameters
• dev – Pointer to the device structure for an I2C controller driver config-

ured in controller mode.

Return values
• 0 – If successful

• -EBUSY – If bus is not clear after recovery attempt.

• -EIO – General input / output error.

• -ENOSYS – If bus recovery is not implemented

static inline int i2c_target_register(const struct device *dev, struct i2c_target_config
*cfg)

Registers the provided config as Target device of a controller.

Enable I2C target mode for the ‘dev’ I2C bus driver using the provided ‘config’ struct
containing the functions and parameters to send bus events. The I2C target will be
registered at the address provided as ‘address’ struct member. Addressing mode - 7
or 10 bit - depends on the ‘flags’ struct member. Any I2C bus events related to the
target mode will be passed onto I2C target device driver via a set of callback functions
provided in the ‘callbacks’ struct member.

Most of the existing hardware allows simultaneous support for controller and target
mode. This is however not guaranteed.

Parameters
• dev – Pointer to the device structure for an I2C controller driver config-

ured in target mode.

• cfg – Config struct with functions and parameters used by the I2C driver
to send bus events

Return values
• 0 – Is successful

• -EINVAL – If parameters are invalid

• -EIO – General input / output error.

• -ENOSYS – If target mode is not implemented

static inline int i2c_target_unregister(const struct device *dev, struct i2c_target_config
*cfg)

Unregisters the provided config as Target device.

This routine disables I2C target mode for the ‘dev’ I2C bus driver using the provided
‘config’ struct containing the functions and parameters to send bus events.

Parameters
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• dev – Pointer to the device structure for an I2C controller driver config-
ured in target mode.

• cfg – Config struct with functions and parameters used by the I2C driver
to send bus events

Return values
• 0 – Is successful

• -EINVAL – If parameters are invalid

• -ENOSYS – If target mode is not implemented

int i2c_target_driver_register(const struct device *dev)
Instructs the I2C Target device to register itself to the I2C Controller.

This routine instructs the I2C Target device to register itself to the I2C Controller via
its parent controller’s i2c_target_register() API.

Parameters
• dev – Pointer to the device structure for the I2C target device (not itself

an I2C controller).

Return values
• 0 – Is successful

• -EINVAL – If parameters are invalid

• -EIO – General input / output error.

int i2c_target_driver_unregister(const struct device *dev)
Instructs the I2C Target device to unregister itself from the I2C Controller.

This routine instructs the I2C Target device to unregister itself from the I2C Controller
via its parent controller’s i2c_target_register() API.

Parameters
• dev – Pointer to the device structure for the I2C target device (not itself

an I2C controller).

Return values
• 0 – Is successful

• -EINVAL – If parameters are invalid

static inline int i2c_write(const struct device *dev, const uint8_t *buf, uint32_t
num_bytes, uint16_t addr)

Write a set amount of data to an I2C device.

This routine writes a set amount of data synchronously.

Parameters
• dev – Pointer to the device structure for an I2C controller driver config-

ured in controller mode.

• buf – Memory pool from which the data is transferred.

• num_bytes – Number of bytes to write.

• addr – Address to the target I2C device for writing.

Return values
• 0 – If successful.

• -EIO – General input / output error.
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static inline int i2c_write_dt(const struct i2c_dt_spec *spec, const uint8_t *buf, uint32_t
num_bytes)

Write a set amount of data to an I2C device.

This is equivalent to:

i2c_write(spec->bus, buf, num_bytes, spec->addr);

Parameters
• spec – I2C specification from devicetree.

• buf – Memory pool from which the data is transferred.

• num_bytes – Number of bytes to write.

Returns
a value from i2c_write()

static inline int i2c_read(const struct device *dev, uint8_t *buf, uint32_t num_bytes,
uint16_t addr)

Read a set amount of data from an I2C device.

This routine reads a set amount of data synchronously.

Parameters
• dev – Pointer to the device structure for an I2C controller driver config-

ured in controller mode.

• buf – Memory pool that stores the retrieved data.

• num_bytes – Number of bytes to read.

• addr – Address of the I2C device being read.

Return values
• 0 – If successful.

• -EIO – General input / output error.

static inline int i2c_read_dt(const struct i2c_dt_spec *spec, uint8_t *buf, uint32_t
num_bytes)

Read a set amount of data from an I2C device.

This is equivalent to:

i2c_read(spec->bus, buf, num_bytes, spec->addr);

Parameters
• spec – I2C specification from devicetree.

• buf – Memory pool that stores the retrieved data.

• num_bytes – Number of bytes to read.

Returns
a value from i2c_read()

static inline int i2c_write_read(const struct device *dev, uint16_t addr, const void
*write_buf, size_t num_write, void *read_buf, size_t
num_read)
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Write then read data from an I2C device.

This supports the common operation “this is what I want”, “now give

it to me” transaction pair through a combined write-then-read bus transaction.

Parameters
• dev – Pointer to the device structure for an I2C controller driver config-

ured in controller mode.

• addr – Address of the I2C device

• write_buf – Pointer to the data to be written

• num_write – Number of bytes to write

• read_buf – Pointer to storage for read data

• num_read – Number of bytes to read

Return values
• 0 – if successful

• negative – on error.

static inline int i2c_write_read_dt(const struct i2c_dt_spec *spec, const void *write_buf,
size_t num_write, void *read_buf, size_t num_read)

Write then read data from an I2C device.

This is equivalent to:

i2c_write_read(spec->bus, spec->addr,
write_buf, num_write,
read_buf, num_read);

Parameters
• spec – I2C specification from devicetree.

• write_buf – Pointer to the data to be written

• num_write – Number of bytes to write

• read_buf – Pointer to storage for read data

• num_read – Number of bytes to read

Returns
a value from i2c_write_read()

static inline int i2c_burst_read(const struct device *dev, uint16_t dev_addr, uint8_t
start_addr, uint8_t *buf, uint32_t num_bytes)

Read multiple bytes from an internal address of an I2C device.

This routine reads multiple bytes from an internal address of an I2C device syn-
chronously.

Instances of this may be replaced by i2c_write_read().

Parameters
• dev – Pointer to the device structure for an I2C controller driver config-

ured in controller mode.
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• dev_addr – Address of the I2C device for reading.

• start_addr – Internal address from which the data is being read.

• buf – Memory pool that stores the retrieved data.

• num_bytes – Number of bytes being read.

Return values
• 0 – If successful.

• -EIO – General input / output error.

static inline int i2c_burst_read_dt(const struct i2c_dt_spec *spec, uint8_t start_addr,
uint8_t *buf, uint32_t num_bytes)

Read multiple bytes from an internal address of an I2C device.

This is equivalent to:

i2c_burst_read(spec->bus, spec->addr, start_addr, buf, num_bytes);

Parameters
• spec – I2C specification from devicetree.

• start_addr – Internal address from which the data is being read.

• buf – Memory pool that stores the retrieved data.

• num_bytes – Number of bytes to read.

Returns
a value from i2c_burst_read()

static inline int i2c_burst_write(const struct device *dev, uint16_t dev_addr, uint8_t
start_addr, const uint8_t *buf, uint32_t num_bytes)

Write multiple bytes to an internal address of an I2C device.

This routine writes multiple bytes to an internal address of an I2C device syn-
chronously.

Warning

The combined write synthesized by this API may not be supported on all I2C de-
vices. Uses of this API may be made more portable by replacing them with calls to
i2c_write() passing a buffer containing the combined address and data.

Parameters
• dev – Pointer to the device structure for an I2C controller driver config-

ured in controller mode.

• dev_addr – Address of the I2C device for writing.

• start_addr – Internal address to which the data is being written.

• buf – Memory pool from which the data is transferred.

• num_bytes – Number of bytes being written.

Return values
• 0 – If successful.

• -EIO – General input / output error.
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static inline int i2c_burst_write_dt(const struct i2c_dt_spec *spec, uint8_t start_addr,
const uint8_t *buf, uint32_t num_bytes)

Write multiple bytes to an internal address of an I2C device.

This is equivalent to:

i2c_burst_write(spec->bus, spec->addr, start_addr, buf, num_bytes);

Parameters
• spec – I2C specification from devicetree.

• start_addr – Internal address to which the data is being written.

• buf – Memory pool from which the data is transferred.

• num_bytes – Number of bytes being written.

Returns
a value from i2c_burst_write()

static inline int i2c_reg_read_byte(const struct device *dev, uint16_t dev_addr, uint8_t
reg_addr, uint8_t *value)

Read internal register of an I2C device.

This routine reads the value of an 8-bit internal register of an I2C device synchronously.

Parameters
• dev – Pointer to the device structure for an I2C controller driver config-

ured in controller mode.

• dev_addr – Address of the I2C device for reading.

• reg_addr – Address of the internal register being read.

• value – Memory pool that stores the retrieved register value.

Return values
• 0 – If successful.

• -EIO – General input / output error.

static inline int i2c_reg_read_byte_dt(const struct i2c_dt_spec *spec, uint8_t reg_addr,
uint8_t *value)

Read internal register of an I2C device.

This is equivalent to:

i2c_reg_read_byte(spec->bus, spec->addr, reg_addr, value);

Parameters
• spec – I2C specification from devicetree.

• reg_addr – Address of the internal register being read.

• value – Memory pool that stores the retrieved register value.

Returns
a value from i2c_reg_read_byte()
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static inline int i2c_reg_write_byte(const struct device *dev, uint16_t dev_addr, uint8_t
reg_addr, uint8_t value)

Write internal register of an I2C device.

This routine writes a value to an 8-bit internal register of an I2C device synchronously.

Note

This function internally combines the register and value into a single bus transac-
tion.

Parameters
• dev – Pointer to the device structure for an I2C controller driver config-

ured in controller mode.

• dev_addr – Address of the I2C device for writing.

• reg_addr – Address of the internal register being written.

• value – Value to be written to internal register.

Return values
• 0 – If successful.

• -EIO – General input / output error.

static inline int i2c_reg_write_byte_dt(const struct i2c_dt_spec *spec, uint8_t reg_addr,
uint8_t value)

Write internal register of an I2C device.

This is equivalent to:

i2c_reg_write_byte(spec->bus, spec->addr, reg_addr, value);

Parameters
• spec – I2C specification from devicetree.

• reg_addr – Address of the internal register being written.

• value – Value to be written to internal register.

Returns
a value from i2c_reg_write_byte()

static inline int i2c_reg_update_byte(const struct device *dev, uint8_t dev_addr, uint8_t
reg_addr, uint8_t mask, uint8_t value)

Update internal register of an I2C device.

This routine updates the value of a set of bits from an 8-bit internal register of an I2C
device synchronously.

Note

If the calculated new register value matches the value that was read this function
will not generate a write operation.

Parameters
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• dev – Pointer to the device structure for an I2C controller driver config-
ured in controller mode.

• dev_addr – Address of the I2C device for updating.

• reg_addr – Address of the internal register being updated.

• mask – Bitmask for updating internal register.

• value – Value for updating internal register.

Return values
• 0 – If successful.

• -EIO – General input / output error.

static inline int i2c_reg_update_byte_dt(const struct i2c_dt_spec *spec, uint8_t reg_addr,
uint8_t mask, uint8_t value)

Update internal register of an I2C device.

This is equivalent to:

i2c_reg_update_byte(spec->bus, spec->addr, reg_addr, mask, value);

Parameters
• spec – I2C specification from devicetree.

• reg_addr – Address of the internal register being updated.

• mask – Bitmask for updating internal register.

• value – Value for updating internal register.

Returns
a value from i2c_reg_update_byte()

Variables

const struct rtio_iodev_api i2c_iodev_api

struct i2c_dt_spec
#include <i2c.h> Complete I2C DT information.

Param bus
is the I2C bus

Param addr
is the target address

struct i2c_msg
#include <i2c.h> One I2C Message.

This defines one I2C message to transact on the I2C bus.

Note

Some of the configurations supported by this API may not be supported by specific
SoC I2C hardware implementations, in particular features related to bus transac-
tions intended to read or write data from different buffers within a single transac-
tion. Invocations of i2c_transfer() may not indicate an error when an unsupported
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configuration is encountered. In some cases drivers will generate separate trans-
actions for each message fragment, with or without presence of I2C_MSG_RESTART
in flags.

Public Members

uint8_t *buf
Data buffer in bytes.

uint32_t len
Length of buffer in bytes.

uint8_t flags
Flags for this message.

struct i2c_target_callbacks
#include <i2c.h> Structure providing callbacks to be implemented for devices that sup-
ports the I2C target API.

This structure may be shared by multiple devices that implement the same API at dif-
ferent addresses on the bus.

struct i2c_target_config
#include <i2c.h> Structure describing a device that supports the I2C target API.

Instances of this are passed to the i2c_target_register() and i2c_target_unregister() func-
tions to indicate addition and removal of a target device, respective.

Fields other than node must be initialized by the module that implements the device
behavior prior to passing the object reference to i2c_target_register().

Public Members

sys_snode_t node
Private, do not modify.

uint8_t flags
Flags for the target device defined by I2C_TARGET_FLAGS_* constants.

uint16_t address
Address for this target device.

const struct i2c_target_callbacks *callbacks
Callback functions.

struct i2c_device_state
#include <i2c.h> I2C specific device state which allows for i2c device class specific ad-
ditions.

3478 Chapter 7. Hardware Support



Zephyr Project Documentation, Release 3.7.99

7.6.27 Inter-Processor Mailbox (IPM)

Overview

API Reference

Related code samples

IPM on ESP32
Implement inter-processor mailbox (IPM) between ESP32 APP and PRO CPUs.

IPM on NXP LPC
Implement inter-processor mailbox (IPM) on NXP LPC family.

IPM on NXP i.MX
Implement inter-processor mailbox (IPM) on i.MX SoCs containing a Messaging Unit pe-
ripheral.

IPM over IVSHMEM
Implement inter-processor mailbox (IPM) over IVSHMEM (Inter-VM shared memory)

IPM with ARMMHU
Implement inter-processor mailbox (IPM) using an MHU (Message Handling Unit)

OpenAMP
Send messages between two cores using OpenAMP.

OpenAMP using resource table
Send messages between two cores using OpenAMP and a resource table.

group ipm_interface
IPM Interface.

Since
1.0

Version
1.0.0

Typedefs

typedef void (*ipm_callback_t)(const struct device *ipmdev, void *user_data, uint32_t id,
volatile void *data)

Callback API for incoming IPM messages.

These callbacks execute in interrupt context. Therefore, use only interrupt-safe APIS.
Registration of callbacks is done via ipm_register_callback

Param ipmdev
Driver instance

Param user_data
Pointer to some private data provided at registration time.

Param id
Message type identifier.
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Param data
Message data pointer. The correct amount of data to read out must be in-
ferred using the message id/upper level protocol.

typedef int (*ipm_send_t)(const struct device *ipmdev, int wait, uint32_t id, const void
*data, int size)

Callback API to send IPM messages.

See ipm_send() for argument definitions.

typedef int (*ipm_max_data_size_get_t)(const struct device *ipmdev)
Callback API to get maximum data size.

See ipm_max_data_size_get() for argument definitions.

typedef uint32_t (*ipm_max_id_val_get_t)(const struct device *ipmdev)
Callback API to get the ID’s maximum value.

See ipm_max_id_val_get() for argument definitions.

typedef void (*ipm_register_callback_t)(const struct device *port, ipm_callback_t cb,
void *user_data)

Callback API upon registration.

See ipm_register_callback() for argument definitions.

typedef int (*ipm_set_enabled_t)(const struct device *ipmdev, int enable)
Callback API upon enablement of interrupts.

See ipm_set_enabled() for argument definitions.

typedef void (*ipm_complete_t)(const struct device *ipmdev)
Callback API upon command completion.

See ipm_complete() for argument definitions.

Functions

int ipm_send(const struct device *ipmdev, int wait, uint32_t id, const void *data, int size)
Try to send a message over the IPM device.

A message is considered consumed once the remote interrupt handler finishes. If there
is deferred processing on the remote side, or if outgoing messages must be queued and
wait on an event/semaphore, a high-level driver can implement that.

There are constraints on how much data can be sent or the maximum value of id. Use
the ipm_max_data_size_get and ipm_max_id_val_get routines to determine them.

The size parameter is used only on the sending side to determine the amount of data
to put in the message registers. It is not passed along to the receiving side. The upper-
level protocol dictates the amount of data read back.

Parameters
• ipmdev – Driver instance

• wait – If nonzero, busy-wait for remote to consume the message. The
message is considered consumed once the remote interrupt handler fin-
ishes. If there is deferred processing on the remote side, or you would
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like to queue outgoing messages and wait on an event/semaphore, you
can implement that in a high-level driver

• id – Message identifier. Values are constrained by ipm_max_data_size_get
since many boards only allow for a subset of bits in a 32-bit register to
store the ID.

• data – Pointer to the data sent in the message.

• size – Size of the data.

Return values
• -EBUSY – If the remote hasn’t yet read the last data sent.

• -EMSGSIZE – If the supplied data size is unsupported by the driver.

• -EINVAL – If there was a bad parameter, such as: too-large id value. or
the device isn’t an outbound IPM channel.

• 0 – On success.

static inline void ipm_register_callback(const struct device *ipmdev, ipm_callback_t cb,
void *user_data)

Register a callback function for incoming messages.

Parameters
• ipmdev – Driver instance pointer.

• cb – Callback function to execute on incoming message interrupts.

• user_data – Application-specific data pointer which will be passed to the
callback function when executed.

int ipm_max_data_size_get(const struct device *ipmdev)
Return the maximum number of bytes possible in an outbound message.

IPM implementations vary on the amount of data that can be sent in a single message
since the data payload is typically stored in registers.

Parameters
• ipmdev – Driver instance pointer.

Returns
Maximum possible size of a message in bytes.

uint32_t ipm_max_id_val_get(const struct device *ipmdev)
Return the maximum id value possible in an outbound message.

Many IPM implementations store the message’s ID in a register with some bits reserved
for other uses.

Parameters
• ipmdev – Driver instance pointer.

Returns
Maximum possible value of a message ID.

int ipm_set_enabled(const struct device *ipmdev, int enable)
Enable interrupts and callbacks for inbound channels.

Parameters
• ipmdev – Driver instance pointer.

• enable – Set to 0 to disable and to nonzero to enable.

Return values
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• 0 – On success.

• -EINVAL – If it isn’t an inbound channel.

void ipm_complete(const struct device *ipmdev)
Signal asynchronous command completion.

Some IPM backends have an ability to deliver a command asynchronously. The call-
back will be invoked in interrupt context, but the message (including the provided data
pointer) will stay “active” and unacknowledged until later code (presumably in thread
mode) calls ipm_complete().

This function is, obviously, a noop on drivers without async support.

Parameters
• ipmdev – Driver instance pointer.

struct ipm_driver_api
#include <ipm.h>

7.6.28 Keyboard Scan

Overview

The kscan driver (keyboard scan matrix) is used for detecting a key press in a connected matrix
keyboard or any device with buttons such as joysticks. Typically, matrix keyboards are imple-
mented using a two-dimensional configuration in order to sense several keys. This allows inter-
facing to many keys through fewer physical pins. Keyboard matrix drivers read the rows while
applying power through the columns one at a time with the purpose of detecting key events.
There is no correlation between the physical and electrical layout of keys. For, example, the
physical layout may be one array of 16 or fewer keys, which may be electrically connected to a 4
x 4 array. In addition, key values are defined by a keymap provided by the keyboard manufac-
turer.

Configuration Options

Related configuration options:

• CONFIG_KSCAN

API Reference

Related code samples

HT16K33 LED driver with keyscan
Control up to 128 LEDs connected to an HT16K33 LED driver and log keyscan events.

KSCAN
Use the KSCAN API to read key presses and releases on a keyboard matrix.

group kscan_interface
KSCAN APIs.
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Since
2.1

Version
1.0.0

Typedefs

typedef void (*kscan_callback_t)(const struct device *dev, uint32_t row, uint32_t column,
bool pressed)

Keyboard scan callback called when user press/release a key on a matrix keyboard.

Param dev
Pointer to the device structure for the driver instance.

Param row
Describes row change.

Param column
Describes column change.

Param pressed
Describes the kind of key event.

Functions

int kscan_config(const struct device *dev, kscan_callback_t callback)
Configure a Keyboard scan instance.

Parameters
• dev – Pointer to the device structure for the driver instance.

• callback – called when keyboard devices reply to a keyboard event such
as key pressed/released.

Return values
• 0 – If successful.

• Negative – errno code if failure.

int kscan_enable_callback(const struct device *dev)
Enables callback.

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
• 0 – If successful.

• Negative – errno code if failure.

int kscan_disable_callback(const struct device *dev)
Disables callback.

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
• 0 – If successful.
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• Negative – errno code if failure.

7.6.29 Light-Emitting Diode (LED)

Overview

The LED API provides access to Light Emitting Diodes, both in individual and strip form.

Configuration Options

Related configuration options:

• CONFIG_LED
• CONFIG_LED_STRIP

API Reference

Related code samples

Breathing-blinking LED (BBLED)
Control a BBLED (Breathing-Blinking LED) using Microchip XEC driver.

HT16K33 LED driver with keyscan
Control up to 128 LEDs connected to an HT16K33 LED driver and log keyscan events.

IS31FL3194 RGB LED
Cycle colors on an RGB LED connected to the IS31FL3194 using the LED API.

IS31FL3216A LED
Control up to 16 PWM LEDs connected to an IS31FL3216A driver chip.

IS31FL3733 LED Matrix
Control a matrix of up to 192 LEDs connected to an IS31FL3733 driver chip.

LED PWM
Control PWM LEDs using the LED API.

LP3943 RGBW LED
Control up to 16 RGBW LEDs connected to an LP3943 driver chip.

LP50XX RGB LED
Control up to 12 RGB LEDs connected to an LP50xx driver chip.

LP5562 RGB LED
Control 4 RGB LEDs connected to an LP5562 driver chip.

LP5569 9-channel LED controller
Control 9 LEDs connected to an LP5569 driver chip.

PCA9633 LED
Control 4 LEDs connected to a PCA9633 driver chip.

SX1509B RGB LED
Control an RGB LED connected to an SX1509B driver chip.

LED
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group led_interface
LED Interface.

Since
1.12

Version
1.0.0

Typedefs

typedef int (*led_api_blink)(const struct device *dev, uint32_t led, uint32_t delay_on,
uint32_t delay_off)

Callback API for blinking an LED.

See also

led_blink() for argument descriptions.

typedef int (*led_api_get_info)(const struct device *dev, uint32_t led, const struct led_info
**info)

Optional API callback to get LED information.

See also

led_get_info() for argument descriptions.

typedef int (*led_api_set_brightness)(const struct device *dev, uint32_t led, uint8_t
value)

Callback API for setting brightness of an LED.

See also

led_set_brightness() for argument descriptions.

typedef int (*led_api_set_color)(const struct device *dev, uint32_t led, uint8_t
num_colors, const uint8_t *color)

Optional API callback to set the colors of a LED.
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See also

led_set_color() for argument descriptions.

typedef int (*led_api_on)(const struct device *dev, uint32_t led)
Callback API for turning on an LED.

See also

led_on() for argument descriptions.

typedef int (*led_api_off)(const struct device *dev, uint32_t led)
Callback API for turning off an LED.

See also

led_off() for argument descriptions.

typedef int (*led_api_write_channels)(const struct device *dev, uint32_t start_channel,
uint32_t num_channels, const uint8_t *buf)

Callback API for writing a strip of LED channels.

See also

led_api_write_channels() for arguments descriptions.

Functions

int led_blink(const struct device *dev, uint32_t led, uint32_t delay_on, uint32_t delay_off)
Blink an LED.

This optional routine starts blinking a LED forever with the given time period.

Parameters
• dev – LED device

• led – LED number

• delay_on – Time period (in milliseconds) an LED should be ON

• delay_off – Time period (in milliseconds) an LED should be OFF

Returns
0 on success, negative on error
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int led_get_info(const struct device *dev, uint32_t led, const struct led_info **info)
Get LED information.

This optional routine provides information about a LED.

Parameters
• dev – LED device

• led – LED number

• info – Pointer to a pointer filled with LED information

Returns
0 on success, negative on error

int led_set_brightness(const struct device *dev, uint32_t led, uint8_t value)
Set LED brightness.

This optional routine sets the brightness of a LED to the given value. Calling this func-
tion after led_blink() won’t affect blinking.

LEDs which can only be turned on or off may provide this function. These should
simply turn the LED on if value is nonzero, and off if value is zero.

Parameters
• dev – LED device

• led – LED number

• value – Brightness value to set in percent

Returns
0 on success, negative on error

int led_write_channels(const struct device *dev, uint32_t start_channel, uint32_t
num_channels, const uint8_t *buf)

Write/update a strip of LED channels.

This optional routine writes a strip of LED channels to the given array of levels. There-
fore it can be used to configure several LEDs at the same time.

Calling this function after led_blink() won’t affect blinking.

Parameters
• dev – LED device

• start_channel – Absolute number (i.e. not relative to a LED) of the first
channel to update.

• num_channels – The number of channels to write/update.

• buf – array of values to configure the channels with. num_channels en-
tries must be provided.

Returns
0 on success, negative on error

int led_set_channel(const struct device *dev, uint32_t channel, uint8_t value)
Set a single LED channel.

This optional routine sets a single LED channel to the given value.

Calling this function after led_blink() won’t affect blinking.

Parameters
• dev – LED device

• channel – Absolute channel number (i.e. not relative to a LED)
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• value – Value to configure the channel with

Returns
0 on success, negative on error

int led_set_color(const struct device *dev, uint32_t led, uint8_t num_colors, const uint8_t
*color)

Set LED color.

This routine configures all the color channels of a LED with the given color array.

Calling this function after led_blink() won’t affect blinking.

Parameters
• dev – LED device

• led – LED number

• num_colors – Number of colors in the array.

• color – Array of colors. It must be ordered following the color mapping
of the LED controller. See the color_mapping member in struct led_info.

Returns
0 on success, negative on error

int led_on(const struct device *dev, uint32_t led)
Turn on an LED.

This routine turns on an LED

Parameters
• dev – LED device

• led – LED number

Returns
0 on success, negative on error

int led_off(const struct device *dev, uint32_t led)
Turn off an LED.

This routine turns off an LED

Parameters
• dev – LED device

• led – LED number

Returns
0 on success, negative on error

struct led_info
#include <led.h> LED information structure.

This structure gathers useful information about LED controller.

Public Members

const char *label
LED label.
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uint32_t index
Index of the LED on the controller.

uint8_t num_colors
Number of colors per LED.

const uint8_t *color_mapping
Mapping of the LED colors.

struct led_driver_api
#include <led.h> LED driver API.

Related code samples

LED strip
Control an LED strip example.

LED Strip

group led_strip_interface
LED Strip Interface.

Typedefs

typedef int (*led_api_update_rgb)(const struct device *dev, struct led_rgb *pixels, size_t
num_pixels)

Callback API for updating an RGB LED strip.

See also

led_strip_update_rgb() for argument descriptions.

typedef int (*led_api_update_channels)(const struct device *dev, uint8_t *channels, size_t
num_channels)

Callback API for updating channels without an RGB interpretation.

See also

led_strip_update_channels() for argument descriptions.

typedef size_t (*led_api_length)(const struct device *dev)
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Callback API for getting length of an LED strip.

See also

led_strip_length() for argument descriptions.

Functions

static inline int led_strip_update_rgb(const struct device *dev, struct led_rgb *pixels,
size_t num_pixels)

Mandatory function to update an LED strip with the given RGB array.

Warning

This routine may overwrite pixels.

Parameters
• dev – LED strip device.

• pixels – Array of pixel data.

• num_pixels – Length of pixels array.

Return values
• 0 – on success.

• -errno – negative errno code on failure.

static inline int led_strip_update_channels(const struct device *dev, uint8_t *channels,
size_t num_channels)

Optional function to update an LED strip with the given channel array (each channel
byte corresponding to an individually addressable color channel or LED.

Channels are updated linearly in strip order.

Warning

This routine may overwrite channels.

Parameters
• dev – LED strip device.

• channels – Array of per-channel data.

• num_channels – Length of channels array.

Return values
• 0 – on success.

• -ENOSYS – if not implemented.

• -errno – negative errno code on other failure.
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static inline size_t led_strip_length(const struct device *dev)
Mandatory function to get chain length (in pixels) of an LED strip device.

Parameters
• dev – LED strip device.

Return values
Length – of LED strip device.

struct led_rgb
#include <led_strip.h> Color value for a single RGB LED.

Individual strip drivers may ignore lower-order bits if their resolution in any channel
is less than a full byte.

Public Members

uint8_t r
Red channel.

uint8_t g
Green channel.

uint8_t b
Blue channel.

struct led_strip_driver_api
#include <led_strip.h> LED strip driver API.

This is the mandatory API any LED strip driver needs to expose.

7.6.30 Management Data Input/Output (MDIO)

Overview

MDIO is a bus that is commonly used to communicate with ethernet PHY devices. Many ethernet
MAC controllers also provide hardware to communicate over MDIO bus with a peripheral device.

This API is intended to be used primarily by PHY drivers but can also be used by user firmware.

API Reference

group mdio_interface
MDIO Interface.

Functions
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void mdio_bus_enable(const struct device *dev)
Enable MDIO bus.

Parameters
• dev – [in] Pointer to the device structure for the controller

void mdio_bus_disable(const struct device *dev)
Disable MDIO bus and tri-state drivers.

Parameters
• dev – [in] Pointer to the device structure for the controller

int mdio_read(const struct device *dev, uint8_t prtad, uint8_t regad, uint16_t *data)
Read from MDIO Bus.

This routine provides a generic interface to perform a read on the MDIO bus.

Parameters
• dev – [in] Pointer to the device structure for the controller

• prtad – [in] Port address

• regad – [in] Register address

• data – Pointer to receive read data

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ETIMEDOUT – If transaction timedout on the bus

• -ENOSYS – if read is not supported

int mdio_write(const struct device *dev, uint8_t prtad, uint8_t regad, uint16_t data)
Write to MDIO bus.

This routine provides a generic interface to perform a write on the MDIO bus.

Parameters
• dev – [in] Pointer to the device structure for the controller

• prtad – [in] Port address

• regad – [in] Register address

• data – [in] Data to write

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ETIMEDOUT – If transaction timedout on the bus

• -ENOSYS – if write is not supported

int mdio_read_c45(const struct device *dev, uint8_t prtad, uint8_t devad, uint16_t regad,
uint16_t *data)

Read from MDIO Bus using Clause 45 access.

This routine provides an interface to perform a read on the MDIO bus using IEEE 802.3
Clause 45 access.

Parameters
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• dev – [in] Pointer to the device structure for the controller

• prtad – [in] Port address

• devad – [in] Device address

• regad – [in] Register address

• data – Pointer to receive read data

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ETIMEDOUT – If transaction timedout on the bus

• -ENOSYS – if write using Clause 45 access is not supported

int mdio_write_c45(const struct device *dev, uint8_t prtad, uint8_t devad, uint16_t regad,
uint16_t data)

Write to MDIO bus using Clause 45 access.

This routine provides an interface to perform a write on the MDIO bus using IEEE 802.3
Clause 45 access.

Parameters
• dev – [in] Pointer to the device structure for the controller

• prtad – [in] Port address

• devad – [in] Device address

• regad – [in] Register address

• data – [in] Data to write

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ETIMEDOUT – If transaction timedout on the bus

• -ENOSYS – if write using Clause 45 access is not supported

7.6.31 MIPI Display Bus Interface (DBI)

The MIPI DBI driver class implements support for MIPI DBI compliant display controllers.

MIPI DBI defines 3 interface types:

• Type A: Motorola 6800 parallel bus

• Type B: Intel 8080 parallel bus

• Type C: SPI Type serial bit bus with 3 options:

1. 9 write clocks per byte, final bit is command/data selection bit

2. Same as above, but 16 write clocks per byte

3. 8 write clocks per byte. Command/data selected via GPIO pin

Currently, the API only supports Type C controllers, options 1 and 3.
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API Reference

group mipi_dbi_interface
MIPI-DBI driver APIs.

Since
3.6

Version
0.1.0

Defines

MIPI_DBI_SPI_CONFIG_DT(node_id, operation_, delay_)
initialize a MIPI DBI SPI configuration struct from devicetree

This helper allows drivers to initialize a MIPI DBI SPI configuration structure using
devicetree.

Parameters
• node_id – Devicetree node identifier for the MIPI DBI device whose struct
spi_config to create an initializer for

• operation_ – the desired operation field in the struct spi_config

• delay_ – the desired delay field in the struct spi_config’s spi_cs_control, if
there is one

MIPI_DBI_SPI_CONFIG_DT_INST(inst, operation_, delay_)
Initialize a MIPI DBI SPI configuration from devicetree instance.

This helper initializes a MIPI DBI SPI configuration from a devicetree instance. It is
equivalent to MIPI_DBI_SPI_CONFIG_DT(DT_DRV_INST(inst))

Parameters
• inst – Instance number to initialize configuration from

• operation_ – the desired operation field in the struct spi_config

• delay_ – the desired delay field in the struct spi_config’s spi_cs_control, if
there is one

MIPI_DBI_CONFIG_DT(node_id, operation_, delay_)
Initialize a MIPI DBI configuration from devicetree.

This helper allows drivers to initialize a MIPI DBI configuration structure from device-
tree. It sets the MIPI DBI mode, as well as configuration fields in the SPI configuration
structure

Parameters
• node_id – Devicetree node identifier for the MIPI DBI device to initialize

• operation_ – the desired operation field in the struct spi_config

• delay_ – the desired delay field in the struct spi_config’s spi_cs_control, if
there is one

MIPI_DBI_CONFIG_DT_INST(inst, operation_, delay_)
Initialize a MIPI DBI configuration from device instance.

Equivalent to MIPI_DBI_CONFIG_DT(DT_DRV_INST(inst), operation_, delay_)
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Parameters
• inst – Instance of the device to initialize a MIPI DBI configuration for

• operation_ – the desired operation field in the struct spi_config

• delay_ – the desired delay field in the struct spi_config’s spi_cs_control, if
there is one

MIPI_DBI_MODE_SPI_3WIRE
SPI 3 wire (Type C1).

Uses 9 write clocks to send a byte of data. The bit sent on the 9th clock indicates
whether the byte is a command or data byte

.---. .---. .---. .---. .---. .---. .---. .---.
SCK -' '---' '---' '---' '---' '---' '---' '---' '---

-.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.
DOUT |D/C| D7| D6| D5| D4| D3| D2| D1| D0|D/C| D7| D6| D5| D4|...|

-'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'
| Word 1 | Word n

-. .--
CS '-----------------------------------------------------------'

MIPI_DBI_MODE_SPI_4WIRE
SPI 4 wire (Type C3).

Uses 8 write clocks to send a byte of data. an additional C/D pin will be use to indicate
whether the byte is a command or data byte

.---. .---. .---. .---. .---. .---. .---. .---.
SCK -' '---' '---' '---' '---' '---' '---' '---' '---

-.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.
DOUT | D7| D6| D5| D4| D3| D2| D1| D0| D7| D6| D5| D4| D3| D2| D1| D0|

-'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'
| Word 1 | Word n

-. .--
CS '---------------------------------------------------------------'

-.-------------------------------.-------------------------------.-
CD | D/C | D/C |

-'-------------------------------'-------------------------------'-

MIPI_DBI_MODE_6800_BUS_16_BIT
Parallel Bus protocol for MIPI DBI Type A based on Motorola 6800 bus.

-. .--------. .------------------------
CS '---' '---'

-------------------------------------------
RESX

.--------------------------------
D/CX ----------'

(continues on next page)
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(continued from previous page)

R/WX -------------------------------------------

-------------------------------------------
E

.--------. .--------------------------.
D[15:0]/ -| COMMAND|---| DATA |
D[8:0]/ '--------' '--------------------------'
D[7:0]

Please refer to the MIPI DBI specification for a detailed cycle diagram.

MIPI_DBI_MODE_6800_BUS_9_BIT

MIPI_DBI_MODE_6800_BUS_8_BIT

MIPI_DBI_MODE_8080_BUS_16_BIT
Parallel Bus protocol for MIPI DBI Type B based on Intel 8080 bus.

-. .-
CS '---------------------------------------'

-------------------------------------------
RESX

--. .----------------------------
D/CX '-----------'

---. .--------. .----------------------
WRX '---' '---'

-------------------------------------------
RDX

.--------. .--------------------------.
D[15:0]/ ---| COMMAND|---| DATA |
D[8:0]/ '--------' '--------------------------'
D[7:0]

Please refer to the MIPI DBI specification for a detailed cycle diagram.

MIPI_DBI_MODE_8080_BUS_9_BIT

MIPI_DBI_MODE_8080_BUS_8_BIT

Functions

static inline int mipi_dbi_command_write(const struct device *dev, const struct
mipi_dbi_config *config, uint8_t cmd, const
uint8_t *data, size_t len)

Write a command to the display controller.

Writes a command, along with an optional data buffer to the display. If data buffer
and buffer length are NULL and 0 respectively, then only a command will be sent. Note
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that if the SPI configuration passed to this function locks the SPI bus, it is the caller’s
responsibility to release it with mipi_dbi_release()

Parameters
• dev – mipi dbi controller

• config – MIPI DBI configuration

• cmd – command to write to display controller

• data – optional data buffer to write after command

• len – size of data buffer in bytes. Set to 0 to skip sending data.

Return values
• 0 – command write succeeded

• -EIO – I/O error

• -ETIMEDOUT – transfer timed out

• -EBUSY – controller is busy

• -ENOSYS – not implemented

static inline int mipi_dbi_command_read(const struct device *dev, const struct
mipi_dbi_config *config, uint8_t *cmds, size_t
num_cmd, uint8_t *response, size_t len)

Read a command response from the display controller.

Reads a command response from the display controller.

Parameters
• dev – mipi dbi controller

• config – MIPI DBI configuration

• cmds – array of one byte commands to send to display controller

• num_cmd – number of commands to write to display controller

• response – response buffer, filled with display controller response

• len – size of response buffer in bytes.

Return values
• 0 – command read succeeded

• -EIO – I/O error

• -ETIMEDOUT – transfer timed out

• -EBUSY – controller is busy

• -ENOSYS – not implemented

static inline int mipi_dbi_write_display(const struct device *dev, const struct
mipi_dbi_config *config, const uint8_t
*framebuf, struct display_buffer_descriptor
*desc, enum display_pixel_format pixfmt)

Write a display buffer to the display controller.

Writes a display buffer to the controller. If the controller requires a “Write
memory” command before writing display data, this should be sent with
mipi_dbi_command_write

Parameters
• dev – mipi dbi controller
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• config – MIPI DBI configuration

• framebuf – framebuffer to write to display

• desc – descriptor of framebuffer to write. Note that the pitch must be
equal to width. “buf_size” field determines how many bytes will be writ-
ten.

• pixfmt – pixel format of framebuffer data

Return values
• 0 – buffer write succeeded.

• -EIO – I/O error

• -ETIMEDOUT – transfer timed out

• -EBUSY – controller is busy

• -ENOSYS – not implemented

static inline int mipi_dbi_reset(const struct device *dev, uint32_t delay)
Resets attached display controller.

Resets the attached display controller.

Parameters
• dev – mipi dbi controller

• delay – duration to set reset signal for, in milliseconds

Return values
• 0 – reset succeeded

• -EIO – I/O error

• -ENOSYS – not implemented

• -ENOTSUP – not supported

static inline int mipi_dbi_release(const struct device *dev, const struct mipi_dbi_config
*config)

Releases a locked MIPI DBI device.

Releases a lock on a MIPI DBI device and/or the device’s CS line if and only if the given
config parameter was the last one to be used in any of the above functions, and if it
has the SPI_LOCK_ON bit set and/or the SPI_HOLD_ON_CS bit set into its operation bits
field. This lock functions exactly like the SPI lock, and can be used if the caller needs
to keep CS asserted for multiple transactions, or the MIPI DBI device locked.

Parameters
• dev – mipi dbi controller

• config – MIPI DBI configuration

Return values
• 0 – reset succeeded

• -EIO – I/O error

• -ENOSYS – not implemented

• -ENOTSUP – not supported
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struct mipi_dbi_config
#include <mipi_dbi.h> MIPI DBI controller configuration.

Configuration for MIPI DBI controller write

Public Members

uint8_t mode
MIPI DBI mode (SPI 3 wire or 4 wire)

struct spi_config config
SPI configuration.

struct mipi_dbi_driver_api
#include <mipi_dbi.h> MIPI-DBI host driver API.

7.6.32 MIPI Display Serial Interface (DSI)

API Reference

group mipi_dsi_interface
MIPI-DSI driver APIs.

Since
3.1

Version
0.1.0

MIPI-DSI Device mode flags.

MIPI_DSI_MODE_VIDEO
Video mode.

MIPI_DSI_MODE_VIDEO_BURST
Video burst mode.

MIPI_DSI_MODE_VIDEO_SYNC_PULSE
Video pulse mode.

MIPI_DSI_MODE_VIDEO_AUTO_VERT
Enable auto vertical count mode.

MIPI_DSI_MODE_VIDEO_HSE
Enable hsync-end packets in vsync-pulse and v-porch area.
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MIPI_DSI_MODE_VIDEO_HFP
Disable hfront-porch area.

MIPI_DSI_MODE_VIDEO_HBP
Disable hback-porch area.

MIPI_DSI_MODE_VIDEO_HSA
Disable hsync-active area.

MIPI_DSI_MODE_VSYNC_FLUSH
Flush display FIFO on vsync pulse.

MIPI_DSI_MODE_EOT_PACKET
Disable EoT packets in HS mode.

MIPI_DSI_CLOCK_NON_CONTINUOUS
Device supports non-continuous clock behavior (DSI spec 5.6.1)

MIPI_DSI_MODE_LPM
Transmit data in low power.

MIPI-DSI Pixel formats.

MIPI_DSI_PIXFMT_RGB888
RGB888 (24bpp).

MIPI_DSI_PIXFMT_RGB666
RGB666 (24bpp).

MIPI_DSI_PIXFMT_RGB666_PACKED
Packed RGB666 (18bpp).

MIPI_DSI_PIXFMT_RGB565
RGB565 (16bpp).

Defines

MIPI_DSI_MSG_USE_LPM

Functions

static inline int mipi_dsi_attach(const struct device *dev, uint8_t channel, const struct
mipi_dsi_device *mdev)

Attach a new device to the MIPI-DSI bus.

Parameters
• dev – MIPI-DSI host device.

3500 Chapter 7. Hardware Support



Zephyr Project Documentation, Release 3.7.99

• channel – Device channel (VID).

• mdev – MIPI-DSI device description.

Returns
0 on success, negative on error

static inline ssize_t mipi_dsi_transfer(const struct device *dev, uint8_t channel, struct
mipi_dsi_msg *msg)

Transfer data to/from a device attached to the MIPI-DSI bus.

Parameters
• dev – MIPI-DSI device.

• channel – Device channel (VID).

• msg – Message.

Returns
Size of the transferred data on success, negative on error.

ssize_t mipi_dsi_generic_read(const struct device *dev, uint8_t channel, const void
*params, size_t nparams, void *buf, size_t len)

MIPI-DSI generic read.

Parameters
• dev – MIPI-DSI host device.

• channel – Device channel (VID).

• params – Buffer containing request parameters.

• nparams – Number of parameters.

• buf – Buffer where read data will be stored.

• len – Length of the reception buffer.

Returns
Size of the read data on success, negative on error.

ssize_t mipi_dsi_generic_write(const struct device *dev, uint8_t channel, const void *buf,
size_t len)

MIPI-DSI generic write.

Parameters
• dev – MIPI-DSI host device.

• channel – Device channel (VID).

• buf – Transmission buffer.

• len – Length of the transmission buffer

Returns
Size of the written data on success, negative on error.

ssize_t mipi_dsi_dcs_read(const struct device *dev, uint8_t channel, uint8_t cmd, void
*buf, size_t len)

MIPI-DSI DCS read.

Parameters
• dev – MIPI-DSI host device.

• channel – Device channel (VID).

• cmd – DCS command.
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• buf – Buffer where read data will be stored.

• len – Length of the reception buffer.

Returns
Size of the read data on success, negative on error.

ssize_t mipi_dsi_dcs_write(const struct device *dev, uint8_t channel, uint8_t cmd, const
void *buf, size_t len)

MIPI-DSI DCS write.

Parameters
• dev – MIPI-DSI host device.

• channel – Device channel (VID).

• cmd – DCS command.

• buf – Transmission buffer.

• len – Length of the transmission buffer

Returns
Size of the written data on success, negative on error.

static inline int mipi_dsi_detach(const struct device *dev, uint8_t channel, const struct
mipi_dsi_device *mdev)

Detach a device from the MIPI-DSI bus.

Parameters
• dev – MIPI-DSI host device.

• channel – Device channel (VID).

• mdev – MIPI-DSI device description.

Returns
0 on success, negative on error

struct mipi_dsi_timings
#include <mipi_dsi.h> MIPI-DSI display timings.

Public Members

uint32_t hactive
Horizontal active video.

uint32_t hfp
Horizontal front porch.

uint32_t hbp
Horizontal back porch.

uint32_t hsync
Horizontal sync length.

uint32_t vactive
Vertical active video.
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uint32_t vfp
Vertical front porch.

uint32_t vbp
Vertical back porch.

uint32_t vsync
Vertical sync length.

struct mipi_dsi_device
#include <mipi_dsi.h> MIPI-DSI device.

Public Members

uint8_t data_lanes
Number of data lanes.

struct mipi_dsi_timings timings
Display timings.

uint32_t pixfmt
Pixel format.

uint32_t mode_flags
Mode flags.

struct mipi_dsi_msg
#include <mipi_dsi.h> MIPI-DSI read/write message.

Public Members

uint8_t type
Payload data type.

uint16_t flags
Flags controlling message transmission.

uint8_t cmd
Command (only for DCS)

size_t tx_len
Transmission buffer length.

const void *tx_buf
Transmission buffer.
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size_t rx_len
Reception buffer length.

void *rx_buf
Reception buffer.

struct mipi_dsi_driver_api
#include <mipi_dsi.h> MIPI-DSI host driver API.

7.6.33 Multi-bit SPI Bus

The MSPI (multi-bit SPI) is provided as a generic API to accommodate advanced SPI peripherals
and devices that typically require command, address and data phases, and multiple signal lines
during these phases. While the API supports advanced features such as XIP and scrambling, it is
also compatible with generic SPI.

• MSPI Controller API

– Transceive

– Device Tree

– Multi Peripheral

• Configuration Options

• API Reference

MSPI Controller API

Zephyr’s MSPI controller API may be used when a multi-bit SPI controller is present. E.g. Ambiq
MSPI, QSPI, OSPI, Flexspi, etc. The API supports single to hex SDR/DDR IO with variable latency
and advanced features such as XIP and scrambling. Applicable devices include but not limited
to high-speed, high density flash/psram memory devices, displays and sensors.

The MSPI interface contains controller drivers that are SoC platform specific and implement the
MSPI APIs, and device drivers that reference these APIs. The relationship between the controller
and device drivers is many-to-many to allow for easy switching between platforms.

Here is a list of generic steps for initializing the MSPI controller and the MSPI bus inside the
device driver initialization function:

1. Initialize the data structure of the MSPI controller driver instance. The usual device defin-
ing macros such as DEVICE_DT_INST_DEFINE can be used, and the initialization function,
config and data provided as a parameter to the macro.

2. Initialize the hardware, including but not limited to:

• Check mspi_cfg against hardware’s own capabilities to prevent incorrect usages.

• Setup default pinmux.

• Setup the clock for the controller.

• Power on the hardware.

• Configure the hardware using mspi_cfg and possibly more platform specific settings.
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• Usually, the mspi_cfg is filled from device tree and contains static, boot time param-
eters. However, if needed, one can use mspi_config() to re-initialize the hardware
with new parameters during runtime.

• Release any lock if applicable.

3. Perform device driver initialization. As usually, DEVICE_DT_INST_DEFINE can be used. In-
side device driver initialization function, perform the following required steps.

1. Call mspi_dev_config() with device specific hardware settings obtained from device
datasheets.

• The mspi_dev_cfg should be filled by device tree and helper macro
MSPI_DEVICE_CONFIG_DT can be used.

• The controller driver should then validate the members of mspi_dev_cfg to pre-
vent incorrect usage.

• The controller driver should implement a mutex to protect from accidental access.

• The controller driver may also switch between different devices based on
mspi_dev_id.

2. Call API for additional setups if supported by hardware

• mspi_xip_config() for XIP feature

• mspi_scramble_config() for scrambling feature

• mspi_timing_config() for platform specific timing setup.

3. Register any callback with mspi_register_callback() if needed.

4. Release the controller mutex lock.

Transceive The transceive request is of type mspi_xfer which allows dynamic change to
the transfer related settings once the mode of operation is determined and configured by
mspi_dev_config().

The API also supports bulk transfers with different starting addresses and sizes with
mspi_xfer_packet. However, it is up to the controller implementation whether to support scat-
ter IO and callback management. The controller can determine which user callback to trigger
based on mspi_bus_event_cb_mask upon completion of each async/sync transfer if the callback
had been registered using mspi_register_callback(). Or not to trigger any callback at all with
MSPI_BUS_NO_CB even if the callbacks are already registered. In which case that a controller sup-
ports hardware command queue, user could take full advantage of the hardware performance
if scatter IO and callback management are supported by the driver implementation.

Device Tree Here is an example for defining an MSPI controller in device tree: The mspi con-
troller’s bindings should reference mspi-controller.yaml as one of the base.

mspi0: mspi@400 {
status = "okay";
compatible = "zephyr,mspi-emul-controller";

reg = < 0x400 0x4 >;
#address-cells = < 0x1 >;
#size-cells = < 0x0 >;

clock-frequency = < 0x17d7840 >;
op-mode = "MSPI_CONTROLLER";
duplex = "MSPI_HALF_DUPLEX";
ce-gpios = < &gpio0 0x5 0x1 >, < &gpio0 0x12 0x1 >;
dqs-support;

(continues on next page)
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(continued from previous page)

pinctrl-0 = < &pinmux-mspi0 >;
pinctrl-names = "default";

};

Here is an example for defining an MSPI device in device tree: The mspi device’s bindings should
reference mspi-device.yaml as one of the base.

&mspi0 {

mspi_dev0: mspi_dev0@0 {
status = "okay";
compatible = "zephyr,mspi-emul-device";

reg = < 0x0 >;
size = < 0x10000 >;

mspi-max-frequency = < 0x2dc6c00 >;
mspi-io-mode = "MSPI_IO_MODE_QUAD";
mspi-data-rate = "MSPI_DATA_RATE_SINGLE";
mspi-hardware-ce-num = < 0x0 >;
read-instruction = < 0xb >;
write-instruction = < 0x2 >;
instruction-length = "INSTR_1_BYTE";
address-length = "ADDR_4_BYTE";
rx-dummy = < 0x8 >;
tx-dummy = < 0x0 >;
xip-config = < 0x0 0x0 0x0 0x0 >;
ce-break-config = < 0x0 0x0 >;

};

};

User should specify target operating parameters in the DTS such as mspi-max-frequency,
mspi-io-mode and mspi-data-rate even though they may subject to change during runtime. It
should represent the typical configuration of the device during normal operations.

Multi Peripheral With mspi_dev_id defined as collection of the device index and CE GPIO from
device tree, the API supports multiple devices on the same controller instance. The controller
driver implementation may or may not support device switching, which can be performed either
by software or by hardware. If the switching is handled by software, it should be performed in
mspi_dev_config() call.

The device driver should record the current operating conditions of the device to support soft-
ware controlled device switching by saving and updating mspi_dev_cfg and other relevant mspi
struct or private data structures. In particular, mspi_dev_id which contains the identity of the
device needs to be used for every API call.

Configuration Options

Related configuration options:

• CONFIG_MSPI
• CONFIG_MSPI_ASYNC
• CONFIG_MSPI_PERIPHERAL
• CONFIG_MSPI_XIP
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• CONFIG_MSPI_SCRAMBLE
• CONFIG_MSPI_TIMING
• CONFIG_MSPI_INIT_PRIORITY
• CONFIG_MSPI_COMPLETION_TIMEOUT_TOLERANCE

API Reference

Related code samples

MSPI asynchronous transfer
Use the MSPI API to interact with MSPI memory device asynchronously.

group mspi_interface
MSPI Driver APIs.

Typedefs

typedef int (*mspi_api_config)(const struct mspi_dt_spec *spec)
MSPI driver API definition and system call entry points.

typedef int (*mspi_api_dev_config)(const struct device *controller, const struct
mspi_dev_id *dev_id, const enum mspi_dev_cfg_mask param_mask, const struct
mspi_dev_cfg *cfg)

typedef int (*mspi_api_get_channel_status)(const struct device *controller, uint8_t ch)

typedef int (*mspi_api_transceive)(const struct device *controller, const struct
mspi_dev_id *dev_id, const struct mspi_xfer *req)

typedef int (*mspi_api_register_callback)(const struct device *controller, const struct
mspi_dev_id *dev_id, const enum mspi_bus_event evt_type, mspi_callback_handler_t cb,
struct mspi_callback_context *ctx)

typedef int (*mspi_api_xip_config)(const struct device *controller, const struct
mspi_dev_id *dev_id, const struct mspi_xip_cfg *xip_cfg)

typedef int (*mspi_api_scramble_config)(const struct device *controller, const struct
mspi_dev_id *dev_id, const struct mspi_scramble_cfg *scramble_cfg)

typedef int (*mspi_api_timing_config)(const struct device *controller, const struct
mspi_dev_id *dev_id, const uint32_t param_mask, void *timing_cfg)

Enums
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enum mspi_op_mode
MSPI operational mode.

Values:

enumerator MSPI_OP_MODE_CONTROLLER = 0

enumerator MSPI_OP_MODE_PERIPHERAL = 1

enum mspi_duplex
MSPI duplex mode.

Values:

enumerator MSPI_HALF_DUPLEX = 0

enumerator MSPI_FULL_DUPLEX = 1

enum mspi_io_mode
MSPI I/O mode capabilities Postfix like 1_4_4 stands for the number of lines used for
command, address and data phases.

Mode with no postfix has the same number of lines for all phases.

Values:

enumerator MSPI_IO_MODE_SINGLE = 0

enumerator MSPI_IO_MODE_DUAL = 1

enumerator MSPI_IO_MODE_DUAL_1_1_2 = 2

enumerator MSPI_IO_MODE_DUAL_1_2_2 = 3

enumerator MSPI_IO_MODE_QUAD = 4

enumerator MSPI_IO_MODE_QUAD_1_1_4 = 5

enumerator MSPI_IO_MODE_QUAD_1_4_4 = 6

enumerator MSPI_IO_MODE_OCTAL = 7

enumerator MSPI_IO_MODE_OCTAL_1_1_8 = 8

enumerator MSPI_IO_MODE_OCTAL_1_8_8 = 9

enumerator MSPI_IO_MODE_HEX = 10

enumerator MSPI_IO_MODE_HEX_8_8_16 = 11
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enumerator MSPI_IO_MODE_HEX_8_16_16 = 12

enumerator MSPI_IO_MODE_MAX

enum mspi_data_rate
MSPI data rate capabilities SINGLE stands for single data rate for all phases.

DUAL stands for dual data rate for all phases. S_S_D stands for single data rate for
command and address phases but dual data rate for data phase. S_D_D stands for
single data rate for command phase but dual data rate for address and data phases.

Values:

enumerator MSPI_DATA_RATE_SINGLE = 0

enumerator MSPI_DATA_RATE_S_S_D = 1

enumerator MSPI_DATA_RATE_S_D_D = 2

enumerator MSPI_DATA_RATE_DUAL = 3

enumerator MSPI_DATA_RATE_MAX

enum mspi_cpp_mode
MSPI Polarity & Phase Modes.

Values:

enumerator MSPI_CPP_MODE_0 = 0

enumerator MSPI_CPP_MODE_1 = 1

enumerator MSPI_CPP_MODE_2 = 2

enumerator MSPI_CPP_MODE_3 = 3

enum mspi_endian
MSPI Endian.

Values:

enumerator MSPI_XFER_LITTLE_ENDIAN = 0

enumerator MSPI_XFER_BIG_ENDIAN = 1

enum mspi_ce_polarity
MSPI chip enable polarity.

Values:
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enumerator MSPI_CE_ACTIVE_LOW = 0

enumerator MSPI_CE_ACTIVE_HIGH = 1

enum mspi_bus_event
MSPI bus event.

This is a preliminary list of events. I encourage the community to fill it up.

Values:

enumerator MSPI_BUS_RESET = 0

enumerator MSPI_BUS_ERROR = 1

enumerator MSPI_BUS_XFER_COMPLETE = 2

enumerator MSPI_BUS_EVENT_MAX

enum mspi_bus_event_cb_mask
MSPI bus event callback mask This is a preliminary list same as mspi_bus_event.

I encourage the community to fill it up.

Values:

enumerator MSPI_BUS_NO_CB = 0

enumerator MSPI_BUS_RESET_CB = BIT(0)

enumerator MSPI_BUS_ERROR_CB = BIT(1)

enumerator MSPI_BUS_XFER_COMPLETE_CB = BIT(2)

enum mspi_xfer_mode
MSPI transfer modes.

Values:

enumerator MSPI_PIO

enumerator MSPI_DMA

enum mspi_xfer_direction
MSPI transfer directions.

Values:

enumerator MSPI_RX

enumerator MSPI_TX
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enum mspi_dev_cfg_mask
MSPI controller device specific configuration mask.

Values:

enumerator MSPI_DEVICE_CONFIG_NONE = 0

enumerator MSPI_DEVICE_CONFIG_CE_NUM = BIT(0)

enumerator MSPI_DEVICE_CONFIG_FREQUENCY = BIT(1)

enumerator MSPI_DEVICE_CONFIG_IO_MODE = BIT(2)

enumerator MSPI_DEVICE_CONFIG_DATA_RATE = BIT(3)

enumerator MSPI_DEVICE_CONFIG_CPP = BIT(4)

enumerator MSPI_DEVICE_CONFIG_ENDIAN = BIT(5)

enumerator MSPI_DEVICE_CONFIG_CE_POL = BIT(6)

enumerator MSPI_DEVICE_CONFIG_DQS = BIT(7)

enumerator MSPI_DEVICE_CONFIG_RX_DUMMY = BIT(8)

enumerator MSPI_DEVICE_CONFIG_TX_DUMMY = BIT(9)

enumerator MSPI_DEVICE_CONFIG_READ_CMD = BIT(10)

enumerator MSPI_DEVICE_CONFIG_WRITE_CMD = BIT(11)

enumerator MSPI_DEVICE_CONFIG_CMD_LEN = BIT(12)

enumerator MSPI_DEVICE_CONFIG_ADDR_LEN = BIT(13)

enumerator MSPI_DEVICE_CONFIG_MEM_BOUND = BIT(14)

enumerator MSPI_DEVICE_CONFIG_BREAK_TIME = BIT(15)

enumerator MSPI_DEVICE_CONFIG_ALL = BIT_MASK(16)

enum mspi_xip_permit
MSPI XIP access permissions.

Values:

enumerator MSPI_XIP_READ_WRITE = 0
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enumerator MSPI_XIP_READ_ONLY = 1

struct mspi_driver_api
#include <mspi.h>

7.6.34 Multi-Channel Inter-Processor Mailbox (MBOX)

Overview

An MBOX device is a peripheral capable of passing signals (and data depending on the periph-
eral) between CPUs and clusters in the system. Each MBOX instance is providing one or more
channels, each one targeting one other CPU cluster (multiple channels can target the same clus-
ter).

API Reference

Related code samples

MBOX
Perform inter-processor mailbox communication using the MBOX API.

MBOX Data
Perform inter-processor mailbox communication using the MBOX API with data.

group mbox_interface
MBOX Interface.

CPU #1 |
+----------+ | +----------+
| +---TX9----+ +--------+--RX8---+ |
| dev A | | | | | CPU #2 |
| <---RX8--+ | | +------+--TX9---> |
+----------+ | | | | | +----------+

+--+-v---v-+--+ |
| | |
| MBOX dev | |
| | |
+--+-^---^--+-+ |

+----------+ | | | | | +----------+
| <---RX2--+ | | +-----+--TX3---> |
| dev B | | | | | CPU #3 |
| +---TX3----+ +--------+--RX2---+ |
+----------+ | +----------+

|

Since
1.0

Version
0.1.0
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An MBOX device is a peripheral capable of passing signals (and data depending on the
peripheral) between CPUs and clusters in the system. Each MBOX instance is providing
one or more channels, each one targeting one other CPU cluster (multiple channels can
target the same cluster).

For example in the plot the device ‘dev A’ is using the TX channel 9 to signal (or send data
to) the CPU #2 and it’s expecting data or signals on the RX channel 8. Thus it can send the
message through the channel 9, and it can register a callback on the channel 8 of the MBOX
device.

This API supports two modes: signalling mode and data transfer mode.

In signalling mode:

• mbox_mtu_get() must return 0

• mbox_send() must have (msg == NULL)

• the callback must be called with (data == NULL)

In data transfer mode:

• mbox_mtu_get() must return a (value != 0)

• mbox_send() must have (msg != NULL)

• the callback must be called with (data != NULL)

• The msg content must be the same between sender and receiver

Defines

MBOX_DT_SPEC_GET(node_id, name)
Structure initializer for struct mbox_dt_spec from devicetree.

This helper macro expands to a static initializer for a struct mbox_dt_spec by reading
the relevant device controller and channel number from the devicetree.

Example devicetree fragment:

n: node {
mboxes = <&mbox1 8>,

<&mbox1 9>;
mbox-names = "tx", "rx";

};

Example usage:

const struct mbox_dt_spec spec = MBOX_DT_SPEC_GET(DT_NODELABEL(n), tx);

Parameters
• node_id – Devicetree node identifier for the MBOX device

• name – lowercase-and-underscores name of the mboxes element

Returns
static initializer for a struct mbox_dt_spec

MBOX_DT_SPEC_INST_GET(inst, name)
Instance version of MBOX_DT_CHANNEL_GET()

Parameters
• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of the mboxes element
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Returns
static initializer for a struct mbox_dt_spec

Typedefs

typedef uint32_t mbox_channel_id_t
Type for MBOX channel identifiers.

Functions

static inline bool mbox_is_ready_dt(const struct mbox_dt_spec *spec)
Validate if MBOX device instance from a struct mbox_dt_spec is ready.

Parameters
• spec – MBOX specification from devicetree

Returns
See return values for mbox_send()

int mbox_send(const struct device *dev, mbox_channel_id_t channel_id, const struct
mbox_msg *msg)

Try to send a message over the MBOX device.

Send a message over an struct mbox_channel. The msg parameter must be NULL when
the driver is used for signalling.

If the msg parameter is not NULL, this data is expected to be delivered on the receiving
side using the data parameter of the receiving callback.

Parameters
• dev – MBOX device instance

• channel_id – MBOX channel identifier

• msg – Message

Return values
• 0 – On success.

• -EBUSY – If the remote hasn’t yet read the last data sent.

• -EMSGSIZE – If the supplied data size is unsupported by the driver.

• -EINVAL – If there was a bad parameter, such as: too-large channel de-
scriptor or the device isn’t an outbound MBOX channel.

static inline int mbox_send_dt(const struct mbox_dt_spec *spec, const struct mbox_msg
*msg)

Try to send a message over the MBOX device from a struct mbox_dt_spec.

Parameters
• spec – MBOX specification from devicetree

• msg – Message

Returns
See return values for mbox_send()
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static inline int mbox_register_callback(const struct device *dev, mbox_channel_id_t
channel_id, mbox_callback_t cb, void
*user_data)

Register a callback function on a channel for incoming messages.

This function doesn’t assume anything concerning the status of the interrupts. Use
mbox_set_enabled() to enable or to disable the interrupts if needed.

Parameters
• dev – MBOX device instance

• channel_id – MBOX channel identifier

• cb – Callback function to execute on incoming message interrupts.

• user_data – Application-specific data pointer which will be passed to the
callback function when executed.

Return values
• 0 – On success.

• -errno – Negative errno on error.

static inline int mbox_register_callback_dt(const struct mbox_dt_spec *spec,
mbox_callback_t cb, void *user_data)

Register a callback function on a channel for incoming messages from a struct
mbox_dt_spec.

Parameters
• spec – MBOX specification from devicetree

• cb – Callback function to execute on incoming message interrupts.

• user_data – Application-specific data pointer which will be passed to the
callback function when executed.

Returns
See return values for mbox_register_callback()

int mbox_mtu_get(const struct device *dev)
Return the maximum number of bytes possible in an outbound message.

Returns the actual number of bytes that it is possible to send through an outgoing chan-
nel.

This number can be 0 when the driver only supports signalling or when on the receiv-
ing side the content and size of the message must be retrieved in an indirect way (i.e.
probing some other peripheral, reading memory regions, etc…).

If this function returns 0, the msg parameter in mbox_send() is expected to be NULL.

Parameters
• dev – MBOX device instance.

Return values
• >0 – Maximum possible size of a message in bytes

• 0 – Indicates signalling

• -errno – Negative errno on error.

static inline int mbox_mtu_get_dt(const struct mbox_dt_spec *spec)
Return the maximum number of bytes possible in an outbound message from struct
mbox_dt_spec.
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Parameters
• spec – MBOX specification from devicetree

Returns
See return values for mbox_register_callback()

int mbox_set_enabled(const struct device *dev, mbox_channel_id_t channel_id, bool
enabled)

Enable (disable) interrupts and callbacks for inbound channels.

Enable interrupt for the channel when the parameter ‘enable’ is set to true. Disable it
otherwise.

Immediately after calling this function with ‘enable’ set to true, the channel is
considered enabled and ready to receive signal and messages (even already pend-
ing), so the user must take care of installing a proper callback (if needed) using
mbox_register_callback() on the channel before enabling it. For this reason it is rec-
ommended that all the channels are disabled at probe time.

Enabling a channel for which there is no installed callback is considered undefined be-
havior (in general the driver must take care of gracefully handling spurious interrupts
with no installed callback).

Parameters
• dev – MBOX device instance

• channel_id – MBOX channel identifier

• enabled – Enable (true) or disable (false) the channel.

Return values
• 0 – On success.

• -EINVAL – If it isn’t an inbound channel.

• -EALREADY – If channel is already enabled.

static inline int mbox_set_enabled_dt(const struct mbox_dt_spec *spec, bool enabled)
Enable (disable) interrupts and callbacks for inbound channels from a struct
mbox_dt_spec.

Parameters
• spec – MBOX specification from devicetree

• enabled – Enable (true) or disable (false) the channel.

Returns
See return values for mbox_set_enabled()

uint32_t mbox_max_channels_get(const struct device *dev)
Return the maximum number of channels.

Return the maximum number of channels supported by the hardware.

Parameters
• dev – MBOX device instance.

Returns
>0 Maximum possible number of supported channels on success

Returns
-errno Negative errno on error.
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static inline int mbox_max_channels_get_dt(const struct mbox_dt_spec *spec)
Return the maximum number of channels from a struct mbox_dt_spec.

Parameters
• spec – MBOX specification from devicetree

Returns
See return values for mbox_max_channels_get()

struct mbox_msg
#include <mbox.h> Message struct (to hold data and its size).

Public Members

const void *data
Pointer to the data sent in the message.

size_t size
Size of the data.

struct mbox_dt_spec
#include <mbox.h> MBOX specification from DT.

Public Members

const struct device *dev
MBOX device pointer.

mbox_channel_id_t channel_id
Channel ID.

7.6.35 Peripheral Component Interconnect express Bus (PCIe)

Overview

API Reference

group pcie_host_interface
PCIe Host Interface.

Defines

PCIE_ID_IS_VALID(id)
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PCIE_DT_ID(node_id)
Get the PCIe Vendor and Device ID for a node.

Parameters
• node_id – DTS node identifier

Returns
The VID/DID combination as pcie_id_t

PCIE_DT_INST_ID(inst)
Get the PCIe Vendor and Device ID for a node.

This is equivalent to PCIE_DT_ID(DT_DRV_INST(inst))
Parameters

• inst – Devicetree instance number

Returns
The VID/DID combination as pcie_id_t

DEVICE_PCIE_DECLARE(node_id)
Declare a PCIe context variable for a DTS node.

Declares a PCIe context for a DTS node. This must be done before using the DE-
VICE_PCIE_INIT() macro for the same node.

Parameters
• node_id – DTS node identifier

DEVICE_PCIE_INST_DECLARE(inst)
Declare a PCIe context variable for a DTS node.

This is equivalent to DEVICE_PCIE_DECLARE(DT_DRV_INST(inst))
Parameters

• inst – Devicetree instance number

DEVICE_PCIE_INIT(node_id, name)
Initialize a named struct member to point at a PCIe context.

Initialize PCIe-related information within a specific instance of a device config struct,
using information from DTS. Using the macro requires having first created PCIe con-
text struct using the DEVICE_PCIE_DECLARE() macro.

Example for an instance of a driver belonging to the “foo” subsystem

struct foo_config { struct pcie_dev *pcie; … };

DEVICE_PCIE_ID_DECLARE(DT_DRV_INST(…)); struct foo_config my_config = { DE-
VICE_PCIE_INIT(pcie, DT_DRV_INST(…)), … };

Parameters
• node_id – DTS node identifier

• name – Member name within config for the MMIO region

DEVICE_PCIE_INST_INIT(inst, name)
Initialize a named struct member to point at a PCIe context.

This is equivalent to DEVICE_PCIE_INIT(DT_DRV_INST(inst), name)
Parameters

• inst – Devicetree instance number

• name – Name of the struct member (of type struct pcie_dev *)
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PCIE_HOST_CONTROLLER(n)
Get the BDF for a given PCI host controller.

This macro is useful when the PCI host controller behind PCIE_BDF(0, 0, 0) indicates a
multifunction device. In such a case each function of this endpoint is a potential host
controller itself.

Parameters
• n – Bus number

Returns
BDF value of the given host controller

PCIE_CONF_CAPPTR

PCIE_CONF_CAPPTR_FIRST(w)

PCIE_CONF_CAP_ID(w)

PCIE_CONF_CAP_NEXT(w)

PCIE_CONF_EXT_CAPPTR

PCIE_CONF_EXT_CAP_ID(w)

PCIE_CONF_EXT_CAP_VER(w)

PCIE_CONF_EXT_CAP_NEXT(w)

PCIE_CONF_ID

PCIE_CONF_CMDSTAT

PCIE_CONF_CMDSTAT_IO

PCIE_CONF_CMDSTAT_MEM

PCIE_CONF_CMDSTAT_MASTER

PCIE_CONF_CMDSTAT_INTERRUPT

PCIE_CONF_CMDSTAT_CAPS

PCIE_CONF_CLASSREV

PCIE_CONF_CLASSREV_CLASS(w)

PCIE_CONF_CLASSREV_SUBCLASS(w)

PCIE_CONF_CLASSREV_PROGIF(w)

PCIE_CONF_CLASSREV_REV(w)

PCIE_CONF_TYPE
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PCIE_CONF_MULTIFUNCTION(w)

PCIE_CONF_TYPE_BRIDGE(w)

PCIE_CONF_TYPE_GET(w)

PCIE_CONF_TYPE_STANDARD

PCIE_CONF_TYPE_PCI_BRIDGE

PCIE_CONF_TYPE_CARDBUS_BRIDGE

PCIE_CONF_BAR0

PCIE_CONF_BAR1

PCIE_CONF_BAR2

PCIE_CONF_BAR3

PCIE_CONF_BAR4

PCIE_CONF_BAR5

PCIE_CONF_BAR_IO(w)

PCIE_CONF_BAR_MEM(w)

PCIE_CONF_BAR_64(w)

PCIE_CONF_BAR_ADDR(w)

PCIE_CONF_BAR_IO_ADDR(w)

PCIE_CONF_BAR_FLAGS(w)

PCIE_CONF_BAR_NONE

PCIE_CONF_BAR_INVAL

PCIE_CONF_BAR_INVAL64

PCIE_CONF_BAR_INVAL_FLAGS(w)

PCIE_BUS_NUMBER

PCIE_BUS_PRIMARY_NUMBER(w)

PCIE_BUS_SECONDARY_NUMBER(w)

PCIE_BUS_SUBORDINATE_NUMBER(w)

PCIE_SECONDARY_LATENCY_TIMER(w)
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PCIE_BUS_NUMBER_VAL(prim, sec, sub, lat)

PCIE_IO_SEC_STATUS

PCIE_IO_BASE(w)

PCIE_IO_LIMIT(w)

PCIE_SEC_STATUS(w)

PCIE_IO_SEC_STATUS_VAL(iob, iol, sec_status)

PCIE_MEM_BASE_LIMIT

PCIE_MEM_BASE(w)

PCIE_MEM_LIMIT(w)

PCIE_MEM_BASE_LIMIT_VAL(memb, meml)

PCIE_PREFETCH_BASE_LIMIT

PCIE_PREFETCH_BASE(w)

PCIE_PREFETCH_LIMIT(w)

PCIE_PREFETCH_BASE_LIMIT_VAL(pmemb, pmeml)

PCIE_PREFETCH_BASE_UPPER

PCIE_PREFETCH_LIMIT_UPPER

PCIE_IO_BASE_LIMIT_UPPER

PCIE_IO_BASE_UPPER(w)

PCIE_IO_LIMIT_UPPER(w)

PCIE_IO_BASE_LIMIT_UPPER_VAL(iobu, iolu)

PCIE_CONF_INTR

PCIE_CONF_INTR_IRQ(w)

PCIE_CONF_INTR_IRQ_NONE

PCIE_MAX_BUS

PCIE_MAX_DEV

PCIE_MAX_FUNC
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PCIE_IRQ_CONNECT(bdf_p, irq_p, priority_p, isr_p, isr_param_p, flags_p)
Initialize an interrupt handler for a PCIe endpoint IRQ.

This routine is only meant to be used by drivers using PCIe bus and having fixed or
MSI based IRQ (so no runtime detection of the IRQ). In case of runtime detection see
pcie_connect_dynamic_irq()

Parameters
• bdf_p – PCIe endpoint BDF

• irq_p – IRQ line number.

• priority_p – Interrupt priority.

• isr_p – Address of interrupt service routine.

• isr_param_p – Parameter passed to interrupt service routine.

• flags_p – Architecture-specific IRQ configuration flags..

Typedefs

typedef uint32_t pcie_bdf_t
A unique PCI(e) endpoint (bus, device, function).

A PCI(e) endpoint is uniquely identified topologically using a (bus, device, function)
tuple. The internal structure is documented in include/dt-bindings/pcie/pcie.h: see
PCIE_BDF() and friends, since these tuples are referenced from devicetree.

typedef uint32_t pcie_id_t
A unique PCI(e) identifier (vendor ID, device ID).

The PCIE_CONF_ID register for each endpoint is a (vendor ID, device ID) pair, which is
meant to tell the system what the PCI(e) endpoint is. Again, look to PCIE_ID_* macros
in include/dt-bindings/pcie/pcie.h for more.

typedef bool (*pcie_scan_cb_t)(pcie_bdf_t bdf, pcie_id_t id, void *cb_data)
Callback type used for scanning for PCI endpoints.

Param bdf
BDF value for a found endpoint.

Param id
Vendor & Device ID for the found endpoint.

Param cb_data
Custom, use case specific data.

Return
true to continue scanning, false to stop scanning.

Enums

Values:

enumerator PCIE_SCAN_RECURSIVE = BIT(0)
Scan all available PCI host controllers and sub-busses.
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enumerator PCIE_SCAN_CB_ALL = BIT(1)
Do the callback for all endpoint types, including bridges.

Functions

uint32_t pcie_conf_read(pcie_bdf_t bdf, unsigned int reg)
Read a 32-bit word from an endpoint’s configuration space.

This function is exported by the arch/SoC/board code.

Parameters
• bdf – PCI(e) endpoint

• reg – the configuration word index (not address)

Returns
the word read (0xFFFFFFFFU if nonexistent endpoint or word)

void pcie_conf_write(pcie_bdf_t bdf, unsigned int reg, uint32_t data)
Write a 32-bit word to an endpoint’s configuration space.

This function is exported by the arch/SoC/board code.

Parameters
• bdf – PCI(e) endpoint

• reg – the configuration word index (not address)

• data – the value to write

int pcie_scan(const struct pcie_scan_opt *opt)
Scan for PCIe devices.

Scan the PCI bus (or buses) for available endpoints.

Parameters
• opt – Options determining how to perform the scan.

Returns
0 on success, negative POSIX error number on failure.

bool pcie_get_mbar(pcie_bdf_t bdf, unsigned int bar_index, struct pcie_bar *mbar)
Get the MBAR at a specific BAR index.

Parameters
• bdf – the PCI(e) endpoint

• bar_index – 0-based BAR index

• mbar – Pointer to struct pcie_bar

Returns
true if the mbar was found and is valid, false otherwise

bool pcie_probe_mbar(pcie_bdf_t bdf, unsigned int index, struct pcie_bar *mbar)
Probe the nth MMIO address assigned to an endpoint.

A PCI(e) endpoint has 0 or more memory-mapped regions. This function allows the
caller to enumerate them by calling with index=0..n. Value of n has to be below 6,
as there is a maximum of 6 BARs. The indices are order-preserving with respect to
the endpoint BARs: e.g., index 0 will return the lowest-numbered memory BAR on the
endpoint.
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Parameters
• bdf – the PCI(e) endpoint

• index – (0-based) index

• mbar – Pointer to struct pcie_bar

Returns
true if the mbar was found and is valid, false otherwise

bool pcie_get_iobar(pcie_bdf_t bdf, unsigned int bar_index, struct pcie_bar *iobar)
Get the I/O BAR at a specific BAR index.

Parameters
• bdf – the PCI(e) endpoint

• bar_index – 0-based BAR index

• iobar – Pointer to struct pcie_bar

Returns
true if the I/O BAR was found and is valid, false otherwise

bool pcie_probe_iobar(pcie_bdf_t bdf, unsigned int index, struct pcie_bar *iobar)
Probe the nth I/O BAR address assigned to an endpoint.

A PCI(e) endpoint has 0 or more I/O regions. This function allows the caller to enu-
merate them by calling with index=0..n. Value of n has to be below 6, as there is a
maximum of 6 BARs. The indices are order-preserving with respect to the endpoint
BARs: e.g., index 0 will return the lowest-numbered I/O BAR on the endpoint.

Parameters
• bdf – the PCI(e) endpoint

• index – (0-based) index

• iobar – Pointer to struct pcie_bar

Returns
true if the I/O BAR was found and is valid, false otherwise

void pcie_set_cmd(pcie_bdf_t bdf, uint32_t bits, bool on)
Set or reset bits in the endpoint command/status register.

Parameters
• bdf – the PCI(e) endpoint

• bits – the powerset of bits of interest

• on – use true to set bits, false to reset them

unsigned int pcie_alloc_irq(pcie_bdf_t bdf)
Allocate an IRQ for an endpoint.

This function first checks the IRQ register and if it contains a valid value this is re-
turned. If the register does not contain a valid value allocation of a new one is at-
tempted. Such function is only exposed if CONFIG_PCIE_CONTROLLER is unset. It is
thus available where architecture tied dynamic IRQ allocation for PCIe device makes
sense.

Parameters
• bdf – the PCI(e) endpoint
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Returns
the IRQ number, or PCIE_CONF_INTR_IRQ_NONE if allocation failed.

unsigned int pcie_get_irq(pcie_bdf_t bdf)
Return the IRQ assigned by the firmware/board to an endpoint.

Parameters
• bdf – the PCI(e) endpoint

Returns
the IRQ number, or PCIE_CONF_INTR_IRQ_NONE if unknown.

void pcie_irq_enable(pcie_bdf_t bdf, unsigned int irq)
Enable the PCI(e) endpoint to generate the specified IRQ.

If MSI is enabled and the endpoint supports it, the endpoint will be configured to gen-
erate the specified IRQ via MSI. Otherwise, it is assumed that the IRQ has been routed
by the boot firmware to the specified IRQ, and the IRQ is enabled (at the I/O APIC, or
wherever appropriate).

Parameters
• bdf – the PCI(e) endpoint

• irq – the IRQ to generate

uint32_t pcie_get_cap(pcie_bdf_t bdf, uint32_t cap_id)
Find a PCI(e) capability in an endpoint’s configuration space.

Parameters
• bdf – the PCI endpoint to examine

• cap_id – the capability ID of interest

Returns
the index of the configuration word, or 0 if no capability.

uint32_t pcie_get_ext_cap(pcie_bdf_t bdf, uint32_t cap_id)
Find an Extended PCI(e) capability in an endpoint’s configuration space.

Parameters
• bdf – the PCI endpoint to examine

• cap_id – the capability ID of interest

Returns
the index of the configuration word, or 0 if no capability.

bool pcie_connect_dynamic_irq(pcie_bdf_t bdf, unsigned int irq, unsigned int priority,
void (*routine)(const void *parameter), const void
*parameter, uint32_t flags)

Dynamically connect a PCIe endpoint IRQ to an ISR handler.

Parameters
• bdf – the PCI endpoint to examine

• irq – the IRQ to connect (see pcie_alloc_irq())

• priority – priority of the IRQ

• routine – the ISR handler to connect to the IRQ

• parameter – the parameter to provide to the handler

• flags – IRQ connection flags
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Returns
true if connected, false otherwise

struct pcie_dev
#include <pcie.h>

struct pcie_bar
#include <pcie.h>

struct pcie_scan_opt
#include <pcie.h> Options for performing a scan for PCI devices.

Public Members

uint8_t bus
Initial bus number to scan.

pcie_scan_cb_t cb
Function to call for each found endpoint.

void *cb_data
Custom data to pass to the scan callback.

uint32_t flags
Scan flags.

7.6.36 Platform Environment Control Interface (PECI)

Overview

The Platform Environment Control Interface, abbreviated as PECI, is a thermal management
standard introduced in 2006 with the Intel Core 2 Duo Microprocessors. The PECI interface al-
lows external devices to read processor temperature, perform processor manageability func-
tions, and manage processor interface tuning and diagnostics. The PECI bus driver APIs enable
the interaction between Embedded Microcontrollers and CPUs.

Configuration Options

Related configuration options:

• CONFIG_PECI

API Reference

Related code samples

PECI interface
Monitor CPU temperature using PECI.
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group peci_interface
PECI Interface 3.0.

Since
2.1

Version
1.0.0

PECI read/write supported responses.

PECI_CC_RSP_SUCCESS

PECI_CC_RSP_TIMEOUT

PECI_CC_OUT_OF_RESOURCES_TIMEOUT

PECI_CC_RESOURCES_LOWPWR_TIMEOUT

PECI_CC_ILLEGAL_REQUEST

Ping command format.

PECI_PING_WR_LEN

PECI_PING_RD_LEN

PECI_PING_LEN

GetDIB command format.

PECI_GET_DIB_WR_LEN

PECI_GET_DIB_RD_LEN

PECI_GET_DIB_CMD_LEN

PECI_GET_DIB_DEVINFO

PECI_GET_DIB_REVNUM

PECI_GET_DIB_DOMAIN_BIT_MASK
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PECI_GET_DIB_MAJOR_REV_MASK

PECI_GET_DIB_MINOR_REV_MASK

GetTemp command format.

PECI_GET_TEMP_WR_LEN

PECI_GET_TEMP_RD_LEN

PECI_GET_TEMP_CMD_LEN

PECI_GET_TEMP_LSB

PECI_GET_TEMP_MSB

PECI_GET_TEMP_ERR_MSB

PECI_GET_TEMP_ERR_LSB_GENERAL

PECI_GET_TEMP_ERR_LSB_RES

PECI_GET_TEMP_ERR_LSB_TEMP_LO

PECI_GET_TEMP_ERR_LSB_TEMP_HI

RdPkgConfig command format.

PECI_RD_PKG_WR_LEN

PECI_RD_PKG_LEN_BYTE

PECI_RD_PKG_LEN_WORD

PECI_RD_PKG_LEN_DWORD

PECI_RD_PKG_CMD_LEN

WrPkgConfig command format.

PECI_WR_PKG_RD_LEN
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PECI_WR_PKG_LEN_BYTE

PECI_WR_PKG_LEN_WORD

PECI_WR_PKG_LEN_DWORD

PECI_WR_PKG_CMD_LEN

RdIAMSR command format.

PECI_RD_IAMSR_WR_LEN

PECI_RD_IAMSR_LEN_BYTE

PECI_RD_IAMSR_LEN_WORD

PECI_RD_IAMSR_LEN_DWORD

PECI_RD_IAMSR_LEN_QWORD

PECI_RD_IAMSR_CMD_LEN

WrIAMSR command format.

PECI_WR_IAMSR_RD_LEN

PECI_WR_IAMSR_LEN_BYTE

PECI_WR_IAMSR_LEN_WORD

PECI_WR_IAMSR_LEN_DWORD

PECI_WR_IAMSR_LEN_QWORD

PECI_WR_IAMSR_CMD_LEN

RdPCIConfig command format.

PECI_RD_PCICFG_WR_LEN

PECI_RD_PCICFG_LEN_BYTE
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PECI_RD_PCICFG_LEN_WORD

PECI_RD_PCICFG_LEN_DWORD

PECI_RD_PCICFG_CMD_LEN

WrPCIConfig command format.

PECI_WR_PCICFG_RD_LEN

PECI_WR_PCICFG_LEN_BYTE

PECI_WR_PCICFG_LEN_WORD

PECI_WR_PCICFG_LEN_DWORD

PECI_WR_PCICFG_CMD_LEN

RdPCIConfigLocal command format.

PECI_RD_PCICFGL_WR_LEN

PECI_RD_PCICFGL_RD_LEN_BYTE

PECI_RD_PCICFGL_RD_LEN_WORD

PECI_RD_PCICFGL_RD_LEN_DWORD

PECI_RD_PCICFGL_CMD_LEN

WrPCIConfigLocal command format.

PECI_WR_PCICFGL_RD_LEN

PECI_WR_PCICFGL_WR_LEN_BYTE

PECI_WR_PCICFGL_WR_LEN_WORD

PECI_WR_PCICFGL_WR_LEN_DWORD

PECI_WR_PCICFGL_CMD_LEN
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Enums

enum peci_error_code
PECI error codes.

Values:

enumerator PECI_GENERAL_SENSOR_ERROR = 0x8000

enumerator PECI_UNDERFLOW_SENSOR_ERROR = 0x8002

enumerator PECI_OVERFLOW_SENSOR_ERROR = 0x8003

enum peci_command_code
PECI commands.

Values:

enumerator PECI_CMD_PING = 0x00

enumerator PECI_CMD_GET_TEMP0 = 0x01

enumerator PECI_CMD_GET_TEMP1 = 0x02

enumerator PECI_CMD_RD_PCI_CFG0 = 0x61

enumerator PECI_CMD_RD_PCI_CFG1 = 0x62

enumerator PECI_CMD_WR_PCI_CFG0 = 0x65

enumerator PECI_CMD_WR_PCI_CFG1 = 0x66

enumerator PECI_CMD_RD_PKG_CFG0 = 0xA1

enumerator PECI_CMD_RD_PKG_CFG1 = 0xA

enumerator PECI_CMD_WR_PKG_CFG0 = 0xA5

enumerator PECI_CMD_WR_PKG_CFG1 = 0xA6

enumerator PECI_CMD_RD_IAMSR0 = 0xB1

enumerator PECI_CMD_RD_IAMSR1 = 0xB2

enumerator PECI_CMD_WR_IAMSR0 = 0xB5

enumerator PECI_CMD_WR_IAMSR1 = 0xB6
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enumerator PECI_CMD_RD_PCI_CFG_LOCAL0 = 0xE1

enumerator PECI_CMD_RD_PCI_CFG_LOCAL1 = 0xE2

enumerator PECI_CMD_WR_PCI_CFG_LOCAL0 = 0xE5

enumerator PECI_CMD_WR_PCI_CFG_LOCAL1 = 0xE6

enumerator PECI_CMD_GET_DIB = 0xF7

Functions

int peci_config(const struct device *dev, uint32_t bitrate)
Configures the PECI interface.

Parameters
• dev – Pointer to the device structure for the driver instance.

• bitrate – the selected bitrate expressed in Kbps.

Return values
• 0 – If successful.

• Negative – errno code if failure.

int peci_enable(const struct device *dev)
Enable PECI interface.

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
• 0 – If successful.

• Negative – errno code if failure.

int peci_disable(const struct device *dev)
Disable PECI interface.

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
• 0 – If successful.

• Negative – errno code if failure.

int peci_transfer(const struct device *dev, struct peci_msg *msg)
Performs a PECI transaction.

Parameters
• dev – Pointer to the device structure for the driver instance.

• msg – Structure representing a PECI transaction.

Return values
• 0 – If successful.
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• Negative – errno code if failure.

struct peci_buf
#include <peci.h> PECI buffer structure.

Public Members

uint8_t *buf
Valid pointer on a data buffer, or NULL otherwise.

size_t len
Length of the data buffer expected to be received without considering the frame
check sequence byte.

Note

Frame check sequence byte is added into rx buffer: need to allocate an addi-
tional byte for this in rx buffer.

struct peci_msg
#include <peci.h> PECI transaction packet format.

Public Members

uint8_t addr
Client address.

enum peci_command_code cmd_code
Command code.

struct peci_buf tx_buffer
Pointer to buffer of write data.

struct peci_buf rx_buffer
Pointer to buffer of read data.

uint8_t flags
PECI msg flags.

7.6.37 PS/2

Overview

The PS/2 connector first hit the market in 1987 on IBM’s desktop PC line of the same name be-
fore becoming an industry-wide standard for mouse and keyboard connections. Starting around
2007, USB superseded PS/2 and is the modern peripheral device connection standard. For legacy
support on boards with a PS/2 connector, Zephyr provides these PS/2 driver APIs.
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Configuration Options

Related configuration options:

• CONFIG_PS2

API Reference

Related code samples

PS/2 interface
Communicate with a PS/2 mouse.

group ps2_interface
PS/2 Driver APIs.

Typedefs

typedef void (*ps2_callback_t)(const struct device *dev, uint8_t data)
PS/2 callback called when user types or click a mouse.

Param dev
Pointer to the device structure for the driver instance.

Param data
Data byte passed pack to the user.

Functions

int ps2_config(const struct device *dev, ps2_callback_t callback_isr)
Configure a ps2 instance.

Parameters
• dev – Pointer to the device structure for the driver instance.

• callback_isr – called when PS/2 devices reply to a configuration com-
mand or when a mouse/keyboard send data to the client application.

Return values
• 0 – If successful.

• Negative – errno code if failure.

int ps2_write(const struct device *dev, uint8_t value)
Write to PS/2 device.

Parameters
• dev – Pointer to the device structure for the driver instance.

• value – Data for the PS2 device.

Return values
• 0 – If successful.

• Negative – errno code if failure.
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int ps2_read(const struct device *dev, uint8_t *value)
Read slave-to-host values from PS/2 device.

Parameters
• dev – Pointer to the device structure for the driver instance.

• value – Pointer used for reading the PS/2 device.

Return values
• 0 – If successful.

• Negative – errno code if failure.

int ps2_enable_callback(const struct device *dev)
Enables callback.

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
• 0 – If successful.

• Negative – errno code if failure.

int ps2_disable_callback(const struct device *dev)
Disables callback.

Parameters
• dev – Pointer to the device structure for the driver instance.

Return values
• 0 – If successful.

• Negative – errno code if failure.

7.6.38 Pulse Width Modulation (PWM)

Overview

API Reference

Related code samples

Fade LED
Fade an LED using the PWM API.

PWM Blinky
Blink an LED using the PWM API.

PWM RGB LED
Drive an RGB LED using the PWM API.

Servomotor
Drive a servomotor using the PWM API.

group pwm_interface
PWM Interface.
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Since
1.0

Version
1.0.0

PWM capture configuration flags

PWM_CAPTURE_TYPE_PERIOD
PWM pin capture captures period.

PWM_CAPTURE_TYPE_PULSE
PWM pin capture captures pulse width.

PWM_CAPTURE_TYPE_BOTH
PWM pin capture captures both period and pulse width.

PWM_CAPTURE_MODE_SINGLE
PWM pin capture captures a single period/pulse width.

PWM_CAPTURE_MODE_CONTINUOUS
PWM pin capture captures period/pulse width continuously.

PWM period set helpers

The period cell in the PWM specifier needs to be provided in nanoseconds.

However, in some applications it is more convenient to use another scale.

PWM_NSEC(x)
Specify PWM period in nanoseconds.

PWM_USEC(x)
Specify PWM period in microseconds.

PWM_MSEC(x)
Specify PWM period in milliseconds.

PWM_SEC(x)
Specify PWM period in seconds.

PWM_HZ(x)
Specify PWM frequency in hertz.

PWM_KHZ(x)
Specify PWM frequency in kilohertz.

PWM polarity flags

The PWM_POLARITY_* flags are used with pwm_set_cycles(), pwm_set() or
pwm_configure_capture() to specify the polarity of a PWM channel.

The flags are on the lower 8bits of the pwm_flags_t
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PWM_POLARITY_NORMAL
PWM pin normal polarity (active-high pulse).

PWM_POLARITY_INVERTED
PWM pin inverted polarity (active-low pulse).

Defines

PWM_DT_SPEC_GET_BY_NAME(node_id, name)
Static initializer for a struct pwm_dt_spec.

This returns a static initializer for a struct pwm_dt_spec given a devicetree node iden-
tifier and an index.

Example devicetree fragment:

n: node {
pwms = <&pwm1 1 1000 PWM_POLARITY_NORMAL>,

<&pwm2 3 2000 PWM_POLARITY_INVERTED>;
pwm-names = "alpha", "beta";

};

Example usage:

const struct pwm_dt_spec spec =
PWM_DT_SPEC_GET_BY_NAME(DT_NODELABEL(n), alpha);

// Initializes 'spec' to:
// {
// .dev = DEVICE_DT_GET(DT_NODELABEL(pwm1)),
// .channel = 1,
// .period = 1000,
// .flags = PWM_POLARITY_NORMAL,
// }

The device (dev) must still be checked for readiness, e.g. using device_is_ready(). It is
an error to use this macro unless the node exists, has the ‘pwms’ property, and that
‘pwms’ property specifies a PWM controller, a channel, a period in nanoseconds and
optionally flags.

See also

PWM_DT_SPEC_INST_GET_BY_NAME

Parameters
• node_id – Devicetree node identifier.

• name – Lowercase-and-underscores name of a pwms element as defined
by the node’s pwm-names property.

Returns
Static initializer for a struct pwm_dt_spec for the property.
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PWM_DT_SPEC_INST_GET_BY_NAME(inst, name)
Static initializer for a struct pwm_dt_spec from a DT_DRV_COMPAT instance.

See also

PWM_DT_SPEC_GET_BY_NAME

Parameters
• inst – DT_DRV_COMPAT instance number

• name – Lowercase-and-underscores name of a pwms element as defined
by the node’s pwm-names property.

Returns
Static initializer for a struct pwm_dt_spec for the property.

PWM_DT_SPEC_GET_BY_NAME_OR(node_id, name, default_value)
Like PWM_DT_SPEC_GET_BY_NAME(), with a fallback to a default value.

If the devicetree node identifier ‘node_id’ refers to a node with a property ‘pwms’, this
expands to PWM_DT_SPEC_GET_BY_NAME(node_id, name). The default_valueparameter
is not expanded in this case. Otherwise, this expands to default_value.

See also

PWM_DT_SPEC_INST_GET_BY_NAME_OR

Parameters
• node_id – Devicetree node identifier.

• name – Lowercase-and-underscores name of a pwms element as defined
by the node’s pwm-names property

• default_value – Fallback value to expand to.

Returns
Static initializer for a struct pwm_dt_spec for the property, or de-
fault_value if the node or property do not exist.

PWM_DT_SPEC_INST_GET_BY_NAME_OR(inst, name, default_value)
Like PWM_DT_SPEC_INST_GET_BY_NAME(), with a fallback to a default value.

See also

PWM_DT_SPEC_GET_BY_NAME_OR

Parameters
• inst – DT_DRV_COMPAT instance number

• name – Lowercase-and-underscores name of a pwms element as defined
by the node’s pwm-names property.

3538 Chapter 7. Hardware Support



Zephyr Project Documentation, Release 3.7.99

• default_value – Fallback value to expand to.

Returns
Static initializer for a struct pwm_dt_spec for the property, or de-
fault_value if the node or property do not exist.

PWM_DT_SPEC_GET_BY_IDX(node_id, idx)
Static initializer for a struct pwm_dt_spec.

This returns a static initializer for a struct pwm_dt_spec given a devicetree node iden-
tifier and an index.

Example devicetree fragment:

n: node {
pwms = <&pwm1 1 1000 PWM_POLARITY_NORMAL>,

<&pwm2 3 2000 PWM_POLARITY_INVERTED>;
};

Example usage:

const struct pwm_dt_spec spec =
PWM_DT_SPEC_GET_BY_IDX(DT_NODELABEL(n), 1);

// Initializes 'spec' to:
// {
// .dev = DEVICE_DT_GET(DT_NODELABEL(pwm2)),
// .channel = 3,
// .period = 2000,
// .flags = PWM_POLARITY_INVERTED,
// }

The device (dev) must still be checked for readiness, e.g. using device_is_ready(). It is
an error to use this macro unless the node exists, has the ‘pwms’ property, and that
‘pwms’ property specifies a PWM controller, a channel, a period in nanoseconds and
optionally flags.

See also

PWM_DT_SPEC_INST_GET_BY_IDX

Parameters
• node_id – Devicetree node identifier.

• idx – Logical index into ‘pwms’ property.

Returns
Static initializer for a struct pwm_dt_spec for the property.

PWM_DT_SPEC_INST_GET_BY_IDX(inst, idx)
Static initializer for a struct pwm_dt_spec from a DT_DRV_COMPAT instance.

See also

PWM_DT_SPEC_GET_BY_IDX
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Parameters
• inst – DT_DRV_COMPAT instance number

• idx – Logical index into ‘pwms’ property.

Returns
Static initializer for a struct pwm_dt_spec for the property.

PWM_DT_SPEC_GET_BY_IDX_OR(node_id, idx, default_value)
Like PWM_DT_SPEC_GET_BY_IDX(), with a fallback to a default value.

If the devicetree node identifier ‘node_id’ refers to a node with a property ‘pwms’, this
expands to PWM_DT_SPEC_GET_BY_IDX(node_id, idx). The default_value parameter
is not expanded in this case. Otherwise, this expands to default_value.

See also

PWM_DT_SPEC_INST_GET_BY_IDX_OR

Parameters
• node_id – Devicetree node identifier.

• idx – Logical index into ‘pwms’ property.

• default_value – Fallback value to expand to.

Returns
Static initializer for a struct pwm_dt_spec for the property, or de-
fault_value if the node or property do not exist.

PWM_DT_SPEC_INST_GET_BY_IDX_OR(inst, idx, default_value)
Like PWM_DT_SPEC_INST_GET_BY_IDX(), with a fallback to a default value.

See also

PWM_DT_SPEC_GET_BY_IDX_OR

Parameters
• inst – DT_DRV_COMPAT instance number

• idx – Logical index into ‘pwms’ property.

• default_value – Fallback value to expand to.

Returns
Static initializer for a struct pwm_dt_spec for the property, or de-
fault_value if the node or property do not exist.

PWM_DT_SPEC_GET(node_id)
Equivalent to PWM_DT_SPEC_GET_BY_IDX(node_id, 0).
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See also

PWM_DT_SPEC_GET_BY_IDX

See also

PWM_DT_SPEC_INST_GET

Parameters
• node_id – Devicetree node identifier.

Returns
Static initializer for a struct pwm_dt_spec for the property.

PWM_DT_SPEC_INST_GET(inst)
Equivalent to PWM_DT_SPEC_INST_GET_BY_IDX(inst, 0).

See also

PWM_DT_SPEC_INST_GET_BY_IDX

See also

PWM_DT_SPEC_GET

Parameters
• inst – DT_DRV_COMPAT instance number

Returns
Static initializer for a struct pwm_dt_spec for the property.

PWM_DT_SPEC_GET_OR(node_id, default_value)
Equivalent to PWM_DT_SPEC_GET_BY_IDX_OR(node_id, 0, default_value).

See also

PWM_DT_SPEC_GET_BY_IDX_OR

See also

PWM_DT_SPEC_INST_GET_OR

Parameters
• node_id – Devicetree node identifier.

• default_value – Fallback value to expand to.

7.6. Peripherals 3541



Zephyr Project Documentation, Release 3.7.99

Returns
Static initializer for a struct pwm_dt_spec for the property.

PWM_DT_SPEC_INST_GET_OR(inst, default_value)
Equivalent to PWM_DT_SPEC_INST_GET_BY_IDX_OR(inst, 0, default_value).

See also

PWM_DT_SPEC_INST_GET_BY_IDX_OR

See also

PWM_DT_SPEC_GET_OR

Parameters
• inst – DT_DRV_COMPAT instance number

• default_value – Fallback value to expand to.

Returns
Static initializer for a struct pwm_dt_spec for the property.

Typedefs

typedef uint16_t pwm_flags_t
Provides a type to hold PWM configuration flags.

The lower 8 bits are used for standard flags. The upper 8 bits are reserved for SoC
specific flags.

See also

PWM_CAPTURE_FLAGS.

typedef void (*pwm_capture_callback_handler_t)(const struct device *dev, uint32_t
channel, uint32_t period_cycles, uint32_t pulse_cycles, int status, void *user_data)

PWM capture callback handler function signature.

Note

The callback handler will be called in interrupt context.

Note

CONFIG_PWM_CAPTURE must be selected to enable PWM capture support.
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Param dev
[in] PWM device instance.

Param channel
PWM channel.

Param period_cycles
Captured PWM period width (in clock cycles). HW specific.

Param pulse_cycles
Captured PWM pulse width (in clock cycles). HW specific.

Param status
Status for the PWM capture (0 if no error, negative errno otherwise. See
pwm_capture_cycles() return value descriptions for details).

Param user_data
User data passed to pwm_configure_capture()

Functions

int pwm_set_cycles(const struct device *dev, uint32_t channel, uint32_t period, uint32_t
pulse, pwm_flags_t flags)

Set the period and pulse width for a single PWM output.

The PWM period and pulse width will synchronously be set to the new values without
glitches in the PWM signal, but the call will not block for the change to take effect.

Passing 0 as pulse will cause the pin to be driven to a constant inactive level. Passing
a non-zero pulse equal to period will cause the pin to be driven to a constant active
level.

Note

Not all PWM controllers support synchronous, glitch-free updates of the PWM pe-
riod and pulse width. Depending on the hardware, changing the PWM period
and/or pulse width may cause a glitch in the generated PWM signal.

Note

Some multi-channel PWM controllers share the PWM period across all channels.
Depending on the hardware, changing the PWM period for one channel may affect
the PWM period for the other channels of the same PWM controller.

Parameters
• dev – [in] PWM device instance.

• channel – PWM channel.

• period – Period (in clock cycles) set to the PWM. HW specific.

• pulse – Pulse width (in clock cycles) set to the PWM. HW specific.

• flags – Flags for pin configuration.

Return values
• 0 – If successful.
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• -EINVAL – If pulse > period.

• -errno – Negative errno code on failure.

int pwm_get_cycles_per_sec(const struct device *dev, uint32_t channel, uint64_t *cycles)
Get the clock rate (cycles per second) for a single PWM output.

Parameters
• dev – [in] PWM device instance.

• channel – PWM channel.

• cycles – [out] Pointer to the memory to store clock rate (cycles per sec).
HW specific.

Return values
• 0 – If successful.

• -errno – Negative errno code on failure.

static inline int pwm_set(const struct device *dev, uint32_t channel, uint32_t period,
uint32_t pulse, pwm_flags_t flags)

Set the period and pulse width in nanoseconds for a single PWM output.

Note

Utility macros such as PWM_MSEC() can be used to convert from other scales or
units to nanoseconds, the units used by this function.

Parameters
• dev – [in] PWM device instance.

• channel – PWM channel.

• period – Period (in nanoseconds) set to the PWM.

• pulse – Pulse width (in nanoseconds) set to the PWM.

• flags – Flags for pin configuration (polarity).

Return values
• 0 – If successful.

• -ENOTSUP – If requested period or pulse cycles are not supported.

• -errno – Other negative errno code on failure.

static inline int pwm_set_dt(const struct pwm_dt_spec *spec, uint32_t period, uint32_t
pulse)

Set the period and pulse width in nanoseconds from a struct pwm_dt_spec (with custom
period).

This is equivalent to:

pwm_set(spec->dev, spec->channel, period, pulse, spec->flags)

The period specified in spec is ignored. This API call can be used when the period
specified in Devicetree needs to be changed at runtime.
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See also

pwm_set_pulse_dt()

Parameters
• spec – [in] PWM specification from devicetree.

• period – Period (in nanoseconds) set to the PWM.

• pulse – Pulse width (in nanoseconds) set to the PWM.

Returns
A value from pwm_set().

static inline int pwm_set_pulse_dt(const struct pwm_dt_spec *spec, uint32_t pulse)
Set the period and pulse width in nanoseconds from a struct pwm_dt_spec.

This is equivalent to:

pwm_set(spec->dev, spec->channel, spec->period, pulse, spec->flags)

See also

pwm_set_pulse_dt()

Parameters
• spec – [in] PWM specification from devicetree.

• pulse – Pulse width (in nanoseconds) set to the PWM.

Returns
A value from pwm_set().

static inline int pwm_cycles_to_usec(const struct device *dev, uint32_t channel, uint32_t
cycles, uint64_t *usec)

Convert from PWM cycles to microseconds.

Parameters
• dev – [in] PWM device instance.

• channel – PWM channel.

• cycles – Cycles to be converted.

• usec – [out] Pointer to the memory to store calculated usec.

Return values
• 0 – If successful.

• -ERANGE – If result is too large.

• -errno – Other negative errno code on failure.

static inline int pwm_cycles_to_nsec(const struct device *dev, uint32_t channel, uint32_t
cycles, uint64_t *nsec)

Convert from PWM cycles to nanoseconds.

Parameters
• dev – [in] PWM device instance.
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• channel – PWM channel.

• cycles – Cycles to be converted.

• nsec – [out] Pointer to the memory to store the calculated nsec.

Return values
• 0 – If successful.

• -ERANGE – If result is too large.

• -errno – Other negative errno code on failure.

static inline int pwm_configure_capture(const struct device *dev, uint32_t channel,
pwm_flags_t flags,
pwm_capture_callback_handler_t cb, void
*user_data)

Configure PWM period/pulse width capture for a single PWM input.

After configuring PWM capture using this function, the capture can be en-
abled/disabled using pwm_enable_capture() and pwm_disable_capture().

Note

This API function cannot be invoked from user space due to the use of a function
callback. In user space, one of the simpler API functions (pwm_capture_cycles(),
pwm_capture_usec(), or pwm_capture_nsec()) can be used instead.

Note

CONFIG_PWM_CAPTURE must be selected for this function to be available.

Parameters
• dev – [in] PWM device instance.

• channel – PWM channel.

• flags – PWM capture flags

• cb – [in] Application callback handler function to be called upon capture

• user_data – [in] User data to pass to the application callback handler
function

Return values
• -EINVAL – if invalid function parameters were given

• -ENOSYS – if PWM capture is not supported or the given flags are not sup-
ported

• -EIO – if IO error occurred while configuring

• -EBUSY – if PWM capture is already in progress

int pwm_enable_capture(const struct device *dev, uint32_t channel)
Enable PWM period/pulse width capture for a single PWM input.

The PWM pin must be configured using pwm_configure_capture() prior to calling this
function.
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Note

CONFIG_PWM_CAPTURE must be selected for this function to be available.

Parameters
• dev – [in] PWM device instance.

• channel – PWM channel.

Return values
• 0 – If successful.

• -EINVAL – if invalid function parameters were given

• -ENOSYS – if PWM capture is not supported

• -EIO – if IO error occurred while enabling PWM capture

• -EBUSY – if PWM capture is already in progress

int pwm_disable_capture(const struct device *dev, uint32_t channel)
Disable PWM period/pulse width capture for a single PWM input.

Note

CONFIG_PWM_CAPTURE must be selected for this function to be available.

Parameters
• dev – [in] PWM device instance.

• channel – PWM channel.

Return values
• 0 – If successful.

• -EINVAL – if invalid function parameters were given

• -ENOSYS – if PWM capture is not supported

• -EIO – if IO error occurred while disabling PWM capture

int pwm_capture_cycles(const struct device *dev, uint32_t channel, pwm_flags_t flags,
uint32_t *period, uint32_t *pulse, k_timeout_t timeout)

Capture a single PWM period/pulse width in clock cycles for a single PWM input.

This API function wraps calls to pwm_configure_capture(), pwm_enable_capture(), and
pwm_disable_capture() and passes the capture result to the caller. The function is
blocking until either the PWM capture is completed or a timeout occurs.

Note

CONFIG_PWM_CAPTURE must be selected for this function to be available.

Parameters
• dev – [in] PWM device instance.

• channel – PWM channel.

• flags – PWM capture flags.
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• period – [out] Pointer to the memory to store the captured PWM period
width (in clock cycles). HW specific.

• pulse – [out] Pointer to the memory to store the captured PWM pulse
width (in clock cycles). HW specific.

• timeout – Waiting period for the capture to complete.

Return values
• 0 – If successful.

• -EBUSY – PWM capture already in progress.

• -EAGAIN – Waiting period timed out.

• -EIO – IO error while capturing.

• -ERANGE – If result is too large.

static inline int pwm_capture_usec(const struct device *dev, uint32_t channel, pwm_flags_t
flags, uint64_t *period, uint64_t *pulse, k_timeout_t
timeout)

Capture a single PWM period/pulse width in microseconds for a single PWM input.

This API function wraps calls to pwm_capture_cycles() and pwm_cycles_to_usec() and
passes the capture result to the caller. The function is blocking until either the PWM
capture is completed or a timeout occurs.

Note

CONFIG_PWM_CAPTURE must be selected for this function to be available.

Parameters
• dev – [in] PWM device instance.

• channel – PWM channel.

• flags – PWM capture flags.

• period – [out] Pointer to the memory to store the captured PWM period
width (in usec).

• pulse – [out] Pointer to the memory to store the captured PWM pulse
width (in usec).

• timeout – Waiting period for the capture to complete.

Return values
• 0 – If successful.

• -EBUSY – PWM capture already in progress.

• -EAGAIN – Waiting period timed out.

• -EIO – IO error while capturing.

• -ERANGE – If result is too large.

• -errno – Other negative errno code on failure.

static inline int pwm_capture_nsec(const struct device *dev, uint32_t channel, pwm_flags_t
flags, uint64_t *period, uint64_t *pulse, k_timeout_t
timeout)
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Capture a single PWM period/pulse width in nanoseconds for a single PWM input.

This API function wraps calls to pwm_capture_cycles() and pwm_cycles_to_nsec() and
passes the capture result to the caller. The function is blocking until either the PWM
capture is completed or a timeout occurs.

Note

CONFIG_PWM_CAPTURE must be selected for this function to be available.

Parameters
• dev – [in] PWM device instance.

• channel – PWM channel.

• flags – PWM capture flags.

• period – [out] Pointer to the memory to store the captured PWM period
width (in nsec).

• pulse – [out] Pointer to the memory to store the captured PWM pulse
width (in nsec).

• timeout – Waiting period for the capture to complete.

Return values
• 0 – If successful.

• -EBUSY – PWM capture already in progress.

• -EAGAIN – Waiting period timed out.

• -EIO – IO error while capturing.

• -ERANGE – If result is too large.

• -errno – Other negative errno code on failure.

static inline bool pwm_is_ready_dt(const struct pwm_dt_spec *spec)
Validate that the PWM device is ready.

Parameters
• spec – PWM specification from devicetree

Return values
• true – If the PWM device is ready for use

• false – If the PWM device is not ready for use

struct pwm_dt_spec
#include <pwm.h> Container for PWM information specified in devicetree.

This type contains a pointer to a PWM device, channel number (controlled by the PWM
device), the PWM signal period in nanoseconds and the flags applicable to the channel.
Note that not all PWM drivers support flags. In such case, flags will be set to 0.

See also

PWM_DT_SPEC_GET_BY_NAME
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See also

PWM_DT_SPEC_GET_BY_NAME_OR

See also

PWM_DT_SPEC_GET_BY_IDX

See also

PWM_DT_SPEC_GET_BY_IDX_OR

See also

PWM_DT_SPEC_GET

See also

PWM_DT_SPEC_GET_OR

Public Members

const struct device *dev
PWM device instance.

uint32_t channel
Channel number.

uint32_t period
Period in nanoseconds.

pwm_flags_t flags
Flags.

7.6.39 Real-Time Clock (RTC)

Overview

Table 1: Glossary
Word Definition
Real-time clock Low power device tracking time using broken-down time
Real-time counter Low power counter which can be used to track time
RTC Acronym for real-time clock
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An RTC is a low power device which tracks time using broken-down time. It should not be con-
fused with low-power counters which sometimes share the same name, acronym, or both.

RTCs are usually optimized for low energy consumption and are usually kept running even when
the system is in a low power state.

RTCs usually contain one or more alarms which can be configured to trigger at a given time.
These alarms are commonly used to wake up the system from a low power state.

History of RTCs in Zephyr

RTCs have been supported before this API was created, using the Counter API. The unix times-
tamp was used to convert between broken-down time and the unix timestamp within the RTC
drivers, which internally used the broken-down time representation.

The disadvantages of this approach were that hardware counters could not be set to a specific
count, requiring all RTCs to use device specific APIs to set the time, converting from unix time to
broken-down time, unnecessarily in some cases, and some common features missing, like input
clock calibration and the update callback.

Configuration Options

Related configuration options:

• CONFIG_RTC
• CONFIG_RTC_ALARM
• CONFIG_RTC_UPDATE
• CONFIG_RTC_CALIBRATION

API Reference

group rtc_interface
RTC Interface.

Since
3.4

Version
0.1.0

RTC Interface Alarm

int rtc_alarm_get_supported_fields(const struct device *dev, uint16_t id, uint16_t
*mask)

API for getting the supported fields of the RTC alarm time.

Note

Bits in the mask param are defined here RTC_ALARM_TIME_MASK.

Parameters
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• dev – Device instance

• id – Id of the alarm

• mask – Mask of fields in the alarm time which are supported

Returns
0 if successful

Returns
-EINVAL if id is out of range or time is invalid

Returns
-ENOTSUP if API is not supported by hardware

Returns
-errno code if failure

int rtc_alarm_set_time(const struct device *dev, uint16_t id, uint16_t mask, const struct
rtc_time *timeptr)

API for setting RTC alarm time.

To enable an RTC alarm, one or more fields of the RTC alarm time must be enabled. The
mask designates which fields of the RTC alarm time to enable. If the mask parameter
is 0, the alarm will be disabled. The RTC alarm will trigger when all enabled fields of
the alarm time match the RTC time.

Note

The timeptr param may be NULL if the mask param is 0

Note

Only the enabled fields in the timeptr param need to be configured

Note

Bits in the mask param are defined here RTC_ALARM_TIME_MASK

Parameters
• dev – Device instance

• id – Id of the alarm

• mask – Mask of fields in the alarm time to enable

• timeptr – The alarm time to set

Returns
0 if successful

Returns
-EINVAL if id is out of range or time is invalid

Returns
-ENOTSUP if API is not supported by hardware

Returns
-errno code if failure
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int rtc_alarm_get_time(const struct device *dev, uint16_t id, uint16_t *mask, struct
rtc_time *timeptr)

API for getting RTC alarm time.

Note

Bits in the mask param are defined here RTC_ALARM_TIME_MASK

Parameters
• dev – Device instance

• id – Id of the alarm

• mask – Destination for mask of fields which are enabled in the alarm time

• timeptr – Destination for the alarm time

Returns
0 if successful

Returns
-EINVAL if id is out of range

Returns
-ENOTSUP if API is not supported by hardware

Returns
-errno code if failure

int rtc_alarm_is_pending(const struct device *dev, uint16_t id)
API for testing if RTC alarm is pending.

Test whether or not the alarm with id is pending. If the alarm is pending, the pending
status is cleared.

Parameters
• dev – Device instance

• id – Id of the alarm to test

Returns
1 if alarm was pending

Returns
0 if alarm was not pending

Returns
-EINVAL if id is out of range

Returns
-ENOTSUP if API is not supported by hardware

Returns
-errno code if failure

int rtc_alarm_set_callback(const struct device *dev, uint16_t id, rtc_alarm_callback
callback, void *user_data)

API for setting alarm callback.

Setting the alarm callback for an alarm, will enable the alarm callback. When the
callback for an alarm is enabled, the alarm triggered event will invoke the callback,
after which the alarm pending status will be cleared automatically. The alarm will
remain enabled until manually disabled using rtc_alarm_set_time().
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To disable the alarm callback for an alarm, the callback and user_data parameters
must be set to NULL. When the alarm callback for an alarm is disabled, the alarm
triggered event will set the alarm status to “pending”. To check if the alarm status is
“pending”, use rtc_alarm_is_pending().

Parameters
• dev – Device instance

• id – Id of the alarm for which the callback shall be set

• callback – Callback called when alarm occurs

• user_data – Optional user data passed to callback

Returns
0 if successful

Returns
-EINVAL if id is out of range

Returns
-ENOTSUP if API is not supported by hardware

Returns
-errno code if failure

RTC Interface Update

int rtc_update_set_callback(const struct device *dev, rtc_update_callback callback, void
*user_data)

API for setting update callback.

Setting the update callback will enable the update callback. The update callback will be
invoked every time the RTC clock is updated by 1 second. It can be used to synchronize
the RTC clock with other clock sources.

To disable the update callback for the RTC clock, the callback and user_data parame-
ters must be set to NULL.

Parameters
• dev – Device instance

• callback – Callback called when update occurs

• user_data – Optional user data passed to callback

Returns
0 if successful

Returns
-ENOTSUP if API is not supported by hardware

Returns
-errno code if failure

RTC Interface Calibration

int rtc_set_calibration(const struct device *dev, int32_t calibration)
API for setting RTC calibration.

Calibration is applied to the RTC clock input. A positive calibration value will increase
the frequency of the RTC clock, a negative value will decrease the frequency of the RTC
clock.
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See also

rtc_calibration_from_frequency()

Parameters
• dev – Device instance

• calibration – Calibration to set in parts per billion

Returns
0 if successful

Returns
-EINVAL if calibration is out of range

Returns
-ENOTSUP if API is not supported by hardware

Returns
-errno code if failure

int rtc_get_calibration(const struct device *dev, int32_t *calibration)
API for getting RTC calibration.

Parameters
• dev – Device instance

• calibration – Destination for calibration in parts per billion

Returns
0 if successful

Returns
-ENOTSUP if API is not supported by hardware

Returns
-errno code if failure

RTC Interface Helpers

static inline struct tm *rtc_time_to_tm(struct rtc_time *timeptr)
Convenience function for safely casting a rtc_time pointer to a tm pointer.

static inline int32_t rtc_calibration_from_frequency(uint32_t frequency)
Determine required calibration to 1 Hertz from frequency.

Parameters
• frequency – Frequency of the RTC in nano Hertz

Returns
The required calibration in parts per billion

RTC Alarm Time Mask

Mask for alarm time fields to enable when setting alarm time
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RTC_ALARM_TIME_MASK_SECOND

RTC_ALARM_TIME_MASK_MINUTE

RTC_ALARM_TIME_MASK_HOUR

RTC_ALARM_TIME_MASK_MONTHDAY

RTC_ALARM_TIME_MASK_MONTH

RTC_ALARM_TIME_MASK_YEAR

RTC_ALARM_TIME_MASK_WEEKDAY

RTC_ALARM_TIME_MASK_YEARDAY

RTC_ALARM_TIME_MASK_NSEC

Typedefs

typedef void (*rtc_update_callback)(const struct device *dev, void *user_data)
RTC update event callback.

Param dev
Device instance invoking the handler

Param user_data
Optional user data provided when update irq callback is set

typedef void (*rtc_alarm_callback)(const struct device *dev, uint16_t id, void *user_data)
RTC alarm triggered callback.

Param dev
Device instance invoking the handler

Param id
Alarm id

Param user_data
Optional user data passed with the alarm configuration

Functions

int rtc_set_time(const struct device *dev, const struct rtc_time *timeptr)
API for setting RTC time.

Parameters
• dev – Device instance

• timeptr – The time to set

Returns
0 if successful
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Returns
-EINVAL if RTC time is invalid or exceeds hardware capabilities

Returns
-errno code if failure

int rtc_get_time(const struct device *dev, struct rtc_time *timeptr)
API for getting RTC time.

Parameters
• dev – Device instance

• timeptr – Destination for the time

Returns
0 if successful

Returns
-ENODATA if RTC time has not been set

Returns
-errno code if failure

struct rtc_time
#include <rtc.h> Structure for storing date and time values with sub-second precision.

The structure is 1-1 mapped to the struct tm for the members tm_sec to tm_isdst mak-
ing it compatible with the standard time library.

Note

Use rtc_time_to_tm() to safely cast from a rtc_time pointer to a tm pointer.

Public Members

int tm_sec
Seconds [0, 59].

int tm_min
Minutes [0, 59].

int tm_hour
Hours [0, 23].

int tm_mday
Day of the month [1, 31].

int tm_mon
Month [0, 11].

int tm_year
Year - 1900.
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int tm_wday
Day of the week [0, 6] (Sunday = 0) (Unknown = -1)

int tm_yday
Day of the year [0, 365] (Unknown = -1)

int tm_isdst
Daylight saving time flag [-1] (Unknown = -1)

int tm_nsec
Nanoseconds [0, 999999999] (Unknown = 0)

RTC device driver test suite

The test suite validates the behavior of the RTC device driver. It is designed to be portable be-
tween boards. It uses the device tree alias rtc to designate the RTC device to test.

This test suite tests the following:

• Setting and getting the time.

• RTC Time incrementing correctly.

• Alarms if supported by hardware, with and without callback enabled

• Calibration if supported by hardware.

The calibration test tests a range of values which are printed to the console to be manually com-
pared. The user must review the set and gotten values to ensure they are valid.

By default, only the mandatory setting and getting of time is enabled for testing. To test the
optional alarms, update event callback and clock calibration, these must be enabled by selecting
CONFIG_RTC_ALARM, CONFIG_RTC_UPDATE and CONFIG_RTC_CALIBRATION.

The following examples build the test suite for the native_sim board. To build the test suite for
a different board, replace the native_sim board with your board.

To build the test application with the default configuration, testing only the mandatory features,
the following command can be used for reference:

# From the root of the zephyr repository
west build -b native_sim tests/drivers/rtc/rtc_api

To build the test with additional RTC features enabled, use menuconfig to enable the additional
features by updating the configuration. The following command can be used for reference:

# From the root of the zephyr repository
west build -b native_sim tests/drivers/rtc/rtc_api
west build -t menuconfig

Then build the test application using the following command:

# From the root of the zephyr repository
west build -b native_sim tests/drivers/rtc/rtc_api

To run the test suite, flash and run the application on your board, the output will be printed to
the console.
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Note

The tests take up to 30 seconds each if they are testing real hardware.

RTC emulated device

The emulated RTC device fully implements the RTC API, and will behave like a real RTC device,
with the following limitations:

• RTC time is not persistent across application initialization.

• RTC alarms are not persistent across application initialization.

• RTC time will drift over time.

Every time an application is initialized, the RTC’s time and alarms are reset. Reading the time
using rtc_get_time() will return -ENODATA, until the time is set using rtc_set_time(). The RTC
will then behave as a real RTC, until the application is reset.

The emulated RTC device driver is built for the compatible zephyr,rtc-emul and will be included
if CONFIG_RTC is selected.

7.6.40 Regulators

This subsystem provides control of voltage and current regulators. A common example is a GPIO
that controls a transistor that supplies current to a device that is not always needed. Another
example is a PMIC, typically a much more complex device.

The *-supply devicetree properties are used to identify the regulator(s) that a devicetree node
directly depends on. Within the driver for the node the regulator API is used to issue requests
for power when the device is to be active, and release the power request when the device shuts
down.

The simplest case where a regulator is needed is one where there is only one client. For those
situations the cost of using the regulator device infrastructure is not justified, and *-gpios de-
vicetree properties should be used. There is no device interface to these regulators as they are
entirely controlled within the driver for the corresponding node, e.g. a sensor.

API Reference

group regulator_interface
Regulator Interface.

Since
2.4

Version
0.1.0

Regulator error flags.
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REGULATOR_ERROR_OVER_VOLTAGE
Voltage is too high.

REGULATOR_ERROR_OVER_CURRENT
Current is too high.

REGULATOR_ERROR_OVER_TEMP
Temperature is too high.

Typedefs

typedef uint8_t regulator_dvs_state_t
Opaque type to store regulator DVS states.

typedef uint8_t regulator_mode_t
Opaque type to store regulator modes.

typedef uint8_t regulator_error_flags_t
Opaque bit map for regulator error flags (see REGULATOR_ERRORS)

Functions

int regulator_enable(const struct device *dev)
Enable a regulator.

Reference-counted request that a regulator be turned on. A regulator is considered
“on” when it has reached a stable/usable state. Regulators that are always on, or con-
figured in devicetree with regulator-always-on will always stay enabled, and so this
function will always succeed.

Parameters
• dev – Regulator device instance

Return values
• 0 – If regulator has been successfully enabled.

• -errno – Negative errno in case of failure.

• -ENOTSUP – If regulator enablement can not be controlled.

bool regulator_is_enabled(const struct device *dev)
Check if a regulator is enabled.

Parameters
• dev – Regulator device instance.

Return values
• true – If regulator is enabled.

• false – If regulator is disabled.
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int regulator_disable(const struct device *dev)
Disable a regulator.

Release a regulator after a previous regulator_enable() completed successfully. Regu-
lators that are always on, or configured in devicetree with regulator-always-on will
always stay enabled, and so this function will always succeed.

This must be invoked at most once for each successful regulator_enable().

Parameters
• dev – Regulator device instance.

Return values
• 0 – If regulator has been successfully disabled.

• -errno – Negative errno in case of failure.

• -ENOTSUP – If regulator disablement can not be controlled.

static inline unsigned int regulator_count_voltages(const struct device *dev)
Obtain the number of supported voltage levels.

Each voltage level supported by a regulator gets an index, starting from zero. The total
number of supported voltage levels can be used together with regulator_list_voltage()
to list all supported voltage levels.

Parameters
• dev – Regulator device instance.

Returns
Number of supported voltages.

static inline int regulator_list_voltage(const struct device *dev, unsigned int idx,
int32_t *volt_uv)

Obtain the value of a voltage given an index.

Each voltage level supported by a regulator gets an index, starting from zero. Together
with regulator_count_voltages(), this function can be used to iterate over all supported
voltages.

Parameters
• dev – Regulator device instance.

• idx – Voltage index.

• volt_uv – [out] Where voltage for the given index will be stored, in mi-
crovolts.

Return values
• 0 – If index corresponds to a supported voltage.

• -EINVAL – If index does not correspond to a supported voltage.

bool regulator_is_supported_voltage(const struct device *dev, int32_t min_uv, int32_t
max_uv)

Check if a voltage within a window is supported.

Parameters
• dev – Regulator device instance.

• min_uv – Minimum voltage in microvolts.

• max_uv – maximum voltage in microvolts.

Return values
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• true – If voltage is supported.

• false – If voltage is not supported.

int regulator_set_voltage(const struct device *dev, int32_t min_uv, int32_t max_uv)
Set the output voltage.

The output voltage will be configured to the closest supported output voltage. regu-
lator_get_voltage() can be used to obtain the actual configured voltage. The voltage
will be applied to the active or selected mode. Output voltage may be limited using
regulator-min-microvolt and/or regulator-max-microvolt in devicetree.

Parameters
• dev – Regulator device instance.

• min_uv – Minimum acceptable voltage in microvolts.

• max_uv – Maximum acceptable voltage in microvolts.

Return values
• 0 – If successful.

• -EINVAL – If the given voltage window is not valid.

• -ENOSYS – If function is not implemented.

• -errno – In case of any other error.

static inline int regulator_get_voltage(const struct device *dev, int32_t *volt_uv)
Obtain output voltage.

Parameters
• dev – Regulator device instance.

• volt_uv – [out] Where configured output voltage will be stored.

Return values
• 0 – If successful

• -ENOSYS – If function is not implemented.

• -errno – In case of any other error.

static inline unsigned int regulator_count_current_limits(const struct device *dev)
Obtain the number of supported current limit levels.

Each current limit level supported by a regulator gets an index, starting from zero.
The total number of supported current limit levels can be used together with regula-
tor_list_current_limit() to list all supported current limit levels.

Parameters
• dev – Regulator device instance.

Returns
Number of supported current limits.

static inline int regulator_list_current_limit(const struct device *dev, unsigned int idx,
int32_t *current_ua)

Obtain the value of a current limit given an index.

Each current limit level supported by a regulator gets an index, starting from zero. To-
gether with regulator_count_current_limits(), this function can be used to iterate over
all supported current limits.

Parameters
• dev – Regulator device instance.
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• idx – Current index.

• current_ua – [out] Where current for the given index will be stored, in
microamps.

Return values
• 0 – If index corresponds to a supported current limit.

• -EINVAL – If index does not correspond to a supported current limit.

int regulator_set_current_limit(const struct device *dev, int32_t min_ua, int32_t
max_ua)

Set output current limit.

The output current limit will be configured to the closest supported output cur-
rent limit. regulator_get_current_limit() can be used to obtain the actual config-
ured current limit. Current may be limited using current-min-microamp and/or
current-max-microamp in Devicetree.

Parameters
• dev – Regulator device instance.

• min_ua – Minimum acceptable current limit in microamps.

• max_ua – Maximum acceptable current limit in microamps.

Return values
• 0 – If successful.

• -EINVAL – If the given current limit window is not valid.

• -ENOSYS – If function is not implemented.

• -errno – In case of any other error.

static inline int regulator_get_current_limit(const struct device *dev, int32_t *curr_ua)
Get output current limit.

Parameters
• dev – Regulator device instance.

• curr_ua – [out] Where output current limit will be stored.

Return values
• 0 – If successful.

• -ENOSYS – If function is not implemented.

• -errno – In case of any other error.

int regulator_set_mode(const struct device *dev, regulator_mode_t mode)
Set mode.

Regulators can support multiple modes in order to permit different voltage configura-
tion or better power savings. This API will apply a mode for the regulator. Allowed
modes may be limited using regulator-allowed-modes devicetree property.

Parameters
• dev – Regulator device instance.

• mode – Mode to select for this regulator.

Return values
• 0 – If successful.

• -ENOTSUP – If mode is not supported.
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• -ENOSYS – If function is not implemented.

• -errno – In case of any other error.

static inline int regulator_get_mode(const struct device *dev, regulator_mode_t *mode)
Get mode.

Parameters
• dev – Regulator device instance.

• mode – [out] Where mode will be stored.

Return values
• 0 – If successful.

• -ENOSYS – If function is not implemented.

• -errno – In case of any other error.

static inline int regulator_set_active_discharge(const struct device *dev, bool
active_discharge)

Set active discharge setting.

Parameters
• dev – Regulator device instance.

• active_discharge – Active discharge enable or disable.

Return values
• 0 – If successful.

• -ENOSYS – If function is not implemented.

• -errno – In case of any other error.

static inline int regulator_get_active_discharge(const struct device *dev, bool
*active_discharge)

Get active discharge setting.

Parameters
• dev – Regulator device instance.

• active_discharge – [out] Where active discharge will be stored.

Return values
• 0 – If successful.

• -ENOSYS – If function is not implemented.

• -errno – In case of any other error.

static inline int regulator_get_error_flags(const struct device *dev,
regulator_error_flags_t *flags)

Get active error flags.

Parameters
• dev – Regulator device instance.

• flags – [out] Where error flags will be stored.

Return values
• 0 – If successful.

• -ENOSYS – If function is not implemented.
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• -errno – In case of any other error.

7.6.41 Reset Controller

Overview

Reset controllers are units that control the reset signals to multiple peripherals. The reset con-
troller API allows peripheral drivers to request control over their reset input signals, including
the ability to assert, deassert and toggle those signals. Also, the reset status of the reset input
signal can be checked.

Mainly, the line_assert and line_deassert API functions are optional because in most cases we
want to toggle the reset signals.

Configuration Options

Related configuration options:

• CONFIG_RESET

API Reference

group reset_controller_interface
Reset Controller Interface.

Since
3.1

Version
0.2.0

Defines

RESET_DT_SPEC_GET_BY_IDX(node_id, idx)
Static initializer for a reset_dt_spec.

This returns a static initializer for a reset_dt_spec structure given a devicetree node
identifier, a property specifying a Reset Controller and an index.

Example devicetree fragment:

n: node {
resets = <&reset 10>;

}

Example usage:

const struct reset_dt_spec spec = RESET_DT_SPEC_GET_BY_IDX(DT_NODELABEL(n), 0);
// Initializes 'spec' to:
// {
// .dev = DEVICE_DT_GET(DT_NODELABEL(reset)),
// .id = 10
// }
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The ‘reset’ field must still be checked for readiness, e.g. using device_is_ready(). It is an
error to use this macro unless the node exists, has the given property, and that property
specifies a reset controller reset line id as shown above.

Parameters
• node_id – devicetree node identifier

• idx – logical index into “resets”

Returns
static initializer for a struct reset_dt_spec for the property

RESET_DT_SPEC_GET_BY_IDX_OR(node_id, idx, default_value)
Like RESET_DT_SPEC_GET_BY_IDX(), with a fallback to a default value.

If the devicetree node identifier ‘node_id’ refers to a node with a ‘resets’ property, this
expands to RESET_DT_SPEC_GET_BY_IDX(node_id, idx). The default_valueparameter
is not expanded in this case.

Otherwise, this expands to default_value.

Parameters
• node_id – devicetree node identifier

• idx – logical index into the ‘resets’ property

• default_value – fallback value to expand to

Returns
static initializer for a struct reset_dt_spec for the property, or default_value
if the node or property do not exist

RESET_DT_SPEC_GET(node_id)
Equivalent to RESET_DT_SPEC_GET_BY_IDX(node_id, 0).

See also

RESET_DT_SPEC_GET_BY_IDX()

Parameters
• node_id – devicetree node identifier

Returns
static initializer for a struct reset_dt_spec for the property

RESET_DT_SPEC_GET_OR(node_id, default_value)
Equivalent to RESET_DT_SPEC_GET_BY_IDX_OR(node_id, 0, default_value).

Parameters
• node_id – devicetree node identifier

• default_value – fallback value to expand to

Returns
static initializer for a struct reset_dt_spec for the property, or default_value
if the node or property do not exist
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RESET_DT_SPEC_INST_GET_BY_IDX(inst, idx)
Static initializer for a reset_dt_spec from a DT_DRV_COMPAT instance’s Reset Con-
troller property at an index.

See also

RESET_DT_SPEC_GET_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

• idx – logical index into “resets”

Returns
static initializer for a struct reset_dt_spec for the property

RESET_DT_SPEC_INST_GET_BY_IDX_OR(inst, idx, default_value)
Static initializer for a reset_dt_spec from a DT_DRV_COMPAT instance’s ‘resets’ prop-
erty at an index, with fallback.

Parameters
• inst – DT_DRV_COMPAT instance number

• idx – logical index into the ‘resets’ property

• default_value – fallback value to expand to

Returns
static initializer for a struct reset_dt_spec for the property, or default_value
if the node or property do not exist

RESET_DT_SPEC_INST_GET(inst)
Equivalent to RESET_DT_SPEC_INST_GET_BY_IDX(inst, 0).

See also

RESET_DT_SPEC_INST_GET_BY_IDX()

Parameters
• inst – DT_DRV_COMPAT instance number

Returns
static initializer for a struct reset_dt_spec for the property

RESET_DT_SPEC_INST_GET_OR(inst, default_value)
Equivalent to RESET_DT_SPEC_INST_GET_BY_IDX_OR(node_id, 0, default_value).

Parameters
• inst – DT_DRV_COMPAT instance number

• default_value – fallback value to expand to

Returns
static initializer for a struct reset_dt_spec for the property, or default_value
if the node or property do not exist
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Functions

int reset_status(const struct device *dev, uint32_t id, uint8_t *status)
Get the reset status.

This function returns the reset status of the device.

Parameters
• dev – Reset controller device.

• id – Reset line.

• status – Where to write the reset status.

Return values
• 0 – On success.

• -ENOSYS – If the functionality is not implemented by the driver.

• -errno – Other negative errno in case of failure.

static inline int reset_status_dt(const struct reset_dt_spec *spec, uint8_t *status)
Get the reset status from a reset_dt_spec.

This is equivalent to:

reset_status(spec->dev, spec->id, status);

Parameters
• spec – Reset controller specification from devicetree

• status – Where to write the reset status.

Returns
a value from reset_status()

int reset_line_assert(const struct device *dev, uint32_t id)
Put the device in reset state.

This function sets/clears the reset bits of the device, depending on the logic level
(active-high/active-low).

Parameters
• dev – Reset controller device.

• id – Reset line.

Return values
• 0 – On success.

• -ENOSYS – If the functionality is not implemented by the driver.

• -errno – Other negative errno in case of failure.

static inline int reset_line_assert_dt(const struct reset_dt_spec *spec)
Assert the reset state from a reset_dt_spec.

This is equivalent to:

reset_line_assert(spec->dev, spec->id);

Parameters
• spec – Reset controller specification from devicetree
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Returns
a value from reset_line_assert()

int reset_line_deassert(const struct device *dev, uint32_t id)
Take out the device from reset state.

This function sets/clears the reset bits of the device, depending on the logic level
(active-low/active-high).

Parameters
• dev – Reset controller device.

• id – Reset line.

Return values
• 0 – On success.

• -ENOSYS – If the functionality is not implemented by the driver.

• -errno – Other negative errno in case of failure.

static inline int reset_line_deassert_dt(const struct reset_dt_spec *spec)
Deassert the reset state from a reset_dt_spec.

This is equivalent to:

reset_line_deassert(spec->dev, spec->id)

Parameters
• spec – Reset controller specification from devicetree

Returns
a value from reset_line_deassert()

int reset_line_toggle(const struct device *dev, uint32_t id)
Reset the device.

This function performs reset for a device (assert + deassert).

Parameters
• dev – Reset controller device.

• id – Reset line.

Return values
• 0 – On success.

• -ENOSYS – If the functionality is not implemented by the driver.

• -errno – Other negative errno in case of failure.

static inline int reset_line_toggle_dt(const struct reset_dt_spec *spec)
Reset the device from a reset_dt_spec.

This is equivalent to:

reset_line_toggle(spec->dev, spec->id)

Parameters
• spec – Reset controller specification from devicetree

Returns
a value from reset_line_toggle()
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struct reset_dt_spec
#include <reset.h> Reset controller device configuration.

Public Members

const struct device *dev
Reset controller device.

uint32_t id
Reset line.

7.6.42 Retained Memory

Overview

The retained memory driver API provides a way of reading from/writing to memory areas
whereby the contents of the memory is retained whilst the device is powered (data may be lost
in low power modes).

Configuration Options

Related configuration options:

• CONFIG_RETAINED_MEM
• CONFIG_RETAINED_MEM_INIT_PRIORITY
• CONFIG_RETAINED_MEM_MUTEX_FORCE_DISABLE

Mutex protection

Mutex protection of retained memory drivers is enabled by default when applications are
compiled with multithreading support. This means that different threads can safely call
the retained memory functions without clashing with other concurrent thread function us-
age, but means that retained memory functions cannot be used from ISRs. It is possi-
ble to disable mutex protection globally on all retained memory drivers by enabling CON-
FIG_RETAINED_MEM_MUTEX_FORCE_DISABLE - users are then responsible for ensuring that the func-
tion calls do not conflict with each other.

API Reference

group retained_mem_interface
Retained memory driver interface.

Since
3.4

Version
0.8.0
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Typedefs

typedef ssize_t (*retained_mem_size_api)(const struct device *dev)
Callback API to get size of retained memory area.

See retained_mem_size() for argument description.

typedef int (*retained_mem_read_api)(const struct device *dev, off_t offset, uint8_t *buffer,
size_t size)

Callback API to read from retained memory area.

See retained_mem_read() for argument description.

typedef int (*retained_mem_write_api)(const struct device *dev, off_t offset, const uint8_t
*buffer, size_t size)

Callback API to write to retained memory area.

See retained_mem_write() for argument description.

typedef int (*retained_mem_clear_api)(const struct device *dev)
Callback API to clear retained memory area (reset all data to 0x00).

See retained_mem_clear() for argument description.

Functions

ssize_t retained_mem_size(const struct device *dev)
Returns the size of the retained memory area.

Parameters
• dev – Retained memory device to use.

Return values
Positive – value indicating size in bytes on success, else negative errno
code.

int retained_mem_read(const struct device *dev, off_t offset, uint8_t *buffer, size_t size)
Reads data from the Retained memory area.

Parameters
• dev – Retained memory device to use.

• offset – Offset to read data from.

• buffer – Buffer to store read data in.

• size – Size of data to read.

Return values
0 – on success else negative errno code.

int retained_mem_write(const struct device *dev, off_t offset, const uint8_t *buffer, size_t
size)

Writes data to the Retained memory area - underlying data does not need to be cleared
prior to writing.

Parameters
• dev – Retained memory device to use.

• offset – Offset to write data to.

7.6. Peripherals 3571



Zephyr Project Documentation, Release 3.7.99

• buffer – Data to write.

• size – Size of data to be written.

Return values
0 – on success else negative errno code.

int retained_mem_clear(const struct device *dev)
Clears data in the retained memory area by setting it to 0x00.

Parameters
• dev – Retained memory device to use.

Return values
0 – on success else negative errno code.

struct retained_mem_driver_api
#include <retained_mem.h> Retained memory driver API API which can be used by a
device to store data in a retained memory area.

Retained memory is memory that is retained while the device is powered but is lost
when power to the device is lost (note that low power modes in some devices may clear
the data also). This may be in a non-initialised RAM region, or in specific registers, but
is not reset when a different application begins execution or the device is rebooted
(without power loss). It must support byte-level reading and writing without a need to
erase data before writing.

Note that drivers must implement all functions, none of the functions are optional.

7.6.43 Secure Digital High Capacity (SDHC)

The SDHC api offers a generic interface for interacting with an SD host controller device. It is
used by the SD subsystem, and is not intended to be directly used by the application

Basic Operation

SD Host Controller An SD host controller is a device capable of sending SD commands to an
attached SD card. These commands can be sent using the native SD protocol, or over SPI. Some SD
host controllers are also capable of communicating with MMC devices. The SDHC api is designed
to provide a generic way to send commands to and interact with attached SD devices.

Requests The core of the SDHC api is the sdhc_request() api. Requests contain a sdhc_command
command structure, and an optional sdhc_data data structure. The caller may check the return
code, or the response field of the SD command structure to determine if the SDHC request suc-
ceeded. The data structure allows the caller to specify a number of blocks to transfer, and a
buffer location to read or write them from. Whether the provided buffer is used for sending or
reading data depends on the command opcode provided.

Host Controller I/O The sdhc_set_io() api allows the user to change I/O settings of the SD host
controller, such as clock frequency, I/O voltage, and card power. Not all controllers will support
applying all I/O settings. For example, SPI mode controllers typically cannot toggle power to the
SD card.

Related configuration options:

• CONFIG_SDHC

3572 Chapter 7. Hardware Support



Zephyr Project Documentation, Release 3.7.99

API Reference

group sdhc_interface
SDHC interface.

Since
3.1

Version
0.1.0

SD command timeouts

SDHC_TIMEOUT_FOREVER

Defines

SDHC_NATIVE_RESPONSE_MASK

SDHC_SPI_RESPONSE_TYPE_MASK

Typedefs

typedef void (*sdhc_interrupt_cb_t)(const struct device *dev, int reason, const void
*user_data)

SDHC card interrupt callback prototype.

Function prototype for SDHC card interrupt callback.

Param dev
SDHC device that produced interrupt

Param reason
one of sdhc_interrupt_source values.

Param user_data
User data, set via sdhc_enable_interrupt

Enums

enum sdhc_bus_mode
SD bus mode.

Most controllers will use push/pull, including spi, but SDHC controllers that implement
SD host specification can support open drain mode

Values:

enumerator SDHC_BUSMODE_OPENDRAIN = 1
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enumerator SDHC_BUSMODE_PUSHPULL = 2

enum sdhc_power
SD host controller power.

Many host controllers can control power to attached SD cards. This enum allows ap-
plications to request the host controller power off the SD card.

Values:

enumerator SDHC_POWER_OFF = 1

enumerator SDHC_POWER_ON = 2

enum sdhc_bus_width
SD host controller bus width.

Only relevant in SD mode, SPI does not support bus width. UHS cards will use 4 bit
data bus, all cards start in 1 bit mode

Values:

enumerator SDHC_BUS_WIDTH1BIT = 1U

enumerator SDHC_BUS_WIDTH4BIT = 4U

enumerator SDHC_BUS_WIDTH8BIT = 8U

enum sdhc_timing_mode
SD host controller timing mode.

Used by SD host controller to determine the timing of the cards attached to the bus.
Cards start with legacy timing, but UHS-II cards can go up to SDR104.

Values:

enumerator SDHC_TIMING_LEGACY = 1U
Legacy 3.3V Mode.

enumerator SDHC_TIMING_HS = 2U
Legacy High speed mode (3.3V)

enumerator SDHC_TIMING_SDR12 = 3U
Identification mode & SDR12.

enumerator SDHC_TIMING_SDR25 = 4U
High speed mode & SDR25.

enumerator SDHC_TIMING_SDR50 = 5U
SDR49 mode.

enumerator SDHC_TIMING_SDR104 = 6U
SDR104 mode.
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enumerator SDHC_TIMING_DDR50 = 7U
DDR50 mode.

enumerator SDHC_TIMING_DDR52 = 8U
DDR52 mode.

enumerator SDHC_TIMING_HS200 = 9U
HS200 mode.

enumerator SDHC_TIMING_HS400 = 10U
HS400 mode.

enum sd_voltage
SD voltage.

UHS cards can run with 1.8V signalling for improved power consumption. Legacy
cards may support 3.0V signalling, and all cards start at 3.3V. Only relevant for SD
controllers, not SPI ones.

Values:

enumerator SD_VOL_3_3_V = 1U
card operation voltage around 3.3v

enumerator SD_VOL_3_0_V = 2U
card operation voltage around 3.0v

enumerator SD_VOL_1_8_V = 3U
card operation voltage around 1.8v

enumerator SD_VOL_1_2_V = 4U
card operation voltage around 1.2v

enum sdhc_interrupt_source
SD host controller interrupt sources.

Interrupt sources for SD host controller.

Values:

enumerator SDHC_INT_SDIO = BIT(0)
Card interrupt, used by SDIO cards.

enumerator SDHC_INT_INSERTED = BIT(1)
Card was inserted into slot.

enumerator SDHC_INT_REMOVED = BIT(2)
Card was removed from slot.

Functions
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int sdhc_hw_reset(const struct device *dev)
reset SDHC controller state

Used when the SDHC has encountered an error. Resetting the SDHC controller should
clear all errors on the SDHC, but does not necessarily reset I/O settings to boot (this can
be done with sdhc_set_io)

Parameters
• dev – SD host controller device

Return values
• 0 – reset succeeded

• -ETIMEDOUT – controller reset timed out

• -EIO – reset failed

int sdhc_request(const struct device *dev, struct sdhc_command *cmd, struct sdhc_data
*data)

Send command to SDHC.

Sends a command to the SD host controller, which will send this command to attached
SD cards.

Parameters
• dev – SDHC device

• cmd – SDHC command

• data – SDHC data. Leave NULL to send SD command without data.

Return values
• 0 – command was sent successfully

• -ETIMEDOUT – command timed out while sending

• -ENOTSUP – host controller does not support command

• -EIO – I/O error

int sdhc_set_io(const struct device *dev, struct sdhc_io *io)
set I/O properties of SDHC

I/O properties should be reconfigured when the card has been sent a command to
change its own SD settings. This function can also be used to toggle power to the SD
card.

Parameters
• dev – SDHC device

• io – I/O properties

Returns
0 I/O was configured correctly

Returns
-ENOTSUP controller does not support these I/O settings

Returns
-EIO controller could not configure I/O settings

int sdhc_card_present(const struct device *dev)
check for SDHC card presence

Checks if card is present on the SD bus. Note that if a controller requires cards be
powered up to detect presence, it should do so in this function.
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Parameters
• dev – SDHC device

Return values
• 1 – card is present

• 0 – card is not present

• -EIO – I/O error

int sdhc_execute_tuning(const struct device *dev)
run SDHC tuning

SD cards require signal tuning for UHS modes SDR104 and SDR50. This function allows
an application to request the SD host controller to tune the card.

Parameters
• dev – SDHC device

Return values
• 0 – tuning succeeded, card is ready for commands

• -ETIMEDOUT – tuning failed after timeout

• -ENOTSUP – controller does not support tuning

• -EIO – I/O error while tuning

int sdhc_card_busy(const struct device *dev)
check if SD card is busy

This check should generally be implemented as checking the line level of the DAT[0:3]
lines of the SD bus. No SD commands need to be sent, the controller simply needs to
report the status of the SD bus.

Parameters
• dev – SDHC device

Return values
• 0 – card is not busy

• 1 – card is busy

• -EIO – I/O error

int sdhc_get_host_props(const struct device *dev, struct sdhc_host_props *props)
Get SD host controller properties.

Gets host properties from the host controller. Host controller should initialize all values
in the sdhc_host_props structure provided.

Parameters
• dev – SDHC device

• props – property structure to be filled by sdhc driver

Return values
• 0 – function succeeded.

• -ENOTSUP – host controller does not support this call
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int sdhc_enable_interrupt(const struct device *dev, sdhc_interrupt_cb_t callback, int
sources, void *user_data)

Enable SDHC interrupt sources.

Enables SDHC interrupt sources. Each subsequent call of this function should replace
the previous callback set, and leave only the interrupts specified in the “sources” ar-
gument enabled.

Parameters
• dev – SDHC device

• callback – Callback called when interrupt occurs

• sources – bitmask of sdhc_interrupt_source values indicating which in-
terrupts should produce a callback

• user_data – parameter that will be passed to callback function

Return values
• 0 – interrupts were enabled, and callback was installed

• -ENOTSUP – controller does not support this function

• -EIO – I/O error

int sdhc_disable_interrupt(const struct device *dev, int sources)
Disable SDHC interrupt sources.

Disables SDHC interrupt sources. If multiple sources are enabled, only the ones speci-
fied in “sources” will be masked.

Parameters
• dev – SDHC device

• sources – bitmask of sdhc_interrupt_source values indicating which in-
terrupts should be disabled.

Return values
• 0 – interrupts were disabled

• -ENOTSUP – controller does not support this function

• -EIO – I/O error

struct sdhc_command
#include <sdhc.h> SD host controller command structure.

This command structure is used to send command requests to an SD host controller,
which will be sent to SD devices.

Public Members

uint32_t opcode
SD Host specification CMD index.

uint32_t arg
SD host specification argument.
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uint32_t response[4]
SD card response field.

uint32_t response_type
Expected SD response type.

unsigned int retries
Max number of retries.

int timeout_ms
Command timeout in milliseconds.

struct sdhc_data
#include <sdhc.h> SD host controller data structure.

This command structure is used to send data transfer requests to an SD host controller,
which will be sent to SD devices.

Public Members

unsigned int block_addr
Block to start read from.

unsigned int block_size
Block size.

unsigned int blocks
Number of blocks.

unsigned int bytes_xfered
populated with number of bytes sent by SDHC

void *data
Data to transfer or receive.

int timeout_ms
data timeout in milliseconds

struct sdhc_host_caps
#include <sdhc.h> SD host controller capabilities.

SD host controller capability flags. These flags should be set by the SDHC driver, using
the sdhc_get_host_props api.

Public Members

unsigned int timeout_clk_freq
Timeout clock frequency.
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unsigned int timeout_clk_unit
Timeout clock unit.

unsigned int sd_base_clk
SD base clock frequency.

unsigned int max_blk_len
Max block length.

unsigned int bus_8_bit_support
8-bit Support for embedded device

unsigned int bus_4_bit_support
4 bit bus support

unsigned int adma_2_support
ADMA2 support.

unsigned int high_spd_support
High speed support.

unsigned int sdma_support
SDMA support.

unsigned int suspend_res_support
Suspend/Resume support.

unsigned int vol_330_support
Voltage support 3.3V.

unsigned int vol_300_support
Voltage support 3.0V.

unsigned int vol_180_support
Voltage support 1.8V.

unsigned int address_64_bit_support_v4
64-bit system address support for V4

unsigned int address_64_bit_support_v3
64-bit system address support for V3

unsigned int sdio_async_interrupt_support
Asynchronous interrupt support.

unsigned int slot_type
Slot type.
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unsigned int sdr50_support
SDR50 support.

unsigned int sdr104_support
SDR104 support.

unsigned int ddr50_support
DDR50 support.

unsigned int uhs_2_support
UHS-II support.

unsigned int drv_type_a_support
Driver type A support.

unsigned int drv_type_c_support
Driver type C support.

unsigned int drv_type_d_support
Driver type D support.

unsigned int retune_timer_count
Timer count for re-tuning.

unsigned int sdr50_needs_tuning
Use tuning for SDR50.

unsigned int retuning_mode
Re-tuning mode.

unsigned int clk_multiplier
Clock multiplier.

unsigned int adma3_support
ADMA3 support.

unsigned int vdd2_180_support
1.8V VDD2 support

unsigned int hs200_support
HS200 support.

unsigned int hs400_support
HS400 support.

struct sdhc_io
#include <sdhc.h> SD host controller I/O control structure.

Controls I/O settings for the SDHC. Note that only a subset of these settings apply to host
controllers in SPI mode. Populate this struct, then call sdhc_set_io to apply I/O settings
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Public Members

enum sdhc_clock_speed clock
Clock rate.

enum sdhc_bus_mode bus_mode
command output mode

enum sdhc_power power_mode
SD power supply mode.

enum sdhc_bus_width bus_width
SD bus width.

enum sdhc_timing_mode timing
SD bus timing.

enum sd_driver_type driver_type
SD driver type.

enum sd_voltage signal_voltage
IO signalling voltage (usually 1.8 or 3.3V)

struct sdhc_host_props
#include <sdhc.h> SD host controller properties.

Populated by the host controller using sdhc_get_host_props api.

Public Members

unsigned int f_max
Max bus frequency.

unsigned int f_min
Min bus frequency.

unsigned int power_delay
Delay to allow SD to power up or down (in ms)

struct sdhc_host_caps host_caps
Host capability bitfield.

uint32_t max_current_330
Max current (in mA) at 3.3V.

uint32_t max_current_300
Max current (in mA) at 3.0V.
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uint32_t max_current_180
Max current (in mA) at 1.8V.

bool is_spi
Is the host using SPI mode.

struct sdhc_driver_api
#include <sdhc.h>

7.6.44 Sensors

The sensor driver API provides functionality to uniformly read, configure, and setup event han-
dling for devices that take real world measurements in meaningful units.

Sensors range from very simple temperature-reading devices that must be polled with a fixed
scale to complex devices taking in readings from multitudes of sensors and themselves produc-
ing new inferred sensor data such as step counts, presence detection, orientation, and more.

Supporting this wide breadth of devices is a demanding task and the sensor API attempts to
provide a uniform interface to them.

Using Sensors

Using sensors from an application there are some APIs and terms that are helpful to understand.
Sensors in Zephyr are composed of Sensor Channels, Sensor Attributes, and Sensor Triggers. At-
tributes and triggers may be device or channel specific.

Note

Getting samples from sensors using the sensor API today can be done in one of two ways.
A stable and long-lived API Fetch and Get, or a newer but rapidly stabilizing API Read and
Decode. It’s expected that in the near future Fetch and Get will be deprecated in favor of Read
and Decode. Triggers are handled entirely differently for Fetch and Get or Read and Decode
and the differences are noted in each of those sections.

Sensor Attributes Attributes, enumerated in sensor_attribute, are immutable and mutable
properties of a sensor and its channels.

Attributes allow for obtaining metadata and changing configuration of a sensor. Common con-
figuration parameters like channel scale, sampling frequency, adjusting channel offsets, signal
filtering, power modes, on chip buffers, and event handling options are very common. Attributes
provide a flexible API for inspecting and manipulating such device properties.

Attributes are specified using sensor_attributewhich can be used with sensor_attr_get() and
sensor_attr_set() to get and set a sensors attributes.

A quick example…

const struct device *accel_dev = DEVICE_DT_GET(DT_ALIAS(accel0));
struct sensor_value accel_sample_rate;
int rc;

rc = sensor_attr_get(accel_dev, SENSOR_CHAN_ACCEL_XYZ, SENSOR_ATTR_SAMPLING_FREQUENCY, &
↪→accel_sample_rate);

(continues on next page)
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if (rc != 0) {

printk("Failed to get sampling frequency\n");
}

printk("Sample rate for accel %p is %d.06%d\n", accel_dev, accel_sample_rate.val1, accel_
↪→sample_rate.val2*1000000);

accel_sample_rate.val1 = 2000;

rc = sensor_attr_set(accel_dev, SENSOR_CHAN_ACCEL_XYZ, SENSOR_ATTR_SAMPLING_FREQUENCY,␣
↪→accel_sample_rate);
if (rc != 0) {

printk("Failed to set sampling frequency\n");
}

Sensor Channels Channels, enumerated in sensor_channel, are quantities that a sensor device
can measure.

Sensors may have multiple channels, either to represent different axes of the same physical
property (e.g. acceleration); or because they can measure different properties altogether (am-
bient temperature, pressure and humidity). Sensors may have multiple channels of the same
measurement type to enable measuring many readings of perhaps temperature, light intensity,
amperage, voltage, or capacitance for example.

A channel is specified in Zephyr using a sensor_chan_spec which is a pair containing both the
channel type (sensor_channel) and channel index. At times only sensor_channel is used but this
should be considered historical since the introduction of sensor_chan_spec for Zephyr 3.7.

Sensor Triggers Triggers, enumerated in sensor_trigger_type, are sensor generated events.
Typically sensors allow setting up these events to cause digital line signaling for easy capture by a
micro controller. The events can then commonly be inspected by reading registers to determine
which event caused the digital line signaling to occur.

There are many kinds of triggers sensors provide, from informative ones such as data ready to
physical events such as taps or steps.

Power Management Power management of sensors is often a non-trivial task as sensors may
have multiple power states for various channels. Some sensors may allow for low noise, low
power, or suspending channels potentially saving quite a bit of power at the cost of noise or
sampling speed performance. In very low power states sensors may lose their state, turning off
even the digital logic portion of the device.

All this is to say that power management of sensors is typically application specific! Often the
channel states are mutable using Sensor Attributes. While total device suspending and resume
can be done using the power management ref counting APIs if the device implements the neces-
sary functionality.

Most likely the API sensors should use for their fully suspended/resume power states
is Device Runtime Power Management using explicit calls at an application level to
pm_device_runtime_get() and pm_device_runtime_put().

In the future, with Read and Decode its possible that automatic management of device power
management would be possible in the streaming case as the application informs the driver of
usage at all times through requests to read on given events.
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Device Tree In the context of sensors device tree provides the initial hardware configuration
for sensors on a per device level. Each device must specify a device tree binding in Zephyr, and
ideally, a set of hardware configuration options for things such as channel power modes, data
rates, filters, decimation, and scales. These can then be used in a boards devicetree to configure
a sensor to its initial state.

#include <zephyr/dt-bindings/icm42688.h>

&spi0 {
/* SPI bus options here, not shown */

accel_gyro0: icm42688p@0 {
compatible = "invensense,icm42688";
reg = <0>;
int-gpios = <&pioc 6 GPIO_ACTIVE_HIGH>; /* SoC specific pin to select for interrupt␣

↪→line */
spi-max-frequency = <DT_FREQ_M(24)>; /* Maximum SPI bus frequency */
accel-pwr-mode = <ICM42688_ACCEL_LN>; /* Low noise mode */
accel-odr = <ICM42688_ACCEL_ODR_2000>; /* 2000 Hz sampling */
accel-fs = <ICM42688_ACCEL_FS_16>; /* 16G scale */
gyro-pwr-mode = <ICM42688_GYRO_LN>; /* Low noise mode */
gyro-odr = <ICM42688_GYRO_ODR_2000>; /* 2000 Hz sampling */
gyro-fs = <ICM42688_GYRO_FS_16>; /* 16G scale */

};
};

Fetch and Get The stable and long existing APIs for reading sensor data and handling triggers
are:

• sensor_sample_fetch()
• sensor_sample_fetch_chan()
• sensor_channel_get()
• sensor_trigger_set()

These functions work together. The fetch APIs block the calling context which must be a thread
until the requested sensor_channel (or all channels) has been obtained and stored into the driver
instance’s private data.

The channel data most recently fetched can then be obtained as a sensor_value by calling sen-
sor_channel_get() for each channel type.

Warning

It should be noted that calling fetch and get from multiple contexts without a locking mech-
anism is undefined and most sensor drivers do not attempt to internally provide exclusive
access to the device during or between these calls.

Polling Using fetch and get sensor can be read in a polling manner from software threads.

/*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/

#include <zephyr/kernel.h>
(continues on next page)

7.6. Peripherals 3585



Zephyr Project Documentation, Release 3.7.99

(continued from previous page)
#include <zephyr/device.h>
#include <zephyr/drivers/sensor.h>
#include <zephyr/sys/printk.h>
#include <stdio.h>

int main(void)
{

const struct device *const dev = DEVICE_DT_GET(DT_ALIAS(magn0));
struct sensor_value value_x, value_y, value_z;
int ret;

if (!device_is_ready(dev)) {
printk("sensor: device not ready.\n");
return 0;

}

printk("Polling magnetometer data from %s.\n", dev->name);

while (1) {
ret = sensor_sample_fetch(dev);
if (ret) {

printk("sensor_sample_fetch failed ret %d\n", ret);
return 0;

}

ret = sensor_channel_get(dev, SENSOR_CHAN_MAGN_X, &value_x);
ret = sensor_channel_get(dev, SENSOR_CHAN_MAGN_Y, &value_y);
ret = sensor_channel_get(dev, SENSOR_CHAN_MAGN_Z, &value_z);
printf("( x y z ) = ( %f %f %f )\n",

sensor_value_to_double(&value_x),
sensor_value_to_double(&value_y),
sensor_value_to_double(&value_z));

k_sleep(K_MSEC(500));
}
return 0;

}

Triggers Triggers in the stable API require enabling triggers with a device specific Kconfig. The
device specific Kconfig typically allows selecting the context the trigger runs. The application
then needs to register a callback with a function signature matching sensor_trigger_handler_t
using sensor_trigger_set() for the specific triggers (events) to listen for.

Note

Triggers may not be set from user mode threads, and the callback is not run in a user mode
context.

There are typically two options provided for each driver where to run trigger handlers. Ei-
ther the trigger handler is run using the system work queue thread (Workqueue Threads)
or a dedicated thread. A great example can be found in the BMI160 driver which
has Kconfig options for selecting a trigger mode. See CONFIG_BMI160_TRIGGER_NONE, CON-
FIG_BMI160_TRIGGER_GLOBAL_THREAD (work queue), CONFIG_BMI160_TRIGGER_OWN_THREAD (dedi-
cated thread).

Some notable attributes of using a driver dedicated thread vs the system work queue.

• Driver dedicated threads have dedicated stack (RAM) which only gets used for that single
trigger handler function.
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• Driver dedicated threads do get their own priority typically which lets you prioritize trigger
handling among other threads.

• Driver dedicated threads will not have head of line blocking if the driver needs time to
handle the trigger.

Note

In all cases it’s very likely there will be variable delays from the actual interrupt to your
callback function being run. In the work queue (GLOBAL_THREAD) case the work queue
itself can be the source of variable latency!

/*
* Copyright (c) 2024 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/

#include <zephyr/drivers/sensor.h>

const struct device *const accel0 = DEVICE_DT_GET(DT_ALIAS(accel0));

static struct tap_count_state {
struct sensor_trigger trig;
uint32_t count;

} tap_count_state = {
.trig = {

.chan = SENSOR_CHAN_ACCEL_XYZ,

.type = SENSOR_TRIG_TAP,
},
.count = 0,

};

void tap_handler(const struct device *dev, const struct sensor_trigger *trig)
{

struct tap_count_state *state = CONTAINER_OF(trig, struct tap_count_state, trig);

state->count++;

printk("Tap! Total Taps: %u\n", state->count);
}

int main(void)
{

int rc;

printk("Tap Counter Example (%s)\n", CONFIG_ARCH);

rc = sensor_trigger_set(accel0, &tap_count_state.trig, tap_handler);

if (rc != 0) {
printk("Failed to set trigger handler for taps, error %d\n", rc);
return rc;

}

return rc;
}

Read and Decode The quickly stabilizing experimental APIs for reading sensor data are:
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• sensor_read()
• sensor_read_async_mempool()
• sensor_get_decoder()
• sensor_decode()

Benefits over Fetch and Get These APIs allow for a wider usage of sensors, sensor types, and
data flows with sensors. These are the future looking APIs in Zephyr and solve many issues that
have been run into with Fetch and Get.

sensor_read() and similar functions acquire sensor encoded data into a buffer provided by the
caller. Decode (sensor_decode()) then decodes the sensor specific encoded data into fixed point
q31_t values as vectors per channel. This allows further processing using fixed point DSP func-
tions that work on vectors of data to be done (e.g. low-pass filters, FFT, fusion, etc).

Reading is by default asynchronous in its implementation and takes advantage of Real Time I/O
(RTIO) to enable chaining asynchronous requests, or starting requests against many sensors si-
multaneously from a single call context.

This enables incredibly useful code flows when working with sensors such as:

• Obtaining the raw sensor data, decoding never, later, or on a separate processor (e.g. a
phone).

• Starting a read for sensors directly from an interrupt handler. No dedicated thread needed
saving precious stack space. No work queue needed introducing variable latency. Starting a
read for multiple sensors simultaneously from a single call context (interrupt/thread/work
queue).

• Requesting multiple reads to the same device for Ping-Pong (double buffering) setups.

• Creating entire pipelines of data flow from sensors allowing for software defined virtual
sensors (Sensing Subsystem) all from a single thread with DAG process ordering.

• Potentially pre-programming DMAs to trigger on GPIO events, leaving the CPU entirely out
of the loop in handling sensor events like FIFO watermarks.

Additionally, other shortcomings of Fetch and Get related to memory and trigger handling are
solved.

• Triggers result in enqueued events, not callbacks.

• Triggers can be setup to automatically fetch data. Potentially enabling pre-programmed
DMA transfers on GPIO interrupts.

• Far less likely triggers are missed due to long held interrupt masks from callbacks and con-
text swapping.

• Sensor FIFOs supported by wiring up FIFO triggers to read data into mempool allocated
buffers.

• All sensor processing can be done in user mode (memory protected) threads.

• Multiple sensor channels of the same type are better supported.

Note

For Read and Decode benefits to be fully realized requires Real Time I/O (RTIO) compliant
communication access to the sensor. Typically this means an Real Time I/O (RTIO) enabled
bus driver for SPI or I2C.
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Polling Read Polling reads with Read and Decode can be accomplished by instantiating a
polling I/O device (akin to a file descriptor) for the sensor with the desired channels to poll. Re-
questing either blocking or non-blocking reads, then optionally decoding the data into fixed point
values.

Polling a temperature sensor and printing its readout is likely the simplest sample to show how
this all works.

/*
* Copyright (c) 2024 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/

#include <zephyr/drivers/sensor.h>

#define TEMP_CHANNEL {SENSOR_CHAN_AMBIENT_TEMP, 0}

const struct device *const temp0 = DEVICE_DT_GET(DT_ALIAS(temp0));

SENSOR_DT_READ_IODEV(temp_iodev, DT_ALIAS(temp0), {TEMP_CHANNEL});
RTIO_DEFINE(temp_ctx, 1, 1);

int main(void)
{

int rc;
uint8_t buf[8];
uint32_t temp_frame_iter = 0;
struct sensor_q31_data temp_data = {0};
struct sensor_decode_context temp_decoder = SENSOR_DECODE_CONTEXT_INIT(

SENSOR_DECODER_DT_GET(DT_ALIAS(temp0)), buf, SENSOR_CHAN_AMBIENT_TEMP, 0);

while (1) {
/* Blocking read */
rc = sensor_read(temp_iodev, &temp_ctx, buf, sizeof(buf));

if (rc != 0) {
printk("sensor_read() failed %d\n", rc);

}

/* Decode the data into a single q31 */
sensor_decode(&temp_decoder, &temp_data, 1);

printk("Temperature " PRIsensor_q31_data "\n",
PRIsensor_q31_data_arg(temp_data, 0));

k_msleep(1);
}

}

Polling Read with Multiple Sensors One of the benefits of Read and Decode is the ability to
concurrently read many sensors with many channels in one thread. Effectively read requests
are started asynchronously for all sensors and their channels. When each read completes we
then decode the sensor data. Examples speak loudly and so a sample showing how this might
work with multiple temperature sensors with multiple temperature channels:

/*
* Copyright (c) 2024 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/

(continues on next page)
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#include <zephyr/drivers/sensor.h>

#define TEMP_CHANNELS \
{ SENSOR_CHAN_AMBIENT_TEMP, 0 }, \
{ SENSOR_CHAN_AMBIENT_TEMP, 1 }

#define TEMP_ALIAS(id) DT_ALIAS(CONCAT(temp, id))
#define TEMP_IODEV_SYM(id) CONCAT(temp_iodev, id)
#define TEMP_IODEV_PTR(id) &TEMP_IODEV_SYM(id)
#define TEMP_DEFINE_IODEV(id) \

SENSOR_DT_READ_IODEV( \
TEMP_IODEV_SYM(id), \
TEMP_ALIAS(id), \
TEMP_CHANNELS \
);

#define NUM_SENSORS 2

LISTIFY(NUM_SENSORS, TEMP_DEFINE_IODEV, (;));

struct sensor_iodev *iodevs[NUM_SENSORS] = { LISTIFY(NUM_SENSORS, TEMP_IODEV_PTR, (,)) };

RTIO_DEFINE_WITH_MEMPOOL(temp_ctx, NUM_SENSORS, NUM_SENSORS, NUM_SENSORS, 8, sizeof(void␣
↪→*));

int main(void)
{

int rc;
uint32_t temp_frame_iter = 0;
struct sensor_q31_data temp_data[2] = {0};
struct sensor_decoder_api *decoder;
struct rtio_cqe *cqe;
uint8_t *buf;
uint32_t buf_len;

while (1) {
/* Non-Blocking read for each sensor */
for (int i = 0; i < NUM_SENSORS; i++) {

rc = sensor_read_async_mempool(iodevs[i], &temp_ctx, iodevs[i]);

if (rc != 0) {
printk("sensor_read() failed %d\n", rc);
return;

}
}

/* Wait for read completions */
for (int i = 0; i < NUM_SENSORS; i++) {

cqe = rtio_cqe_consume_block(&temp_ctx);

if (cqe->result != 0) {
printk("async read failed %d\n", cqe->result);
return;

}

/* Get the associated mempool buffer with the completion */
rc = rtio_cqe_get_mempool_buffer(&temp_ctx, cqe, &buf, &buf_len);

if (rc != 0) {
printk("get mempool buffer failed %d\n", rc);
return;

(continues on next page)
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}

struct device *sensor = ((struct sensor_read_config *)
((struct rtio_iodev *)cqe->userdata)->data)->sensor;

/* Done with the completion event, release it */
rtio_cqe_release(&temp_ctx, cqe);

rc = sensor_get_decoder(sensor, &decoder);
if (rc != 0) {

printk("sensor_get_decoder failed %d\n", rc);
return;

}

/* Frame iterators, one per channel we are decoding */
uint32_t temp_fits[2] = { 0, 0 };

decoder->decode(buf, {SENSOR_CHAN_AMBIENT_TEMP, 0},
&temp_fits[0], 1, &temp_data[0]);

decoder->decode(buf, {SENSOR_CHAN_AMBIENT_TEMP, 1},
&temp_fits[1], 1, &temp_data[1]);

/* Done with the buffer, release it */
rtio_release_buffer(&temp_ctx, buf, buf_len);

printk("Temperature for %s channel 0 " PRIsensor_q31_data ",␣
↪→channel 1 "

PRIsensor_q31_data "\n",
dev->name,
PRIsensor_q31_data_arg(temp_data[0], 0),
PRIsensor_q31_data_arg(temp_data[1], 0));

}
}

k_msleep(1);
}

Streaming Handling triggers with Read and Decode works by setting up a stream I/O device
configuration. A stream specifies the set of triggers to capture and if data should be captured
with the event.

/*
* Copyright (c) 2024 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/

#include <zephyr/drivers/sensor.h>

#define ACCEL_TRIGGERS \
{ SENSOR_TRIG_DRDY, SENSOR_STREAM_DATA_INCLUDE }, \
{ SENSOR_TRIG_TAP, SENSOR_STREAM_DATA_NOP }

#define ACCEL_ALIAS(id) DT_ALIAS(CONCAT(accel, id))
#define ACCEL_IODEV_SYM(id) CONCAT(accel_iodev, id)
#define ACCEL_IODEV_PTR(id) &ACCEL_IODEV_SYM(id)
#define ACCEL_DEFINE_IODEV(id) \

SENSOR_DT_STREAM_IODEV( \
ACCEL_IODEV_SYM(id), \
ACCEL_ALIAS(id), \

(continues on next page)
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ACCEL_TRIGGERS \
);

#define NUM_SENSORS 2

LISTIFY(NUM_SENSORS, ACCEL_DEFINE_IODEV, (;));

struct sensor_iodev *iodevs[NUM_SENSORS] = { LISTIFY(NUM_SENSORS, ACCEL_IODEV_PTR, (,)) };

RTIO_DEFINE_WITH_MEMPOOL(accel_ctx, NUM_SENSORS, NUM_SENSORS, NUM_SENSORS, 16, sizeof(void␣
↪→*));

int main(void)
{

int rc;
uint32_t accel_frame_iter = 0;
struct sensor_three_axis_data accel_data[2] = {0};
struct sensor_decoder_api *decoder;
struct rtio_cqe *cqe;
uint8_t *buf;
uint32_t buf_len;
struct rtio_sqe *handles[2];

/* Start the streams */
for (int i = 0; i < NUM_SENSORS; i++) {

sensor_stream(iodevs[i], &accel_ctx, NULL, &handles[i]);
}

while (1) {
cqe = rtio_cqe_consume_block(&accel_ctx);

if (cqe->result != 0) {
printk("async read failed %d\n", cqe->result);
return;

}

rc = rtio_cqe_get_mempool_buffer(&accel_ctx, cqe, &buf, &buf_len);

if (rc != 0) {
printk("get mempool buffer failed %d\n", rc);
return;

}

struct device *sensor = ((struct sensor_read_config *)
((struct rtio_iodev *)cqe->userdata)->data)->

↪→sensor;

rtio_cqe_release(&accel_ctx, cqe);

rc = sensor_get_decoder(sensor, &decoder);

if (rc != 0) {
printk("sensor_get_decoder failed %d\n", rc);
return;

}

/* Frame iterator values when data comes from a FIFO */
uint32_t accel_fit = 0;

/* Number of accelerometer data frames */
uint32_t frame_count;

(continues on next page)
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(continued from previous page)

rc = decoder->get_frame_count(buf, {SENSOR_CHAN_ACCEL_XYZ, 0},
&frame_count);

if (rc != 0) {
printk("sensor_get_decoder failed %d\n", rc);
return;

}

/* If a tap has occurred lets print it out */
if (decoder->has_trigger(buf, SENSOR_TRIG_TAP)) {

printk("Tap! Sensor %s\n", dev->name);
}

/* Decode all available accelerometer sample frames */
for (int i = 0; i < frame_count; i++) {

decoder->decode(buf, {SENSOR_CHAN_ACCEL_XYZ, 0},
accel_fit, 1, &accel_data);

printk("Accel data for %s " PRIsensor_three_axis_data "\n",
dev->name,
PRIsensor_three_axis_data_arg(accel_data, 0));

}

rtio_release_buffer(&accel_ctx, buf, buf_len);
}

}

Implementing Sensor Drivers

Note

Implementing the driver side of the sensor API requires an understanding how the sensor
APIs are used. Please read through Using Sensors first!

Implementing Attributes
• SHOULD implement attribute setting in a blocking manner.

• SHOULD provide the ability to get and set channel scale if supported by the device.

• SHOULD provide the ability to get and set channel sampling rate if supported by the device.

Implementing Fetch and Get
• SHOULD implement sensor_sample_fetch_t as a blocking call that stashes the specified

channels (or all sensor channels) as driver instance data.

• SHOULD implement sensor_channel_get_t without side effects manipulating driver state
returning stashed sensor readings.

• SHOULD implement sensor_trigger_set_t storing the address of the sensor_trigger
rather than copying the contents. This is so CONTAINER_OF may be used for trigger callback
context.

Implementing Read and Decode
• MUST implement sensor_submit_t as a non-blocking call.
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• SHOULD implement sensor_submit_t using Real Time I/O (RTIO) to do non-blocking bus
transfers if possible.

• MAY implement sensor_submit_t using a work queue if Real Time I/O (RTIO) is unsup-
ported by the bus.

• SHOULD implement sensor_submit_t checking the rtio_sqe is of type RTIO_SQE_RX (read
request).

• SHOULD implement sensor_submit_t checking all requested channels supported or re-
spond with an error if not.

• SHOULD implement sensor_submit_t checking the provided buffer is large enough for the
requested channels.

• SHOULD implement sensor_submit_t in a way that directly reads into the provided buffer
avoiding copying of any kind, with few exceptions.

• MUST implement sensor_decoder_api with pure stateless functions. All state needed to
convert the raw sensor readings into fixed point SI united values must be in the provided
buffer.

• MUST implement sensor_get_decoder_t returning the sensor_decoder_api for that device
type.

API Reference

Related code samples

LVGL line chart with accelerometer data
Display acceleration data on a real-time chart using LVGL.

Secure MQTT Sensor/Actuator
Implement an MQTT-based IoT sensor/actuator device

X-NUCLEO-53L0A1 shield
Interact with the 7-segment display and VL53L0X ranging sensor of an X-NUCLEO-
53L0A1 shield.

X-NUCLEO-IKS01A1 shield
Interact with all the sensors of an X-NUCLEO-IKS01A1 shield.

X-NUCLEO-IKS01A2 shield - SensorHub (Mode 2)
Interact with all the sensors of an X-NUCLEO-IKS01A2 shield using Sensor Hub mode.

X-NUCLEO-IKS01A2 shield - Standard (Mode 1)
Interact with all the sensors of an X-NUCLEO-IKS01A2 shield using Standard Mode.

X-NUCLEO-IKS01A3 shield - SensorHub (Mode 2)
Interact with all the sensors of an X-NUCLEO-IKS01A3 shield using Sensor Hub mode.

X-NUCLEO-IKS01A3 shield - Standard (Mode 1)
Interact with all the sensors of an X-NUCLEO-IKS01A3 shield using Standard mode.

X-NUCLEO-IKS02A1 shield - SensorHub (Mode 2)
Interact with all the sensors of an X-NUCLEO-IKS02A1 shield using Sensor Hub mode.

X-NUCLEO-IKS02A1 shield - Standard (Mode 1)
Interact with all the sensors of an X-NUCLEO-IKS02A1 shield using Standard mode.

group sensor_interface
Sensor Interface.
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Since
1.2

Version
1.0.0

Defines

SENSOR_DECODE_CONTEXT_INIT(decoder_, buffer_, channel_type_, channel_index_)
Initialize a sensor_decode_context.

SENSOR_STREAM_TRIGGER_PREP(_trigger, _opt)

SENSOR_DT_READ_IODEV(name, dt_node, ...)
Define a reading instance of a sensor.

Use this macro to generate a rtio_iodev for reading specific channels. Example:

(.c)
SENSOR_DT_READ_IODEV(icm42688_accelgyro, DT_NODELABEL(icm42688),

{ SENSOR_CHAN_ACCEL_XYZ, 0 },
{ SENSOR_CHAN_GYRO_XYZ, 0 });

int main(void) {
sensor_read_async_mempool(&icm42688_accelgyro, &rtio);

}

SENSOR_DT_STREAM_IODEV(name, dt_node, ...)
Define a stream instance of a sensor.

Use this macro to generate a rtio_iodev for starting a stream that’s triggered by specific
interrupts. Example:

(.c)
SENSOR_DT_STREAM_IODEV(imu_stream, DT_ALIAS(imu),

{SENSOR_TRIG_FIFO_WATERMARK, SENSOR_STREAM_DATA_INCLUDE},
{SENSOR_TRIG_FIFO_FULL, SENSOR_STREAM_DATA_NOP});

int main(void) {
struct rtio_sqe *handle;
sensor_stream(&imu_stream, &rtio, NULL, &handle);
k_msleep(1000);
rtio_sqe_cancel(handle);

}

SENSOR_CHANNEL_3_AXIS(chan)
checks if a given channel is a 3-axis channel

Parameters
• chan – [in] The channel to check

Return values
• true – if chan is any of SENSOR_CHAN_ACCEL_XYZ, SEN-
SOR_CHAN_GYRO_XYZ, or SENSOR_CHAN_MAGN_XYZ, or SEN-
SOR_CHAN_POS_DXYZ

• false – otherwise
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SENSOR_G
The value of gravitational constant in micro m/s^2.

SENSOR_PI
The value of constant PI in micros.

SENSOR_INFO_DEFINE(name, ...)

SENSOR_INFO_DT_DEFINE(node_id)

SENSOR_DEVICE_DT_DEFINE(node_id, init_fn, pm_device, data_ptr, cfg_ptr, level, prio,
api_ptr, ...)

Like DEVICE_DT_DEFINE() with sensor specifics.

Defines a device which implements the sensor API. May define an element in the sensor
info iterable section used to enumerate all sensor devices.

Parameters
• node_id – The devicetree node identifier.

• init_fn – Name of the init function of the driver.

• pm_device – PM device resources reference (NULL if device does not use
PM).

• data_ptr – Pointer to the device’s private data.

• cfg_ptr – The address to the structure containing the configuration in-
formation for this instance of the driver.

• level – The initialization level. See SYS_INIT() for details.

• prio – Priority within the selected initialization level. See SYS_INIT() for
details.

• api_ptr – Provides an initial pointer to the API function struct used by
the driver. Can be NULL.

SENSOR_DEVICE_DT_INST_DEFINE(inst, ...)
Like SENSOR_DEVICE_DT_DEFINE() for an instance of a DT_DRV_COMPAT compatible.

Parameters
• inst – instance number. This is replaced by DT_DRV_COMPAT(inst) in the

call to SENSOR_DEVICE_DT_DEFINE().

• ... – other parameters as expected by SENSOR_DEVICE_DT_DEFINE().

Typedefs

typedef void (*sensor_trigger_handler_t)(const struct device *dev, const struct
sensor_trigger *trigger)

Callback API upon firing of a trigger.

Param dev
Pointer to the sensor device

Param trigger
The trigger
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typedef int (*sensor_attr_set_t)(const struct device *dev, enum sensor_channel chan,
enum sensor_attribute attr, const struct sensor_value *val)

Callback API upon setting a sensor’s attributes.

See sensor_attr_set() for argument description

typedef int (*sensor_attr_get_t)(const struct device *dev, enum sensor_channel chan,
enum sensor_attribute attr, struct sensor_value *val)

Callback API upon getting a sensor’s attributes.

See sensor_attr_get() for argument description

typedef int (*sensor_trigger_set_t)(const struct device *dev, const struct sensor_trigger
*trig, sensor_trigger_handler_t handler)

Callback API for setting a sensor’s trigger and handler.

See sensor_trigger_set() for argument description

typedef int (*sensor_sample_fetch_t)(const struct device *dev, enum sensor_channel
chan)

Callback API for fetching data from a sensor.

See sensor_sample_fetch() for argument description

typedef int (*sensor_channel_get_t)(const struct device *dev, enum sensor_channel chan,
struct sensor_value *val)

Callback API for getting a reading from a sensor.

See sensor_channel_get() for argument description

typedef int (*sensor_get_decoder_t)(const struct device *dev, const struct
sensor_decoder_api **api)

Get the decoder associate with the given device.

See also

sensor_get_decoder for more details

typedef void (*sensor_submit_t)(const struct device *sensor, struct rtio_iodev_sqe *sqe)

typedef void (*sensor_processing_callback_t)(int result, uint8_t *buf, uint32_t buf_len,
void *userdata)

Callback function used with the helper processing function.

See also

sensor_processing_with_callback

Param result
[in] The result code of the read (0 being success)
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Param buf
[in] The data buffer holding the sensor data

Param buf_len
[in] The length (in bytes) of the buf

Param userdata
[in] The optional userdata passed to sensor_read_async_mempool()

Enums

enum sensor_channel
Sensor channels.

Values:

enumerator SENSOR_CHAN_ACCEL_X
Acceleration on the X axis, in m/s^2.

enumerator SENSOR_CHAN_ACCEL_Y
Acceleration on the Y axis, in m/s^2.

enumerator SENSOR_CHAN_ACCEL_Z
Acceleration on the Z axis, in m/s^2.

enumerator SENSOR_CHAN_ACCEL_XYZ
Acceleration on the X, Y and Z axes.

enumerator SENSOR_CHAN_GYRO_X
Angular velocity around the X axis, in radians/s.

enumerator SENSOR_CHAN_GYRO_Y
Angular velocity around the Y axis, in radians/s.

enumerator SENSOR_CHAN_GYRO_Z
Angular velocity around the Z axis, in radians/s.

enumerator SENSOR_CHAN_GYRO_XYZ
Angular velocity around the X, Y and Z axes.

enumerator SENSOR_CHAN_MAGN_X
Magnetic field on the X axis, in Gauss.

enumerator SENSOR_CHAN_MAGN_Y
Magnetic field on the Y axis, in Gauss.

enumerator SENSOR_CHAN_MAGN_Z
Magnetic field on the Z axis, in Gauss.

enumerator SENSOR_CHAN_MAGN_XYZ
Magnetic field on the X, Y and Z axes.
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enumerator SENSOR_CHAN_DIE_TEMP
Device die temperature in degrees Celsius.

enumerator SENSOR_CHAN_AMBIENT_TEMP
Ambient temperature in degrees Celsius.

enumerator SENSOR_CHAN_PRESS
Pressure in kilopascal.

enumerator SENSOR_CHAN_PROX
Proximity.

Adimensional. A value of 1 indicates that an object is close.

enumerator SENSOR_CHAN_HUMIDITY
Humidity, in percent.

enumerator SENSOR_CHAN_LIGHT
Illuminance in visible spectrum, in lux.

enumerator SENSOR_CHAN_IR
Illuminance in infra-red spectrum, in lux.

enumerator SENSOR_CHAN_RED
Illuminance in red spectrum, in lux.

enumerator SENSOR_CHAN_GREEN
Illuminance in green spectrum, in lux.

enumerator SENSOR_CHAN_BLUE
Illuminance in blue spectrum, in lux.

enumerator SENSOR_CHAN_ALTITUDE
Altitude, in meters.

enumerator SENSOR_CHAN_PM_1_0
1.0 micro-meters Particulate Matter, in ug/m^3

enumerator SENSOR_CHAN_PM_2_5
2.5 micro-meters Particulate Matter, in ug/m^3

enumerator SENSOR_CHAN_PM_10
10 micro-meters Particulate Matter, in ug/m^3

enumerator SENSOR_CHAN_DISTANCE
Distance.

From sensor to target, in meters
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enumerator SENSOR_CHAN_CO2
CO2 level, in parts per million (ppm)

enumerator SENSOR_CHAN_O2
O2 level, in parts per million (ppm)

enumerator SENSOR_CHAN_VOC
VOC level, in parts per billion (ppb)

enumerator SENSOR_CHAN_GAS_RES
Gas sensor resistance in ohms.

enumerator SENSOR_CHAN_VOLTAGE
Voltage, in volts.

enumerator SENSOR_CHAN_VSHUNT
Current Shunt Voltage in milli-volts.

enumerator SENSOR_CHAN_CURRENT
Current, in amps.

enumerator SENSOR_CHAN_POWER
Power in watts.

enumerator SENSOR_CHAN_RESISTANCE
Resistance , in Ohm.

enumerator SENSOR_CHAN_ROTATION
Angular rotation, in degrees.

enumerator SENSOR_CHAN_POS_DX
Position change on the X axis, in points.

enumerator SENSOR_CHAN_POS_DY
Position change on the Y axis, in points.

enumerator SENSOR_CHAN_POS_DZ
Position change on the Z axis, in points.

enumerator SENSOR_CHAN_POS_DXYZ
Position change on the X, Y and Z axis, in points.

enumerator SENSOR_CHAN_RPM
Revolutions per minute, in RPM.

enumerator SENSOR_CHAN_GAUGE_VOLTAGE
Voltage, in volts.
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enumerator SENSOR_CHAN_GAUGE_AVG_CURRENT
Average current, in amps.

enumerator SENSOR_CHAN_GAUGE_STDBY_CURRENT
Standby current, in amps.

enumerator SENSOR_CHAN_GAUGE_MAX_LOAD_CURRENT
Max load current, in amps.

enumerator SENSOR_CHAN_GAUGE_TEMP
Gauge temperature

enumerator SENSOR_CHAN_GAUGE_STATE_OF_CHARGE
State of charge measurement in %.

enumerator SENSOR_CHAN_GAUGE_FULL_CHARGE_CAPACITY
Full Charge Capacity in mAh.

enumerator SENSOR_CHAN_GAUGE_REMAINING_CHARGE_CAPACITY
Remaining Charge Capacity in mAh.

enumerator SENSOR_CHAN_GAUGE_NOM_AVAIL_CAPACITY
Nominal Available Capacity in mAh.

enumerator SENSOR_CHAN_GAUGE_FULL_AVAIL_CAPACITY
Full Available Capacity in mAh.

enumerator SENSOR_CHAN_GAUGE_AVG_POWER
Average power in mW.

enumerator SENSOR_CHAN_GAUGE_STATE_OF_HEALTH
State of health measurement in %.

enumerator SENSOR_CHAN_GAUGE_TIME_TO_EMPTY
Time to empty in minutes.

enumerator SENSOR_CHAN_GAUGE_TIME_TO_FULL
Time to full in minutes.

enumerator SENSOR_CHAN_GAUGE_CYCLE_COUNT
Cycle count (total number of charge/discharge cycles)

enumerator SENSOR_CHAN_GAUGE_DESIGN_VOLTAGE
Design voltage of cell in V (max voltage)

enumerator SENSOR_CHAN_GAUGE_DESIRED_VOLTAGE
Desired voltage of cell in V (nominal voltage)
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enumerator SENSOR_CHAN_GAUGE_DESIRED_CHARGING_CURRENT
Desired charging current in mA.

enumerator SENSOR_CHAN_ALL
All channels.

enumerator SENSOR_CHAN_COMMON_COUNT
Number of all common sensor channels.

enumerator SENSOR_CHAN_PRIV_START = SENSOR_CHAN_COMMON_COUNT
This and higher values are sensor specific.

Refer to the sensor header file.

enumerator SENSOR_CHAN_MAX = INT16_MAX
Maximum value describing a sensor channel type.

enum sensor_trigger_type
Sensor trigger types.

Values:

enumerator SENSOR_TRIG_TIMER
Timer-based trigger, useful when the sensor does not have an interrupt line.

enumerator SENSOR_TRIG_DATA_READY
Trigger fires whenever new data is ready.

enumerator SENSOR_TRIG_DELTA
Trigger fires when the selected channel varies significantly.

This includes any-motion detection when the channel is acceleration or gyro. If de-
tection is based on slope between successive channel readings, the slope threshold
is configured via the SENSOR_ATTR_SLOPE_TH and SENSOR_ATTR_SLOPE_DUR at-
tributes.

enumerator SENSOR_TRIG_NEAR_FAR
Trigger fires when a near/far event is detected.

enumerator SENSOR_TRIG_THRESHOLD
Trigger fires when channel reading transitions configured thresholds.

The thresholds are configured via the SENSOR_ATTR_LOWER_THRESH, SEN-
SOR_ATTR_UPPER_THRESH, and SENSOR_ATTR_HYSTERESIS attributes.

enumerator SENSOR_TRIG_TAP
Trigger fires when a single tap is detected.

enumerator SENSOR_TRIG_DOUBLE_TAP
Trigger fires when a double tap is detected.
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enumerator SENSOR_TRIG_FREEFALL
Trigger fires when a free fall is detected.

enumerator SENSOR_TRIG_MOTION
Trigger fires when motion is detected.

enumerator SENSOR_TRIG_STATIONARY
Trigger fires when no motion has been detected for a while.

enumerator SENSOR_TRIG_FIFO_WATERMARK
Trigger fires when the FIFO watermark has been reached.

enumerator SENSOR_TRIG_FIFO_FULL
Trigger fires when the FIFO becomes full.

enumerator SENSOR_TRIG_COMMON_COUNT
Number of all common sensor triggers.

enumerator SENSOR_TRIG_PRIV_START = SENSOR_TRIG_COMMON_COUNT
This and higher values are sensor specific.

Refer to the sensor header file.

enumerator SENSOR_TRIG_MAX = INT16_MAX
Maximum value describing a sensor trigger type.

enum sensor_attribute
Sensor attribute types.

Values:

enumerator SENSOR_ATTR_SAMPLING_FREQUENCY
Sensor sampling frequency, i.e.

how many times a second the sensor takes a measurement.

enumerator SENSOR_ATTR_LOWER_THRESH
Lower threshold for trigger.

enumerator SENSOR_ATTR_UPPER_THRESH
Upper threshold for trigger.

enumerator SENSOR_ATTR_SLOPE_TH
Threshold for any-motion (slope) trigger.

enumerator SENSOR_ATTR_SLOPE_DUR
Duration for which the slope values needs to be outside the threshold for the trig-
ger to fire.

enumerator SENSOR_ATTR_HYSTERESIS
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enumerator SENSOR_ATTR_OVERSAMPLING
Oversampling factor.

enumerator SENSOR_ATTR_FULL_SCALE
Sensor range, in SI units.

enumerator SENSOR_ATTR_OFFSET
The sensor value returned will be altered by the amount indicated by offset: fi-
nal_value = sensor_value + offset.

enumerator SENSOR_ATTR_CALIB_TARGET
Calibration target.

This will be used by the internal chip’s algorithms to calibrate itself on a certain
axis, or all of them.

enumerator SENSOR_ATTR_CONFIGURATION
Configure the operating modes of a sensor.

enumerator SENSOR_ATTR_CALIBRATION
Set a calibration value needed by a sensor.

enumerator SENSOR_ATTR_FEATURE_MASK
Enable/disable sensor features.

enumerator SENSOR_ATTR_ALERT
Alert threshold or alert enable/disable.

enumerator SENSOR_ATTR_FF_DUR
Free-fall duration represented in milliseconds.

If the sampling frequency is changed during runtime, this attribute should be set
to adjust freefall duration to the new sampling frequency.

enumerator SENSOR_ATTR_BATCH_DURATION
Hardware batch duration in ticks.

enumerator SENSOR_ATTR_COMMON_COUNT
Number of all common sensor attributes.

enumerator SENSOR_ATTR_PRIV_START = SENSOR_ATTR_COMMON_COUNT
This and higher values are sensor specific.

Refer to the sensor header file.

enumerator SENSOR_ATTR_MAX = INT16_MAX
Maximum value describing a sensor attribute type.

enum sensor_stream_data_opt
Options for what to do with the associated data when a trigger is consumed.

Values:
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enumerator SENSOR_STREAM_DATA_INCLUDE = 0
Include whatever data is associated with the trigger.

enumerator SENSOR_STREAM_DATA_NOP = 1
Do nothing with the associated trigger data, it may be consumed later.

enumerator SENSOR_STREAM_DATA_DROP = 2
Flush/clear whatever data is associated with the trigger.

Functions

static inline bool sensor_chan_spec_eq(struct sensor_chan_spec chan_spec0, struct
sensor_chan_spec chan_spec1)

Check if channel specs are equivalent.

Parameters
• chan_spec0 – First chan spec

• chan_spec1 – Second chan spec

Return values
• true – If equivalent

• false – If not equivalent

static inline int sensor_decode(struct sensor_decode_context *ctx, void *out, uint16_t
max_count)

Decode N frames using a sensor_decode_context.

Parameters
• ctx – [inout] The context to use for decoding

• out – [out] The output buffer

• max_count – [in] Maximum number of frames to decode

Returns
The decode result from sensor_decoder_api’s decode function

int sensor_natively_supported_channel_size_info(struct sensor_chan_spec channel,
size_t *base_size, size_t
*frame_size)

int sensor_attr_set(const struct device *dev, enum sensor_channel chan, enum
sensor_attribute attr, const struct sensor_value *val)

Set an attribute for a sensor.

Parameters
• dev – Pointer to the sensor device

• chan – The channel the attribute belongs to, if any. Some attributes may
only be set for all channels of a device, depending on device capabilities.

• attr – The attribute to set

• val – The value to set the attribute to

Returns
0 if successful, negative errno code if failure.
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int sensor_attr_get(const struct device *dev, enum sensor_channel chan, enum
sensor_attribute attr, struct sensor_value *val)

Get an attribute for a sensor.

Parameters
• dev – Pointer to the sensor device

• chan – The channel the attribute belongs to, if any. Some attributes may
only be set for all channels of a device, depending on device capabilities.

• attr – The attribute to get

• val – Pointer to where to store the attribute

Returns
0 if successful, negative errno code if failure.

static inline int sensor_trigger_set(const struct device *dev, const struct sensor_trigger
*trig, sensor_trigger_handler_t handler)

Activate a sensor’s trigger and set the trigger handler.

The handler will be called from a thread, so I2C or SPI operations are safe. However,
the thread’s stack is limited and defined by the driver. It is currently up to the caller to
ensure that the handler does not overflow the stack.

The user-allocated trigger will be stored by the driver as a pointer, rather than a copy,
and passed back to the handler. This enables the handler to use CONTAINER_OF to
retrieve a context pointer when the trigger is embedded in a larger struct and requires
that the trigger is not allocated on the stack.

Function properties (list may not be complete)
supervisor

Parameters
• dev – Pointer to the sensor device

• trig – The trigger to activate

• handler – The function that should be called when the trigger fires

Returns
0 if successful, negative errno code if failure.

int sensor_sample_fetch(const struct device *dev)
Fetch a sample from the sensor and store it in an internal driver buffer.

Read all of a sensor’s active channels and, if necessary, perform any additional oper-
ations necessary to make the values useful. The user may then get individual channel
values by calling sensor_channel_get.

The function blocks until the fetch operation is complete.

Since the function communicates with the sensor device, it is unsafe to call it in an ISR
if the device is connected via I2C or SPI.

Parameters
• dev – Pointer to the sensor device

Returns
0 if successful, negative errno code if failure.
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int sensor_sample_fetch_chan(const struct device *dev, enum sensor_channel type)
Fetch a sample from the sensor and store it in an internal driver buffer.

Read and compute compensation for one type of sensor data (magnetometer, ac-
celerometer, etc). The user may then get individual channel values by calling sen-
sor_channel_get.

This is mostly implemented by multi function devices enabling reading at different
sampling rates.

The function blocks until the fetch operation is complete.

Since the function communicates with the sensor device, it is unsafe to call it in an ISR
if the device is connected via I2C or SPI.

Parameters
• dev – Pointer to the sensor device

• type – The channel that needs updated

Returns
0 if successful, negative errno code if failure.

int sensor_channel_get(const struct device *dev, enum sensor_channel chan, struct
sensor_value *val)

Get a reading from a sensor device.

Return a useful value for a particular channel, from the driver’s internal data. Be-
fore calling this function, a sample must be obtained by calling sensor_sample_fetch
or sensor_sample_fetch_chan. It is guaranteed that two subsequent calls of this func-
tion for the same channels will yield the same value, if sensor_sample_fetch or sen-
sor_sample_fetch_chan has not been called in the meantime.

For vectorial data samples you can request all axes in just one call by passing the spe-
cific channel with _XYZ suffix. The sample will be returned at val[0], val[1] and val[2]
(X, Y and Z in that order).

Parameters
• dev – Pointer to the sensor device

• chan – The channel to read

• val – Where to store the value

Returns
0 if successful, negative errno code if failure.

int sensor_get_decoder(const struct device *dev, const struct sensor_decoder_api
**decoder)

Get the sensor’s decoder API.

Parameters
• dev – [in] The sensor device

• decoder – [in] Pointer to the decoder which will be set upon success

Returns
0 on success

Returns
< 0 on error

int sensor_reconfigure_read_iodev(struct rtio_iodev *iodev, const struct device *sensor,
const struct sensor_chan_spec *channels, size_t
num_channels)
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Reconfigure a reading iodev.

Allows a reconfiguration of the iodev associated with reading a sample from a sensor.

Important: If the iodev is currently servicing a read operation, the data will likely be
invalid. Please be sure the flush or wait for all pending operations to complete before
using the data after a configuration change.

It is also important that the data field of the iodev is a sensor_read_config.

Parameters
• iodev – [in] The iodev to reconfigure

• sensor – [in] The sensor to read from

• channels – [in] One or more channels to read

• num_channels – [in] The number of channels in channels
Returns

0 on success

Returns
< 0 on error

static inline int sensor_stream(struct rtio_iodev *iodev, struct rtio *ctx, void *userdata,
struct rtio_sqe **handle)

static inline int sensor_read(struct rtio_iodev *iodev, struct rtio *ctx, uint8_t *buf, size_t
buf_len)

Blocking one shot read of samples from a sensor into a buffer.

Using cfg, read data from the device by using the provided RTIO context ctx. This call
will generate a rtio_sqe that will be given the provided buffer. The call will wait for the
read to complete before returning to the caller.

Parameters
• iodev – [in] The iodev created by SENSOR_DT_READ_IODEV

• ctx – [in] The RTIO context to service the read

• buf – [in] Pointer to memory to read sample data into

• buf_len – [in] Size in bytes of the given memory that are valid to read
into

Returns
0 on success

Returns
< 0 on error

static inline int sensor_read_async_mempool(struct rtio_iodev *iodev, struct rtio *ctx, void
*userdata)

One shot non-blocking read with pool allocated buffer.

Using cfg, read one snapshot of data from the device by using the provided RTIO con-
text ctx. This call will generate a rtio_sqe that will leverage the RTIO’s internal mem-
pool when the time comes to service the read.

Parameters
• iodev – [in] The iodev created by SENSOR_DT_READ_IODEV

• ctx – [in] The RTIO context to service the read
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• userdata – [in] Optional userdata that will be available when the read is
complete

Returns
0 on success

Returns
< 0 on error

void sensor_processing_with_callback(struct rtio *ctx, sensor_processing_callback_t cb)
Helper function for common processing of sensor data.

This function can be called in a blocking manner after sensor_read() or in a standalone
thread dedicated to processing. It will wait for a cqe from the RTIO context, once re-
ceived, it will decode the userdata and call the cb. Once the cb returns, the buffer will
be released back into ctx's mempool if available.

Parameters
• ctx – [in] The RTIO context to wait on

• cb – [in] Callback to call when data is ready for processing

static inline int32_t sensor_ms2_to_g(const struct sensor_value *ms2)
Helper function to convert acceleration from m/s^2 to Gs.

Parameters
• ms2 – A pointer to a sensor_value struct holding the acceleration, in m/s^2.

Returns
The converted value, in Gs.

static inline void sensor_g_to_ms2(int32_t g, struct sensor_value *ms2)
Helper function to convert acceleration from Gs to m/s^2.

Parameters
• g – The G value to be converted.

• ms2 – A pointer to a sensor_value struct, where the result is stored.

static inline int32_t sensor_ms2_to_ug(const struct sensor_value *ms2)
Helper function to convert acceleration from m/s^2 to micro Gs.

Parameters
• ms2 – A pointer to a sensor_value struct holding the acceleration, in m/s^2.

Returns
The converted value, in micro Gs.

static inline void sensor_ug_to_ms2(int32_t ug, struct sensor_value *ms2)
Helper function to convert acceleration from micro Gs to m/s^2.

Parameters
• ug – The micro G value to be converted.

• ms2 – A pointer to a sensor_value struct, where the result is stored.

static inline int32_t sensor_rad_to_degrees(const struct sensor_value *rad)
Helper function for converting radians to degrees.

Parameters
• rad – A pointer to a sensor_value struct, holding the value in radians.

Returns
The converted value, in degrees.
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static inline void sensor_degrees_to_rad(int32_t d, struct sensor_value *rad)
Helper function for converting degrees to radians.

Parameters
• d – The value (in degrees) to be converted.

• rad – A pointer to a sensor_value struct, where the result is stored.

static inline int32_t sensor_rad_to_10udegrees(const struct sensor_value *rad)
Helper function for converting radians to 10 micro degrees.

When the unit is 1 micro degree, the range that the int32_t can represent is +/-2147.483
degrees. In order to increase this range, here we use 10 micro degrees as the unit.

Parameters
• rad – A pointer to a sensor_value struct, holding the value in radians.

Returns
The converted value, in 10 micro degrees.

static inline void sensor_10udegrees_to_rad(int32_t d, struct sensor_value *rad)
Helper function for converting 10 micro degrees to radians.

Parameters
• d – The value (in 10 micro degrees) to be converted.

• rad – A pointer to a sensor_value struct, where the result is stored.

static inline double sensor_value_to_double(const struct sensor_value *val)
Helper function for converting struct sensor_value to double.

Parameters
• val – A pointer to a sensor_value struct.

Returns
The converted value.

static inline float sensor_value_to_float(const struct sensor_value *val)
Helper function for converting struct sensor_value to float.

Parameters
• val – A pointer to a sensor_value struct.

Returns
The converted value.

static inline int sensor_value_from_double(struct sensor_value *val, double inp)
Helper function for converting double to struct sensor_value.

Parameters
• val – A pointer to a sensor_value struct.

• inp – The converted value.

Returns
0 if successful, negative errno code if failure.

static inline int sensor_value_from_float(struct sensor_value *val, float inp)
Helper function for converting float to struct sensor_value.

Parameters
• val – A pointer to a sensor_value struct.

• inp – The converted value.
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Returns
0 if successful, negative errno code if failure.

static inline int64_t sensor_value_to_milli(const struct sensor_value *val)
Helper function for converting struct sensor_value to integer milli units.

Parameters
• val – A pointer to a sensor_value struct.

Returns
The converted value.

static inline int64_t sensor_value_to_micro(const struct sensor_value *val)
Helper function for converting struct sensor_value to integer micro units.

Parameters
• val – A pointer to a sensor_value struct.

Returns
The converted value.

static inline int sensor_value_from_milli(struct sensor_value *val, int64_t milli)
Helper function for converting integer milli units to struct sensor_value.

Parameters
• val – A pointer to a sensor_value struct.

• milli – The converted value.

Returns
0 if successful, negative errno code if failure.

static inline int sensor_value_from_micro(struct sensor_value *val, int64_t micro)
Helper function for converting integer micro units to struct sensor_value.

Parameters
• val – A pointer to a sensor_value struct.

• micro – The converted value.

Returns
0 if successful, negative errno code if failure.

struct sensor_value
#include <sensor.h> Representation of a sensor readout value.

The value is represented as having an integer and a fractional part, and can be ob-
tained using the formula val1 + val2 * 10^(-6). Negative values also adhere to the above
formula, but may need special attention. Here are some examples of the value repre-
sentation:

0.5: val1 = 0, val2 = 500000
-0.5: val1 = 0, val2 = -500000
-1.0: val1 = -1, val2 = 0
-1.5: val1 = -1, val2 = -500000

Public Members

int32_t val1
Integer part of the value.
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int32_t val2
Fractional part of the value (in one-millionth parts).

struct sensor_trigger
#include <sensor.h> Sensor trigger spec.

Public Members

enum sensor_trigger_type type
Trigger type.

enum sensor_channel chan
Channel the trigger is set on.

struct sensor_chan_spec
#include <sensor.h> Sensor Channel Specification.

A sensor channel specification is a unique identifier per sensor device describing a
measurement channel.

Note

Typically passed by value as the size of a sensor_chan_spec is a single word.

Public Members

uint16_t chan_type
A sensor channel type.

uint16_t chan_idx
A sensor channel index.

struct sensor_decoder_api
#include <sensor.h> Decodes a single raw data buffer.

Data buffers are provided on the RTIO context that’s supplied to sensor_read.

Public Members

int (*get_frame_count)(const uint8_t *buffer, struct sensor_chan_spec channel,
uint16_t *frame_count)

Get the number of frames in the current buffer.
Param buffer
[in] The buffer provided on the RTIO context.

Param channel
[in] The channel to get the count for

Param frame_count
[out] The number of frames on the buffer (at least 1)
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Return
0 on success

Return
-ENOTSUP if the channel/channel_idx aren’t found

int (*get_size_info)(struct sensor_chan_spec channel, size_t *base_size, size_t
*frame_size)

Get the size required to decode a given channel.

When decoding a single frame, use base_size. For every additional frame, add
another frame_size. As an example, to decode 3 frames use: ‘base_size + 2 *
frame_size’.

Param channel
[in] The channel to query

Param base_size
[out] The size of decoding the first frame

Param frame_size
[out] The additional size of every additional frame

Return
0 on success

Return
-ENOTSUP if the channel is not supported

int (*decode)(const uint8_t *buffer, struct sensor_chan_spec channel, uint32_t *fit,
uint16_t max_count, void *data_out)

Decode up to max_count samples from the buffer.

Decode samples of channel sensor_channel across multiple frames. If there ex-
ist multiple instances of the same channel, channel_index is used to differentiate
them. As an example, assume a sensor provides 2 distance measurements:

// Decode the first channel instance of 'distance'
decoder->decode(buffer, SENSOR_CHAN_DISTANCE, 0, &fit, 5, out);
...

// Decode the second channel instance of 'distance'
decoder->decode(buffer, SENSOR_CHAN_DISTANCE, 1, &fit, 5, out);

Param buffer
[in] The buffer provided on the RTIO context

Param channel
[in] The channel to decode

Param fit
[inout] The current frame iterator

Parammax_count
[in] The maximum number of channels to decode.

Param data_out
[out] The decoded data

Return
0 no more samples to decode

Return
>0 the number of decoded frames

Return
<0 on error

bool (*has_trigger)(const uint8_t *buffer, enum sensor_trigger_type trigger)
Check if the given trigger type is present.

Param buffer
[in] The buffer provided on the RTIO context
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Param trigger
[in] The trigger type in question

Return
Whether the trigger is present in the buffer

struct sensor_decode_context
#include <sensor.h> Used for iterating over the data frames via the sensor_decoder_api.

Example usage:

(.c)
struct sensor_decode_context ctx = SENSOR_DECODE_CONTEXT_INIT(

decoder, buffer, SENSOR_CHAN_ACCEL_XYZ, 0);

while (true) {
struct sensor_three_axis_data accel_out_data;

num_decoded_channels = sensor_decode(ctx, &accel_out_data, 1);

if (num_decoded_channels <= 0) {
printk("Done decoding buffer\n");
break;

}

printk("Decoded (%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", accel_out_data.
↪→readings[0].x,

accel_out_data.readings[0].y, accel_out_data.readings[0].z);
}

struct sensor_stream_trigger
#include <sensor.h>

struct sensor_read_config
#include <sensor.h>

struct sensor_driver_api
#include <sensor.h>

struct sensor_data_generic_header
#include <sensor.h>

group sensor_emulator_backend
Sensor emulator backend API.

Functions

static inline bool emul_sensor_backend_is_supported(const struct emul *target)
Check if a given sensor emulator supports the backend API.

Parameters
• target – Pointer to emulator instance to query

Returns
True if supported, false if unsupported or if target is NULL.
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static inline int emul_sensor_backend_set_channel(const struct emul *target, struct
sensor_chan_spec ch, const q31_t
*value, int8_t shift)

Set an expected value for a given channel on a given sensor emulator.

Parameters
• target – Pointer to emulator instance to operate on

• ch – Sensor channel to set expected value for

• value – Expected value in fixed-point format using standard SI unit for
sensor type

• shift – Shift value (scaling factor) applied to value
Returns

0 if successful

Returns
-ENOTSUP if no backend API or if channel not supported by emul

Returns
-ERANGE if provided value is not in the sensor’s supported range

static inline int emul_sensor_backend_get_sample_range(const struct emul *target, struct
sensor_chan_spec ch, q31_t
*lower, q31_t *upper, q31_t
*epsilon, int8_t *shift)

Query an emulator for a channel’s supported sample value range and tolerance.

Parameters
• target – Pointer to emulator instance to operate on

• ch – The channel to request info for. If ch is unsupported, return -ENOTSUP
• lower – [out] Minimum supported sample value in SI units, fixed-point

format

• upper – [out] Maximum supported sample value in SI units, fixed-point
format

• epsilon – [out] Tolerance to use comparing expected and actual values
to account for rounding and sensor precision issues. This can usually be
set to the minimum sample value step size. Uses SI units and fixed-point
format.

• shift – [out]The shift value (scaling factor) associated with lower, upper,
and epsilon.

Returns
0 if successful

Returns
-ENOTSUP if no backend API or if channel not supported by emul

static inline int emul_sensor_backend_set_attribute(const struct emul *target, struct
sensor_chan_spec ch, enum
sensor_attribute attribute, const
void *value)

Set the emulator’s attribute values.

Parameters
• target – [in] Pointer to emulator instance to operate on
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• ch – [in] The channel to request info for. If ch is unsupported, return
-ENOTSUP

• attribute – [in] The attribute to set

• value – [in] the value to use (cast according to the channel/attribute pair)

Returns
0 is successful

Returns
< 0 on error

static inline int emul_sensor_backend_get_attribute_metadata(const struct emul *target,
struct sensor_chan_spec
ch, enum
sensor_attribute
attribute, q31_t *min,
q31_t *max, q31_t
*increment, int8_t
*shift)

Get metadata about an attribute.

Information provided by this function includes the minimum/maximum values of the
attribute as well as the increment (value per LSB) which can be used as an epsilon
when comparing results.

Parameters
• target – [in] Pointer to emulator instance to operate on

• ch – [in] The channel to request info for. If ch is unsupported, return
‘-ENOTSUP’

• attribute – [in] The attribute to request info for. If attribute is unsup-
ported, return ‘-ENOTSUP’

• min – [out] The minimum value the attribute can be set to

• max – [out] The maximum value the attribute can be set to

• increment – [out] The value that the attribute increases by for every LSB

• shift – [out] The shift for min, max, and increment
Returns

0 on SUCCESS

Returns
< 0 on error

7.6.45 Serial Peripheral Interface (SPI) Bus

Overview

API Reference

Related code samples

Enhanced Serial Peripheral Interface (eSPI)
Use eSPI to connect to a slave device and exchange virtual wire packets.
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SPI bitbang
Use the bitbang SPI driver for communicating with a slave.

group spi_interface
SPI Interface.

Since
1.0

Version
1.0.0

SPI operational mode

SPI_OP_MODE_MASTER
Master mode.

SPI_OP_MODE_SLAVE
Slave mode.

SPI_OP_MODE_GET(_operation_)
Get SPI operational mode.

SPI Polarity & Phase Modes

SPI_MODE_CPOL
Clock Polarity: if set, clock idle state will be 1 and active state will be 0.

If untouched, the inverse will be true which is the default.

SPI_MODE_CPHA
Clock Phase: this dictates when is the data captured, and depends clock’s polarity.

When SPI_MODE_CPOL is set and this bit as well, capture will occur on low to high
transition and high to low if this bit is not set (default). This is fully reversed if CPOL
is not set.

SPI_MODE_LOOP
Whatever data is transmitted is looped-back to the receiving buffer of the controller.

This is fully controller dependent as some may not support this, and can be used for
testing purposes only.

SPI_MODE_GET(_mode_)
Get SPI polarity and phase mode bits.

SPI Transfer modes (host controller dependent)
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SPI_TRANSFER_MSB
Most significant bit first.

SPI_TRANSFER_LSB
Least significant bit first.

SPI word size

SPI_WORD_SIZE_GET(_operation_)
Get SPI word size.

SPI_WORD_SET(_word_size_)
Set SPI word size.

Specific SPI devices control bits

SPI_HOLD_ON_CS
Requests - if possible - to keep CS asserted after the transaction.

SPI_LOCK_ON
Keep the device locked after the transaction for the current config.

Use this with extreme caution (see spi_release() below) as it will prevent other callers
to access the SPI device until spi_release() is properly called.

SPI_CS_ACTIVE_HIGH
Active high logic on CS.

Usually, and by default, CS logic is active low. However, some devices may require the
reverse logic: active high. This bit will request the controller to use that logic. Note
that not all controllers are able to handle that natively. In this case deferring the CS
control to a gpio line through struct spi_cs_control would be the solution.

SPI MISO lines

Some controllers support dual, quad or octal MISO lines connected to slaves.

Default is single, which is the case most of the time. Without CONFIG_SPI_EXTENDED_MODES
being enabled, single is the only supported one.

SPI_LINES_SINGLE
Single line.

SPI_LINES_DUAL
Dual lines.

SPI_LINES_QUAD
Quad lines.
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SPI_LINES_OCTAL
Octal lines.

SPI_LINES_MASK
Mask for MISO lines in spi_operation_t.

SPI duplex mode

Some controllers support half duplex transfer, which results in 3-wire usage.

By default, full duplex will prevail.

SPI_FULL_DUPLEX

SPI_HALF_DUPLEX

SPI Frame Format

2 frame formats are exposed: Motorola and TI.

The main difference is the behavior of the CS line. In Motorola it stays active the whole
transfer. In TI, it’s active only one serial clock period prior to actually make the transfer, it
is thus inactive during the transfer, which ends when the clocks ends as well. By default, as
it is the most commonly used, the Motorola frame format will prevail.

SPI_FRAME_FORMAT_MOTOROLA

SPI_FRAME_FORMAT_TI

Defines

SPI_CS_GPIOS_DT_SPEC_GET(spi_dev)
Get a struct gpio_dt_spec for a SPI device’s chip select pin.

Example devicetree fragment:

gpio1: gpio@abcd0001 { ... };

gpio2: gpio@abcd0002 { ... };

spi@abcd0003 {
compatible = "vnd,spi";
cs-gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 20 GPIO_ACTIVE_LOW>;

a: spi-dev-a@0 {
reg = <0>;

};

b: spi-dev-b@1 {
reg = <1>;

};
};
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Example usage:

SPI_CS_GPIOS_DT_SPEC_GET(DT_NODELABEL(a)) \
// { DEVICE_DT_GET(DT_NODELABEL(gpio1)), 10, GPIO_ACTIVE_LOW }

SPI_CS_GPIOS_DT_SPEC_GET(DT_NODELABEL(b)) \
// { DEVICE_DT_GET(DT_NODELABEL(gpio2)), 20, GPIO_ACTIVE_LOW }

Parameters
• spi_dev – a SPI device node identifier

Returns
gpio_dt_spec struct corresponding with spi_dev’s chip select

SPI_CS_GPIOS_DT_SPEC_INST_GET(inst)
Get a struct gpio_dt_spec for a SPI device’s chip select pin.

This is equivalent to SPI_CS_GPIOS_DT_SPEC_GET(DT_DRV_INST(inst)).

Parameters
• inst – Devicetree instance number

Returns
gpio_dt_spec struct corresponding with spi_dev’s chip select

SPI_CS_CONTROL_INIT(node_id, delay_)
Initialize and get a pointer to a spi_cs_control from a devicetree node identifier.

This helper is useful for initializing a device on a SPI bus. It initializes a struct
spi_cs_control and returns a pointer to it. Here, node_id is a node identifier for a SPI
device, not a SPI controller.

Example devicetree fragment:

spi@abcd0001 {
cs-gpios = <&gpio0 1 GPIO_ACTIVE_LOW>;
spidev: spi-device@0 { ... };

};

Example usage:

struct spi_cs_control ctrl =
SPI_CS_CONTROL_INIT(DT_NODELABEL(spidev), 2);

This example is equivalent to:

struct spi_cs_control ctrl = {
.gpio = SPI_CS_GPIOS_DT_SPEC_GET(DT_NODELABEL(spidev)),
.delay = 2,

};

Parameters
• node_id – Devicetree node identifier for a device on a SPI bus

• delay_ – The delay field to set in the spi_cs_control
Returns

a pointer to the spi_cs_control structure
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SPI_CS_CONTROL_INIT_INST(inst, delay_)
Get a pointer to a spi_cs_control from a devicetree node.

This is equivalent to SPI_CS_CONTROL_INIT(DT_DRV_INST(inst), delay).

Therefore, DT_DRV_COMPAT must already be defined before using this macro.

Parameters
• inst – Devicetree node instance number

• delay_ – The delay field to set in the spi_cs_control
Returns

a pointer to the spi_cs_control structure

SPI_CONFIG_DT(node_id, operation_, delay_)
Structure initializer for spi_config from devicetree.

This helper macro expands to a static initializer for a struct spi_config by reading
the relevant frequency, slave, and cs data from the devicetree.

Parameters
• node_id – Devicetree node identifier for the SPI device whose struct
spi_config to create an initializer for

• operation_ – the desired operation field in the struct spi_config

• delay_ – the desired delay field in the struct spi_config’s spi_cs_control,
if there is one

SPI_CONFIG_DT_INST(inst, operation_, delay_)
Structure initializer for spi_config from devicetree instance.

This is equivalent to SPI_CONFIG_DT(DT_DRV_INST(inst), operation_, delay_).

Parameters
• inst – Devicetree instance number

• operation_ – the desired operation field in the struct spi_config

• delay_ – the desired delay field in the struct spi_config’s spi_cs_control,
if there is one

SPI_DT_SPEC_GET(node_id, operation_, delay_)
Structure initializer for spi_dt_spec from devicetree.

This helper macro expands to a static initializer for a struct spi_dt_spec by reading
the relevant bus, frequency, slave, and cs data from the devicetree.

Important: multiple fields are automatically constructed by this macro which must be
checked before use. spi_is_ready_dt performs the required device_is_ready checks.

Parameters
• node_id – Devicetree node identifier for the SPI device whose struct
spi_dt_spec to create an initializer for

• operation_ – the desired operation field in the struct spi_config

• delay_ – the desired delay field in the struct spi_config’s spi_cs_control,
if there is one

SPI_DT_SPEC_INST_GET(inst, operation_, delay_)
Structure initializer for spi_dt_spec from devicetree instance.

This is equivalent to SPI_DT_SPEC_GET(DT_DRV_INST(inst), operation_, delay_).

Parameters
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• inst – Devicetree instance number

• operation_ – the desired operation field in the struct spi_config

• delay_ – the desired delay field in the struct spi_config’s spi_cs_control,
if there is one

SPI_DEVICE_DT_DEFINE(node_id, init_fn, pm, data, config, level, prio, api, ...)

SPI_STATS_RX_BYTES_INC(dev_)

SPI_STATS_TX_BYTES_INC(dev_)

SPI_STATS_TRANSFER_ERROR_INC(dev_)

spi_transceive_stats(dev, error, tx_bufs, rx_bufs)

SPI_DT_IODEV_DEFINE(name, node_id, operation_, delay_)
Define an iodev for a given dt node on the bus.

These do not need to be shared globally but doing so will save a small amount of mem-
ory.

Parameters
• name – Symbolic name to use for defining the iodev

• node_id – Devicetree node identifier

• operation_ – SPI operational mode

• delay_ – Chip select delay in microseconds

Typedefs

typedef uint16_t spi_operation_t
Opaque type to hold the SPI operation flags.

typedef int (*spi_api_io)(const struct device *dev, const struct spi_config *config, const
struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs)

Callback API for I/O See spi_transceive() for argument descriptions.

Callback API for asynchronous I/O See spi_transceive_signal() for argument descrip-
tions.

typedef void (*spi_callback_t)(const struct device *dev, int result, void *data)
SPI callback for asynchronous transfer requests.

Param dev
SPI device which is notifying of transfer completion or error

Param result
Result code of the transfer request. 0 is success, -errno for failure.

Param data
Transfer requester supplied data which is passed along to the callback.

typedef int (*spi_api_io_async)(const struct device *dev, const struct spi_config *config,
const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void
*userdata)

3622 Chapter 7. Hardware Support



Zephyr Project Documentation, Release 3.7.99

typedef int (*spi_api_release)(const struct device *dev, const struct spi_config *config)
Callback API for unlocking SPI device.

See spi_release() for argument descriptions

Functions

static inline bool spi_cs_is_gpio(const struct spi_config *config)
Check if SPI CS is controlled using a GPIO.

Parameters
• config – SPI configuration.

Returns
true If CS is controlled using a GPIO.

Returns
false If CS is controlled by hardware or any other means.

static inline bool spi_cs_is_gpio_dt(const struct spi_dt_spec *spec)
Check if SPI CS in spi_dt_spec is controlled using a GPIO.

Parameters
• spec – SPI specification from devicetree.

Returns
true If CS is controlled using a GPIO.

Returns
false If CS is controlled by hardware or any other means.

static inline bool spi_is_ready_dt(const struct spi_dt_spec *spec)
Validate that SPI bus (and CS gpio if defined) is ready.

Parameters
• spec – SPI specification from devicetree

Return values
• true – if the SPI bus is ready for use.

• false – if the SPI bus (or the CS gpio defined) is not ready for use.

int spi_transceive(const struct device *dev, const struct spi_config *config, const struct
spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs)

Read/write the specified amount of data from the SPI driver.

Note

This function is synchronous.

Parameters
• dev – Pointer to the device structure for the driver instance

• config – Pointer to a valid spi_config structure instance. Pointer-
comparison may be used to detect changes from previous operations.

• tx_bufs – Buffer array where data to be sent originates from, or NULL if
none.
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• rx_bufs – Buffer array where data to be read will be written to, or NULL
if none.

Return values
• frames – Positive number of frames received in slave mode.

• 0 – If successful in master mode.

• -errno – Negative errno code on failure.

static inline int spi_transceive_dt(const struct spi_dt_spec *spec, const struct spi_buf_set
*tx_bufs, const struct spi_buf_set *rx_bufs)

Read/write data from an SPI bus specified in spi_dt_spec.

This is equivalent to:

spi_transceive(spec->bus, &spec->config, tx_bufs, rx_bufs);

Parameters
• spec – SPI specification from devicetree

• tx_bufs – Buffer array where data to be sent originates from, or NULL if
none.

• rx_bufs – Buffer array where data to be read will be written to, or NULL
if none.

Returns
a value from spi_transceive().

static inline int spi_read(const struct device *dev, const struct spi_config *config, const
struct spi_buf_set *rx_bufs)

Read the specified amount of data from the SPI driver.

Note

This function is synchronous.

Note

This function is a helper function calling spi_transceive.

Parameters
• dev – Pointer to the device structure for the driver instance

• config – Pointer to a valid spi_config structure instance. Pointer-
comparison may be used to detect changes from previous operations.

• rx_bufs – Buffer array where data to be read will be written to.

Return values
• frames – Positive number of frames received in slave mode.

• 0 – If successful.

• -errno – Negative errno code on failure.
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static inline int spi_read_dt(const struct spi_dt_spec *spec, const struct spi_buf_set
*rx_bufs)

Read data from a SPI bus specified in spi_dt_spec.

This is equivalent to:

spi_read(spec->bus, &spec->config, rx_bufs);

Parameters
• spec – SPI specification from devicetree

• rx_bufs – Buffer array where data to be read will be written to.

Returns
a value from spi_read().

static inline int spi_write(const struct device *dev, const struct spi_config *config, const
struct spi_buf_set *tx_bufs)

Write the specified amount of data from the SPI driver.

Note

This function is synchronous.

Note

This function is a helper function calling spi_transceive.

Parameters
• dev – Pointer to the device structure for the driver instance

• config – Pointer to a valid spi_config structure instance. Pointer-
comparison may be used to detect changes from previous operations.

• tx_bufs – Buffer array where data to be sent originates from.

Return values
• 0 – If successful.

• -errno – Negative errno code on failure.

static inline int spi_write_dt(const struct spi_dt_spec *spec, const struct spi_buf_set
*tx_bufs)

Write data to a SPI bus specified in spi_dt_spec.

This is equivalent to:

spi_write(spec->bus, &spec->config, tx_bufs);

Parameters
• spec – SPI specification from devicetree

• tx_bufs – Buffer array where data to be sent originates from.

Returns
a value from spi_write().
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static inline int spi_transceive_cb(const struct device *dev, const struct spi_config
*config, const struct spi_buf_set *tx_bufs, const struct
spi_buf_set *rx_bufs, spi_callback_t callback, void
*userdata)

Read/write the specified amount of data from the SPI driver.

Note

This function is asynchronous.

Note

This function is available only if CONFIG_SPI_ASYNC is selected.

Parameters
• dev – Pointer to the device structure for the driver instance

• config – Pointer to a valid spi_config structure instance. Pointer-
comparison may be used to detect changes from previous operations.

• tx_bufs – Buffer array where data to be sent originates from, or NULL if
none.

• rx_bufs – Buffer array where data to be read will be written to, or NULL
if none.

• callback – Function pointer to completion callback. (Note: if NULL this
function will not notify the end of the transaction, and whether it went
successfully or not).

• userdata – Userdata passed to callback

Return values
• frames – Positive number of frames received in slave mode.

• 0 – If successful in master mode.

• -errno – Negative errno code on failure.

static inline int spi_transceive_signal(const struct device *dev, const struct spi_config
*config, const struct spi_buf_set *tx_bufs, const
struct spi_buf_set *rx_bufs, struct k_poll_signal
*sig)

Read/write the specified amount of data from the SPI driver.

Note

This function is asynchronous.

Note

This function is available only if CONFIG_SPI_ASYNC and CONFIG_POLL are selected.

Parameters
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• dev – Pointer to the device structure for the driver instance

• config – Pointer to a valid spi_config structure instance. Pointer-
comparison may be used to detect changes from previous operations.

• tx_bufs – Buffer array where data to be sent originates from, or NULL if
none.

• rx_bufs – Buffer array where data to be read will be written to, or NULL
if none.

• sig – A pointer to a valid and ready to be signaled struct k_poll_signal.
(Note: if NULL this function will not notify the end of the transaction,
and whether it went successfully or not).

Return values
• frames – Positive number of frames received in slave mode.

• 0 – If successful in master mode.

• -errno – Negative errno code on failure.

static inline int spi_read_signal(const struct device *dev, const struct spi_config *config,
const struct spi_buf_set *rx_bufs, struct k_poll_signal
*sig)

Read the specified amount of data from the SPI driver.

Note

This function is asynchronous.

Note

This function is a helper function calling spi_transceive_signal.

Note

This function is available only if CONFIG_SPI_ASYNC and CONFIG_POLL are selected.

Parameters
• dev – Pointer to the device structure for the driver instance

• config – Pointer to a valid spi_config structure instance. Pointer-
comparison may be used to detect changes from previous operations.

• rx_bufs – Buffer array where data to be read will be written to.

• sig – A pointer to a valid and ready to be signaled struct k_poll_signal.
(Note: if NULL this function will not notify the end of the transaction,
and whether it went successfully or not).

Return values
• frames – Positive number of frames received in slave mode.

• 0 – If successful

• -errno – Negative errno code on failure.
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static inline int spi_write_signal(const struct device *dev, const struct spi_config *config,
const struct spi_buf_set *tx_bufs, struct k_poll_signal
*sig)

Write the specified amount of data from the SPI driver.

Note

This function is asynchronous.

Note

This function is a helper function calling spi_transceive_signal.

Note

This function is available only if CONFIG_SPI_ASYNC and CONFIG_POLL are selected.

Parameters
• dev – Pointer to the device structure for the driver instance

• config – Pointer to a valid spi_config structure instance. Pointer-
comparison may be used to detect changes from previous operations.

• tx_bufs – Buffer array where data to be sent originates from.

• sig – A pointer to a valid and ready to be signaled struct k_poll_signal.
(Note: if NULL this function will not notify the end of the transaction,
and whether it went successfully or not).

Return values
• 0 – If successful.

• -errno – Negative errno code on failure.

static inline void spi_iodev_submit(struct rtio_iodev_sqe *iodev_sqe)
Submit a SPI device with a request.

Parameters
• iodev_sqe – Prepared submissions queue entry connected to an iodev de-

fined by SPI_IODEV_DEFINE. Must live as long as the request is in flight.

static inline bool spi_is_ready_iodev(const struct rtio_iodev *spi_iodev)
Validate that SPI bus (and CS gpio if defined) is ready.

Parameters
• spi_iodev – SPI iodev defined with SPI_DT_IODEV_DEFINE

Return values
• true – if the SPI bus is ready for use.

• false – if the SPI bus (or the CS gpio defined) is not ready for use.

static inline int spi_rtio_copy(struct rtio *r, struct rtio_iodev *iodev, const struct
spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs,
struct rtio_sqe **last_sqe)

Copy the tx_bufs and rx_bufs into a set of RTIO requests.
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Parameters
• r – [in] rtio context

• iodev – [in] iodev to transceive with

• tx_bufs – [in] transmit buffer set

• rx_bufs – [in] receive buffer set

• last_sqe – [out] last sqe submitted, NULL if not enough memory

Return values
• Number – of submission queue entries

• -ENOMEM – out of memory

int spi_release(const struct device *dev, const struct spi_config *config)
Release the SPI device locked on and/or the CS by the current config.

Note: This synchronous function is used to release either the lock on the SPI device
and/or the CS line that was kept if, and if only, given config parameter was the last
one to be used (in any of the above functions) and if it has the SPI_LOCK_ON bit set
and/or the SPI_HOLD_ON_CS bit set into its operation bits field. This can be used if the
caller needs to keep its hand on the SPI device for consecutive transactions and/or if it
needs the device to stay selected. Usually both bits will be used along each other, so the
the device is locked and stays on until another operation is necessary or until it gets
released with the present function.

Parameters
• dev – Pointer to the device structure for the driver instance

• config – Pointer to a valid spi_config structure instance.

Return values
• 0 – If successful.

• -errno – Negative errno code on failure.

static inline int spi_release_dt(const struct spi_dt_spec *spec)
Release the SPI device specified in spi_dt_spec.

This is equivalent to:

spi_release(spec->bus, &spec->config);

Parameters
• spec – SPI specification from devicetree

Returns
a value from spi_release().

Variables

const struct rtio_iodev_api spi_iodev_api

struct spi_cs_control
#include <spi.h> SPI Chip Select control structure.

This can be used to control a CS line via a GPIO line, instead of using the controller
inner CS logic.
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Public Members

struct gpio_dt_spec gpio
GPIO devicetree specification of CS GPIO.

The device pointer can be set to NULL to fully inhibit CS control if necessary.
The GPIO flags GPIO_ACTIVE_LOW/GPIO_ACTIVE_HIGH should be equivalent to
SPI_CS_ACTIVE_HIGH/SPI_CS_ACTIVE_LOW options in struct spi_config.

uint32_t delay
Delay in microseconds to wait before starting the transmission and before releas-
ing the CS line.

struct spi_config
#include <spi.h> SPI controller configuration structure.

Public Members

uint32_t frequency
Bus frequency in Hertz.

spi_operation_t operation
Operation flags.

It is a bit field with the following parts:

• 0: Master or slave.
• 1..3: Polarity, phase and loop mode.
• 4: LSB or MSB first.
• 5..10: Size of a data frame in bits.
• 11: Full/half duplex.
• 12: Hold on the CS line if possible.
• 13: Keep resource locked for the caller.
• 14: Active high CS logic.
• 15: Motorola or TI frame format (optional).

If CONFIG_SPI_EXTENDED_MODES is enabled:

• 16..17: MISO lines (Single/Dual/Quad/Octal).
• 18..31: Reserved for future use.

uint16_t slave
Slave number from 0 to host controller slave limit.

struct spi_cs_control cs
GPIO chip-select line (optional, must be initialized to zero if not used).

struct spi_dt_spec
#include <spi.h> Complete SPI DT information.
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Public Members

const struct device *bus
SPI bus.

struct spi_config config
Slave specific configuration.

struct spi_buf
#include <spi.h> SPI buffer structure.

Public Members

void *buf
Valid pointer to a data buffer, or NULL otherwise.

size_t len
Length of the buffer buf.

If buf is NULL, length which as to be sent as dummy bytes (as TX buffer) or the
length of bytes that should be skipped (as RX buffer).

struct spi_buf_set
#include <spi.h> SPI buffer array structure.

Public Members

const struct spi_buf *buffers
Pointer to an array of spi_buf , or NULL.

size_t count
Length of the array pointed by buffers.

struct spi_driver_api
#include <spi.h> SPI driver API This is the mandatory API any SPI driver needs to ex-
pose.

7.6.46 System Management Bus (SMBus)

• Overview

• SMBus Controller API

• Configuration Options

• API Reference
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Overview

System Management Bus (SMBus) is derived from I2C for communication with devices on the
motherboard. A system may use SMBus to communicate with the peripherals on the mother-
board without using dedicated control lines. SMBus peripherals can provide various manufac-
turer information, report errors, accept control parameters, etc.

Devices on the bus can operate in three roles: as a Controller that initiates transactions and
controls the clock, a Peripheral that responds to transaction commands, or a Host, which is a
specialized Controller, that provides the main interface to the system’s CPU. Zephyr has API for
the Controller role.

SMBus peripheral devices can initiate communication with Controller with two methods:

• Host Notify protocol: Peripheral device that supports the Host Notify protocol behaves as
a Controller to perform the notification. It writes a three-bytes message to a special address
“SMBus Host (0x08)” with own address and two bytes of relevant data.

• SMBALERT# signal: Peripheral device uses special signal SMBALERT# to request attention
from the Controller. The Controller needs to read one byte from the special “SMBus Alert
Response Address (ARA) (0x0c)”. The peripheral device responds with a data byte contain-
ing its own address.

Currently, the API is based on SMBus Specification version 2.0

Note

See Rule A.2: Inclusive Language for information about the terminology used in this API.

SMBus Controller API

Zephyr’s SMBus controller API is used when an SMBus device controls the bus, particularly the
start and stop conditions and the clock. This is the most common mode used to interact with
SMBus peripherals.

Configuration Options

Related configuration options:

• CONFIG_SMBUS

API Reference

Related code samples

SMBus shell
Interact with SMBus peripherals using shell commands.

group smbus_interface
SMBus Interface.

Since
3.4
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Version
0.1.0

SMBus read / write direction

enum smbus_direction
SMBus read / write direction.

Values:

enumerator SMBUS_MSG_WRITE = 0
Write a message to SMBus peripheral.

enumerator SMBUS_MSG_READ = 1
Read a message from SMBus peripheral.

SMBus Protocol commands

SMBus Specification defines the following SMBus protocols operations

SMBUS_CMD_QUICK
SMBus Quick protocol is a very simple command with no data sent or received.

Peripheral may denote only R/W bit, which can still be used for the peripheral man-
agement, for example to switch peripheral On/Off. Quick protocol can also be used for
peripheral devices scanning.

0 1
0 1 2 3 4 5 6 7 8 9 0
+-+-+-+-+-+-+-+-+-+-+-+
|S| Periph Addr |D|A|P|
+-+-+-+-+-+-+-+-+-+-+-+

SMBUS_CMD_BYTE
SMBus Byte protocol can send or receive one byte of data.

Byte Write

0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| Periph Addr |W|A| Command code |A|P|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Byte Read

0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| Periph Addr |R|A| Byte received |N|P|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

SMBUS_CMD_BYTE_DATA
SMBus Byte Data protocol sends the first byte (command) followed by read or write
one byte.
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Byte Data Write

0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| Periph Addr |W|A| Command code |A| Data Write |A|P|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Byte Data Read

0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| Periph Addr |W|A| Command code |A|S| Periph Addr |R|A|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data Read |N|P|
+-+-+-+-+-+-+-+-+-+-+

SMBUS_CMD_WORD_DATA
SMBus Word Data protocol sends the first byte (command) followed by read or write
two bytes.

Word Data Write

0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| Periph Addr |W|A| Command code |A| Data Write Low|A|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data Write Hi |A|P|
+-+-+-+-+-+-+-+-+-+-+

Word Data Read

0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| Periph Addr |W|A| Command code |A|S| Periph Addr |R|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A| Data Read Low |A| Data Read Hi |N|P|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

SMBUS_CMD_PROC_CALL
SMBus Process Call protocol is Write Word followed by Read Word.

It is named so because the command sends data and waits for the peripheral to return
a reply.

0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| Periph Addr |W|A| Command code |A| Data Write Low|A|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data Write Hi |A|S| Periph Addr |R|A| Data Read Low |A|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data Read Hi |N|P|
+-+-+-+-+-+-+-+-+-+-+

SMBUS_CMD_BLOCK
SMBus Block protocol reads or writes a block of data up to 32 bytes.
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The Count byte specifies the amount of data.

SMBus Block Write

0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| Periph Addr |W|A| Command code |A| Send Count=N |A|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data Write 1 |A| ... |A| Data Write N |A|P|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

SMBus Block Read

0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| Periph Addr |W|A| Command code |A|S| Periph Addr |R|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A| Recv Count=N |A| Data Read 1 |A| ... |A|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data Read N |N|P|
+-+-+-+-+-+-+-+-+-+-+

SMBUS_CMD_BLOCK_PROC
SMBus Block Write - Block Read Process Call protocol is Block Write followed by Block
Read.

0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| Periph Addr |W|A| Command code |A| Count = N |A|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data Write 1 |A| ... |A| Data Write N |A|S|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Periph Addr |R|A| Recv Count=N |A| Data Read 1 |A| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |A| Data Read N |N|P|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

SMBus device functionality

The following parameters describe the functionality of the SMBus device

SMBUS_MODE_CONTROLLER
Peripheral to act as Controller.

SMBUS_MODE_PEC
Support Packet Error Code (PEC) checking.

SMBUS_MODE_HOST_NOTIFY
Support Host Notify functionality.

SMBUS_MODE_SMBALERT
Support SMBALERT signal functionality.
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SMBus special reserved addresses

The following addresses are reserved by SMBus specification

SMBUS_ADDRESS_ARA
Alert Response Address (ARA)

A broadcast address used by the system host as part of the Alert Response Protocol.

Defines

SMBUS_BLOCK_BYTES_MAX
Maximum number of bytes in SMBus Block protocol.

SMBUS_DT_SPEC_GET(node_id)
Structure initializer for smbus_dt_spec from devicetree.

This helper macro expands to a static initializer for a struct smbus_dt_spec by reading
the relevant bus and address data from the devicetree.

Parameters
• node_id – Devicetree node identifier for the SMBus device whose struct
smbus_dt_spec to create an initializer for

SMBUS_DT_SPEC_INST_GET(inst)
Structure initializer for smbus_dt_spec from devicetree instance.

This is equivalent to SMBUS_DT_SPEC_GET(DT_DRV_INST(inst)).

Parameters
• inst – Devicetree instance number

SMBUS_DEVICE_DT_DEFINE(node_id, init_fn, pm_device, data_ptr, cfg_ptr, level, prio, api_ptr,
...)

Like DEVICE_DT_DEFINE() with SMBus specifics.

Defines a device which implements the SMBus API. May generate a custom de-
vice_state container struct and init_fn wrapper when needed depending on SMBus
CONFIG_SMBUS_STATS .

Parameters
• node_id – The devicetree node identifier.

• init_fn – Name of the init function of the driver.

• pm_device – PM device resources reference (NULL if device does not use
PM).

• data_ptr – Pointer to the device’s private data.

• cfg_ptr – The address to the structure containing the configuration in-
formation for this instance of the driver.

• level – The initialization level. See SYS_INIT() for details.

• prio – Priority within the selected initialization level. See SYS_INIT() for
details.

• api_ptr – Provides an initial pointer to the API function struct used by
the driver. Can be NULL.
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SMBUS_DEVICE_DT_INST_DEFINE(inst, ...)
Like SMBUS_DEVICE_DT_DEFINE() for an instance of a DT_DRV_COMPAT compatible.

Parameters
• inst – instance number. This is replaced by DT_DRV_COMPAT(inst) in the

call to SMBUS_DEVICE_DT_DEFINE().

• ... – other parameters as expected by SMBUS_DEVICE_DT_DEFINE().

Typedefs

typedef void (*smbus_callback_handler_t)(const struct device *dev, struct smbus_callback
*cb, uint8_t addr)

Define SMBus callback handler function signature.

Param dev
Pointer to the device structure for the SMBus driver instance.

Param cb
Structure smbus_callback owning this handler.

Param addr
Address of the SMBus peripheral device.

Functions

static inline void smbus_xfer_stats(const struct device *dev, uint8_t sent, uint8_t recv)
Updates the SMBus stats.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance to

update stats for.

• sent – Number of bytes sent

• recv – Number of bytes received

int smbus_configure(const struct device *dev, uint32_t dev_config)
Configure operation of a SMBus host controller.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance.

• dev_config – Bit-packed 32-bit value to the device runtime configuration
for the SMBus controller.

Return values
• 0 – If successful.

• -EIO – General input / output error.

int smbus_get_config(const struct device *dev, uint32_t *dev_config)
Get configuration of a SMBus host controller.

This routine provides a way to get current configuration. It is allowed to call the func-
tion before smbus_configure, because some SMBus ports can be configured during init
process. However, if the SMBus port is not configured, smbus_get_config returns an
error.
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smbus_get_config can return cached config or probe hardware, but it has to be up to
date with current configuration.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance.

• dev_config – Pointer to return bit-packed 32-bit value of the SMBus con-
troller configuration.

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ENOSYS – If function smbus_get_config() is not implemented by the driver.

static inline int smbus_smbalert_set_cb(const struct device *dev, struct smbus_callback
*cb)

Add SMBUSALERT callback for a SMBus host controller.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance.

• cb – Pointer to a callback structure.

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ENOSYS – If function smbus_smbalert_set_cb() is not implemented by the
driver.

int smbus_smbalert_remove_cb(const struct device *dev, struct smbus_callback *cb)
Remove SMBUSALERT callback from a SMBus host controller.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance.

• cb – Pointer to a callback structure.

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ENOSYS – If function smbus_smbalert_remove_cb() is not implemented by
the driver.

static inline int smbus_host_notify_set_cb(const struct device *dev, struct
smbus_callback *cb)

Add Host Notify callback for a SMBus host controller.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance.

• cb – Pointer to a callback structure.

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ENOSYS – If function smbus_host_notify_set_cb() is not implemented by
the driver.

3638 Chapter 7. Hardware Support



Zephyr Project Documentation, Release 3.7.99

int smbus_host_notify_remove_cb(const struct device *dev, struct smbus_callback *cb)
Remove Host Notify callback from a SMBus host controller.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance.

• cb – Pointer to a callback structure.

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ENOSYS – If function smbus_host_notify_remove_cb() is not implemented
by the driver.

int smbus_quick(const struct device *dev, uint16_t addr, enum smbus_direction direction)
Perform SMBus Quick operation.

This routine provides a generic interface to perform SMBus Quick operation.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance.

driver configured in controller mode.

• addr – Address of the SMBus peripheral device.

• direction – Direction Read or Write.

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ENOSYS – If function smbus_quick() is not implemented by the driver.

int smbus_byte_write(const struct device *dev, uint16_t addr, uint8_t byte)
Perform SMBus Byte Write operation.

This routine provides a generic interface to perform SMBus Byte Write operation.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance.

• addr – Address of the SMBus peripheral device.

• byte – Byte to be sent to the peripheral device.

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ENOSYS – If function smbus_byte_write() is not implemented by the
driver.

int smbus_byte_read(const struct device *dev, uint16_t addr, uint8_t *byte)
Perform SMBus Byte Read operation.

This routine provides a generic interface to perform SMBus Byte Read operation.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance.

• addr – Address of the SMBus peripheral device.

• byte – Byte received from the peripheral device.
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Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ENOSYS – If function smbus_byte_read() is not implemented by the driver.

int smbus_byte_data_write(const struct device *dev, uint16_t addr, uint8_t cmd, uint8_t
byte)

Perform SMBus Byte Data Write operation.

This routine provides a generic interface to perform SMBus Byte Data Write operation.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance.

• addr – Address of the SMBus peripheral device.

• cmd – Command byte which is sent to peripheral device first.

• byte – Byte to be sent to the peripheral device.

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ENOSYS – If function smbus_byte_data_write() is not implemented by the
driver.

int smbus_byte_data_read(const struct device *dev, uint16_t addr, uint8_t cmd, uint8_t
*byte)

Perform SMBus Byte Data Read operation.

This routine provides a generic interface to perform SMBus Byte Data Read operation.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance.

• addr – Address of the SMBus peripheral device.

• cmd – Command byte which is sent to peripheral device first.

• byte – Byte received from the peripheral device.

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ENOSYS – If function smbus_byte_data_read() is not implemented by the
driver.

int smbus_word_data_write(const struct device *dev, uint16_t addr, uint8_t cmd, uint16_t
word)

Perform SMBus Word Data Write operation.

This routine provides a generic interface to perform SMBus Word Data Write opera-
tion.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance.

• addr – Address of the SMBus peripheral device.

• cmd – Command byte which is sent to peripheral device first.
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• word – Word (16-bit) to be sent to the peripheral device.

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ENOSYS – If function smbus_word_data_write() is not implemented by the
driver.

int smbus_word_data_read(const struct device *dev, uint16_t addr, uint8_t cmd, uint16_t
*word)

Perform SMBus Word Data Read operation.

This routine provides a generic interface to perform SMBus Word Data Read operation.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance.

• addr – Address of the SMBus peripheral device.

• cmd – Command byte which is sent to peripheral device first.

• word – Word (16-bit) received from the peripheral device.

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ENOSYS – If function smbus_word_data_read() is not implemented by the
driver.

int smbus_pcall(const struct device *dev, uint16_t addr, uint8_t cmd, uint16_t send_word,
uint16_t *recv_word)

Perform SMBus Process Call operation.

This routine provides a generic interface to perform SMBus Process Call operation,
which means Write 2 bytes following by Read 2 bytes.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance.

• addr – Address of the SMBus peripheral device.

• cmd – Command byte which is sent to peripheral device first.

• send_word – Word (16-bit) to be sent to the peripheral device.

• recv_word – Word (16-bit) received from the peripheral device.

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ENOSYS – If function smbus_pcall() is not implemented by the driver.

int smbus_block_write(const struct device *dev, uint16_t addr, uint8_t cmd, uint8_t count,
uint8_t *buf)

Perform SMBus Block Write operation.

This routine provides a generic interface to perform SMBus Block Write operation.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance.
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• addr – Address of the SMBus peripheral device.

• cmd – Command byte which is sent to peripheral device first.

• count – Size of the data block buffer. Maximum 32 bytes.

• buf – Data block buffer to be sent to the peripheral device.

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ENOSYS – If function smbus_block_write() is not implemented by the
driver.

int smbus_block_read(const struct device *dev, uint16_t addr, uint8_t cmd, uint8_t *count,
uint8_t *buf)

Perform SMBus Block Read operation.

This routine provides a generic interface to perform SMBus Block Read operation.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance.

• addr – Address of the SMBus peripheral device.

• cmd – Command byte which is sent to peripheral device first.

• count – Size of the data peripheral sent. Maximum 32 bytes.

• buf – Data block buffer received from the peripheral device.

Return values
• 0 – If successful.

• -EIO – General input / output error.

• -ENOSYS – If function smbus_block_read() is not implemented by the
driver.

int smbus_block_pcall(const struct device *dev, uint16_t addr, uint8_t cmd, uint8_t
snd_count, uint8_t *snd_buf, uint8_t *rcv_count, uint8_t *rcv_buf)

Perform SMBus Block Process Call operation.

This routine provides a generic interface to perform SMBus Block Process Call opera-
tion. This operation is basically Block Write followed by Block Read.

Parameters
• dev – Pointer to the device structure for the SMBus driver instance.

• addr – Address of the SMBus peripheral device.

• cmd – Command byte which is sent to peripheral device first.

• snd_count – Size of the data block buffer to send.

• snd_buf – Data block buffer send to the peripheral device.

• rcv_count – Size of the data peripheral sent.

• rcv_buf – Data block buffer received from the peripheral device.

Return values
• 0 – If successful.

• -EIO – General input / output error.
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• -ENOSYS – If function smbus_block_pcall() is not implemented by the
driver.

struct smbus_callback
#include <smbus.h> SMBus callback structure.

Used to register a callback in the driver instance callback list. As many callbacks
as needed can be added as long as each of them is a unique pointer of struct sm-
bus_callback.

Note: Such struct should not be allocated on stack.

Public Members

sys_snode_t node
This should be used in driver for a callback list management.

smbus_callback_handler_t handler
Actual callback function being called when relevant.

uint8_t addr
Peripheral device address.

struct smbus_dt_spec
#include <smbus.h> Complete SMBus DT information.

Public Members

const struct device *bus
SMBus bus.

uint16_t addr
Address of the SMBus peripheral device.

7.6.47 Universal Asynchronous Receiver-Transmitter (UART)

Overview

Zephyr provides three different ways to access the UART peripheral. Depending on the method,
different API functions are used according to below sections:

1. Polling API

2. Interrupt-driven API

3. Asynchronous API using Direct Memory Access (DMA)

Polling is the most basic method to access the UART peripheral. The reading function,
uart_poll_in, is a non-blocking function and returns a character or -1 when no valid data is avail-
able. The writing function, uart_poll_out, is a blocking function and the thread waits until the
given character is sent.
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With the Interrupt-driven API, possibly slow communication can happen in the background
while the thread continues with other tasks. The Kernel’s Data Passing features can be used
to communicate between the thread and the UART driver.

The Asynchronous API allows to read and write data in the background using DMA without
interrupting the MCU at all. However, the setup is more complex than the other methods.

Warning

Interrupt-driven API and the Asynchronous API should NOT be used at the same time for the
same hardware peripheral, since both APIs require hardware interrupts to function prop-
erly. Using the callbacks for both APIs would result in interference between each other. CON-
FIG_UART_EXCLUSIVE_API_CALLBACKS is enabled by default so that only the callbacks associ-
ated with one API is active at a time.

Configuration Options

Most importantly, the Kconfig options define whether the polling API (default), the interrupt-
driven API or the asynchronous API can be used. Only enable the features you need in order to
minimize memory footprint.

Related configuration options:

• CONFIG_SERIAL
• CONFIG_UART_INTERRUPT_DRIVEN
• CONFIG_UART_ASYNC_API
• CONFIG_UART_WIDE_DATA
• CONFIG_UART_USE_RUNTIME_CONFIGURE
• CONFIG_UART_LINE_CTRL
• CONFIG_UART_DRV_CMD

API Reference

Related code samples

802.15.4 ”serial-radio”
Implement a slip-radio device for Contiki-based border routers.

Native TTY UART
Use native TTY driver to send and receive data between two UART-to-USB bridge don-
gles.

STM32 single-wire UART
Use single-wire/half-duplex UART functionality of STM32 devices.

UART Passthrough
Pass data directly between the console and another UART interface.

UART echo
Read data from the console and echo it back.

USB CDC-ACM
Use USB CDC-ACM driver to implement a serial port echo.
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group uart_interface
UART Interface.

Since
1.0

Version
1.0.0

Enums

enum uart_line_ctrl
Line control signals.

Values:

enumerator UART_LINE_CTRL_BAUD_RATE = BIT(0)
Baud rate.

enumerator UART_LINE_CTRL_RTS = BIT(1)
Request To Send (RTS)

enumerator UART_LINE_CTRL_DTR = BIT(2)
Data Terminal Ready (DTR)

enumerator UART_LINE_CTRL_DCD = BIT(3)
Data Carrier Detect (DCD)

enumerator UART_LINE_CTRL_DSR = BIT(4)
Data Set Ready (DSR)

enum uart_rx_stop_reason
Reception stop reasons.

Values that correspond to events or errors responsible for stopping receiving.

Values:

enumerator UART_ERROR_OVERRUN = (1 « 0)
Overrun error.

enumerator UART_ERROR_PARITY = (1 « 1)
Parity error.

enumerator UART_ERROR_FRAMING = (1 « 2)
Framing error.

enumerator UART_BREAK = (1 « 3)
Break interrupt.

A break interrupt was received. This happens when the serial input is held at a
logic ‘0’ state for longer than the sum of start time + data bits + parity + stop bits.
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enumerator UART_ERROR_COLLISION = (1 « 4)
Collision error.

This error is raised when transmitted data does not match received data. Typically
this is useful in scenarios where the TX and RX lines maybe connected together
such as RS-485 half-duplex. This error is only valid on UARTs that support collision
checking.

enumerator UART_ERROR_NOISE = (1 « 5)
Noise error.

enum uart_config_parity
Parity modes.

Values:

enumerator UART_CFG_PARITY_NONE
No parity.

enumerator UART_CFG_PARITY_ODD
Odd parity.

enumerator UART_CFG_PARITY_EVEN
Even parity.

enumerator UART_CFG_PARITY_MARK
Mark parity.

enumerator UART_CFG_PARITY_SPACE
Space parity.

enum uart_config_stop_bits
Number of stop bits.

Values:

enumerator UART_CFG_STOP_BITS_0_5
0.5 stop bit

enumerator UART_CFG_STOP_BITS_1
1 stop bit

enumerator UART_CFG_STOP_BITS_1_5
1.5 stop bits

enumerator UART_CFG_STOP_BITS_2
2 stop bits

enum uart_config_data_bits
Number of data bits.

Values:
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enumerator UART_CFG_DATA_BITS_5
5 data bits

enumerator UART_CFG_DATA_BITS_6
6 data bits

enumerator UART_CFG_DATA_BITS_7
7 data bits

enumerator UART_CFG_DATA_BITS_8
8 data bits

enumerator UART_CFG_DATA_BITS_9
9 data bits

enum uart_config_flow_control
Hardware flow control options.

With flow control set to none, any operations related to flow control signals can be
managed by user with uart_line_ctrl functions. In other cases, flow control is managed
by hardware/driver.

Values:

enumerator UART_CFG_FLOW_CTRL_NONE
No flow control.

enumerator UART_CFG_FLOW_CTRL_RTS_CTS
RTS/CTS flow control.

enumerator UART_CFG_FLOW_CTRL_DTR_DSR
DTR/DSR flow control.

enumerator UART_CFG_FLOW_CTRL_RS485
RS485 flow control.

Functions

int uart_err_check(const struct device *dev)
Check whether an error was detected.

Parameters
• dev – UART device instance.

Return values
• 0 – If no error was detected.

• err – Error flags as defined in uart_rx_stop_reason

• -ENOSYS – If not implemented.
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int uart_configure(const struct device *dev, const struct uart_config *cfg)
Set UART configuration.

Sets UART configuration using data from *cfg.

Parameters
• dev – UART device instance.

• cfg – UART configuration structure.

Return values
• 0 – If successful.

• -errno – Negative errno code in case of failure.

• -ENOSYS – If configuration is not supported by device or driver does not
support setting configuration in runtime.

• -ENOTSUP – If API is not enabled.

int uart_config_get(const struct device *dev, struct uart_config *cfg)
Get UART configuration.

Stores current UART configuration to *cfg, can be used to retrieve initial configuration
after device was initialized using data from DTS.

Parameters
• dev – UART device instance.

• cfg – UART configuration structure.

Return values
• 0 – If successful.

• -errno – Negative errno code in case of failure.

• -ENOSYS – If driver does not support getting current configuration.

• -ENOTSUP – If API is not enabled.

int uart_line_ctrl_set(const struct device *dev, uint32_t ctrl, uint32_t val)
Manipulate line control for UART.

Parameters
• dev – UART device instance.

• ctrl – The line control to manipulate (see enum uart_line_ctrl).

• val – Value to set to the line control.

Return values
• 0 – If successful.

• -ENOSYS – If this function is not implemented.

• -ENOTSUP – If API is not enabled.

• -errno – Other negative errno value in case of failure.

int uart_line_ctrl_get(const struct device *dev, uint32_t ctrl, uint32_t *val)
Retrieve line control for UART.

Parameters
• dev – UART device instance.

• ctrl – The line control to retrieve (see enum uart_line_ctrl).
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• val – Pointer to variable where to store the line control value.

Return values
• 0 – If successful.

• -ENOSYS – If this function is not implemented.

• -ENOTSUP – If API is not enabled.

• -errno – Other negative errno value in case of failure.

int uart_drv_cmd(const struct device *dev, uint32_t cmd, uint32_t p)
Send extra command to driver.

Implementation and accepted commands are driver specific. Refer to the drivers for
more information.

Parameters
• dev – UART device instance.

• cmd – Command to driver.

• p – Parameter to the command.

Return values
• 0 – If successful.

• -ENOSYS – If this function is not implemented.

• -ENOTSUP – If API is not enabled.

• -errno – Other negative errno value in case of failure.

struct uart_config
#include <uart.h> UART controller configuration structure.

Public Members

uint32_t baudrate
Baudrate setting in bps.

uint8_t parity
Parity bit, use uart_config_parity.

uint8_t stop_bits
Stop bits, use uart_config_stop_bits.

uint8_t data_bits
Data bits, use uart_config_data_bits.

uint8_t flow_ctrl
Flow control setting, use uart_config_flow_control.

Polling API

group uart_polling
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Functions

int uart_poll_in(const struct device *dev, unsigned char *p_char)
Read a character from the device for input.

This routine checks if the receiver has valid data. When the receiver has valid data,
it reads a character from the device, stores to the location pointed to by p_char, and
returns 0 to the calling thread. It returns -1, otherwise. This function is a non-blocking
call.

Parameters
• dev – UART device instance.

• p_char – Pointer to character.

Return values
• 0 – If a character arrived.

• -1 – If no character was available to read (i.e. the UART input buffer was
empty).

• -ENOSYS – If the operation is not implemented.

• -EBUSY – If async reception was enabled using uart_rx_enable

int uart_poll_in_u16(const struct device *dev, uint16_t *p_u16)
Read a 16-bit datum from the device for input.

This routine checks if the receiver has valid data. When the receiver has valid data, it
reads a 16-bit datum from the device, stores to the location pointed to by p_u16, and
returns 0 to the calling thread. It returns -1, otherwise. This function is a non-blocking
call.

Parameters
• dev – UART device instance.

• p_u16 – Pointer to 16-bit data.

Return values
• 0 – If data arrived.

• -1 – If no data was available to read (i.e., the UART input buffer was
empty).

• -ENOTSUP – If API is not enabled.

• -ENOSYS – If the function is not implemented.

• -EBUSY – If async reception was enabled using uart_rx_enable

void uart_poll_out(const struct device *dev, unsigned char out_char)
Write a character to the device for output.

This routine checks if the transmitter is full. When the transmitter is not full, it writes
a character to the data register. It waits and blocks the calling thread, otherwise. This
function is a blocking call.

To send a character when hardware flow control is enabled, the handshake signal CTS
must be asserted.

Parameters
• dev – UART device instance.

• out_char – Character to send.
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void uart_poll_out_u16(const struct device *dev, uint16_t out_u16)
Write a 16-bit datum to the device for output.

This routine checks if the transmitter is full. When the transmitter is not full, it writes
a 16-bit datum to the data register. It waits and blocks the calling thread, otherwise.
This function is a blocking call.

To send a datum when hardware flow control is enabled, the handshake signal CTS
must be asserted.

Parameters
• dev – UART device instance.

• out_u16 – Wide data to send.

Interrupt-driven API

group uart_interrupt

Typedefs

typedef void (*uart_irq_callback_user_data_t)(const struct device *dev, void *user_data)
Define the application callback function signature for
uart_irq_callback_user_data_set() function.

Param dev
UART device instance.

Param user_data
Arbitrary user data.

typedef void (*uart_irq_config_func_t)(const struct device *dev)
For configuring IRQ on each individual UART device.

Param dev
UART device instance.

Functions

static inline int uart_fifo_fill(const struct device *dev, const uint8_t *tx_data, int size)
Fill FIFO with data.

This function is expected to be called from UART interrupt handler (ISR), if
uart_irq_tx_ready() returns true. Result of calling this function not from an ISR is
undefined (hardware-dependent). Likewise, not calling this function from an ISR if
uart_irq_tx_ready() returns true may lead to undefined behavior, e.g. infinite inter-
rupt loops. It’s mandatory to test return value of this function, as different hardware
has different FIFO depth (oftentimes just 1).

Parameters
• dev – UART device instance.

• tx_data – Data to transmit.

• size – Number of bytes to send.

Return values
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• -ENOSYS – if this function is not supported

• -ENOTSUP – If API is not enabled.

Returns
Number of bytes sent.

static inline int uart_fifo_fill_u16(const struct device *dev, const uint16_t *tx_data, int
size)

Fill FIFO with wide data.

This function is expected to be called from UART interrupt handler (ISR), if
uart_irq_tx_ready() returns true. Result of calling this function not from an ISR is
undefined (hardware-dependent). Likewise, not calling this function from an ISR if
uart_irq_tx_ready() returns true may lead to undefined behavior, e.g. infinite inter-
rupt loops. It’s mandatory to test return value of this function, as different hardware
has different FIFO depth (oftentimes just 1).

Parameters
• dev – UART device instance.

• tx_data – Wide data to transmit.

• size – Number of datum to send.

Return values
• -ENOSYS – If this function is not implemented

• -ENOTSUP – If API is not enabled.

Returns
Number of datum sent.

static inline int uart_fifo_read(const struct device *dev, uint8_t *rx_data, const int size)
Read data from FIFO.

This function is expected to be called from UART interrupt handler (ISR), if
uart_irq_rx_ready() returns true. Result of calling this function not from an ISR is
undefined (hardware-dependent). It’s unspecified whether “RX ready” condition as
returned by uart_irq_rx_ready() is level- or edge- triggered. That means that once
uart_irq_rx_ready() is detected, uart_fifo_read() must be called until it reads all avail-
able data in the FIFO (i.e. until it returns less data than was requested).

Parameters
• dev – UART device instance.

• rx_data – Data container.

• size – Container size.

Return values
• -ENOSYS – If this function is not implemented.

• -ENOTSUP – If API is not enabled.

Returns
Number of bytes read.

static inline int uart_fifo_read_u16(const struct device *dev, uint16_t *rx_data, const int
size)

Read wide data from FIFO.

This function is expected to be called from UART interrupt handler (ISR), if
uart_irq_rx_ready() returns true. Result of calling this function not from an ISR is
undefined (hardware-dependent). It’s unspecified whether “RX ready” condition as
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returned by uart_irq_rx_ready() is level- or edge- triggered. That means that once
uart_irq_rx_ready() is detected, uart_fifo_read() must be called until it reads all avail-
able data in the FIFO (i.e. until it returns less data than was requested).

Parameters
• dev – UART device instance.

• rx_data – Wide data container.

• size – Container size.

Return values
• -ENOSYS – If this function is not implemented.

• -ENOTSUP – If API is not enabled.

Returns
Number of datum read.

void uart_irq_tx_enable(const struct device *dev)
Enable TX interrupt in IER.

Parameters
• dev – UART device instance.

void uart_irq_tx_disable(const struct device *dev)
Disable TX interrupt in IER.

Parameters
• dev – UART device instance.

static inline int uart_irq_tx_ready(const struct device *dev)
Check if UART TX buffer can accept a new char.

Check if UART TX buffer can accept at least one character for transmission (i.e.
uart_fifo_fill() will succeed and return non-zero). This function must be called in a
UART interrupt handler, or its result is undefined. Before calling this function in the
interrupt handler, uart_irq_update() must be called once per the handler invocation.

Parameters
• dev – UART device instance.

Return values
• 1 – If TX interrupt is enabled and at least one char can be written to UART.

• 0 – If device is not ready to write a new byte.

• -ENOSYS – If this function is not implemented.

• -ENOTSUP – If API is not enabled.

void uart_irq_rx_enable(const struct device *dev)
Enable RX interrupt.

Parameters
• dev – UART device instance.

void uart_irq_rx_disable(const struct device *dev)
Disable RX interrupt.

Parameters
• dev – UART device instance.
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static inline int uart_irq_tx_complete(const struct device *dev)
Check if UART TX block finished transmission.

Check if any outgoing data buffered in UART TX block was fully transmitted and TX
block is idle. When this condition is true, UART device (or whole system) can be power
off. Note that this function is not useful to check if UART TX can accept more data,
use uart_irq_tx_ready() for that. This function must be called in a UART interrupt han-
dler, or its result is undefined. Before calling this function in the interrupt handler,
uart_irq_update() must be called once per the handler invocation.

Parameters
• dev – UART device instance.

Return values
• 1 – If nothing remains to be transmitted.

• 0 – If transmission is not completed.

• -ENOSYS – If this function is not implemented.

• -ENOTSUP – If API is not enabled.

static inline int uart_irq_rx_ready(const struct device *dev)
Check if UART RX buffer has a received char.

Check if UART RX buffer has at least one pending character (i.e. uart_fifo_read() will
succeed and return non-zero). This function must be called in a UART interrupt han-
dler, or its result is undefined. Before calling this function in the interrupt handler,
uart_irq_update() must be called once per the handler invocation. It’s unspecified
whether condition as returned by this function is level- or edge- triggered (i.e. if this
function returns true when RX FIFO is non-empty, or when a new char was received
since last call to it). See description of uart_fifo_read() for implication of this.

Parameters
• dev – UART device instance.

Return values
• 1 – If a received char is ready.

• 0 – If a received char is not ready.

• -ENOSYS – If this function is not implemented.

• -ENOTSUP – If API is not enabled.

void uart_irq_err_enable(const struct device *dev)
Enable error interrupt.

Parameters
• dev – UART device instance.

void uart_irq_err_disable(const struct device *dev)
Disable error interrupt.

Parameters
• dev – UART device instance.

int uart_irq_is_pending(const struct device *dev)
Check if any IRQs is pending.

Parameters
• dev – UART device instance.
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Return values
• 1 – If an IRQ is pending.

• 0 – If an IRQ is not pending.

• -ENOSYS – If this function is not implemented.

• -ENOTSUP – If API is not enabled.

int uart_irq_update(const struct device *dev)
Start processing interrupts in ISR.

This function should be called the first thing in the ISR. Calling uart_irq_rx_ready(),
uart_irq_tx_ready(), uart_irq_tx_complete() allowed only after this.

The purpose of this function is:

• For devices with auto-acknowledge of interrupt status on register read to cache
the value of this register (rx_ready, etc. then use this case).

• For devices with explicit acknowledgment of interrupts, to ack any pending inter-
rupts and likewise to cache the original value.

• For devices with implicit acknowledgment, this function will be empty. But the ISR
must perform the actions needs to ack the interrupts (usually, call uart_fifo_read()
on rx_ready, and uart_fifo_fill() on tx_ready).

Parameters
• dev – UART device instance.

Return values
• 1 – On success.

• -ENOSYS – If this function is not implemented.

• -ENOTSUP – If API is not enabled.

static inline int uart_irq_callback_user_data_set(const struct device *dev,
uart_irq_callback_user_data_t cb, void
*user_data)

Set the IRQ callback function pointer.

This sets up the callback for IRQ. When an IRQ is triggered, the specified function will
be called with specified user data. See description of uart_irq_update() for the require-
ments on ISR.

Parameters
• dev – UART device instance.

• cb – Pointer to the callback function.

• user_data – Data to pass to callback function.

Return values
• 0 – On success.

• -ENOSYS – If this function is not implemented.

• -ENOTSUP – If API is not enabled.
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static inline int uart_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb)

Set the IRQ callback function pointer (legacy).

This sets up the callback for IRQ. When an IRQ is triggered, the specified function will
be called with the device pointer.

Parameters
• dev – UART device instance.

• cb – Pointer to the callback function.

Return values
• 0 – On success.

• -ENOSYS – If this function is not implemented.

• -ENOTSUP – If API is not enabled.

Asynchronous API

group uart_async

Since
1.14

Version
0.8.0

Typedefs

typedef void (*uart_callback_t)(const struct device *dev, struct uart_event *evt, void
*user_data)

Define the application callback function signature for uart_callback_set() function.

Param dev
UART device instance.

Param evt
Pointer to uart_event instance.

Param user_data
Pointer to data specified by user.

Enums

enum uart_event_type
Types of events passed to callback in UART_ASYNC_API.

Receiving:

a. To start receiving, uart_rx_enable has to be called with first buffer

b. When receiving starts to current buffer, UART_RX_BUF_REQUEST will be gener-
ated, in response to that user can either:

• Provide second buffer using uart_rx_buf_rsp, when first buffer is filled, receiv-
ing will automatically start to second buffer.
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• Ignore the event, this way when current buffer is filled UART_RX_RDY event
will be generated and receiving will be stopped.

c. If some data was received and timeout occurred UART_RX_RDY event will be gen-
erated. It can happen multiples times for the same buffer. RX timeout is counted
from last byte received i.e. if no data was received, there won’t be any timeout
event.

d. UART_RX_BUF_RELEASED event will be generated when the current buffer is no
longer used by the driver. It will immediately follow UART_RX_RDY event. De-
pending on the implementation buffer may be released when it is completely or
partially filled.

e. If there was second buffer provided, it will become current buffer and we start
again at point 2. If no second buffer was specified receiving is stopped and
UART_RX_DISABLED event is generated. After that whole process can be repeated.

Any time during reception UART_RX_STOPPED event can occur. if there is any
data received, UART_RX_RDY event will be generated. It will be followed by
UART_RX_BUF_RELEASED event for every buffer currently passed to driver and finally
by UART_RX_DISABLED event.

Receiving can be disabled using uart_rx_disable, after calling that function, if there is
any data received, UART_RX_RDY event will be generated. UART_RX_BUF_RELEASED
event will be generated for every buffer currently passed to driver and finally
UART_RX_DISABLED event will occur.

Transmitting:

a. Transmitting starts by uart_tx function.

b. If whole buffer was transmitted UART_TX_DONE is generated. If timeout occurred
UART_TX_ABORTED will be generated.

Transmitting can be aborted using uart_tx_abort, after calling that function
UART_TX_ABORTED event will be generated.

Values:

enumerator UART_TX_DONE
Whole TX buffer was transmitted.

enumerator UART_TX_ABORTED
Transmitting aborted due to timeout or uart_tx_abort call.

When flow control is enabled, there is a possibility that TX transfer won’t finish in
the allotted time. Some data may have been transferred, information about it can
be found in event data.

enumerator UART_RX_RDY
Received data is ready for processing.

This event is generated in the following cases:
• When RX timeout occurred, and data was stored in provided buffer. This can

happen multiple times in the same buffer.
• When provided buffer is full.
• After uart_rx_disable().
• After stopping due to external event (UART_RX_STOPPED).

enumerator UART_RX_BUF_REQUEST
Driver requests next buffer for continuous reception.
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This event is triggered when receiving has started for a new buffer, i.e. it’s time
to provide a next buffer for a seamless switchover to it. For continuous reliable
receiving, user should provide another RX buffer in response to this event, using
uart_rx_buf_rsp function

If uart_rx_buf_rsp is not called before current buffer is filled up, receiving will stop.

enumerator UART_RX_BUF_RELEASED
Buffer is no longer used by UART driver.

enumerator UART_RX_DISABLED
RX has been disabled and can be reenabled.

This event is generated whenever receiver has been stopped, disabled or finished
its operation and can be enabled again using uart_rx_enable

enumerator UART_RX_STOPPED
RX has stopped due to external event.

Reason is one of uart_rx_stop_reason.

Functions

static inline int uart_callback_set(const struct device *dev, uart_callback_t callback, void
*user_data)

Set event handler function.

Since it is mandatory to set callback to use other asynchronous functions, it can be
used to detect if the device supports asynchronous API. Remaining API does not have
that detection.

Parameters
• dev – UART device instance.

• callback – Event handler.

• user_data – Data to pass to event handler function.

Return values
• 0 – If successful.

• -ENOSYS – If not supported by the device.

• -ENOTSUP – If API not enabled.

int uart_tx(const struct device *dev, const uint8_t *buf, size_t len, int32_t timeout)
Send given number of bytes from buffer through UART.

Function returns immediately and event handler, set using uart_callback_set, is called
after transfer is finished.

Parameters
• dev – UART device instance.

• buf – Pointer to transmit buffer.

• len – Length of transmit buffer.

• timeout – Timeout in microseconds. Valid only if flow control is enabled.
SYS_FOREVER_US disables timeout.

Return values
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• 0 – If successful.

• -ENOTSUP – If API is not enabled.

• -EBUSY – If There is already an ongoing transfer.

• -errno – Other negative errno value in case of failure.

int uart_tx_u16(const struct device *dev, const uint16_t *buf, size_t len, int32_t timeout)
Send given number of datum from buffer through UART.

Function returns immediately and event handler, set using uart_callback_set, is called
after transfer is finished.

Parameters
• dev – UART device instance.

• buf – Pointer to wide data transmit buffer.

• len – Length of wide data transmit buffer.

• timeout – Timeout in milliseconds. Valid only if flow control is enabled.
SYS_FOREVER_MS disables timeout.

Return values
• 0 – If successful.

• -ENOTSUP – If API is not enabled.

• -EBUSY – If there is already an ongoing transfer.

• -errno – Other negative errno value in case of failure.

int uart_tx_abort(const struct device *dev)
Abort current TX transmission.

UART_TX_DONE event will be generated with amount of data sent.

Parameters
• dev – UART device instance.

Return values
• 0 – If successful.

• -ENOTSUP – If API is not enabled.

• -EFAULT – There is no active transmission.

• -errno – Other negative errno value in case of failure.

int uart_rx_enable(const struct device *dev, uint8_t *buf, size_t len, int32_t timeout)
Start receiving data through UART.

Function sets given buffer as first buffer for receiving and returns immediately. Af-
ter that event handler, set using uart_callback_set, is called with UART_RX_RDY or
UART_RX_BUF_REQUEST events.

Parameters
• dev – UART device instance.

• buf – Pointer to receive buffer.

• len – Buffer length.

• timeout – Inactivity period after receiving at least a byte which triggers
UART_RX_RDY event. Given in microseconds. SYS_FOREVER_US disables
timeout. See uart_event_type for details.
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Return values
• 0 – If successful.

• -ENOTSUP – If API is not enabled.

• -EBUSY – RX already in progress.

• -errno – Other negative errno value in case of failure.

int uart_rx_enable_u16(const struct device *dev, uint16_t *buf, size_t len, int32_t timeout)
Start receiving wide data through UART.

Function sets given buffer as first buffer for receiving and returns immediately. Af-
ter that event handler, set using uart_callback_set, is called with UART_RX_RDY or
UART_RX_BUF_REQUEST events.

Parameters
• dev – UART device instance.

• buf – Pointer to wide data receive buffer.

• len – Buffer length.

• timeout – Inactivity period after receiving at least a byte which triggers
UART_RX_RDY event. Given in milliseconds. SYS_FOREVER_MS disables
timeout. See uart_event_type for details.

Return values
• 0 – If successful.

• -ENOTSUP – If API is not enabled.

• -EBUSY – RX already in progress.

• -errno – Other negative errno value in case of failure.

static inline int uart_rx_buf_rsp(const struct device *dev, uint8_t *buf, size_t len)
Provide receive buffer in response to UART_RX_BUF_REQUEST event.

Provide pointer to RX buffer, which will be used when current buffer is filled.

Note

Providing buffer that is already in usage by driver leads to undefined behavior.
Buffer can be reused when it has been released by driver.

Parameters
• dev – UART device instance.

• buf – Pointer to receive buffer.

• len – Buffer length.

Return values
• 0 – If successful.

• -ENOTSUP – If API is not enabled.

• -EBUSY – Next buffer already set.

• -EACCES – Receiver is already disabled (function called too late?).

• -errno – Other negative errno value in case of failure.
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static inline int uart_rx_buf_rsp_u16(const struct device *dev, uint16_t *buf, size_t len)
Provide wide data receive buffer in response to UART_RX_BUF_REQUEST event.

Provide pointer to RX buffer, which will be used when current buffer is filled.

Note

Providing buffer that is already in usage by driver leads to undefined behavior.
Buffer can be reused when it has been released by driver.

Parameters
• dev – UART device instance.

• buf – Pointer to wide data receive buffer.

• len – Buffer length.

Return values
• 0 – If successful.

• -ENOTSUP – If API is not enabled

• -EBUSY – Next buffer already set.

• -EACCES – Receiver is already disabled (function called too late?).

• -errno – Other negative errno value in case of failure.

int uart_rx_disable(const struct device *dev)
Disable RX.

UART_RX_BUF_RELEASED event will be generated for every buffer scheduled, after
that UART_RX_DISABLED event will be generated. Additionally, if there is any pend-
ing received data, the UART_RX_RDY event for that data will be generated before the
UART_RX_BUF_RELEASED events.

Parameters
• dev – UART device instance.

Return values
• 0 – If successful.

• -ENOTSUP – If API is not enabled.

• -EFAULT – There is no active reception.

• -errno – Other negative errno value in case of failure.

struct uart_event_tx
#include <uart.h> UART TX event data.

Public Members

const uint8_t *buf
Pointer to current buffer.

size_t len
Number of bytes sent.
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struct uart_event_rx
#include <uart.h> UART RX event data.

The data represented by the event is stored in rx.buf[rx.offset] to
rx.buf[rx.offset+rx.len]. That is, the length is relative to the offset.

Public Members

uint8_t *buf
Pointer to current buffer.

size_t offset
Currently received data offset in bytes.

size_t len
Number of new bytes received.

struct uart_event_rx_buf
#include <uart.h> UART RX buffer released event data.

Public Members

uint8_t *buf
Pointer to buffer that is no longer in use.

struct uart_event_rx_stop
#include <uart.h> UART RX stopped data.

Public Members

enum uart_rx_stop_reason reason
Reason why receiving stopped.

struct uart_event_rx data
Last received data.

struct uart_event
#include <uart.h> Structure containing information about current event.

Public Members

enum uart_event_type type
Type of event.

union uart_event_data
#include <uart.h> Event data.

3662 Chapter 7. Hardware Support



Zephyr Project Documentation, Release 3.7.99

Public Members

struct uart_event_tx tx
UART_TX_DONE and UART_TX_ABORTED events data.

struct uart_event_rx rx
UART_RX_RDY event data.

struct uart_event_rx_buf rx_buf
UART_RX_BUF_RELEASED event data.

struct uart_event_rx_stop rx_stop
UART_RX_STOPPED event data.

7.6.48 USB-C VBUS

Overview

USB-C VBUS is the line in a USB Type-C connection that delivers power from a Source to a Sink
device.

USB-C VBUS API The USB-C VBUS device driver presents an API that’s used to control and mea-
sure VBUS.

Configuration Options

Related configuration options:

• CONFIG_USBC_VBUS_DRIVER

API Reference

group usbc_vbus_api
USB-C VBUS API.

Since
3.3

Version
0.1.0

Functions

static inline bool usbc_vbus_check_level(const struct device *dev, enum tc_vbus_level
level)

Checks if VBUS is at a particular level.

Parameters
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• dev – Runtime device structure

• level – The level voltage to check against

Return values
• true – if VBUS is at the level voltage

• false – if VBUS is not at that level voltage

static inline int usbc_vbus_measure(const struct device *dev, int *meas)
Reads and returns VBUS measured in mV.

Parameters
• dev – Runtime device structure

• meas – pointer where the measured VBUS voltage is stored

Return values
• 0 – on success

• -EIO – on failure

static inline int usbc_vbus_discharge(const struct device *dev, bool enable)
Controls a pin that discharges VBUS.

Parameters
• dev – Runtime device structure

• enable – Discharge VBUS when true

Return values
• 0 – on success

• -EIO – on failure

• -ENOENT – if discharge pin isn’t defined

static inline int usbc_vbus_enable(const struct device *dev, bool enable)
Controls a pin that enables VBUS measurements.

Parameters
• dev – Runtime device structure

• enable – enable VBUS measurements when true

Return values
• 0 – on success

• -EIO – on failure

• -ENOENT – if enable pin isn’t defined

struct usbc_vbus_driver_api
#include <usbc_vbus.h>

7.6.49 USB Type-C Port Controller (TCPC)

Overview

TCPC (USB Type-C Port Controller) The TCPC is a device used to simplify the implementation of
a USB-C system by providing the following three function:
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• VBUS and VCONN control USB Type-C: The TCPC may provide a Source device, the mecha-
nism to control VBUS sourcing, and a Sink device, the mechanism to control VBUS sinking.
A similar mechanism is provided for the control of VCONN.

• CC control and sensing: The TCPC implements logic for controlling the CC pin pull-up and
pull-down resistors. It also provides a way to sense and report what resistors are present
on the CC pin.

• Power Delivery message reception and transmission USB Power Delivery: The TCPC sends
and receives messages constructed in the TCPM and places them on the CC lines.

TCPC API The TCPC device driver functions as the liaison between the TCPC device and the
application software; this is accomplished by the Zephyr’s API provided by the device driver
that’s used to communicate with and control the TCPC device.

Configuration Options

Related configuration options:

• CONFIG_USBC_TCPC_DRIVER

API Reference

group usb_type_c
USB Type-C.

Defines

TC_V_SINK_DISCONNECT_MIN_MV
VBUS minimum for a sink disconnect detection.

See Table 4-3 VBUS Sink Characteristics

TC_V_SINK_DISCONNECT_MAX_MV
VBUS maximum for a sink disconnect detection.

See Table 4-3 VBUS Sink Characteristics

TC_T_VBUS_ON_MAX_MS
From entry to Attached.SRC until VBUS reaches the minimum vSafe5V threshold as
measured at the source’s receptacle See Table 4-29 VBUS and VCONN Timing Parame-
ters.

TC_T_VBUS_OFF_MAX_MS
From the time the Sink is detached until the Source removes VBUS and reaches vSafe0V
(See USB PD).

See Table 4-29 VBUS and VCONN Timing Parameters

TC_T_VCONN_ON_MAX_MS
From the time the Source supplied VBUS in the Attached.SRC state.

See Table 4-29 VBUS and VCONN Timing Parameters
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TC_T_VCONN_ON_PA_MAX_MS
From the time a Sink with accessory support enters the PoweredAccessory state until
the Sink sources minimum VCONN voltage (see Table 4-5) See Table 4-29 VBUS and
VCONN Timing Parameters.

TC_T_VCONN_OFF_MAX_MS
From the time that a Sink is detached or as directed until the VCONN supply is discon-
nected.

See Table 4-29 VBUS and VCONN Timing Parameters

TC_T_SINK_ADJ_MAX_MS
Response time for a Sink to adjust its current consumption to be in the specified range
due to a change in USB Type-C Current advertisement See Table 4-29 VBUS and VCONN
Timing Parameters.

TC_T_DRP_MIN_MS
The minimum period a DRP shall complete a Source to Sink and back advertisement
See Table 4-30 DRP Timing Parameters.

TC_T_DRP_MAX_MS
The maximum period a DRP shall complete a Source to Sink and back advertisement
See Table 4-30 DRP Timing Parameters.

TC_T_DRP_TRANSITION_MIN_MS
The minimum time a DRP shall complete transitions between Source and Sink roles
during role resolution See Table 4-30 DRP Timing Parameters.

TC_T_DRP_TRANSITION_MAX_MS
The maximum time a DRP shall complete transitions between Source and Sink roles
during role resolution See Table 4-30 DRP Timing Parameters.

TC_T_DRP_TRY_MIN_MS
Minimum wait time associated with the Try.SRC state.

See Table 4-30 DRP Timing Parameters

TC_T_DRP_TRY_MAX_MS
Maximum wait time associated with the Try.SRC state.

See Table 4-30 DRP Timing Parameters

TC_T_DRP_TRY_WAIT_MIN_MS
Minimum wait time associated with the Try.SNK state.

See Table 4-30 DRP Timing Parameters

TC_T_DRP_TRY_WAIT_MAX_MS
Maximum wait time associated with the Try.SNK state.

See Table 4-30 DRP Timing Parameters
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TC_T_TRY_TIMEOUT_MIN_MS
Minimum timeout for transition from Try.SRC to TryWait.SNK.

See Table 4-30 DRP Timing Parameters

TC_T_TRY_TIMEOUT_MAX_MS
Maximum timeout for transition from Try.SRC to TryWait.SNK.

See Table 4-30 DRP Timing Parameters

TC_T_VPD_DETACH_MIN_MS
Minimum Time for a DRP to detect that the connected Charge-Through VCONNPow-
ered USB Device has been detached, after VBUS has been removed.

See Table 4-30 DRP Timing Parameters

TC_T_VPD_DETACH_MAX_MS
Maximum Time for a DRP to detect that the connected Charge-Through VCONNPow-
ered USB Device has been detached, after VBUS has been removed.

See Table 4-30 DRP Timing Parameters

TC_T_CC_DEBOUNCE_MIN_MS
Minimum time a port shall wait before it can determine it is attached See Table 4-31
CC Timing.

TC_T_CC_DEBOUNCE_MAX_MS
Maximum time a port shall wait before it can determine it is attached See Table 4-31
CC Timing.

TC_T_PD_DEBOUNCE_MIN_MS
Minimum time a Sink port shall wait before it can determine it is detached due to the
potential for USB PD signaling on CC as described in the state definitions.

See Table 4-31 CC Timing

TC_T_PD_DEBOUNCE_MAX_MS
Maximum time a Sink port shall wait before it can determine it is detached due to the
potential for USB PD signaling on CC as described in the state definitions.

See Table 4-31 CC Timing

TC_T_TRY_CC_DEBOUNCE_MIN_MS
Minimum Time a port shall wait before it can determine it is re-attached during the
try-wait process.

See Table 4-31 CC Timing

TC_T_TRY_CC_DEBOUNCE_MAX_MS
Maximum Time a port shall wait before it can determine it is re-attached during the
try-wait process.

See Table 4-31 CC Timing
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TC_T_ERROR_RECOVERY_SELF_POWERED_MIN_MS
Minimum time a self-powered port shall remain in the ErrorRecovery state.

See Table 4-31 CC Timing

TC_T_ERROR_RECOVERY_SOURCE_MIN_MS
Minimum time a source shall remain in the ErrorRecovery state if it was sourcing
VCONN in the previous state.

See Table 4-31 CC Timing

TC_T_RP_VALUE_CHANGE_MIN_MS
Minimum time a Sink port shall wait before it can determine there has been a change
in Rp where CC is not BMC Idle or the port is unable to detect BMC Idle.

See Table 4-31 CC Timing

TC_T_RP_VALUE_CHANGE_MAX_MS
Maximum time a Sink port shall wait before it can determine there has been a change
in Rp where CC is not BMC Idle or the port is unable to detect BMC Idle.

See Table 4-31 CC Timing

TC_T_SRC_DISCONNECT_MIN_MS
Minimum time a Source shall detect the SRC.Open state.

The Source should detect the SRC.Open state as quickly as practical. See Table 4-31 CC
Timing

TC_T_SRC_DISCONNECT_MAX_MS
Maximum time a Source shall detect the SRC.Open state.

The Source should detect the SRC.Open state as quickly as practical. See Table 4-31 CC
Timing

TC_T_NO_TOGGLE_CONNECT_MIN_MS
Minimum time to detect connection when neither Port Partner is toggling.

See Table 4-31 CC Timing

TC_T_NO_TOGGLE_CONNECT_MAX_MS
Maximum time to detect connection when neither Port Partner is toggling.

See Table 4-31 CC Timing

TC_T_ONE_PORT_TOGGLE_CONNECT_MIN_MS
Minimum time to detect connection when one Port Partner is toggling 0ms … dc-
SRC.DRP max * tDRP max + 2 * tNoToggleConnect).

See Table 4-31 CC Timing

TC_T_ONE_PORT_TOGGLE_CONNECT_MAX_MS
Maximum time to detect connection when one Port Partner is toggling 0ms … dc-
SRC.DRP max * tDRP max + 2 * tNoToggleConnect).

See Table 4-31 CC Timing
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TC_T_TWO_PORT_TOGGLE_CONNECT_MIN_MS
Minimum time to detect connection when both Port Partners are toggling (0ms … 5 *
tDRP max + 2 * tNoToggleConnect).

See Table 4-31 CC Timing

TC_T_TWO_PORT_TOGGLE_CONNECT_MAX_MS
Maximum time to detect connection when both Port Partners are toggling (0ms … 5 *
tDRP max + 2 * tNoToggleConnect).

See Table 4-31 CC Timing

TC_T_VPDCTDD_MIN_US
Minimum time for a Charge-Through VCONN-Powered USB Device to detect that the
Charge-Through source has disconnected from CC after VBUS has been removed, tran-
sition to CTUnattached.VPD, and re-apply its Rp termination advertising 3.0 A on the
host port CC.

See Table 4-31 CC Timing

TC_T_VPDCTDD_MAX_MS
Maximum time for a Charge-Through VCONN-Powered USB Device to detect that the
Charge-Through source has disconnected from CC after VBUS has been removed, tran-
sition to CTUnattached.VPD, and re-apply its Rp termination advertising 3.0 A on the
host port CC.

See Table 4-31 CC Timing

TC_T_VPDDISABLE_MIN_MS
Minimum time for a Charge-Through VCONN-Powered USB Device shall remain in CT-
Disabled.VPD state.

See Table 4-31 CC Timing

Enums

enum tc_cc_voltage_state
CC Voltage status.

Values:

enumerator TC_CC_VOLT_OPEN = 0
No port partner connection.

enumerator TC_CC_VOLT_RA = 1
Port partner is applying Ra.

enumerator TC_CC_VOLT_RD = 2
Port partner is applying Rd.

enumerator TC_CC_VOLT_RP_DEF = 5
Port partner is applying Rp (0.5A)
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enumerator TC_CC_VOLT_RP_1A5 = 6

enumerator TC_CC_VOLT_RP_3A0 = 7
Port partner is applying Rp (3.0A)

enum tc_vbus_level
VBUS level voltages.

Values:

enumerator TC_VBUS_SAFE0V = 0
VBUS is less than vSafe0V max.

enumerator TC_VBUS_PRESENT = 1
VBUS is at least vSafe5V min.

enumerator TC_VBUS_REMOVED = 2
VBUS is less than vSinkDisconnect max.

enum tc_rp_value
Pull-Up resistor values.

Values:

enumerator TC_RP_USB = 0
Pull-Up resistor for a current of 900mA.

enumerator TC_RP_1A5 = 1
Pull-Up resistor for a current of 1.5A.

enumerator TC_RP_3A0 = 2
Pull-Up resistor for a current of 3.0A.

enumerator TC_RP_RESERVED = 3
No Pull-Up resistor is applied.

enum tc_cc_pull
CC pull resistors.

Values:

enumerator TC_CC_RA = 0
Ra Pull-Down resistor.

enumerator TC_CC_RP = 1
Rp Pull-Up resistor.

enumerator TC_CC_RD = 2
Rd Pull-Down resistor.
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enumerator TC_CC_OPEN = 3
No CC resistor.

enumerator TC_RA_RD = 4
Ra and Rd Pull-Down resistor.

enum tc_cable_plug
Cable plug.

See 6.2.1.1.7 Cable Plug. Only applies to SOP’ and SOP”. Replaced by pd_power_role for
SOP packets.

Values:

enumerator PD_PLUG_FROM_DFP_UFP = 0

enumerator PD_PLUG_FROM_CABLE_VPD = 1

enum tc_power_role
Power Delivery Power Role.

Values:

enumerator TC_ROLE_SINK = 0
Power role is a sink.

enumerator TC_ROLE_SOURCE = 1
Power role is a source.

enum tc_data_role
Power Delivery Data Role.

Values:

enumerator TC_ROLE_UFP = 0
Data role is an Upstream Facing Port.

enumerator TC_ROLE_DFP = 1
Data role is a Downstream Facing Port.

enumerator TC_ROLE_DISCONNECTED = 2
Port is disconnected.

enum tc_cc_polarity
Polarity of the CC lines.

Values:

enumerator TC_POLARITY_CC1 = 0
Use CC1 IO for Power Delivery communication.
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enumerator TC_POLARITY_CC2 = 1
Use CC2 IO for Power Delivery communication.

enum tc_cc_states
Possible port partner connections based on CC line states.

Values:

enumerator TC_CC_NONE = 0
No port partner attached.

enumerator TC_CC_UFP_NONE = 1
From DFP perspective.

No UFP accessory connected

enumerator TC_CC_UFP_AUDIO_ACC = 2
UFP Audio accessory connected.

enumerator TC_CC_UFP_DEBUG_ACC = 3
UFP Debug accessory connected.

enumerator TC_CC_UFP_ATTACHED = 4
Plain UFP attached.

enumerator TC_CC_DFP_ATTACHED = 5
From UFP perspective.

Plain DFP attached

enumerator TC_CC_DFP_DEBUG_ACC = 6
DFP debug accessory connected.

group usb_type_c_port_controller_api
USB Type-C Port Controller API.

Since
3.1

Version
0.1.0

Typedefs

typedef int (*tcpc_vconn_control_cb_t)(const struct device *dev, enum tc_cc_polarity pol,
bool enable)

typedef int (*tcpc_vconn_discharge_cb_t)(const struct device *dev, enum tc_cc_polarity
pol, bool enable)
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typedef void (*tcpc_alert_handler_cb_t)(const struct device *dev, void *data, enum
tcpc_alert alert)

Enums

enum tcpc_alert
TCPC Alert bits.

Values:

enumerator TCPC_ALERT_CC_STATUS
CC status changed.

enumerator TCPC_ALERT_POWER_STATUS
Power status changed.

enumerator TCPC_ALERT_MSG_STATUS
Receive Buffer register changed.

enumerator TCPC_ALERT_HARD_RESET_RECEIVED
Received Hard Reset message.

enumerator TCPC_ALERT_TRANSMIT_MSG_FAILED
SOP* message transmission not successful.

enumerator TCPC_ALERT_TRANSMIT_MSG_DISCARDED
Reset or SOP* message transmission not sent due to an incoming receive message.

enumerator TCPC_ALERT_TRANSMIT_MSG_SUCCESS
Reset or SOP* message transmission successful.

enumerator TCPC_ALERT_VBUS_ALARM_HI
A high-voltage alarm has occurred.

enumerator TCPC_ALERT_VBUS_ALARM_LO
A low-voltage alarm has occurred.

enumerator TCPC_ALERT_FAULT_STATUS
A fault has occurred.

Read the FAULT_STATUS register

enumerator TCPC_ALERT_RX_BUFFER_OVERFLOW
TCPC RX buffer has overflowed.

enumerator TCPC_ALERT_VBUS_SNK_DISCONNECT
The TCPC in Attached.SNK state has detected a sink disconnect.
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enumerator TCPC_ALERT_BEGINNING_MSG_STATUS
Receive buffer register changed.

enumerator TCPC_ALERT_EXTENDED_STATUS
Extended status changed.

enumerator TCPC_ALERT_EXTENDED
An extended interrupt event has occurred.

Read the alert_extended register

enumerator TCPC_ALERT_VENDOR_DEFINED
A vendor defined alert has been detected.

enum tcpc_status_reg
TCPC Status register.

Values:

enumerator TCPC_CC_STATUS
The CC Status register.

enumerator TCPC_POWER_STATUS
The Power Status register.

enumerator TCPC_FAULT_STATUS
The Fault Status register.

enumerator TCPC_EXTENDED_STATUS
The Extended Status register.

enumerator TCPC_EXTENDED_ALERT_STATUS
The Extended Alert Status register.

enumerator TCPC_VENDOR_DEFINED_STATUS
The Vendor Defined Status register.

Functions

static inline int tcpc_is_cc_rp(enum tc_cc_voltage_state cc)
Returns whether the sink has detected a Rp resistor on the other side.

static inline int tcpc_is_cc_open(enum tc_cc_voltage_state cc1, enum tc_cc_voltage_state
cc2)

Returns true if both CC lines are completely open.

static inline int tcpc_is_cc_snk_dbg_acc(enum tc_cc_voltage_state cc1, enum
tc_cc_voltage_state cc2)

Returns true if we detect the port partner is a snk debug accessory.
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static inline int tcpc_is_cc_src_dbg_acc(enum tc_cc_voltage_state cc1, enum
tc_cc_voltage_state cc2)

Returns true if we detect the port partner is a src debug accessory.

static inline int tcpc_is_cc_audio_acc(enum tc_cc_voltage_state cc1, enum
tc_cc_voltage_state cc2)

Returns true if the port partner is an audio accessory.

static inline int tcpc_is_cc_at_least_one_rd(enum tc_cc_voltage_state cc1, enum
tc_cc_voltage_state cc2)

Returns true if the port partner is presenting at least one Rd.

static inline int tcpc_is_cc_only_one_rd(enum tc_cc_voltage_state cc1, enum
tc_cc_voltage_state cc2)

Returns true if the port partner is presenting Rd on only one CC line.

static inline int tcpc_init(const struct device *dev)
Initializes the TCPC.

Parameters
• dev – Runtime device structure

Return values
• 0 – on success

• -EIO – on failure

• -EAGAIN – if initialization should be postponed

static inline int tcpc_get_cc(const struct device *dev, enum tc_cc_voltage_state *cc1,
enum tc_cc_voltage_state *cc2)

Reads the status of the CC lines.

Parameters
• dev – Runtime device structure

• cc1 – A pointer where the CC1 status is written

• cc2 – A pointer where the CC2 status is written

Return values
• 0 – on success

• -EIO – on failure

• -ENOSYS – if not implemented

static inline int tcpc_select_rp_value(const struct device *dev, enum tc_rp_value rp)
Sets the value of CC pull up resistor used when operating as a Source.

Parameters
• dev – Runtime device structure

• rp – Value of the Pull-Up Resistor.

Return values
• 0 – on success

• -ENOSYS –

• -EIO – on failure
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static inline int tcpc_get_rp_value(const struct device *dev, enum tc_rp_value *rp)
Gets the value of the CC pull up resistor used when operating as a Source.

Parameters
• dev – Runtime device structure

• rp – pointer where the value of the Pull-Up Resistor is stored

Return values
• 0 – on success

• -ENOSYS –

• -EIO – on failure

static inline int tcpc_set_cc(const struct device *dev, enum tc_cc_pull pull)
Sets the CC pull resistor and sets the role as either Source or Sink.

Parameters
• dev – Runtime device structure

• pull – The pull resistor to set

Return values
• 0 – on success

• -EIO – on failure

static inline void tcpc_set_vconn_cb(const struct device *dev, tcpc_vconn_control_cb_t
vconn_cb)

Sets a callback that can enable or disable VCONN if the TCPC is unable to or the system
is configured in a way that does not use the VCONN control capabilities of the TCPC.

The callback is called in the tcpc_set_vconn function if vconn_cb isn’t NULL

Parameters
• dev – Runtime device structure

• vconn_cb – pointer to the callback function that controls vconn

static inline void tcpc_set_vconn_discharge_cb(const struct device *dev,
tcpc_vconn_discharge_cb_t cb)

Sets a callback that can enable or discharge VCONN if the TCPC is unable to or the
system is configured in a way that does not use the VCONN control capabilities of the
TCPC.

The callback is called in the tcpc_vconn_discharge function if cb isn’t NULL

Parameters
• dev – Runtime device structure

• cb – pointer to the callback function that discharges vconn

static inline int tcpc_vconn_discharge(const struct device *dev, bool enable)
Discharges VCONN.

This function uses the TCPC to discharge VCONN if possible or calls the callback func-
tion set by tcpc_set_vconn_cb

Parameters
• dev – Runtime device structure

• enable – VCONN discharge is enabled when true, it’s disabled

Return values
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• 0 – on success

• -EIO – on failure

• -ENOSYS – if not implemented

static inline int tcpc_set_vconn(const struct device *dev, bool enable)
Enables or disables VCONN.

This function uses the TCPC to measure VCONN if possible or calls the callback function
set by tcpc_set_vconn_cb

Parameters
• dev – Runtime device structure

• enable – VCONN is enabled when true, it’s disabled

Return values
• 0 – on success

• -EIO – on failure

• -ENOSYS – if not implemented

static inline int tcpc_set_roles(const struct device *dev, enum tc_power_role power_role,
enum tc_data_role data_role)

Sets the Power and Data Role of the PD message header.

This function only needs to be called once per data / power role change

Parameters
• dev – Runtime device structure

• power_role – current power role

• data_role – current data role

Return values
• 0 – on success

• -EIO – on failure

• -ENOSYS – if not implemented

static inline int tcpc_get_rx_pending_msg(const struct device *dev, struct pd_msg *buf)
Retrieves the Power Delivery message from the TCPC.

If buf is NULL, then only the status is returned, where 0 means there is a message
pending and -ENODATA means there is no pending message.

Parameters
• dev – Runtime device structure

• buf – pointer where the pd_buf pointer is written, NULL if only checking
the status

Return values
• Greater – or equal to 0 is the number of bytes received if buf parameter

is provided

• 0 – if there is a message pending and buf parameter is NULL

• -EIO – on failure

• -ENODATA – if no message is pending
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static inline int tcpc_set_rx_enable(const struct device *dev, bool enable)
Enables the reception of SOP* message types.

Parameters
• dev – Runtime device structure

• enable – Enable Power Delivery when true, else it’s disabled

Return values
• 0 – on success

• -EIO – on failure

• -ENOSYS – if not implemented

static inline int tcpc_set_cc_polarity(const struct device *dev, enum tc_cc_polarity
polarity)

Sets the polarity of the CC lines.

Parameters
• dev – Runtime device structure

• polarity – Polarity of the cc line

Return values
• 0 – on success

• -EIO – on failure

static inline int tcpc_transmit_data(const struct device *dev, struct pd_msg *msg)
Transmits a Power Delivery message.

Parameters
• dev – Runtime device structure

• msg – Power Delivery message to transmit

Return values
• 0 – on success

• -EIO – on failure

• -ENOSYS – if not implemented

static inline int tcpc_dump_std_reg(const struct device *dev)
Dump a set of TCPC registers.

Parameters
• dev – Runtime device structure

Return values
• 0 – on success

• -EIO – on failure

• -ENOSYS – if not implemented

static inline int tcpc_set_alert_handler_cb(const struct device *dev,
tcpc_alert_handler_cb_t handler, void *data)

Sets the alert function that’s called when an interrupt is triggered due to an alert bit.

Calling this function enables the particular alert bit

Parameters
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• dev – Runtime device structure

• handler – The callback function called when the bit is set

• data – user data passed to the callback

Return values
• 0 – on success

• -EINVAL – on failure

static inline int tcpc_get_status_register(const struct device *dev, enum
tcpc_status_reg reg, int32_t *status)

Gets a status register.

Parameters
• dev – Runtime device structure

• reg – The status register to read

• status – Pointer where the status is stored

Return values
• 0 – on success

• -EIO – on failure

• -ENOSYS – if not implemented

static inline int tcpc_clear_status_register(const struct device *dev, enum
tcpc_status_reg reg, uint32_t mask)

Clears a TCPC status register.

Parameters
• dev – Runtime device structure

• reg – The status register to read

• mask – A bit mask of the status register to clear. A status bit is cleared
when it’s set to 1.

Return values
• 0 – on success

• -EIO – on failure

• -ENOSYS – if not implemented

static inline int tcpc_mask_status_register(const struct device *dev, enum
tcpc_status_reg reg, uint32_t mask)

Sets the mask of a TCPC status register.

Parameters
• dev – Runtime device structure

• reg – The status register to read

• mask – A bit mask of the status register to mask. The status bit is masked
if it’s 0, else it’s unmasked.

Return values
• 0 – on success

• -EIO – on failure

• -ENOSYS – if not implemented
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static inline int tcpc_set_debug_accessory(const struct device *dev, bool enable)
Manual control of TCPC DebugAccessory control.

Parameters
• dev – Runtime device structure

• enable – Enable Debug Accessory when true, else it’s disabled

Return values
• 0 – on success

• -EIO – on failure

• -ENOSYS – if not implemented

static inline int tcpc_set_debug_detach(const struct device *dev)
Detach from a debug connection.

Parameters
• dev – Runtime device structure

Return values
• 0 – on success

• -EIO – on failure

• -ENOSYS – if not implemented

static inline int tcpc_set_drp_toggle(const struct device *dev, bool enable)
Enable TCPC auto dual role toggle.

Parameters
• dev – Runtime device structure

• enable – Auto dual role toggle is active when true, else it’s disabled

Return values
• 0 – on success

• -EIO – on failure

• -ENOSYS – if not implemented

static inline int tcpc_get_snk_ctrl(const struct device *dev)
Queries the current sinking state of the TCPC.

Parameters
• dev – Runtime device structure

Return values
• true – if sinking power

• false – if not sinking power

• -ENOSYS – if not implemented

static inline int tcpc_set_snk_ctrl(const struct device *dev, bool enable)
Set the VBUS sinking state of the TCPC.

Parameters
• dev – Runtime device structure

• enable – True if sinking should be enabled, false if disabled

Return values
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• 0 – on success

• -ENOSYS – if not implemented

static inline int tcpc_get_src_ctrl(const struct device *dev)
Queries the current sourcing state of the TCPC.

Parameters
• dev – Runtime device structure

Return values
• true – if sourcing power

• false – if not sourcing power

• -ENOSYS – if not implemented

static inline int tcpc_set_src_ctrl(const struct device *dev, bool enable)
Set the VBUS sourcing state of the TCPC.

Parameters
• dev – Runtime device structure

• enable – True if sourcing should be enabled, false if disabled

Return values
• 0 – on success

• -ENOSYS – if not implemented

static inline int tcpc_set_bist_test_mode(const struct device *dev, bool enable)
Controls the BIST Mode of the TCPC.

It disables RX alerts while the mode is active.

Parameters
• dev – Runtime device structure

• enable – The TCPC enters BIST TEST Mode when true

Return values
• 0 – on success

• -EIO – on failure

• -ENOSYS – if not implemented

static inline int tcpc_get_chip_info(const struct device *dev, struct tcpc_chip_info
*chip_info)

Gets the TCPC firmware version.

Parameters
• dev – Runtime device structure

• chip_info – Pointer to TCPC chip info where the version is stored

Return values
• 0 – on success

• -EIO – on failure

• -ENOSYS – if not implemented
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static inline int tcpc_set_low_power_mode(const struct device *dev, bool enable)
Instructs the TCPC to enter or exit low power mode.

Parameters
• dev – Runtime device structure

• enable – The TCPC enters low power mode when true, else it exits it

Return values
• 0 – on success

• -EIO – on failure

• -ENOSYS – if not implemented

static inline int tcpc_sop_prime_enable(const struct device *dev, bool enable)
Enables the reception of SOP Prime messages.

Parameters
• dev – Runtime device structure

• enable – Can receive SOP Prime messages when true, else it can not

Return values
• 0 – on success

• -EIO – on failure

• -ENOSYS – if not implemented

struct tcpc_chip_info
#include <usbc_tcpc.h> TCPC Chip Information.

Public Members

uint16_t vendor_id
Vendor Id.

uint16_t product_id
Product Id.

uint16_t device_id
Device Id.

uint64_t fw_version_number
Firmware version number.

uint8_t min_req_fw_version_string[8]
Minimum Required firmware version string.

uint64_t min_req_fw_version_number
Minimum Required firmware version number.

struct tcpc_driver_api
#include <usbc_tcpc.h>
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group usb_power_delivery
USB Power Delivery.

USB PD 3.1 Rev 1.6, Table 6-70 Counter Parameters

PD_N_CAPS_COUNT
The CapsCounter is used to count the number of Source_Capabilities Messages which
have been sent by a Source at power up or after a Hard Reset.

Parameter Name: nCapsCounter

PD_N_HARD_RESET_COUNT
The HardResetCounter is used to retry the Hard Reset whenever there is no response
from the remote device (see Section 6.6.6) Parameter Name: nHardResetCounter.

USB PD 3.1 Rev 1.6, Table 6-68 Time Values

PD_T_NO_RESPONSE_MIN_MS
The NoResponseTimer is used by the Policy Engine in a Source to determine that its
Port Partner is not responding after a Hard Reset.

Parameter Name: tNoResponseTimer

PD_T_NO_RESPONSE_MAX_MS
The NoResponseTimer is used by the Policy Engine in a Source to determine that its
Port Partner is not responding after a Hard Reset.

Parameter Name: tNoResponseTimer

PD_T_PS_HARD_RESET_MIN_MS
Min time the Source waits to ensure that the Sink has had sufficient time to process
Hard Reset Signaling before turning off its power supply to VBUS Parameter Name:
tPSHardReset.

PD_T_PS_HARD_RESET_MAX_MS
Max time the Source waits to ensure that the Sink has had sufficient time to process
Hard Reset Signaling before turning off its power supply to VBUS Parameter Name:
tPSHardReset.

PD_T_SINK_TX_MIN_MS
Minimum time a Source waits after changing Rp from SinkTxOk to SinkTxNG before
initiating an AMS by sending a Message.

Parameter Name: tSinkTx

PD_T_SINK_TX_MAX_MS
Maximum time a Source waits after changing Rp from SinkTxOk to SinkTxNG before
initiating an AMS by sending a Message.

Parameter Name: tSinkTx
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PD_T_TYPEC_SEND_SOURCE_CAP_MIN_MS
Minimum time a source shall wait before sending a Source_Capabilities message while
the following is true: 1) The Port is Attached.

2) The Source is not in an active connection with a PD Sink Port. Parameter Name:
tTypeCSendSourceCap

PD_T_TYPEC_SEND_SOURCE_CAP_MAX_MS
Maximum time a source shall wait before sending a Source_Capabilities message while
the following is true: 1) The Port is Attached.

2) The Source is not in an active connection with a PD Sink Port. Parameter Name:
tTypeCSendSourceCap

Defines

PD_MAX_EXTENDED_MSG_LEGACY_LEN
Maximum length of a non-Extended Message in bytes.

See Table 6-75 Value Parameters Parameter Name: MaxExtendedMsgLegacyLen

PD_MAX_EXTENDED_MSG_LEN
Maximum length of an Extended Message in bytes.

See Table 6-75 Value Parameters Parameter Name: MaxExtendedMsgLen

PD_MAX_EXTENDED_MSG_CHUNK_LEN
Maximum length of a Chunked Message in bytes.

When one of both Port Partners do not support Extended Messages of Data Size
greater than PD_MAX_EXTENDED_MSG_LEGACY_LEN then the Protocol Layer sup-
ports a Chunking mechanism to break larger Messages into smaller Chunks of size
PD_MAX_EXTENDED_MSG_CHUNK_LEN. See Table 6-75 Value Parameters Parameter
Name: MaxExtendedMsgChunkLen

PD_T_TYPEC_SINK_WAIT_CAP_MIN_MS
Minimum time a sink shall wait for a Source_Capabilities message before sending a
Hard Reset See Table 6-61 Time Values Parameter Name: tTypeCSinkWaitCap.

PD_T_TYPEC_SINK_WAIT_CAP_MAX_MS
Minimum time a sink shall wait for a Source_Capabilities message before sending a
Hard Reset See Table 6-61 Time Values Parameter Name: tTypeCSinkWaitCap.

PD_V_SAFE_0V_MAX_MV
VBUS maximum safe operating voltage at “zero volts”.

See Table 7-24 Common Source/Sink Electrical Parameters Parameter Name: vSafe0V

PD_V_SAFE_5V_MIN_MV
VBUS minimum safe operating voltage at 5V.

See Table 7-24 Common Source/Sink Electrical Parameters Parameter Name: vSafe5V
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PD_T_SAFE_0V_MAX_MS
Time to reach PD_V_SAFE_0V_MV max in milliseconds.

See Table 7-24 Common Source/Sink Electrical Parameters Parameter Name: tSafe0V

PD_T_SAFE_5V_MAX_MS
Time to reach PD_V_SAFE_5V_MV max in milliseconds.

See Table 7-24 Common Source/Sink Electrical Parameters Parameter Name: tSafe5V

PD_T_TX_TIMEOUT_MS
Time to wait for TCPC to complete transmit.

PD_T_HARD_RESET_COMPLETE_MIN_MS
Minimum time a Hard Reset must complete.

See Table 6-68 Time Values

PD_T_HARD_RESET_COMPLETE_MAX_MS
Maximum time a Hard Reset must complete.

See Table 6-68 Time Values

PD_T_SENDER_RESPONSE_MIN_MS
Minimum time a response must be sent from a Port Partner See Table 6-68 Time Values.

PD_T_SENDER_RESPONSE_NOM_MS
Nomiminal time a response must be sent from a Port Partner See Table 6-68 Time Val-
ues.

PD_T_SENDER_RESPONSE_MAX_MS
Maximum time a response must be sent from a Port Partner See Table 6-68 Time Values.

PD_T_SPR_PS_TRANSITION_MIN_MS
Minimum SPR Mode time for a power supply to transition to a new level See Table 6-68
Time Values.

PD_T_SPR_PS_TRANSITION_NOM_MS
Nominal SPR Mode time for a power supply to transition to a new level See Table 6-68
Time Values.

PD_T_SPR_PS_TRANSITION_MAX_MS
Maximum SPR Mode time for a power supply to transition to a new level See Table
6-68 Time Values.

PD_T_EPR_PS_TRANSITION_MIN_MS
Minimum EPR Mode time for a power supply to transition to a new level See Table 6-68
Time Values.

PD_T_EPR_PS_TRANSITION_NOM_MS
Nominal EPR Mode time for a power supply to transition to a new level See Table 6-68
Time Values.
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PD_T_EPR_PS_TRANSITION_MAX_MS
Maximum EPR Mode time for a power supply to transition to a new level See Table
6-68 Time Values.

PD_T_SINK_REQUEST_MIN_MS
Minimum time to wait before sending another request after receiving a Wait message
See Table 6-68 Time Values.

PD_T_CHUNKING_NOT_SUPPORTED_MIN_MS
Minimum time to wait before sending a Not_Supported message after receiving a
Chunked message See Table 6-68 Time Values.

PD_T_CHUNKING_NOT_SUPPORTED_NOM_MS
Nominal time to wait before sending a Not_Supported message after receiving a Chun-
ked message See Table 6-68 Time Values.

PD_T_CHUNKING_NOT_SUPPORTED_MAX_MS
Maximum time to wait before sending a Not_Supported message after receiving a
Chunked message See Table 6-68 Time Values.

PD_CONVERT_BYTES_TO_PD_HEADER_COUNT(c)
Convert bytes to PD Header data object count, where a data object is 4-bytes.

Parameters
• c – number of bytes to convert

PD_CONVERT_PD_HEADER_COUNT_TO_BYTES(c)
Convert PD Header data object count to bytes.

Parameters
• c – number of PD Header data objects

SINK_TX_OK
Collision avoidance Rp values in REV 3.0 Sink Transmit “OK”.

SINK_TX_NG
Collision avoidance Rp values in REV 3.0 Sink Transmit “NO GO”.

PD_GET_EXT_HEADER(c)
Used to get extended header from the first 32-bit word of the message.

Parameters
• c – first 32-bit word of the message

PDO_MAX_DATA_OBJECTS
PDO - Power Data Object RDO - Request Data Object.

Maximum number of 32-bit data objects sent in a single request

PD_CONVERT_MA_TO_FIXED_PDO_CURRENT(c)
Convert milliamps to Fixed PDO Current in 10mA units.

Parameters
• c – Current in milliamps
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PD_CONVERT_MV_TO_FIXED_PDO_VOLTAGE(v)
Convert millivolts to Fixed PDO Voltage in 50mV units.

Parameters
• v – Voltage in millivolts

PD_CONVERT_FIXED_PDO_CURRENT_TO_MA(c)
Convert a Fixed PDO Current from 10mA units to milliamps.

Parameters
• c – Fixed PDO current in 10mA units.

PD_CONVERT_FIXED_PDO_VOLTAGE_TO_MV(v)
Convert a Fixed PDO Voltage from 50mV units to millivolts.

Used for converting pd_fixed_supply_pdo_source.voltage and
pd_fixed_supply_pdo_sink.voltage

Parameters
• v – Fixed PDO voltage in 50mV units.

PD_CONVERT_MA_TO_VARIABLE_PDO_CURRENT(c)
Convert milliamps to Variable PDO Current in 10ma units.

Parameters
• c – Current in milliamps

PD_CONVERT_MV_TO_VARIABLE_PDO_VOLTAGE(v)
Convert millivolts to Variable PDO Voltage in 50mV units.

Parameters
• v – Voltage in millivolts

PD_CONVERT_VARIABLE_PDO_CURRENT_TO_MA(c)
Convert a Variable PDO Current from 10mA units to milliamps.

Parameters
• c – Variable PDO current in 10mA units.

PD_CONVERT_VARIABLE_PDO_VOLTAGE_TO_MV(v)
Convert a Variable PDO Voltage from 50mV units to millivolts.

Parameters
• v – Variable PDO voltage in 50mV units.

PD_CONVERT_MW_TO_BATTERY_PDO_POWER(c)
Convert milliwatts to Battery PDO Power in 250mW units.

Parameters
• c – Power in milliwatts

PD_CONVERT_MV_TO_BATTERY_PDO_VOLTAGE(v)
Convert milliwatts to Battery PDO Voltage in 50mV units.

Parameters
• v – Voltage in millivolts
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PD_CONVERT_BATTERY_PDO_POWER_TO_MW(c)
Convert a Battery PDO Power from 250mW units to milliwatts.

Parameters
• c – Power in 250mW units.

PD_CONVERT_BATTERY_PDO_VOLTAGE_TO_MV(v)
Convert a Battery PDO Voltage from 50mV units to millivolts.

Parameters
• v – Voltage in 50mV units.

PD_CONVERT_MA_TO_AUGMENTED_PDO_CURRENT(c)
Convert milliamps to Augmented PDO Current in 50mA units.

Parameters
• c – Current in milliamps

PD_CONVERT_MV_TO_AUGMENTED_PDO_VOLTAGE(v)
Convert millivolts to Augmented PDO Voltage in 100mV units.

Parameters
• v – Voltage in millivolts

PD_CONVERT_AUGMENTED_PDO_CURRENT_TO_MA(c)
Convert an Augmented PDO Current from 50mA units to milliamps.

Parameters
• c – Augmented PDO current in 50mA units.

PD_CONVERT_AUGMENTED_PDO_VOLTAGE_TO_MV(v)
Convert an Augmented PDO Voltage from 100mV units to millivolts.

Parameters
• v – Augmented PDO voltage in 100mV units.

NUM_SOP_STAR_TYPES
Number of valid Transmit Types.

Enums

enum pdo_type
Power Data Object Type Table 6-7 Power Data Object.

Values:

enumerator PDO_FIXED = 0
Fixed supply (Vmin = Vmax)

enumerator PDO_BATTERY = 1
Battery.

enumerator PDO_VARIABLE = 2
Variable Supply (non-Battery)
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enumerator PDO_AUGMENTED = 3
Augmented Power Data Object (APDO)

enum pd_frs_type
Fast Role Swap Required for USB Type-C current.

Values:

enumerator FRS_NOT_SUPPORTED
Fast Swap not supported.

enumerator FRS_DEFAULT_USB_POWER
Default USB Power.

enumerator FRS_1P5A_5V
1.5A @ 5V

enumerator FRS_3P0A_5V
3.0A @ 5V

enum pd_rev_type
Protocol revision.

Values:

enumerator PD_REV10 = 0
PD revision 1.0.

enumerator PD_REV20 = 1
PD revision 2.0.

enumerator PD_REV30 = 2
PD revision 3.0.

enum pd_packet_type
Power Delivery packet type See USB Type-C Port Controller Interface Specification, Re-
vision 2.0, Version 1.2, Table 4-38 TRANSMIT Register Definition.

Values:

enumerator PD_PACKET_SOP = 0
Port Partner message.

enumerator PD_PACKET_SOP_PRIME = 1
Cable Plug message.

enumerator PD_PACKET_PRIME_PRIME = 2
Cable Plug message far end.

enumerator PD_PACKET_DEBUG_PRIME = 3
Currently undefined in the PD specification.
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enumerator PD_PACKET_DEBUG_PRIME_PRIME = 4
Currently undefined in the PD specification.

enumerator PD_PACKET_TX_HARD_RESET = 5
Hard Reset message to the Port Partner.

enumerator PD_PACKET_CABLE_RESET = 6
Cable Reset message to the Cable.

enumerator PD_PACKET_TX_BIST_MODE_2 = 7
BIST_MODE_2 message to the Port Partner.

enumerator PD_PACKET_MSG_INVALID = 0xf
USED ONLY FOR RECEPTION OF UNKNOWN MSG TYPES.

enum pd_ctrl_msg_type
Control Message type See Table 6-5 Control Message Types.

Values:

enumerator PD_CTRL_GOOD_CRC = 1
0 Reserved

GoodCRC Message

enumerator PD_CTRL_GOTO_MIN = 2
GotoMin Message.

enumerator PD_CTRL_ACCEPT = 3
Accept Message.

enumerator PD_CTRL_REJECT = 4
Reject Message.

enumerator PD_CTRL_PING = 5
Ping Message.

enumerator PD_CTRL_PS_RDY = 6
PS_RDY Message.

enumerator PD_CTRL_GET_SOURCE_CAP = 7
Get_Source_Cap Message.

enumerator PD_CTRL_GET_SINK_CAP = 8
Get_Sink_Cap Message.

enumerator PD_CTRL_DR_SWAP = 9
DR_Swap Message.
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enumerator PD_CTRL_PR_SWAP = 10
PR_Swap Message.

enumerator PD_CTRL_VCONN_SWAP = 11
VCONN_Swap Message.

enumerator PD_CTRL_WAIT = 12
Wait Message.

enumerator PD_CTRL_SOFT_RESET = 13
Soft Reset Message.

enumerator PD_CTRL_DATA_RESET = 14
Used for REV 3.0.

Data_Reset Message

enumerator PD_CTRL_DATA_RESET_COMPLETE = 15
Data_Reset_Complete Message.

enumerator PD_CTRL_NOT_SUPPORTED = 16
Not_Supported Message.

enumerator PD_CTRL_GET_SOURCE_CAP_EXT = 17
Get_Source_Cap_Extended Message.

enumerator PD_CTRL_GET_STATUS = 18
Get_Status Message.

enumerator PD_CTRL_FR_SWAP = 19
FR_Swap Message.

enumerator PD_CTRL_GET_PPS_STATUS = 20
Get_PPS_Status Message.

enumerator PD_CTRL_GET_COUNTRY_CODES = 21
Get_Country_Codes Message.

enumerator PD_CTRL_GET_SINK_CAP_EXT = 22
Get_Sink_Cap_Extended Message.

enum pd_data_msg_type
Data message type See Table 6-6 Data Message Types.

Values:

enumerator PD_DATA_SOURCE_CAP = 1
0 Reserved

Source_Capabilities Message
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enumerator PD_DATA_REQUEST = 2
Request Message.

enumerator PD_DATA_BIST = 3
BIST Message.

enumerator PD_DATA_SINK_CAP = 4
Sink Capabilities Message.

enumerator PD_DATA_BATTERY_STATUS = 5
5-14 Reserved for REV 2.0

enumerator PD_DATA_ALERT = 6
Alert Message.

enumerator PD_DATA_GET_COUNTRY_INFO = 7
Get Country Info Message.

enumerator PD_DATA_ENTER_USB = 8
8-14 Reserved for REV 3.0

Enter USB message

enumerator PD_DATA_VENDOR_DEF = 15
Vendor Defined Message.

enum pd_ext_msg_type
Extended message type for REV 3.0 See Table 6-48 Extended Message Types.

Values:

enumerator PD_EXT_SOURCE_CAP = 1
0 Reserved

Source_Capabilities_Extended Message

enumerator PD_EXT_STATUS = 2
Status Message.

enumerator PD_EXT_GET_BATTERY_CAP = 3
Get_Battery_Cap Message.

enumerator PD_EXT_GET_BATTERY_STATUS = 4
Get_Battery_Status Message.

enumerator PD_EXT_BATTERY_CAP = 5
Battery_Capabilities Message.

enumerator PD_EXT_GET_MANUFACTURER_INFO = 6
Get_Manufacturer_Info Message.
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enumerator PD_EXT_MANUFACTURER_INFO = 7
Manufacturer_Info Message.

enumerator PD_EXT_SECURITY_REQUEST = 8
Security_Request Message.

enumerator PD_EXT_SECURITY_RESPONSE = 9
Security_Response Message.

enumerator PD_EXT_FIRMWARE_UPDATE_REQUEST = 10
Firmware_Update_Request Message.

enumerator PD_EXT_FIRMWARE_UPDATE_RESPONSE = 11
Firmware_Update_Response Message.

enumerator PD_EXT_PPS_STATUS = 12
PPS_Status Message.

enumerator PD_EXT_COUNTRY_INFO = 13
Country_Codes Message.

enumerator PD_EXT_COUNTRY_CODES = 14
Country_Info Message.

enum usbpd_cc_pin
Active PD CC pin.

Values:

enumerator USBPD_CC_PIN_1 = 0
PD is active on CC1.

enumerator USBPD_CC_PIN_2 = 1
PD is active on CC2.

union pd_header
#include <usbc_pd.h> Build a PD message header See Table 6-1 Message Header.

Public Members

uint16_t message_type
Type of message.

uint16_t port_data_role
Port Data role.

uint16_t specification_revision
Specification Revision.
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uint16_t port_power_role
Port Power Role.

uint16_t message_id
Message ID.

uint16_t number_of_data_objects
Number of Data Objects.

uint16_t extended
Extended Message.

struct pd_header

uint16_t raw_value

union pd_ext_header
#include <usbc_pd.h> Build an extended message header See Table 6-3 Extended Mes-
sage Header.

Public Members

uint16_t data_size
Number of total bytes in data block.

uint16_t reserved0
Reserved.

uint16_t request_chunk
1 for a chunked message, else 0

uint16_t chunk_number
Chunk number when chkd = 1, else 0.

uint16_t chunked
1 for chunked messages

struct pd_ext_header

uint16_t raw_value
Raw PD Ext Header value.

union pd_fixed_supply_pdo_source
#include <usbc_pd.h> Create a Fixed Supply PDO Source value See Table 6-9 Fixed Sup-
ply PDO - Source.
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Public Members

uint32_t max_current
Maximum Current in 10mA units.

uint32_t voltage
Voltage in 50mV units.

uint32_t peak_current
Peak Current.

uint32_t reserved0
Reserved – Shall be set to zero.

uint32_t unchunked_ext_msg_supported
Unchunked Extended Messages Supported.

uint32_t dual_role_data
Dual-Role Data.

uint32_t usb_comms_capable
USB Communications Capable.

uint32_t unconstrained_power
Unconstrained Power.

uint32_t usb_suspend_supported
USB Suspend Supported.

uint32_t dual_role_power
Dual-Role Power.

enum pdo_type type
Fixed supply.

SET TO PDO_FIXED

struct pd_fixed_supply_pdo_source

uint32_t raw_value
Raw PDO value.

union pd_fixed_supply_pdo_sink
#include <usbc_pd.h> Create a Fixed Supply PDO Sink value See Table 6-14 Fixed Supply
PDO - Sink.

Public Members
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uint32_t operational_current
Operational Current in 10mA units.

uint32_t voltage
Voltage in 50mV units.

uint32_t reserved0
Reserved – Shall be set to zero.

enum pd_frs_type frs_required
Fast Role Swap required USB Type-C Current.

uint32_t dual_role_data
Dual-Role Data.

uint32_t usb_comms_capable
USB Communications Capable.

uint32_t unconstrained_power
Unconstrained Power.

uint32_t higher_capability
Higher Capability.

uint32_t dual_role_power
Dual-Role Power.

enum pdo_type type
Fixed supply.

SET TO PDO_FIXED

struct pd_fixed_supply_pdo_sink

uint32_t raw_value
Raw PDO value.

union pd_variable_supply_pdo_source
#include <usbc_pd.h> Create a Variable Supply PDO Source value See Table 6-11 Vari-
able Supply (non-Battery) PDO - Source.

Public Members

uint32_t max_current
Maximum Current in 10mA units.

uint32_t min_voltage
Minimum Voltage in 50mV units.
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uint32_t max_voltage
Maximum Voltage in 50mV units.

enum pdo_type type
Variable supply.

SET TO PDO_VARIABLE

struct pd_variable_supply_pdo_source

uint32_t raw_value
Raw PDO value.

union pd_variable_supply_pdo_sink
#include <usbc_pd.h> Create a Variable Supply PDO Sink value See Table 6-15 Variable
Supply (non-Battery) PDO - Sink.

Public Members

uint32_t operational_current
operational Current in 10mA units

uint32_t min_voltage
Minimum Voltage in 50mV units.

uint32_t max_voltage
Maximum Voltage in 50mV units.

enum pdo_type type
Variable supply.

SET TO PDO_VARIABLE

struct pd_variable_supply_pdo_sink

uint32_t raw_value
Raw PDO value.

union pd_battery_supply_pdo_source
#include <usbc_pd.h> Create a Battery Supply PDO Source value See Table 6-12 Battery
Supply PDO - Source.

Public Members

uint32_t max_power
Maximum Allowable Power in 250mW units.
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uint32_t min_voltage
Minimum Voltage in 50mV units.

uint32_t max_voltage
Maximum Voltage in 50mV units.

enum pdo_type type
Battery supply.

SET TO PDO_BATTERY

struct pd_battery_supply_pdo_source

uint32_t raw_value
Raw PDO value.

union pd_battery_supply_pdo_sink
#include <usbc_pd.h> Create a Battery Supply PDO Sink value See Table 6-16 Battery
Supply PDO - Sink.

Public Members

uint32_t operational_power
Operational Power in 250mW units.

uint32_t min_voltage
Minimum Voltage in 50mV units.

uint32_t max_voltage
Maximum Voltage in 50mV units.

enum pdo_type type
Battery supply.

SET TO PDO_BATTERY

struct pd_battery_supply_pdo_sink

uint32_t raw_value
Raw PDO value.

union pd_augmented_supply_pdo_source
#include <usbc_pd.h> Create Augmented Supply PDO Source value See Table 6-13 Pro-
grammable Power Supply APDO - Source.

Public Members
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uint32_t max_current
Maximum Current in 50mA increments.

uint32_t reserved0
Reserved – Shall be set to zero.

uint32_t min_voltage
Minimum Voltage in 100mV increments.

uint32_t reserved1
Reserved – Shall be set to zero.

uint32_t max_voltage
Maximum Voltage in 100mV increments.

uint32_t reserved2
Reserved – Shall be set to zero.

uint32_t pps_power_limited
PPS Power Limited.

uint32_t reserved3
00b – Programmable Power Supply 01b…11b - Reserved, Shall Not be used Setting
as reserved because it defaults to 0 when not set.

enum pdo_type type
Augmented Power Data Object (APDO).

SET TO PDO_AUGMENTED

struct pd_augmented_supply_pdo_source

uint32_t raw_value
Raw PDO value.

union pd_augmented_supply_pdo_sink
#include <usbc_pd.h> Create Augmented Supply PDO Sink value See Table 6-17 Pro-
grammable Power Supply APDO - Sink.

Public Members

uint32_t max_current
Maximum Current in 50mA increments.

uint32_t reserved0
Reserved – Shall be set to zero.

uint32_t min_voltage
Minimum Voltage in 100mV increments.
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uint32_t reserved1
Reserved – Shall be set to zero.

uint32_t max_voltage
Maximum Voltage in 100mV increments.

uint32_t reserved2
Reserved – Shall be set to zero.

uint32_t reserved3
00b – Programmable Power Supply 01b…11b - Reserved, Shall Not be used Setting
as reserved because it defaults to 0 when not set.

enum pdo_type type
Augmented Power Data Object (APDO).

SET TO PDO_AUGMENTED

struct pd_augmented_supply_pdo_sink

uint32_t raw_value
Raw PDO value.

union pd_rdo
#include <usbc_pd.h> The Request Data Object (RDO) Shall be returned by the Sink mak-
ing a request for power.

See Section 6.4.2 Request Message

Public Members

uint32_t min_or_max_operating_current
Operating Current 10mA units NOTE: If Give Back Flag is zero, this field is the Max-
imum Operating Current.

If Give Back Flag is one, this field is the Minimum Operating Current.

uint32_t operating_current
Operating current in 10mA units.

Operating Current 50mA units.

uint32_t reserved0
Reserved - Shall be set to zero.

uint32_t unchunked_ext_msg_supported
Unchunked Extended Messages Supported.

uint32_t no_usb_suspend
No USB Suspend.
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uint32_t usb_comm_capable
USB Communications Capable.

uint32_t cap_mismatch
Capability Mismatch.

uint32_t giveback
Give Back Flag.

uint32_t object_pos
Object Position (000b is Reserved and Shall Not be used)

uint32_t reserved1
Reserved - Shall be set to zero.

struct pd_rdo fixed
Create a Fixed RDO value See Table 6-19 Fixed and Variable Request Data Object.

struct pd_rdo variable
Create a Variable RDO value See Table 6-19 Fixed and Variable Request Data Object.

uint32_t min_operating_power
Minimum Operating Power in 250mW units.

uint32_t operating_power
Operating power in 250mW units.

struct pd_rdo battery
Create a Battery RDO value See Table 6-20 Battery Request Data Object.

uint32_t output_voltage
Output Voltage in 20mV units.

uint32_t reserved2
Reserved - Shall be set to zero.

uint32_t reserved3
Reserved - Shall be set to zero.

struct pd_rdo augmented
Create an Augmented RDO value See Table 6-22 Programmable Request Data Ob-
ject.

uint32_t raw_value
Raw RDO value.

struct pd_msg
#include <usbc_pd.h> Power Delivery message.
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Public Members

enum pd_packet_type type
Type of this packet.

union pd_header header
Header of this message.

uint32_t len
Length of bytes in data.

uint8_t data[260]
Message data.

7.6.50 Time-aware General-Purpose Input/Output (TGPIO)

Overview

Configuration Options

Related configuration options:

• CONFIG_TIMEAWARE_GPIO

API Reference

Related code samples

Time-aware GPIO
Synchronize clocks.

group tgpio_interface
Time-aware GPIO Interface.

Since
3.5

Version
0.1.0

Enums

enum tgpio_pin_polarity
Event polarity.

Values:

enumerator TGPIO_RISING_EDGE = 0
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enumerator TGPIO_FALLING_EDGE

enumerator TGPIO_TOGGLE_EDGE

Functions

int tgpio_port_get_time(const struct device *dev, uint64_t *current_time)
Get time from ART timer.

Parameters
• dev – TGPIO device

• current_time – Pointer to store timer value in cycles

Returns
0 if successful

Returns
negative errno code on failure.

int tgpio_port_get_cycles_per_second(const struct device *dev, uint32_t *cycles)
Get current running rate.

Parameters
• dev – TGPIO device

• cycles – pointer to store current running frequency

Returns
0 if successful, negative errno code on failure.

int tgpio_pin_disable(const struct device *dev, uint32_t pin)
Disable operation on pin.

Parameters
• dev – TGPIO device

• pin – TGPIO pin

Returns
0 if successful, negative errno code on failure.

int tgpio_pin_config_ext_timestamp(const struct device *dev, uint32_t pin, uint32_t
event_polarity)

Enable/Continue operation on pin.

Parameters
• dev – TGPIO device

• pin – TGPIO pin

• event_polarity – TGPIO pin event polarity

Returns
0 if successful, negative errno code on failure.

int tgpio_pin_periodic_output(const struct device *dev, uint32_t pin, uint64_t start_time,
uint64_t repeat_interval, bool periodic_enable)

Enable periodic pulse generation on a pin.

Parameters
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• dev – TGPIO device

• pin – TGPIO pin

• start_time – start_time of first pulse in hw cycles

• repeat_interval – repeat interval between two pulses in hw cycles

• periodic_enable – enables periodic mode if ‘true’ is passed.

Returns
0 if successful, negative errno code on failure.

int tgpio_pin_read_ts_ec(const struct device *dev, uint32_t pin, uint64_t *timestamp,
uint64_t *event_count)

Read timestamp and event counter from TGPIO.

Parameters
• dev – TGPIO device

• pin – TGPIO pin

• timestamp – timestamp of the last pulse received

• event_count – number of pulses received since the pin is enabled

Returns
0 if successful, negative errno code on failure.

7.6.51 Video

The video driver API offers a generic interface to video devices.

Basic Operation

VideoDevice A video device is the abstraction of a hardware or software video function, which
can produce, process, consume or transform video data. The video API is designed to offer flex-
ible way to create, handle and combine various video devices.

Endpoint Each video device can have one or more endpoints. Output endpoints configure
video output function and generate data. Input endpoints configure video input function and
consume data.

Video Buffer A video buffer provides the transport mechanism for the data. There is no partic-
ular requirement on the content. The requirement for the content is defined by the endpoint for-
mat. A video buffer can be queued to a device endpoint for filling (input ep) or consuming (out-
put ep) operation, once the operation is achieved, buffer can be dequeued for post-processing,
release or reuse.

Controls A video control is accessed and identified by a CID (control identifier). It represents a
video control property. Different devices will have different controls available which can be
generic, related to a device class or vendor specific. The set/get control functions provide a
generic scalable interface to handle and create controls.
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Configuration Options

Related configuration options:

• CONFIG_VIDEO

API Reference

Related code samples

Video TCP server sink
Capture video frames and send them over the network to a TCP client.

Video capture
Use the video API to retrieve video frames from a capture device.

group video_interface
Video Interface.

Since
2.1

Version
1.0.0

Defines

video_fourcc(a, b, c, d)

Typedefs

typedef int (*video_api_set_format_t)(const struct device *dev, enum video_endpoint_id
ep, struct video_format *fmt)

Set video format.

See video_set_format() for argument descriptions.

typedef int (*video_api_get_format_t)(const struct device *dev, enum video_endpoint_id
ep, struct video_format *fmt)

Get current video format.

See video_get_format() for argument descriptions.

typedef int (*video_api_enqueue_t)(const struct device *dev, enum video_endpoint_id ep,
struct video_buffer *buf)

Enqueue a buffer in the driver’s incoming queue.

See video_enqueue() for argument descriptions.
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typedef int (*video_api_dequeue_t)(const struct device *dev, enum video_endpoint_id ep,
struct video_buffer **buf, k_timeout_t timeout)

Dequeue a buffer from the driver’s outgoing queue.

See video_dequeue() for argument descriptions.

typedef int (*video_api_flush_t)(const struct device *dev, enum video_endpoint_id ep,
bool cancel)

Flush endpoint buffers, buffer are moved from incoming queue to outgoing queue.

See video_flush() for argument descriptions.

typedef int (*video_api_stream_start_t)(const struct device *dev)
Start the capture or output process.

See video_stream_start() for argument descriptions.

typedef int (*video_api_stream_stop_t)(const struct device *dev)
Stop the capture or output process.

See video_stream_stop() for argument descriptions.

typedef int (*video_api_set_ctrl_t)(const struct device *dev, unsigned int cid, void
*value)

Set a video control value.

See video_set_ctrl() for argument descriptions.

typedef int (*video_api_get_ctrl_t)(const struct device *dev, unsigned int cid, void
*value)

Get a video control value.

See video_get_ctrl() for argument descriptions.

typedef int (*video_api_get_caps_t)(const struct device *dev, enum video_endpoint_id ep,
struct video_caps *caps)

Get capabilities of a video endpoint.

See video_get_caps() for argument descriptions.

typedef int (*video_api_set_signal_t)(const struct device *dev, enum video_endpoint_id
ep, struct k_poll_signal *signal)

Register/Unregister poll signal for buffer events.

See video_set_signal() for argument descriptions.

Enums

enum video_endpoint_id
video_endpoint_id enum

Identify the video device endpoint.

Values:

enumerator VIDEO_EP_NONE
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enumerator VIDEO_EP_ANY

enumerator VIDEO_EP_IN

enumerator VIDEO_EP_OUT

enum video_signal_result
video_event enum

Identify video event.

Values:

enumerator VIDEO_BUF_DONE

enumerator VIDEO_BUF_ABORTED

enumerator VIDEO_BUF_ERROR

Functions

static inline int video_set_format(const struct device *dev, enum video_endpoint_id ep,
struct video_format *fmt)

Set video format.

Configure video device with a specific format.

Parameters
• dev – Pointer to the device structure for the driver instance.

• ep – Endpoint ID.

• fmt – Pointer to a video format struct.

Return values
• 0 – Is successful.

• -EINVAL – If parameters are invalid.

• -ENOTSUP – If format is not supported.

• -EIO – General input / output error.

static inline int video_get_format(const struct device *dev, enum video_endpoint_id ep,
struct video_format *fmt)

Get video format.

Get video device current video format.

Parameters
• dev – Pointer to the device structure for the driver instance.

• ep – Endpoint ID.

• fmt – Pointer to video format struct.

Return values
pointer – to video format
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static inline int video_enqueue(const struct device *dev, enum video_endpoint_id ep, struct
video_buffer *buf)

Enqueue a video buffer.

Enqueue an empty (capturing) or filled (output) video buffer in the driver’s endpoint
incoming queue.

Parameters
• dev – Pointer to the device structure for the driver instance.

• ep – Endpoint ID.

• buf – Pointer to the video buffer.

Return values
• 0 – Is successful.

• -EINVAL – If parameters are invalid.

• -EIO – General input / output error.

static inline int video_dequeue(const struct device *dev, enum video_endpoint_id ep, struct
video_buffer **buf, k_timeout_t timeout)

Dequeue a video buffer.

Dequeue a filled (capturing) or displayed (output) buffer from the driver’s endpoint
outgoing queue.

Parameters
• dev – Pointer to the device structure for the driver instance.

• ep – Endpoint ID.

• buf – Pointer a video buffer pointer.

• timeout – Timeout

Return values
• 0 – Is successful.

• -EINVAL – If parameters are invalid.

• -EIO – General input / output error.

static inline int video_flush(const struct device *dev, enum video_endpoint_id ep, bool
cancel)

Flush endpoint buffers.

A call to flush finishes when all endpoint buffers have been moved from incoming
queue to outgoing queue. Either because canceled or fully processed through the video
function.

Parameters
• dev – Pointer to the device structure for the driver instance.

• ep – Endpoint ID.

• cancel – If true, cancel buffer processing instead of waiting for comple-
tion.

Return values
0 – Is successful, -ERRNO code otherwise.
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static inline int video_stream_start(const struct device *dev)
Start the video device function.

video_stream_start is called to enter ‘streaming’ state (capture, output…). The driver
may receive buffers with video_enqueue() before video_stream_start is called. If
driver/device needs a minimum number of buffers before being able to start stream-
ing, then driver set the min_vbuf_count to the related endpoint capabilities.

Return values
• 0 – Is successful.

• -EIO – General input / output error.

static inline int video_stream_stop(const struct device *dev)
Stop the video device function.

On video_stream_stop, driver must stop any transactions or wait until they finish.

Return values
• 0 – Is successful.

• -EIO – General input / output error.

static inline int video_get_caps(const struct device *dev, enum video_endpoint_id ep,
struct video_caps *caps)

Get the capabilities of a video endpoint.

Parameters
• dev – Pointer to the device structure for the driver instance.

• ep – Endpoint ID.

• caps – Pointer to the video_caps struct to fill.

Return values
0 – Is successful, -ERRNO code otherwise.

static inline int video_set_ctrl(const struct device *dev, unsigned int cid, void *value)
Set the value of a control.

This set the value of a video control, value type depends on control ID, and must be
interpreted accordingly.

Parameters
• dev – Pointer to the device structure for the driver instance.

• cid – Control ID.

• value – Pointer to the control value.

Return values
• 0 – Is successful.

• -EINVAL – If parameters are invalid.

• -ENOTSUP – If format is not supported.

• -EIO – General input / output error.

static inline int video_get_ctrl(const struct device *dev, unsigned int cid, void *value)
Get the current value of a control.

This retrieve the value of a video control, value type depends on control ID, and must
be interpreted accordingly.

Parameters
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• dev – Pointer to the device structure for the driver instance.

• cid – Control ID.

• value – Pointer to the control value.

Return values
• 0 – Is successful.

• -EINVAL – If parameters are invalid.

• -ENOTSUP – If format is not supported.

• -EIO – General input / output error.

static inline int video_set_signal(const struct device *dev, enum video_endpoint_id ep,
struct k_poll_signal *signal)

Register/Unregister k_poll signal for a video endpoint.

Register a poll signal to the endpoint, which will be signaled on frame completion
(done, aborted, error). Registering a NULL poll signal unregisters any previously reg-
istered signal.

Parameters
• dev – Pointer to the device structure for the driver instance.

• ep – Endpoint ID.

• signal – Pointer to k_poll_signal

Return values
0 – Is successful, -ERRNO code otherwise.

struct video_buffer *video_buffer_aligned_alloc(size_t size, size_t align)
Allocate aligned video buffer.

Parameters
• size – Size of the video buffer (in bytes).

• align – Alignment of the requested memory, must be a power of two.

Return values
pointer – to allocated video buffer

struct video_buffer *video_buffer_alloc(size_t size)
Allocate video buffer.

Parameters
• size – Size of the video buffer (in bytes).

Return values
pointer – to allocated video buffer

void video_buffer_release(struct video_buffer *buf)
Release a video buffer.

Parameters
• buf – Pointer to the video buffer to release.

struct video_format
#include <video.h> Video format structure.

Used to configure frame format.
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Public Members

uint32_t pixelformat
FourCC pixel format value (Video pixel formats)

uint32_t width
frame width in pixels.

uint32_t height
frame height in pixels.

uint32_t pitch
line stride.

This is the number of bytes that needs to be added to the address in the first pixel
of a row in order to go to the address of the first pixel of the next row (>=width).

struct video_format_cap
#include <video.h> Video format capability.

Used to describe a video endpoint format capability.

Public Members

uint32_t pixelformat
FourCC pixel format value (Video pixel formats).

uint32_t width_min
minimum supported frame width in pixels.

uint32_t width_max
maximum supported frame width in pixels.

uint32_t height_min
minimum supported frame height in pixels.

uint32_t height_max
maximum supported frame height in pixels.

uint16_t width_step
width step size in pixels.

uint16_t height_step
height step size in pixels.

struct video_caps
#include <video.h> Video format capabilities.

Used to describe video endpoint capabilities.

7.6. Peripherals 3711



Zephyr Project Documentation, Release 3.7.99

Public Members

const struct video_format_cap *format_caps
list of video format capabilities (zero terminated).

uint8_t min_vbuf_count
minimal count of video buffers to enqueue before being able to start the stream.

struct video_buffer
#include <video.h> Video buffer structure.

Represent a video frame.

Public Members

void *driver_data
pointer to driver specific data.

uint8_t *buffer
pointer to the start of the buffer.

uint32_t size
size of the buffer in bytes.

uint32_t bytesused
number of bytes occupied by the valid data in the buffer.

uint32_t timestamp
time reference in milliseconds at which the last data byte was actually received for
input endpoints or to be consumed for output endpoints.

struct video_driver_api
#include <video.h>

group video_controls
Video controls.

Control classes

VIDEO_CTRL_CLASS_GENERIC
Generic class controls.

VIDEO_CTRL_CLASS_CAMERA
Camera class controls.

VIDEO_CTRL_CLASS_MPEG
MPEG-compression controls.
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VIDEO_CTRL_CLASS_JPEG
JPEG-compression controls.

VIDEO_CTRL_CLASS_VENDOR
Vendor-specific class controls.

Generic class control IDs

VIDEO_CID_HFLIP
Mirror the picture horizontally.

VIDEO_CID_VFLIP
Mirror the picture vertically.

Camera class control IDs

VIDEO_CID_CAMERA_EXPOSURE

VIDEO_CID_CAMERA_GAIN

VIDEO_CID_CAMERA_ZOOM

VIDEO_CID_CAMERA_BRIGHTNESS

VIDEO_CID_CAMERA_SATURATION

VIDEO_CID_CAMERA_WHITE_BAL

VIDEO_CID_CAMERA_CONTRAST

VIDEO_CID_CAMERA_COLORBAR

VIDEO_CID_CAMERA_QUALITY

7.6.52 Watchdog

Overview

API Reference

Related code samples

Watchdog
Use the watchdog driver API to reset the board when it gets stuck in an infinite loop.
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group watchdog_interface
Watchdog Interface.

Since
1.0

Version
1.0.0

Watchdog options

WDT_OPT_PAUSE_IN_SLEEP
Pause watchdog timer when CPU is in sleep state.

WDT_OPT_PAUSE_HALTED_BY_DBG
Pause watchdog timer when CPU is halted by the debugger.

Watchdog behavior flags

WDT_FLAG_RESET_NONE
Reset: none.

WDT_FLAG_RESET_CPU_CORE
Reset: CPU core.

WDT_FLAG_RESET_SOC
Reset: SoC.

Typedefs

typedef void (*wdt_callback_t)(const struct device *dev, int channel_id)
Watchdog callback.

Param dev
Watchdog device instance.

Param channel_id
Channel identifier.

Functions
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int wdt_setup(const struct device *dev, uint8_t options)
Set up watchdog instance.

This function is used for configuring global watchdog settings that affect all timeouts. It
should be called after installing timeouts. After successful return, all installed timeouts
are valid and must be serviced periodically by calling wdt_feed().

Parameters
• dev – Watchdog device instance.

• options – Configuration options (see WDT_OPT).

Return values
• 0 – If successful.

• -ENOTSUP – If any of the set options is not supported.

• -EBUSY – If watchdog instance has been already setup.

• -errno – In case of any other failure.

int wdt_disable(const struct device *dev)
Disable watchdog instance.

This function disables the watchdog instance and automatically uninstalls all timeouts.
To set up a new watchdog, install timeouts and call wdt_setup() again. Not all watch-
dogs can be restarted after they are disabled.

Parameters
• dev – Watchdog device instance.

Return values
• 0 – If successful.

• -EFAULT – If watchdog instance is not enabled.

• -EPERM – If watchdog can not be disabled directly by application code.

• -errno – In case of any other failure.

static inline int wdt_install_timeout(const struct device *dev, const struct
wdt_timeout_cfg *cfg)

Install a new timeout.

Note

This function must be used before wdt_setup(). Changes applied here have no ef-
fects until wdt_setup() is called.

Parameters
• dev – Watchdog device instance.

• cfg – [in] Timeout configuration.

Return values
• channel_id – If successful, a non-negative value indicating the index of

the channel to which the timeout was assigned. This value is supposed
to be used as the parameter in calls to wdt_feed().

• -EBUSY – If timeout can not be installed while watchdog has already been
setup.

• -ENOMEM – If no more timeouts can be installed.
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• -ENOTSUP – If any of the set flags is not supported.

• -EINVAL – If any of the window timeout value is out of possible range.
This value is also returned if watchdog supports only one timeout value
for all timeouts and the supplied timeout window differs from windows
for alarms installed so far.

• -errno – In case of any other failure.

int wdt_feed(const struct device *dev, int channel_id)
Feed specified watchdog timeout.

Parameters
• dev – Watchdog device instance.

• channel_id – Channel index.

Return values
• 0 – If successful.

• -EAGAIN – If completing the feed operation would stall the caller, for
example due to an in-progress watchdog operation such as a previous
wdt_feed() call.

• -EINVAL – If there is no installed timeout for supplied channel.

• -errno – In case of any other failure.

struct wdt_window
#include <watchdog.h> Watchdog timeout window.

Each installed timeout needs feeding within the specified time window, otherwise the
watchdog will trigger. If the watchdog instance does not support window timeouts
then min value must be equal to 0.

Note

If specified values can not be precisely set they are always rounded up.

Public Members

uint32_t min
Lower limit of watchdog feed timeout in milliseconds.

uint32_t max
Upper limit of watchdog feed timeout in milliseconds.

struct wdt_timeout_cfg
#include <watchdog.h> Watchdog timeout configuration.

Public Members

struct wdt_window window
Timing parameters of watchdog timeout.
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wdt_callback_t callback
Timeout callback (can be NULL).

struct wdt_timeout_cfg *next
Pointer to the next timeout configuration.

This field is only available if CONFIG_WDT_MULTISTAGE is enabled (watchdogs with
staged timeouts functionality). Value must be NULL for single stage timeout.

uint8_t flags
Flags (see WDT_FLAGS).

7.7 Pin Control

This is a high-level guide to pin control. See Pin Control API for API reference material.

7.7.1 Introduction

The hardware blocks that control pin multiplexing and pin configuration parameters such as
pin direction, pull-up/down resistors, etc. are named pin controllers. The pin controller’s main
users are SoC hardware peripherals, since the controller enables exposing peripheral signals,
like for example, map I2C0 SDA signal to pin PX0. Not only that, but it usually allows configuring
certain pin settings that are necessary for the correct functioning of a peripheral, for example,
the slew-rate depending on the operating frequency. The available configuration options are
vendor/SoC dependent and can range from simple pull-up/down options to more advanced set-
tings such as debouncing, low-power modes, etc.

The way pin control is implemented in hardware is vendor/SoC specific. It is common to find a
centralized approach, that is, all pin configuration parameters are controlled by a single hard-
ware block (typically named pinmux), including signal mapping. The figure below illustrates
this approach. PX0 can be mapped to UART0_TX, I2C0_SCK or SPI0_MOSI depending on the AF con-
trol bits. Other configuration parameters such as pull-up/down are controlled in the same block
via CONFIG bits. This model is used by several SoC families, such as many from NXP and STM32.

Other vendors/SoCs use a distributed approach. In such case, the pin mapping and configuration
are controlled by multiple hardware blocks. The figure below illustrates a distributed approach
where pin mapping is controlled by peripherals, such as in Nordic nRF SoCs.

From a user perspective, there is no difference in pin controller usage regardless of the hard-
ware implementation: a user will always apply a state. The only difference lies in the driver
implementation. In general, implementing a pin controller driver for a hardware that uses a
distributed approach requires more effort, since the driver needs to gather knowledge of pe-
ripheral dependent registers.

Pin control vs. GPIO

Some functionality covered by a pin controller driver overlaps with GPIO drivers. For example,
pull-up/down resistors can usually be enabled by both the pin control driver and the GPIO driver.
In Zephyr context, the pin control driver purpose is to perform peripheral signal multiplexing
and configuration of other pin parameters required for the correct operation of that peripheral.
Therefore, the main users of the pin control driver are SoC peripherals. In contrast, GPIO drivers
are for general purpose control of a pin, that is, when its logic level is read or controlled manually.
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Fig. 3: Example of pin control centralized into a single per-pin block

PX0 Control
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I2C1_SDA_PIN

I2C1_SDA_PIN == PX0

...

UART0_RX_PIN

UART0_TX_PIN UART0_RX_PIN == PX0

I2C1_SCK_PIN == PX0

UART0_TX_PIN == PX0

SDA

SCK

TX

RX

...

I2C1

UART0

CONFIG

STRENGTH

DRIVE

Fig. 4: Example pin control distributed between peripheral registers and per-pin block
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7.7.2 State model

For a device driver to operate correctly, a certain pin configuration needs to be applied. Some
device drivers require a static configuration, usually set up at initialization time. Others need
to change the configuration at runtime depending on the operating conditions, for example, to
enable a low-power mode when suspending the device. Such requirements are modeled using
states, a concept that has been adapted from the one in the Linux kernel. Each device driver
owns a set of states. Each state has a unique name and contains a full pin configuration set (see
the figure below). This effectively means that states are independent of each other, so they do not
need to be applied in any specific order. Another advantage of the state model is that it isolates
device drivers from pin configuration.

Table 2: Example pin configuration encoded using the states
model

UART0 peripheral
default state sleep state
TX

• Pin: PA0
• Pull: NONE
• Low Power: NO

TX
• Pin: PA0
• Pull: NONE
• Low Power:

YES

RX
• Pin: PA1
• Pull: UP
• Low Power: NO

RX
• Pin: PA1
• Pull: NONE
• Low Power:

YES

Standard states

The name assigned to pin control states or the number of them is up to the device driver require-
ments. In many cases a single state applied at initialization time will be sufficient, but in some
other cases more will be required. In order to make things consistent, a naming convention
has been established for the most common use cases. The figure below details the standardized
states and its purpose.

Table 3: Standardized state names

State Identifier Purpose
de-
fault

PINC-
TRL_STATE_DEFAULT

State of the pins when the device is in operational state

sleep PINCTRL_STATE_SLEEP State of the pins when the device is in low power or sleep
modes

Note that other standard states could be introduced in the future.

Custom states

Some device drivers may require using custom states beyond the standard ones. To achieve that,
the device driver needs to have in its scope definitions for the custom state identifiers named as
PINCTRL_STATE_{STATE_NAME}, where {STATE_NAME} is the capitalized state name. For example,
if mystate has to be supported, a definition named PINCTRL_STATE_MYSTATE needs to be in the
driver’s scope.
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Note

It is important that custom state identifiers start from PINCTRL_STATE_PRIV_START

If custom states need to be accessed from outside the driver, for example to perform dynamic
pin control, custom identifiers should be placed in a header that is publicly accessible.

Skipping states

In most situations, the states defined in Devicetree will be the ones used in the compiled
firmware. However, there are some cases where certain states will be conditionally used de-
pending on a compilation flag. A typical case is the sleep state. This state is only used in practice
if CONFIG_PM or CONFIG_PM_DEVICE is enabled. If a firmware variant without these power man-
agement configurations is needed, one should in theory remove the sleep state from Devicetree
to not waste ROM space storing such unused state.

States can be skipped by the pinctrl Devicetree macros if a definition named PINC-
TRL_SKIP_{STATE_NAME} expanding to 1 is present when pin control configuration is defined.
In case of the sleep state, the pinctrl API already provides such definition conditional to the
availability of device power management:

#if !defined(CONFIG_PM) && !defined(CONFIG_PM_DEVICE)
/** Out of power management configurations, ignore "sleep" state. */
#define PINCTRL_SKIP_SLEEP 1
#endif

7.7.3 Dynamic pin control

Dynamic pin control refers to the capability of changing pin configuration at runtime. This fea-
ture can be useful in situations where the same firmware needs to run onto slightly different
boards, each having a peripheral routed at a different set of pins. This feature can be enabled
by setting CONFIG_PINCTRL_DYNAMIC.

Note

Dynamic pin control should only be used on devices that have not been initialized. Changing
pin configurations while a device is operating may lead to unexpected behavior. Since Zephyr
does not support device de-initialization yet, this functionality should only be used during
early boot stages.

One of the effects of enabling dynamic pin control is that pinctrl_dev_config will be stored
in RAM instead of ROM (not states or pin configurations, though). The user can then use pinc-
trl_update_states() to update the states stored in pinctrl_dev_config with a new set. This
effectively means that the device driver will apply the pin configurations stored in the updated
states when it applies a state.

7.7.4 Devicetree representation

Because Devicetree is meant to describe hardware, it is the natural choice when it comes to
storing pin control configuration. In the following sections you will find an overview on how
states and pin configurations are represented in Devicetree.
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States

Given a device, each of its pin control state is represented in Devicetree by pinctrl-N properties,
being N the state index starting from zero. The pinctrl-names property is then used to assign a
unique identifier for each state property by index, for example, pinctrl-names list entry 0 is the
name for pinctrl-0.

periph0: periph@0 {
...
/* state 0 ("default") */
pinctrl-0 = <...>;
...
/* state N ("mystate") */
pinctrl-N = <...>;
/* names for state 0 up to state N */
pinctrl-names = "default", ..., "mystate";
...

};

Pin configuration

There are multiple ways to represent the pin configurations in Devicetree. However, all end up
encoding the same information: the pin multiplexing and the pin configuration parameters. For
example, UART_RX is mapped to PX0 and pull-up is enabled. The representation choice largely
depends on each vendor/SoC, so the Devicetree binding files for the pin control drivers are the
best place to look for details.

A popular and versatile option is shown in the example below. One of the advantages of this
choice is the grouping capability based on shared pin configuration. This allows to reduce the
verbosity of the pin control definitions. Another advantage is that the pin configuration param-
eters for a particular state are enclosed in a single Devicetree node.

/* board.dts */
#include "board-pinctrl.dtsi"

&periph0 {
pinctrl-0 = <&periph0_default>;
pinctrl-names = "default";

};

/* vnd-soc-pkgxx.h
* File with valid mappings for a specific package (may be autogenerated).
* This file is optional, but recommended.
*/

...
#define PERIPH0_SIGA_PX0 VNDSOC_PIN(X, 0, MUX0)
#define PERIPH0_SIGB_PY7 VNDSOC_PIN(Y, 7, MUX4)
#define PERIPH0_SIGC_PZ1 VNDSOC_PIN(Z, 1, MUX2)
...

/* board-pinctrl.dtsi */
#include <vnd-soc-pkgxx.h>

&pinctrl {
/* Node with pin configuration for default state */
periph0_default: periph0_default {

group1 {
/* Mappings: PERIPH0_SIGA -> PX0, PERIPH0_SIGC -> PZ1 */
pinmux = <PERIPH0_SIGA_PX0>, <PERIPH0_SIGC_PZ1>;

(continues on next page)
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(continued from previous page)
/* Pins PX0 and PZ1 have pull-up enabled */
bias-pull-up;

};
...
groupN {

/* Mappings: PERIPH0_SIGB -> PY7 */
pinmux = <PERIPH0_SIGB_PY7>;

};
};

};

Another popular model is based on having a node for each pin configuration and state. While this
model may lead to shorter board pin control files, it also requires to have one node for each pin
mapping and state, since in general, nodes can not be re-used for multiple states. This method
is discouraged if autogeneration is not an option.

Note

Because all Devicetree information is parsed into a C header, it is important to make sure its
size is kept to a minimum. For this reason it is important to prefix pre-generated nodes with
/omit-if-no-ref/. This prefix makes sure that the node is discarded when not used.

/* board.dts */
#include "board-pinctrl.dtsi"

&periph0 {
pinctrl-0 = <&periph0_siga_px0_default &periph0_sigb_py7_default

&periph0_sigc_pz1_default>;
pinctrl-names = "default";

};

/* vnd-soc-pkgxx.dtsi
* File with valid nodes for a specific package (may be autogenerated).
* This file is optional, but recommended.
*/

&pinctrl {
/* Mapping for PERIPH0_SIGA -> PX0, to be used for default state */
/omit-if-no-ref/ periph0_siga_px0_default: periph0_siga_px0_default {

pinmux = <VNDSOC_PIN(X, 0, MUX0)>;
};

/* Mapping for PERIPH0_SIGB -> PY7, to be used for default state */
/omit-if-no-ref/ periph0_sigb_py7_default: periph0_sigb_py7_default {

pinmux = <VNDSOC_PIN(Y, 7, MUX4)>;
};

/* Mapping for PERIPH0_SIGC -> PZ1, to be used for default state */
/omit-if-no-ref/ periph0_sigc_pz1_default: periph0_sigc_pz1_default {

pinmux = <VNDSOC_PIN(Z, 1, MUX2)>;
};

};

/* board-pinctrl.dts */
#include <vnd-soc-pkgxx.dtsi>

/* Enable pull-up for PX0 (default state) */
&periph0_siga_px0_default {

(continues on next page)
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(continued from previous page)
bias-pull-up;

};

/* Enable pull-up for PZ1 (default state) */
&periph0_sigc_pz1_default {

bias-pull-up;
};

Note

It is discouraged to add pin configuration defaults in pre-defined nodes. In general, pin config-
urations depend on the board design or on the peripheral working conditions, so the decision
should be made by the board. For example, enabling a pull-up by default may not always be
desired because the board already has one or because its value depends on the operating bus
speed. Another downside of defaults is that user may not be aware of them, for example:
/* not evident that "periph0_siga_px0_default" also implies "bias-pull-up" */
/omit-if-no-ref/ periph0_siga_px0_default: periph0_siga_px0_default {

pinmux = <VNDSOC_PIN(X, 0, MUX0)>;
bias-pull-up;

};

7.7.5 Implementation guidelines

Pin control drivers

Pin control drivers need to implement a single function: pinctrl_configure_pins(). This func-
tion receives an array of pin configurations that need to be applied. Furthermore, if CON-
FIG_PINCTRL_STORE_REG is set, it also receives the associated device register address for the given
pins. This information may be required by some drivers to perform device specific actions.

The pin configuration is stored in an opaque type that is vendor/SoC dependent: pinc-
trl_soc_pin_t. This type needs to be defined in a header named pinctrl_soc.h file that is in the
Zephyr’s include path. It can range from a simple integer value to a struct with multiple fields.
pinctrl_soc.h also needs to define a macro named Z_PINCTRL_STATE_PINS_INIT that accepts
two arguments: a node identifier and a property name (pinctrl-N). With this information the
macro needs to define an initializer for all pin configurations contained within the pinctrl-N
property of the given node.

Regarding Devicetree pin configuration representation, vendors can decide which option is bet-
ter for their devices. However, the following guidelines should be followed:

• Use pinctrl-N (N=0, 1, …) and pinctrl-names properties to define pin control states. These
properties are defined in dts/bindings/pinctrl/pinctrl-device.yaml.

• Use standard pin configuration properties as defined in dts/bindings/pinctrl/
pincfg-node.yaml.

Representations not following these guidelines may be accepted if they are already used by the
same vendor in other operating systems, e.g. Linux.

Device drivers

In this section you will find some tips on how a device driver should use the pinctrl API to
successfully configure the pins it needs.
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The device compatible needs to be modified in the corresponding binding so that the
pinctrl-device.yaml is included. For example:

include: [base.yaml, pinctrl-device.yaml]

This file is needed to add pinctrl-N and pinctrl-names properties to the device.

From a device driver perspective there are two steps that need to be performed to be able to
use the pinctrl API. First, the pin control configuration needs to be defined. This includes all
states and pins. PINCTRL_DT_DEFINE or PINCTRL_DT_INST_DEFINE macros should be used for this
purpose. Second, a reference to the device instance pinctrl_dev_configneeds to be stored, since
it is required to later use the API. This can be achieved using the PINCTRL_DT_DEV_CONFIG_GET
and PINCTRL_DT_INST_DEV_CONFIG_GET macros.

It is worth to note that the only relationship between a device and its associated pin control con-
figuration is based on variable naming conventions. The way an instance of pinctrl_dev_config
is named for a corresponding device instance allows to later obtain a reference to it given the
device’s Devicetree node identifier. This allows to minimize ROM usage, since only devices re-
quiring pin control will own a reference to a pin control configuration.

Once the driver has defined the pin control configuration and kept a reference to it, it is ready
to use the API. The most common way to apply a state is by using pinctrl_apply_state(). It is
also possible to use the lower level function pinctrl_apply_state_direct() to skip state lookup
if it is cached in advance (e.g. at init time). Since state lookup time is expected to be fast, it is
recommended to use pinctrl_apply_state().

The example below contains a complete example of a device driver that uses the pinctrl API.

/* A driver for the "mydev" compatible device */
#define DT_DRV_COMPAT mydev

...
#include <zephyr/drivers/pinctrl.h>
...

struct mydev_config {
...
/* Reference to mydev pinctrl configuration */
const struct pinctrl_dev_config *pcfg;
...

};

...

static int mydev_init(const struct device *dev)
{

const struct mydev_config *config = dev->config;
int ret;
...
/* Select "default" state at initialization time */
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {

return ret;
}
...

}

#define MYDEV_DEFINE(i) \
/* Define all pinctrl configuration for instance "i" */ \
PINCTRL_DT_INST_DEFINE(i); \
... \
static const struct mydev_config mydev_config_##i = { \

... \
(continues on next page)

3724 Chapter 7. Hardware Support



Zephyr Project Documentation, Release 3.7.99

(continued from previous page)
/* Keep a ref. to the pinctrl configuration for instance "i" */ \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(i), \
... \

}; \
... \

\
DEVICE_DT_INST_DEFINE(i, mydev_init, NULL, &mydev_data##i, \

&mydev_config##i, ...);

DT_INST_FOREACH_STATUS_OKAY(MYDEV_DEFINE)

7.7.6 Pin Control API

group pinctrl_interface
Pin Controller Interface.

Since
3.0

Version
0.1.0

Pin control states

PINCTRL_STATE_DEFAULT
Default state (state used when the device is in operational state).

PINCTRL_STATE_SLEEP
Sleep state (state used when the device is in low power mode).

PINCTRL_STATE_PRIV_START
This and higher values refer to custom private states.

Defines

PINCTRL_REG_NONE
Utility macro to indicate no register is used.

PINCTRL_DT_DEV_CONFIG_DECLARE(node_id)
Declare pin control configuration for a given node identifier.

This macro should be used by tests or applications using runtime pin control to declare
the pin control configuration for a device. PINCTRL_DT_DEV_CONFIG_GET can later
be used to obtain a reference to such configuration.

Only available if CONFIG_PINCTRL_NON_STATIC is selected.

Parameters
• node_id – Node identifier.
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PINCTRL_DT_DEFINE(node_id)
Define all pin control information for the given node identifier.

This helper macro should be called together with device definition. It defines and ini-
tializes the pin control configuration for the device represented by node_id. Each pin
control state (pinctrl-0, …, pinctrl-N) is also defined and initialized. Note that states
marked to be skipped will not be defined (refer to Z_PINCTRL_SKIP_STATE for more
details).

Parameters
• node_id – Node identifier.

PINCTRL_DT_INST_DEFINE(inst)
Define all pin control information for the given compatible index.

See also

PINCTRL_DT_DEFINE

Parameters
• inst – Instance number.

PINCTRL_DT_DEV_CONFIG_GET(node_id)
Obtain a reference to the pin control configuration given a node identifier.

Parameters
• node_id – Node identifier.

PINCTRL_DT_INST_DEV_CONFIG_GET(inst)
Obtain a reference to the pin control configuration given current compatible instance
number.

See also

PINCTRL_DT_DEV_CONFIG_GET

Parameters
• inst – Instance number.

Functions

int pinctrl_lookup_state(const struct pinctrl_dev_config *config, uint8_t id, const struct
pinctrl_state **state)

Find the state configuration for the given state id.

Parameters
• config – Pin controller configuration.

• id – Pin controller state id (see PINCTRL_STATES).

• state – Found state.

Return values
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• 0 – If state has been found.

• -ENOENT – If the state has not been found.

int pinctrl_configure_pins(const pinctrl_soc_pin_t *pins, uint8_t pin_cnt, uintptr_t reg)
Configure a set of pins.

This function will configure the necessary hardware blocks to make the configuration
immediately effective.

Warning

This function must never be used to configure pins used by an instantiated device
driver.

Parameters
• pins – List of pins to be configured.

• pin_cnt – Number of pins.

• reg – Device register (optional, use PINCTRL_REG_NONE if not used).

Return values
• 0 – If succeeded

• -errno – Negative errno for other failures.

static inline int pinctrl_apply_state_direct(const struct pinctrl_dev_config *config,
const struct pinctrl_state *state)

Apply a state directly from the provided state configuration.

Parameters
• config – Pin control configuration.

• state – State.

Return values
• 0 – If succeeded

• -errno – Negative errno for other failures.

static inline int pinctrl_apply_state(const struct pinctrl_dev_config *config, uint8_t id)
Apply a state from the given device configuration.

Parameters
• config – Pin control configuration.

• id – Id of the state to be applied (see PINCTRL_STATES).

Return values
• 0 – If succeeded.

• -ENOENT – If given state id does not exist.

• -errno – Negative errno for other failures.

struct pinctrl_state
#include <pinctrl.h> Pin control state configuration.

7.7. Pin Control 3727



Zephyr Project Documentation, Release 3.7.99

Public Members

const pinctrl_soc_pin_t *pins
Pin configurations.

uint8_t pin_cnt
Number of pin configurations.

uint8_t id
State identifier (see PINCTRL_STATES).

struct pinctrl_dev_config
#include <pinctrl.h> Pin controller configuration for a given device.

Public Members

uintptr_t reg
Device address (only available if CONFIG_PINCTRL_STORE_REG is enabled).

const struct pinctrl_state *states
List of state configurations.

uint8_t state_cnt
Number of state configurations.

Dynamic pin control

group pinctrl_interface_dynamic

Defines

PINCTRL_DT_STATE_PINS_DEFINE(node_id, prop)
Helper macro to define the pins of a pin control state from Devicetree.

The name of the defined state pins variable is the same used by prop. This macro is
expected to be used in conjunction with PINCTRL_DT_STATE_INIT.

See also

PINCTRL_DT_STATE_INIT

Parameters
• node_id – Node identifier containing prop.

• prop – Property within node_id containing state configuration.
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PINCTRL_DT_STATE_INIT(prop, state)
Utility macro to initialize a pin control state.

This macro should be used in conjunction with PINCTRL_DT_STATE_PINS_DEFINE
when using dynamic pin control to define an alternative state configuration stored
in Devicetree.

Example:

// board.dts

/{
zephyr,user {

// uart0_alt_default node contains alternative pin config
uart0_alt_default = <&uart0_alt_default>;

};
};

// application

PINCTRL_DT_STATE_PINS_DEFINE(DT_PATH(zephyr_user), uart0_alt_default);

static const struct pinctrl_state uart0_alt[] = {
PINCTRL_DT_STATE_INIT(uart0_alt_default, PINCTRL_STATE_DEFAULT)

};

See also

PINCTRL_DT_STATE_PINS_DEFINE

Parameters
• prop – Property name in Devicetree containing state configuration.

• state – State represented by prop (see PINCTRL_STATES).

Functions

int pinctrl_update_states(struct pinctrl_dev_config *config, const struct pinctrl_state
*states, uint8_t state_cnt)

Update states with a new set.

Note

In order to guarantee device drivers correct operation the same states have to be
provided. For example, if default and sleep are in the current list of states, it is
expected that the new array of states also contains both.

Parameters
• config – Pin control configuration.

• states – New states to be set.

• state_cnt – Number of new states to be set.

Return values
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• -EINVAL – If the new configuration does not contain the same states as
the current active configuration.

• -ENOSYS – If the functionality is not available.

• 0 – On success.

7.7.7 Other reference material

• Introduction to pin muxing and GPIO control under Linux

7.8 Porting

These pages document how to port Zephyr to new hardware.

7.8.1 Architecture Porting Guide

An architecture port is needed to enable Zephyr to run on an ISA (instruction set architecture)
or an ABI (Application Binary Interface) that is not currently supported.

The following are examples of ISAs and ABIs that Zephyr supports:

• x86_32 ISA with System V ABI

• ARMv7-M ISA with Thumb2 instruction set and ARM Embedded ABI (aeabi)

• ARCv2 ISA

For information on Kconfig configuration, see Setting Kconfig configuration values. Architectures
use a Kconfig configuration scheme similar to boards.

An architecture port can be divided in several parts; most are required and some are optional:

• The early boot sequence: each architecture has different steps it must take when the CPU
comes out of reset (required).

• Interrupt and exception handling: each architecture handles asynchronous and unre-
quested events in a specific manner (required).

• Thread context switching: the Zephyr context switch is dependent on the ABI and each
ISA has a different set of registers to save (required).

• Thread creation and termination: A thread’s initial stack frame is ABI and architecture-
dependent, and thread abortion possibly as well (required).

• Device drivers: most often, the system clock timer and the interrupt controller are tied to
the architecture (some required, some optional).

• Utility libraries: some common kernel APIs rely on a architecture-specific implementation
for performance reasons (required).

• CPU idling/power management: most architectures implement instructions for putting
the CPU to sleep (partly optional, most likely very desired).

• Fault management: for implementing architecture-specific debug help and handling of
fatal error in threads (partly optional).

• Linker scripts and toolchains: architecture-specific details will most likely be needed in
the build system and when linking the image (required).

• Memory Management and Memory Mapping: for architecture-specific details on sup-
porting memory management and memory mapping.
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• Stack Objects: for architecture-specific details on memory protection hardware regarding
stack objects.

• User Mode Threads: for supporting threads in user mode.

• GDB Stub: for supporting GDB stub to enable remote debugging.

Early Boot Sequence

The goal of the early boot sequence is to take the system from the state it is after reset to a state
where is can run C code and thus the common kernel initialization sequence. Most of the time,
very few steps are needed, while some architectures require a bit more work to be performed.

Common steps for all architectures:

• Setup an initial stack.

• If running an XIP (eXecute-In-Place) kernel, copy initialized data from ROM to RAM.

• If not using an ELF loader, zero the BSS section.

• Jump to z_cstart(), the early kernel initialization

– z_cstart() is responsible for context switching out of the fake context running at
startup into the main thread.

Some examples of architecture-specific steps that have to be taken:

• If given control in real mode on x86_32, switch to 32-bit protected mode.

• Setup the segment registers on x86_32 to handle boot loaders that leave them in an un-
known or broken state.

• Initialize a board-specific watchdog on Cortex-M3/4.

• Switch stacks from MSP to PSP on Cortex-M.

• Use a different approach than calling into _Swap() on Cortex-M to prevent race conditions.

• Setup FIRQ and regular IRQ handling on ARCv2.

Interrupt and Exception Handling

Each architecture defines interrupt and exception handling differently.

When a device wants to signal the processor that there is some work to be done on its behalf,
it raises an interrupt. When a thread does an operation that is not handled by the serial flow
of the software itself, it raises an exception. Both, interrupts and exceptions, pass control to a
handler. The handler is known as an ISR (Interrupt Service Routine) in the case of interrupts. The
handler performs the work required by the exception or the interrupt. For interrupts, that work
is device-specific. For exceptions, it depends on the exception, but most often the core kernel
itself is responsible for providing the handler.

The kernel has to perform some work in addition to the work the handler itself performs. For
example:

• Prior to handing control to the handler:

– Save the currently executing context.

– Possibly getting out of power saving mode, which includes waking up devices.

– Updating the kernel uptime if getting out of tickless idle mode.

• After getting control back from the handler:

– Decide whether to perform a context switch.
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– When performing a context switch, restore the context being context switched in.

This work is conceptually the same across architectures, but the details are completely different:

• The registers to save and restore.

• The processor instructions to perform the work.

• The numbering of the exceptions.

• etc.

It thus needs an architecture-specific implementation, called the interrupt/exception stub.

Another issue is that the kernel defines the signature of ISRs as:

void (*isr)(void *parameter)

Architectures do not have a consistent or native way of handling parameters to an ISR. As such
there are two commonly used methods for handling the parameter.

• Using some architecture defined mechanism, the parameter value is forced in the stub. This
is commonly found in X86-based architectures.

• The parameters to the ISR are inserted and tracked via a separate table requiring the ar-
chitecture to discover at runtime which interrupt is executing. A common interrupt han-
dler demuxer is installed for all entries of the real interrupt vector table, which then
fetches the device’s ISR and parameter from the separate table. This approach is com-
monly used in the ARC and ARM architectures via the CONFIG_GEN_ISR_TABLES implemen-
tation. You can find examples of the stubs by looking at _interrupt_enter() in x86, _In-
tExit() in ARM, _isr_wrapper() in ARM, or the full implementation description for ARC
in arch/arc/core/isr_wrapper.S.

Each architecture also has to implement primitives for interrupt control:

• locking interrupts: irq_lock(), irq_unlock().

• registering interrupts: IRQ_CONNECT().

• programming the priority if possible irq_priority_set().

• enabling/disabling interrupts: irq_enable(), irq_disable().

Note

IRQ_CONNECT is a macro that uses assembler and/or linker script tricks to connect interrupts
at build time, saving boot time and text size.

The vector table should contain a handler for each interrupt and exception that can possi-
bly occur. The handler can be as simple as a spinning loop. However, we strongly suggest
that handlers at least print some debug information. The information helps figuring out what
went wrong when hitting an exception that is a fault, like divide-by-zero or invalid memory ac-
cess, or an interrupt that is not expected (spurious interrupt). See the ARM implementation in
arch/arm/core/cortex_m/fault.c for an example.

Thread Context Switching

Multi-threading is the basic purpose to have a kernel at all. Zephyr supports two types of threads:
preemptible and cooperative.

Two crucial concepts when writing an architecture port are the following:

• Cooperative threads run at a higher priority than preemptible ones, and always preempt
them.
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• After handling an interrupt, if a cooperative thread was interrupted, the kernel always goes
back to running that thread, since it is not preemptible.

A context switch can happen in several circumstances:

• When a thread executes a blocking operation, such as taking a semaphore that is currently
unavailable.

• When a preemptible thread unblocks a thread of higher priority by releasing the object on
which it was blocked.

• When an interrupt unblocks a thread of higher priority than the one currently executing,
if the currently executing thread is preemptible.

• When a thread runs to completion.

• When a thread causes a fatal exception and is removed from the running threads. For
example, referencing invalid memory,

Therefore, the context switching must thus be able to handle all these cases.

The kernel keeps the next thread to run in a “cache”, and thus the context switching code only
has to fetch from that cache to select which thread to run.

There are two types of context switches: cooperative and preemptive.

• A cooperative context switch happens when a thread willfully gives the control to another
thread. There are two cases where this happens

– When a thread explicitly yields.

– When a thread tries to take an object that is currently unavailable and is willing to
wait until the object becomes available.

• A preemptive context switch happens either because an ISR or a thread causes an operation
that schedules a thread of higher priority than the one currently running, if the currently
running thread is preemptible. An example of such an operation is releasing an object on
which the thread of higher priority was waiting.

Note

Control is never taken from cooperative thread when one of them is the running thread.

A cooperative context switch is always done by having a thread call the _Swap() kernel internal
symbol. When _Swap is called, the kernel logic knows that a context switch has to happen: _Swap
does not check to see if a context switch must happen. Rather, _Swap decides what thread to con-
text switch in. _Swap is called by the kernel logic when an object being operated on is unavailable,
and some thread yielding/sleeping primitives.

Note

On x86 and Nios2, _Swap is generic enough and the architecture flexible enough that _Swap
can be called when exiting an interrupt to provoke the context switch. This should not be
taken as a rule, since neither the ARM Cortex-M or ARCv2 port do this.

Since _Swap is cooperative, the caller-saved registers from the ABI are already on the stack. There
is no need to save them in the k_thread structure.

A context switch can also be performed preemptively. This happens upon exiting an ISR, in the
kernel interrupt exit stub:

• _interrupt_enter on x86 after the handler is called.

• _IntExit on ARM.
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• _firq_exit and _rirq_exit on ARCv2.

In this case, the context switch must only be invoked when the interrupted thread was pre-
emptible, not when it was a cooperative one, and only when the current interrupt is not nested.

The kernel also has the concept of “locking the scheduler”. This is a concept similar to locking the
interrupts, but lighter-weight since interrupts can still occur. If a thread has locked the scheduler,
is it temporarily non-preemptible.

So, the decision logic to invoke the context switch when exiting an interrupt is simple:

• If the interrupted thread is not preemptible, do not invoke it.

• Else, fetch the cached thread from the ready queue, and:

– If the cached thread is not the current thread, invoke the context switch.

– Else, do not invoke it.

This is simple, but crucial: if this is not implemented correctly, the kernel will not function as
intended and will experience bizarre crashes, mostly due to stack corruption.

Note

If running a coop-only system, i.e. if CONFIG_NUM_PREEMPT_PRIORITIES is 0, no preemptive
context switch ever happens. The interrupt code can be optimized to not take any scheduling
decision when this is the case.

Thread Creation and Termination

To start a new thread, a stack frame must be constructed so that the context switch can pop it
the same way it would pop one from a thread that had been context switched out. This is to be
implemented in an architecture-specific _new_thread internal routine.

The thread entry point is also not to be called directly, i.e. it should not be set as the PC (program
counter) for the new thread. Rather it must be wrapped in _thread_entry. This means that the
PC in the stack frame shall be set to _thread_entry, and the thread entry point shall be passed
as the first parameter to _thread_entry. The specifics of this depend on the ABI.

The need for an architecture-specific thread termination implementation depends on the archi-
tecture. There is a generic implementation, but it might not work for a given architecture.

One reason that has been encountered for having an architecture-specific implementation of
thread termination is that aborting a thread might be different if aborting because of a graceful
exit or because of an exception. This is the case for ARM Cortex-M, where the CPU has to be taken
out of handler mode if the thread triggered a fatal exception, but not if the thread gracefully exits
its entry point function.

This means implementing an architecture-specific version of k_thread_abort(), and setting
the Kconfig option CONFIG_ARCH_HAS_THREAD_ABORT as needed for the architecture (e.g. see
arch/arm/core/cortex_m/Kconfig).

Thread Local Storage

To enable thread local storage on a new architecture:

1. Implement arch_tls_stack_setup() to setup the TLS storage area in stack. Refer to the
toolchain documentation on how the storage area needs to be structured. Some helper
functions can be used:

• Function z_tls_data_size() returns the size needed for thread local variables (ex-
cluding any extra data required by toolchain and architecture).
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• Function z_tls_copy() prepares the TLS storage area for thread local variables. This
only copies the variable themselves and does not do architecture and/or toolchain spe-
cific data.

2. In the context switching, grab the tls field inside the new thread’s struct k_thread and
put it into an appropriate register (or some other variable) for access to the TLS storage
area. Refer to toolchain and architecture documentation on which registers to use.

3. In kconfig, add select CONFIG_ARCH_HAS_THREAD_LOCAL_STORAGE to kconfig related to the
new architecture.

4. Run the tests/kernel/threads/tls to make sure the new code works.

Device Drivers

The kernel requires very few hardware devices to function. In theory, the only required device
is the interrupt controller, since the kernel can run without a system clock. In practice, to get
access to most, if not all, of the sanity check test suite, a system clock is needed as well. Since
these two are usually tied to the architecture, they are part of the architecture port.

Interrupt Controllers There can be significant differences between the interrupt controllers
and the interrupt concepts across architectures.

For example, x86 has the concept of an IDT and different interrupt controllers. The position of
an interrupt in the IDT determines its priority.

On the other hand, the ARM Cortex-M has the NVIC (Nested Vectored Interrupt Controller) as part
of the architecture definition. There is no need for an IDT-like table that is separate from the NVIC
vector table. The position in the table has nothing to do with priority of an IRQ: priorities are
programmable per-entry.

The ARCv2 has its interrupt unit as part of the architecture definition, which is somewhat similar
to the NVIC. However, where ARC defines interrupts as having a one-to-one mapping between
exception and interrupt numbers (i.e. exception 1 is IRQ1, and device IRQs start at 16), ARM has
IRQ0 being equivalent to exception 16 (and weirdly enough, exception 1 can be seen as IRQ-15).

All these differences mean that very little, if anything, can be shared between architectures with
regards to interrupt controllers.

System Clock x86 has APIC timers and the HPET as part of its architecture definition. ARM
Cortex-M has the SYSTICK exception. Finally, ARCv2 has the timer0/1 device.

Kernel timeouts are handled in the context of the system clock timer driver’s interrupt handler.

Console Over Serial Line There is one other device that is almost a requirement for an ar-
chitecture port, since it is so useful for debugging. It is a simple polling, output-only, serial port
driver on which to send the console (printk, printf) output.

It is not required, and a RAM console (CONFIG_RAM_CONSOLE) can be used to send all output to a
circular buffer that can be read by a debugger instead.

Utility Libraries

The kernel depends on a few functions that can be implemented with very few instructions or
in a lock-less manner in modern processors. Those are thus expected to be implemented as part
of an architecture port.

• Atomic operators.
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– If instructions do exist for a given architecture, the implementation is configured using
the CONFIG_ATOMIC_OPERATIONS_ARCH Kconfig option.

– If instructions do not exist for a given architecture, a generic version that wraps
irq_lock() or irq_unlock() around non-atomic operations exists. It is configured us-
ing the CONFIG_ATOMIC_OPERATIONS_C Kconfig option.

• Find-least-significant-bit-set and find-most-significant-bit-set.

– If instructions do not exist for a given architecture, it is always possible to implement
these functions as generic C functions.

It is possible to use compiler built-ins to implement these, but be careful they use the required
compiler barriers.

CPU Idling/Power Management

The kernel provides support for CPU power management with two functions: arch_cpu_idle()
and arch_cpu_atomic_idle().

arch_cpu_idle() can be as simple as calling the power saving instruction for the architecture
with interrupts unlocked, for example hlt on x86, wfi or wfe on ARM, sleep on ARC. This function
can be called in a loop within a context that does not care if it get interrupted or not by an
interrupt before going to sleep. There are basically two scenarios when it is correct to use this
function:

• In a single-threaded system, in the only thread when the thread is not used for doing real
work after initialization, i.e. it is sitting in a loop doing nothing for the duration of the
application.

• In the idle thread.

arch_cpu_atomic_idle(), on the other hand, must be able to atomically re-enable interrupts
and invoke the power saving instruction. It can thus be used in real application code, again in
single-threaded systems.

Normally, idling the CPU should be left to the idle thread, but in some very special scenarios,
these APIs can be used by applications.

Both functions must exist for a given architecture. However, the implementation can be simply
the following steps, if desired:

1. unlock interrupts

2. NOP

However, a real implementation is strongly recommended.

Fault Management

In the event of an unhandled CPU exception, the architecture code must call into
z_fatal_error(). This function dumps out architecture-agnostic information and makes a pol-
icy decision on what to do next by invoking k_sys_fatal_error(). This function can be overrid-
den to implement application-specific policies that could include locking interrupts and spinning
forever (the default implementation) or even powering off the system (if supported).

Toolchain and Linking

Toolchain support has to be added to the build system.

Some architecture-specific definitions are needed in include/zephyr/toolchain/gcc.h. See what
exists in that file for currently supported architectures.
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Each architecture also needs its own linker script, even if most sections can be derived from the
linker scripts of other architectures. Some sections might be specific to the new architecture, for
example the SCB section on ARM and the IDT section on x86.

Memory Management and Memory Mapping

If the target platform enables paging and requires drivers to memory-map their I/O regions,
CONFIG_MMU needs to be enabled and the following API implemented:

• arch_mem_map()
• arch_mem_unmap()
• arch_page_phys_get()

Stack Objects

The presence of memory protection hardware affects how stack objects are created. All architec-
ture ports must specify the required alignment of the stack pointer, which is some combination of
CPU and ABI requirements. This is defined in architecture headers with ARCH_STACK_PTR_ALIGN
and is typically something small like 4, 8, or 16 bytes.

Two types of thread stacks exist:

• “kernel” stacks defined with K_KERNEL_STACK_DEFINE() and related APIs, which can host
kernel threads running in supervisor mode or used as the stack for interrupt/exception
handling. These have significantly relaxed alignment requirements and use less reserved
data. No memory is reserved for privilege elevation stacks.

• “thread” stacks which typically use more memory, but are capable of hosting thread run-
ning in user mode, as well as any use-cases for kernel stacks.

If CONFIG_USERSPACE is not enabled, “thread” and “kernel” stacks are equivalent.

Additional macros may be defined in the architecture layer to specify the alignment of the base
of stack objects, any reserved data inside the stack object not used for the thread’s stack buffer,
and how to round up stack sizes to support user mode threads. In the absence of definitions
some defaults are assumed:

• ARCH_KERNEL_STACK_RESERVED: default no reserved space

• ARCH_THREAD_STACK_RESERVED: default no reserved space

• ARCH_KERNEL_STACK_OBJ_ALIGN: default align to ARCH_STACK_PTR_ALIGN
• ARCH_THREAD_STACK_OBJ_ALIGN: default align to ARCH_STACK_PTR_ALIGN
• ARCH_THREAD_STACK_SIZE_ALIGN: default round up to ARCH_STACK_PTR_ALIGN

All stack creation macros are defined in terms of these.

Stack objects all have the following layout, with some regions potentially zero-sized depending
on configuration. There are always two main parts: reserved memory at the beginning, and
then the stack buffer itself. The bounds of some areas can only be determined at runtime in the
context of its associated thread object. Other areas are entirely computable at build time.

Some architectures may need to carve-out reserved memory at runtime from the stack buffer,
instead of unconditionally reserving it at build time, or to supplement an existing reserved area
(as is the case with the ARM FPU). Such carve-outs will always be tracked in thread.stack_info.
start. The region specified by thread.stack_info.start and thread.stack_info.size is al-
ways fully accessible by a user mode thread. thread.stack_info.delta denotes an offset which
can be used to compute the initial stack pointer from the very end of the stack object, taking into
account storage for TLS and ASLR random offsets.
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+---------------------+ <- thread.stack_obj
| Reserved Memory | } K_(THREAD|KERNEL)_STACK_RESERVED
+---------------------+
| Carved-out memory |
|.....................| <- thread.stack_info.start
| Unused stack buffer |
| |
|.....................| <- thread's current stack pointer
| Used stack buffer |
| |
|.....................| <- Initial stack pointer. Computable
| ASLR Random offset | with thread.stack_info.delta
+---------------------| <- thread.userspace_local_data
| Thread-local data |
+---------------------+ <- thread.stack_info.start + thread.stack_info.size

At present, Zephyr does not support stacks that grow upward.

No Memory Protection If no memory protection is in use, then the defaults are sufficient.

HW-based stack overflow detection This option uses hardware features to generate a fatal
error if a thread in supervisor mode overflows its stack. This is useful for debugging, although
for a couple reasons, you can’t reliably make any assertions about the state of the system after
this happens:

• The kernel could have been inside a critical section when the overflow occurs, leaving im-
portant global data structures in a corrupted state.

• For systems that implement stack protection using a guard memory region, it’s possible to
overshoot the guard and corrupt adjacent data structures before the hardware detects this
situation.

To enable the CONFIG_HW_STACK_PROTECTION feature, the system must provide some kind of
hardware-based stack overflow protection, and enable the CONFIG_ARCH_HAS_STACK_PROTECTION
option.

Two forms of HW-based stack overflow detection are supported: dedicated CPU features for this
purpose, or special read-only guard regions immediately preceding stack buffers.

CONFIG_HW_STACK_PROTECTION only catches stack overflows for supervisor threads. This is not
required to catch stack overflow from user threads; CONFIG_USERSPACE is orthogonal.

This feature only detects supervisor mode stack overflows, including stack overflows when han-
dling system calls. It doesn’t guarantee that the kernel has not been corrupted. Any stack over-
flow in supervisor mode should be treated as a fatal error, with no assertions about the integrity
of the overall system possible.

Stack overflows in user mode are recoverable (from the kernel’s perspective) and require no
special configuration; CONFIG_HW_STACK_PROTECTION only applies to catching overflows when the
CPU is in supervisor mode.

CPU-based stack overflow detection If we are detecting stack overflows in supervisor mode
via special CPU registers (like ARM’s SPLIM), then the defaults are sufficient.

Guard-based stack overflowdetection We are detecting supervisor mode stack overflows via
special memory protection region located immediately before the stack buffer that generates an
exception on write. Reserved memory will be used for the guard region.
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ARCH_KERNEL_STACK_RESERVED should be defined to the minimum size of a memory protection
region. On most ARM CPUs this is 32 bytes. ARCH_KERNEL_STACK_OBJ_ALIGN should also be set to
the required alignment for this region.

MMU-based systems should not reserve RAM for the guard region and instead simply leave an
non-present virtual page below every stack when it is mapped into the address space. The stack
object will still need to be properly aligned and sized to page granularity.

+-----------------------------+ <- thread.stack_obj
| Guard reserved memory | } K_KERNEL_STACK_RESERVED
+-----------------------------+
| Guard carve-out |
|.............................| <- thread.stack_info.start
| Stack buffer |
. .

Guard carve-outs for kernel stacks are uncommon and should be avoided if possible. They tend
to be needed for two situations:

• The same stack may be re-purposed to host a user thread, in which case the guard is unnec-
essary and shouldn’t be unconditionally reserved. This is the case when privilege elevation
stacks are not inside the stack object.

• The required guard size is variable and depends on context. For example, some ARM CPUs
have lazy floating point stacking during exceptions and may decrement the stack pointer by
a large value without writing anything, completely overshooting a minimally-sized guard
and corrupting adjacent memory. Rather than unconditionally reserving a larger guard,
the extra memory is carved out if the thread uses floating point.

User mode enabled Enabling user mode activates two new requirements:

• A separate fixed-sized privilege mode stack, specified by CONFIG_PRIVILEGED_STACK_SIZE,
must be allocated that the user thread cannot access. It is used as the stack by the kernel
when handling system calls. If stack guards are implemented, a stack guard region must
be able to be placed before it, with support for carve-outs if necessary.

• The memory protection hardware must be able to program a region that exactly
covers the thread’s stack buffer, tracked in thread.stack_info. This implies that
ARCH_THREAD_STACK_SIZE_ADJUST() will need to round up the requested stack size so that
a region may cover it, and that ARCH_THREAD_STACK_OBJ_ALIGN() is also specified per the
granularity of the memory protection hardware.

This becomes more complicated if the memory protection hardware requires that all memory
regions be sized to a power of two, and aligned to their own size. This is common on older MPUs
and is known with CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT.

thread.stack_info always tracks the user-accessible part of the stack object, it must always be
correct to program a memory protection region with user access using the range stored within.

Non power-of-two memory region requirements On systems without power-of-
two region requirements, the reserved memory area for threads stacks defined by
K_THREAD_STACK_RESERVED may be used to contain the privilege mode stack. The layout
could be something like:

+------------------------------+ <- thread.stack_obj
| Other platform data |
+------------------------------+
| Guard region (if enabled) |
+------------------------------+
| Guard carve-out (if needed) |
|..............................|

(continues on next page)
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(continued from previous page)
| Privilege elevation stack |
+------------------------------| <- thread.stack_obj +
| Stack buffer | K_THREAD_STACK_RESERVED =
. . thread.stack_info.start

The guard region, and any carve-out (if needed) would be configured as a read-only region when
the thread is created.

• If the thread is a supervisor thread, the privilege elevation region is just extra stack memory.
An overflow will eventually crash into the guard region.

• If the thread is running in user mode, a memory protection region will be configured to
allow user threads access to the stack buffer, but nothing before or after it. An overflow in
user mode will crash into the privilege elevation stack, which the user thread has no access
to. An overflow when handling a system call will crash into the guard region.

On an MMU system there should be no physical guards; the privilege mode stack will be mapped
into kernel memory, and the stack buffer in the user part of memory, each with non-present
virtual guard pages below them to catch runtime stack overflows.

Other platform data may be stored before the guard region, but this is highly discouraged if such
data could be stored in thread.arch somewhere.

ARCH_THREAD_STACK_RESERVED will need to be defined to capture the size of the reserved region
containing platform data, privilege elevation stacks, and guards. It must be appropriately sized
such that an MPU region to grant user mode access to the stack buffer can be placed immediately
after it.

Power-of-two memory region requirements Thread stack objects must be sized and aligned
to the same power of two, without any reserved memory to allow efficient packing in memory.
Thus, any guards in the thread stack must be completely carved out, and the privilege elevation
stack must be allocated elsewhere.

ARCH_THREAD_STACK_SIZE_ADJUST() and ARCH_THREAD_STACK_OBJ_ALIGN() should both be de-
fined to Z_POW2_CEIL(). K_THREAD_STACK_RESERVED must be 0.

For the privilege stacks, the CONFIG_GEN_PRIV_STACKS must be, enabled. For every thread stack
found in the system, a corresponding fixed- size kernel stack used for handling system calls is
generated. The address of the privilege stacks can be looked up quickly at runtime based on
the thread stack address using z_priv_stack_find(). These stacks are laid out the same way as
other kernel-only stacks.

+-----------------------------+ <- z_priv_stack_find(thread.stack_obj)
| Reserved memory | } K_KERNEL_STACK_RESERVED
+-----------------------------+
| Guard carve-out (if needed) |
|.............................|
| Privilege elevation stack |
| |
+-----------------------------+ <- z_priv_stack_find(thread.stack_obj) +

K_KERNEL_STACK_RESERVED +
CONFIG_PRIVILEGED_STACK_SIZE

+-----------------------------+ <- thread.stack_obj
| MPU guard carve-out |
| (supervisor mode only) |
|.............................| <- thread.stack_info.start
| Stack buffer |
. .

The guard carve-out in the thread stack object is only used if the thread is running in supervisor
mode. If the thread drops to user mode, there is no guard and the entire object is used as the
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stack buffer, with full access to the associated user mode thread and thread.stack_info updated
appropriately.

User Mode Threads

To support user mode threads, several kernel-to-arch APIs need to be implemented, and the
system must enable the CONFIG_ARCH_HAS_USERSPACE option. Please see the documentation for
each of these functions for more details:

• arch_buffer_validate() to test whether the current thread has access permissions to a
particular memory region

• arch_user_mode_enter() which will irreversibly drop a supervisor thread to user mode
privileges. The stack must be wiped.

• arch_syscall_oops() which generates a kernel oops when system call parameters can’t be
validated, in such a way that the oops appears to be generated from where the system call
was invoked in the user thread

• arch_syscall_invoke0() through arch_syscall_invoke6() invoke a system call with the
appropriate number of arguments which must all be passed in during the privilege eleva-
tion via registers.

• arch_is_user_context() return nonzero if the CPU is currently running in user mode

• arch_mem_domain_max_partitions_get() which indicates the max number of regions for a
memory domain. MMU systems have an unlimited amount, MPU systems have constraints
on this.

Some architectures may need to update software memory management structures or mod-
ify hardware registers on another CPU when memory domain APIs are invoked. If so, CON-
FIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API must be selected by the architecture and some addi-
tional APIs must be implemented. This is common on MMU systems and uncommon on MPU
systems:

• arch_mem_domain_thread_add()
• arch_mem_domain_thread_remove()
• arch_mem_domain_partition_add()
• arch_mem_domain_partition_remove()

Please see the doxygen documentation of these APIs for details.

In addition to implementing these APIs, there are some other tasks as well:

• _new_thread() needs to spawn threads with K_USER in user mode

• On context switch, the outgoing thread’s stack memory should be marked inaccessible to
user mode by making the appropriate configuration changes in the memory management
hardware.. The incoming thread’s stack memory should likewise be marked as accessible.
This ensures that threads can’t mess with other thread stacks.

• On context switch, the system needs to switch between memory domains for the incoming
and outgoing threads.

• Thread stack areas must include a kernel stack region. This should be inaccessible to user
threads at all times. This stack will be used when system calls are made. This should be
fixed size for all threads, and must be large enough to handle any system call.

• A software interrupt or some kind of privilege elevation mechanism needs to be estab-
lished. This is closely tied to how the _arch_syscall_invoke macros are implemented. On
system call, the appropriate handler function needs to be looked up in _k_syscall_table.
Bad system call IDs should jump to the K_SYSCALL_BAD handler. Upon completion of the
system call, care must be taken not to leak any register state back to user mode.
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GDB Stub

To enable GDB stub for remote debugging on a new architecture:

1. Create a new gdbstub.h header file under appropriate architecture include directory
(include/arch/<arch>/gdbstub.h).

• Create a new struct struct gdb_ctx as the GDB context.

– Must define a member named exception of type unsigned int to store the GDB
exception reason. This value needs to be set before entering z_gdb_main_loop().

– Architecture can define as many members as needed for GDB stub to function.

– Pointer to this struct needs to be passed to z_gdb_main_loop(), where this pointer
will be passed to other GDB stub functions.

2. Functions for entering and exiting GDB stub main loop.

• If the architecture relies on interrupts to service breakpoints, interrupt service rou-
tines (ISR) need to be implemented, which will serve as the entry point to GDB stub
main loop.

• These functions need to save and restore context so code execution can continue as if
no breakpoints have been encountered.

• These functions need to call z_gdb_main_loop() after saving execution context to go
into the GDB stub main loop to receive commands from GDB.

• Before calling z_gdb_main_loop(), gdb_ctx.exception must be set to specify the ex-
ception reason.

3. Implement necessary functions to support GDB stub functionality:

• arch_gdb_init()
– This needs to initialize necessary bits to support GDB stub functionality, for exam-

ple, setting up the GDB context and connecting debug interrupts.

– This must stop code execution via architecture specific method (e.g. raising debug
interrupts). This allows GDB to connect during boot.

• arch_gdb_continue()
– This function is called when GDB sends a c or continue command to continue code

execution.

• arch_gdb_step()
– This function is called when GDB sends a si or stepi command to execute one

machine instruction, before returning to GDB prompt.

• Hardware register read/write functions:

– Since the GDB stub is running on the target, manipulation of hardware registers
need to cached to avoid affecting the execution of GDB stub. Think of it as con-
text switching, where the execution context is changed to the GDB stub. So that
the register values of the running thread before context switch need to be stored.
Manipulation of register values must only be done to this cached copy. The up-
dated values will then be written to hardware registers before switching back to
the previous running thread.

– arch_gdb_reg_readall()

* This collects all hardware register values that would appear in a g/G packets
which will be sent back to GDB. The format of the G-packet is architecture spe-
cific. Consult GDB on what is expected.
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* Note that, for most architectures, a valid G-packet must be returned and sent
to GDB. If a packet without incorrect length is sent to GDB, GDB will abort the
debugging session.

– arch_gdb_reg_writeall()

* This takes a G-packet sent by GDB and populates the hardware registers with
values from the G-packet.

– arch_gdb_reg_readone()

* This reads the value of one hardware register and sends the result to GDB.

– arch_gdb_reg_writeone()

* This writes the value of one hardware register received from GDB.

• Breakpoints:

– arch_gdb_add_breakpoint() and arch_gdb_remove_breakpoint()
– GDB may decide to use software breakpoints which modifies the memory at the

breakpoint locations to replace the instruction with software breakpoint or trap
instructions. GDB will then restore the memory content once execution reaches
the breakpoints. GDB supports this by default and there is usually no need to han-
dle software breakpoints in the architecture code (where breakpoint type is 0).

– Hardware breakpoints (type 1) are required if the code is in ROM or flash that can-
not be modified at runtime. Consult the architecture datasheet on how to enable
hardware breakpoints.

– If hardware breakpoints are not supported by the architecture, there is no need to
implement these in architecture code. GDB will then rely on software breakpoints.

4. For architecture where certain memory regions are not accessible, an array named
gdb_mem_region_array of type gdb_mem_region needs to be defined to specify regions that
are accessible. For each array item:

• gdb_mem_region.start specifies the start of a memory region.

• gdb_mem_region.end specifies the end of a memory region.

• gdb_mem_region.attributes specifies the permission of a memory region.

– GDB_MEM_REGION_RO: region is read-only.

– GDB_MEM_REGION_RW: region is read-write.

• gdb_mem_region.alignment specifies read/write alignment of a memory region. Use 0
if there is no alignment requirement and read/write can be done byte-by-byte.

API Reference

Timing

group arch-timing

Functions

void arch_busy_wait(uint32_t usec_to_wait)
Architecture-specific implementation of busy-waiting.

Parameters
• usec_to_wait – Wait period, in microseconds
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static inline uint32_t arch_k_cycle_get_32(void)
Obtain the current cycle count, in units specified by CON-
FIG_SYS_CLOCK_HW_CYCLES_PER_SEC.

While this is historically specified as part of the architecture API, in practice virtu-
ally all platforms forward it to the sys_clock_cycle_get_32() API provided by the timer
driver.

See also

k_cycle_get_32()

Returns
The current cycle time. This should count up monotonically through the
full 32 bit space, wrapping at 0xffffffff. Hardware with fewer bits of preci-
sion in the timer is expected to synthesize a 32 bit count.

static inline uint64_t arch_k_cycle_get_64(void)
As for arch_k_cycle_get_32(), but with a 64 bit return value.

Not all timer hardware has a 64 bit timer, this needs to be implemented only if CON-
FIG_TIMER_HAS_64BIT_CYCLE_COUNTER is set.

See also

arch_k_cycle_get_32()

Returns
The current cycle time. This should count up monotonically through the
full 64 bit space, wrapping at 2^64-1. Hardware with fewer bits of precision
in the timer is generally not expected to implement this API.

Threads

group arch-threads

Functions

void arch_new_thread(struct k_thread *thread, k_thread_stack_t *stack, char *stack_ptr,
k_thread_entry_t entry, void *p1, void *p2, void *p3)

Handle arch-specific logic for setting up new threads.

The stack and arch-specific thread state variables must be set up such that a later at-
tempt to switch to this thread will succeed and we will enter z_thread_entry with the
requested thread and arguments as its parameters.

At some point in this function’s implementation, z_setup_new_thread() must be called
with the true bounds of the available stack buffer within the thread’s stack object.

The provided stack pointer is guaranteed to be properly aligned with respect to the CPU
and ABI requirements. There may be space reserved between the stack pointer and
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the bounds of the stack buffer for initial stack pointer randomization and thread-local
storage.

Fields in thread->base will be initialized when this is called.

Parameters
• thread – Pointer to uninitialized struct k_thread

• stack – Pointer to the stack object

• stack_ptr – Aligned initial stack pointer

• entry – Thread entry function

• p1 – 1st entry point parameter

• p2 – 2nd entry point parameter

• p3 – 3rd entry point parameter

static inline void arch_switch(void *switch_to, void **switched_from)
Cooperative context switch primitive.

The action of arch_switch() should be to switch to a new context passed in the first
argument, and save a pointer to the current context into the address passed in the
second argument.

The actual type and interpretation of the switch handle is specified by the architecture.
It is the same data structure stored in the “switch_handle” field of a newly-created
thread in arch_new_thread(), and passed to the kernel as the “interrupted” argument
to z_get_next_switch_handle().

Note that on SMP systems, the kernel uses the store through the second pointer as a
synchronization point to detect when a thread context is completely saved (so another
CPU can know when it is safe to switch). This store must be done AFTER all relevant
state is saved, and must include whatever memory barriers or cache management code
is required to be sure another CPU will see the result correctly.

The simplest implementation of arch_switch() is generally to push state onto the thread
stack and use the resulting stack pointer as the switch handle. Some architectures
may instead decide to use a pointer into the thread struct as the “switch handle” type.
These can legally assume that the second argument to arch_switch() is the address of
the switch_handle field of struct thread_base and can use an offset on this value to
find other parts of the thread struct. For example a (C pseudocode) implementation of
arch_switch() might look like:

void arch_switch(void *switch_to, void **switched_from) { struct k_thread
*new = switch_to; struct k_thread *old = CONTAINER_OF(switched_from, struct
k_thread,switch_handle);

// save old context… *switched_from = old; // restore new context… }

Note that the kernel manages the switch_handle field for synchronization as described
above. So it is not legal for architecture code to assume that it has any particular value
at any other time. In particular it is not legal to read the field from the address passed
in the second argument.

Parameters
• switch_to – Incoming thread’s switch handle

• switched_from – Pointer to outgoing thread’s switch handle storage loca-
tion, which must be updated.

void arch_switch_to_main_thread(struct k_thread *main_thread, char *stack_ptr,
k_thread_entry_t _main)
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Custom logic for entering main thread context at early boot.

Used by architectures where the typical trick of setting up a dummy thread in early
boot context to “switch out” of isn’t workable.

Parameters
• main_thread – main thread object

• stack_ptr – Initial stack pointer

• _main – Entry point for application main function.

int arch_float_disable(struct k_thread *thread)
Disable floating point context preservation.

The function is used to disable the preservation of floating point context information
for a particular thread.

Note

For ARM architecture, disabling floating point preservation may only be requested
for the current thread and cannot be requested in ISRs.

Return values
• 0 – On success.

• -EINVAL – If the floating point disabling could not be performed.

• -ENOTSUP – If the operation is not supported

int arch_float_enable(struct k_thread *thread, unsigned int options)
Enable floating point context preservation.

The function is used to enable the preservation of floating point context information
for a particular thread. This API depends on each architecture implementation. If the
architecture does not support enabling, this API will always be failed.

The options parameter indicates which floating point register sets will be used by the
specified thread. Currently it is used by x86 only.

Parameters
• thread – ID of thread.

• options – architecture dependent options

Return values
• 0 – On success.

• -EINVAL – If the floating point enabling could not be performed.

• -ENOTSUP – If the operation is not supported

group arch-tls

Functions
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size_t arch_tls_stack_setup(struct k_thread *new_thread, char *stack_ptr)
Setup Architecture-specific TLS area in stack.

This sets up the stack area for thread local storage. The structure inside TLS area is
architecture specific.

Parameters
• new_thread – New thread object

• stack_ptr – Stack pointer

Returns
Number of bytes taken by the TLS area

Power Management

group arch-pm

Functions

FUNC_NORETURN void arch_system_halt(unsigned int reason)
Halt the system, optionally propagating a reason code.

void arch_cpu_idle(void)
Power save idle routine.

This function will be called by the kernel idle loop or possibly within an implementa-
tion of z_pm_save_idle in the kernel when the ‘_pm_save_flag’ variable is non-zero.

Architectures that do not implement power management instructions may immedi-
ately return, otherwise a power-saving instruction should be issued to wait for an in-
terrupt.

See also

k_cpu_idle()

Note

The function is expected to return after the interrupt that has caused the CPU to
exit power-saving mode has been serviced, although this is not a firm requirement.

void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.

The requirements for arch_cpu_atomic_idle() are as follows:

a. Enabling interrupts and entering a low-power mode needs to be atomic, i.e. there
should be no period of time where interrupts are enabled before the processor
enters a low-power mode. See the comments in k_lifo_get(), for example, of the
race condition that occurs if this requirement is not met.

b. After waking up from the low-power mode, the interrupt lockout state must be
restored as indicated in the ‘key’ input parameter.
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See also

k_cpu_atomic_idle()

Parameters
• key – Lockout key returned by previous invocation of arch_irq_lock()

Symmetric Multi-Processing

group arch-smp

Typedefs

typedef void (*arch_cpustart_t)(void *data)
Per-cpu entry function.

Param data
context parameter, implementation specific

Functions

void arch_cpu_start(int cpu_num, k_thread_stack_t *stack, int sz, arch_cpustart_t fn,
void *arg)

Start a numbered CPU on a MP-capable system.

This starts and initializes a specific CPU. The main thread on startup is running on
CPU zero, other processors are numbered sequentially. On return from this function,
the CPU is known to have begun operating and will enter the provided function. Its
interrupts will be initialized but disabled such that irq_unlock() with the provided key
will work to enable them.

Normally, in SMP mode this function will be called by the kernel initialization and
should not be used as a user API. But it is defined here for special-purpose apps which
want Zephyr running on one core and to use others for design-specific processing.

Parameters
• cpu_num – Integer number of the CPU

• stack – Stack memory for the CPU

• sz – Stack buffer size, in bytes

• fn – Function to begin running on the CPU.

• arg – Untyped argument to be passed to “fn”

bool arch_cpu_active(int cpu_num)
Return CPU power status.

Parameters
• cpu_num – Integer number of the CPU
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static inline struct _cpu *arch_curr_cpu(void)
Return the CPU struct for the currently executing CPU.

static inline uint32_t arch_proc_id(void)
Processor hardware ID.

Most multiprocessor architectures have a low-level unique ID value associated with
the current CPU that can be retrieved rapidly and efficiently in kernel context. Note
that while the numbering of the CPUs is guaranteed to be unique, the values are
platform-defined. In particular, they are not guaranteed to match Zephyr’s own se-
quential CPU IDs (even though on some platforms they do).

Note

There is an inherent race with this API: the system may preempt the current thread
and migrate it to another CPU before the value is used. Safe usage requires knowing
the migration is impossible (e.g. because the code is in interrupt context, holds a
spinlock, or cannot migrate due to k_cpu_mask state).

Returns
Unique ID for currently-executing CPU

void arch_sched_broadcast_ipi(void)
Broadcast an interrupt to all CPUs.

This will invoke z_sched_ipi() on all other CPUs in the system.

void arch_sched_directed_ipi(uint32_t cpu_bitmap)
Direct IPIs to the specified CPUs.

This will invoke z_sched_ipi() on the CPUs identified by cpu_bitmap.

Parameters
• cpu_bitmap – A bitmap indicating which CPUs need the IPI

int arch_smp_init(void)

static inline unsigned int arch_num_cpus(void)
Returns the number of CPUs.

For most systems this will be the same as CONFIG_MP_MAX_NUM_CPUS, however
some systems may determine this at runtime instead.

Returns
the number of CPUs

Interrupts

group arch-irq

Functions

static inline bool arch_is_in_isr(void)
Test if the current context is in interrupt context.

XXX: This is inconsistently handled among arches wrt exception context See: #17656

Returns
true if we are in interrupt context
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static inline unsigned int arch_irq_lock(void)
Lock interrupts on the current CPU.

See also

irq_lock()

static inline void arch_irq_unlock(unsigned int key)
Unlock interrupts on the current CPU.

See also

irq_unlock()

static inline bool arch_irq_unlocked(unsigned int key)
Test if calling arch_irq_unlock() with this key would unlock irqs.

Parameters
• key – value returned by arch_irq_lock()

Returns
true if interrupts were unlocked prior to the arch_irq_lock() call that pro-
duced the key argument.

void arch_irq_disable(unsigned int irq)
Disable the specified interrupt line.

See also

irq_disable()

Note

: The behavior of interrupts that arrive after this call returns and before the cor-
responding call to arch_irq_enable() is undefined. The hardware is not required to
latch and deliver such an interrupt, though on some architectures that may work.
Other architectures will simply lose such an interrupt and never deliver it. Many
drivers and subsystems are not tolerant of such dropped interrupts and it is the job
of the application layer to ensure that behavior remains correct.

void arch_irq_enable(unsigned int irq)
Enable the specified interrupt line.

See also

irq_enable()
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int arch_irq_is_enabled(unsigned int irq)
Test if an interrupt line is enabled.

See also

irq_is_enabled()

int arch_irq_connect_dynamic(unsigned int irq, unsigned int priority, void
(*routine)(const void *parameter), const void *parameter,
uint32_t flags)

Arch-specific hook to install a dynamic interrupt.

Parameters
• irq – IRQ line number

• priority – Interrupt priority

• routine – Interrupt service routine

• parameter – ISR parameter

• flags – Arch-specific IRQ configuration flag

Returns
The vector assigned to this interrupt

int arch_irq_disconnect_dynamic(unsigned int irq, unsigned int priority, void
(*routine)(const void *parameter), const void
*parameter, uint32_t flags)

Arch-specific hook to dynamically uninstall a shared interrupt.

If the interrupt is not being shared, then the associated _sw_isr_table entry will be
replaced by (NULL, z_irq_spurious) (default entry).

Parameters
• irq – IRQ line number

• priority – Interrupt priority

• routine – Interrupt service routine

• parameter – ISR parameter

• flags – Arch-specific IRQ configuration flag

Returns
0 in case of success, negative value otherwise

unsigned int arch_irq_allocate(void)
Arch-specific hook for allocating IRQs.

Note: disable/enable IRQ relevantly inside the implementation of such function to
avoid concurrency issues. Also, an allocated IRQ is assumed to be used thus a following

See also

arch_irq_is_used() should return true.

Returns
The newly allocated IRQ or UINT_MAX on error.
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void arch_irq_set_used(unsigned int irq)
Arch-specific hook for declaring an IRQ being used.

Note: disable/enable IRQ relevantly inside the implementation of such function to
avoid concurrency issues.

Parameters
• irq – the IRQ to declare being used

bool arch_irq_is_used(unsigned int irq)
Arch-specific hook for checking if an IRQ is being used already.

Parameters
• irq – the IRQ to check

Returns
true if being, false otherwise

Userspace

group arch-userspace

Functions

static inline uintptr_t arch_syscall_invoke0(uintptr_t call_id)
Invoke a system call with 0 arguments.

No general-purpose register state other than return value may be preserved when
transitioning from supervisor mode back down to user mode for security reasons.

It is required that all arguments be stored in registers when elevating privileges from
user to supervisor mode.

Processing of the syscall takes place on a separate kernel stack. Interrupts should be
enabled when invoking the system call marshallers from the dispatch table. Thread
preemption may occur when handling system calls.

Call IDs are untrusted and must be bounds-checked, as the value is used to index the
system call dispatch table, containing function pointers to the specific system call code.

Parameters
• call_id – System call ID

Returns
Return value of the system call. Void system calls return 0 here.

static inline uintptr_t arch_syscall_invoke1(uintptr_t arg1, uintptr_t call_id)
Invoke a system call with 1 argument.

See also

arch_syscall_invoke0()

Parameters
• arg1 – First argument to the system call.
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• call_id – System call ID, will be bounds-checked and used to reference
kernel-side dispatch table

Returns
Return value of the system call. Void system calls return 0 here.

static inline uintptr_t arch_syscall_invoke2(uintptr_t arg1, uintptr_t arg2, uintptr_t
call_id)

Invoke a system call with 2 arguments.

See also

arch_syscall_invoke0()

Parameters
• arg1 – First argument to the system call.

• arg2 – Second argument to the system call.

• call_id – System call ID, will be bounds-checked and used to reference
kernel-side dispatch table

Returns
Return value of the system call. Void system calls return 0 here.

static inline uintptr_t arch_syscall_invoke3(uintptr_t arg1, uintptr_t arg2, uintptr_t arg3,
uintptr_t call_id)

Invoke a system call with 3 arguments.

See also

arch_syscall_invoke0()

Parameters
• arg1 – First argument to the system call.

• arg2 – Second argument to the system call.

• arg3 – Third argument to the system call.

• call_id – System call ID, will be bounds-checked and used to reference
kernel-side dispatch table

Returns
Return value of the system call. Void system calls return 0 here.

static inline uintptr_t arch_syscall_invoke4(uintptr_t arg1, uintptr_t arg2, uintptr_t arg3,
uintptr_t arg4, uintptr_t call_id)

Invoke a system call with 4 arguments.
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See also

arch_syscall_invoke0()

Parameters
• arg1 – First argument to the system call.

• arg2 – Second argument to the system call.

• arg3 – Third argument to the system call.

• arg4 – Fourth argument to the system call.

• call_id – System call ID, will be bounds-checked and used to reference
kernel-side dispatch table

Returns
Return value of the system call. Void system calls return 0 here.

static inline uintptr_t arch_syscall_invoke5(uintptr_t arg1, uintptr_t arg2, uintptr_t arg3,
uintptr_t arg4, uintptr_t arg5, uintptr_t
call_id)

Invoke a system call with 5 arguments.

See also

arch_syscall_invoke0()

Parameters
• arg1 – First argument to the system call.

• arg2 – Second argument to the system call.

• arg3 – Third argument to the system call.

• arg4 – Fourth argument to the system call.

• arg5 – Fifth argument to the system call.

• call_id – System call ID, will be bounds-checked and used to reference
kernel-side dispatch table

Returns
Return value of the system call. Void system calls return 0 here.

static inline uintptr_t arch_syscall_invoke6(uintptr_t arg1, uintptr_t arg2, uintptr_t arg3,
uintptr_t arg4, uintptr_t arg5, uintptr_t arg6,
uintptr_t call_id)

Invoke a system call with 6 arguments.

See also

arch_syscall_invoke0()

Parameters
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• arg1 – First argument to the system call.

• arg2 – Second argument to the system call.

• arg3 – Third argument to the system call.

• arg4 – Fourth argument to the system call.

• arg5 – Fifth argument to the system call.

• arg6 – Sixth argument to the system call.

• call_id – System call ID, will be bounds-checked and used to reference
kernel-side dispatch table

Returns
Return value of the system call. Void system calls return 0 here.

static inline bool arch_is_user_context(void)
Indicate whether we are currently running in user mode.

Returns
True if the CPU is currently running with user permissions

int arch_mem_domain_max_partitions_get(void)
Get the maximum number of partitions for a memory domain.

Returns
Max number of partitions, or -1 if there is no limit

int arch_buffer_validate(const void *addr, size_t size, int write)
Check memory region permissions.

Given a memory region, return whether the current memory management hardware
configuration would allow a user thread to read/write that region. Used by system calls
to validate buffers coming in from userspace.

Notes: The function is guaranteed to never return validation success, if the entire
buffer area is not user accessible.

The function is guaranteed to correctly validate the permissions of the supplied buffer,
if the user access permissions of the entire buffer are enforced by a single, enabled
memory management region.

In some architectures the validation will always return failure if the supplied memory
buffer spans multiple enabled memory management regions (even if all such regions
permit user access).

Warning

Buffer of size zero (0) has undefined behavior.

Parameters
• addr – start address of the buffer

• size – the size of the buffer

• write – If non-zero, additionally check if the area is writable. Otherwise,
just check if the memory can be read.

Returns
nonzero if the permissions don’t match.
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size_t arch_virt_region_align(uintptr_t phys, size_t size)
Get the optimal virtual region alignment to optimize the MMU table layout.

Some MMU HW requires some region to be aligned to some of the intermediate block
alignment in order to reduce table usage. This call returns the optimal virtual address
alignment in order to permit such optimization in the following MMU mapping call.

Parameters
• phys – [in] Physical address of region to be mapped, aligned to CON-
FIG_MMU_PAGE_SIZE

• size – [in] Size of region to be mapped, aligned to CONFIG_MMU_PAGE_SIZE
Returns

Alignment to apply on the virtual address of this region

FUNC_NORETURN void arch_user_mode_enter(k_thread_entry_t user_entry, void *p1,
void *p2, void *p3)

Perform a one-way transition from supervisor to user mode.

Implementations of this function must do the following:

• Reset the thread’s stack pointer to a suitable initial value. We do not need any prior
context since this is a one-way operation.

• Set up any kernel stack region for the CPU to use during privilege elevation

• Put the CPU in whatever its equivalent of user mode is

• Transfer execution to arch_new_thread() passing along all the supplied arguments,
in user mode.

Parameters
• user_entry – Entry point to start executing as a user thread

• p1 – 1st parameter to user thread

• p2 – 2nd parameter to user thread

• p3 – 3rd parameter to user thread

FUNC_NORETURN void arch_syscall_oops(void *ssf)
Induce a kernel oops that appears to come from a specific location.

Normally, k_oops() generates an exception that appears to come from the call site of
the k_oops() itself.

However, when validating arguments to a system call, if there are problems we want
the oops to appear to come from where the system call was invoked and not inside the
validation function.

Parameters
• ssf – System call stack frame pointer. This gets passed as an argument

to _k_syscall_handler_t functions and its contents are completely archi-
tecture specific.

size_t arch_user_string_nlen(const char *s, size_t maxsize, int *err)
Safely take the length of a potentially bad string.

This must not fault, instead the err parameter must have -1 written to it. This function
otherwise should work exactly like libc strnlen(). On success err should be set to 0.

Parameters
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• s – String to measure

• maxsize – Max length of the string

• err – Error value to write

Returns
Length of the string, not counting NULL byte, up to maxsize

static inline bool arch_mem_coherent(void *ptr)
Detect memory coherence type.

Required when ARCH_HAS_COHERENCE is true. This function returns true if the byte
pointed to lies within an architecture-defined “coherence region” (typically imple-
mented with uncached memory) and can safely be used in multiprocessor code with-
out explicit flush or invalidate operations.

Note

The result is for only the single byte at the specified address, this API is not required
to check region boundaries or to expect aligned pointers. The expectation is that
the code above will have queried the appropriate address(es).

static inline void arch_cohere_stacks(struct k_thread *old_thread, void
*old_switch_handle, struct k_thread *new_thread)

Ensure cache coherence prior to context switch.

Required when ARCH_HAS_COHERENCE is true. On cache-incoherent multiprocessor
architectures, thread stacks are cached by default for performance reasons. They must
therefore be flushed appropriately on context switch. The rules are:

a. The region containing live data in the old stack (generally the bytes between the
current stack pointer and the top of the stack memory) must be flushed to under-
lying storage so a new CPU that runs the same thread sees the correct data. This
must happen before the assignment of the switch_handle field in the thread struct
which signals the completion of context switch.

b. Any data areas to be read from the new stack (generally the same as the live region
when it was saved) should be invalidated (and NOT flushed!) in the data cache.
This is because another CPU may have run or re-initialized the thread since this
CPU suspended it, and any data present in cache will be stale.

Note

The kernel will call this function during interrupt exit when a new thread has been
chosen to run, and also immediately before entering arch_switch() to effect a code-
driven context switch. In the latter case, it is very likely that more data will be
written to the old_thread stack region after this function returns but before the
completion of the switch. Simply flushing naively here is not sufficient on many
architectures and coordination with the arch_switch() implementation is likely re-
quired.

Parameters
• old_thread – The old thread to be flushed before being allowed to run

on other CPUs.

• old_switch_handle – The switch handle to be stored into old_thread (it
will not be valid until the cache is flushed so is not present yet). This will

7.8. Porting 3757



Zephyr Project Documentation, Release 3.7.99

be NULL if inside z_swap() (because the arch_switch() has not saved it
yet).

• new_thread – The new thread to be invalidated before it runs locally.

Memory Management

group arch-mmu

Defines

ARCH_DATA_PAGE_ACCESSED
Bit indicating the data page was accessed since the value was last cleared.

Used by marking eviction algorithms. Safe to set this if uncertain.

This bit is undefined if ARCH_DATA_PAGE_LOADED is not set.

ARCH_DATA_PAGE_DIRTY
Bit indicating the data page, if evicted, will need to be paged out.

Set if the data page was modified since it was last paged out, or if it has never been
paged out before. Safe to set this if uncertain.

This bit is undefined if ARCH_DATA_PAGE_LOADED is not set.

ARCH_DATA_PAGE_LOADED
Bit indicating that the data page is loaded into a physical page frame.

If un-set, the data page is paged out or not mapped.

ARCH_DATA_PAGE_NOT_MAPPED
If ARCH_DATA_PAGE_LOADED is un-set, this will indicate that the page is not mapped
at all.

This bit is undefined if ARCH_DATA_PAGE_LOADED is set.

Enums

enum arch_page_location
Status of a particular page location.

Values:

enumerator ARCH_PAGE_LOCATION_PAGED_OUT
The page has been evicted to the backing store.

enumerator ARCH_PAGE_LOCATION_PAGED_IN
The page is resident in memory.

enumerator ARCH_PAGE_LOCATION_BAD
The page is not mapped.
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Functions

void arch_mem_map(void *virt, uintptr_t phys, size_t size, uint32_t flags)
Map physical memory into the virtual address space.

This is a low-level interface to mapping pages into the address space. Behavior when
providing unaligned addresses/sizes is undefined, these are assumed to be aligned to
CONFIG_MMU_PAGE_SIZE.

The core kernel handles all management of the virtual address space; by the time we
invoke this function, we know exactly where this mapping will be established. If the
page tables already had mappings installed for the virtual memory region, these will
be overwritten.

If the target architecture supports multiple page sizes, currently only the smallest page
size will be used.

The memory range itself is never accessed by this operation.

This API must be safe to call in ISRs or exception handlers. Calls to this API are assumed
to be serialized, and indeed all usage will originate from kernel/mm.c which handles
virtual memory management.

Architectures are expected to pre-allocate page tables for the entire address space,
as defined by CONFIG_KERNEL_VM_BASE and CONFIG_KERNEL_VM_SIZE. This oper-
ation should never require any kind of allocation for paging structures.

Validation of arguments should be done via assertions.

This API is part of infrastructure still under development and may change.

Parameters
• virt – Page-aligned Destination virtual address to map

• phys – Page-aligned Source physical address to map

• size – Page-aligned size of the mapped memory region in bytes

• flags – Caching, access and control flags, see K_MAP_* macros

void arch_mem_unmap(void *addr, size_t size)
Remove mappings for a provided virtual address range.

This is a low-level interface for un-mapping pages from the address space. When this
completes, the relevant page table entries will be updated as if no mapping was ever
made for that memory range. No previous context needs to be preserved. This function
must update mappings in all active page tables.

Behavior when providing unaligned addresses/sizes is undefined, these are assumed
to be aligned to CONFIG_MMU_PAGE_SIZE.

Behavior when providing an address range that is not already mapped is undefined.

This function should never require memory allocations for paging structures, and it
is not necessary to free any paging structures. Empty page tables due to all contained
entries being un-mapped may remain in place.

Implementations must invalidate TLBs as necessary.

This API is part of infrastructure still under development and may change.

Parameters
• addr – Page-aligned base virtual address to un-map

• size – Page-aligned region size
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int arch_page_phys_get(void *virt, uintptr_t *phys)
Get the mapped physical memory address from virtual address.

The function only needs to query the current set of page tables as the information it
reports must be common to all of them if multiple page tables are in use. If multiple
page tables are active it is unnecessary to iterate over all of them.

Unless otherwise specified, virtual pages have the same mappings across all page ta-
bles. Calling this function on data pages that are exceptions to this rule (such as the
scratch page) is undefined behavior. Just check the currently installed page tables and
return the information in that.

Parameters
• virt – Page-aligned virtual address

• phys – [out] Mapped physical address (can be NULL if only checking if
virtual address is mapped)

Return values
• 0 – if mapping is found and valid

• -EFAULT – if virtual address is not mapped

void arch_reserved_pages_update(void)
Update page frame database with reserved pages.

Some page frames within system RAM may not be available for use. A good example
of this is reserved regions in the first megabyte on PC-like systems.

Implementations of this function should mark all relevant entries in
k_mem_page_frames with K_PAGE_FRAME_RESERVED. This function is called at
early system initialization with mm_lock held.

void arch_mem_page_out(void *addr, uintptr_t location)
Update all page tables for a paged-out data page.

This function:

• Sets the data page virtual address to trigger a fault if accessed that can be distin-
guished from access violations or un-mapped pages.

• Saves the provided location value so that it can retrieved for that data page in the
page fault handler.

• The location value semantics are undefined here but the value will be always be
page-aligned. It could be 0.

If multiple page tables are in use, this must update all page tables. This function is
called with interrupts locked.

Calling this function on data pages which are already paged out is undefined behavior.

This API is part of infrastructure still under development and may change.

void arch_mem_page_in(void *addr, uintptr_t phys)
Update all page tables for a paged-in data page.

This function:

• Maps the specified virtual data page address to the provided physical page frame
address, such that future memory accesses will function as expected. Access and
caching attributes are undisturbed.

• Clears any accounting for “accessed” and “dirty” states.
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If multiple page tables are in use, this must update all page tables. This function is
called with interrupts locked.

Calling this function on data pages which are already paged in is undefined behavior.

This API is part of infrastructure still under development and may change.

void arch_mem_scratch(uintptr_t phys)
Update current page tables for a temporary mapping.

Map a physical page frame address to a special virtual address
K_MEM_SCRATCH_PAGE, with read/write access to supervisor mode, such that
when this function returns, the calling context can read/write the page frame’s
contents from the K_MEM_SCRATCH_PAGE address.

This mapping only needs to be done on the current set of page tables, as it is only
used for a short period of time exclusively by the caller. This function is called with
interrupts locked.

This API is part of infrastructure still under development and may change.

enum arch_page_location arch_page_location_get(void *addr, uintptr_t *location)
Fetch location information about a page at a particular address.

The function only needs to query the current set of page tables as the information it
reports must be common to all of them if multiple page tables are in use. If multiple
page tables are active it is unnecessary to iterate over all of them. This may allow
certain types of optimizations (such as reverse page table mapping on x86).

This function is called with interrupts locked, so that the reported information can’t
become stale while decisions are being made based on it.

Unless otherwise specified, virtual data pages have the same mappings across all page
tables. Calling this function on data pages that are exceptions to this rule (such as the
scratch page) is undefined behavior. Just check the currently installed page tables and
return the information in that.

Parameters
• addr – Virtual data page address that took the page fault

• location – [out] In the case of ARCH_PAGE_LOCATION_PAGED_OUT, the
backing store location value used to retrieve the data page. In the case
of ARCH_PAGE_LOCATION_PAGED_IN, the physical address the page is
mapped to.

Return values
• ARCH_PAGE_LOCATION_PAGED_OUT – The page was evicted to the backing

store.

• ARCH_PAGE_LOCATION_PAGED_IN – The data page is resident in memory.

• ARCH_PAGE_LOCATION_BAD – The page is un-mapped or otherwise has had
invalid access

uintptr_t arch_page_info_get(void *addr, uintptr_t *location, bool clear_accessed)
Retrieve page characteristics from the page table(s)

The architecture is responsible for maintaining “accessed” and “dirty” states of data
pages to support marking eviction algorithms. This can either be directly supported
by hardware or emulated by modifying protection policy to generate faults on reads
or writes. In all cases the architecture must maintain this information in some way.

For the provided virtual address, report the logical OR of the accessed and dirty states
for the relevant entries in all active page tables in the system if the page is mapped and
not paged out.
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If clear_accessed is true, the ARCH_DATA_PAGE_ACCESSED flag will be reset. This func-
tion will report its prior state. If multiple page tables are in use, this function clears
accessed state in all of them.

This function is called with interrupts locked, so that the reported information can’t
become stale while decisions are being made based on it.

The return value may have other bits set which the caller must ignore.

Clearing accessed state for data pages that are not ARCH_DATA_PAGE_LOADED is un-
defined behavior.

ARCH_DATA_PAGE_DIRTY and ARCH_DATA_PAGE_ACCESSED bits in the return value
are only significant if ARCH_DATA_PAGE_LOADED is set, otherwise ignore them.

ARCH_DATA_PAGE_NOT_MAPPED bit in the return value is only significant if
ARCH_DATA_PAGE_LOADED is un-set, otherwise ignore it.

Unless otherwise specified, virtual data pages have the same mappings across all page
tables. Calling this function on data pages that are exceptions to this rule (such as the
scratch page) is undefined behavior.

This API is part of infrastructure still under development and may change.

Parameters
• addr – Virtual address to look up in page tables

• location – [out] If non-NULL, updated with either physi-
cal page frame address or backing store location depending
on ARCH_DATA_PAGE_LOADED state. This is not touched if
ARCH_DATA_PAGE_NOT_MAPPED.

• clear_accessed – Whether to clear ARCH_DATA_PAGE_ACCESSED state

Return values
Value – with ARCH_DATA_PAGE_* bits set reflecting the data page configu-
ration

Miscellaneous Architecture APIs

group arch-misc

Functions

int arch_printk_char_out(int c)
Early boot console output hook.

Definition of this function is optional. If implemented, any invocation of printk() (or
logging calls with CONFIG_LOG_MODE_MINIMAL which are backed by printk) will de-
fault to sending characters to this function. It is useful for early boot debugging before
main serial or console drivers come up.

This can be overridden at runtime with __printk_hook_install().

The default __weak implementation of this does nothing.

Parameters
• c – Character to print

Returns
The character printed
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static inline void arch_kernel_init(void)
Architecture-specific kernel initialization hook.

This function is invoked near the top of z_cstart, for additional architecture-specific
setup before the rest of the kernel is brought up.

static inline void arch_nop(void)
Do nothing and return.

Yawn.

GDB Stub APIs

group arch-gdbstub

Functions

void arch_gdb_init(void)
Architecture layer debug start.

This function is called by gdb_init()
void arch_gdb_continue(void)

Continue running program.

Continue software execution.

void arch_gdb_step(void)
Continue with one step.

Continue software execution until reaches the next statement.

size_t arch_gdb_reg_readall(struct gdb_ctx *ctx, uint8_t *buf, size_t buflen)
Read all registers, and outputs as hexadecimal string.

This reads all CPU registers and outputs as hexadecimal string. The output string must
be parsable by GDB.

Parameters
• ctx – GDB context

• buf – Buffer to output hexadecimal string.

• buflen – Length of buffer.

Returns
Length of hexadecimal string written. Return 0 if error or not supported.

size_t arch_gdb_reg_writeall(struct gdb_ctx *ctx, uint8_t *hex, size_t hexlen)
Take a hexadecimal string and update all registers.

This takes in a hexadecimal string as presented from GDB, and updates all CPU regis-
ters with new values.

Parameters
• ctx – GDB context

• hex – Input hexadecimal string.

• hexlen – Length of hexadecimal string.

Returns
Length of hexadecimal string parsed. Return 0 if error or not supported.
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size_t arch_gdb_reg_readone(struct gdb_ctx *ctx, uint8_t *buf, size_t buflen, uint32_t
regno)

Read one register, and outputs as hexadecimal string.

This reads one CPU register and outputs as hexadecimal string. The output string must
be parsable by GDB.

Parameters
• ctx – GDB context

• buf – Buffer to output hexadecimal string.

• buflen – Length of buffer.

• regno – Register number

Returns
Length of hexadecimal string written. Return 0 if error or not supported.

size_t arch_gdb_reg_writeone(struct gdb_ctx *ctx, uint8_t *hex, size_t hexlen, uint32_t
regno)

Take a hexadecimal string and update one register.

This takes in a hexadecimal string as presented from GDB, and updates one CPU regis-
ters with new value.

Parameters
• ctx – GDB context

• hex – Input hexadecimal string.

• hexlen – Length of hexadecimal string.

• regno – Register number

Returns
Length of hexadecimal string parsed. Return 0 if error or not supported.

int arch_gdb_add_breakpoint(struct gdb_ctx *ctx, uint8_t type, uintptr_t addr, uint32_t
kind)

Add breakpoint or watchpoint.

Parameters
• ctx – GDB context

• type – Breakpoint or watchpoint type

• addr – Address of breakpoint or watchpoint

• kind – Size of breakpoint/watchpoint in bytes

Return values
• 0 – Operation successful

• -1 – Error encountered

• -2 – Not supported

int arch_gdb_remove_breakpoint(struct gdb_ctx *ctx, uint8_t type, uintptr_t addr, uint32_t
kind)

Remove breakpoint or watchpoint.

Parameters
• ctx – GDB context

• type – Breakpoint or watchpoint type
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• addr – Address of breakpoint or watchpoint

• kind – Size of breakpoint/watchpoint in bytes

Return values
• 0 – Operation successful

• -1 – Error encountered

• -2 – Not supported

7.8.2 SoC Porting Guide

This page describes how to add support for a new SoC in Zephyr, be it in the upstream Zephyr
project or locally in your own repository.

SoC Definitions

It is expected that you are familiar with the board concept in Zephyr. A high level overview of
the hardware support hierarchy and terms used in the Zephyr documentation can be seen in
Hardware support hierarchy.

For SoC porting, the most important terms are:

• SoC: the exact system on a chip the board’s CPU is part of.

• SoC series: a group of tightly related SoCs.

• SoC family: a wider group of SoCs with similar characteristics.

• CPU Cluster: a cluster of one or more CPU cores.

• CPU core: a particular CPU instance of a given architecture.

• Architecture: an instruction set architecture.

Architecture See Architecture Porting Guide.

Create your SoC directory

Each SoC must have a unique name. Use the official name given by the SoC vendor and check that
it’s not already in use. In some cases someone else may have contributed a SoC with identical
name. If the SoC name is already in use, then you should probably improve the existing SoC
instead of creating a new one. The script list_hardware can be used to retrieve a list of all SoCs
known in Zephyr, for example ./scripts/list_hardware.py --soc-root=. --socs from the
Zephyr base directory for a list of names that are already in use.

Start by creating the directory zephyr/soc/<VENDOR>/soc1, where <VENDOR> is your vendor sub-
directory.

Note

A <VENDOR> subdirectory is mandatory if contributing your SoC to Zephyr, but if your SoC
is placed in a local repo, then any folder structure under <your-repo>/soc is permitted.
The <VENDOR> subdirectory must match a vendor defined in the list in dts/bindings/vendor-
prefixes.txt. If the SoC vendor does not have a prefix in that list, then one must be created.
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Note

The SoC directory name does not need to match the name of the SoC. Multiple SoCs can even
be defined in one directory. In Zephyr, SoCs are often organized in sub-folders in a common
SoC Family or SoC Series tree.

Your SoC directory should look like this:

soc/<VENDOR>/<soc-name>
├── soc.yml
├── soc.h
├── CMakeLists.txt
├── Kconfig
├── Kconfig.soc
└── Kconfig.defconfig

Replace <soc-name> with your SoC’s name.

The mandatory files are:

1. soc.yml: a YAML file describing the high-level meta data of the SoC such as: - SoC name:
the name of the SoC - CPU clusters: CPU clusters if the SoC contains one or more clusters -
SoC series: the SoC series to which the SoC belong - SoC family: the SoC family to which the
series belong

2. soc.h: a header file which can be used to describe or provide configuration macros for
the SoC. The soc.h will often be included in drivers, sub-systems, boards, and other source
code found in Zephyr.

3. Kconfig.soc: the base SoC configuration which defines a Kconfig SoC symbol in the form of
config SOC_<soc-name> and provides the SoC name to the Kconfig SOC setting. If the soc.
yml describes a SoC family and series, then those must also be defined in this file. Kconfig
settings outside of the SoC tree must not be selected. To select general Zephyr Kconfig set-
tings the Kconfig file must be used.

4. CMakeLists.txt: CMake file loaded by the Zephyr build system. This CMake file can define
additional include paths and/or source files to be used when a build targets the SoC. Also
the base line linker script to use must be defined.

The optional files are:

• Kconfig, Kconfig.defconfig software configuration in Configuration System (Kconfig) for-
mat. These select the architecture and peripherals available.

Write your SoC YAML

The SoC YAML file describes the SoC family, SoC series, and SoC at a high level.

Detailed configurations, such as hardware description and configuration are done in devicetree
and Kconfig.

The skeleton of a simple SoC YAML file containing just one SoC is:

socs:
- name: <soc1>

It is possible to have multiple SoC located in the SoC folder. For example if they belong to a
common family or series it is recommended to locate such SoC in a common tree. Multiple SoCs
and SoC series in a common folder can be described in the soc.yml file as:
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family:
name: <family-name>
series:
- name: <series-1-name>

socs:
- name: <soc1>
cpucluster:
- name: <coreA>
- name: <coreB>
...

- name: <soc2>
- name: <series-2-name>

...

Write your SoC devicetree

SoC devicetree include files are located in the <zephyr-repo>/dts folder under a corresponding
<ARCH>/<VENDOR>.

The SoC dts/<ARCH>/<VENDOR>/<soc>.dtsi describes your SoC hardware in the Devicetree
Source (DTS) format and must be included by any boards which use the SoC.

If a highlevel <arch>.dtsi file exists, then a good starting point is to include this file in your
<soc>.dtsi.

In general, <soc>.dtsi should look like this:

#include <arch>/<arch>.dtsi

/ {
chosen {

/* common chosen settings for your SoC */
};

cpus {
#address-cells = <m>;
#size-cells = <n>;

cpu@0 {
device_type = "cpu";
compatible = "<compatibles>";
/* ... your CPU definitions ... */

};

soc {
/* Your SoC definitions and peripherals */
/* such as ram, clock, buses, peripherals. */

};
};

Hint

It is possible to structure multiple <VENDOR>/<soc>.dtsi files in sub-directories for a cleaner
file system structure. For example organized pre SoC series, like this: <VENDOR>/<SERIES>/
<soc>.dtsi.

Multiple CPU clusters Devicetree reflects the hardware. The memory space and peripherals
available to one CPU cluster can be very different from another CPU cluster, therefore each CPU
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cluster will often have its own .dtsi file.

CPU cluster .dtsi files should follow the naming scheme <soc>_<cluster>.dtsi. A
<soc>_<cluster>.dtsi file will look similar to a SoC .dtsi without CPU clusters.

Write Kconfig files

Zephyr uses the Kconfig language to configure software features. Your SoC needs to provide
some Kconfig settings before you can compile a Zephyr application for it.

Setting Kconfig configuration values is documented in detail in Setting Kconfig configuration val-
ues.

There is one mandatory Kconfig file in the SoC directory, and two optional files for a SoC:

soc/<vendor>/<your soc>
├── Kconfig.soc
├── Kconfig
└── Kconfig.defconfig

Kconfig.soc
A shared Kconfig file which can be sourced both in Zephyr Kconfig and sysbuild Kconfig
trees.

This file selects the SoC family and series in the Kconfig tree and potential other SoC related
Kconfig settings. In some cases a SOC_PART_NUMBER. This file must not select anything
outside the re-usable Kconfig SoC tree.

A Kconfig.soc may look like this:

config SOC_<series name>
bool

config SOC_<SOC_NAME>
bool
select SOC_SERIES_<series name>

config SOC
default "SoC name" if SOC_<SOC_NAME>

Notice that SOC_NAME is a pure upper case version of the SoC name.

The Kconfig SOC setting is globally defined as a string and therefore the Kconfig.soc file
shall only define the default string value and not the type. Notice that the string value must
match the SoC name used in the soc.yml file.

Kconfig
Included by soc/Kconfig.

This file can add Kconfig settings which are specific to the current SoC.

The Kconfig will often indicate given hardware support using a setting of the form
HAS_<support>.

config SOC_<SOC_NAME>
select ARM
select CPU_HAS_FPU

If the setting name is identical to an existing Kconfig setting in Zephyr and only modifies
the default value of said setting, then Kconfig.defconfig should be used instead.

Kconfig.defconfig
SoC specific default values for Kconfig options.

Not all SoCs have a Kconfig.defconfig file.
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The entire file should be inside a pair of if SOC_<SOC_NAME> / endif or if
SOC_SERIES_<SERIES_NAME> / endif, like this:

if SOC_<SOC_NAME>

config NUM_IRQS
default 32

endif # SOC_<SOC_NAME>

Multiple CPU clusters CPU clusters must provide additional Kconfig settings in the Kconfig.
soc file. This will usually be in the form of SOC_<SOC_NAME>_<CLUSTER> so for a given soc1 with
two clusters clusterA and clusterB, then this will look like:

SoC’s When a SoC defines CPU cluster

config SOC_SOC1_CLUSTERA
bool
select SOC_SOC1

config SOC_SOC1_CLUSTERB
bool
select SOC_SOC1

7.8.3 Board Porting Guide

To add Zephyr support for a new board, you at least need a board directorywith various files in it.
Files in the board directory inherit support for at least one SoC and all of its features. Therefore,
Zephyr must support your SoC as well.

Transition to the current hardware model

Shortly after Zephyr 3.6.0 was released, a new hardware model was introduced to Zephyr. This
new model overhauls the way both SoCs and boards are named and defined, and adds support
for features that had been identified as important over the years. Among them:

• Support for multi-core, multi-arch AMP (Asymmetrical Multi Processing) SoCs

• Support for multi-SoC boards

• Support for reusing the SoC and board Kconfig trees outside of the Zephyr build system

• Support for advanced use cases with Sysbuild (System build)

• Removal of all existing arbitrary and inconsistent uses of Kconfig and folder names

All the documentation in this page refers to the current hardware model. Please refer to the docu-
mentation in Zephyr v3.6.0 (or earlier) for information on the previous, now obsolete, hardware
model.

More information about the rationale, development and concepts behind the new model can be
found in the original issue, the original Pull Request and, for a complete set of changes intro-
duced, the hardware model v2 commit.

Some non-critical features, enhancements and improvements of the new hardware model are
still in development. Check the hardware model v2 enhancements issue for a complete list.

The transition from the previous hardware model to the current one (commonly referred to
as “hardware model v2”) requires modifications to all existing board and SoC definitions. A
decision was made not to provide direct backwards compatibility for the previous model, which
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leaves users transitioning from a previous version of Zephyr to one including the new model
(v3.7.0 and onwards) with two options if they have an out-of-tree board (or SoC):

1. Convert the out-of-tree board to the current hardware model (recommended)

2. Take the SoC definition from Zephyr v3.6.0 and copy it to your downstream repository (en-
suring that the build system can find it via a zephyr module or SOC_ROOT). This will allow
your board, defined in the previous hardware model, to continue to work

When converting your board from the previous to the current hardware model, we recommend
first reading through this page to understand the model in detail. You can then use the example-
application conversion Pull Request as an example on how to port a simple board. Additionally,
a conversion script is available and works reliably in many cases (though multi-core SoCs may
not be handled entirely). Finally, the hardware model v2 commit contains the full conversion of
all existing boards from the old to the current model, so you can use it as a complete conversion
reference.

Hardware support hierarchy

Zephyr’s hardware support is based on a series of hierarchical abstractions. Primarily, each
board has one or more SoC. Each SoC can be optionally classed into an SoC series, which in turn
may optionally belong to an SoC family. Each SoC has one or more CPU cluster, each containing
one or more CPU core of a particular architecture.

You can visualize the hierarchy in the diagram below:

Fig. 5: Hardware support Hierarchy

Below are some examples of the hierarchy described in this section, in the form of a board per
row with its corresponding hierarchy entries. Notice how the SoC series and SoC family levels
are not always used.
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board name board qualifiers SoC SoC Se-
ries

SoC fam-
ily

CPU core architec-
ture

nrf52dk nrf52832 nRF52832 nRF52 Nordic
nRF

Arm Cortex-
M4

ARMv7-
M

frdm_k64f mk64f12 MK64F12 Kinetis
K6x

NXP
Kinetis

Arm Cortex-
M4

ARMv7-
M

rv32m1_vega openisa_rv32m1/ri5cyRV32M1 (Not
used)

(Not
used)

RI5CY RISC-V
RV32

nrf5340dk nrf5340/cpuapp nRF5340 nRF53 Nordic
nRF

Arm Cortex-
M33

ARMv8-
M

nrf5340/cpunet nRF5340 nRF53 Nordic
nRF

Arm Cortex-
M33

ARMv8-
M

mimx8mp_evkmimx8ml8/a53 i.MX8M
Plus

i.MX8M NXP
i.MX

Arm Cortex-
A53

ARMv8-A

mimx8ml8/m7 i.MX8M
Plus

i.MX8M NXP
i.MX

Arm Cortex-
M7

ARMv7-
M

mimx8ml8/adsp i.MX8M
Plus

i.MX8M NXP
i.MX

Cadence
HIFI4

Xtensa
LX6

Additional details about terminology can be found in the next section.

Board terminology

The previous section introduced the hierarchical manner in which Zephyr classifies and im-
plements hardware support. This section focuses on the terminology used around hardware
support, and in particular when defining and working with boards and SoCs.

The overall set of terms used around the concept of board in Zephyr is depicted in the image
below, which uses the bl5340_dvk board as reference.

Fig. 6: Board terminology diagram

The diagram shows the different terms that are used to describe boards:

• The board name: bl5340_dvk
• The optional board revision: 1.2.0
• The board qualifiers, that optionally describe the SoC, CPU cluster and variant: nrf5340/
cpuapp/ns

• The board target, which uniquely identifies a combination of the above and can be
used to specify the hardware to build for when using the tooling provided by Zephyr:
bl5340_dvk@1.2.0/nrf5340/cpuapp/ns

Formally this can also be seen as board name[@revision][/board qualifiers], which can be
extended to board name[@revision][/SoC[/CPU cluster][/variant]].
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If a board contains only one single-core SoC, then the SoC can be omitted from the board target.
This implies that if the board does not define any board qualifiers, the board name can be used
as a board target. Conversely, if board qualifiers are part of the board definition, then the SoC
can be omitted by leaving it out but including the corresponding forward-slashes: //.

Continuing with the example above, The board bl5340_dvk is a single SoC board where the SoC
defines two CPU clusters: cpuapp and cpunet. One of the CPU clusters, cpuapp, additionally de-
fines a non-secure board variant, ns.

The board qualifiers nrf5340/cpuapp/ns can be read as:

• nrf5340: The SoC, which is a Nordic nRF5340 dual-core SoC

• cpuapp: The CPU cluster cpuapp, which consists of a single Cortex-M33 CPU core. The num-
ber of cores in a CPU cluster cannot be determined from the board qualifiers.

• ns: a variant, in this case ns is a common variant name is Zephyr denoting a non-secure
build for boards supporting Trusted Firmware-M.

Not all SoCs define CPU clusters or variants. For example a simple board like the
thingy52_nrf52832 contains a single SoC with no CPU clusters and no variants. For thingy52
the board target thingy52/nrf52832 can be read as:

• thingy52: board name.

• nrf52832: The board qualifiers, in this case identical to the SoC, which is a Nordic nRF52832.

Make sure your SoC is supported

Start by making sure your SoC is supported by Zephyr. If it is, it’s time to Create your board
directory. If you don’t know, try:

• checking boards for names that look relevant, and reading individual board documentation
to find out for sure.

• asking your SoC vendor

If you need to add a SoC, CPU cluster, or even architecture support, this is the wrong page, but
here is some general advice.

Architecture See Architecture Porting Guide.

CPU Core CPU core support files go in core subdirectories under arch, e.g. arch/x86/core.

See Install a Toolchain for information about toolchains (compiler, linker, etc.) supported by
Zephyr. If you need to support a new toolchain, Build and Configuration Systems is a good place
to start learning about the build system. Please reach out to the community if you are looking
for advice or want to collaborate on toolchain support.

SoC Zephyr SoC support files are in architecture-specific subdirectories of soc. They are gener-
ally grouped by SoC family.

When adding a new SoC family or series for a vendor that already has SoC support within
Zephyr, please try to extract common functionality into shared files to avoid duplication. If
there is no support for your vendor yet, you can add it in a new directory zephyr/soc/<VENDOR>/
<YOUR-SOC>; please use self-explanatory directory names.
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Create your board directory

Once you’ve found an existing board that uses your SoC, you can usually start by copy/pasting
its board directory and changing its contents for your hardware.

You need to give your board a unique name. Run west boards for a list of names that are already
taken, and pick something new. Let’s say your board is called plank (please don’t actually use
that name).

Start by creating the board directory zephyr/boards/<VENDOR>/plank, where <VENDOR> is your
vendor subdirectory. (You don’t have to put your board directory in the zephyr repository, but
it’s the easiest way to get started. See Custom Board, Devicetree and SOC Definitions for documen-
tation on moving your board directory to a separate repository once it’s working.)

Note

A <VENDOR> subdirectory is mandatory if contributing your board to Zephyr, but if your board
is placed in a local repo, then any folder structure under <your-repo>/boards is permitted.
If the vendor is defined in the list in dts/bindings/vendor-prefixes.txt then you must use that
vendor prefix as <VENDOR>. others may be used as vendor prefix if the vendor is not defined.

Note

The board directory name does not need to match the name of the board. Multiple boards
can even defined be in one directory.

Your board directory should look like this:

boards/<VENDOR>/plank
├── board.yml
├── board.cmake
├── CMakeLists.txt
├── doc
│ ├── plank.png
│ └── index.rst
├── Kconfig.plank
├── Kconfig.defconfig
├── plank_defconfig
├── plank_<qualifiers>_defconfig
├── plank.dts
├── plank_<qualifiers>.dts
└── plank.yaml

Replace plank with your board’s name, of course.

The mandatory files are:

1. board.yml: a YAML file describing the high-level meta data of the boards such as the boards
names, their SoCs, and variants. CPU clusters for multi-core SoCs are not described in this
file as they are inherited from the SoC’s YAML description.

2. plank.dts or plank_<qualifiers>.dts: a hardware description in devicetree format. This
declares your SoC, connectors, and any other hardware components such as LEDs, buttons,
sensors, or communication peripherals (USB, BLE controller, etc).

3. Kconfig.plank: the base software configuration for selecting SoC and other board and SoC
related settings. Kconfig settings outside of the board and SoC tree must not be selected. To
select general Zephyr Kconfig settings the Kconfig file must be used.

The optional files are:
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• Kconfig, Kconfig.defconfig software configuration in Configuration System (Kconfig) for-
mats. This provides default settings for software features and peripheral drivers.

• plank_defconfig and plank_<qualifiers>_defconfig: software configuration in Kconfig
.conf format.

• board.cmake: used for Flash and debug support

• CMakeLists.txt: if you need to add additional source files to your build.

• doc/index.rst, doc/plank.png: documentation for and a picture of your board. You only
need this if you’re Contributing your board to Zephyr.

• plank.yaml: a YAML file with miscellaneous metadata used by the Test Runner (Twister).

Board qualifiers of the form <soc>/<cpucluster>/<variant> are normalized so that / is replaced
with _ when used for filenames, for example: soc1/foo becomes soc1_foo when used in file-
names.

Write your board YAML

The board YAML file describes the board at a high level. This includes the SoC, board variants,
and board revisions.

Detailed configurations, such as hardware description and configuration are done in devicetree
and Kconfig.

The skeleton of the board YAML file is:

board:
name: <board-name>
vendor: <board-vendor>
revision:
format: <major.minor.patch|letter|number|custom>
default: <default-revision-value>
exact: <true|false>
revisions:
- name: <revA>
- name: <revB>

...
socs:
- name: <soc-1>
variants:
- name: <variant-1>
- name: <variant-2>

variants:
- name: <sub-variant-2-1>
...

- name: <soc-2>
...

It is possible to have multiple boards located in the board folder. If multiple boards are placed
in the same board folder, then the file board.yml must describe those in a list as:

boards:
- name: <board-name-1>
vendor: <board-vendor>
...

- name: <board-name-2>
vendor: <board-vendor>
...

...
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Write your devicetree

The devicetree file boards/<vendor>/plank/plank.dts or boards/<vendor>/plank/
plank_<qualifiers>.dts describes your board hardware in the Devicetree Source (DTS)
format (as usual, change plank to your board’s name). If you’re new to devicetree, see
Introduction to devicetree.

In general, plank.dts should look like this:

/dts-v1/;
#include <your_soc_vendor/your_soc.dtsi>

/ {
model = "A human readable name";
compatible = "yourcompany,plank";

chosen {
zephyr,console = &your_uart_console;
zephyr,sram = &your_memory_node;
/* other chosen settings for your hardware */

};

/*
* Your board-specific hardware: buttons, LEDs, sensors, etc.
*/

leds {
compatible = "gpio-leds";
led0: led_0 {

gpios = < /* GPIO your LED is hooked up to */ >;
label = "LED 0";

};
/* ... other LEDs ... */

};

buttons {
compatible = "gpio-keys";
/* ... your button definitions ... */

};

/* These aliases are provided for compatibility with samples */
aliases {

led0 = &led0; /* now you support the blinky sample! */
/* other aliases go here */

};
};

&some_peripheral_you_want_to_enable { /* like a GPIO or SPI controller */
status = "okay";

};

&another_peripheral_you_want {
status = "okay";

};

Only one .dts file will be used, and the most specific file which exists will be used.

This means that if both plank.dts and plank_soc1_foo.dts exist, then when building for plank
/ plank/soc1, then plank.dts is used. When building for plank//foo / plank/soc1/foo the
plank_soc1_foo.dts is used.

This allows board maintainers to write a base devicetree file for the board or write specific de-
vicetree files for a given board’s SoC or variant.
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If you’re in a hurry, simple hardware can usually be supported by copy/paste followed by trial
and error. If you want to understand details, you will need to read the rest of the devicetree
documentation and the devicetree specification.

Example: FRDM-K64F and Hexiwear K64 This section contains concrete examples related to
writing your board’s devicetree.

The FRDM-K64F and Hexiwear K64 board devicetrees are defined in frdm_k64fs.dts and hexi-
wear_k64.dts respectively. Both boards have NXP SoCs from the same Kinetis SoC family, the
K6X.

Common devicetree definitions for K6X are stored in nxp_k6x.dtsi, which is included by both
board .dts files. nxp_k6x.dtsi in turn includes armv7-m.dtsi, which has common definitions for
Arm v7-M cores.

Since nxp_k6x.dtsi is meant to be generic across K6X-based boards, it leaves many devices dis-
abled by default using status properties. For example, there is a CAN controller defined as fol-
lows (with unimportant parts skipped):

can0: can@40024000 {
...
status = "disabled";
...

};

It is up to the board .dts or application overlay files to enable these devices as desired, by setting
status = "okay". The board .dts files are also responsible for any board-specific configuration
of the device, such as adding nodes for on-board sensors, LEDs, buttons, etc.

For example, FRDM-K64 (but not Hexiwear K64) .dts enables the CAN controller and sets the
bus speed:

&can0 {
status = "okay";

};

The &can0 { ... }; syntax adds/overrides properties on the node with label can0, i.e. the
can@4002400 node defined in the .dtsi file.

Other examples of board-specific customization is pointing properties in aliases and chosen to
the right nodes (see Aliases and chosen nodes), and making GPIO/pinmux assignments.

Write Kconfig files

Zephyr uses the Kconfig language to configure software features. Your board needs to provide
some Kconfig settings before you can compile a Zephyr application for it.

Setting Kconfig configuration values is documented in detail in Setting Kconfig configuration val-
ues.

There is one mandatory Kconfig file in the board directory, and several optional files for a board
named plank:

boards/<vendor>/plank
├── Kconfig
├── Kconfig.plank
├── Kconfig.defconfig
├── plank_defconfig
└── plank_<qualifiers>_defconfig
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Kconfig.plank
A shared Kconfig file which can be sourced both in Zephyr Kconfig and sysbuild Kconfig
trees.

This file selects the SoC in the Kconfig tree and potential other SoC related Kconfig settings.
This file must not select anything outside the re-usable Kconfig board and SoC trees.

A Kconfig.plank may look like this:

config BOARD_PLANK
select SOC_SOC1

The Kconfig symbols BOARD_board and BOARD_normalized_board_target are constructed by
the build system, therefore no type shall be defined in above code snippet.

Kconfig
Included by boards/Kconfig.

This file can add Kconfig settings which are specific to the current board.

Not all boards have a Kconfig file.

A board specific setting should be defining a custom setting and usually with a prompt, like
this:

config BOARD_FEATURE
bool "Board specific feature"

If the setting name is identical to an existing Kconfig setting in Zephyr and only modifies
the default value of said setting, then Kconfig.defconfig should be used instead.

Kconfig.defconfig
Board-specific default values for Kconfig options.

Not all boards have a Kconfig.defconfig file.

The entire file should be inside an if BOARD_PLANK / endif pair of lines, like this:

if BOARD_PLANK

config FOO
default y

if NETWORKING
config SOC_ETHERNET_DRIVER

default y
endif # NETWORKING

endif # BOARD_PLANK

plank_defconfig / plank_<qualifiers>_defconfig
A Kconfig fragment that is merged as-is into the final build directory .config whenever an
application is compiled for your board.

If both the common plank_defconfig file and one or more board qualifiers specific
plank_<qualifiers>_defconfig files exist, then all matching files will be used. This allows
you to place configuration which is common for all board SoCs, CPU clusters, and board
variants in the base plank_defconfig and only place the adjustments specific for a given
SoC or board variant in the plank_<qualifiers>_defconfig.

The _defconfig should contain mandatory settings for your system clock, console, etc. The
results are architecture-specific, but typically look something like this:

CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC=120000000 # set up your clock, etc
CONFIG_SERIAL=y
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plank_x_y_z_defconfig / plank_<qualifiers>_x_y_z_defconfig
A Kconfig fragment that is merged as-is into the final build directory .config whenever an
application is compiled for your board revision x.y.z.

Build, test, and fix

Now it’s time to build and test the application(s) you want to run on your board until you’re
satisfied.

For example:

west build -b plank samples/hello_world
west flash

For west flash to work, see Flash and debug support below. You can also just flash build/zephyr/
zephyr.elf, zephyr.hex, or zephyr.bin with any other tools you prefer.

General recommendations

For consistency and to make it easier for users to build generic applications that are not board
specific for your board, please follow these guidelines while porting.

• Unless explicitly recommended otherwise by this section, leave peripherals and their
drivers disabled by default.

• Configure and enable a system clock, along with a tick source.

• Provide pin and driver configuration that matches the board’s valuable components such as
sensors, buttons or LEDs, and communication interfaces such as USB, Ethernet connector,
or Bluetooth/Wi-Fi chip.

• If your board uses a well-known connector standard (like Arduino, Mikrobus, Grove, or
96Boards connectors), add connector nodes to your DTS and configure pin muxes accord-
ingly.

• Configure components that enable the use of these pins, such as configuring an SPI instance
to use the usual Arduino SPI pins.

• If available, configure and enable a serial output for the console using the zephyr,console
chosen node in the devicetree.

• If your board supports networking, configure a default interface.

• Enable all GPIO ports connected to peripherals or expansion connectors.

• If available, enable pinmux and interrupt controller drivers.

• It is recommended to enable the MPU by default, if there is support for it in hard-
ware. For boards with limited memory resources it is acceptable to disable it. When
the MPU is enabled, it is recommended to also enable hardware stack protection (CON-
FIG_HW_STACK_PROTECTION=y) and, thus, allow the kernel to detect stack overflows when
the system is running in privileged mode.

Flash and debug support

Zephyr supports Building, Flashing and Debugging via west extension commands.

To add west flash and west debug support for your board, you need to create a board.cmake
file in your board directory. This file’s job is to configure a “runner” for your board. (There’s
nothing special you need to do to get west build support for your board.)
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“Runners” are Zephyr-specific Python classes that wrap flash and debug host tools and integrate
with west and the zephyr build system to support west flash and related commands. Each
runner supports flashing, debugging, or both. You need to configure the arguments to these
Python scripts in your board.cmake to support those commands like this example board.cmake:

board_runner_args(jlink "--device=nrf52" "--speed=4000")
board_runner_args(pyocd "--target=nrf52" "--frequency=4000000")

include(${ZEPHYR_BASE}/boards/common/nrfjprog.board.cmake)
include(${ZEPHYR_BASE}/boards/common/jlink.board.cmake)
include(${ZEPHYR_BASE}/boards/common/pyocd.board.cmake)

This example configures the nrfjprog, jlink, and pyocd runners.

Warning

Runners usually have names which match the tools they wrap, so the jlink runner wraps
Segger’s J-Link tools, and so on. But the runner command line options like --speed etc. are
specific to the Python scripts.

Note

Runners and board configuration should be created without being targeted to a single oper-
ating system if the tool supports multiple operating systems, nor should it rely upon special
system setup/configuration. For example; do not assume that a user will have prior knowl-
edge/configuration or (if using Linux) special udev rules installed, do not assume one specific
/dev/X device for all platforms as this will not be compatible with Windows or macOS, and al-
low for overriding of the selected device so that multiple boards can be connected to a single
system and flashed/debugged at the choice of the user.

For more details:

• Run west flash --context to see a list of available runners which support flashing, and
west flash --context -r <RUNNER> to view the specific options available for an individual
runner.

• Run west debug --context and west debug --context <RUNNER> to get the same output
for runners which support debugging.

• Run west flash --help and west debug --help for top-level options for flashing and
debugging.

• See Flash and debug runners for Python APIs.

• Look for board.cmake files for other boards similar to your own for more examples.

To see what a west flash or west debug command is doing exactly, run it in verbose mode:

west --verbose flash
west --verbose debug

Verbose mode prints any host tool commands the runner uses.

The order of the include() calls in your board.cmake matters. The first include sets the default
runner if it’s not already set. For example, including nrfjprog.board.cmake first means that
nrfjprog is the default flash runner for this board. Since nrfjprog does not support debugging,
jlink is the default debug runner.
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Multiple board revisions

See Building for a board revision for basics on this feature from the user perspective.

Board revisions are described in the revision entry of the board.yml.

board:
revision:
format: <major.minor.patch|letter|number|custom>
default: <default-revision-value>
exact: <true|false>
revisions:
- name: <revA>
- name: <revB>

Zephyr natively supports the following revision formats:

• major.minor.patch: match a three digit revision, such as 1.2.3.

• number: matches integer revisions

• letter: matches single letter revisions from A to Z only

Fuzzy revision matching Fuzzy revision matching is enabled per default.

If the user selects a revision between those available, the closest revision number that is not
larger than the user’s choice is used. For example, if the board plank defines revisions 0.5.0,
and 1.5.0 and the user builds for plank@0.7.0, the build system will target revision 0.5.0.

The build system will print this at CMake configuration time:

-- Board: plank, Revision: 0.7.0 (Active: 0.5.0)

This allows you to only create revision configuration files for board revision numbers that intro-
duce incompatible changes.

Similar for letter where revision A, D, and F could be defined and the user builds for plank@E,
the build system will target revision D .

Exact revision matching Exact revision matching is enabled when exact: true is specified
in the revision section in board.yml.

When exact is defined then building for plank@0.7.0 in the above example will result in the
following error message:

Board revision `0.7.0` not found. Please specify a valid board revision.

Board revision configuration adjustment When the user builds for board plank@<revision>
it is possible to make adjustments to the board’s normal configuration.

As described in the Write your devicetree and Write Kconfig files sections the board de-
fault configuration is created from the files <board>.dts / <board>_<qualifiers>.dts and
<board>_defconfig / <board>_<qualifiers>_defconfig. When building for a specific board re-
vision, the above files are used as a starting point and the following board files will be used in
addition:

• <board>_<qualifiers>_<revision>_defconfig: a specific revision defconfig which is only
used for the board and SOC / variants identified by <board>_<qualifiers>.

• <board>_<revision>_defconfig: a specific revision defconfig which is used for the board
regardless of the SOC / variants.
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• <board>_<qualifiers>_<revision>.overlay: a specific revision dts overlay which is only
used for the board and SOC / variants identified by <board>_<qualifiers>.

• <board>_<revision>.overlay: a specific revision dts overlay which is used for the board
regardless of the SOC / variants.

This split allows boards with multiple SoCs, multi-core SoCs, or variants to place common revi-
sion adjustments which apply to all SoCs and variants in a single file, while still providing the
ability to place SoC or variant specific adjustments in a dedicated revision file.

Using the plank board from previous sections, then we could have the following revision adjust-
ments:

boards/zephyr/plank
├── plank_0_5_0_defconfig # Kconfig adjustment for all plank board qualifiers on␣
↪→revision 0.5.0
├── plank_0_5_0.overlay # DTS overlay for all plank board qualifiers on revision␣
↪→0.5.0
└── plank_soc1_foo_1_5_0_defconfig # Kconfig adjustment for plank board when building for␣
↪→soc1 variant foo on revision 1.5.0

Custom revision.cmake files

Some boards may not use board revisions supported natively by Zephyr. For example string
revisions.

One reason why Zephyr doesn’t support string revisions is that strings can take many forms and
it’s not always clear if the given strings are just strings, such as blue, green, red, etc. or if they
provide an order which can be matched against higher or lower revisions, such as alpha, beta`,
gamma.

Due to the sheer number of possibilities with strings, including the possibility of doing regex
matches internally, then string revisions must be done using custom revision type.

To indicate to the build system that custom revisions are used, the format field in the revision
section of the board.yml must be written as:

board:
revision:
format: custom

When using custom revisions then a revision.cmake must be created in the board directory.

The revision.cmake will be included by the build system when building for the board and it is
the responsibility of the file to validate the revision specified by the user.

The BOARD_REVISION variable holds the revision value specified by the user.

To signal to the build system that it should use a different revision than the one specified
by the user, revision.cmake can set the variable ACTIVE_BOARD_REVISION to the revision
to use instead. The corresponding Kconfig files and devicetree overlays must be named
<board>_<ACTIVE_BOARD_REVISION>_defconfig and <board>_<ACTIVE_BOARD_REVISION>.
overlay.

Contributing your board

If you want to contribute your board to Zephyr, first – thanks!

There are some extra things you’ll need to do:

1. Make sure you’ve followed all the General recommendations. They are requirements for
boards included with Zephyr.
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2. Add documentation for your board using the template file doc/templates/board.tmpl. See
DocumentationGeneration for information on how to build your documentation before sub-
mitting your pull request.

3. Prepare a pull request adding your board which follows the Contribution Guidelines.

Board extensions

Boards already supported by Zephyr can be extended by downstream users, such as
example-application or vendor SDKs. In some situations, certain hardware description or
choices can not be added in the upstream Zephyr repository, but they can be in a downstream
project, where custom bindings or driver classes can also be created. This feature may also be
useful in development phases, when the board skeleton lives upstream, but other features are
developed in a downstream module.

Board extensions are board fragments that can be present in an out-of-tree board root folder,
under ${BOARD_ROOT}/boards/extensions. Here is an example structure of an extension for the
plank board and its revisions:

boards/extensions/plank
├── plank.conf # optional
├── plank_<revision>.conf # optional
├── plank.overlay # optional
└── plank_<revision>.overlay # optional

A board extension directory must follow the naming structure of the original board it extends.
It may contain Kconfig fragments and/or devicetree overlays. Extensions are, by default, auto-
matically loaded and applied on top of board files, before anything else. There is no guarantee
on which order extensions are applied, in case multiple exist. This feature can be disabled by
passing -DBOARD_EXTENSIONS=OFF when building.

Note that board extensions need to follow the same guidelines as regular boards. For example, it
is wrong to enable extra peripherals or subsystems in a board extension.

Warning

Board extensions are not allowed in any module referenced in Zephyr’s west.yml manifest
file. Any board changes are required to be submitted to the main Zephyr repository.

7.8.4 Shields

Shields, also known as “add-on” or “daughter boards”, attach to a board to extend its features
and services for easier and modularized prototyping. In Zephyr, the shield feature provides
Zephyr-formatted shield descriptions for easier compatibility with applications.

Shield porting and configuration

Shield configuration files are available in the board directory under /boards/shields:

boards/shields/<shield>
├── <shield>.overlay
├── Kconfig.shield
└── Kconfig.defconfig

These files provides shield configuration as follows:
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• <shield>.overlay: This file provides a shield description in devicetree format that is
merged with the board’s devicetree before compilation.

• Kconfig.shield: This file defines shield Kconfig symbols that will be used for default shield
configuration. To ease use with applications, the default shield configuration here should
be consistent with those in the Write your devicetree.

• Kconfig.defconfig: This file defines the default shield configuration. It is made to be consis-
tent with the Write your devicetree. Hence, shield configuration should be done by keeping
in mind that features activation is application responsibility.

Besides, in order to avoid name conflicts with devices that may be defined at board level, it is
advised, specifically for shields devicetree descriptions, to provide a device nodelabel is the form
<device>_<shield>, for instance:

sdhc_myshield: sdhc@1 {
reg = <1>;
...

};

Board compatibility

Hardware shield-to-board compatibility depends on the use of well-known connectors used on
popular boards (such as Arduino and 96boards). For software compatibility, boards must also
provide a configuration matching their supported connectors.

This should be done at two different level:

• Pinmux: Connector pins should be correctly configured to match shield pins

• Devicetree: A board devicetreefile, BOARD.dts should define an alternate nodelabel for each
connector interface. For example, for Arduino I2C:

arduino_i2c: &i2c1 {};

Board specific shield configuration If modifications are needed to fit a shield to a particular
board or board revision, you can override a shield description for a specific board by adding
board or board revision overriding files to a shield, as follows:

boards/shields/<shield>
└── boards

├── <board>_<revision>.overlay
├── <board>.overlay
├── <board>.defconfig
├── <board>_<revision>.conf
└── <board>.conf

Shield activation

Activate support for one or more shields by adding the matching --shield arguments to the west
command:

# From the root of the zephyr repository
west build -b None --shield x_nucleo_idb05a1 --shield x_nucleo_iks01a1 your_app

Alternatively, it could be set by default in a project’s CMakeLists.txt:

set(SHIELD x_nucleo_iks01a1)
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Shield variants

Some shields may support several variants or revisions. In that case, it is possible to provide
multiple version of the shields description:

boards/shields/<shield>
├── <shield_v1>.overlay
├── <shield_v1>.defconfig
├── <shield_v2>.overlay
└── <shield_v2>.defconfig

In this case, a shield-particular revision name can be used:

# From the root of the zephyr repository
west build -b None --shield shield_v2 your_app

You can also provide a board-specific configuration to a specific shield revision:

boards/shields/<shield>
├── <shield_v1>.overlay
├── <shield_v1>.defconfig
├── <shield_v2>.overlay
├── <shield_v2>.defconfig
└── boards

└── <shield_v2>
├── <board>.overlay
└── <board>.defconfig

GPIO nexus nodes

GPIOs accessed by the shield peripherals must be identified using the shield GPIO abstraction,
for example from the arduino-header-r3 compatible. Boards that provide the header must map
the header pins to SOC-specific pins. This is accomplished by including a nexus node that looks
like the following into the board devicetree file:

arduino_header: connector {
compatible = "arduino-header-r3";
#gpio-cells = <2>;
gpio-map-mask = <0xffffffff 0xffffffc0>;
gpio-map-pass-thru = <0 0x3f>;
gpio-map = <0 0 &gpioa 0 0>, /* A0 */

<1 0 &gpioa 1 0>, /* A1 */
<2 0 &gpioa 4 0>, /* A2 */
<3 0 &gpiob 0 0>, /* A3 */
<4 0 &gpioc 1 0>, /* A4 */
<5 0 &gpioc 0 0>, /* A5 */
<6 0 &gpioa 3 0>, /* D0 */
<7 0 &gpioa 2 0>, /* D1 */
<8 0 &gpioa 10 0>, /* D2 */
<9 0 &gpiob 3 0>, /* D3 */
<10 0 &gpiob 5 0>, /* D4 */
<11 0 &gpiob 4 0>, /* D5 */
<12 0 &gpiob 10 0>, /* D6 */
<13 0 &gpioa 8 0>, /* D7 */
<14 0 &gpioa 9 0>, /* D8 */
<15 0 &gpioc 7 0>, /* D9 */
<16 0 &gpiob 6 0>, /* D10 */
<17 0 &gpioa 7 0>, /* D11 */
<18 0 &gpioa 6 0>, /* D12 */
<19 0 &gpioa 5 0>, /* D13 */

(continues on next page)

3784 Chapter 7. Hardware Support

https://github.com/devicetree-org/devicetree-specification/blob/4b1dac80eaca45b4babf5299452a951008a5d864/source/devicetree-basics.rst#nexus-nodes-and-specifier-mapping


Zephyr Project Documentation, Release 3.7.99

(continued from previous page)
<20 0 &gpiob 9 0>, /* D14 */
<21 0 &gpiob 8 0>; /* D15 */

};

This specifies how Arduino pin references like <&arduino_header 11 0> are converted to SOC
gpio pin references like <&gpiob 4 0>.

In Zephyr GPIO specifiers generally have two parameters (indicated by #gpio-cells = <2>):
the pin number and a set of flags. The low 6 bits of the flags correspond to features that can
be configured in devicetree. In some cases it’s necessary to use a non-zero flag value to tell the
driver how a particular pin behaves, as with:

drdy-gpios = <&arduino_header 11 GPIO_ACTIVE_LOW>;

After preprocessing this becomes <&arduino_header 11 1>. Normally the presence of such a flag
would cause the map lookup to fail, because there is no map entry with a non-zero flags value.
The gpio-map-mask property specifies that, for lookup, all bits of the pin and all but the low 6 bits
of the flags are used to identify the specifier. Then the gpio-map-pass-thru specifies that the low
6 bits of the flags are copied over, so the SOC GPIO reference becomes <&gpiob 4 1> as intended.

See nexus node for more information about this capability.
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Chapter 8

Contributing to Zephyr

Contributions from the community are the backbone of the project. Whether it is by submitting
code, improving documentation, or proposing new features, your efforts are highly appreciated.
This page lists useful resources and guidelines to help you in your contribution journey.

8.1 General Guidelines

8.1.1 Contribution Guidelines

As an open-source project, we welcome and encourage the community to submit patches directly
to the project. In our collaborative open source environment, standards and methods for sub-
mitting changes help reduce the chaos that can result from an active development community.

This document explains how to participate in project conversations, log bugs and enhancement
requests, and submit patches to the project so your patch will be accepted quickly in the code-
base.

Licensing

Licensing is very important to open source projects. It helps ensure the software continues to be
available under the terms that the author desired.

Zephyr uses the Apache 2.0 license (as found in the LICENSE file in the project’s GitHub repo)
to strike a balance between open contribution and allowing you to use the software however
you would like to. The Apache 2.0 license is a permissive open source license that allows you
to freely use, modify, distribute and sell your own products that include Apache 2.0 licensed
software. (For more information about this, check out articles such as Why choose Apache 2.0
licensing and Top 10 Apache License Questions Answered).

A license tells you what rights you have as a developer, as provided by the copyright holder.
It is important that the contributor fully understands the licensing rights and agrees to them.
Sometimes the copyright holder isn’t the contributor, such as when the contributor is doing work
on behalf of a company.

Components using other Licenses There are some imported or reused components of the
Zephyr project that use other licensing, as described in Licensing of Zephyr Project components.

Importing code into the Zephyr OS from other projects that use a license other than the Apache
2.0 license needs to be fully understood in context and approved by the Zephyr governing board.
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By carefully reviewing potential contributions and also enforcing aDeveloper Certification of Ori-
gin (DCO) for contributed code, we can ensure that the Zephyr community can develop products
with the Zephyr Project without concerns over patent or copyright issues.

See Contributing External Components for more information about this contributing and review
process for imported components.

Licensing of Zephyr Project components The Zephyr kernel tree imports or reuses packages,
scripts and other files that are not covered by the Apache 2.0 License. In some places there is no
LICENSE file or way to put a LICENSE file there, so we describe the licensing in this document.

scripts/{checkpatch.pl,checkstack.pl,spelling.txt}
Origin: Linux Kernel

Licensing: GPLv2 License

scripts/{coccicheck,coccinelle/array_size.cocci,coccinelle/deref_null.cocci,coccinelle/deref_null.cocci,coccinelle/deref_null.cocci,coccinelle/mini_lock.cocci,coccinelle/mini_lock.cocci,coccinelle/mini_lock.cocci,coccinelle/noderef.cocci,coccinelle/noderef.cocci,coccinelle/returnvar.cocci,coccinelle/semicolon.cocci}
Origin: Coccinelle

Licensing: GPLv2 License

subsys/testsuite/coverage/coverage.h
Origin: GCC, the GNU Compiler Collection

Licensing: GPLv2 License with Runtime Library Exception

boards/ene/kb1200_evb/support/openocd.cfg
Licensing: GPLv2 License

Copyrights Notices

Please follow this Community Best Practice for Copyright Notices from the Linux Foundation.

Developer Certification of Origin (DCO)

To make a good faith effort to ensure licensing criteria are met, the Zephyr project requires the
Developer Certificate of Origin (DCO) process to be followed.

The DCO is an attestation attached to every contribution made by every developer. In the commit
message of the contribution, (described more fully later in this document), the developer simply
adds a Signed-off-by statement and thereby agrees to the DCO.

When a developer submits a patch, it is a commitment that the contributor has the right to submit
the patch per the license. The DCO agreement is shown below and at http://developercertificate.
org/.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the
best of my knowledge, is covered under an appropriate open
source license and I have the right under that license to
submit that work with modifications, whether created in whole
or in part by me, under the same open source license (unless
I am permitted to submit under a different license), as
Indicated in the file; or

(continues on next page)
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(continued from previous page)

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including
all personal information I submit with it, including my
sign-off) is maintained indefinitely and may be redistributed
consistent with this project or the open source license(s)
involved.

DCO Sign-Off The “sign-off” in the DCO is a “Signed-off-by:” line in each commit’s log message.
The Signed-off-by: line must be in the following format:

Signed-off-by: Your Name <your.email@example.com>

For your commits, replace:

• Your Name with your legal name (pseudonyms, hacker handles, and the names of groups
are not allowed)

• your.email@example.com with the same email address you are using to author the commit
(CI will fail if there is no match)

You can automatically add the Signed-off-by: line to your commit body using git commit -s. Use
other commits in the zephyr git history as examples. SeeGit Setup for instructions on configuring
user and email settings in Git.

Additional requirements:

• If you are altering an existing commit created by someone else, you must add your Signed-
off-by: line without removing the existing one.

• If you forget to add the Signed-off-by: line, you can add it to your previous commit by run-
ning git commit --amend -s.

• If you’ve pushed your changes to GitHub already you’ll need to force push your branch
after this with git push -f.

Notes Any contributions made as part of submitted pull requests are considered free for the
Project to use. Developers are permitted to cherry-pick patches that are included in pull requests
submitted by other contributors. It is expected that

• the content of the patches will not be substantially modified,

• the cherry-picked commits or portions of a commit shall preserve the original sign-off mes-
sages and the author identity.

Modifying Contributions made by other developers describes additional recommended policies
around working with contributions submitted by other developers.

Prerequisites

As a contributor, you’ll want to be familiar with the Zephyr project, how to configure, install,
and use it as explained in the Zephyr Project website and how to set up your development envi-
ronment as introduced in the Zephyr Getting Started Guide.

You should be familiar with common developer tools such as Git and CMake, and platforms such
as GitHub.
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If you haven’t already done so, you’ll need to create a (free) GitHub account on https://github.com
and have Git tools available on your development system.

Note

The Zephyr development workflow supports all 3 major operating systems (Linux, macOS,
and Windows) but some of the tools used in the sections below are only available on Linux
and macOS. On Windows, instead of running these tools yourself, you will need to rely on the
Continuous Integration (CI) service using Github Actions, which runs automatically on GitHub
when you submit your Pull Request (PR). You can see any failure results in the workflow
details link near the end of the PR conversation list. See Continuous Integration for more
information

Source Tree Structure

To clone the main Zephyr Project repository use the instructions in Get Zephyr and install Python
dependencies.

This section describes the main repository’s source tree. In addition to the Zephyr kernel itself,
you’ll also find the sources for technical documentation, sample code, supported board configu-
rations, and a collection of subsystem tests. All of these are available for developers to contribute
to and enhance.

Understanding the Zephyr source tree can help locate the code associated with a particular
Zephyr feature.

At the top of the tree, several files are of importance:

CMakeLists.txt
The top-level file for the CMake build system, containing a lot of the logic required to build
Zephyr.

Kconfig
The top-level Kconfig file, which refers to the file Kconfig.zephyr also found in the top-level
directory.

See the Kconfig section of the manual for detailed Kconfig documentation.

west.yml
The West (Zephyr’s meta-tool) manifest, listing the external repositories managed by the
west command-line tool.

The Zephyr source tree also contains the following top-level directories, each of which may have
one or more additional levels of subdirectories not described here.

arch
Architecture-specific kernel and system-on-chip (SoC) code. Each supported architecture
(for example, x86 and ARM) has its own subdirectory, which contains additional subdirec-
tories for the following areas:

• architecture-specific kernel source files

• architecture-specific kernel include files for private APIs

soc
SoC related code and configuration files.

boards
Board related code and configuration files.

doc
Zephyr technical documentation source files and tools used to generate the https://docs.
zephyrproject.org web content.
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drivers
Device driver code.

dts
devicetree source files used to describe non-discoverable board-specific hardware details.

include
Include files for all public APIs, except those defined under lib.

kernel
Architecture-independent kernel code.

lib
Library code, including the minimal standard C library.

misc
Miscellaneous code that doesn’t belong to any of the other top-level directories.

samples
Sample applications that demonstrate the use of Zephyr features.

scripts
Various programs and other files used to build and test Zephyr applications.

cmake
Additional build scripts needed to build Zephyr.

subsys
Subsystems of Zephyr, including:

• USB device stack code

• Networking code, including the Bluetooth stack and networking stacks

• File system code

• Bluetooth host and controller

tests
Test code and benchmarks for Zephyr features.

share
Additional architecture independent data. It currently contains Zephyr’s CMake package.

Pull Requests and Issues

Before starting on a patch, first check in our issues Zephyr Project Issues system to see what’s
been reported on the issue you’d like to address. Have a conversation on the Zephyr devel mail-
ing list (or the Zephyr Discord Server) to see what others think of your issue (and proposed solu-
tion). You may find others that have encountered the issue you’re finding, or that have similar
ideas for changes or additions. Send a message to the Zephyr devel mailing list to introduce and
discuss your idea with the development community.

It’s always a good practice to search for existing or related issues before submitting your own.
When you submit an issue (bug or feature request), the triage team will review and comment on
the submission, typically within a few business days.

You can find all open pull requests on GitHub and open Zephyr Project Issues in Github issues.

Git Setup

We need to know who you are, and how to contact you. To add this information to your Git
installation, set the Git configuration variables user.name to your full name, and user.email to
your email address.
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For example, if your name is Zephyr Developer and your email address is z.developer@example.
com:

git config --global user.name "Zephyr Developer"
git config --global user.email "z.developer@example.com"

Pull Request Guidelines

When opening a new Pull Request, adhere to the following guidelines to ensure compliance with
Zephyr standards and facilitate the review process.

If in doubt, it’s advisible to explore existing Pull Requests within the Zephyr repository. Use the
search filters and labels to locate PRs related to changes similar to the ones you are proposing.

Commit Message Guidelines Changes are submitted as Git commits. Each commit has a com-
mit message describing the change. Acceptable commit messages look like this:

[area]: [summary of change]

[Commit message body (must be non-empty)]

Signed-off-by: [Your Full Name] <[your.email@address]>

You need to change text in square brackets ([like this]) above to fit your commit.

Examples and more details follow.

Example Here is an example of a good commit message.

drivers: sensor: abcd1234: fix bus I/O error handling

The abcd1234 sensor driver is failing to check the flags field in
the response packet from the device which signals that an error
occurred. This can lead to reading invalid data from the response
buffer. Fix it by checking the flag and adding an error path.

Signed-off-by: Zephyr Developer <z.developer@example.com>

[area]: [summary of change] This line is called the commit’s title. Titles must be:

• one line

• less than 72 characters long

• followed by a completely blank line

[area]
The [area] prefix usually identifies the area of code being changed. It can also identify the
change’s wider context if multiple areas are affected.

Here are some examples:

• doc: ... for documentation changes

• drivers: foo: for foo driver changes

• Bluetooth: Shell: for changes to the Bluetooth shell

• net: ethernet: for Ethernet-related networking changes

• dts: for treewide devicetree changes

3792 Chapter 8. Contributing to Zephyr



Zephyr Project Documentation, Release 3.7.99

• style: for code style changes

If you’re not sure what to use, try running git log FILE, where FILE is a file you are
changing, and using previous commits that changed the same file as inspiration.

[summary of change]
The [summary of change] part should be a quick description of what you’ve done. Here
are some examples:

• doc: update wiki references to new site
• drivers: sensor: sensor_shell: fix channel name collision

Warning

An empty commit message body is not permitted. Even for trivial changes, please include a
descriptive commit message body. Your pull request will fail CI checks if you do not.

Commit Message Body This part of the commit should explain what your change does, and
why it’s needed. Be specific. A body that says "Fixes stuff" will be rejected. Be sure to include
the following as relevant:

• what the change does,

• why you chose that approach,

• what assumptions were made, and

• how you know it works – for example, which tests you ran.

Each line in your commit message should usually be 75 characters or less. Use newlines to wrap
longer lines. Exceptions include lines with long URLs, email addresses, etc.

For examples of accepted commit messages, you can refer to the Zephyr GitHub changelog.

Tip

You should have set your Git Setup already. Create your commit with git commit -s to add
the Signed-off-by: line automatically using this information.

Signed-off-by: … For open source licensing reasons, your commit must include a Signed-off-by:
line that looks like this:

Signed-off-by: [Your Full Name] <[your.email@address]>

For example, if your full name is Zephyr Developer and your email address is z.
developer@example.com:

Signed-off-by: Zephyr Developer <z.developer@example.com>

This means that you have personally made sure your change complies with the Developer Certi-
fication of Origin (DCO). For this reason, you must use your legal name. Pseudonyms or “hacker
aliases” are not permitted.

Your name and the email address you use must match the name and email in the Git commit’s
Author: field.

See the Contributor Expectations for a more complete discussion of contributor and reviewer
expectations.
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Adding links Do not include GitHub references in the commit message directly, as it can lose
meaning in case the repository is forked, for example. Instead, if the change addresses a specific
GitHub issue, include in the Pull Request message a line of the form:

Fixes #[issue number]

Where [issue number] is the relevant GitHub issue’s number. For example:

Fixes: #1234

You can point to other relevant information that can be found on the web using Link: tags. This
includes, for example: GitHub issues, datasheets, reference manuals, etc.

Link: https://github.com/zephyrproject-rtos/zephyr/issues/<issue number>

Coding Style In general, follow the Linux kernel coding style, with the following exceptions:

• The line length is 100 columns or fewer. In the documentation, longer lines for URL refer-
ences are an allowed exception.

• Add braces to every if, else, do, while, for and switch body, even for single-line code
blocks. Use the --ignore BRACES flag to make checkpatch stop complaining.

• Use spaces instead of tabs to align comments after declarations, as needed.

• Use C89-style single line comments, /* */. The C99-style single line comment, //, is not
allowed.

• Use /** */ for doxygen comments that need to appear in the documentation.

• Avoid using binary literals (constants starting with 0b).

• Avoid using non-ASCII symbols in code, unless it significantly improves clarity, avoid emojis
in any case.

Use these coding guidelines to ensure that your development complies with the project’s style
and naming conventions.

The Linux kernel GPL-licensed tool checkpatch is used to check coding style conformity.

Note

checkpatch does not currently run on Windows.

Checkpatch is available in the scripts directory. To invoke it when committing code, make the
file $ZEPHYR_BASE/.git/hooks/pre-commit executable and edit it to contain:

#!/bin/sh
set -e exec
exec git diff --cached | ${ZEPHYR_BASE}/scripts/checkpatch.pl -

Instead of running checkpatch at each commit, you may prefer to run it only before pushing on
zephyr repo. To do this, make the file $ZEPHYR_BASE/.git/hooks/pre-push executable and edit it
to contain:

#!/bin/sh
remote="$1"
url="$2"

z40=0000000000000000000000000000000000000000

echo "Run push hook"
(continues on next page)
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(continued from previous page)

while read local_ref local_sha remote_ref remote_sha
do

args="$remote $url $local_ref $local_sha $remote_ref $remote_sha"
exec ${ZEPHYR_BASE}/scripts/series-push-hook.sh $args

done

exit 0

If you want to override checkpatch verdict and push you branch despite reported issues, you
can add option –no-verify to the git push command.

A more complete alternative to this is using check_compliance.py script.

clang-format The clang-format tool can be helpful to quickly reformat large amounts of new
source code to our Coding Style standards together with the .clang-format configuration file
provided in the repository. clang-format is well integrated into most editors, but you can also
run it manually like this:

clang-format -i my_source_file.c

clang-format is part of LLVM, which can be downloaded from the project releases page. Note
that if you are a Linux user, clang-formatwill likely be available as a package in your distribution
repositories.

When there are differences between the Coding Style guidelines and the formatting generated by
code formatting tools, the Coding Style guidelines take precedence. If there is ambiguity between
formatting tools and the guidelines, maintainers may decide which style should be adopted.

Continuous Integration (CI) The Zephyr Project operates a Continuous Integration (CI) system
that runs on every Pull Request (PR) in order to verify several aspects of the PR:

• Git commit formatting

• Coding Style

• Twister builds for multiple architectures and boards

• Documentation build to verify any doc changes

CI is run on Github Actions and it uses the same tools described in the CI Tests section. The CI
results must be green indicating “All checks have passed” before the Pull Request can be merged.
CI is run when the PR is created, and again every time the PR is modified with a commit.

The current status of the CI run can always be found at the bottom of the GitHub PR page, below
the review status. Depending on the success or failure of the run you will see:

• “All checks have passed”

• “All checks have failed”

In case of failure you can click on the “Details” link presented below the failure message in order
to navigate to Github Actions and inspect the results. Once you click on the link you will be taken
to the Github actions summary results page where a table with all the different builds will be
shown. To see what build or test failed click on the row that contains the failed (i.e. non-green)
build.

Running CI Tests Locally
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check_compliance.py The check_compliance.py script serves as a valuable tool for assessing
code compliance with Zephyr’s established guidelines and best practices. The script acts as wrap-
per for a suite of tools that performs various checks, including linters and formatters.

Developers are encouraged to run the script locally to validate their changes before opening a
new Pull Request:

./scripts/ci/check_compliance.py -c upstream/main..

Note

twister is only fully supported on Linux; on Windows and MacOS the execution of tests is not
supported, only building.

twister If you think your change may break some test, you can submit your PR as a draft and
let the project CI automatically run the Test Runner (Twister) for you.

If a test fails, you can check from the CI run logs how to rerun it locally, for example:

west twister -p native_sim -s tests/drivers/build_all/sensor/sensors.generic_test

Static Code Analysis

Coverity Scan is a free service for static code analysis of Open Source projects. It is based on
Coverity’s commercial product and is able to analyze C, C++ and Java code.

Coverity’s static code analysis doesn’t run the code. Instead of that it uses abstract interpretation
to gain information about the code’s control flow and data flow. It’s able to follow all possible
code paths that a program may take. For example the analyzer understands that malloc() returns
a memory that must be freed with free() later. It follows all branches and function calls to see if
all possible combinations free the memory. The analyzer is able to detect all sorts of issues like
resource leaks (memory, file descriptors), NULL dereferencing, use after free, unchecked return
values, dead code, buffer overflows, integer overflows, uninitialized variables, and many more.

The results are available on the Coverity Scan website. In order to access the results you have to
create an account yourself. From the Zephyr project page, you may select “Add me to project” to
be added to the project. New members must be approved by an admin.

Static analysis of the Zephyr codebase is conducted on a bi-weekly basis. GitHub issues are auto-
matically created for any issues detected by static analysis tools. These issues will have the same
(or equivalent) priority initially defined by the tool.

To ensure accountability and efficient issue resolution, they are assigned to the respective main-
tainer who is responsible for the affected code.

A dedicated team comprising members with expertise in static analysis, code quality, and soft-
ware security ensures the effectiveness of the static analysis process and verifies that identified
issues are properly triaged and resolved in a timely manner.

Workflow If after analyzing the Coverity report it is concluded that it is a false positive please
set the classification to either “False positive” or “Intentional”, the action to “Ignore”, owner to
your own account and add a comment why the issue is considered false positive or intentional.

Update the related Github issue in the zephyr project with the details, and only close it after
completing the steps above on scan service website. Any issues closed without a fix or without
ignoring the entry in the scan service will be automatically reopened if the issue continues to be
present in the code.
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Contribution Workflow

One general practice we encourage, is to make small, controlled changes. This practice simplifies
review, makes merging and rebasing easier, and keeps the change history clear and clean.

When contributing to the Zephyr Project, it is also important you provide as much information
as you can about your change, update appropriate documentation, and test your changes thor-
oughly before submitting.

The general GitHub workflow used by Zephyr developers uses a combination of command line
Git commands and browser interaction with GitHub. As it is with Git, there are multiple ways of
getting a task done. We’ll describe a typical workflow here:

1. Create a Fork of Zephyr to your personal account on GitHub. (Click on the fork button in
the top right corner of the Zephyr project repo page in GitHub.)

2. On your development computer, change into the zephyr folder that was created when you
obtained the code:

cd zephyrproject/zephyr

Rename the default remote pointing to the upstream repository from origin to upstream:

git remote rename origin upstream

Let Git know about the fork you just created, naming it origin:

git remote add origin https://github.com/<your github id>/zephyr

and verify the remote repos:

git remote -v

The output should look similar to:

origin https://github.com/<your github id>/zephyr (fetch)
origin https://github.com/<your github id>/zephyr (push)
upstream https://github.com/zephyrproject-rtos/zephyr (fetch)
upstream https://github.com/zephyrproject-rtos/zephyr (push)

3. Create a topic branch (off of main) for your work (if you’re addressing an issue, we suggest
including the issue number in the branch name):

git checkout main
git checkout -b fix_comment_typo

Some Zephyr subsystems do development work on a separate branch from main so you may
need to indicate this in your checkout:

git checkout -b fix_out_of_date_patch origin/net

4. Make changes, test locally, change, test, test again, … (Check out the prior chapter on twister
as well).

5. When things look good, start the pull request process by adding your changed files:

git add [file(s) that changed, add -p if you want to be more specific]

You can see files that are not yet staged using:

git status

6. Verify changes to be committed look as you expected:
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git diff --cached

7. Commit your changes to your local repo:

git commit -s

The -s option automatically adds your Signed-off-by: to your commit message. Your com-
mit will be rejected without this line that indicates your agreement with the Developer Cer-
tification of Origin (DCO). See the Commit Message Guidelines section for specific guidelines
for writing your commit messages.

8. Push your topic branch with your changes to your fork in your personal GitHub account:

git push origin fix_comment_typo

9. In your web browser, go to your forked repo and click on the Compare & pull request
button for the branch you just worked on and you want to open a pull request with.

10. Review the pull request changes, and verify that you are opening a pull request for the main
branch. The title and message from your commit message should appear as well.

11. A bot will assign one or more suggested reviewers (based on the MAINTAINERS file in the
repo). If you are a project member, you can select additional reviewers now too.

12. Click on the submit button and your pull request is sent and awaits review. Email will
be sent as review comments are made, or you can check on your pull request at https:
//github.com/zephyrproject-rtos/zephyr/pulls.

Note

As more commits are merged upstream, the GitHub PR page will show a This branch
is out-of-date with the base branch message and a Update branch button on the
PR page. That message should be ignored, as the commits will be rebased as part of
merging anyway, and triggering a branch update from the GitHub UI will cause the PR
approvals to be dropped.

13. While you’re waiting for your pull request to be accepted and merged, you can create an-
other branch to work on another issue. (Be sure to make your new branch off of main and
not the previous branch.):

git checkout main
git checkout -b fix_another_issue

and use the same process described above to work on this new topic branch.

14. If reviewers do request changes to your patch, you can interactively rebase commit(s) to
fix review issues. In your development repo:

git rebase -i <offending-commit-id>^

In the interactive rebase editor, replace pick with edit to select a specific commit (if there’s
more than one in your pull request), or remove the line to delete a commit entirely. Then
edit files to fix the issues in the review.

As before, inspect and test your changes. When ready, continue the patch submission:

git add [file(s)]
git rebase --continue

Update commit comment if needed, and continue:
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git push --force origin fix_comment_typo

By force pushing your update, your original pull request will be updated with your changes
so you won’t need to resubmit the pull request.

15. After pushing the requested change, check on the PR page if there is a merge conflict. If so,
rebase your local branch:

git fetch --all
git rebase --ignore-whitespace upstream/main

The --ignore-whitespace option stops git apply (called by rebase) from changing any
whitespace. Resolve the conflicts and push again:

git push --force origin fix_comment_typo

Note

While amending commits and force pushing is a common review model outside GitHub,
and the one recommended by Zephyr, it’s not the main model supported by GitHub.
Forced pushes can cause unexpected behavior, such as not being able to use “View
Changes” buttons except for the last one - GitHub complains it can’t find older com-
mits. You’re also not always able to compare the latest reviewed version with the latest
submitted version. When rewriting history GitHub only guarantees access to the latest
version.

16. If the CI run fails, you will need to make changes to your code in order to fix the issues and
amend your commits by rebasing as described above. Additional information about the CI
system can be found in Continuous Integration.

Contribution Tips The following is a list of tips to improve and accelerate the review process
of Pull Requests. If you follow them, chances are your pull request will get the attention needed
and it will be ready for merge sooner than later:

1. When pushing follow-up changes, use the --keep-base option of git-rebase

2. On the PR page, check if the change can still be merged with no merge conflicts

3. Make sure title of PR explains what is being fixed or added

4. Make sure your PR has a body with more details about the content of your submission

5. Make sure you reference the issue you are fixing in the body of the PR

6. Watch early CI results immediately after submissions and fix issues as they are discovered

7. Revisit PR after 1-2 hours to see the status of all CI checks, make sure all is green

8. If you get request for changes and submit a change to address them, make sure you click
the “Re-request review” button on the GitHub UI to notify those who asked for the changes

Submitting Proposals You can request a new feature or submit a proposal by submitting an
issue to our GitHub Repository. If you would like to implement a new feature, please submit an
issue with a proposal (RFC) for your work first, to be sure that we can use it. Please consider
what kind of change it is:

• For a Major Feature, first open an issue and outline your proposal so that it can be discussed.
This will also allow us to better coordinate our efforts, prevent duplication of work, and
help you to craft the change so that it is successfully accepted into the project. Providing
the following information will increase the chances of your issue being dealt with quickly:
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– Overview of the Proposal

– Motivation for or Use Case

– Design Details

– Alternatives

– Test Strategy

• Small Features can be crafted and directly submitted as a Pull Request.

Identifying Contribution Origin When adding a new file to the tree, it is important to detail
the source of origin on the file, provide attributions, and detail the intended usage. In cases
where the file is an original to Zephyr, the commit message should include the following (“Orig-
inal” is the assumption if no Origin tag is present):

Origin: Original

In cases where the file is imported from an external project, the commit message shall contain
details regarding the original project, the location of the project, the SHA-id of the origin commit
for the file and the intended purpose.

For example, a copy of a locally maintained import:

Origin: Contiki OS
License: BSD 3-Clause
URL: http://www.contiki-os.org/
commit: 853207acfdc6549b10eb3e44504b1a75ae1ad63a
Purpose: Introduction of networking stack.

For example, a copy of an externally maintained import in a module repository:

Origin: Tiny Crypt
License: BSD 3-Clause
URL: https://github.com/01org/tinycrypt
commit: 08ded7f21529c39e5133688ffb93a9d0c94e5c6e
Purpose: Introduction of TinyCrypt

Contributions to External Modules

Follow the guidelines in the Modules (External projects) section for contributing new modules
and submitting changes to existing modules.

Treewide Changes

This section describes contributions that are treewide changes and some additional associated
requirements that apply to them. These requirements exist to try to give such changes increased
review and user visibility due to their large impact.

Definition and Decision Making A treewide change is defined as any change to Zephyr APIs,
coding practices, or other development requirements that either implies required changes
throughout the zephyr source code repository or can reasonably be expected to do so for a wide
class of external Zephyr-based source code.

This definition is informal by necessity. This is because the decision on whether any particular
change is treewide can be subjective and may depend on additional context.
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Project maintainers should use good judgement and prioritize the Zephyr developer experience
when deciding when a proposed change is treewide. Protracted disagreements can be resolved
by the Zephyr Project’s Technical Steering Committee (TSC), but please avoid premature escala-
tion to the TSC.

Requirements for Treewide Changes
• The zephyr repository must apply the ‘treewide’ GitHub label to any issues or pull requests

that are treewide changes

• The person proposing a treewide change must create an RFC issue describing the change,
its rationale and impact, etc. before any pull requests related to the change can be merged

• The project’s Architecture Working Group (WG) must include the issue on the agenda and
discuss whether the project will accept or reject the change before any pull requests related
to the change can be merged (with escalation to the TSC if consensus is not reached at the
WG)

• The Architecture WG must specify the procedure for merging any PRs associated with each
individual treewide change, including any required approvals for pull requests affecting
specific subsystems or extra review time requirements

• The person proposing a treewide change must email devel@lists.zephyrproject.org about
the RFC if it is accepted by the Architecture WG before any pull requests related to the
change can be merged

Examples Some example past treewide changes are:

• the deprecation of version 1 of the Logging API in favor of version 2 (see commit
262cc55609)

• the removal of support for a legacy Devicetree bindings syntax (6bf761fc0a)

Note that adding a new version of a widely used API while maintaining support for the old one is
not a treewide change. Deprecation and removal of such APIs, however, are treewide changes.

Specialized driver requirements

Drivers for standalone devices should use the Zephyr bus APIs (SPI, I2C…) whenever possible so
that the device can be used with any SoC from any vendor implementing a compatible bus.

If it is not technically possible to achieve full performance using the Zephyr APIs due to spe-
cialized accelerators in a particular SoC family, one could extend the support for an external
device by providing a specialized path for that SoC family. However, the driver must still pro-
vide a regular path (via Zephyr APIs) for all other SoCs. Every exception must be approved by
the Architecture WG in order to be validated and potentially to be learned/improved from.

8.1.2 Coding Guidelines

The project TSC and the Safety Committee of the project agreed to implement a staged and incre-
mental approach for complying with a set of coding rules (AKA Coding Guidelines) to improve
quality and consistency of the code base. Below are the agreed upon stages:

Stage I (COMPLETED)
Coding guideline rules are available to be followed and referenced, but not enforced. Rules
are not yet enforced in CI and pull-requests cannot be blocked by reviewers/approvers due
to violations.
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Stage II
Begin enforcement on a limited scope of the code base. Initially, this would be the safety
certification scope. For rules easily applied across codebase, we should not limit compli-
ance to initial scope. This step requires tooling, CI setup and an enforcement strategy.

Stage III
Revisit the coding guideline rules and based on experience from previous stages, re-
fine/iterate on selected rules.

Stage IV
Expand enforcement to the wider codebase. Exceptions may be granted on some areas of
the codebase with a proper justification. Exception would require TSC approval.

Note

Coding guideline rules may be removed/changed at any time by filing a GH issue/RFC.

Important

Current stage: The prerequisites for entering Stage II are currently being looked at: The
tooling is in evaluation, CI setup and enforcement strategy is being worked on.

Main rules

The coding guideline rules are based on MISRA-C 2012 and are a subset of MISRA-C. The subset is
listed in the table below with a summary of the rules, its severity and the equivalent rules from
other standards for reference.

Note

For existing Zephyr maintainers and collaborators, if you are unable to obtain a copy through
your employer, a limited number of copies will be made available through the project. If you
need a copy of MISRA-C 2012, please send email to safety@lists.zephyrproject.org and provide
details on reason why you can’t obtain one through other options and expected contributions
once you have one. The safety committee will review all requests.

Table 1: Main rules

MISRA C 2012 Severity Description CERT C Example

Dir 1.1 Required Any implementation-defined be-
haviour on which the output of the
program depends shall be documented
and understood

MSC09-C Dir 1.1

Dir 2.1 Required All source files shall compile without
any compilation errors

N/A Dir 2.1

Dir 3.1 Required All code shall be traceable to docu-
mented requirements

N/A Dir 3.1

Dir 4.1 Required Run-time failures shall be minimized N/A Dir 4.1

Dir 4.2 Advisory All usage of assembly language should
be documented

N/A Dir 4.2

continues on next page

3802 Chapter 8. Contributing to Zephyr

https://github.com/zephyrproject-rtos/zephyr/issues/58903
mailto:safety@lists.zephyrproject.org
https://wiki.sei.cmu.edu/confluence/display/c/MSC09-C.+Character+encoding%3A+Use+subset+of+ASCII+for+safety
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_01_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_02_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_03_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_02.c
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Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example

Dir 4.4 Advisory Sections of code should not be “com-
mented out”

MSC04-C Dir 4.4

Dir 4.5 Advisory Identifiers in the same name space
with overlapping visibility should be
typographically unambiguous

DCL02-C Dir 4.5

Dir 4.6 Advisory typedefs that indicate size and signed-
ness should be used in place of the ba-
sic numerical types

N/A Dir 4.6

Dir 4.7 Required If a function returns error informa-
tion, then that error information shall
be tested

N/A Dir 4.7

Dir 4.8 Advisory If a pointer to a structure or union is
never dereferenced within a transla-
tion unit, then the implementation of
the object should be hidden

DCL12-C

Dir 4.8
example 1
Dir 4.8
example 2

Dir 4.9 Advisory A function should be used in prefer-
ence to a function-like macro where
they are interchangeable

PRE00-C Dir 4.9

Dir 4.10 Required Precautions shall be taken in order to
prevent the contents of a header file
being included more than once

PRE06-C Dir 4.10

Dir 4.11 Required The validity of values passed to library
functions shall be checked

N/A Dir 4.11

Dir 4.12 Required Dynamic memory allocation shall not
be used

STR01-C Dir 4.12

Dir 4.13 Advisory Functions which are designed to pro-
vide operations on a resource should
be called in an appropriate sequence

N/A Dir 4.13

Dir 4.14 Required The validity of values received from
external sources shall be checked

N/A Dir 4.14

Rule 1.2 Advisory Language extensions should not be
used

MSC04-C Rule 1.2

Rule 1.3 Required There shall be no occurrence of unde-
fined or critical unspecified behaviour

N/A Rule 1.3

Rule 2.1 Required A project shall not contain unreach-
able code

MSC07-C

Rule 2.1
example 1
Rule 2.1
example 2

Rule 2.2 Required There shall be no dead code MSC12-C Rule 2.2

Rule 2.3 Advisory A project should not contain unused
type declarations

N/A Rule 2.3

Rule 2.6 Advisory A function should not contain unused
label declarations

N/A Rule 2.6

Rule 2.7 Advisory There should be no unused parameters
in functions

N/A Rule 2.7

continues on next page
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https://wiki.sei.cmu.edu/confluence/display/c/MSC04-C.+Use+comments+consistently+and+in+a+readable+fashion
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_04.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL02-C.+Use+visually+distinct+identifiers
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_07.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL12-C.+Implement+abstract+data+types+using+opaque+types
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_08_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_08_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_08_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_08_2.c
https://wiki.sei.cmu.edu/confluence/display/c/PRE00-C.+Prefer+inline+or+static+functions+to+function-like+macros
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_09.c
https://wiki.sei.cmu.edu/confluence/display/c/PRE06-C.+Enclose+header+files+in+an+include+guard
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_10.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_11.c
https://wiki.sei.cmu.edu/confluence/display/c/STR01-C.+Adopt+and+implement+a+consistent+plan+for+managing+strings
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_12.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_13.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_14.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC04-C.+Use+comments+consistently+and+in+a+readable+fashion
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_01_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_01_03.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC07-C.+Detect+and+remove+dead+code
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_01_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_01_2.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC12-C.+Detect+and+remove+code+that+has+no+effect+or+is+never+executed
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_07.c
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Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example

Rule 3.1 Required The character sequences /* and // shall
not be used within a comment

MSC04-C Rule 3.1

Rule 3.2 Required Line-splicing shall not be used in //
comments

N/A Rule 3.2

Rule 4.1 Required Octal and hexadecimal escape se-
quences shall be terminated

MSC09-C Rule 4.1

Rule 4.2 Advisory Trigraphs should not be used PRE07-C Rule 4.2

Rule 5.1 Required External identifiers shall be distinct DCL23-C

Rule 5.1
example 1
Rule 5.1
example 2

Rule 5.2 Required Identifiers declared in the same scope
and name space shall be distinct

DCL23-C Rule 5.2

Rule 5.3 Required An identifier declared in an inner
scope shall not hide an identifier de-
clared in an outer scope

DCL23-C Rule 5.3

Rule 5.4 Required Macro identifiers shall be distinct DCL23-C Rule 5.4

Rule 5.5 Required Identifiers shall be distinct from macro
names

DCL23-C Rule 5.5

Rule 5.6 Required A typedef name shall be a unique iden-
tifier

N/A Rule 5.6

Rule 5.7 Required A tag name shall be a unique identifier N/A Rule 5.7

Rule 5.8 Required Identifiers that define objects or func-
tions with external linkage shall be
unique

N/A

Rule 5.8
example 1
Rule 5.8
example 2

Rule 5.9 Advisory Identifiers that define objects or func-
tions with internal linkage should be
unique

N/A

Rule 5.9
example 1
Rule 5.9
example 2

Rule 6.1 Required Bit-fields shall only be declared with an
appropriate type

INT14-C Rule 6.1

Rule 6.2 Required Single-bit named bit fields shall not be
of a signed type

INT14-C Rule 6.2

Rule 7.1 Required Octal constants shall not be used DCL18-C Rule 7.1

Rule 7.2 Required A u or U suffix shall be applied to all
integer constants that are represented
in an unsigned type

N/A Rule 7.2

continues on next page
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https://wiki.sei.cmu.edu/confluence/display/c/MSC04-C.+Use+comments+consistently+and+in+a+readable+fashion
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_03_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_03_02.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC09-C.+Character+encoding%3A+Use+subset+of+ASCII+for+safety
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_04_01.c
https://wiki.sei.cmu.edu/confluence/display/c/PRE07-C.+Avoid+using+repeated+question+marks
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_04_02.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_01_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_01_2.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_02.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_03.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_04.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_08_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_08_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_08_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_08_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_09_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_09_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_09_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_09_2.c
https://wiki.sei.cmu.edu/confluence/display/c/INT14-C.+Avoid+performing+bitwise+and+arithmetic+operations+on+the+same+data
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_06_01.c
https://wiki.sei.cmu.edu/confluence/display/c/INT14-C.+Avoid+performing+bitwise+and+arithmetic+operations+on+the+same+data
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_06_02.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL18-C.+Do+not+begin+integer+constants+with+0+when+specifying+a+decimal+value
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_02.c
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Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example

Rule 7.3 Required The lowercase character l shall not be
used in a literal suffix

DCL16-C Rule 7.3

Rule 7.4 Required A string literal shall not be assigned
to an object unless the objects type is
pointer to const-qualified char

N/A Rule 7.4

Rule 8.1 Required Types shall be explicitly specified N/A Rule 8.1

Rule 8.2 Required Function types shall be in prototype
form with named parameters

DCL20-C Rule 8.2

Rule 8.3 Required All declarations of an object or func-
tion shall use the same names and type
qualifiers

N/A Rule 8.3

Rule 8.4 Required A compatible declaration shall be visi-
ble when an object or function with ex-
ternal linkage is defined

N/A Rule 8.4

Rule 8.5 Required An external object or function shall be
declared once in one and only one file

N/A

Rule 8.5
example 1
Rule 8.5
example 2

Rule 8.6 Required An identifier with external linkage
shall have exactly one external defini-
tion

N/A

Rule 8.6
example 1
Rule 8.6
example 2

Rule 8.8 Required The static storage class specifier shall
be used in all declarations of objects
and functions that have internal link-
age

DCL15-C Rule 8.8

Rule 8.9 Advisory An object should be defined at block
scope if its identifier only appears in a
single function

DCL19-C Rule 8.9

Rule 8.10 Required An inline function shall be declared
with the static storage class

N/A Rule 8.10

Rule 8.12 Required Within an enumerator list, the value
of an implicitly-specified enumeration
constant shall be unique

INT09-C Rule 8.12

Rule 8.14 Required The restrict type qualifier shall not be
used

N/A Rule 8.14

Rule 9.1 Manda-
tory

The value of an object with automatic
storage duration shall not be read be-
fore it has been set

N/A Rule 9.1

Rule 9.2 Required The initializer for an aggregate or
union shall be enclosed in braces

N/A Rule 9.2

Rule 9.3 Required Arrays shall not be partially initialized N/A Rule 9.3

Rule 9.4 Required An element of an object shall not be ini-
tialized more than once

N/A Rule 9.4

continues on next page
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https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152241
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_01.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL20-C.+Explicitly+specify+void+when+a+function+accepts+no+arguments
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_05_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_05_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_05_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_05_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_06_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_06_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_06_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_06_2.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL15-C.+Declare+file-scope+objects+or+functions+that+do+not+need+external+linkage+as+static
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_08.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL19-C.+Minimize+the+scope+of+variables+and+functions
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_09.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_10.c
https://wiki.sei.cmu.edu/confluence/display/c/INT09-C.+Ensure+enumeration+constants+map+to+unique+values
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_12.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_14.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_04.c
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Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example

Rule 9.5 Required Where designated initializers are used
to initialize an array object the size of
the array shall be specified explicitly

N/A Rule 9.5

Rule 10.1 Required Operands shall not be of an inappro-
priate essential type

STR04-C Rule 10.1

Rule 10.2 Required Expressions of essentially character
type shall not be used inappropriately
in addition and subtraction operations

STR04-C Rule 10.2

Rule 10.3 Required The value of an expression shall not be
assigned to an object with a narrower
essential type or of a different essential
type category

STR04-C Rule 10.3

Rule 10.4 Required Both operands of an operator in which
the usual arithmetic conversions are
performed shall have the same essen-
tial type category

STR04-C Rule 10.4

Rule 10.5 Advisory The value of an expression should not
be cast to an inappropriate essential
type

N/A Rule 10.5

Rule 10.6 Required The value of a composite expression
shall not be assigned to an object with
wider essential type

INT02-C Rule 10.6

Rule 10.7 Required If a composite expression is used as
one operand of an operator in which
the usual arithmetic conversions are
performed then the other operand
shall not have wider essential type

INT02-C Rule 10.7

Rule 10.8 Required The value of a composite expression
shall not be cast to a different essential
type category or a wider essential type

INT02-C Rule 10.8

Rule 11.2 Required Conversions shall not be performed
between a pointer to an incomplete
type and any other type

N/A Rule 11.2

Rule 11.6 Required A cast shall not be performed between
pointer to void and an arithmetic type

N/A Rule 11.6

Rule 11.7 Required A cast shall not be performed between
pointer to object and a noninteger
arithmetic type

N/A Rule 11.7

Rule 11.8 Required A cast shall not remove any const
or volatile qualification from the type
pointed to by a pointer

EXP05-C Rule 11.8

Rule 11.9 Required The macro NULL shall be the only per-
mitted form of integer null pointer
constant

N/A Rule 11.9

Rule 12.1 Advisory The precedence of operators within ex-
pressions should be made explicit

EXP00-C Rule 12.1

Rule 12.2 Required The right hand operand of a shift oper-
ator shall lie in the range zero to one
less than the width in bits of the essen-
tial type of the left hand operand

N/A Rule 12.2

Rule 12.4 Advisory Evaluation of constant expressions
should not lead to unsigned integer
wrap-around

N/A Rule 12.4

continues on next page
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https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_05.c
https://wiki.sei.cmu.edu/confluence/display/c/STR04-C.+Use+plain+char+for+characters+in+the+basic+character+set
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_01.c
https://wiki.sei.cmu.edu/confluence/display/c/STR04-C.+Use+plain+char+for+characters+in+the+basic+character+set
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_02.c
https://wiki.sei.cmu.edu/confluence/display/c/STR04-C.+Use+plain+char+for+characters+in+the+basic+character+set
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_03.c
https://wiki.sei.cmu.edu/confluence/display/c/STR04-C.+Use+plain+char+for+characters+in+the+basic+character+set
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_05.c
https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_06.c
https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_07.c
https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_08.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_11_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_11_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_11_07.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP05-C.+Do+not+cast+away+a+const+qualification
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_11_08.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_11_09.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP00-C.+Use+parentheses+for+precedence+of+operation
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_12_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_12_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_12_04.c
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Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example

Rule 12.5 Manda-
tory

The sizeof operator shall not have an
operand which is a function parameter
declared as “array of type”

N/A Rule 12.5

Rule 13.1 Required Initializer lists shall not contain persis-
tent side effects

N/A

Rule 13.1
example 1
Rule 13.1
example 2

Rule 13.2 Required The value of an expression and its per-
sistent side effects shall be the same
under all permitted evaluation orders

N/A Rule 13.2

Rule 13.3 Advisory A full expression containing an incre-
ment (++) or decrement (–) operator
should have no other potential side ef-
fects other than that caused by the in-
crement or decrement operator

N/A Rule 13.3

Rule 13.4 Advisory The result of an assignment operator
should not be used

N/A Rule 13.4

Rule 13.5 Required The right hand operand of a logical &&
or || operator shall not contain persis-
tent side effects

EXP10-C

Rule 13.5
example 1
Rule 13.5
example 2

Rule 13.6 Manda-
tory

The operand of the sizeof operator
shall not contain any expression which
has potential side effects

N/A Rule 13.6

Rule 14.1 Required A loop counter shall not have essen-
tially floating type

N/A Rule 14.1

Rule 14.2 Required A for loop shall be well-formed N/A Rule 14.2

Rule 14.3 Required Controlling expressions shall not be in-
variant

N/A Rule 14.3

Rule 14.4 Required The controlling expression of an if
statement and the controlling expres-
sion of an iteration-statement shall
have essentially Boolean type

N/A Rule 14.4

Rule 15.2 Required The goto statement shall jump to a la-
bel declared later in the same function

N/A Rule 15.2

Rule 15.3 Required Any label referenced by a goto state-
ment shall be declared in the same
block, or in any block enclosing the
goto statement

N/A Rule 15.3

Rule 15.6 Required The body of an iteration-statement
or a selection-statement shall be a
compound-statement

EXP19-C Rule 15.6

Rule 15.7 Required All if else if constructs shall be termi-
nated with an else statement

N/A Rule 15.7

continues on next page
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https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_12_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_01_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_01_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_04.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP10-C.+Do+not+depend+on+the+order+of+evaluation+of+subexpressions+or+the+order+in+which+side+effects+take+place
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_05_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_05_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_05_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_05_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_14_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_14_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_14_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_14_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_15_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_15_03.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP19-C.+Use+braces+for+the+body+of+an+if%2C+for%2C+or+while+statement
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_15_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_15_07.c
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Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example

Rule 16.1 Required All switch statements shall be well-
formed

N/A Rule 16.1

Rule 16.2 Required A switch label shall only be used when
the most closely-enclosing compound
statement is the body of a switch state-
ment

MSC20-C Rule 16.2

Rule 16.3 Required An unconditional break statement
shall terminate every switch-clause

N/A Rule 16.3

Rule 16.4 Required Every switch statement shall have a de-
fault label

N/A Rule 16.4

Rule 16.5 Required A default label shall appear as either
the first or the last switch label of a
switch statement

N/A Rule 16.5

Rule 16.6 Required Every switch statement shall have at
least two switch-clauses

N/A Rule 16.6

Rule 16.7 Required A switch-expression shall not have es-
sentially Boolean type

N/A Rule 16.7

Rule 17.1 Required The features of <stdarg.h> shall not be
used

ERR00-C Rule 17.1

Rule 17.2 Required Functions shall not call themselves, ei-
ther directly or indirectly

MEM05-
C

Rule 17.2

Rule 17.3 Manda-
tory

A function shall not be declared implic-
itly

N/A Rule 17.3

Rule 17.4 Manda-
tory

All exit paths from a function with non-
void return type shall have an explicit
return statement with an expression

N/A Rule 17.4

Rule 17.5 Advisory The function argument corresponding
to a parameter declared to have an
array type shall have an appropriate
number of elements

N/A Rule 17.5

Rule 17.6 Manda-
tory

The declaration of an array parameter
shall not contain the static keyword be-
tween the [ ]

N/A Rule 17.6

Rule 17.7 Required The value returned by a function hav-
ing non-void return type shall be used

N/A Rule 17.7

Rule 18.1 Required A pointer resulting from arithmetic on
a pointer operand shall address an ele-
ment of the same array as that pointer
operand

EXP08-C Rule 18.1

Rule 18.2 Required Subtraction between pointers shall
only be applied to pointers that ad-
dress elements of the same array

EXP08-C Rule 18.2

Rule 18.3 Required The relational operators >, >=, < and
<= shall not be applied to objects of
pointer type except where they point
into the same object

EXP08-C Rule 18.3

Rule 18.5 Advisory Declarations should contain no more
than two levels of pointer nesting

N/A Rule 18.5

continues on next page
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https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_01.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC20-C.+Do+not+use+a+switch+statement+to+transfer+control+into+a+complex+block
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_07.c
https://wiki.sei.cmu.edu/confluence/display/c/ERR00-C.+Adopt+and+implement+a+consistent+and+comprehensive+error-handling+policy
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_01.c
https://wiki.sei.cmu.edu/confluence/display/c/MEM05-C.+Avoid+large+stack+allocations
https://wiki.sei.cmu.edu/confluence/display/c/MEM05-C.+Avoid+large+stack+allocations
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_07.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP08-C.+Ensure+pointer+arithmetic+is+used+correctly
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_01.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP08-C.+Ensure+pointer+arithmetic+is+used+correctly
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_02.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP08-C.+Ensure+pointer+arithmetic+is+used+correctly
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_05.c
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Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example

Rule 18.6 Required The address of an object with auto-
matic storage shall not be copied to an-
other object that persists after the first
object has ceased to exist

N/A

Rule 18.6
example 1
Rule 18.6
example 2

Rule 18.8 Required Variable-length array types shall not
be used

N/A Rule 18.8

Rule 19.1 Manda-
tory

An object shall not be assigned or
copied to an overlapping object

N/A Rule 19.1

Rule 20.2 Required The ‘, or characters and the /* or // char-
acter sequences shall not occur in a
header file name”

N/A Rule 20.2

Rule 20.3 Required The #include directive shall be fol-
lowed by either a <filename> or “file-
name” sequence

N/A Rule 20.3

Rule 20.4 Required A macro shall not be defined with the
same name as a keyword

N/A Rule 20.4

Rule 20.7 Required Expressions resulting from the expan-
sion of macro parameters shall be en-
closed in parentheses

PRE01-C Rule 20.7

Rule 20.8 Required The controlling expression of a #if
or #elif preprocessing directive shall
evaluate to 0 or 1

N/A Rule 20.8

Rule 20.9 Required All identifiers used in the controlling
expression of #if or #elif preprocess-
ing directives shall be #defined before
evaluation

N/A Rule 20.9

Rule 20.11 Required A macro parameter immediately fol-
lowing a # operator shall not immedi-
ately be followed by a ## operator

N/A Rule 20.11

Rule 20.12 Required A macro parameter used as an
operand to the # or ## operators,
which is itself subject to further macro
replacement, shall only be used as an
operand to these operators

N/A Rule 20.12

Rule 20.13 Required A line whose first token is # shall be a
valid preprocessing directive

N/A Rule 20.13

Rule 20.14 Required All #else, #elif and #endif preprocessor
directives shall reside in the same file
as the #if, #ifdef or #ifndef directive to
which they are related

N/A Rule 20.14

Rule 21.1 Required #define and #undef shall not be used
on a reserved identifier or reserved
macro name

N/A Rule 21.1

Rule 21.2 Required A reserved identifier or macro name
shall not be declared

N/A Rule 21.2

Rule 21.3 Required The memory allocation and dealloca-
tion functions of <stdlib.h> shall not be
used

MSC24-C Rule 21.3

Rule 21.4 Required The standard header file <setjmp.h>
shall not be used

N/A Rule 21.4

continues on next page
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https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_06_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_06_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_06_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_06_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_08.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_19_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_04.c
https://wiki.sei.cmu.edu/confluence/display/c/PRE01-C.+Use+parentheses+within+macros+around+parameter+names
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_08.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_09.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_11.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_12.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_13.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_14.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_02.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC24-C.+Do+not+use+deprecated+or+obsolescent+functions
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_04.c
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Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example

Rule 21.6 Required The Standard Library input/output
functions shall not be used

N/A Rule 21.6

Rule 21.7 Required The atof, atoi, atol and atoll functions
of <stdlib.h> shall not be used

N/A Rule 21.7

Rule 21.9 Required The library functions bsearch and
qsort of <stdlib.h> shall not be used

N/A Rule 21.9

Rule 21.11 Required The standard header file <tgmath.h>
shall not be used

N/A Rule 21.11

Rule 21.12 Advisory The exception handling features of
<fenv.h> should not be used

N/A Rule 21.12

Rule 21.13 Manda-
tory

Any value passed to a function in
<ctype.h> shall be representable as an
unsigned char or be the value EO

N/A Rule 21.13

Rule 21.14 Required The Standard Library function mem-
cmp shall not be used to compare null
terminated strings

N/A Rule 21.14

Rule 21.15 Required The pointer arguments to the Standard
Library functions memcpy, memmove
and memcmp shall be pointers to qual-
ified or unqualified versions of com-
patible types

N/A Rule 21.15

Rule 21.16 Required The pointer arguments to the Standard
Library function memcmp shall point
to either a pointer type, an essentially
signed type, an essentially unsigned
type, an essentially Boolean type or an
essentially enum type

N/A Rule 21.16

Rule 21.17 Manda-
tory

Use of the string handling functions
from <string.h> shall not result in ac-
cesses beyond the bounds of the ob-
jects referenced by their pointer pa-
rameters

N/A Rule 21.17

Rule 21.18 Manda-
tory

The size_t argument passed to any
function in <string.h> shall have an ap-
propriate value

N/A Rule 21.18

Rule 21.19 Manda-
tory

The pointers returned by the Standard
Library functions localeconv, getenv,
setlocale or, strerror shall only be
used as if they have pointer to const-
qualified type

N/A Rule 21.19

Rule 21.20 Manda-
tory

The pointer returned by the Standard
Library functions asctime, ctime, gm-
time, localtime, localeconv, getenv, set-
locale or strerror shall not be used fol-
lowing a subsequent call to the same
function

N/A Rule 21.20

Rule 22.1 Required All resources obtained dynamically by
means of Standard Library functions
shall be explicitly released

N/A Rule 22.1

Rule 22.2 Manda-
tory

A block of memory shall only be freed
if it was allocated by means of a Stan-
dard Library function

N/A Rule 22.2

continues on next page
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https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_09.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_11.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_12.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_13.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_14.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_15.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_16.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_17.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_18.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_19.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_20.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_02.c
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Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example

Rule 22.3 Required The same file shall not be open for read
and write access at the same time on
different streams

N/A Rule 22.3

Rule 22.4 Manda-
tory

There shall be no attempt to write to
a stream which has been opened as
read-only

N/A Rule 22.4

Rule 22.5 Manda-
tory

A pointer to a FILE object shall not be
dereferenced

N/A Rule 22.5

Rule 22.6 Manda-
tory

The value of a pointer to a FILE shall
not be used after the associated stream
has been closed

N/A Rule 22.6

Rule 22.7 Required The macro EOF shall only be compared
with the unmodified return value from
any Standard Library function capable
of returning EOF

N/A Rule 22.7

Rule 22.8 Required The value of errno shall be set to
zero prior to a call to an errno-setting-
function

N/A Rule 22.8

Rule 22.9 Required The value of errno shall be tested
against zero after calling an errno-
setting-function

N/A Rule 22.9

Rule 22.10 Required The value of errno shall only be tested
when the last function to be called was
an errno-setting-function

N/A Rule 22.10

Additional rules

Rule A.1: Conditional Compilation

Severity Required

Description Do not conditionally compile function declarations in header files. Do not con-
ditionally compile structure declarations in header files. You may conditionally exclude fields
within structure definitions to avoid wasting memory when the feature they support is not en-
abled.

Rationale Excluding declarations from the header based on compile-time options may pre-
vent their documentation from being generated. Their absence also prevents use of if
(IS_ENABLED(CONFIG_FOO)) {} as an alternative to preprocessor conditionals when the code
path should change based on the selected options.

Rule A.2: Inclusive Language

Severity Required

8.1. General Guidelines 3811

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_08.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_09.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_10.c
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Description Do not introduce new usage of offensive terms listed below. This rule applies
but is not limited to source code, comments, documentation, and branch names. Replacement
terms may vary by area or subsystem, but should aim to follow updated industry standards when
possible.

Exceptions are allowed for maintaining existing implementations or adding new implementa-
tions of industry standard specifications governed externally to the Zephyr Project.

Existing usage is recommended to change as soon as updated industry standard specifications
become available or new terms are publicly announced by the governing body, or immediately
if no specifications apply.

Offensive Terms Recommended Replacements
{master,leader} / slave

• {primary,main} / {secondary,
replica}

• {initiator,requester} / {target,
responder}

• {controller,host} / {device,worker,
proxy,target}

• director / performer
• central / peripheral

blacklist / whitelist
• denylist / allowlist
• blocklist / allowlist
• rejectlist / acceptlist

grandfather policy
• legacy

sanity
• coherence
• confidence

Rationale Offensive terms do not create an inclusive community environment and therefore
violate the Zephyr Project Code of Conduct. This coding rule was inspired by a similar rule in
Linux.

Status Related GitHub Issues and Pull Requests are tagged with the Inclusive Language Label.
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Area Selected Replacements Status
API See Bluetooth Appropriate

Language Mapping Tables
CAN This CAN in Automation In-

clusive Language news post
has a list of general recom-
mendations. See CAN in Au-
tomation Inclusive Language
for terms to be used in speci-
fication document updates.

eSPI
• master / slave => con-
troller / target

Refer to eSPI Specification for
new terminology

gPTP
• master / slave => TBD

Inter-Integrated Circuit (I2C)
Bus • master / slave => TBD

NXP publishes the I2C Specifi-
cation and has selected con-
troller / target as re-
placement terms, but the tim-
ing to publish an announce-
ment or new specification is
TBD. Zephyr will update I2C
when replacement terminol-
ogy is confirmed by a pub-
lic announcement or updated
specification.
See Zephyr issue 27033.

Inter-IC Sound (I2S) Bus
• master / slave => TBD

SMP/AMP
• master / slave => TBD

Serial Peripheral Interface
(SPI) Bus • master / slave => con-

troller / peripheral
• MOSI / MISO / SS => SDO
/ SDI / CS

The Open Source Hardware
Association has selected
these replacement terms.
See OSHWA Resolution to
Redefine SPI Signal Names

Test Runner (Twister)
• platform_whitelist =>
platform_allow

• sanitycheck => twister

Rule A.3: Macro name collisions

Severity Required

Description Macros with commonly used names such as MIN, MAX, ARRAY_SIZE, must not be
modified or protected to avoid name collisions with other implementations. In particular, they
must not be prefixed to place them in a Zephyr-specific namespace, re-defined using #undef,
or conditionally excluded from compilation using #ifndef. Instead, if a conflict arises with an
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existing definition originating from a module, the module’s code itself needs to be modified (ide-
ally upstream, alternatively via a change in Zephyr’s own fork). This rule applies to Zephyr as
a project in general, regardless of the time of introduction of the macro or its current name in
the tree. If a macro name is commonly used in several other well-known open source projects
then the implementation in Zephyr should use that name. While there is a subjective and non-
measurable component to what “commonly used” means, the ultimate goal is to offer users fa-
miliar macros. Finally, this rule applies to inter-module name collisions as well: in that case
both modules, prior to their inclusion, should be modified to use module-specific versions of the
macro name that collides.

Rationale Zephyr is an RTOS that comes with additional functionality and dependencies in the
form of modules. Those modules are typically independent projects that may use macro names
that can conflict with other modules or with Zephyr itself. Since, in the context of this documenta-
tion, Zephyr is considered the central or main project, it should implement the non-namespaced
versions of the macros. Given that Zephyr uses a fork of the corresponding upstream for each
module, it is always possible to patch the macro implementation in each module to avoid colli-
sions.

Rule A.4: C Standard Library Usage Restrictions in Zephyr Kernel

Severity Required

Description The use of the C standard library functions and macros in the Zephyr kernel shall
be limited to the following functions and macros from the ISO/IEC 9899:2011 standard, also
known as C11, and their extensions:

Table 2: List of allowed libc functions and macros in the
Zephyr kernel

Function Source
abort() ISO/IEC 9899:2011
abs() ISO/IEC 9899:2011
aligned_alloc() ISO/IEC 9899:2011
assert() ISO/IEC 9899:2011
atoi() ISO/IEC 9899:2011
bsearch() ISO/IEC 9899:2011
calloc() ISO/IEC 9899:2011
exit() ISO/IEC 9899:2011
fprintf() ISO/IEC 9899:2011
fputc() ISO/IEC 9899:2011
fputs() ISO/IEC 9899:2011
free() ISO/IEC 9899:2011
fwrite() ISO/IEC 9899:2011
gmtime() ISO/IEC 9899:2011
isalnum() ISO/IEC 9899:2011
isalpha() ISO/IEC 9899:2011
iscntrl() ISO/IEC 9899:2011
isdigit() ISO/IEC 9899:2011
isgraph() ISO/IEC 9899:2011
isprint() ISO/IEC 9899:2011
isspace() ISO/IEC 9899:2011
isupper() ISO/IEC 9899:2011
isxdigit() ISO/IEC 9899:2011

continues on next page
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Table 2 – continued from previous page
Function Source
labs() ISO/IEC 9899:2011
llabs() ISO/IEC 9899:2011
malloc() ISO/IEC 9899:2011
memchr() ISO/IEC 9899:2011
memcmp() ISO/IEC 9899:2011
memcpy() ISO/IEC 9899:2011
memmove() ISO/IEC 9899:2011
memset() ISO/IEC 9899:2011
perror() ISO/IEC 9899:2011
printf() ISO/IEC 9899:2011
putc() ISO/IEC 9899:2011
putchar() ISO/IEC 9899:2011
puts() ISO/IEC 9899:2011
qsort() ISO/IEC 9899:2011
rand() ISO/IEC 9899:2011
realloc() ISO/IEC 9899:2011
snprintf() ISO/IEC 9899:2011
sprintf() ISO/IEC 9899:2011
sqrt() ISO/IEC 9899:2011
sqrtf() ISO/IEC 9899:2011
srand() ISO/IEC 9899:2011
strcat() ISO/IEC 9899:2011
strchr() ISO/IEC 9899:2011
strcmp() ISO/IEC 9899:2011
strcpy() ISO/IEC 9899:2011
strcspn() ISO/IEC 9899:2011
strerror() ISO/IEC 9899:2011
strlen() ISO/IEC 9899:2011
strncat() ISO/IEC 9899:2011
strncmp() ISO/IEC 9899:2011
strncpy() ISO/IEC 9899:2011
strnlen() POSIX.1-2008
strrchr() ISO/IEC 9899:2011
strspn() ISO/IEC 9899:2011
strstr() ISO/IEC 9899:2011
strtol() ISO/IEC 9899:2011
strtoll() ISO/IEC 9899:2011
strtoul() ISO/IEC 9899:2011
strtoull() ISO/IEC 9899:2011
time() ISO/IEC 9899:2011
tolower() ISO/IEC 9899:2011
toupper() ISO/IEC 9899:2011
vfprintf() ISO/IEC 9899:2011
vprintf() ISO/IEC 9899:2011
vsnprintf() ISO/IEC 9899:2011
vsprintf() ISO/IEC 9899:2011

All of the functions listed above must be implemented by the minimal libc to ensure that the
Zephyr kernel can build with the minimal libc.

In addition, any functions from the above list that are not part of the ISO/IEC 9899:2011 standard
must be implemented by the common libc to ensure their availability across multiple C standard
libraries.

Introducing new C standard library functions to the Zephyr kernel is allowed with justification
given that the above requirements are satisfied.

8.1. General Guidelines 3815

https://pubs.opengroup.org/onlinepubs/9699919799/functions/strlen.html


Zephyr Project Documentation, Release 3.7.99

Note that the use of the functions listed above are subject to secure and safe coding practices
and it should not be assumed that their use in the Zephyr kernel is unconditionally permitted by
being listed in this rule.

The “Zephyr kernel” in this context consists of the following components:

• Kernel (kernel)

• OS Library (lib/os)

• Architecture Port (arch)

• Logging Subsystem (subsys/logging)

Rationale Zephyr kernel must be able to build with the minimal libc, a limited C standard li-
brary implementation that is part of the Zephyr RTOS and maintained by the Zephyr Project, to
allow self-contained testing and verification of the kernel and core OS services.

In order to ensure that the Zephyr kernel can build with the minimal libc, it is necessary to re-
strict the use of the C standard library functions and macros in the Zephyr kernel to the functions
and macros that are available as part of the minimal libc.

Rule A.5: C Standard Library Usage Restrictions in Zephyr Codebase

Severity Required

Description The use of the C standard library functions and macros in the Zephyr codebase
shall be limited to the functions, excluding the Annex K “Bounds-checking interfaces”, from the
ISO/IEC 9899:2011 standard, also known as C11, unless exempted by this rule.

The “Zephyr codebase” in this context refers to all embedded source code files committed to the
main Zephyr repository, except the Zephyr kernel as defined by the Rule A.4: C Standard Library
Usage Restrictions in Zephyr Kernel. With embedded source code we refer to code which is meant
to be executed in embedded targets, and therefore excludes host tooling, and code specific for
the native test targets.

The following non-ISO 9899:2011, hereinafter referred to as non-standard, functions and macros
are exempt from this rule and allowed to be used in the Zephyr codebase:

Table 3: List of allowed non-standard libc functions

Function Source
gmtime_r() POSIX.1-2001
strnlen() POSIX.1-2008
strtok_r() POSIX.1-2001

All non-standard functions and macros listed above must be implemented by the common libc in
order to make sure that these functions can be made available when using a C standard library
that does not implement these functions.

Adding a new non-standard function from common C standard libraries to the above list is al-
lowed with justification, given that the above requirement is satisfied. However, when there
exists a standard function that is functionally equivalent, the standard function shall be used.
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Rationale Some C standard libraries, such as Newlib and Picolibc, include additional functions
and macros that are defined by the standards and de-facto standards that extend the ISO C stan-
dard (e.g. POSIX, Linux).

The ISO/IEC 9899:2011 standard does not require C compiler toolchains to include the support
for these non-standard functions, and therefore using these functions can lead to compatibility
issues with the third-party toolchains that come with their own C standard libraries.

8.1.3 Proposals and RFCs

Many changes, including bug fixes and documentation improvements can be implemented and
reviewed via the normal GitHub pull request workflow.

Many changes however are “substantial” and need to go through a design process and produce
a consensus among the project stakeholders.

The “RFC” (request for comments) process is intended to provide a consistent and controlled
path for new features to enter the project.

Contributors and project stakeholders should consider using this process if they intend to make
“substantial” changes to Zephyr or its documentation. Some examples that would benefit from
an RFC are:

• A new feature that creates new API surface area, and would require a feature flag if intro-
duced.

• The modification of an existing stable API.

• The removal of features that already shipped as part of Zephyr.

• The introduction of new idiomatic usage or conventions, even if they do not include code
changes to Zephyr itself.

The RFC process is a great opportunity to get more eyeballs on proposals coming from contribu-
tors before it becomes a part of Zephyr. Quite often, even proposals that seem “obvious” can be
significantly improved once a wider group of interested people have a chance to weigh in.

The RFC process can also be helpful to encourage discussions about a proposed feature as it is
being designed, and incorporate important constraints into the design while it’s easier to change,
before the design has been fully implemented.

Some changes do not require an RFC:

• Rephrasing, reorganizing or refactoring

• Addition or removal of warnings

• Addition of new boards, SoCs or drivers to existing subsystems

• …

The process in itself consists in creating a GitHub issue with the RFC label that documents the
proposal thoroughly. There is an RFC template included in the main Zephyr GitHub repository
that serves as a guideline to write a new RFC.

As with Pull Requests, RFCs might require discussion in the context of one of the Zephyr meetings
in order to move it forward in cases where there is either disagreement or not enough voiced
opinions in order to proceed. Make sure to either label it appropriately or include it in the cor-
responding GitHub project in order for it to be examined during the next meeting.

8.1.4 Contributor Expectations

The Zephyr project encourages contributors to submit changes as smaller pull requests. Smaller
pull requests (PRs) have the following benefits:
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• Reviewed more quickly and reviewed more thoroughly. It’s easier for reviewers to set aside
a few minutes to review smaller changes several times than it is to allocate large blocks of
time to review a large PR.

• Less wasted work if reviewers or maintainers reject the direction of the change.

• Easier to rebase and merge. Smaller PRs are less likely to conflict with other changes in the
tree.

• Easier to revert if the PR breaks functionality.

Note

This page does not apply to draft PRs which can have any size, any number of commits and
any combination of smaller PRs for testing and preview purposes. Draft PRs have no review
expectation and PRs created as drafts from the start do not notify anyone by default.

Defining Smaller PRs

• Smaller PRs should encompass one self-contained logical change.

• When adding a new large feature or API, the PR should address only one part of the fea-
ture. In this case create an RFC proposal to describe the additional parts of the feature for
reviewers.

• PRs should include tests or samples under the following conditions:

– Adding new features or functionality.

– Modifying a feature, especially for API behavior contract changes.

– Fixing a hardware agnostic bug. The test should fail without the bug fixed and pass
with the fix applied.

• PRs must update any documentation affected by a functional code change.

• If introducing a new API, the PR must include an example usage of the API. This provides
context to the reviewer and prevents submitting PRs with unused APIs.

Multiple Commits on a Single PR

Contributors are further encouraged to break up PRs into multiple commits. Keep in mind each
commit in the PR must still build cleanly and pass all the CI tests.

For example, when introducing an extension to an API, contributors can break up the PR into
multiple commits targeting these specific changes:

1. Introduce the new APIs, including shared devicetree bindings

2. Update driver implementation X, with driver specific devicetree bindings

3. Update driver implementation Y

4. Add tests for the new API

5. Add a sample using the API

6. Update the documentation
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Large Changes

Large changes to the Zephyr project must submit an RFC proposal describing the full scope of
change and future work. The RFC proposal provides the required context to reviewers, but al-
lows for smaller, incremental, PRs to get reviewed and merged into the project. The RFC should
also define the minimum viable implementation.

Changes which require an RFC proposal include:

• Submitting a new feature.

• Submitting a new API.

• Treewide Changes.

• Other large changes that can benefit from the RFC proposal process.

Maintainers have the discretion to request that contributors create an RFC for PRs that are too
large or complicated.

PR Requirements

• Each commit in the PR must provide a commit message following the Commit Message
Guidelines.

• The PR description must include a summary of the changes and their rationales.

• All files in the PR must comply with Licensing Requirements.

• Follow the Zephyr Coding Style and Coding Guidelines.

• PRs must pass all CI checks. This is a requirement to merge the PR. Contributors may mark
a PR as draft and explicitly request reviewers to provide early feedback, even with failing
CI checks.

• When breaking a PR into multiple commits, each commit must build cleanly. The CI system
does not enforce this policy, so it is the PR author’s responsibility to verify.

• When major new functionality is added, tests for the new functionality shall be added to
the automated test suite. All API functions should have test cases and there should be tests
for the behavior contracts of the API. Maintainers and reviewers have the discretion to de-
termine if the provided tests are sufficient. The examples below demonstrate best practices
on how to test APIs effectively.

– Kernel timer tests provide around 85% test coverage for the kernel timer , measured
by lines of code.

– Emulators for off-chip peripherals are an effective way to test driver APIs. The fuel
gauge tests use the smart battery emulator , providing test coverage for the fuel gauge
API and the smart battery driver .

– Code coverage reports for the Zephyr project are available on Codecov.

• Incompatible changes to APIs must also update the release notes for the next release detail-
ing the change. APIs marked as experimental are excluded from this requirement.

• Changes to APIs must increment the API version number according to the API version rules.

• PRs must also satisfy all Merge Criteria before a member of the release engineering team
merges the PR into the zephyr tree.

Maintainers may request that contributors break up a PR into smaller PRs and may request that
they create an RFC proposal.
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Workflow Suggestions That Help Reviewers
• Unless they applied the reviewer’s recommendation exactly, authors must not resolve and

hide comments, they must let the initial reviewer do it. The Zephyr project does not require
all comments to be resolved before merge. Leaving some completed discussions open can
sometimes be useful to understand the greater picture.

• Respond to comments using the “Start Review” and “Add Review” green buttons in the “Files
changed” view. This allows responding to multiple comments and publishing the responses
in bulk. This reduces the number of emails sent to reviewers.

• As GitHub does not implement git range-diff, try to minimize rebases in the middle of a
review. If a rebase is required, push this as a separate update with no other changes since
the last push of the PR. When pushing a rebase only, add a comment to the PR indicating
which commit is the rebase.

PR Review Escalation The Zephyr community is a diverse group of individuals, with different
levels of commitment and priorities. As such, reviewers and maintainers may not get to a PR
right away.

The Zephyr Dev Meeting performs a triage of PRs missing reviewer approval, following this pro-
cess:

1. Identify and update PRs missing an Assignee.

2. Identify PRs without any comments or reviews, ping the PR Assignee to start a review or
assign to a different maintainer.

3. For PRs that have otherwise stalled, the Zephyr Dev Meeting pings the Assignee and any
reviewers that have left comments on the PR.

Contributors may escalate PRs outside of the Zephyr Dev Meeting triage process as follows:

• After 1 week of inactivity, ping the Assignee or reviewers on the PR by adding a comment
to the PR.

• After 2 weeks of inactivity, post a message on the #pr-help channel on Discord linking to
the PR.

• After 2 weeks of inactivity, add the dev-review label to the PR. This explicitly adds the PR
to the agenda for the next Zephyr Dev Meeting independent of the triage process. Not all
contributors have the required privileges to add labels to PRs, in this case the contributor
should request help on Discord or send an email to the Zephyr devel mailing list.

Note that for new PRs, contributors should generally wait for at least one Zephyr Dev Meeting
before escalating the PR themselves.

PR Technical Escalation In cases where a contributor objects to change requests from review-
ers, Zephyr defines the following escalation process for resolving technical disagreements.

Before escalation of technical disagreements, follow the steps below:

• Resolve in the PR among assignee, maintainers and reviewer.

– Assignee to act as moderator if applicable.

• Optionally resolve in the next Zephyr Dev Meeting meeting with more Maintainers and
project stakeholders.

– The involved parties and the Assignee to be present when the issue is discussed.

• If no progress is made, the assignee (maintainer) has the right to dismiss stale, unrelated
or irrelevant change requests by reviewers giving the reviewers a minimum of 1 business
day to respond and revisit their initial change requests or start the escalation process.
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The assignee has the responsibility to document the reasoning for dismissing any reviews
in the PR and should notify the reviewer about their review being dismissed.

To give the reviewers time to respond and escalate, the assignee is expected to block the PR
from being merged either by not approving the PR or by setting the DNM label.

Escalation can be triggered by any party participating in the review process (assignee, reviewers
or the original author of the change) following the steps below:

• Escalate to the Architecture Working Group by adding the Architecture Review label on
the PR. Beside the weekly meeting where such escalations are processed, the Architecture
Working Group shall facilitate an offline review of the escalation if requested, especially if
any of the parties can’t attend the meeting.

• If all avenues of resolution and escalation have failed, assignees can escalate to the TSC and
get a binding resolution in the TSC by adding the TSC label on the PR.

• The Assignee is expected to ensure the resolution of the escalation and the outcome is doc-
umented in the related pull request or issues on Github.

Reviewer Expectations

• Be respectful when commenting on PRs. Refer to the Zephyr Code of Conduct for more
details.

• The Zephyr Project recognizes that reviewers and maintainers have limited bandwidth. As
a reviewer, prioritize review requests in the following order:

1. PRs related to items in the Zephyr Release Plan or those targeting the next release
during the stabilization period (after RC1).

2. PRs where the reviewer has requested blocking changes.

3. PRs assigned to the reviewer as the area maintainer.

4. All other PRs.

• Reviewers shall strive to advance the PR to a mergeable state with their feedback and en-
gagement with the PR author.

• Try to provide feedback on the entire PR in one shot. This provides the contributor an
opportunity to address all comments in the next PR update.

• Partial reviews are permitted, but the reviewer must add a comment indicating what por-
tion of the PR they reviewed. Examples of useful partial reviews include:

– Domain specific reviews (e.g. Devicetree).

– Code style changes that impact the readability of the PR.

– Reviewing commits separately when the requested changes cascade into the later com-
mits.

• Avoid increasing scope of the PR by requesting new features, especially when there is a
corresponding RFC associated with the PR. Instead, reviewers should add suggestions as a
comment to the RFC. This also encourages more collaboration as it is easier for multiple
contributors to work on a feature once the minimum implementation has merged.

• When using the “Request Changes” option, mark trivial, non-functional, requests as “Non-
blocking” in the comment. Reviewers should approve PRs once only non-blocking changes
remain. The PR author has discretion as to whether they address all non-blocking com-
ments. PR authors should acknowledge every review comment in some way, even if it’s
just with an emoticon.
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• Reviewers shall be clear and concise what changes they are requesting when the “Request
Changes” option is used. Requested changes shall be in the scope of the PR in question and
following the contribution and style guidelines of the project.

• Reviewers shall not close a PR due to technical or structural disagreement. If requested
changes cannot be resolved within the review process, the PR Technical Escalation path
shall be used for any potential resolution path, which may include closing the PR.

Contribution Guidelines
Learn about the overall process and guidelines for contributing to the Zephyr project.

This page is a mandatory read for first-time contributors as it contains important informa-
tion on how to ensure your contribution can be considered for inclusion in the project and
potentially merged.

Contributor Expectations
This document is another mandatory read that describes the expected behavior of all con-
tributors to the project.

Coding Guidelines
Code contributions are expected to follow a set of coding guidelines to ensure consistency
and readability across the code base.

This page describes these guidelines and introduces important considerations regarding
the use of inclusive language.

Proposals and RFCs
Learn when and how to submit RFCs (Request for Comments) for new features and changes
to the project.

8.2 Documentation

The Zephyr project thrives on good documentation. Whether it is as part of a code contribution
or as a standalone effort, contributing documentation is particularly valuable to the project.

8.2.1 Documentation Guidelines

Note

For instructions on building the documentation, see Documentation Generation.

Zephyr Project content is written using the reStructuredText markup language (.rst file exten-
sion) with Sphinx extensions, and processed using Sphinx to create a formatted standalone web-
site. Developers can view this content either in its raw form as .rst markup files, or (with Sphinx
installed) they can build the documentation locally to generate the documentation in HTML or
PDF format. The HTML content can then be viewed using a web browser. This same .rst content
is served by the Zephyr documentation website.

You can read details about reStructuredText and about Sphinx extensions from their respective
websites.

This document provides a quick reference for commonly used reST and Sphinx-defined direc-
tives and roles used to create the documentation you’re reading.
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Headings

While reST allows use of both and overline and matching underline to indicate a heading, we
only use an underline indicator for headings.

• Document title (h1) use “#” for the underline character

• First section heading level (h2) use “*”

• Second section heading level (h3) use “=”

• Third section heading level (h4) use “-”

The heading underline must be at least as long as the title it’s under.

For example:

This is a title heading
#######################

some content goes here

First section heading
*********************

Content Highlighting

Some common reST inline markup samples:

• one asterisk: *text* for emphasis (italics),

• two asterisks: **text** for strong emphasis (boldface), and

• two backquotes: ``text`` for inline code samples.

If asterisks or backquotes appear in running text and could be confused with inline markup
delimiters, you can eliminate the confusion by adding a backslash (\) before it.

Lists

For bullet lists, place an asterisk (*) or hyphen (-) at the start of a paragraph and indent contin-
uation lines with two spaces.

The first item in a list (or sublist) must have a blank line before it and should be indented at the
same level as the preceding paragraph (and not indented itself).

For numbered lists start with a 1. or a. for example, and continue with autonumbering by using
a # sign. Indent continuation lines with three spaces:

* This is a bulleted list.
* It has two items, the second
item and has more than one line of reST text. Additional lines
are indented to the first character of the
text of the bullet list.

1. This is a new numbered list. If the wasn't a blank line before it,
it would be a continuation of the previous list (or paragraph).

#. It has two items too.

a. This is a numbered list using alphabetic list headings
#. It has three items (and uses autonumbering for the rest of the list)
#. Here's the third item

(continues on next page)
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(continued from previous page)
#. This is an autonumbered list (default is to use numbers starting

with 1).

#. This is a second-level list under the first item (also
autonumbered). Notice the indenting.

#. And a second item in the nested list.
#. And a second item back in the containing list. No blank line

needed, but it wouldn't hurt for readability.

Definition lists (with a term and its definition) are a convenient way to document a word or
phrase with an explanation. For example this reST content:

The Makefile has targets that include:

html
Build the HTML output for the project

clean
Remove all generated output, restoring the folders to a
clean state.

Would be rendered as:

The Makefile has targets that include:

html
Build the HTML output for the project

clean
Remove all generated output, restoring the folders to a clean state.

Multi-column lists

If you have a long bullet list of items, where each item is short, you can indicate the list items
should be rendered in multiple columns with a special .. rst-class:: rst-columns direc-
tive. The directive will apply to the next non-comment element (e.g., paragraph), or to content
indented under the directive. For example, this unordered list:

.. rst-class:: rst-columns

* A list of
* short items
* that should be
* displayed
* horizontally
* so it doesn't
* use up so much
* space on
* the page

would be rendered as:

• A list of

• short items

• that should be

• displayed

• horizontally

• so it doesn’t
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• use up so much

• space on

• the page

A maximum of three columns will be displayed, and change based on the available width of
the display window, reducing to one column on narrow (phone) screens if necessary. We’ve
deprecated use of the hlist directive because it misbehaves on smaller screens.

Tables

There are a few ways to create tables, each with their limitations or quirks. Grid tables offer the
most capability for defining merged rows and columns, but are hard to maintain:

+------------------------+------------+----------+----------+
| Header row, column 1 | Header 2 | Header 3 | Header 4 |
| (header rows optional) | | | |
+========================+============+==========+==========+
| body row 1, column 1 | column 2 | column 3 | column 4 |
+------------------------+------------+----------+----------+
| body row 2 | ... | ... | you can |
+------------------------+------------+----------+ easily +
| body row 3 with a two column span | ... | span |
+------------------------+------------+----------+ rows +
| body row 4 | ... | ... | too |
+------------------------+------------+----------+----------+

This example would render as:

Header row, column 1 (header rows
optional)

Header 2 Header
3

Header 4

body row 1, column 1 column 2 column
3

column 4

body row 2 … … you can easily span rows
toobody row 3 with a two column span …

body row 4 … …

List tables are much easier to maintain, but don’t support row or column spans:

.. list-table:: Table title
:widths: 15 20 40
:header-rows: 1

* - Heading 1
- Heading 2
- Heading 3

* - body row 1, column 1
- body row 1, column 2
- body row 1, column 3

* - body row 2, column 1
- body row 2, column 2
- body row 2, column 3

This example would render as:
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Table 4: Table title

Heading 1 Heading 2 Heading 3
body row 1, col-
umn 1

body row 1, column 2 body row 1, column 3

body row 2, col-
umn 1

body row 2, column 2 body row 2, column 3

The :widths: parameter lets you define relative column widths. The default is equal column
widths. If you have a three-column table and you want the first column to be half as wide as the
other two equal-width columns, you can specify :widths: 1 2 2. If you’d like the browser to set
the column widths automatically based on the column contents, you can use :widths: auto.

File names and Commands

Sphinx extends reST by supporting additional inline markup elements (called “roles”) used to
tag text with special meanings and allow style output formatting. (You can refer to the Sphinx
Inline Markup documentation for the full list).

For example, there are roles for marking filenames (:file:`name`) and command names such
as make (:command:`make`). You can also use the “inline code“ markup (double backticks) to
indicate a filename.

For references to files that are in the Zephyr GitHub tree, a special role can be used that creates
a hyperlink to that file. For example a reference to the reST file used to create this document can
be generated using :zephyr_file:`doc/contribute/documentation/guidelines.rst` that will
show up as doc/contribute/documentation/guidelines.rst, a link to the “blob” file in the github
repo. There’s also a :zephyr_raw:`doc/contribute/documentation/guidelines.rst` role that
will link to the “raw” content, doc/contribute/documentation/guidelines.rst. (You can click on
these links to see the difference.)

Internal Cross-Reference Linking

Traditional ReST links are only supported within the current file using the notation:

Refer to the `internal-linking`_ page

which renders as,

Refer to the internal-linking page

Note the use of a trailing underscore to indicate an outbound link. In this example, the label was
added immediately before a heading, so the text that’s displayed is the heading text itself. You
can change the text that’s displayed as the link writing this as:

Refer to the `show this text instead <internal-linking_>`_ page

which renders as,

Refer to the show this text instead page

External Cross-Reference Linking

With Sphinx’s help, we can create link-references to any tagged text within the Zephyr Project
documentation.

Target locations in a document are defined with a label directive:
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.. _my label name:

Heading
=======

Note the leading underscore indicating an inbound link. The content immediately following this
label must be a heading, and is the target for a :ref:`my label name` reference from anywhere
within the Zephyr documentation. The heading text is shown when referencing this label. You
can also change the text that’s displayed for this link, such as:

:ref:`some other text <my label name>`

To enable easy cross-page linking within the site, each file should have a reference label before
its title so it can be referenced from another file. These reference labels must be unique across
the whole site, so generic names such as “samples” should be avoided. For example the top of
this document’s .rst file is:

.. _doc_guidelines:

Documentation Guidelines for the Zephyr Project
###############################################

Other .rst documents can link to this document using the :ref:`doc_guidelines` tag and it will
show up as Documentation Guidelines. This type of internal cross reference works across multi-
ple files, and the link text is obtained from the document source so if the title changes, the link
text will update as well.

You can also define links to any URL and then reference it in your document. For example, with
this label definition in the document:

.. _Zephyr Wikipedia Page:
https://en.wikipedia.org/wiki/Zephyr_(operating_system)

you can reference it with:

Read the `Zephyr Wikipedia Page`_ for more information about the
project.

‘any‘ links

Within the Zephyr project, we’ve defined the default role to be “any”, meaning if you just write
a phrase in back-ticks, e.g., `doc_guidelines`, Sphinx will search through all domains looking
for something called doc_guidelines to link to. In this case it will find the label at the top of this
document, and link to doc_guidelines. This can be useful for linking to doxygen-generated links
for function names and such, but will cause a warning such as:

WARNING: 'any' reference target not found: doc_giudelines

if you misspelled `doc_guidelines` as `doc_giudelines`.

Non-ASCII Characters

You can insert non-ASCII characters such as a Trademark symbol (™), by using the notation
|trade|. Available replacement names are defined in an include file used during the Sphinx
processing of the reST files. The names of these replacement characters are the same as used
in HTML entities used to insert characters in HTML, e.g., &trade; and are defined in the file
sphinx_build/substitutions.txt as listed here:
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.. |br| raw:: html .. force a line break in HTML output (blank lines needed here)

<br />

.. |p| raw:: html .. force a blank line in HTML output (blank lines needed here)

<p></p>

.. These are replacement strings for non-ASCII characters used within the project
using the same name as the html entity names (e.g., &copy;) for that character

.. |copy| unicode:: U+000A9 .. COPYRIGHT SIGN
:ltrim:

.. |trade| unicode:: U+02122 .. TRADEMARK SIGN
:ltrim:

.. |reg| unicode:: U+000AE .. REGISTERED TRADEMARK SIGN
:ltrim:

.. |deg| unicode:: U+000B0 .. DEGREE SIGN
:ltrim:

.. |plusminus| unicode:: U+000B1 .. PLUS-MINUS SIGN
:rtrim:

.. |micro| unicode:: U+000B5 .. MICRO SIGN
:rtrim:

.. |sup2| unicode:: U+00B2 .. SUPERSCRIPT TWO
:ltrim:

We’ve kept the substitutions list small but others can be added as needed by submitting a change
to the substitutions.txt file.

Code and Command Examples

Use the reST code-block directive to create a highlighted block of fixed-width text, typically used
for showing formatted code or console commands and output. Smart syntax highlighting is also
supported (using the Pygments package). You can also directly specify the highlighting language.
For example:

.. code-block:: c

struct k_object {
char *name;
uint8_t perms[CONFIG_MAX_THREAD_BYTES];
uint8_t type;
uint8_t flags;
uint32_t data;

} __packed;

Note the blank line between the code-block directive and the first line of the code-block body,
and the body content is indented three spaces (to the first non-white space of the directive name).

This would be rendered as:

struct k_object {
char *name;
uint8_t perms[CONFIG_MAX_THREAD_BYTES];
uint8_t type;
uint8_t flags;
uint32_t data;

} __packed;

Other languages are of course supported (see languages supported by Pygments), and in partic-
ular, you are encouraged to make use of the following when appropriate:
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• c for C code

• cpp for C++ code

• python for Python code

• console for console output, i.e. interactive shell sessions where commands are prefixed
by a prompt (ex. $ for Linux, or uart:~$ for Zephyr’s shell), and where the output is also
shown. The commands will be highlighted, and the output will not. What’s more, copying
code block using the “copy” button will automatically copy just the commands, excluding
the prompt and the outputs of the commands.

• shell or bash for shell commands. Both languages get highlighted the same but you may
use bash for conveying that the commands are bash-specific, and shell for generic shell
commands.

Note

Do not use bash or shell if your code block includes a prompt, use console instead.

Reciprocally, do not use console if your code block does not include a prompt and is not
showcasing an interactive session with command(s) and their output.

Table 5: When to use bash/shell vs. console
Use case code-block snippet Expected output
One or several
commands, no
output

.. code-block:: shell

echo "Hello World!"

echo "Hello World!"

An interactive
shell session
with com-
mand(s) and
their output

.. code-block:: console

$ echo "Hello World!"
Hello World!

$ echo "Hello World!"
Hello World!

An interactive
Zephyr shell
session, with
commands
and their out-
puts

.. code-block:: console

uart:~$ version
Zephyr version 3.5.99
uart:~$ kernel uptime
Uptime: 20970 ms

uart:~$ version
Zephyr version 3.5.99
uart:~$ kernel uptime
Uptime: 20970 ms

• bat for Windows batch files

• cfg for config files with “KEY=value” entries (ex. Kconfig .conf files)

• cmake for CMake

• devicetree for Devicetree

• kconfig for Kconfig

• yaml for YAML

• rst for reStructuredText

When no language is specified, the language is set to none and the code block is not highlighted.
You may also use none explicitly to achieve the same result; for example:
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.. code-block:: none

This would be a block of text styled with a background
and box, but with no syntax highlighting.

Would display as:

This would be a block of text styled with a background
and box, but with no syntax highlighting.

There’s a shorthand for writing code blocks too: end the introductory paragraph with a double
colon (::) and indent the code block content that follows it by three spaces. On output, only one
colon will be shown. The code block will have no highlighting (i.e. none). You may however use
the .. highlight:: directive to customize the default language used in your document (see for
example how this is done at the beginning of this very document).

Images

Images are included in documentation by using an image directive:

.. image:: ../../../../images/doc-gen-flow.png
:align: center
:alt: alt text for the image

or if you’d like to add an image caption, use:

.. figure:: ../../../../images/doc-gen-flow.png
:alt: image description

Caption for the figure

The file name specified is relative to the document source file, and we recommend putting images
into an images folder where the document source is found. The usual image formats handled
by a web browser are supported: JPEG, PNG, GIF, and SVG. Keep the image size only as large
as needed, generally at least 500 px wide but no more than 1000 px, and no more than 250 KB
unless a particularly large image is needed for clarity.

Tabs, spaces, and indenting

Indenting is significant in reST file content, and using spaces is preferred. Extra indenting can
(unintentionally) change the way content is rendered too. For lists and directives, indent the
content text to the first non-white space in the preceding line. For example:

* List item that spans multiple lines of text
showing where to indent the continuation line.

1. And for numbered list items, the continuation
line should align with the text of the line above.

.. code-block::

The text within a directive block should align with the
first character of the directive name.

Refer to the Zephyr Coding Style for additional requirements.
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zephyr-app-commands Directive

This is a Zephyr directive for generating consistent documentation of the shell com-
mands needed to manage (build, flash, etc.) an application.

For example, to generate commands to build samples/hello_world for qemu_x86 use:

.. zephyr-app-commands::
:zephyr-app: samples/hello_world
:board: qemu_x86
:goals: build

Directive options:

:tool:
which tool to use. Valid options are currently ‘cmake’, ‘west’ and ‘all’. The default
is ‘west’.

:app:
path to the application to build.

:zephyr-app:
path to the application to build, this is an app present in the upstream zephyr
repository. Mutually exclusive with :app:.

:cd-into:
if set, build instructions are given from within the :app: folder, instead of outside
of it.

:generator:
which build system to generate. Valid options are currently ‘ninja’ and ‘make’.
The default is ‘ninja’. This option is not case sensitive.

:host-os:
which host OS the instructions are for. Valid options are ‘unix’, ‘win’ and ‘all’. The
default is ‘all’.

:board:
if set, the application build will target the given board.

:shield:
if set, the application build will target the given shield. Multiple shields can be
provided in a comma separated list.

:conf:
if set, the application build will use the given configuration file. If multiple conf
files are provided, enclose the space-separated list of files with quotes, e.g., “a.conf
b.conf”.

:gen-args:
if set, additional arguments to the CMake invocation

:build-args:
if set, additional arguments to the build invocation

:snippets:
if set, indicates the application should be compiled with the listed snippets. Mul-
tiple snippets can be provided in a comma separated list.

:build-dir:
if set, the application build directory will APPEND this (relative, Unix-separated)
path to the standard build directory. This is mostly useful for distinguishing
builds for one application within a single page.
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:build-dir-fmt:
if set, assume that “west config build.dir-fmt” has been set to this path. Exclusive
with ‘build-dir’ and depends on ‘tool=west’.

:goals:
a whitespace-separated list of what to do with the app (in ‘build’, ‘flash’, ‘debug’,
‘debugserver’, ‘run’). Commands to accomplish these tasks will be generated in
the right order.

:maybe-skip-config:
if set, this indicates the reader may have already created a build directory and
changed there, and will tweak the text to note that doing so again is not necessary.

:compact:
if set, the generated output is a single code block with no additional comment
lines

:west-args:
if set, additional arguments to the west invocation (ignored for CMake)

:flash-args:
if set, additional arguments to the flash invocation

For example, the .. zephyr-app-commands listed above would render like this in the generated
HTML output:

# From the root of the zephyr repository
west build -b qemu_x86 samples/hello_world

Alternative Tabbed Content

As introduced in the Getting Started Guide, you can provide alternative content to the reader via
a tabbed interface. When the reader clicks on a tab, the content for that tab is displayed, for
example:

.. tabs::

.. tab:: Apples

Apples are green, or sometimes red.

.. tab:: Pears

Pears are green.

.. tab:: Oranges

Oranges are orange.

will display as:

Apples

Apples are green, or sometimes red.

Pears

Pears are green.

Oranges

Oranges are orange.

Tabs can also be grouped, so that changing the current tab in one area changes all tabs with the
same name throughout the page. For example:
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Linux

Linux Line 1

macOS

macOS Line 1

Windows

Windows Line 1

Linux

Linux Line 2

macOS

macOS Line 2

Windows

Windows Line 2

In this latter case, we’re using .. group-tab:: instead of simply .. tab::. Under the hood,
we’re using the sphinx-tabs extension that’s included in the Zephyr setup. Within a tab, you can
have most any content other than a heading (code-blocks, ordered and unordered lists, pictures,
paragraphs, and such). You can read more about sphinx-tabs from the link above.

8.2.2 Documentation Generation

These instructions will walk you through generating the Zephyr Project’s documentation on your
local system using the same documentation sources as we use to create the online documentation
found at https://docs.zephyrproject.org

Documentation overview

Zephyr Project content is written using the reStructuredText markup language (.rst file exten-
sion) with Sphinx extensions, and processed using Sphinx to create a formatted stand-alone
website. Developers can view this content either in its raw form as .rst markup files, or you
can generate the HTML content and view it with a web browser directly on your workstation.
This same .rst content is also fed into the Zephyr Project’s public website documentation area
(with a different theme applied).

You can read details about reStructuredText, and Sphinx from their respective websites.

The project’s documentation contains the following items:

• ReStructuredText source files used to generate documentation found at the https://docs.
zephyrproject.org website. Most of the reStructuredText sources are found in the /doc di-
rectory, but others are stored within the code source tree near their specific component
(such as /samples and /boards)

• Doxygen-generated material used to create all API-specific documents also found at https:
//docs.zephyrproject.org

• Script-generated material for kernel configuration options based on Kconfig files found in
the source code tree

The reStructuredText files are processed by the Sphinx documentation system, and make use of
the breathe extension for including the doxygen-generated API material. Additional tools are
required to generate the documentation locally, as described in the following sections.
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Fig. 1: Schematic of the documentation build process

Installing the documentation processors

Our documentation processing has been tested to run with:

• Doxygen version 1.8.13

• Graphviz 2.43

• Latexmk version 4.56

• All Python dependencies listed in the repository file doc/requirements.txt
In order to install the documentation tools, first install Zephyr as described in Getting Started
Guide. Then install additional tools that are only required to generate the documentation, as
described below:

Linux

Common to all Linux installations, install the Python dependencies required to build the docu-
mentation:

pip install -U -r ~/zephyrproject/zephyr/doc/requirements.txt

On Ubuntu Linux:

sudo apt-get install --no-install-recommends doxygen graphviz librsvg2-bin \
texlive-latex-base texlive-latex-extra latexmk texlive-fonts-recommended imagemagick

On Fedora Linux:

sudo dnf install doxygen graphviz texlive-latex latexmk \
texlive-collection-fontsrecommended librsvg2-tools ImageMagick

On Clear Linux:

sudo swupd bundle-add texlive graphviz ImageMagick

On Arch Linux:

sudo pacman -S graphviz doxygen librsvg texlive-core texlive-bin \
texlive-latexextra texlive-fontsextra imagemagick
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macOS

Install the Python dependencies required to build the documentation:

pip install -U -r ~/zephyrproject/zephyr/doc/requirements.txt

Use brew and tlmgr to install the tools:

brew install doxygen graphviz mactex librsvg imagemagick
tlmgr install latexmk
tlmgr install collection-fontsrecommended

Windows

Install the Python dependencies required to build the documentation:

pip install -U -r %HOMEPATH$\zephyrproject\zephyr\doc\requirements.txt

Open a cmd.exe window as Administrator and run the following command:

choco install doxygen.install graphviz strawberryperl miktex rsvg-convert imagemagick

Note

On Windows, the Sphinx executable sphinx-build.exe is placed in the Scripts folder of your
Python installation path. Depending on how you have installed Python, you might need to add
this folder to your PATH environment variable. Follow the instructions in Windows Python
Path to add those if needed.

Documentation presentation theme

Sphinx supports easy customization of the generated documentation appearance through the
use of themes. Replace the theme files and do another make html and the output layout and style
is changed. The read-the-docs theme is installed as part of the Get Zephyr and install Python
dependencies step you took in the getting started guide.

Running the documentation processors

The /doc directory in your cloned copy of the Zephyr project git repo has all the .rst source files,
extra tools, and Makefile for generating a local copy of the Zephyr project’s technical documen-
tation. Assuming the local Zephyr project copy is in a folder zephyr in your home folder, here
are the commands to generate the html content locally:

# On Linux/macOS
cd ~/zephyr/doc
# On Windows
cd %userprofile%\zephyr\doc

# Use cmake to configure a Ninja-based build system:
cmake -GNinja -B_build .

# Enter the build directory
cd _build

# To generate HTML output, run ninja on the generated build system:
ninja html
# If you modify or add .rst files, run ninja again:
ninja html

(continues on next page)
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(continued from previous page)

# To generate PDF output, run ninja on the generated build system:
ninja pdf

Warning

The documentation build system creates copies in the build directory of every .rst file used to
generate the documentation, along with dependencies referenced by those .rst files.

This means that Sphinx warnings and errors refer to the copies, and not the version-
controlled original files in Zephyr. Be careful to make sure you don’t accidentally edit the
copy of the file in an error message, as these changes will not be saved.

Depending on your development system, it will take up to 15 minutes to collect and generate
the HTML content. When done, you can view the HTML output with your browser started at
doc/_build/html/index.html and if generated, the PDF file is available at doc/_build/latex/
zephyr.pdf.

If you want to build the documentation from scratch just delete the contents of the build folder
and run cmake and then ninja again.

Note

If you add or remove a file from the documentation, you need to re-run CMake.

On Unix platforms a convenience doc/Makefile can be used to build the documentation directly
from there:

cd ~/zephyr/doc

# To generate HTML output
make html

# To generate PDF output
make pdf

Filtering expected warnings

There are some known issues with Sphinx/Breathe that generate Sphinx warnings even though
the input is valid C code. While these issues are being considered for fixing we have cre-
ated a Sphinx extension that allows to filter them out based on a set of regular expressions.
The extension is named zephyr.warnings_filter and it is located at doc/_extensions/zephyr/
warnings_filter.py. The warnings to be filtered out can be added to the doc/known-warnings.
txt file.

The most common warning reported by Sphinx/Breathe is related to duplicate C declarations.
This warning may be caused by different Sphinx/Breathe issues:

• Multiple declarations of the same object are not supported

• Different objects (e.g. a struct and a function) can not share the same name

• Nested elements (e.g. in a struct or union) can not share the same name
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Developer-mode Document Building

When making and testing major changes to the documentation, we provide an option to tem-
porarily stub-out the auto-generated Devicetree bindings documentation so the doc build process
runs faster.

To enable this mode, set the following option when invoking cmake:

-DDT_TURBO_MODE=1

or invoke make with the following target:

cd ~/zephyr

# To generate HTML output without detailed Kconfig
make html-fast

Viewing generated documentation locally

The generated HTML documentation can be hosted locally with python for viewing with a web
browser:

$ python3 -m http.server -d _build/html

Note

WSL2 users may need to explicitly bind the address to 127.0.0.1 in order to be accessible
from the host machine:
$ python3 -m http.server -d _build/html --bind 127.0.0.1

Linking external Doxygen projects against Zephyr

External projects that build upon Zephyr functionality and wish to refer to Zephyr documenta-
tion in Doxygen (through the use of @ref), can utilize the tag file exported at zephyr.tag

Once downloaded, the tag file can be used in a custom doxyfile.in as follows:

TAGFILES = "/path/to/zephyr.tag=https://docs.zephyrproject.org/latest/doxygen/html/"

For additional information refer to Doxygen External Documentation.

Documentation Guidelines
This page provides some simple guidelines for writing documentation using the reSTruc-
turedText (reST) markup language and Sphinx documentation generator.

Documentation Generation
As you write documentation, it can be helpful to see how it will look when rendered.

This page describes how to build the Zephyr documentation locally.

8.3 Dealing with external components
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8.3.1 Contributing External Components

In some cases it is desirable to leverage existing, external source code in order to avoid re-
implementing basic functionality or features that are readily available in other open source
projects.

This section describes the circumstances under which external source code can be imported into
Zephyr, and the process that governs the inclusion.

There are three main factors that will be considered during the inclusion process in order to
determine whether it will be accepted. These will be described in the following sections.

Note that most of this page deals with external components that end up being compiled and
linked into the final image, and programmed into the target hardware. For external tooling that
is only used during compilation, code analysis, testing or simulation please refer to the Contribut-
ing External Tooling section at the end of the page.

Software License

Note

External source code licensed under the Apache-2.0 license is not subject to this section.

Integrating code into the Zephyr Project from other projects that use a license other than the
Apache 2.0 license needs to be fully understood in context and approved by the Zephyr governing
board, as described in the Zephyr project charter. The board will automatically reject licenses
that have not been approved by the Open Source Initiative (OSI). See the Submission and review
process section for more details.

By carefully reviewing potential contributions and also enforcing a Developer Certification of
Origin (DCO) for contributed code, we ensure that the Zephyr community can develop products
with the Zephyr Project without concerns over patent or copyright issues.

Merit

Just like with any other regular contribution, one that contains external code needs to be eval-
uated for merit. However, in the particular case of code that comes from an existing project,
there are additional questions that must be answered in order to accept the contribution. More
specifically, the following will be considered by the Technical Steering Committee and evaluated
carefully before the external source code is accepted into the project:

• Is this the most optimal way to introduce the functionality to the project? Both the cost of
implementing this internally and the one incurred in maintaining an externally developed
codebase need to be evaluated.

• Is the external project being actively maintained? This is particularly important for source
code that deals with security or cryptography.

• Have alternatives to the particular implementation proposed been considered? Are there
other open source project that implement the same functionality?

Mode of integration

There are two ways of integrating external source code into the Zephyr Project, and careful con-
sideration must be taken to choose the appropriate one for each particular case.
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Integration in the main tree The first way to integrate external source code into the project
is to simply import the source code files into the main zephyr repository. This automatically
implies that the imported source code becomes part of the “mainline” codebase, which in turn
requires that:

• The code is formatted according to the Zephyr Coding Style

• The code adheres to the project’s Coding Guidelines

• The code is subject to the same checks and verification requirements as the rest of the code
in the main tree, including static analysis

• All files contain an SPDX tag if not already present

• If the source is not Apache 2.0 licensed, an entry is added to the licensing page.

This mode of integration can be applicable to both small and large external codebases, but it is
typically used more commonly with the former.

Integration as a module The second way of integrating external source code into the project
is to import the whole or parts of the third-party open source project into a separate repository,
and then include it under the form of a module. With this approach the code is considered as
being developed externally, and thus it is not automatically subject to the requirements of the
previous section.

Integration in main manifest file (west.yaml) Integrating external code into the main west.
yml manifest file is limited to code that is used by a Zephyr subsystem (libraries), by a platform,
drivers (HAL) or tooling needed to test or build Zephyr components.

The integration of modules in this group is validated by the Zephyr project CI, and verified to be
working with each Zephyr release.

Integrated modules will not be removed from the tree without a detailed migration plan.

Integration as optional modules Standalone or loose integration of modules/projects with-
out any incoming dependencies shall be made optional and shall be kept standalone. Optional
projects that provide value to users directly and through a Zephyr subsystem or platform shall
be added to an optional manifest file that is filtered by default. (submanifests/optional.yml).

Such optional projects might include samples and tests in their own repositories.

There shall not be any direct dependency added in the Zephyr code tree (Git repository) and all
sample or test code shall be maintained as part of the module.

Note

This is valid for all new optional modules. Existing optional modules with samples and test
code in the Zephyr Git repository will be transitioned out over time.

Integration as externalmodules Similar to optional modules, but added to the Zephyr project
as an entry in the documentation using a pre-defined template. This type of modules exists out-
side the Zephyr project manifest with documentation instructing users and developers how to
integrate the functionality.
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Ongoing maintenance

Regardless of the mode of integration, external source code that is integrated in Zephyr requires
regular ongoing maintenance. The submitter of the proposal to integrate external source code
must therefore commit to maintain the integration of such code for the foreseeable future. This
may require adding an entry in the MAINTAINERS.yml as part of the process.

Submission and review process

Before external source code can be included in the project, it must be reviewed and accepted by
the Technical Steering Committee (TSC) and, in some cases, by the Zephyr governing board.

A request for external source code integration must be made by creating a new issue in the
Zephyr project issue tracking system on GitHub with details about the source code and how it
integrates into the project.

Follow the steps below to begin the submission process:

1. Make sure to read through the Contributing External Components section in detail, so that
you are informed of the criteria used by the TSC and board in order to approve or reject a
request

2. Use the New External Source Code Issue to open an issue

3. Fill out all required sections, making sure you provide enough detail for the TSC to assess
the merit of the request. Optionally you can also create a Pull Request that demonstrates
the integration of the external source code and link to it from the issue

4. Wait for feedback from the TSC, respond to any additional questions added as GitHub issue
comments

If, after consideration by the TSC, the conclusion is that integrating external source code is the
best solution, and the external source code is licensed under the Apache-2.0 license, the submis-
sion process is complete and the external source code can be integrated.

If, however, the external source code uses a license other than Apache-2.0, then these additional
steps must be followed:

1. The TSC chair will forward the link to the GitHub issue created during the early submission
process to the Zephyr governing board for further review

2. The Zephyr governing board has two weeks to review and ask questions:

• If there are no objections, the matter is closed. Approval can be accelerated by unani-
mous approval of the board before the two weeks are up

• If a governing board member raises an objection that cannot be resolved via email,
the board will meet to discuss whether to override the TSC approval or identify other
approaches that can resolve the objections

3. On approval of the Zephyr TSC and governing board the submission process is complete

The flowchart below shows an overview of the process:

Contributing External Tooling

This section deals exclusively with the inclusion of external tooling in the Zephyr project, where
tooling is defined as software that assists the compilation, testing or simulation processes but
in no case ends up being part of the code compiled and linked into the final image. “Inclusion”
in this context means becoming part of the Zephyr default distribution either in the main tree
directly under the scripts/ folder or indirectly as a west project in the main west.yml manifest.
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Fig. 2: Submission process

Therefore, this section does not apply to 3rd-party tooling such as toolchains, simulators or oth-
ers, which may still be referenced by the Zephyr build system or docs without being included in
Zephyr.

Tooling components must be released under a license approved by the Open Source Initiative
(OSI).

Just like with regular external components, tooling that is imported from another project can be
integrated either in the main tree or as a west project. Note that in this case the corresponding
west project will not be a module, because tooling does not make use of the Zephyr build sys-
tem and does not need to be processed by it. Please see Modules vs west projects for additional
information on the differences.

If the tool is integrated in the main tree it should be placed under the scripts/ folder. If the tool is
integrated as a west project, then the project repository can be hosted outside the zephyrproject-
rtos GitHub organization, provided that the project is made optional via the group-filter: field
in the main west.yml manifest. More info on optional projects can be found in this section.

The TSC must approve every Pull Request that introduces a new external tooling component.
This will be done on a case-by-case, individual analysis of the proposed addition by the TSC rep-
resentatives.

Additional considerations about the main manifest

In general, any additions or removals whatsoever to the projects: section of the main manifest
file requires TSC approval. This includes, but is not limited to:

• Adding and removing groups and group filters

• Adding and removing projects

• Adding and removing import statements
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8.3.2 Binary Blobs

In the context of an operating system that supports multiple architectures and many different IC
families, some functionality may be unavailable without the help of executable code distributed
in binary form. Binary blobs (or blobs for short) are files containing proprietary machine code or
data in a binary format, e.g. without corresponding source code released under an OSI approved
license.

Zephyr supports downloading and using third-party binary blobs via its built-in mechanisms,
with some important caveats, described in the following sections. It is important to note that all
the information in this section applies only to upstream (vanilla) Zephyr.

There are no limitations whatsoever (except perhaps license compatibility) in the support for
binary blobs in forks or third-party distributions of Zephyr. In fact, Zephyr’s build system sup-
ports arbitrary use cases related to blobs. This includes linking against libraries, flashing images
to targets, etc. Users are therefore free to create Zephyr-based downstream software which uses
binary blobs if they cannot meet the requirements described in this page.

Software license

Most binary blobs are distributed under proprietary licenses which vary significantly in nature
and conditions. It is up to the vendor to specify the license as part of the blob submission process.
Blob vendors may impose a click-through or other EULA-like workflow when users fetch and
install blobs.

Hosting

Blobs must be hosted on the Internet and managed by third-party infrastructure. Two potential
examples are Git repositories and web servers managed by individual hardware vendors.

The Zephyr Project does not host binary blobs in its Git repositories or anywhere else.

Fetching blobs

Blobs are fetched from official third-party sources by the west blobs command.

The blobs themselves must be specified in the module.yml files included in separate Zephyr mod-
ule repositories maintained by their respective vendors. This means that in order to include a
reference to a binary blob to the upstream Zephyr distribution, a module repository must exist
first or be created as part of the submission process.

Each blob which may be fetched must be individually identified in the corresponding module.yml
file. A specification for a blob must contain:

• An abstract description of the blob itself

• Version information

• A reference to vendor-provided documentation

• The blob’s type, which must be one of the allowed types

• A checksum for the blob, which west blobs checks after downloading. This is required for
reproducibility and to allow bisecting issues as blobs change using Git and west

• License text applicable to the blob or a reference to such text, in SPDX format

See the corresponding section for a more formal definition of the fields.

The west blobs command can be used to list metadata of available blobs and to fetch blobs from
user-selected modules.
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The west blobs command only fetches and stores the binary blobs themselves. Any accompa-
nying code, including interface header files for the blobs, must be present in the corresponding
module repository.

Tainting

Inclusion of binary blobs will taint the Zephyr build. The definition of tainting originates in the
Linux kernel and, in the context of Zephyr, a tainted image will be one that includes binary blobs
in it.

Tainting will be communicated to the user in the following manners:

• One or more Kconfig options TAINT_BLOBS_* will be set to y
• The Zephyr build system, during its configuration phase, will issue a warning. It will be

possible to disable the warning using Kconfig

• The west spdx command will include the tainted status in its output

• The kernel’s default fatal error handler will also explicitly print out the kernel’s tainted
status

Allowed types

The following binary blob types are acceptable in Zephyr:

• Precompiled libraries: Hardware enablement libraries, distributed in precompiled binary
form, typically for SoC peripherals. An example could be an enablement library for a wire-
less peripheral

• Firmware images: An image containing the executable code for a secondary processor or
CPU. This can be full or partial (typically delta or patch data) and is generally copied into
RAM or flash memory by the main CPU. An example could be the firmware for the core
running a Bluetooth LE Controller

• Miscellaneous binary data files. An example could be pre-trained neural network model
data

Hardware agnostic features provided via a proprietary library are not acceptable. For example, a
proprietary and hardware agnostic TCP/IP stack distributed as a static archive would be rejected.

Note that just because a blob has an acceptable type does not imply that it will be unconditionally
accepted by the project; any blob may be rejected for other reasons on a case by case basis (see
library-specific requirements below). In case of disagreement, the TSC is the arbiter of whether
a particular blob fits in one of the above types.

Precompiled library-specific requirements

This section contains additional requirements specific to precompiled library blobs.

Any person who wishes to submit a precompiled library must represent that it meets these re-
quirements. The project may remove a blob from the upstream distribution if it is discovered
that the blob fails to meet these requirements later on.

Interface header files The precompiled library must be accompanied by one or more header
files, distributed under a non-copyleft OSI approved license, that define the interface to the li-
brary.

8.3. Dealing with external components 3843

https://www.kernel.org/doc/html/latest/admin-guide/tainted-kernels.html


Zephyr Project Documentation, Release 3.7.99

Allowed dependencies This section defines requirements related to external symbols that a
library blob requires the build system to provide.

• The blob must not depend on Zephyr APIs directly. In other words, it must have been pos-
sible to build the binary without any Zephyr source code present at all. This is required for
loose coupling and maintainability, since Zephyr APIs may change and such blobs cannot
be modified by all project maintainers

• Instead, if the code in the precompiled library requires functionality provided by Zephyr (or
an RTOS in general), an implementation of an OS abstraction layer (aka porting layer) can
be provided alongside the library. The implementation of this OS abstraction layer must
be in source code form, released under an OSI approved license and documented using
Doxygen

Toolchain requirements Precompiled library blobs must be in a data format which is compat-
ible with and can be linked by a toolchain supported by the Zephyr Project. This is required for
maintainability and usability. Use of such libraries may require special compiler and/or linker
flags, however. For example, a porting layer may require special flags, or a static archive may
require use of specific linker flags.

Limited scope Allowing arbitrary library blobs carries a risk of degrading the degree to which
the upstream Zephyr software distribution is open source. As an extreme example, a target
with a zephyr kernel clock driver that is just a porting layer around a library blob would not be
bootable with open source software.

To mitigate this risk, the scope of upstream library blobs is limited. The project maintainers
define an open source test suite that an upstream target must be able to pass using only open
source software included in the mainline distribution and its modules. The open source test suite
currently consists of:

• samples/philosophers
• tests/kernel

The scope of this test suite may grow over time. The goal is to specify tests for a minimal feature
set which must be supported via open source software for any target with upstream Zephyr
support.

At the discretion of the release team, the project may remove support for a hardware target if it
cannot pass this test suite.

Support and maintenance

The Zephyr Project is not expected to be responsible for the maintenance and support of con-
tributed binary blobs. As a consequence, at the discretion of the Zephyr Project release team,
and on a case-by-case basis:

• GitHub issues reported on the zephyr repository tracker that require use of blobs to repro-
duce may not be treated as bugs

• Such issues may be closed as out of scope of the Zephyr project

This does not imply that issues which require blobs to reproduce will be closed without inves-
tigation. For example, the issue may be exposing a bug in a Zephyr code path that is difficult
or impossible to trigger without a blob. Project maintainers may accept and attempt to resolve
such issues.

However, some flexibility is required because project maintainers may not be able to determine
if a given issue is due to a bug in Zephyr or the blob itself, may be unable to reproduce the bug
due to lack of hardware, etc.
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Blobs must have designated maintainers that must be responsive to issue reports from users and
provide updates to the blobs to address issues. At the discretion of the Zephyr Project release
team, module revisions referencing blobs may be removed from zephyr/west.yml at any time
due to lack of responsiveness or support from their maintainers. This is required to maintain
project control over bit-rot, security issues, etc.

The submitter of the proposal to integrate a binary blob must commit to maintain the integration
of such blob for the foreseeable future.

Regarding Continuous Integration, binary blobs will not be fetched in the project’s CI infrastruc-
ture that builds and optionally executes tests and samples to prevent regressions and issues from
entering the codebase. This includes both CI ran when a new GitHub Pull Request is opened as
well as any other regularly scheduled execution of the CI infrastructure.

Submission and review process

For references to binary blobs to be included in the project, they must be reviewed and accepted
by the Technical Steering Committee (TSC). This process is only required for new binary blobs,
updates to binary blobs follow the module update procedure.

A request for integration with binary blobs must be made by creating a new issue in the Zephyr
project issue tracking system on GitHub with details about the blobs and the functionality they
provide to the project.

Follow the steps below to begin the submission process:

1. Make sure to read through the Binary Blobs section in detail, so that you are informed of
the criteria used by the TSC in order to approve or reject a request

2. Use the New Binary Blobs Issue to open an issue

3. Fill out all required sections, making sure you provide enough detail for the TSC to assess
the merit of the request. Additionally you must also create a Pull Request that demonstrates
the integration of the binary blobs and then link to it from the issue

4. Wait for feedback from the TSC, respond to any additional questions added as GitHub issue
comments

If, after consideration by the TSC, the submission of the binary blob(s) is approved, the submis-
sion process is complete and the binary blob(s) can be integrated.

Contributing External Components
Basic functionality or features that would make useful addition to Zephyr might be readily
available in other open source projects, and it is recommended and encouraged to reuse
such code. This page describes in more details when and how to import external source
code into Zephyr.

Contributing External Tooling
Similarly, external tooling used during compilation, code analysis, testing or simulation,
can be beneficial and is covered in this section.

Binary Blobs
As some functionality might only be made available with the help of executable code dis-
tributed in binary form, this page describes the process and guidelines for contributing
binary blobs to the project.

8.4 Zephyr Contributor Badge

When your first contribution to the Zephyr project gets merged, you’ll become eligible to claim
your Zephyr Contributor Badge. This digital badge can be displayed on your website, blog, social
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media profile, etc. It will allow you to showcase your involvement in the Zephyr project and help
raise its awareness.

You may apply for your Contributor Badge by filling out the Zephyr Contributor Badge form.

8.5 Need help along the way?

If you have questions related to the contribution process, the Zephyr community is here to help.
You may join our Discord channel or use the Developer Mailing List.
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Chapter 9

Project and Governance

9.1 Technical Steering Committee (TSC)

9.1.1 TSC Member Role

The TSC role and its responsibilities is defined in the Zephyr project charter.

Membership

A TSC member plays a pivotal role in shaping the technical direction of the Zephyr Project. TSC
members work collaboratively with other TSC members, contributors, and stakeholders to en-
sure the project’s success and sustainability.

By fulfilling the rights and responsibilities below, TSC members contribute to the overall success
and growth of the Zephyr Project, ensuring that it remains a vibrant and thriving open-source
community for years to come.

Rights
Decision Making

Participate in key decisions related to the project’s technical direction, including architec-
tural changes, feature additions, and release planning.

Voting
Exercise voting rights on important matters discussed within the TSC, including feature
proposals, code contributions, and community initiatives.

Access
Gain access to relevant project repositories, documentation, and communication channels
to stay informed and contribute effectively.

Leadership
Take on leadership roles within working groups or subcommittees dedicated to specific
technical areas or initiatives.

Representation
Act as a representative of the broader Zephyr community, advocating for the interests of
contributors, users, and stakeholders.
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Responsibilities TSC members are expected to fulfill the following responsibilities, though it
is not mandatory to fulfill all:

Technical Oversight
Provide guidance and oversight on technical matters, ensuring alignment with project
goals, standards, and best practices through active participation as core members in work-
ing groups and committees.

Code Review
Participate in code reviews to maintain code quality, consistency, and compatibility with
project standards.

Community Engagement
Engage with the community through forums, mailing lists, conferences, and other channels
to foster collaboration, address concerns, and gather feedback.

Documentation
Contribute to the development and maintenance of project documentation, including tech-
nical guides, API references, and best practices.

Release Management
Collaborate with the release manager and other stakeholders to plan and coordinate project
releases, ensuring timely delivery and quality assurance.

Contributor Support
Support and mentor new contributors, helping them navigate the project’s codebase, pro-
cesses, and community norms.

Issue Triage
Assist in triaging and prioritizing issues reported by users and contributors, facilitating
timely resolution and communication.

Compliance and Licensing
Ensure compliance with project licensing requirements and open-source best practices, ad-
dressing any licensing-related issues that may arise.

Conflict Resolution
Facilitate constructive discussions and resolution of technical disagreements or conflicts
within the community, promoting a healthy and inclusive environment.

Continuous Improvement
Continuously seek opportunities to improve project governance, processes, and infrastruc-
ture, driving innovation and sustainability.

Appointed TSC Members

See Zephyr project charter for more details.

• Appointed TSC members have no term limits besides the term of their employment at the
organization they represent or their organization’s membership in the Zephyr Project.

• Appointed TSC members can select an Alternate from the same organization.

Elected TSC Members

Per the Zephyr project charter, TSC members can nominate representatives from the technical
community at the rate of no more than one per quarter.

• Majority vote is required to confirm a candidate.

• Once elected, a TSC member serves for 2 years.

• Elected TSC members do not have the right to appoint an Alternate.
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• To ensure continuity of the TSC, at the end of the 2 year term, the TSC is required to recon-
firm the membership of elected members. If the elected member declines a new term or if
the TSC fails to reconfirm the term, the seat will be open for new nominations.

• If an elected TSC member resigns before the end of the 2 year term, their spot will be open
for new members outside of the quarterly nomination limit. The elected member will serve
a 2 year term.

• The TSC has the right to terminate elected members who become inactive and are not ful-
filling the responsibilities of TSC members as described in this document.

• The number of elected members shall not exceed 20% of the total of appointed members.

• Existing TSC members who were elected before May 2024 shall be re-confirmed after com-
pleting the 2 year term since they were first elected.

Suspensions

As noted under Section 8b of the Project Charter, voting rights for a representative who misses
three consecutive meetings are subject to suspension and suspended representatives do not
count towards the quorum requirement.

A representative’s suspension will end and voting rights be restored at the start of the next at-
tended meeting. The TSC enforces the suspension policy for voting members who miss three
consecutive TSC weekly meetings.

Multi-day meetings (F2F events) are counted as “one” meeting. The TSC voted on February 16,
2022 to discontinue default enforcement of the suspension policy. The TSC voted on January 18,
2023 to re-enact default enforcement of the suspension policy.

Notice of suspension will be sent to representatives who miss three consecutive meetings, noting
that rights will be restored upon next attendance of a TSC meeting.

Note

As per Section 4b of the Project Charter, Platinum and Silver Members may choose to opt out
of a voting seat on the TSC.

Members who opt out and then wish to reclaim their seat later will have their voting rights
restored at the start of the second consecutive meeting attended following notification to the
TSC Chair.

Voting

Voting in the Zephyr Project is defined under Section 8 of the Project Charter.

Additional points of clarity / TSC interpretation have been added below. The Governing Board
may opt to update the Charter to include the below refinements. Until then, additional clarifi-
cations (if/where needed) will be discussed in the Process Working Group, and approved in the
TSC.

• TSC In-Meeting Voting For items requesting an in-meeting vote of the Zephyr Technical
Steering Committee (TSC), assuming quorum requirements have been met, the default vot-
ing mechanism will be a verbal motion to determine if there is general consensus.

• If there are no objections to a motion being brought forward, general consensus is assumed
and the motion passes.

• Should there be any objections raised, the vote will move to email, and be executed using
the Voting Guidelines outlined in Section 8 of the Project Charter.
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• Should a motion be deemed urgent by the TSC Chair, and assuming quorum requirements
have been met, the Chair may call for a roll call vote in-meeting.

Voting Options
• Voting Options are:

– “Yes”,

– “No” or

– “Abstain”

Abstention Abstentions do not count in tallying the vote negatively or positively; when mem-
bers abstain, they are in effect attending only to contribute to a quorum.

Abstentions do not impact the number of votes needed to decide a vote.

Quorum Quorum for TSC meetings shall require 60% of the voting representatives… (ref 8b of
the Charter)

Decisions Decisions by vote shall be based on a majority vote, provided that at least sixty per-
cent (60%) of the TSC representatives must be either present or participating electronically or
by written action in order to conduct a valid vote. (ref 8c of the Charter)

Example A:

40 eligible TSC voters. 3 abstain from a vote on a motion. 12 vote Yes. 11 vote No.

Quorum reached: 26 votes cast (quorum = 60% of 40 = 24) Majority vote: 12 Yes vs. 11
No. Yes wins. Motion adopted.

Example B:

40 eligible TSC voters. 5 abstain from a vote on a motion. 12 vote Yes. 6 vote No.
Quorum reached? 23 votes cast (quorum = 60% of 40 = 24)

Vote is not valid. Quorum not reached.

Example C:

40 eligible TSC voters. 21 abstain from a vote on a motion. 2 vote Yes. 1 votes No.
Quorum reached? 24 votes cast (quorum = 60% of 40 = 24)

Majority vote: 2 Yes vs. 1 No. Yes wins.

Immutable Votes

Votes are considered immutable once cast. A voter may not change their vote, once cast, between
the time a Motion is brought forth and the time at which results are announced.

9.2 TSC Project Roles

9.2.1 Project Roles

TSC projects generally will involve Maintainers, Collaborators, and Contributors:

3850 Chapter 9. Project and Governance



Zephyr Project Documentation, Release 3.7.99

Maintainer: lead Collaborators on an area identified by the TSC (e.g. Architecture, code sub-
systems, etc.). Maintainers shall also serve as the area’s representative on the TSC as needed.
Maintainers may become voting members of the TSC under the guidelines stated in the project
Charter.

Collaborator: A highly involved Contributor in one or more areas. May become a Maintainer
with approval of existing TSC voting members.

Contributor: anyone in the community that contributes code or documentation to the project.
Contributors may become Collaborators by approval of the existing Collaborators and Maintain-
ers of the particular code base areas or subsystems.

Contributor

A Contributor is a developer who wishes to contribute to the project, at any level.

Contributors are granted the following rights and responsibilities:

• Right to contribute code, documentation, translations, artwork, etc.

• Right to report defects (bugs) and suggestions for enhancement.

• Right to participate in the process of reviewing contributions by others.

• Right to initiate and participate in discussions in any communication methods.

• Right to approach any member of the community with matters they believe to be important.

• Right to participate in the feature development process.

• Responsibility to abide by decisions, once made. They are welcome to provide new, relevant
information to reopen decisions.

• Responsibility for issues and bugs introduced by one’s own contributions.

• Responsibility to respect the rules of the community.

• Responsibility to provide constructive advice whenever participating in discussions and in
the review of contributions.

• Responsibility to follow the project’s code of conduct (https://github.com/
zephyrproject-rtos/zephyr/blob/main/CODE_OF_CONDUCT.md)

Contributors are initially only given Read access to the Zephyr GitHub repository. Specifically, at
the Read access level, Contributors are not allowed to assign reviewers to their own pull requests.
An automated process will assign reviewers. You may also share the pull request on the Zephyr
devel mailing list or on the Zephyr Discord Server.

Contributors who show dedication and skill are granted the Triage permission level to the Zephyr
GitHub repository.

You may nominate yourself, or another GitHub user, for promotion to the Triage permission level
by creating a GitHub issue, using the nomination template.

Contributors granted the Triage permission level are permitted to add reviewers to a pull request
and can be added as a reviewer by other GitHub users. Contributor change requests or approval
on pull requests are not counted with respect to accepting and merging a pull request. However,
Contributors comments and requested changes should still be considered by the pull request
author.

Collaborator

A Collaborator is a Contributor who is also responsible for the maintenance of Zephyr source
code. Their opinions weigh more when decisions are made, in a fully meritocratic fashion.
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Collaborators have the following rights and responsibilities, in addition to those listed for Con-
tributors:

• Right to set goals for the short and medium terms for the project being maintained, along-
side the Maintainer.

• Responsibility to participate in the feature development process.

• Responsibility to review relevant code changes within reasonable time.

• Responsibility to ensure the quality of the code to expected levels.

• Responsibility to participate in community discussions.

• Responsibility to mentor new contributors when appropriate

• Responsibility to participate in the quality verification and release process, when those
happen.

Contributors are promoted to the Collaborator role by adding the GitHub user name to one or
more collaborators sections of the MAINTAINERS File in the Zephyr repository.

Collaborator change requests on pull requests should be addressed by the original submitter.
In cases where the changes requested do not follow the expectations and the guidelines of the
project or in cases of disagreement, it is the responsibility of the assignee to advance the review
process and resolve any disagreements.

Collaborator approval of pull requests are counted toward the minimum required approvals
needed to merge a PR. Other criteria for merging may apply.

Maintainer

A Maintainer is a Collaborator who is also responsible for knowing, directing and anticipating
the needs of a given zephyr source code area.

Maintainers have the following rights and responsibilities, in addition to those listed for Con-
tributors and Collaborators:

• Right to set the overall architecture of the relevant subsystems or areas of involvement.

• Right to make decisions in the relevant subsystems or areas of involvement, in conjunction
with the collaborators and submitters. See PR Technical Escalation.

• Responsibility to convey the direction of the relevant subsystem or areas to the TSC

• Responsibility to ensure all contributions of the project have been reviewed within reason-
able time.

• Responsibility to enforce the code of conduct.

• Responsibility to triage static analysis issues in their code area. See Static Code Analysis.

Contributors or Collaborators are promoted to the Maintainer role by adding the GitHub user
name to one or more maintainers sections of the MAINTAINERS File in the Zephyr repository.

Maintainer approval of pull requests are counted toward the minimum required approvals
needed to merge a PR. Other criteria for merging may apply.

9.2.2 Role Retirement

• Individuals elected to the following Project roles, including, Maintainer, Release Engineer-
ing Team member, Release Manager, but are no longer engaged in the project as described
by the rights and responsibilities of that role, may be requested by the TSC to retire from
the role they are elected.
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• Such a request needs to be raised as a motion in the TSC and be approved by the TSC voting
members. By approval of the TSC the individual is considered to be retired from the role
they have been elected.

• The above applies to elected TSC Project roles that may be defined in addition.

9.2.3 Teams and Supporting Activities

Assignee

An Assignee is one of the maintainers of a subsystem or code being changed. Assignees are set
either automatically based on the code being changed or set by the other Maintainers, the Release
Engineering team can set an assignee when the latter is not possible.

• Responsibility to drive the pull request to a mergeable state

• Right to dismiss stale and unrelated reviews or reviews not following expectations from
reviewers and seek reviews from additional maintainers, developers and contributors

• Right to block pull requests from being merged until issues or changes requested are ad-
dressed

• Responsibility to re-assign a pull request if they are the original submitter of the code

• Solicit approvals from maintainers of the subsystems affected

• Responsibility to drive the PR Technical Escalation process

Static Analysis Audit Team

The Static Analysis Audit team works closely with the release engineering team to ensure that
static analysis defects opened during a release cycle are properly addressed. The team has the
following rights and responsibilities:

• Right to revert any triage in a static analysis tool (e.g: Coverity) that does not follow the
project expectations.

• Responsibility to inform code owners about improper classifications.

• Responsibility to alert TSC if any issues are not adequately addressed by the responsible
code owners.

Joining the Static Analysis Audit team

• Contributors highly involved in the project with some expertise in static analysis.

Release Engineering Team

A team of active Maintainers involved in multiple areas.

• The members of the Release Engineering team are expected to fill the Release Manager role
based on a defined cadence and selection process.

• The cadence and selection process are defined by the Release Engineering team and are
approved by the TSC.

• The team reports directly into the TSC.

Release Engineering team has the following rights and responsibilities:

• Right to merge code changes to the zephyr tree following the project rules.

• Right to revert any changes that have broken the code base
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• Right to close any stale changes after <N> months of no activity

• Responsibility to take directions from the TSC and follow them.

• Responsibility to coordinate code merges with maintainers.

• Responsibility to merge all contributions regardless of their origin and area if they have
been approved by the respective maintainers and follow the merge criteria of a change.

• Responsibility to keep the Zephyr code base in a working and passing state (as per CI)

Joining the Release Engineering team

• Maintainers highly involved in the project may be nominated by a TSC voting member
to join the Release Engineering team. Nominees may become members of the team by
approval of the existing TSC voting members.

• To ensure a functional Release Engineering team the TSC shall periodically review the
team’s followed processes, the appropriate size, and the membership composition (ensure,
for example, that team members are geographically distributed across multiple locations
and time-zones).

Release Manager

A Maintainer responsible for driving a specific release to completion following the milestones
and the roadmap of the project for this specific release.

• TSC has to approve a release manager.

A Release Manager is a member of the Release Engineering team and has the rights and respon-
sibilities of that team in addition to the following:

• Right to manage and coordinate all code merges after the code freeze milestone (M3, see
program management overview.)

• Responsibility to drive and coordinate the triaging process for the release

• Responsibility to create the release notes of the release

• Responsibility to notify all stakeholders of the project, including the community at large
about the status of the release in a timely manner.

• Responsibility to coordinate with QA and validation and verify changes either directly or
through QA before major changes and major milestones.

Roles / Permissions

Table 1: Project Roles vs GitHub Permissions

Admin Merge
Rights

Mem-
ber

Owner Collab-
orator

Main Roles Contributor x
Collaborator x
Maintainer x

Supportive Roles QA/Validation x x
DevOps x
System Admin x x
Release Engineer-
ing

x x x
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9.2.4 MAINTAINERS File

Generic guidelines for deciding and filling in the Maintainers’ list

• The MAINTAINERS.yml file shall replace the CODEOWNERS file and will be used for both
setting assignees and reviewers.

• We should keep the granularity of code maintainership at a manageable level

• We should be looking for maintainers for areas of code that are orphaned (i.e. without an
explicit maintainer)

– Un-maintained areas should be indicated clearly in the MAINTAINERS file

• All submitted pull requests should have an assignee

• We Introduce an area/subsystem hierarchy to address the above point

– Parent-area maintainer should be acting as default substitute/fallback assignee for un-
maintained sub-areas

– Area maintainer gets precedence over parent-area maintainer

• Pull requests may be re-assigned if this is needed or more appropriate

– Re-assigned by original assignee

• In general, updates to the MAINTAINERS file should be in a standalone commit alongside
other changes introducing new files and directories to the tree.

• Major changes to the file, including the addition of new areas with new maintainers should
come in as standalone pull requests and require TSC review.

• If additional review by the TSC is required, the maintainers of the file should send the re-
quested changes to the TSC and give members of the TSC two (2) days to object to any of the
changes to maintainership of areas or the addition of new maintainers or areas.

• Path, collaborator and name changes do not require a review by the TSC.

• Addition of new areas without a maintainer do not require review by the TSC.

• The MAINTAINERS file itself shall have a maintainer

• Architectures, core components, sub-systems, samples, tests

– Each area shall have an explicit maintainer

• Boards (incl relevant samples, tests), SoCs (incl DTS) * May have a maintainer, shall have a
higher-level platform maintainer

• Drivers

– Shall have a driver-area (and API) maintainer

– Could have individual driver implementation maintainers but preferably collabora-
tor/contributors

– In the above case, platform-specific PRs may be re-assigned to respective collabora-
tor/contributor of driver implementation

9.2.5 Release Activity
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Merge Criteria

• Minimal of 2 approvals, including an approval by the designated assignee.

• Pull requests should be reviewed by at least a maintainer or collaborator of each affected
area; Unless the changes to a given area are considered trivial enough, in which case ap-
provals by other affected subsystems maintainers/collaborators would suffice.

• Four eye principle on the organisation level. We already require at least 2 approvals (basic
four eye principle), however, such reviews and approvals might be unintentionally biased
in the case where the submitter is from the same organisation as the approvers. To allow
for project wide review and approvals, the merge criteria is extended with the guidelines
below:

– Changes or additions to common and shared code shall have approvals from different
organisations (at least one approval from an organisation different than the submit-
ters’). Common and shared code is defined as anything that does not fall under soc,
boards and drivers/*/*.

– Changes or additions to hardware support (driver, SoC, boards) shall at least have the
merger be from a different organisation. This applies only to implementation of an
API supporting vendor specific hardware and not the APIs.

– Release engineers may make exceptions for areas with contributions primarily coming
from one organisation and where reviews from other organisations are not possible,
however, merges shall be completed by a person from a different organisation. In such
cases, the minimum review period of at least 2 days shall be strictly followed to allow
for additional reviews.

– Release engineers shall not merge code changes originating and reviewed only by their
own organisation. To be able to merge such changes, at least one review shall be from
a different organisation.
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• A minimum review period of 2 business days, 4 hours for trivial changes (seeGive reviewers
time to review before code merge).

• Hotfixes can be merged at any time after CI has passed and are excluded from most of the
conditions listed above.

• All required checks are passing:

– Codeowners

– Device Tree

– Documentation

– Gitlint

– Identity/Emails

– Kconfig

– License checks

– Checkpatch (Coding Style)

– Pylint

– Integration Tests (Via twister) on emulation/simulation platforms

– Simulated Bluetooth Tests

• Planned

– Footprint

– Code coverage

– Coding Guidelines

– Static Analysis (Coverity)

– Documentation coverage (APIs)

9.3 TSC Working Groups

9.3.1 Overview

The TSC, at its discretion, may establish working groups or subcommittees to serve as focused
teams dedicated to specific technical areas, initiatives, or tasks.

9.3.2 Membership

Working Group Membership Eligibility

• Each Working group (WG) shall determine its own membership eligibility, in consultation
with the TSC.

• Each working group shall have a team of members who are actively involved in its activities
and decision-making processes.

• It is expected that WG membership shall be open to all Zephyr project :ref:‘Collaborators
<collaborator>‘; however, working groups may impose restrictions such as the number of
participants from a single company.

• All TSC members are eligible to join a working group as members, part of the responsibili-
ties being a TSC member.
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• The minimal number of members may vary depending on the complexity of the tasks and
the breadth of expertise required to address them effectively.

• A working group should aim to have at least five to seven members to ensure diversity of
perspectives, collaboration, and continuity.

• The structure of each working group within the Zephyr Project should be designed to en-
sure effectiveness, productivity, and inclusivity. While the optimal size of a working group
can vary depending on the specific context and scope of its activities.

• Participation in WG meetings and discussions is open to all project contributors.

Working Group Chair / Co-chair

Each working group may elect a Chair and optionally a Co-Chair who is responsible for leading
meetings and representing the working group to the TSC.

Working Group Chair / Co-Chair Elections

• The Chair and Co-Chair shall be elected by the members of the working group

• Any member of the working group has the right to nominate themselves for the chair/co-
chair positions.

• The term for the chair/co-chair is one year

• If a chair/co-chair resigns from the position before the end of the term, a vote is to be held
to elect a new chair/co-chair.

Working Group Voter Eligibility

• Voting for a Chair or Co-Chair is open to the members of the working group.

• Only 1 working group member from each company may vote in the election.

• The Chair and Co-Chair shall be members of the working group.

Working Group Election Confirmation

• The elected Chair (and/or Co-Chair) is submitted to the TSC for confirmation.

• The TSC decides to accept the outcome or requests a new voting.

9.3.3 Advisory role

• Working Groups are advisory in nature. They provide advice to the projects and to the TSC.

• Working groups operate on a rough consensus basis. If the working group is unable to
reach consensus on what advice to offer, the working group Chair shall raise the issue with
the TSC or the relevant committee (Safety and Security), where a formal vote can be taken,
or advise the project that the working group cannot reach consensus.

• Working groups shall keep track of discussions and record any votes, decisions, or recom-
mendations made and share results with the community and the TSC.

• Working group meetings and offline discussions shall be captured in a standalone docu-
ment with all supporting details such as attendance, quorum, actions to be taken, and next
steps.
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• Decisions made within a working group are non-binding and are only considered ratified
after communicating decisions and outcomes to the TSC.

• Lacking any objections from the TSC within 1 week after the communication or report of
any results, decisions of a working group are considered confirmed and ratified.

9.3.4 TSC Working Group Lifecycle

Creation of a TSC working group

In order to create a TSC working group, a TSC member shall make a proposal to the TSC (via TSC
email list) that shall cover at least the following:

• TSC working group name.

• TSC working group purpose

• TSC working group expected deliverables

• TSC working group starting participants with at least one TSC member acting as a sponsor.

• Optionally TSC working group definition of done

Update of a TSC working group

The TSC can modify a TSC working group via a TSC decision. To request such a modification, a
request is made to the TSC email list.

Conclusion of a TSC working group

The TSC decides the termination of the TSC working group in accordance with the TSC decision
procedure. The submission of a request to terminate the TSC working group should cover:

• TSC working group name

• TSC working group deliveries

• Motivation for termination of the TSC working group

9.4 Release Process

The Zephyr project releases on a time-based cycle, rather than a feature-driven one. Zephyr
releases represent an aggregation of the work of many contributors, companies, and individuals
from the community.

A time-based release process enables the Zephyr project to provide users with a balance of the
latest technologies and features and excellent overall quality. A roughly 4-month release cycle al-
lows the project to coordinate development of the features that have actually been implemented,
allowing the project to maintain the quality of the overall release without delays because of one
or two features that are not ready yet.

The Zephyr release model was loosely based on the Linux kernel model:

• Release tagging procedure:

– linear mode on main branch,

– release branches for maintenance after release tagging.
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• Each release period will consist of a development phase followed by a stabilization phase.
Release candidates will be tagged during the stabilization phase. During the stabilization
phase, only stabilization changes such as bug fixes and documentation will be merged un-
less granted a special exemption by the Technical Steering Committee.

– Development phase: all changes are considered and merged, subject to approval from
the respective maintainers.

– Stabilisation phase: the release manager creates a vN-rc1 tag and the tree enters the
stabilization phase

– CI sees the tag, builds and runs tests; Test teams analyse the report from the build and
test run and give an ACK/NAK to the build

– The release owner, with test teams and any other needed input, determines if the re-
lease candidate is a go for release

– If it is a go for a release, the release owner lays a tag release vN at the same point
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Fig. 1: Release Cycle

Note

The milestones for the current major version can be found on the Official GitHub Wiki. In-
formation on previous releases can be found here.

9.4.1 Development Phase

A relatively straightforward discipline is followed with regard to the merging of patches for each
release. At the beginning of each development cycle, the main branch is said to be open for
development. At that time, code which is deemed to be sufficiently stable (and which is accepted
by the maintainers and the wide community) is merged into the mainline tree. The bulk of
changes for a new development cycle (and all of the major changes) will be merged during this
time.

The development phase lasts for approximately three months. At the end of this time, the release
owner will declare that the development phase is over and releases the first of the release can-
didates. For the codebase release which is destined to be 3.1.0, for example, the release which
happens at the end of the development phase will be called 3.1.0-rc1. The -rc1 release is the sig-
nal that the time to merge new features has passed, and that the time to stabilize the next release
of the code base has begun.

9.4.2 Stabilization Phase

Over the next weeks and depending on the release milestone, only stabilization, cosmetic
changes, tests, bug and doc fixes are allowed (See table below).

On occasion, more significant changes and new features will be allowed, but such occasions are
rare and require a TSC approval and a justification. As a general rule, if you miss submitting your
code during the development phase for a given feature, the best thing to do is to wait for the next
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development cycle. (An occasional exception is made for drivers for previously unsupported
hardware; if they do not touch any other in-tree code, they cannot cause regressions and should
be safe to add at any time).

As fixes make their way into the mainline, the patch rate will slow over time. The mainline
release owner releases new -rc drops once or twice a week; a normal series will get up to some-
where between -rc4 and -rc6 before the code base is considered to be sufficiently stable and the
release criteria have been achieved at which point the final 3.1.0 release is made.

At that point, the whole process starts over again.

9.4.3 Release Criteria

The main motivation is to clearly have the criteria in place that must be met for a release. This
will help define when a release is “done” in terms that most people can understand and in ways
that help new people to understand the process and participate in creating successful releases:

• The release criteria documents all the requirements of our target audience for each Zephyr
release

• The target audiences for each release can be different, and may overlap

• The criteria at any given time are not set in stone: there may be requirements that have
been overlooked, or that are new, and in these cases, the criteria should be expanded to
ensure all needs are covered.

Below is the high level criteria to be met for each release:

• No blocker bugs / blocking issues

• All relevant tests shall pass on Tier 0 platforms

• All relevant tests shall pass on Tier 0 and 1 platforms (at least 1 per architec-
ture/architecture variant/Hardware features)

• All applicable samples/tests shall build on Tiers 0, 1 and 2

• All high and critical static analysis and security issues addressed

• Release Notes are up-to-date.

Blocker Bugs

Blocker bug process kicks in during the release process and is in effect after the feature freeze
milestone. An issue labeled as a blocker practically blocks a release from happening. All blocker
bugs shall be resolved before a release is created.

A fix for a bug that is granted blocker status can be merged to ‘main’ and included in the release
all the way until the final release date.

Bugs of moderate severity and higher that have impact on all users are typically the candidates
to be promoted to blocker bugs

Contributors and member of the release engineering team shall follow these guidelines for re-
lease blocker bugs:

• Only mark bugs as blockers if the software (Zephyr) must not be released with the bug
present.

• All collaborators can add or remove blocking labels.

• Evaluate bugs as potential blockers based on their severity and prevalence.

• Provide detailed rationale whenever adding or removing a blocking label.

• Ensure all blockers have the milestone tagged.
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• Release managers have final say on blocking status; contact them with any questions.

9.4.4 Release Milestones

Table 2: Release Milestones

Time-
line

Checkpoint Description Owner

T-5M Planning Finalize dates for release, Assign release owner and
agree on project wide goals for this release.

TSC

T-7W Review
target mile-
stones

Finalize target milestones for features in flight. Release En-
gineering

T-4W Release
Announce-
ment

Release owner announces feature freeze and timeline
for release.

Release
Manager

T-3W Feature
Freeze
(RC1)

No new features after RC1, ONLY stabilization and cos-
metic changes, bug and doc fixes are allowed. New tests
for existing features are also allowed.

Release En-
gineering

T-2W 2nd Release
Candidate

No new features after RC2, ONLY stabilization and cos-
metic changes, bug and doc fixes are allowed.

Release
Manager

T-1W Hard
Freeze
(RC3)

Only blocker bug fixes after RC3, documentation and
changes to release notes are allowed. Release notes
need to be complete by this checkpoint. Release Crite-
ria is met.

Release
Manager

T-0W Release Release
Manager

9.4.5 Releases

The following syntax should be used for releases and tags in Git:

• Release [Major].[Minor].[Patch Level]

• Release Candidate [Major].[Minor].[Patch Level]-rc[RC Number]

• Tagging:

– v[Major].[Minor].[Patch Level]-rc[RC Number]

– v[Major].[Minor].[Patch Level]

– v[Major].[Minor].99 - A tag applied to main branch to signify that work on
v[Major].[Minor+1] has started. For example, v1.7.99 will be tagged at the start of
v1.8 process. The tag corresponds to VERSION_MAJOR/VERSION_MINOR/PATCHLEVEL
macros as defined for a work-in-progress main branch version. Presence of this tag al-
lows generation of sensible output for “git describe” on main branch, as typically used
for automated builds and CI tools.

Long Term Support (LTS)

Long-term support releases are designed to be supported and maintained for an extended period
and is the recommended release for products and the auditable branch used for certification.

An LTS release is defined as:

• Product focused
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Fig. 2: Zephyr Code and Releases

• Extended Stabilisation period: Allow for more testing and bug fixing

• Stable APIs
• Quality Driven Process
• Long Term: Maintained for an extended period of time (at least 2.5 years) overlapping

previous LTS release for at least half a year.

Product Focused Zephyr LTS is the recommended release for product makers with an ex-
tended support and maintenance which includes general stability and bug fixes, security fixes.

An LTS includes both mature and new features. API and feature maturity is documented and
tracked. The footprint and scope of mature and stable APIs expands as we move from one LTS to
the next giving users access to bleeding edge features and new hardware while keeping a stable
foundation that evolves over time.

Extended Stabilisation Period Zephyr LTS development cycle differs from regular releases
and has an extended stabilization period. Feature freeze of regular releases happens 3-4 weeks
before the scheduled release date. The stabilization period for LTS is extended by 3 weeks with
the feature freeze occurring 6-7 weeks before the anticipated release date. The time between
code freeze and release date is extended in this case.

Stable APIs Zephyr LTS provides a stable and long-lived foundation for developing products.
To guarantee stability of the APIs and the implementation of such APIs it is required that any
release software that makes the core of the OS went through the Zephyr API lifecycle and stabi-
lized over at least 2 releases. This guarantees that we release many of the highlighted and core
features with mature and well-established implementations with stable APIs that are supported
during the lifetime of the release LTS.

• API Freeze (LTS - 2)

– All stable APIs need to be frozen 2 releases before an LTS. APIs can be extended with
additional features, but the core implementation is not modified. This is valid for the
following subsystems for example:

* Device Drivers (i2c.h, spi.h)…

* Kernel (k_*):

* OS services (logging,debugging, ..)
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* DTS: API and bindings stability

* Kconfig

– New APIs for experimental features can be added at any time as long as they are stan-
dalone and documented as experimental or unstable features/APIs.

• Feature Freeze (LTS - 1) - No new features or overhaul/restructuring of code covering major
LTS features.

– Kernel + Base OS

– Additional advertised LTS features

– Auxiliary features on top of and/or extending the base OS and advertised LTS features
can be added at any time and should be marked as experimental if applicable

Quality Driven Process The Zephyr project follows industry standards and processes with the
goal of providing a quality oriented releases. This is achieved by providing the following prod-
ucts to track progress, integrity and quality of the software components provided by the project:

• Compliance with published coding guidelines, style guides and naming conventions and
documentation of deviations.

• Static analysis reports

– Regular static analysis on the complete tree using available commercial and open-
source tools, and documentation of deviations and false positives.

• Documented components and APIS

• Requirements Catalog

• Verification Plans

• Verification Reports

• Coverage Reports

• Requirements Traceability Matrix (RTM)

• SPDX License Reports

Each release is created with the above products to document the quality and the state of the
software when it was released.

Long Term Support and Maintenance A Zephyr LTS release is published every 2 years and
is branched and maintained independently from the main tree for at least 2.5 years after it was
released. Support and maintenance for an LTS release stops at least half a year after the following
LTS release is published.

main branch

2.5 2.6 2.7 3.0

LTS branch

2.7.1 2.7.2

Text is not SVG - cannot display

Fig. 3: Long Term Support Release

Changes and fixes flow in both directions. However, changes from main branch to an LTS branch
will be limited to fixes that apply to both branches and for existing features only.
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All fixes for an LTS branch that apply to the mainline tree shall be submitted to mainline tree as
well.

Auditable Code Base

An auditable code base is to be established from a defined subset of Zephyr OS features and will
be limited in scope. The LTS, development tree, and the auditable code bases shall be kept in
sync after the audit branch is created, but with a more rigorous process in place for adding new
features into the audit branch used for certification.

This process will be applied before new features move into the auditable code base.

The initial and subsequent certification targets will be decided by the Zephyr project governing
board.

Processes to achieve selected certification will be determined by the Security and Safety Working
Groups and coordinated with the TSC.

9.4.6 Hardware Support Tiers

Tier 0: Emulation Platforms

• Tests are both built and run in these platforms in CI, and therefore runtime failures can
block Pull Requests.

• Supported by the Zephyr project itself, commitment to fix bugs in releases.

• One Tier 0 platform is required for each new architecture.

• Bugs reported against platforms of this tier are to be evaluated and treated as a general bug
in Zephyr and should be dealt with the highest priority.

Tier 1: Supported Platforms

• Commitment from a specific team to run tests using twister device testing for the “Zephyr
compatibility test suite” (details TBD) on a regular basis using open-source and publicly
available drivers.

• Commitment to fix bugs in time for releases. Not supported by “Zephyr Project” itself.

• General availability for purchase

• Bugs reported against platforms of this tier are to be evaluated and treated as a general bug
in Zephyr and should be dealt with medium to high priority.

Tier 2: Community Platforms

• Platform implementation is available in upstream, no commitment to testing, may not be
generally available.

• Has a dedicated maintainer who commits to respond to issues / review patches.

• Bugs reported against platforms of this tier are NOT considered as a general bug in Zephyr.
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Tier 3: Deprecated and unsupported Platforms

• Platform implementation is available, but no owner or unresponsive owner.

• No commitment to support is available.

• May be removed from upstream if no one works to bring it up to tier 2 or better.

• Bugs reported against platforms of this tier are NOT considered as a general bug in Zephyr.

9.4.7 Release Procedure

This section documents the Release manager responsibilities so that it serves as a knowledge
repository for Release managers.

Release Checklist

Each release has a GitHub issue associated with it that contains the full checklist. After a release
is complete, a checklist for the next release is created.

Tagging

The final release and each release candidate shall be tagged using the following steps:

Note

Tagging needs to be done via explicit git commands and not via GitHub’s release interface.
The GitHub release interface does not generate annotated tags (it generates ‘lightweight’ tags
regardless of release or pre-release). You should also upload your gpg public key to your
GitHub account, since the instructions below involve creating signed tags. However, if you
do not have a gpg public key you can opt to remove the -s option from the commands below.

Release Candidate

Note

This section uses tagging 1.11.0-rc1 as an example, replace with the appropriate release can-
didate version.

1. Update the version variables in the VERSION file located in the root of the Git repository to
match the version for this release candidate. The EXTRAVERSION variable is used to identify
the rc[RC Number] value for this candidate:

EXTRAVERSION = rc1

2. Post a PR with the updated VERSION file using release: Zephyr 1.11.0-rc1 as the commit
subject. Merge the PR after successful CI.

3. Tag and push the version, using an annotated tag:

$ git pull
$ git tag -s -m "Zephyr 1.11.0-rc1" v1.11.0-rc1
$ git push git@github.com:zephyrproject-rtos/zephyr.git v1.11.0-rc1

4. Send an email to the mailing lists (announce and devel) with a link to the release
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Final Release

Note

This section uses tagging 1.11.0 as an example, replace with the appropriate final release
version.

When all final release criteria has been met and the final release notes have been approved and
merged into the repository, the final release version will be set and repository tagged using the
following procedure:

1. Update the version variables in the VERSION file located in the root of the Git repository.
Set EXTRAVERSION variable to an empty string to indicate final release:

EXTRAVERSION =

2. Post a PR with the updated VERSION file using release: Zephyr 1.11.0 as the commit
subject. Merge the PR after successful CI.

3. Tag and push the version, using two annotated tags:

$ git pull
$ git tag -s -m "Zephyr 1.11.0" v1.11.0
$ git push git@github.com:zephyrproject-rtos/zephyr.git v1.11.0

4. Find the new v1.11.0 tag at the top of the releases page and edit the release with the Edit
tag button with the following:

• Copy the overview of docs/releases/release-notes-1.11.rst into the release notes
textbox and link to the full release notes file on docs.zephyrproject.org.

5. Send an email to the mailing lists (announce and devel) with a link to the release

9.5 Feature Tracking

For feature tracking we use Github labels to classify new features and enhancements. The fol-
lowing is the description of each category:

Enhancement
Changes to existing features that are not considered a bug and would not block a release.
This is an incremental enhancement to a feature that already exists in Zephyr.

Feature request
A request for the implementation or inclusion of a new unit of functionality that is not part
of any release plans yet, that has not been vetted, and needs further discussion and details.

Feature
A committed and planned unit of functionality with a detailed design and implementation
proposal and an owner. Features must go through an RFC process and must be vetted and
discussed in the TSC before a target milestone is set.

Hardware Support
A request or plan to port an existing feature or enhancement to a particular hardware
platform. This ranges from porting Zephyr itself to a new architecture, SoC or board to
adding an implementation of a peripheral driver API for an existing hardware platform.

Meta
A label to group other GitHub issues that are part of a single feature or unit of work.

The following workflow should be used to process features:.
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This is the formal way for asking for a new feature in Zephyr and indicating its importance to
the project. Often, the requester may have a readiness and willingness to drive implementa-
tion of the feature in an upcoming release, and should assign the request to themselves. If not
though, an owner will be assigned after evaluation by the TSC. A feature request can also have
a companion RFC with more details on the feature and a proposed design or implementation.

• Label new features requests as feature-request
• The TSC discusses new feature-request items regularly and triages them. Items are ex-

amined for similarity with existing features, how they fit with the project goals and other
timeline considerations. The priority is determined as follows:

– High = Next milestone

– Medium = As soon as possible

– Low = Best effort

• After the initial discussion and triaging, the label is moved from feature-request to fea-
ture with the target milestone and an assignee.

All items marked as feature-request are non-binding and those without an assignee are open
for grabs, meaning that they can be picked up and implemented by any project member or the
community. You should contact an assigned owner if you’d like to discuss or contribute to that
feature’s implementation

9.5.1 Roadmap and Release Plans

Project roadmaps and release plans are both important tools for the project, but they have very
different purposes and should not be confused. A project roadmap communicates the high-level
overview of a project’s strategy, while a release plan is a tactical document designed to capture
and track the features planned for upcoming releases.

• The project roadmap communicates the why; a release plan details the what

• A release plan spans only a few months; a product roadmap might cover a year or more

Project Roadmap

The project roadmap should serve as a high-level, visual summary of the project’s strategic ob-
jectives and expectations.

If built properly, the roadmap can be a valuable tool for several reasons. It can help the project
present its plan in a compelling way to existing and new stakeholders, to help recruit new mem-
bers and it can be a helpful resource the team and community can refer to throughout the
project’s development, to ensure they are still executing according to plan.

As such, the roadmap should contain only strategic-level details, major project themes, epics,
and goals.

Release Plans

The release plan comes into play when the project roadmap’s high-level strategy is translated
into an actionable plan built on specific features, enhancements, and fixes that need to go into a
specific release or milestone.

The release plan communicates those features and enhancements slated for your project’ next
release (or the next few releases). So it acts as more of a project plan, breaking the big ideas down
into smaller projects the community and main stakeholders of the project can make progress on.
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Items labeled as features are short or long term release items that shall have an assignee and a
milestone set.

9.6 Code Flow and Branches

9.6.1 Introduction

The zephyr Git repository has three types of branches:

main
Which contains the latest state of development

collab-*
Collaboration branches that are used for shared development of new features to be intro-
duced into the main branch when ready. Creating a new collaboration branch requires a
justification and TSC approval. Collaboration branches shall be based off the main branch
and any changes developed in the collab branch shall target the main development branch.
For released versions of Zephyr, the introduction of fixes and new features, if approved by
the TSC, shall be done using backport pull requests.

vx.y-branch
Branches which track maintenance releases based on a major release

Development in collaboration branches before features go to mainline allows teams to work
independently on a subsystem or a feature, improves efficiency and turnaround time, and en-
courages collaboration and streamlines communication between developers.

Changes submitted to a collaboration branch can evolve and improve incrementally in a branch,
before they are submitted to the mainline tree for final integration.

By dedicating an isolated branch to complex features, it’s possible to initiate in-depth discussions
around new additions before integrating them into the official project.

Collaboration branches are ephemeral and shall be removed once the collaboration work has
been completed. When a branch is requested, the proposal should include the following:

• Define exit criteria for merging the collaboration branch changes back into the main
branch.

• Define a timeline for the expected life cycle of the branch. It is recommended to select a
Zephyr release to set the timeline. Extensions to this timeline requires TSC approval.

9.6.2 Roles and Responsibilities

Collaboration branch owners have the following responsibilities:

• Use the infrastructure and tools provided by the project (GitHub, Git)

• All changes to collaboration branches shall come in form of github pull requests.

• Force pushing a collaboration branch is only allowed when rebasing against the main
branch.

• Review changes coming from team members and request review from branch owners
when submitting changes.

• Keep the branch in sync with upstream and update on a regular basis.

• Push changes frequently to upstream using the following methods:

– GitHub pull requests: for example, when reviews have not been done in the local
branch (one-man branch).
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– Merge requests: When a set of changes has been done in a local branch and has been
reviewed and tested in a collaboration branch.

9.7 Modifying Contributions made by other developers

9.7.1 Scenarios

Zephyr contributors and collaborators are encouraged to assist as reviewers in pull requests, so
that patches may be approved and merged to Zephyr’s main branch as part of the original pull
requests. The authors of the pull requests are responsible for amending their original commits
following the review process.

There are occasions, however, when a contributor might need to modify patches included in pull
requests that are submitted by other Zephyr contributors. For instance, this is the case when:

• a developer cherry-picks commits submitted by other contributors into their own pull re-
quests in order to:

– integrate useful content which is part of a stale pull request, or

– get content merged to the project’s main branch as part of a larger patch

• a developer pushes to a branch or pull request opened by another contributor in order to:

– assist in updating pull requests in order to get the patches merged to the project’s main
branch

– drive stale pull requests to completion so they can be merged

9.7.2 Accepted policies

A developer who intends to cherry-pick and potentially modify patches sent by another contrib-
utor shall:

• clarify in their pull request the reason for cherry-picking the patches, instead of assisting
in getting the patches merged in their original pull request, and

• invite the original author of the patches to their pull request review.

A developer who intends to force-push to a branch or pull request of another Zephyr contributor
shall clarify in the pull request the reason for pushing and for modifying the existing patches (e.g.
stating that it is done to drive the pull request review to completion, when the pull request author
is not able to do so).

Note

Developers should try to limit the above practice to pull requests identified as stale. Read
about how to identify pull requests as stale in development processes and tools

If the original patches are substantially modified, the developer can either:

• (preferably) reach out to the original author and request them to acknowledge that the
modified patches may be merged while having the original sign-off line and author identity,
or

• submit the modified patches as their own work (i.e. with their own sign-off line and author
identity). In this case, the developer shall identify in the commit message(s) the original
source the submitted work is based on (mentioning, for example, the original PR number).
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Note

Contributors should uncheck the box “Allow Edits By Maintainers” to indicate that they do
not wish their patches to be amended, inside their original branch or pull request, by other
Zephyr developers.

9.8 Development Environment and Tools

9.8.1 Code Review

GitHub is intended to provide a framework for reviewing every commit before it is accepted
into the code base. Changes, in the form of Pull Requests (PR) are uploaded to GitHub but don’t
actually become a part of the project until they’ve been reviewed, passed a series of checks (CI),
and are approved by maintainers. GitHub is used to support the standard open source practice
of submitting patches, which are then reviewed by the project members before being applied to
the code base.

Pull requests should be appropriately labeled, and linked to any relevant bug or feature tracking
issues .

The Zephyr project uses GitHub for code reviews and Git tree management. When submitting a
change or an enhancement to any Zephyr component, a developer should use GitHub. GitHub
Actions automatically assigns a responsible reviewer on a component basis, as defined in the
MAINTAINERS.yml file stored with the code tree in the Zephyr project repository. A limited set
of release managers are allowed to merge a pull request into the main branch once reviews are
complete.

Give reviewers time to review before code merge

The Zephyr project is a global project that is not tied to a certain geography or timezone. We
have developers and contributors from across the globe. When changes are proposed using pull
request, we need to allow for a minimal review time to give developers and contributors the
opportunity to review and comment on changes. There are different categories of changes and
we know that some changes do require reviews by subject matter experts and owners of the
subsystem being changed. Many changes fall under the “trivial” category that can be addressed
with general reviews and do not need to be queued for a maintainer or code-owner review.
Additionally, some changes might require further discussions and a decision by the TSC or the
Security working group. To summarize the above, the diagram below proposes minimal review
times for each category:

Workflow
• An author of a change can suggest in his pull-request which category a change should be-

long to. A project maintainers or TSC member monitoring the inflow of changes can change
the label of a pull request by adding a comment justifying why a change should belong to
another category.

• The project will use the label system to categorize the pull requests.

• Changes should not be merged before the minimal time has expired.

Categories/Labels
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Fig. 4: Pull request classes
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Hotfix Any change that is a fix to an issue that blocks developers from doing their daily work,
for example CI breakage, Test breakage, Minor documentation fixes that impact the user expe-
rience.

Such fixes can be merged at any time after they have passed CI checks. Depending on the fix,
severity, and availability of someone to review them (other than the author) they can be merged
with justification without review by one of the project owners.

Trivial Trivial changes are those that appear obvious enough and do not require maintainer or
code-owner involvement. Such changes should not change the logic or the design of a subsystem
or component. For example a trivial change can be:

• Documentation changes

• Configuration changes

• Minor Build System tweaks

• Minor optimization to code logic without changing the logic

• Test changes and fixes

• Sample modifications to support additional configuration or boards etc.

Maintainer Any changes that touch the logic or the original design of a subsystem or compo-
nent will need to be reviewed by the code owner or the designated subsystem maintainer. If the
code changes is initiated by a contributor or developer other than the owner the pull request
needs to be assigned to the code owner who will have to drive the pull request to a mergeable
state by giving feedback to the author and asking for more reviews from other developers.

Security Changes that appear to have an impact to the overall security of the system need to
be reviewed by a security expert from the security working group.

TSC andWorking Groups Changes that introduce new features or functionality or change the
way the overall system works need to be reviewed by the TSC or the responsible Working Group.
For example for breaking API changes, the proposal needs to be presented in the Architecture
meeting so that the relevant stakeholders are made aware of the change.

A Pull-Request should have an Assignee

• An assignee to a pull request should not be the same as the author of the pull-request

• An assignee to a pull request is responsible for driving the pull request to a mergeable state

• An assignee is responsible for dismissing stale reviews and seeking reviews from additional
developers and contributors

• Pull requests should not be merged without an approval by the assignee.

Pull Request should not be merged by author without review

All pull requests need to be reviewed and should not be merged by the author without a review.
The following exceptions apply:

• Hot fixes: Fixing CI issues, reverts, and system breakage

• Release related changes: Changing version file, applying tags and release related activities
without any code changes.
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Developers and contributors should always seek review, however there are cases when review-
ers are not available and there is a need to get a code change into the tree as soon as possible.

Reviewers shall not ‘Request Changes’ without comments or justification

Any change requests (-1) on a pull request have to be justified. A reviewer should avoid blocking a
pull-request with no justification. If a reviewer feels that a change should not be merged without
their review, then: Request change of the category: for example:

• Trivial -> Maintainer

• Assign Pull Request to yourself, this will mean that a pull request should not be merged
without your approval.

Pull Requests should have at least 2 approvals before they are merged

A pull-request shall be merged only with two positive reviews (approval). Beside the person
merging the pull-request (merging != approval), two additional approvals are required to be
able to merge a pull request. The person merging the request can merge without approving or
approve and merge to get to the 2 approvals required.

Reviewers should keep track of pull requests they have provided feedback to

If a reviewer has requested changes in a pull request, he or she should monitor the state of
the pull request and/or respond to mention requests to see if his feedback has been addressed.
Failing to do so, negative reviews shall be dismissed by the assignee or an owner of the repository.
Reviews will be dismissed following the criteria below:

• The feedback or concerns were visibly addressed by the author

• The reviewer did not revisit the pull request after 2 week and multiple pings by the author

• The review is unrelated to the code change or asking for unjustified structural changes such
as:

– Split the PR

– Can you fix this unrelated code that happens to appear in the diff

– Can you fix unrelated issues

– Etc.

Closing Stale Issues and Pull Requests

• The Pull requests and issues sections on Github are NOT discussion forums. They are items
that we need to execute and drive to closure. Use the mailing lists for discussions.

• In case of both issues and pull-requests the original poster needs to respond to questions
and provide clarifications regarding the issue or the change. After one week without a
response to a request, a second attempt to elicit a response from the contributor will be
made. After one more week without a response the item may be closed (draft and DNM
tagged pull requests are excluded).
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9.8.2 Continuous Integration

All changes submitted to GitHub are subject to tests that are run on emulated platforms and
architectures to identify breakage and regressions that can be immediately identified. Test-
ing using Twister additionally performs build tests of all boards and platforms. Documentation
changes are also verified through review and build testing to verify doc generation will be suc-
cessful.

Any failures found during the CI test run will result in a negative review assigned automatically
by the CI system. Developers are expected to fix issues and rework their patches and submit
again.

The CI infrastructure currently runs the following tests:

• Run checkpatch for code style issues (can vote -1 on errors; see note)

• Gitlint: Git commit style based on project requirements

• License Check: Check for conflicting licenses

• Run twister script

– Run kernel tests in QEMU (can vote -1 on errors)

– Build various samples for different boards (can vote -1 on errors)

• Verify documentation builds correctly.

Note

checkpatch is a Perl script that uses regular expressions to extract information that requires
a C language parser to process accurately. As such it sometimes issues false positives. Known
cases include constructs like:

static uint8_t __aligned(PAGE_SIZE) page_pool[PAGE_SIZE * POOL_PAGES];
IOPCTL_Type *base = config->base;

Both lines produce a diagnostic regarding spaces around the * operator: the first is misiden-
tified as a pointer type declaration that would be correct as PAGE_SIZE *POOL_PAGES while the
second is misidentified as a multiplication expression that would be correct as IOPCTL_Type
* base.

Maintainers can override the -1 in cases where the CI infrastructure gets the wrong answer.

9.8.3 Labeling issues and pull requests in GitHub

The project uses GitHub issues and pull requests (PRs) to track and manage daily and long-term
work and contributions to the Zephyr project. We use GitHub labels to classify and organize
these issues and PRs by area, type, priority, and more, making it easier to find and report on
relevant items.

All GitHub issues or pull requests must be appropriately labeled. Issues and PRs often have mul-
tiple labels assigned, to help classify them in the different available categories. When reviewing
a PR, if it has missing or incorrect labels, maintainers shall fix it.

This saves us all time when searching, reduces the chances of the PR or issue being forgotten,
speeds up reviewing, avoids duplicate issue reports, etc.

These are the labels we currently have, grouped by applicability:
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Labels applicable to issues only

Label Description
priority:
{high|medium|low}

To classify the impact and importance of a bug or feature.
Note: Issue priorities are generally set or changed during the bug-triage or
TSC meetings.

Regression Something, which was working, but does not anymore (bug subtype).
Enhancement Changes/Updates/Additions to existing features.
Feature re-
quest

A request for a new feature.

Feature A planned feature with a milestone.
Hardware Sup-
port

Covers porting an existing feature (including Zephyr itself) to new hardware.

Duplicate This issue is a duplicate of another issue (please specify).
Good first issue Good for a first time contributor to take.
Release Notes Issues that need to be mentioned in release notes as known issues with ad-

ditional information.

Any issue must be classified and labeled as either Bug, Enhancement, RFC, Feature, Feature Re-
quest or Hardware Support. More information on how feature requests are handled and become
features can be found in Feature Tracking.

Labels applicable to pull requests only

The issue or PR describes a change to a stable API.

Label Description
Hotfix Fix for an issue blocking development.
Trivial Simple changes that can have shorter review time and be reviewed by anyone,

i.e. typos, straightforward one-liner bug fixes, etc.
Main-
tainer

Maintainer review required.

Security
Review

To be reviewed by a security expert.

DNM This PR should not be merged (Do Not Merge). For work in progress, GitHub
“draft” PRs are preferred.

Needs re-
view

The PR needs attention from the maintainers.

Backport The PR is a backport or should be backported.
Licensing The PR has licensing issues which require a licensing expert to review it.

Note

For all labels applicable to PRs: Please note that the label, together with PR complexity, affects
how long a merge should be held to ensure proper review. See review process for details.
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Labels applicable to both pull requests and issues

Label Description
area:
{area-
name}

Indicates Zephyr subsystems (e.g, area: Kernel, area: I2C, area: Memory Manage-
ment), project functions (e.g., area: Debugging, area: Documentation, area: Process),
or other categories (e.g., area: Coding Style, area: MISRA-C) affected by the bug or the
pull request.
An area maintainer should be able to filter by an area label and find all issues and
PRs which relate to that area.

plat-
form:
{platform-
name}

An issue or PR which affects only a particular platform.

dev-
review

The issue is to be discussed in the following dev-review if time permits.

TSC TSC stands for Technical Steering Committee. The issue is to be discussed in the fol-
lowing TSC meeting if time permits.

Break-
ing
API
Change

The issue or PR describes a breaking change to a stable API. See additional informa-
tion in Introducing breaking API changes.

bug The issue is a bug, or the PR is fixing a bug.
Cover-
ity

A Coverity detected issue or its fix.

Wait-
ing
for re-
sponse

The Zephyr developers are waiting for the submitter to respond to a question, or ad-
dress an issue.

Blocked Blocked by another PR or issue.
Stale An issue or a PR which seems abandoned, and requires attention by the author.
In
progress

For PRs: is work in progress and should not be merged yet. For issues: Is being worked
on.

RFC The author would like input from the community. For a PR it should be considered a
draft.

LTS Long term release branch related.
EXT Related to an external component.

9.9 Bug Reporting

To maintain traceability and relation between proposals, changes, features, and issues, it is rec-
ommended to cross-reference source code commits with the relevant GitHub issues and vice
versa. Any changes that originate from a tracked feature or issue should contain a reference to
the feature by mentioning the corresponding issue or pull-request identifiers.

At any time it should be possible to establish the origin of a change and the reason behind it by
following the references in the code.

9.9.1 Reporting a regression issue

It could happen that the issue being reported is identified as a regression, as the use case is
known to be working on earlier commit or release. In this case, providing directly the guilty
commit when submitting the bug gains a lot of time in the eventual bug fixing.
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To identify the commit causing the regression, several methods could be used, but tree bisecting
method is an efficient one that doesn’t require deep code expertise and can be used by every
one.

For this, git bisect is the recommended tool.

Recommendations on the process:

• Run west update on each bisection step.

• Once the bisection is over and a culprit identified, verify manually the result.

9.10 Communication and Collaboration

The Zephyr Discord Server is the primary chat forum used by Zephyr developers, contributors,
and users.

The Zephyr project mailing lists are used as an additional communication tool by project mem-
bers, contributors, and the community. There are specialized mailing lists for specific interests.
Several lists are public and open. Mailing lists are always available for use in situations where
Discord is unavailable or an unsuitable forum.

In general, bug reports and other issues should be reported as GitHub Issues and not broadcasted
to the mailing list. The same applies to code reviews.

9.11 Code Documentation

9.11.1 API Documentation

Well documented APIs enhance the experience for developers and are an essential requirement
for defining an API’s success. Doxygen is a general purpose documentation tool that the zephyr
project uses for documenting APIs. It generates either an on-line documentation browser (in
HTML) and/or provides input for other tools that is used to generate a reference manual from
documented source files. In particular, doxygen’s XML output is used as an input when producing
the Zephyr project’s online documentation.

9.11.2 Reference to Requirements

APIs for the most part document the implementation of requirements or advertised features
and can be traced back to features. We use the API documentation as the main interface to trace
implementation back to documented features. This is done using custom _doxygen_ tags that
reference requirements maintained somewhere else in a requirement catalogue.

9.11.3 Test Documentation

To help understand what each test does and which functionality it tests we also document all test
code using the same tools and in the same context and generate documentation for all unit and
integration tests maintained in the same environment. Tests are documented using references
to the APIs or functionality they validate by creating a link back to the APIs and by adding a
reference to the original requirements.
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9.11.4 Documentation Guidelines

Test Code

The Zephyr project uses several test methodologies, the most common being the Ztest framework.
Test documentation should only be done on the entry test functions (usually prefixed with test_)
and those that are called directly by the Ztest framework. Those tests are going to appear in test
reports and using their name and identifier is the best way to identify them and trace back to
them from requirements.

Test documentation should not interfere with the actual API documentation and needs to follow
a new structure to avoid confusion. Using a consistent naming scheme and following a well-
defined structure we will be able to group this documentation in its own module and identify it
uniquely when parsing test data for traceability reports. Here are a few guidelines to be followed:

• All test code documentation should be grouped under the all_tests doxygen group

• All test documentation should be under doxygen groups that are prefixed with tests_

The custom doxygen @verify directive signifies that a test verifies a requirement:

/**
* @brief Tests for the Semaphore kernel object
* @defgroup kernel_semaphore_tests Semaphore
* @ingroup all_tests
* @{
*/

...
/**
* @brief A brief description of the tests
* Some details about the test
* more details
*
* @verify{@req{1111}}
*/
void test_sema_thread2thread(void)
{
...
}
...

/**
* @}
*/

To get coverage of how an implementation or a piece of code satisfies a requirements, we use
the satisfy alias in doxygen:

/**
* @brief Give a semaphore.
*
* This routine gives @a sem, unless the semaphore is already at its maximum
* permitted count.
*
* @note Can be called by ISRs.
*
* @param sem Address of the semaphore.
*
* @satisfy{@req{015}}
*/
__syscall void k_sem_give(struct k_sem *sem);
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To generate the matrix, you will first need to build the documentation, specifically you will need
to build the doxygen XML output:

$ make doxygen

Parse the generated XML data from doxygen to generate the traceability matrix.

The Zephyr project defines a development process workflow using GitHub Issues to track fea-
ture, enhancement, and bug reports together with GitHub Pull Requests (PRs) for submitting
and reviewing changes. Zephyr community members work together to review these Issues and
PRs, managing feature enhancements and quality improvements of Zephyr through its regular
releases, as outlined in the program management overview.

We can only manage the volume of Issues and PRs, by requiring timely reviews, feedback,
and responses from the community and contributors, both for initial submissions and for fol-
lowup questions and clarifications. Read about the project’s development processes and tools and
specifics about review timelines to learn about the project’s goals and guidelines for our active
developer community.

TSC Project Roles describes in detail the Zephyr project roles and associated permissions with
respect to the development process workflow.

9.12 Terminology

• mainline: The main tree where the core functionality and core features are being devel-
oped.

• subsystem/feature branch: is a branch within the same repository. In our case, we will use
the term branch also when referencing branches not in the same repository, which are a
copy of a repository sharing the same history.

• upstream: A parent branch the source code is based on. This is the branch you pull from
and push to, basically your upstream.

• LTS: Long Term Support
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Chapter 10

Security

These documents describe the requirements, processes, and developer guidelines for ensuring
security is addressed within the Zephyr project.

10.1 Zephyr Security Overview

10.1.1 Introduction

This document outlines the steps of the Zephyr Security Subcommittee towards a defined secu-
rity process that helps developers build more secure software while addressing security compli-
ance requirements. It presents the key ideas of the security process and outlines which docu-
ments need to be created. After the process is implemented and all supporting documents are
created, this document is a top-level overview and entry point.

Overview and Scope

We begin with an overview of the Zephyr development process, which mainly focuses on security
functionality.

In subsequent sections, the individual parts of the process are treated in detail. As depicted in
Figure 1, these main steps are:

1. Secure Development: Defines the system architecture and development process that en-
sures adherence to relevant coding principles and quality assurance procedures.

2. Secure Design: Defines security procedures and implement measures to enforce them. A
security architecture of the system and relevant sub-modules is created, threats are identi-
fied, and countermeasures designed. Their correct implementation and the validity of the
threat models are checked by code reviews. Finally, a process shall be defined for reporting,
classifying, and mitigating security issues.

3. Security Certification: Defines the certifiable part of the Zephyr RTOS. This includes an
evaluation target, its assets, and how these assets are protected. Certification claims shall
be determined and backed with appropriate evidence.

Intended Audience

This document is a guideline for the development of a security process by the Zephyr Security
Subcommittee and the Zephyr Technical Steering Committee. It provides an overview of the
Zephyr security process for (security) engineers and architects.
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Fig. 1: Figure 1. Security Process Steps

Nomenclature

In this document, the keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted
as described in [?].

These words are used to define absolute requirements (or prohibitions), highly recommended re-
quirements, and truly optional requirements. As noted in RFC-2119, “These terms are frequently
used to specify behavior with security implications. The effects on security of not implement-
ing a MUST or SHOULD, or doing something the specification says MUST NOT or SHOULD NOT
be done may be very subtle. Document authors should take the time to elaborate the security
implications of not following recommendations or requirements as most implementors will not
have had the benefit of the experience and discussion that produced the specification.”

Security Document Update

This document is a living document. As new requirements, features, and changes are identified,
they will be added to this document through the following process:

1. Changes will be submitted from the interested party(ies) via pull requests to the Zephyr
documentation repository.

2. The Zephyr Security Subcommittee will review these changes and provide feedback or ac-
ceptance of the changes.

3. Once accepted, these changes will become part of the document.

10.1.2 Current Security Definition

This section recapitulates the current status of secure development within the Zephyr RTOS.
Currently, focus is put on functional security and code quality assurance, although additional
security features are scoped.

The three major security measures currently implemented are:

• Security Functionality with a focus on cryptographic algorithms and protocols. Support
for cryptographic hardware is scoped for future releases. The Zephyr runtime architecture
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is a monolithic binary and removes the need for dynamic loaders, thereby reducing the
exposed attack surface.

• Quality Assurance is driven by using a development process that requires all code to be
reviewed before being committed to the common repository. Furthermore, the reuse of
proven building blocks such as network stacks increases the overall quality level and guar-
antees stable APIs. Static code analyses provide additional quality checks.

• Execution Protection including thread separation, stack and memory protection is cur-
rently available in the upstream Zephyr RTOS starting with version 1.9.0 (stack protection).
Memory protection and thread separation were added in version 1.10.0 for X86 and in ver-
sion 1.11.0 for ARM and ARC.

These topics are discussed in more detail in the following subsections.

Security Functionality

The security functionality in Zephyr hinges mainly on the inclusion of cryptographic algorithms,
and on its monolithic system design.

The cryptographic features are provided through PSA Crypto, with mbedTLS as the underlying
implementation. Applications leverage PSA Crypto APIs, ensuring a standardized and secure ap-
proach to cryptographic operations. mbedTLS, as the implementation of PSA Crypto, supports a
wide range of cryptographic algorithms, making it suitable for various application requirements.

APIs for vendor specific cryptographic IPs in both hardware and software are planned, includ-
ing secure key storage in the form of secure access modules (SAMs), Trusted Platform Modules
(TPMs), and Trusted Execution Environments (TEEs).

The security architecture is based on a monolithic design where the Zephyr kernel and all ap-
plications are compiled into a single static binary. System calls are implemented as function
calls without requiring context switches. Static linking eliminates the potential for dynamically
loading malicious code.

Additional protection features are available in later releases. Stack protection mechanisms are
provided to protect against stack overruns. In addition, applications can take advantage of
thread separation features to split the system into privileged and unprivileged execution en-
vironments. Memory protection features provide the capability to partition system resources
(memory, peripheral address space, etc.) and assign resources to individual threads or groups
of threads. Stack, thread execution level, and memory protection constraints are enforced at the
time of context switch.

Quality Assurance

The Zephyr project uses an automated quality assurance process. The goal is to have a pro-
cess including mandatory code reviews, feature and issue management/tracking, and static code
analyses.

Code reviews are documented and enforced using a voting system before getting checked into
the repository by the responsible subsystem’s maintainer. The main goals of the code review are:

• Verifying correct functionality of the implementation

• Increasing the readability and maintainability of the contributed source code

• Ensuring appropriate usage of string and memory functions

• Validation of the user input

• Reviewing the security relevant code for potential issues
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The current coding principles focus mostly on coding styles and conventions. Functional correct-
ness is ensured by the build system and the experience of the reviewer. Especially for security
relevant code, concrete and detailed guidelines need to be developed and aligned with the de-
velopers (see: Secure Coding).

Static code analyses are run on the Zephyr code tree on a regular basis, see Static Code Analysis.

Bug and issue tracking and management is performed using Github. The term “survivability”
was coined to cover pro-active security tasks such as security issue categorization and manage-
ment. A problem identified as vulnerability is managed within Github security advisories.

Issues determined by static analyses should have more stringent reviews before they are closed
as non-issues (at least another person educated in security processes need to agree on non-issue
before closing).

A security subcommittee has been formed to develop a security process in more detail; this doc-
ument is part of that process.

Execution Protection

Execution protection is supported and can be categorized into the following tasks:

• Memory separation: Memory will be partitioned into regions and assigned attributes
based on the owner of that region of memory. Threads will only have access to regions
they control.

• Stack protection: Stack guards would provide mechanisms for detecting and trapping
stack overruns. Individual threads should only have access to their own stacks.

• Thread separation: Individual threads should only have access to their own memory re-
sources. As threads are scheduled, only memory resources owned by that thread will be
accessible. Topics such as program flow protection and other measures for tamper resis-
tance are currently not in scope.

System Level Security (Ecosystem, …)

System level security encompasses a wide variety of categories. Some examples of these would
be:

• Secure/trusted boot

• Over the air (OTA) updates

• External Communication

• Device authentication

• Access control of onboard resources

– Flash updating

– Secure storage

– Peripherals

• Root of trust

• Reduction of attack surface

Some of these categories are interconnected and rely on multiple pieces to be in place to produce
a full solution for the application.
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10.1.3 Secure Development Process

The development of secure code shall adhere to certain criteria. These include coding guidelines
and development processes that can be roughly separated into two categories related to software
quality and related to software security. Furthermore, a system architecture document shall be
created and kept up-to-date with future development.

System Architecture

Fig. 2: Figure 2: Zephyr System Architecture

A high-level schematic of the Zephyr system architecture is given in Figure 2. It separates the
architecture into an OS part (kernel + OS Services) and a user-specific part (Application Services).
The OS part itself contains low-level, platform specific drivers and the generic implementation
of I/O APIs, file systems, kernel-specific functions, and the cryptographic library.

A document describing the system architecture and design choices shall be created and kept up
to date with future development. This document shall include the base architecture of the Zephyr
OS and an overview of important submodules. For each of the modules, a dedicated architecture
document shall be created and evaluated against the implementation. These documents shall
serve as an entry point to new developers and as a basis for the security architecture. Please
refer to the Zephyr subsystem documentation for detailed information.
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Secure Coding

Designing an open software system such as Zephyr to be secure requires adhering to a defined set
of design standards. These standards are included in the Zephyr Project documentation, specifi-
cally in its Secure Coding section. In [?], the following, widely accepted principles for protection
mechanisms are defined to prevent security violations and limit their impact:

• Open design as a design principle incorporates the maxim that protection mechanisms
cannot be kept secret on any system in widespread use. Instead of relying on secret,
custom-tailored security measures, publicly accepted cryptographic algorithms and well
established cryptographic libraries shall be used.

• Economy of mechanism specifies that the underlying design of a system shall be kept as
simple and small as possible. In the context of the Zephyr project, this can be realized, e.g.,
by modular code [?] and abstracted APIs.

• Complete mediation requires that each access to every object and process needs to be
authenticated first. Mechanisms to store access conditions shall be avoided if possible.

• Fail-safe defaults defines that access is restricted by default and permitted only in specific
conditions defined by the system protection scheme, e.g., after successful authentication.
Furthermore, default settings for services shall be chosen in a way to provide maximum
security. This corresponds to the “Secure by Default” paradigm [?].

• Separation of privilege is the principle that two conditions or more need to be satisfied
before access is granted. In the context of the Zephyr project, this could encompass split
keys [?].

• Least privilege describes an access model in which each user, program and thread shall
have the smallest possible subset of permissions in the system required to perform their
task. This positive security model aims to minimize the attack surface of the system.

• Least common mechanism specifies that mechanisms common to more than one user or
process shall not be shared if not strictly required. The example given in [?] is a function
that should be implemented as a shared library executed by each user and not as a super-
visor procedure shared by all users.

• Psychological acceptability requires that security features are easy to use by the develop-
ers in order to ensure its usage and the correctness of its application.

In addition to these general principles, the following points are specific to the development of a
secure RTOS:

• Complementary Security/Defense in Depth: do not rely on a single threat mitigation ap-
proach. In case of the complementary security approach, parts of the threat mitigation are
performed by the underlying platform. In case such mechanisms are not provided by the
platform, or are not trusted, a defense in depth [?] paradigm shall be used.

• Less commonly used services off by default: to reduce the exposure of the system to
potential attacks, features or services shall not be enabled by default if they are only rarely
used (a threshold of 80% is given in [?]). For the Zephyr project, this can be realized using
the configuration management. Each functionality and module shall be represented as a
configuration option and needs to be explicitly enabled. Then, all features, protocols, and
drivers not required for a particular use case can be disabled. The user shall be notified if
low-level options and APIs are enabled but not used by the application.

• Change management: to guarantee a traceability of changes to the system, each change
shall follow a specified process including a change request, impact analysis, ratification,
implementation, and validation phase. In each stage, appropriate documentation shall be
provided. All commits shall be related to a bug report or change request in the issue tracker.
Commits without a valid reference shall be denied.

Based on these design principles and commonly accepted best practices, a secure development
guide shall be developed, published, and implemented into the Zephyr development process.
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Further details on this are given in the Secure Design section.

Quality Assurance

The quality assurance part encompasses the following criteria:

• Adherence to the Coding Conventions with respect to coding style, naming schemes of
modules, functions, variables, and so forth. This increases the readability of the Zephyr
code base and eases the code review. These coding conventions are enforced by automated
scripts prior to check-in.

• Adherence to Deployment Guidelines is required to ensure consistent releases with a
well-documented feature set and a trackable list of security issues.

• Code Reviews ensure the functional correctness of the code base and shall be performed
on each proposed code change prior to check-in. Code reviews shall be performed by at
least one independent reviewer other than the author(s) of the code change. These reviews
shall be performed by the subsystem maintainers and developers on a functional level and
are to be distinguished from security reviews as laid out in the Secure Design section. Refer
to the Project and Governance documentation for more information.

• Static Code Analysis tools efficiently detect common coding mistakes in large code bases.
All code shall be analyzed using an appropriate tool prior to merges into the main repos-
itory. This is not per individual commit, but is to be run on some interval on specific
branches. It is mandatory to remove all findings or waive potential false-positives before
each release. Waivers shall be documented centrally and in the form of a comment inside
the source code itself. The documentation shall include the employed tool and its version,
the date of the analysis, the branch and parent revision number, the reason for the waiver,
the author of the respective code, and the approver(s) of the waiver. This shall as a mini-
mum run on the main release branch and on the security branch. It shall be ensured that
each release has zero issues with regard to static code analysis (including waivers). Refer
to the Project and Governance documentation for more information.

• Complexity Analyses shall be performed as part of the development process and metrics
such as cyclomatic complexity shall be evaluated. The main goal is to keep the code as
simple as possible.

• Automation: the review process and checks for coding rule adherence are a mandatory
part of the precommit checks. To ensure consistent application, they shall be automated as
part of the precommit procedure. Prior to merging large pieces of code in from subsystems,
in addition to review process and coding rule adherence, all static code analysis must have
been run and issues resolved.

Release and Lifecycle Management

Lifecycle management contains several aspects:

• Device management encompasses the possibility to update the operating system and/or
security related sub-systems of Zephyr enabled devices in the field.

• Lifecycle management: system stages shall be defined and documented along with the
transactions between the stages in a system state diagram. For security reasons, this shall
include locking of the device in case an attack has been detected, and a termination if the
end of life is reached.

• Release management describes the process of defining the release cycle, documenting re-
leases, and maintaining a record of known vulnerabilities and mitigations. Especially for
certification purposes the integrity of the release needs to be ensured in a way that later
manipulation (e.g., inserting of backdoors, etc.) can be easily detected.
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• Rights management and NDAs: if required by the chosen certification, the confidentiality
and integrity of the system needs to be ensured by an appropriate rights management (e.g.,
separate source code repository) and non-disclosure agreements between the relevant par-
ties. In case of a repository shared between several parties, measures shall be taken that
no malicious code is checked in.

These points shall be evaluated with respect to their impact on the development process em-
ployed for the Zephyr project.

10.1.4 Secure Design

In order to obtain a certifiable system or product, the security process needs to be clearly defined
and its application needs to be monitored and driven. This process includes the development of
security related modules in all of its stages and the management of reported security issues.
Furthermore, threat models need to be created for currently known and future attack vectors,
and their impact on the system needs to be investigated and mitigated. Please refer to the Secure
Coding outlined in the Zephyr project documentation for detailed information.

The software security process includes:

• Adherence to the SecureDevelopmentCoding is mandatory to avoid that individual com-
ponents breach the system security and to minimize the vulnerability of individual mod-
ules. While this can be partially achieved by automated tests, it is inevitable to investi-
gate the correct implementation of security features such as countermeasures manually in
security-critical modules.

• Security Reviews shall be performed by a security architect in preparation of each
security-targeted release and each time a security-related module of the Zephyr project
is changed. This process includes the validation of the effectiveness of implemented se-
curity measures, the adherence to the global security strategy and architecture, and the
preparation of audits towards a security certification if required.

• Security Issue Management encompasses the evaluation of potential system vulnerabili-
ties and their mitigation as described in Security Issue Management.

These criteria and tasks need to be integrated into the development process for secure software
and shall be automated wherever possible. On system level, and for each security related module
of the secure branch of Zephyr, a directly responsible security architect shall be defined to guide
the secure development process.

Security Architecture

The general guidelines above shall be accompanied by an architectural security design on
system- and module-level. The high level considerations include

• The identification of security and compliance requirements
• Functional security such as the use of cryptographic functions whenever applicable

• Design of countermeasures against known attack vectors

• Recording of security relevant auditable events
• Support for Trusted Platform Modules (TPM) and Trusted Execution Environments
(TEE)

• Mechanisms to allow for in-the-field updates of devices using Zephyr

• Task scheduler and separation

The security architecture development is based on assets derived from the structural overview
of the overall system architecture. Based on this, the individual steps include:
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1. Identification of assets such as user data, authentication and encryption keys, key gener-
ation data (obtained from RNG), security relevant status information.

2. Identification of threats against the assets such as breaches of confidentiality, manipula-
tion of user data, etc.

3. Definition of requirements regarding security and protection of the assets, e.g., counter-
measures or memory protection schemes.

The security architecture shall be harmonized with the existing system architecture and imple-
mentation to determine potential deviations and mitigate existing weaknesses. Newly devel-
oped sub-modules that are integrated into the secure branch of the Zephyr project shall provide
individual documents describing their security architecture. Additionally, their impact on the
system level security shall be considered and documented.

Security Vulnerability Reporting

Please see Security Vulnerability Reporting for information on reporting security vulnerabilities.

Threat Modeling and Mitigation

The modeling of security threats against the Zephyr RTOS is required for the development of an
accurate security architecture and for most certification schemes. The first step of this process
is the definition of assets to be protected by the system. The next step then models how these
assets are protected by the system and which threats against them are present. After a threat
has been identified, a corresponding threat model is created. This model contains the asset and
system vulnerabilities, as well as the description of the potential exploits of these vulnerabilities.
Additionally, the impact on the asset, the module it resides in, and the overall system is to be esti-
mated. This threat model is then considered in the module and system security architecture and
appropriate countermeasures are defined to mitigate the threat or limit the impact of exploits.

In short, the threat modeling process can be separated into these steps (adapted from [?]):

1. Definition of assets

2. Application decomposition and creation of appropriate data flow diagrams (DFDs)

3. Threat identification and categorization using the [?] and [?] approaches

4. Determination of countermeasures and other mitigation approaches

This procedure shall be carried out during the design phase of modules and before major
changes of the module or system architecture. Additionally, new models shall be created, or
existing ones shall be updated whenever new vulnerabilities or exploits are discovered. Dur-
ing security reviews, the threat models and the mitigation techniques shall be evaluated by the
responsible security architect.

From these threat models and mitigation techniques tests shall be derived that prove the effec-
tiveness of the countermeasures. These tests shall be integrated into the continuous integration
workflow to ensure that the security is not impaired by regressions.

Vulnerability Analyses

In order to find weak spots in the software implementation, vulnerability analyses (VA) shall be
performed. Of special interest are investigations on cryptographic algorithms, critical OS tasks,
and connectivity protocols.

On a pure software level, this encompasses

• Penetration testing of the RTOS on a particular hardware platform, which involves testing
the respective Zephyr OS configuration and hardware as one system.
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• Side channel attacks (timing invariance, power invariance, etc.) should be considered.
For instance, ensuring timing invariance of the cryptographic algorithms and modules is
required to reduce the attack surface. This applies to both the software implementations
and when using cryptographic hardware.

• Fuzzing tests shall be performed on both exposed APIs and protocols.

The list given above serves primarily illustration purposes. For each module and for the com-
plete Zephyr system (in general on a particular hardware platform), a suitable VA plan shall be
created and executed. The findings of these analyses shall be considered in the security issue
management process, and learnings shall be formulated as guidelines and incorporated into the
secure coding guide.

If possible (as in case of fuzzing analyses), these tests shall be integrated into the continuous
integration process.

10.1.5 Security Certification

One goal of creating a secure branch of the Zephyr RTOS is to create a certifiable system or certi-
fiable submodules thereof. The certification scope and scheme are yet to be decided. However,
many certifications such as Common Criteria [?] require evidence that the evaluation claims are
indeed fulfilled, so a general certification process is outlined in the following. Based on the final
choices for the certification scheme and evaluation level, this process needs to be refined.

Generic Certification Process

In general, the steps towards a certification or precertification (compare [?]) are:

1. The definition of assets to be protected within the Zephyr RTOS. Potential candidates are
confidential information such as cryptographic keys, user data such as communication logs,
and potentially IP of the vendor or manufacturer.

2. Developing a threatmodel and security architecture to protect the assets against exploits
of vulnerabilities of the system. As a complete threat model includes the overall product in-
cluding the hardware platform, this might be realized by a split model containing a precer-
tified secure branch of Zephyr which the vendor could use to certify their Zephyr-enabled
product.

3. Formulating an evaluation target that includes the certification claims on the security of
the assets to be evaluated and certified, as well as assumptions on the operating conditions.

4. Providing proof that the claims are fulfilled. This includes consistent documentation of the
security development process, etc.

These steps are partially covered in previous sections as well. In contrast to these sections, the
certification process only requires to consider those components that shall be covered by the
certification. The security architecture, for example, considers assets on system level and might
include items not relevant for the certification.

Certification Options

For the security certification as such, the following options can be pursued:

1. Abstract precertification of Zephyr as a pure software system: this option requires as-
sumptions on the underlying hardware platform and the final application running on top
of Zephyr. If these assumptions are met by the hardware and the application, a full certifi-
cation can be more easily achieved. This option is the most flexible approach but puts the
largest burden on the product vendor.
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2. Certification of Zephyr on specific hardware platform without a specific application
in mind: this scenario describes the enablement of a secure platform running the Zephyr
RTOS. The hardware manufacturer certifies the platform under defined assumptions on
the application. If these are met, the final product can be certified with little effort.

3. Certification of an actual product: in this case, a full product including a specific hard-
ware, the Zephyr RTOS, and an application is certified.

In all three cases, the certification scheme (e.g., FIPS 140-2 [?] or Common Criteria [?]), the scope
of the certification (main-stream Zephyr, security branch, or certain modules), and the certifica-
tion/assurance level need to be determined.

In case of partial certifications (options 1 and 2), assumptions on hardware and/or software are
required for certifications. These can include [?]

• Appropriate physical security of the hardware platform and its environment.

• Sufficient protection of storage and timing channels on the hardware platform itself and
all connected devices. (No mentioning of remote connections.)

• Only trusted/assured applications running on the device

• The device and its software stack is configured and operated by properly trained and
trusted individuals with no malicious intent.

These assumptions shall be part of the security claim and evaluation target documents.

10.2 Security Vulnerability Reporting

10.2.1 Introduction

Vulnerabilities to the Zephyr project may be reported via email to the vulnerabili-
ties@zephyrproject.org mailing list. These reports will be acknowledged and analyzed by the
security response team within 1 week. Each vulnerability will be entered into the Zephyr Project
security advisory GitHub. The original submitter will be granted permission to view the issues
that they have reported.

10.2.2 Security Issue Management

Issues within this bug tracking system will transition through a number of states according to
this diagram:
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New

Triage

Assigned Rejected

Review

Accepted

Public

• New: This state represents new reports that have been entered directly by a reporter. When
entered by the response team in response to an email, the issue shall be transitioned directly
to Triage.

• Triage: This issue is awaiting Triage by the response team. The response team will analyze
the issue, determine a responsible entity, assign it to that individual, and move the issue to
the Assigned state. Part of triage will be to set the issue’s priority.

• Assigned: The issue has been assigned, and is awaiting a fix by the assignee.

• Review: Once there is a Zephyr pull request for the issue, the PR link will be added to a
comment in the issue, and the issue moved to the Review state.

• Accepted: Indicates that this issue has been merged into the appropriate branch within
Zephyr.

• Public: The embargo period has ended. The issue will be made publicly visible, the associ-
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ated CVE updated, and the vulnerabilities page in the docs updated to include the detailed
information.

The security advisories created are kept private, due to the sensitive nature of security reports.
The issues are only visible to certain parties:

• Members of the PSIRT mailing list

• the reporter

• others, as proposed and ratified by the Zephyr Security Subcommittee. In the general case,
this will include:

– The code owner responsible for the fix.

– The Zephyr release owners for the relevant releases affected by this vulnerability.

The Zephyr Security Subcommittee shall review the reported vulnerabilities during any meeting
with more than three people in attendance. During this review, they shall determine if new
issues need to be embargoed.

The guideline for embargo will be based on: 1. Severity of the issue, and 2. Exploitability of the
issue. Issues that the subcommittee decides do not need an embargo will be reproduced in the
regular Zephyr project bug tracking system.

Security sensitive vulnerabilities shall be made public after an embargo period of at most 90
days. The intent is to allow 30 days within the Zephyr project to fix the issues, and 60 days for
external parties building products using Zephyr to be able to apply and distribute these fixes.

Fixes to the code shall be made through pull requests PR in the Zephyr project github. Developers
shall make an attempt to not reveal the sensitive nature of what is being fixed, and shall not
refer to CVE numbers that have been assigned to the issue. The developer instead should merely
describe what has been fixed.

The security subcommittee will maintain information mapping embargoed CVEs to these PRs
(this information is within the Github security advisories), and produce regular reports of the
state of security issues.

Each issue that is considered a security vulnerability shall be assigned a CVE number. As fixes
are created, it may be necessary to allocate additional CVE numbers, or to retire numbers that
were assigned.

10.2.3 Vulnerability Notification

Each Zephyr release shall contain a report of CVEs that were fixed in that release. Because of the
sensitive nature of these vulnerabilities, the release shall merely include a list of CVEs that have
been fixed. After the embargo period, the vulnerabilities page shall be updated to include addi-
tional details of these vulnerabilities. The vulnerability page shall give credit to the reporter(s)
unless a reporter specifically requests anonymity.

The Zephyr project shall maintain a vulnerability-alerts mailing list. This list will be seeded ini-
tially with a contact from each project member. Additional parties can request to join this list by
filling out the form at the Vulnerability Registry. These parties will be vetted by the project direc-
tor to determine that they have a legitimate interest in knowing about security vulnerabilities
during the embargo period.

Periodically, the security subcommittee will send information to this mailing list describing
known embargoed issues, and their backport status within the project. This information is in-
tended to allow them to determine if they need to backport these changes to any internal trees.

When issues have been triaged, this list will be informed of:

• The Zephyr Project security advisory link (GitHub).

• The CVE number assigned.
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• The subsystem involved.

• The severity of the issue.

After acceptance of a PR fixing the issue (merged), in addition to the above, the list will be in-
formed of:

• The association between the CVE number and the PR fixing it.

• Backport plans within the Zephyr project.

10.2.4 Backporting of Security Vulnerabilities

Each security issue fixed within zephyr shall be backported to the following releases:

• The current Long Term Stable (LTS) release.

• The most recent two releases.

The developer of the fix shall be responsible for any necessary backports, and apply them to
any of the above listed release branches, unless the fix does not apply (the vulnerability was
introduced after this release was made). All recommendations for vulnerability fixes apply for
backport pull requests (and associated issues). Additionally, it is recommended that the devel-
oper privately informs the responsible release manager that the backport pull request and issue
are addressing a vulnerability.

Backports will be tracked on the security advisory.

10.2.5 Need to Know

Due to the sensitive nature of security vulnerabilities, it is important to share details and fixes
only with those parties that have a need to know. The following parties will need to know details
about security vulnerabilities before the embargo period ends:

• Maintainers will have access to all information within their domain area only.

• The current release manager, and the release manager for historical releases affected by
the vulnerability (see backporting above).

• The Project Security Incident Response (PSIRT) team will have full access to information.
The PSIRT is made up of representatives from platinum members, and volunteers who do
work on triage from other members.

• As needed, release managers and maintainers may be invited to attend additional security
meetings to discuss vulnerabilities.

10.3 Secure Coding

Traditionally, microcontroller-based systems have not placed much emphasis on security. They
have usually been thought of as isolated, disconnected from the world, and not very vulnerable,
just because of the difficulty in accessing them. The Internet of Things has changed this. Now,
code running on small microcontrollers often has access to the internet, or at least to other de-
vices (that may themselves have vulnerabilities). Given the volume they are often deployed at,
uncontrolled access can be devastating1.

This document describes the requirements and process for ensuring security is addressed within
the Zephyr project. All code submitted should comply with these principles.

Much of this document comes from [?].
1 An attack resulted in a significant portion of DNS infrastructure being taken down.
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10.3.1 Introduction and Scope

This document covers guidelines for the Zephyr Project, from a security perspective. Many of
the ideas contained herein are captured from other open source efforts.

We begin with an overview of secure design as it relates to Zephyr. This is followed by a section
on Secure development knowledge, which gives basic requirements that a developer working on
the project will need to have. This section gives references to other security documents, and full
details of how to write secure software are beyond the scope of this document. This section also
describes vulnerability knowledge that at least one of the primary developers should have. This
knowledge will be necessary for the review process described below this.

Following this is a description of the review process used to incorporate changes into the Zephyr
codebase. This is followed by documentation about how security-sensitive issues are handled by
the project.

Finally, the document covers how changes are to be made to this document.

10.3.2 Secure Coding

Designing an open software system such as Zephyr to be secure requires adhering to a defined set
of design standards. In [?], the following, widely accepted principles for protection mechanisms
are defined to help prevent security violations and limit their impact:

• Open design as a design guideline incorporates the maxim that protection mechanisms
cannot be kept secret on any system in widespread use. Instead of relying on secret,
custom-tailored security measures, publicly accepted cryptographic algorithms and well
established cryptographic libraries shall be used.

• Economy of mechanism specifies that the underlying design of a system shall be kept as
simple and small as possible. In the context of the Zephyr project, this can be realized, e.g.,
by modular code [?] and abstracted APIs.

• Complete mediation requires that each access to every object and process needs to be
authenticated first. Mechanisms to store access conditions shall be avoided if possible.

• Fail-safe defaults defines that access is restricted by default and permitted only in specific
conditions defined by the system protection scheme, e.g., after successful authentication.
Furthermore, default settings for services shall be chosen in a way to provide maximum
security. This corresponds to the “Secure by Default” paradigm [?].

• Separation of privilege is the principle that two conditions or more need to be satisfied
before access is granted. In the context of the Zephyr project, this could encompass split
keys [?].

• Least privilege describes an access model in which each user, program, and thread, shall
have the smallest possible subset of permissions in the system required to perform their
task. This positive security model aims to minimize the attack surface of the system.

• Least common mechanism specifies that mechanisms common to more than one user or
process shall not be shared if not strictly required. The example given in [?] is a function
that should be implemented as a shared library executed by each user and not as a super-
visor procedure shared by all users.

• Psychological acceptability requires that security features are easy to use by the develop-
ers in order to ensure their usage and the correctness of its application.

In addition to these general principles, the following points are specific to the development of a
secure RTOS:

• Complementary Security/Defense in Depth: do not rely on a single threat mitigation ap-
proach. In case of the complementary security approach, parts of the threat mitigation are
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performed by the underlying platform. In case such mechanisms are not provided by the
platform, or are not trusted, a defense in depth [?] paradigm shall be used.

• Less commonly used services off by default: to reduce the exposure of the system to
potential attacks, features or services shall not be enabled by default if they are only rarely
used (a threshold of 80% is given in [?]). For the Zephyr project, this can be realized using
the configuration management. Each functionality and module shall be represented as a
configuration option and needs to be explicitly enabled. Then, all features, protocols, and
drivers not required for a particular use case can be disabled. The user shall be notified if
low-level options and APIs are enabled but not used by the application.

• Change management: to guarantee a traceability of changes to the system, each change
shall follow a specified process including a change request, impact analysis, ratification,
implementation, and validation phase. In each stage, appropriate documentation shall be
provided. All commits shall be related to a bug report or change request in the issue tracker.
Commits without a valid reference shall be denied.

10.3.3 Secure development knowledge

Secure designer

The Zephyr project must have at least one primary developer who knows how to design secure
software.

This requires understanding the following design principles, including the 8 principles from [?]:

• economy of mechanism (keep the design as simple and small as practical, e.g., by adopting
sweeping simplifications)

• fail-safe defaults (access decisions shall deny by default, and projects’ installation shall be
secure by default)

• complete mediation (every access that might be limited must be checked for authority and
be non-bypassable)

• open design (security mechanisms should not depend on attacker ignorance of its design,
but instead on more easily protected and changed information like keys and passwords)

• separation of privilege (ideally, access to important objects should depend on more than
one condition, so that defeating one protection system won’t enable complete access. For
example, multi-factor authentication, such as requiring both a password and a hardware
token, is stronger than single-factor authentication)

• least privilege (processes should operate with the least privilege necessary)

• least common mechanism (the design should minimize the mechanisms common to more
than one user and depended on by all users, e.g., directories for temporary files)

• psychological acceptability (the human interface must be designed for ease of use - design-
ing for “least astonishment” can help)

• limited attack surface (the set of the different points where an attacker can try to enter or
extract data)

• input validation with whitelists (inputs should typically be checked to determine if they
are valid before they are accepted; this validation should use whitelists (which only accept
known-good values), not blacklists (which attempt to list known-bad values)).

Vulnerability Knowledge

A “primary developer” in a project is anyone who is familiar with the project’s code base, is
comfortable making changes to it, and is acknowledged as such by most other participants in the
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project. A primary developer would typically make a number of contributions over the past year
(via code, documentation, or answering questions). Developers would typically be considered
primary developers if they initiated the project (and have not left the project more than three
years ago), have the option of receiving information on a private vulnerability reporting channel
(if there is one), can accept commits on behalf of the project, or perform final releases of the
project software. If there is only one developer, that individual is the primary developer.

At least one of the primary developers must know of common kinds of errors that lead to vul-
nerabilities in this kind of software, as well as at least one method to counter or mitigate each of
them.

Examples (depending on the type of software) include SQL injection, OS injection, classic
buffer overflow, cross-site scripting, missing authentication, and missing authorization. See the
CWE/SANS top 25 or OWASP Top 10 for commonly used lists.

A free class from the nonprofit OpenSecurityTraining2 for C/C++ developers is available at
OST2_1001. It teaches how to prevent, detect, and mitigate linear stack/heap buffer overflows,
non-linear out of bound writes, integer overflows, and other integer issues. The follow-on class,
OST2_1002, covers uninitialized data access, race conditions, use-after-free, type confusion, and
information disclosure vulnerabilities.

Zephyr Security Subcommittee

There shall be a “Zephyr Security Subcommittee”, responsible for enforcing this guideline, mon-
itoring reviews, and improving these guidelines.

This team will be established according to the Zephyr Project charter.

10.3.4 Code Review

The Zephyr project shall use a code review system that all changes are required to go through.
Each change shall be reviewed by at least one primary developer that is not the author of the
change. This developer shall determine if this change affects the security of the system (based on
their general understanding of security), and if so, shall request the developer with vulnerability
knowledge, or the secure designer to also review the code. Any of these individuals shall have
the ability to block the change from being merged into the mainline code until the security issues
have been addressed.

10.3.5 Issues and Bug Tracking

The Zephyr project shall have an issue tracking system (such as GitHub) that can be used to
record and track defects that are found in the system.

Because security issues are often sensitive, this issue tracking system shall have a field to indicate
a security issue. Setting this field shall result in the issue only being visible to the Zephyr Security
Subcommittee. In addition, there shall be a field to allow the Zephyr Security Subcommittee to
add additional users that will have visibility to a given issue.

This embargo, or limited visibility, shall only be for a fixed duration, with a default being
a project-decided value. However, because security considerations are often external to the
Zephyr project itself, it may be necessary to increase this embargo time. The time necessary
shall be clearly annotated in the issue itself.

The list of issues shall be reviewed at least once a month by the Zephyr Security Subcommittee.
This review should focus on tracking the fixes, determining if any external parties need to be
notified or involved, and determining when to lift the embargo on the issue. The embargo should
not be lifted via an automated means, but the review team should avoid unnecessary delay in
lifting issues that have been resolved.
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10.3.6 Modifications to This Document

Changes to this document shall be reviewed by the Zephyr Security Subcommittee, and approved
by consensus.

10.4 Sensor Device Threat Model

This document describes a threat model for an IoT sensor device. Spelling out a threat model
helps direct development effort, and can be used to help prioritize these efforts as well.

This device contains a sensor of some type (for example temperature, or a pressure in a pipe),
which sends this data to an SoC running a microcontroller. This microcontroller connects to a
cloud service, and relays this sensor data to this service. The cloud service is also able to send
configuration data to the device, as well as software update images. A general diagram can be
seen in Figure 1:
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Fig. 3: Figure 1. Sensor General Diagram

In this sensor device, the sensor connects with the SoC via an SPI bus, and the SoC has a network
interface that it uses to communicate with the cloud service. The particulars of these interfaces
can impact the threat model in unexpected ways, and variants on this will need to be considered
(for example, using a separate network interface SoC connected via some type of bus).

This model also focuses on communicating via the MQTT-over-TLS protocol, as this seems to be
in wide use1.

10.4.1 Assets

One aspect of the threat model to consider are assets involved in the operation of the device. The
following list enumerates the assets included in this model:

1. The bootloader. This is a small code/data image contained in on-device flash that is the
first code to run. In order to establish a root of trust, this image must be immutable. This

1 See https://www.slideshare.net/kartben/iot-developer-survey-2018. As of this writing, the three major cloud IoT
service providers, AWS IoT, Google Cloud IoT, and Microsoft Azure IoT all provide MQTT over TLS. Some feedback has
suggested that some find difficulty with UDP protocols and routing issues on various networks.
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model assumes that the SoC provides a mechanism to protect a region of the flash from
future writes, and that this will be done after this image is programmed into the device,
early in production [th-imboot].

2. The application firmware image. This asset consists of the remainder of the firmware
run by the microcontroller. The distinction is made because this part of the image will
need to be updated periodically as security vulnerabilities are discovered. Requirements
for updates to this image are:

a. The image shall only be replaced with an authorized image [th-authrepl].

b. When an authorized replacement image is available, the update shall be done in a
timely manner [th-timely-update].

c. The image update shall be seen as atomic, meaning that when the image is run, the
flash shall contain either the update image in its entirety, or the old image in its entirety
[th-atomic-update].

3. Root certificate list. In order to authenticate the cloud service (server), the IoT device
must have a list of root certificates that are allowed to sign the certificate on the server. For
cloud-provider based services, this list will generally be provided by the service provider.
Because the root certificates can expire, and possibly be revoked, this list will need to be
periodically updated [th-root-certs], [th-root-check].

4. Client secrets. To authenticate the client to the service, the client must possess some kind
of secret. This is generally a private key, usually either an RSA key or an EC private key.
When establishing communication with the server, the device will use this secret either as
part of the TLS establishment, or to sign a message used in the communication.

This secret is generally generated by the service provider, or by software running else-
where, and must be securely installed on the device. Policy may dictate that this secret be
replaced periodically, which will require a way to update the client secret. Typically, the
service will allow two or three active keys to allow this update to proceed while the old key
is used.

These secrets must be protected from read, and the smallest amount of code necessary shall
have access to them. [th-secret-storage]

5. Current date/time. TLS certificate verification requires knowledge of the current date and
time in order to determine if the current time falls within the certificate’s current validity
time. Also, token based client authentication will generally require the client to sign a mes-
sage containing a time window that the token is valid. Certificate validation requires the
device’s notion of date and time to be accurate within a day or so. Token generation gener-
ally requires the time to be accurate within 5-10 minutes.

It may be possible to approximate secure time by querying an external time server. Secure
NTP is possibly beyond the capabilities of an IoT device. The main risks of having incorrect
time are denial of service (the device rejects valid certificates), and the generation of tokens
with invalid times. It could be possible to trick the device into generating tokens that are
valid in the future, but the attacker would also have to spoof the server’s certificate to be
able to intercept this. [th-time]

6. Sensor data. The data received from the sensor itself, and delivered to the service shall be
delivered without modification or tampering.

7. Device configuration. Various configuration data, such as the hostname of the service to
connect to, the address of a time server, frequency and parameters of when sensor data is
sent to the service, and other need to be kept by the device. This configuration data will
need to be updated periodically as the configuration changes. Updates should be allowed
only from authorized parties. [th-conf]

8. Logs. In order to assist with analysis of security issues, the device shall log information
about security-pertinent events. IoT devices generally have limited storage, and as such,
these logs need to be carefully selected. It may also be possible to send these log events
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to the cloud service where they can be stored in a more resource-available environment.
Types of events that should be logged include:

a. Firmware image updates. The system should log the download of new images, and
when an image is successfully updated.

b. Client secret changes. Changes and new client secrets should be logged.

c. Changes to the device configuration.

[th-logs]

10.4.2 Communication

In addition to assets, the threat model also considers the locations where data or assets are com-
municated between entities of the system.

1. Flash contents. The flash device contains several regions. The contents of flash can be
modified programmatically by the SoC’s CPU.

a. The bootloader. As described in the Assets section, the bootloader is a small section of
the flash device containing the code initially run. This section shall be written early in
the lifecycle of the device, and the flash device then configured to permanently disal-
low modification of this section. This configuration should also prevent modification
via external interfaces, such as JTAG or SWD debuggers.

The bootloader is responsible for verifying the signature of the application image as
well as updating the application image from the update image when an update is
needed.

The bootloader shall verify the signature of the update image before installing it.

The bootloader shall only accept an update image with a newer version number than
the current image.

b. The application image. The application image contains the code executed during nor-
mal operation of the device. Before running this image, the bootloader shall verify a
digital signature of the image, to avoid running an image that has been tampered with.
The flash/system shall be configured such that after the bootloader has completed, the
CPU will be unable to write to the application image.

c. The update image. This is an area of flash that holds a new version of the application
image. This image will be downloaded and stored by the application during normal
operation. When this has completed, the application can trigger a reboot, and the boot-
loader can install the new image.

d. Secret storage. An area of the flash will be used to store client secrets. This area is
written and read by a subset of the application image. The application shall be con-
figured to protect this area from both reads and writes by code that does not need to
have access to it, giving consideration to possible exploits found within a majority of
the application code. Revealing the contents of the secrets would allow the attacker to
spoof this device.

Initial secrets shall be placed in the device during a provisioning activity, distinct from
normal operation of the device. Later updates can be made under the direction of
communication received over a secured channel to the service.

e. Configuration storage. There shall be an area to store other configuration informa-
tion. On resource-constrained devices, it is allowed for this to be stored in the same
region as the secret storage, however, this adds additional code that has access to the
secret storage area, and as such, more code that must be scrutinized.

f. Log storage. The device may have an area of flash where log events can be written.
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2. Sensor/Actuator interface. In this design, the sensor or actuator communicates with the
SoC via a bus, such as SPI. The hardware design shall be made to make intercepting this bus
difficult for an attack. Required techniques depend on the sensitivity and use of the sensor
data, and can range from having the sensor mounted on the same PCB as the MCU to epoxy
potting the entire device.

3. Communication with cloud service. Communication between the device, and the cloud
service will be done over the general internet. As such, it shall be assumed that an attacker
can arbitrarily intercept this channel and, for example, return spoofed DNS results or at-
tempt man-in-the-middle attacks against communication with cloud services.

The device shall use TLS for all communication with the cloud service [th-all-tls]. The TLS
stack shall be configured to use only cipher suites that are generally considered secure2,
including forward secrecy. The communication shall be secured by the following:

a. Cipher suite selection. The device shall only allow communication with generally
agreed secure cipher suites [th-tls-ciphers].

b. Server certificate verification. The server presented by the server shall be verified
[th-root-check].

i. Naming. The certificate shall name the host and service the cloud service server
is providing. RFC6125 describes best practices for this. It is permissible for the
device to require the certificate to be more restrictive than as described in this
RFC, provided the service can use a certificate that can comply.

ii. Path validation. The device shall verify that the certificate chain has a valid sig-
nature path from a root certificate contained within the device, to the certificate
presented by the service. RFC4158 describes this is general. The device is permit-
ted to require a more restricted path, provided the server certificate used complies
with this restriction.

iii. Validity period. The validity period of all presented certificates shall be checked
against the device’s best notion of the current time.

c. Client authentication. The client shall authenticate itself to the service using a se-
cret known only to that particular device. There are several options, and the tech-
nique used is generally mandated by the particular service provider being used
[th-tls-client-auth].

i. TLS client certificates. The TLS protocol allows the client to present a certificate,
and assert its knowledge of the secret described by that certificate. Generally, these
certificates will be stored within the service provider. These certificates can be
self-signed, or signed by a CA. Since the service provider maintains a list of valid
certificates (mapping them to a device identity), having these certificates signed by
a CA does not add any additional security, but may be useful in the management
of these certificates.

ii. Token-based authentication. It is also possible for the client to authenticate itself
using the password field of the MQTT CONNECT packet. However, the secret itself
must not be transmitted in this packet. Instead, a token-based protocol, such as
RFC7519‘s JSON Web Token (JWT) can be used. These tokens will generally have a
small validity period (e.g. 1 hour), to prevent them from being reused if they are
intercepted. The token shall not be sent until the device has verified the identity
of the server.

d. Random/Entropy source. Cryptographic communication requires the generation of
secure pseudorandom numbers. The device shall use a modern, accepted crypto-
graphic random-bit generator to generate these random numbers. It shall use ei-
ther a Non-Deterministic Random Bit Generator (True RBG) implemented in hard-
ware within the SoC, or a Deterministic Random Bit Generator (Pseudo RBG) seeded by

2 As new exploits are discovered, what is considered secure can change. Organizations such as https://www.ssllabs.
com/ provide information on current ideas of how TLS must be configured to be secure.
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an entropy source within the SoC. Please see NIST SP 800-90A for information on ap-
proved RBGs and NIST SP 800-90B for information on testing a device’s entropy source
[th-entropy].

4. Communication with the time service. Ideally, the device shall contain hardware that
maintains a secure time. However, most SoCs in use do not have support for this, and it will
be necessary to consult an external time service. RFC4330 and referenced RFCs describe the
Simple Network Time Protocol that can be used to query the current time from a network
time server.

5. Device lifecycle. An IoT device will have a lifecycle from production to destruction and
disposal of the device. Aspects of this lifecycle that impact security include initial provi-
sioning, normal operation, re-provisioning, and destruction.

a. Initial provisioning. During the initial provisioning stage, it is necessary to program
the bootloader, an initial application image, a device secret, and initial configuration
data [th-initial-provision]. In addition, the bootloader flash protection shall be in-
stalled. Of this information, only the device secret needs to differ per device. This
secret shall be securely maintained, and destroyed in all locations outside of the de-
vice once it has been programmed [th-initial-secret].

b. Normal operation. Normal operation includes the behavior described by the rest of
this document.

c. Re-provisioning. Sometimes it is necessary to re-provision a device, such as for a dif-
ferent application. One way to do this is to keep the same device secret, and replace
the configuration data, as well as the cloud service data associated with the device.
It is also possible to program a new device secret, but if this is done it shall be done
securely, and the new secret destroyed externally once programmed into the device
[th-reprovision].

d. Destruction. To prevent the device secret from being used to spoof the device, upon
decommissioning, the secret for a particular device shall be rendered ineffective
[th-destruction]. Possibilities include:

i. Hardware destruction of the device.

ii. Securely wiping the flash area containing the secret3.

iii. Removing the device identity and certificate from the service.

10.4.3 Other Considerations

In addition to the above, network connected devices generally will need a way to configure them
to connect to the network environment they are placed in. There are numerous ways of doing
this, and it is important for these configuration methods to not circumvent the security require-
ments described above.

10.4.4 Threats

10.4.5 Notes

10.5 Hardening Tool

Before launching a product, it’s crucial to ensure that your software is as secure as possible. This
process, known as “hardening”, involves strengthening the security of a system to protect it from
potential threats and vulnerabilities.

3 Note that merely erasing this flash area is unlikely to be sufficient.
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At a high-level, hardening a Zephyr application can be seen as a two-fold process:

1. Disabling features and compilation flags that might lead to security vulnerabilities (ex.
making sure that no “experimental” features are being used, disabling features typically
used for debugging purposes such as assertions, shell, etc.).

2. Enabling optional features that can lead to improve security (ex. stack sentinel, hardware
stack protection, etc.). Some of these features might be hardware-dependent.

To simplify this process, Zephyr offers a hardening tool designed to analyze an application’s
configuration against a set of hardening preferences defined by the Security Working Group.
The tool looks at the KConfig options in the build target and provides tailored suggestions and
recommendations to adjust security-related options.

10.5.1 Usage

Using west:

west build -b reel_board samples/hello_world
west build -t hardenconfig

Using CMake and ninja:

# Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=reel_board samples/hello_world

# Now run the build tool on the generated build system:
ninja -Cbuild hardenconfig

The output should be similar to the table below. For each configuration option set to a value that
could lead to a security vulnerability, the table will propose a recommended value that should
be used instead.

name | current | recommended || check result
================================================================================================
CONFIG_BOOT_BANNER | y | n || FAIL
CONFIG_BUILD_OUTPUT_STRIPPED | n | y || FAIL
CONFIG_FAULT_DUMP | 2 | 0 || FAIL
CONFIG_HW_STACK_PROTECTION | n | y || FAIL
CONFIG_MPU_STACK_GUARD | n | y || FAIL
CONFIG_OVERRIDE_FRAME_POINTER_DEFAULT | n | y || FAIL
CONFIG_STACK_SENTINEL | n | y || FAIL
CONFIG_EARLY_CONSOLE | y | n || FAIL
CONFIG_PRINTK | y | n || FAIL

10.6 Vulnerabilities

This page collects all of the vulnerabilities that are discovered and fixed in each release. It will
also often have more details than is available in the releases. Some vulnerabilities are deemed to
be sensitive, and will not be publicly discussed until there is sufficient time to fix them. Because
the release notes are locked to a version, the information here can be updated after the embargo
is lifted.

10.6.1 CVE-2017
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CVE-2017-14199

Buffer overflow in getaddrinfo().

• CVE-2017-14199

• Zephyr project bug tracker ZEPSEC-12

• PR6158 fix for 1.11.0

CVE-2017-14201

The shell DNS command can cause unpredictable results due to misuse of stack variables.

Use After Free vulnerability in the Zephyr shell allows a serial or telnet connected user to cause
denial of service, and possibly remote code execution.

This has been fixed in release v1.14.0.

• CVE-2017-14201

• Zephyr project bug tracker ZEPSEC-17

• PR13260 fix for v1.14.0

CVE-2017-14202

The shell implementation does not protect against buffer overruns resulting in unpredictable
behavior.

Improper Restriction of Operations within the Bounds of a Memory Buffer vulnerability in the
shell component of Zephyr allows a serial or telnet connected user to cause a crash, possibly with
arbitrary code execution.

This has been fixed in release v1.14.0.

• CVE-2017-14202

• Zephyr project bug tracker ZEPSEC-18

• PR13048 fix for v1.14.0

10.6.2 CVE-2019

CVE-2019-9506

The Bluetooth BR/EDR specification up to and including version 5.1 permits sufficiently low en-
cryption key length and does not prevent an attacker from influencing the key length negotia-
tion. This allows practical brute-force attacks (aka “KNOB”) that can decrypt traffic and inject
arbitrary ciphertext without the victim noticing.

• CVE-2019-9506

• Zephyr project bug tracker ZEPSEC-20

• PR18702 fix for v1.14.0

• PR18659 fix for v2.0.0
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10.6.3 CVE-2020

CVE-2020-10019

Buffer Overflow vulnerability in USB DFU of zephyr allows a USB connected host to cause possi-
ble remote code execution.

This has been fixed in releases v1.14.2, v2.2.0, and v2.1.1.

• CVE-2020-10019

• Zephyr project bug tracker ZEPSEC-25

• PR23460 fix for 1.14.x

• PR23457 fix for 2.1.x

• PR23190 fix in 2.2.0

CVE-2020-10021

Out-of-bounds write in USB Mass Storage with unaligned sizes

Out-of-bounds Write in the USB Mass Storage memoryWrite handler with unaligned Sizes.

See NCC-ZEP-024, NCC-ZEP-025, NCC-ZEP-026

This has been fixed in releases v1.14.2, and v2.2.0.

• CVE-2020-10021

• Zephyr project bug tracker ZEPSEC-26

• PR23455 fix for v1.14.2

• PR23456 fix for the v2.1 branch

• PR23240 fix for v2.2.0

CVE-2020-10022

UpdateHub Module Copies a Variable-Size Hash String Into a Fixed-Size Array

A malformed JSON payload that is received from an UpdateHub server may trigger memory
corruption in the Zephyr OS. This could result in a denial of service in the best case, or code
execution in the worst case.

See NCC-ZEP-016

This has been fixed in the below pull requests for main, branch from v2.1.0, and branch from
v2.2.0.

• CVE-2020-10022

• Zephyr project bug tracker ZEPSEC-28

• PR24154 fix for main

• PR24065 fix for branch from v2.1.0

• PR24066 fix for branch from v2.2.0
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CVE-2020-10023

Shell Subsystem Contains a Buffer Overflow Vulnerability In shell_spaces_trim

The shell subsystem contains a buffer overflow, whereby an adversary with physical access to
the device is able to cause a memory corruption, resulting in denial of service or possibly code
execution within the Zephyr kernel.

See NCC-ZEP-019

This has been fixed in releases v1.14.2, v2.2.0, and in a branch from v2.1.0,

• CVE-2020-10023

• Zephyr project bug tracker ZEPSEC-29

• PR23646 fix for v1.14.2

• PR23649 fix for branch from v2.1.0

• PR23304 fix for v2.2.0

CVE-2020-10024

ARM Platform Uses Signed Integer Comparison When Validating Syscall Numbers

The arm platform-specific code uses a signed integer comparison when validating system call
numbers. An attacker who has obtained code execution within a user thread is able to elevate
privileges to that of the kernel.

See NCC-ZEP-001

This has been fixed in releases v1.14.2, and v2.2.0, and in a branch from v2.1.0,

• CVE-2020-10024

• Zephyr project bug tracker ZEPSEC-30

• PR23535 fix for v1.14.2

• PR23498 fix for branch from v2.1.0

• PR23323 fix for v2.2.0

CVE-2020-10027

ARC Platform Uses Signed Integer Comparison When Validating Syscall Numbers

An attacker who has obtained code execution within a user thread is able to elevate privileges
to that of the kernel.

See NCC-ZEP-001

This has been fixed in releases v1.14.2, and v2.2.0, and in a branch from v2.1.0.

• CVE-2020-10027

• Zephyr project bug tracker ZEPSEC-35

• PR23500 fix for v1.14.2

• PR23499 fix for branch from v2.1.0

• PR23328 fix for v2.2.0
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CVE-2020-10028

Multiple Syscalls In GPIO Subsystem Performs No Argument Validation

Multiple syscalls with insufficient argument validation

See NCC-ZEP-006

This has been fixed in releases v1.14.2, and v2.2.0, and in a branch from v2.1.0.

• CVE-2020-10028

• Zephyr project bug tracker ZEPSEC-32

• PR23733 fix for v1.14.2

• PR23737 fix for branch from v2.1.0

• PR23308 fix for v2.2.0 (gpio patch)

CVE-2020-10058

Multiple Syscalls In kscan Subsystem Performs No Argument Validation

Multiple syscalls in the Kscan subsystem perform insufficient argument validation, allowing
code executing in userspace to potentially gain elevated privileges.

See NCC-ZEP-006

This has been fixed in a branch from v2.1.0, and release v2.2.0.

• CVE-2020-10058

• Zephyr project bug tracker ZEPSEC-34

• PR23748 fix for branch from v2.1.0

• PR23308 fix for v2.2.0 (kscan patch)

CVE-2020-10059

UpdateHub Module Explicitly Disables TLS Verification

The UpdateHub module disables DTLS peer checking, which allows for a man in the middle
attack. This is mitigated by firmware images requiring valid signatures. However, there is no
benefit to using DTLS without the peer checking.

See NCC-ZEP-018

This has been fixed in a PR against Zephyr main.

• CVE-2020-10059

• Zephyr project bug tracker ZEPSEC-36

• PR24954 fix on main (to be fixed in v2.3.0)

• PR24954 fix v2.1.0

• PR24954 fix v2.2.0
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CVE-2020-10060

UpdateHub Might Dereference An Uninitialized Pointer

In updatehub_probe, right after JSON parsing is complete, objects[1] is accessed from the output
structure in two different places. If the JSON contained less than two elements, this access would
reference uninitialized stack memory. This could result in a crash, denial of service, or possibly
an information leak.

Recommend disabling updatehub until such a time as a fix can be made available.

See NCC-ZEP-030

This has been fixed in a PR against Zephyr main.

• CVE-2020-10060

• Zephyr project bug tracker ZEPSEC-37

• PR27865 fix on main (to be fixed in v2.4.0)

• PR27865 fix for v2.3.0

• PR27865 fix for v2.2.0

• PR27865 fix for v2.1.0

CVE-2020-10061

Error handling invalid packet sequence

Improper handling of the full-buffer case in the Zephyr Bluetooth implementation can result in
memory corruption.

This has been fixed in branches for v1.14.0, v2.2.0, and will be included in v2.3.0.

• CVE-2020-10061

• Zephyr project bug tracker ZEPSEC-75

• PR23516 fix for v2.3 (split driver)

• PR23517 fix for v2.3 (legacy driver)

• PR23091 fix for branch from v1.14.0

• PR23547 fix for branch from v2.2.0

CVE-2020-10062

Packet length decoding error in MQTT

CVE: An off-by-one error in the Zephyr project MQTT packet length decoder can result in memory
corruption and possible remote code execution. NCC-ZEP-031

The MQTT packet header length can be 1 to 4 bytes. An off-by-one error in the code can result
in this being interpreted as 5 bytes, which can cause an integer overflow, resulting in memory
corruption.

This has been fixed in main for v2.3.

• CVE-2020-10062

• Zephyr project bug tracker ZEPSEC-84

• commit 11b7a37d for v2.3

• NCC-ZEP report (NCC-ZEP-031)
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CVE-2020-10063

Remote Denial of Service in CoAP Option Parsing Due To Integer Overflow

A remote adversary with the ability to send arbitrary CoAP packets to be parsed by Zephyr is
able to cause a denial of service.

This has been fixed in main for v2.3.

• CVE-2020-10063

• Zephyr project bug tracker ZEPSEC-55

• PR24435 fix in main for v2.3

• PR24531 fix for branch from v2.2

• PR24535 fix for branch from v2.1

• PR24530 fix for branch from v1.14

• NCC-ZEP report (NCC-ZEP-032)

CVE-2020-10064

Improper Input Frame Validation in ieee802154 Processing

• CVE-2020-10064

• Zephyr project bug tracker ZEPSEC-65

• PR24971 fix for v2.4

• PR33451 fix for v1.4

CVE-2020-10065

OOB Write after not validating user-supplied length (<= 0xffff) and copying to fixed-size buffer
(default: 77 bytes) for HCI_ACL packets in bluetooth HCI over SPI driver.

• CVE-2020-10065

• Zephyr project bug tracker ZEPSEC-66

• This issue has not been fixed.

CVE-2020-10066

Incorrect Error Handling in Bluetooth HCI core

In hci_cmd_done, the buf argument being passed as null causes nullpointer dereference.

• CVE-2020-10066

• Zephyr project bug tracker ZEPSEC-67

• PR24902 fix for v2.4

• PR25089 fix for v1.4
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CVE-2020-10067

Integer Overflow In is_in_region Allows User Thread To Access Kernel Memory

A malicious userspace application can cause a integer overflow and bypass security checks per-
formed by system call handlers. The impact would depend on the underlying system call and
can range from denial of service to information leak to memory corruption resulting in code
execution within the kernel.

See NCC-ZEP-005

This has been fixed in releases v1.14.2, and v2.2.0.

• CVE-2020-10067

• Zephyr project bug tracker ZEPSEC-27

• PR23653 fix for v1.14.2

• PR23654 fix for the v2.1 branch

• PR23239 fix for v2.2.0

CVE-2020-10068

Zephyr Bluetooth DLE duplicate requests vulnerability

In the Zephyr project Bluetooth subsystem, certain duplicate and back-to-back packets can cause
incorrect behavior, resulting in a denial of service.

This has been fixed in branches for v1.14.0, v2.2.0, and will be included in v2.3.0.

• CVE-2020-10068

• Zephyr project bug tracker ZEPSEC-78

• PR23707 fix for v2.3 (split driver)

• PR23708 fix for v2.3 (legacy driver)

• PR23091 fix for branch from v1.14.0

• PR23964 fix for v2.2.0

CVE-2020-10069

Zephyr Bluetooth unchecked packet data results in denial of service

An unchecked parameter in bluetooth data can result in an assertion failure, or division by zero,
resulting in a denial of service attack.

This has been fixed in branches for v1.14.0, v2.2.0, and will be included in v2.3.0.

• CVE-2020-10069

• Zephyr project bug tracker ZEPSEC-81

• PR23705 fix for v2.3 (split driver)

• PR23706 fix for v2.3 (legacy driver)

• PR23091 fix for branch from v1.14.0

• PR23963 fix for branch from v2.2.0
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CVE-2020-10070

MQTT buffer overflow on receive buffer

In the Zephyr Project MQTT code, improper bounds checking can result in memory corruption
and possibly remote code execution. NCC-ZEP-031

When calculating the packet length, arithmetic overflow can result in accepting a receive buffer
larger than the available buffer space, resulting in user data being written beyond this buffer.

This has been fixed in main for v2.3.

• CVE-2020-10070

• Zephyr project bug tracker ZEPSEC-85

• commit 0b39cbf3 for v2.3

• NCC-ZEP report (NCC-ZEP-031)

CVE-2020-10071

Insufficient publish message length validation in MQTT

The Zephyr MQTT parsing code performs insufficient checking of the length field on publish
messages, allowing a buffer overflow and potentially remote code execution. NCC-ZEP-031

This has been fixed in main for v2.3.

• CVE-2020-10071

• Zephyr project bug tracker ZEPSEC-86

• commit 989c4713 fix for v2.3

• NCC-ZEP report (NCC-ZEP-031)

CVE-2020-10072

All threads can access all socket file descriptors

There is no management of permissions to network socket API file descriptors. Any thread run-
ning on the system may read/write a socket file descriptor knowing only the numerical value of
the file descriptor.

• CVE-2020-10072

• Zephyr project bug tracker ZEPSEC-87

• PR25804 fix for v2.4

• PR27176 fix for v1.4

CVE-2020-10136

IP-in-IP protocol routes arbitrary traffic by default zephyrproject

• CVE-2020-10136

• Zephyr project bug tracker ZEPSEC-64
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CVE-2020-13598

FS: Buffer Overflow when enabling Long File Names in FAT_FS and calling fs_stat

Performing fs_stat on a file with a filename longer than 12 characters long will cause a buffer
overflow.

• CVE-2020-13598

• Zephyr project bug tracker ZEPSEC-88

• PR25852 fix for v2.4

• PR28782 fix for v2.3

• PR33577 fix for v1.4

CVE-2020-13599

Security problem with settings and littlefs

When settings is used in combination with littlefs all security related information can be ex-
tracted from the device using MCUmgr and this could be used e.g in bt-mesh to get the device
key, network key, app keys from the device.

• CVE-2020-13599

• Zephyr project bug tracker ZEPSEC-57

• PR26083 fix for v2.4

CVE-2020-13600

Malformed SPI in response for eswifi can corrupt kernel memory

• CVE-2020-13600

• Zephyr project bug tracker ZEPSEC-91

• PR26712 fix for v2.4

CVE-2020-13601

Possible read out of bounds in dns read

• CVE-2020-13601

• Zephyr project bug tracker ZEPSEC-92

• PR27774 fix for v2.4

• PR30503 fix for v1.4

CVE-2020-13602

Remote Denial of Service in LwM2M do_write_op_tlv

In the Zephyr LwM2M implementation, malformed input can result in an infinite loop, resulting
in a denial of service attack.

• CVE-2020-13602

• Zephyr project bug tracker ZEPSEC-56
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• PR26571 fix for v2.4

• PR33578 fix for v1.4

CVE-2020-13603

Possible overflow in mempool

• Zephyr offers pre-built ‘malloc’ wrapper function instead.

• The ‘malloc’ function is wrapper for the ‘sys_mem_pool_alloc’ function

• sys_mem_pool_alloc allocates ‘size + WB_UP(sizeof(struct sys_mem_pool_block))’ in an un-
safe manner.

• Asking for very large size values leads to internal integer wrap-around.

• Integer wrap-around leads to successful allocation of very small memory.

• For example: calling malloc(0xffffffff) leads to successful allocation of 7 bytes.

• That leads to heap overflow.

• CVE-2020-13603

• Zephyr project bug tracker ZEPSEC-111

• PR31796 fix for v2.4

• PR32808 fix for v1.4

10.6.4 CVE-2021

CVE-2021-3319

DOS: Incorrect 802154 Frame Validation for Omitted Source / Dest Addresses

Improper processing of omitted source and destination addresses in ieee802154 frame validation
(ieee802154_validate_frame)

This has been fixed in main for v2.5.0

• CVE-2020-3319

• Zephyr project bug tracker GHSA-94jg-2p6q-5364

• PR31908 fix for main

CVE-2021-3320

Mismatch between validation and handling of 802154 ACK frames, where ACK frames are con-
sidered during validation, but not during actual processing, leading to a type confusion.

• CVE-2020-3320

• PR31908 fix for main

CVE-2021-3321

Incomplete check of minimum IEEE 802154 fragment size leading to an integer underflow.

• CVE-2020-3321

• Zephyr project bug tracker ZEPSEC-114
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• PR33453 fix for v2.4

CVE-2021-3323

Integer Underflow in 6LoWPAN IPHC Header Uncompression

This has been fixed in main for v2.5.0

• CVE-2020-3323

• Zephyr project bug tracker GHSA-89j6-qpxf-pfpc

• PR 31971 fix for main

CVE-2021-3430

Assertion reachable with repeated LL_CONNECTION_PARAM_REQ.

This has been fixed in main for v2.6.0

• CVE-2021-3430

• Zephyr project bug tracker GHSA-46h3-hjcq-2jjr

• PR 33272 fix for main

• PR 33369 fix for 2.5

• PR 33759 fix for 1.14.2

CVE-2021-3431

BT: Assertion failure on repeated LL_FEATURE_REQ

This has been fixed in main for v2.6.0

• CVE-2021-3431

• Zephyr project bug tracker GHSA-7548-5m6f-mqv9

• PR 33340 fix for main

• PR 33369 fix for 2.5

CVE-2021-3432

Invalid interval in CONNECT_IND leads to Division by Zero

This has been fixed in main for v2.6.0

• CVE-2021-3432

• Zephyr project bug tracker GHSA-7364-p4wc-8mj4

• PR 33278 fix for main

• PR 33369 fix for 2.5
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CVE-2021-3433

BT: Invalid channel map in CONNECT_IND results to Deadlock

This has been fixed in main for v2.6.0

• CVE-2021-3433

• Zephyr project bug tracker GHSA-3c2f-w4v6-qxrp

• PR 33278 fix for main

• PR 33369 fix for 2.5

CVE-2021-3434

L2CAP: Stack based buffer overflow in le_ecred_conn_req()

This has been fixed in main for v2.6.0

• CVE-2021-3434

• Zephyr project bug tracker GHSA-8w87-6rfp-cfrm

• PR 33305 fix for main

• PR 33419 fix for 2.5

• PR 33418 fix for 1.14.2

CVE-2021-3435

L2CAP: Information leakage in le_ecred_conn_req()

This has been fixed in main for v2.6.0

• CVE-2021-3435

• Zephyr project bug tracker GHSA-xhg3-gvj6-4rqh

• PR 33305 fix for main

• PR 33419 fix for 2.5

• PR 33418 fix for 1.14.2

CVE-2021-3436

Bluetooth: Possible to overwrite an existing bond during keys distribution phase when the iden-
tity address of the bond is known

During the distribution of the identity address information we don’t check for an existing bond
with the same identity address.This means that a duplicate entry will be created in RAM while
the newest entry will overwrite the existing one in persistent storage.

This has been fixed in main for v2.6.0

• CVE-2021-3436

• Zephyr project bug tracker GHSA-j76f-35mc-4h63

• PR 33266 fix for main

• PR 33432 fix for 2.5

• PR 33433 fix for 2.4
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• PR 33718 fix for 1.14.2

CVE-2021-3454

Truncated L2CAP K-frame causes assertion failure

For example, sending L2CAP K-frame where SDU length field is truncated to only one byte, causes
assertion failure in previous releases of Zephyr. This has been fixed in master by commit 0ba9437
but has not yet been backported to older release branches.

This has been fixed in main for v2.6.0

• CVE-2021-3454

• Zephyr project bug tracker GHSA-fx88-6c29-vrp3

• PR 32588 fix for main

• PR 33513 fix for 2.5

• PR 33514 fix for 2.4

CVE-2021-3455

Disconnecting L2CAP channel right after invalid ATT request leads freeze

When Central device connects to peripheral and creates L2CAP connection for Enhanced ATT,
sending some invalid ATT request and disconnecting immediately causes freeze.

This has been fixed in main for v2.6.0

• CVE-2021-3455

• Zephyr project bug tracker GHSA-7g38-3x9v-v7vp

• PR 35597 fix for main

• PR 36104 fix for 2.5

• PR 36105 fix for 2.4

CVE-2021-3510

Zephyr JSON decoder incorrectly decodes array of array

When using JSON_OBJ_DESCR_ARRAY_ARRAY, the subarray is has the token type
JSON_TOK_LIST_START, but then assigns to the object part of the union. arr_parse then
takes the offset of the array-object (which has nothing todo with the list) treats it as relative to
the parent object, and stores the length of the subarray in there.

This has been fixed in main for v2.7.0

• CVE-2021-3510

• Zephyr project bug tracker GHSA-289f-7mw3-2qf4

• PR 36340 fix for main

• PR 37816 fix for 2.6
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CVE-2021-3581

HCI data not properly checked leads to memory overflow in the Bluetooth stack

In the process of setting SCAN_RSP through the HCI command, the Zephyr Bluetooth protocol
stack did not effectively check the length of the incoming HCI data. Causes memory overflow,
and then the data in the memory is overwritten, and may even cause arbitrary code execution.

This has been fixed in main for v2.6.0

• CVE-2021-3581

• Zephyr project bug tracker GHSA-8q65-5gqf-fmw5

• PR 35935 fix for main

• PR 35984 fix for 2.5

• PR 35985 fix for 2.4

• PR 35985 fix for 1.14

CVE-2021-3625

Buffer overflow in Zephyr USB DFU DNLOAD

This has been fixed in main for v2.6.0

• CVE-2021-3625

• Zephyr project bug tracker GHSA-c3gr-hgvr-f363

• PR 36694 fix for main

CVE-2021-3835

Buffer overflow in Zephyr USB device class

This has been fixed in main for v3.0.0

• CVE-2021-3835

• Zephyr project bug tracker GHSA-fm6v-8625-99jf

• PR 42093 fix for main

• PR 42167 fix for 2.7

CVE-2021-3861

Buffer overflow in the RNDIS USB device class

This has been fixed in main for v3.0.0

• CVE-2021-3861

• Zephyr project bug tracker GHSA-hvfp-w4h8-gxvj

• PR 39725 fix for main

10.6. Vulnerabilities 3917

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3581
https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-8q65-5gqf-fmw5
https://github.com/zephyrproject-rtos/zephyr/pull/35935
https://github.com/zephyrproject-rtos/zephyr/pull/35984
https://github.com/zephyrproject-rtos/zephyr/pull/35985
https://github.com/zephyrproject-rtos/zephyr/pull/35985
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3625
https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-c3gr-hgvr-f363
https://github.com/zephyrproject-rtos/zephyr/pull/36694
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3835
https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-fm6v-8625-99jf
https://github.com/zephyrproject-rtos/zephyr/pull/42093
https://github.com/zephyrproject-rtos/zephyr/pull/42167
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3861
https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-hvfp-w4h8-gxvj
https://github.com/zephyrproject-rtos/zephyr/pull/39725


Zephyr Project Documentation, Release 3.7.99

CVE-2021-3966

Usb bluetooth device ACL read cb buffer overflow

This has been fixed in main for v3.0.0

• Zephyr project bug tracker GHSA-hfxq-3w6x-fv2m

• PR 42093 fix for main

• PR 42167 fix for v2.7.0

10.6.5 CVE-2022

CVE-2022-0553

Possible to retrieve unencrypted firmware image

This has been fixed in main for v3.0.0

• Zephyr project bug tracker GHSA-wrj2-9vj9-rrcp

• PR 42424 fix for main

CVE-2022-1041

Out-of-bound write vulnerability in the Bluetooth Mesh core stack can be triggered during pro-
visioning

This has been fixed in main for v3.1.0

• Zephyr project bug tracker GHSA-p449-9hv9-pj38

• PR 45136 fix for main

• PR 45188 fix for v3.0.0

• PR 45187 fix for v2.7.0

CVE-2022-1042

Out-of-bound write vulnerability in the Bluetooth Mesh core stack can be triggered during pro-
visioning

This has been fixed in main for v3.1.0

• Zephyr project bug tracker GHSA-j7v7-w73r-mm5x

• PR 45066 fix for main

• PR 45135 fix for v3.0.0

• PR 45134 fix for v2.7.0

CVE-2022-1841

Out-of-Bound Write in tcp_flags

This has been fixed in main for v3.1.0

• Zephyr project bug tracker GHSA-5c3j-p8cr-2pgh

• PR 45796 fix for main
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CVE-2022-2741

can: denial-of-service can be triggered by a crafted CAN frame

This has been fixed in main for v3.2.0

• Zephyr project bug tracker GHSA-hx5v-j59q-c3j8

• PR 47903 fix for main

• PR 47957 fix for v3.1.0

• PR 47958 fix for v3.0.0

• PR 47959 fix for v2.7.0

CVE-2022-2993

bt: host: Wrong key validation check

This has been fixed in main for v3.2.0

• Zephyr project bug tracker GHSA-3286-jgjx-8cvr

• PR 48733 fix for main

CVE-2022-3806

DoS: Invalid Initialization in le_read_buffer_size_complete()

• Zephyr project bug tracker GHSA-w525-fm68-ppq3

10.6.6 CVE-2023

CVE-2023-0396

Buffer Overreads in Bluetooth HCI

• Zephyr project bug tracker GHSA-8rpp-6vxq-pqg3

CVE-2023-0397

DoS: Invalid Initialization in le_read_buffer_size_complete()

• Zephyr project bug tracker GHSA-wc2h-h868-q7hj

This has been fixed in main for v3.3.0

• PR 54905 fix for main

• PR 47957 fix for v3.2.0

• PR 47958 fix for v3.1.0

• PR 47959 fix for v2.7.4
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CVE-2023-0779

net: shell: Improper input validation

• Zephyr project bug tracker GHSA-9xj8-6989-r549

This has been fixed in main for v3.3.0

• PR 54371 fix for main

• PR 54380 fix for v3.2.0

• PR 54381 fix for v2.7.4

CVE-2023-1901

HCI send_sync Dangling Semaphore Reference Re-use

• Zephyr project bug tracker GHSA-xvvm-8mcm-9cq3

This has been fixed in main for v3.4.0

• PR 56709 fix for main

CVE-2023-1902

HCI Connection Creation Dangling State Reference Re-use

• Zephyr project bug tracker GHSA-fx9g-8fr2-q899

This has been fixed in main for v3.4.0

• PR 56709 fix for main

CVE-2023-3725

Potential buffer overflow vulnerability in the Zephyr CANbus subsystem.

• Zephyr project bug tracker GHSA-2g3m-p6c7-8rr3

This has been fixed in main for v3.5.0

• PR 61502 fix for main

• PR 61518 fix for 3.4

• PR 61517 fix for 3.3

• PR 61516 fix for 2.7

CVE-2023-4257

Unchecked user input length in the Zephyr WiFi shell module can cause buffer overflows.

• Zephyr project bug tracker GHSA-853q-q69w-gf5j

This has been fixed in main for v3.5.0

• PR 605377 fix for main

• PR 61383 fix for 3.4
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CVE-2023-4258

bt: mesh: vulnerability in provisioning protocol implementation on provisionee side

• Zephyr project bug tracker GHSA-m34c-cp63-rwh7

This has been fixed in main for v3.5.0

• PR 59467 fix for main

• PR 60078 fix for 3.4

• PR 60079 fix for 3.3

CVE-2023-4259

Buffer overflow vulnerabilities in the Zephyr eS-WiFi driver

• Zephyr project bug tracker GHSA-gghm-c696-f4j4

This has been fixed in main for v3.5.0

• PR 63074 fix for main

• PR 63750 fix for main

CVE-2023-4260

Off-by-one buffer overflow vulnerability in the Zephyr FS subsystem

• Zephyr project bug tracker GHSA-gj27-862r-55wh

This has been fixed in main for v3.5.0

• PR 63079 fix for main

CVE-2023-4262

Potential buffer overflow vulnerabilities in the Zephyr Mgmt subsystem

• Zephyr project bug tracker GHSA-56p9-5p3v-hhrc

• This issue has not been fixed.

CVE-2023-4263

Potential buffer overflow vulnerability in the Zephyr IEEE 802.15.4 nRF 15.4 driver.

• Zephyr project bug tracker GHSA-rf6q-rhhp-pqhf

This has been fixed in main for v3.5.0

• PR 60528 fix for main

• PR 61384 fix for 3.4

• PR 61216 fix for 2.7
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CVE-2023-4264

Potential buffer overflow vulnerabilities in the Zephyr Bluetooth subsystem

• Zephyr project bug tracker GHSA-rgx6-3w4j-gf5j

This has been fixed in main for v3.5.0

• PR 58834 fix for main

• PR 60465 fix for main

• PR 61845 fix for main

• PR 61385 fix for 3.4

CVE-2023-4265

Two potential buffer overflow vulnerabilities in Zephyr USB code

• Zephyr project bug tracker GHSA-4vgv-5r6q-r6xh

This has been fixed in main for v3.4.0

• PR 59157 fix for main

• PR 59018 fix for main

CVE-2023-4424

bt: hci: DoS and possible RCE

• Zephyr project bug tracker GHSA-j4qm-xgpf-qjw3

This has been fixed in main for v3.5.0

• PR 61651 fix for main

• PR 61696 fix for 3.4

• PR 61695 fix for 3.3

• PR 61694 fix for 2.7

CVE-2023-5055

L2CAP: Possible Stack based buffer overflow in le_ecred_reconf_req()

• Zephyr project bug tracker GHSA-wr8r-7f8x-24jj

This has been fixed in main for v3.5.0

• PR 62381 fix for main

CVE-2023-5139

Potential buffer overflow vulnerability in the Zephyr STM32 Crypto driver.

• Zephyr project bug tracker GHSA-rhrc-pcxp-4453

This has been fixed in main for v3.5.0

• PR 61839 fix for main
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CVE-2023-5184

Potential signed to unsigned conversion errors and buffer overflow vulnerabilities in the Zephyr
IPM driver

• Zephyr project bug tracker GHSA-8x3p-q3r5-xh9g

This has been fixed in main for v3.5.0

• PR 63069 fix for main

CVE-2023-5563

The SJA1000 CAN controller driver backend automatically attempts to recover from a bus-
off event when built with CONFIG_CAN_AUTO_BUS_OFF_RECOVERY=y. This results in calling
k_sleep() in IRQ context, causing a fatal exception.

• Zephyr project bug tracker GHSA-98mc-rj7w-7rpv

This has been fixed in main for v3.5.0

• PR 63713 fix for main

• PR 63718 fix for 3.4

• PR 63717 fix for 3.3

CVE-2023-5753

Potential buffer overflow vulnerabilities in the Zephyr Bluetooth subsystem source code when
asserts are disabled.

• Zephyr project bug tracker GHSA-hmpr-px56-rvww

This has been fixed in main for v3.5.0

• PR 63605 fix for main

CVE-2023-5779

Out of bounds issue in remove_rx_filter in multiple can drivers.

• Zephyr project bug tracker GHSA-7cmj-963q-jj47

This has been fixed in main for v3.6.0

• PR 64399 fix for main

• PR 64416 fix for 3.5

• PR 64415 fix for 3.4

• PR 64427 fix for 3.3

• PR 64431 fix for 2.7

CVE-2023-6249

Signed to unsigned conversion problem in esp32_ipm_send may lead to buffer overflow

• Zephyr project bug tracker GHSA-32f5-3p9h-2rqc

This has been fixed in main for v3.6.0

10.6. Vulnerabilities 3923

https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-8x3p-q3r5-xh9g
https://github.com/zephyrproject-rtos/zephyr/pull/63069
https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-98mc-rj7w-7rpv
https://github.com/zephyrproject-rtos/zephyr/pull/63713
https://github.com/zephyrproject-rtos/zephyr/pull/63718
https://github.com/zephyrproject-rtos/zephyr/pull/63717
https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-hmpr-px56-rvww
https://github.com/zephyrproject-rtos/zephyr/pull/63605
https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-7cmj-963q-jj47
https://github.com/zephyrproject-rtos/zephyr/pull/64399
https://github.com/zephyrproject-rtos/zephyr/pull/64416
https://github.com/zephyrproject-rtos/zephyr/pull/64415
https://github.com/zephyrproject-rtos/zephyr/pull/64427
https://github.com/zephyrproject-rtos/zephyr/pull/64431
https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-32f5-3p9h-2rqc


Zephyr Project Documentation, Release 3.7.99

• PR 65546 fix for main

CVE-2023-6749

Potential buffer overflow due unchecked data coming from user input in settings shell.

• Zephyr project bug tracker GHSA-757h-rw37-66hw

This has been fixed in main for v3.6.0

• PR 66451 fix for main

• PR 66584 fix for 3.5

CVE-2023-6881

Potential buffer overflow vulnerability in Zephyr fuse file system.

• Zephyr project bug tracker GHSA-mh67-4h3q-p437

This has been fixed in main for v3.6.0

• PR 66592 fix for main

CVE-2023-7060

Missing Security Control in Zephyr OS IP Packet Handling

• Zephyr project bug tracker GHSA-fjc8-223c-qgqr

This has been fixed in main for v3.6.0

• PR 66645 fix for main

• PR 66739 fix for 3.5

• PR 66738 fix for 3.4

• PR 66887 fix for 2.7

10.6.7 CVE-2024

CVE-2024-1638

Bluetooth characteristic LESC security requirement not enforced without additional flags

• Zephyr project bug tracker GHSA-p6f3-f63q-5mc2

This has been fixed in main for v3.6.0

• PR 69170 fix for main

CVE-2024-3077

Bluetooth: Integer underflow in gatt_find_info_rsp. A malicious BLE device can crash BLE victim
device by sending malformed gatt packet.

• Zephyr project bug tracker GHSA-gmfv-4vfh-2mh8

This has been fixed in main for v3.7.0

• PR 69396 fix for main
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CVE-2024-3332

Bluetooth: DoS caused by null pointer dereference.

A malicious BLE device can send a specific order of packet sequence to cause a DoS attack on the
victim BLE device.

• Zephyr project bug tracker GHSA-jmr9-xw2v-5vf4

This has been fixed in main for v3.7.0

• PR 71030 fix for main

CVE-2024-4785

Under embargo until 2024-08-07

CVE-2024-5754

Under embargo until 2024-09-04

CVE-2024-5931

Under embargo until 2024-09-10

CVE-2024-6135

Under embargo until 2024-09-11

CVE-2024-6137

Under embargo until 2024-09-11

CVE-2024-6258

Under embargo until 2024-09-05

CVE-2024-6259

Under embargo until 2024-09-12

CVE-2024-6442

Under embargo until 2024-09-22

CVE-2024-6443

Under embargo until 2024-09-22
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CVE-2024-6444

Under embargo until 2024-09-22

10.7 Security standards and Zephyr

For a long period organizations were, more or less, left responsible to deal with cyber security on
their own. This included how to assess the scale and impact of the problem and who to properly
respond it.

Now, governments started looking how to regulate it and several regulations and enforcements
are rapidly emerging, and consequently, security standards. These standards provide guidelines
and outline requirements that products have to follow to achieve compliance.

This section aims to identify and assess which Zephyr project components are impacted by se-
curity standards requirements and provide the right information to enable organizations devel-
oping certifiable products using Zephyr project.

10.7.1 ETSI 303-645

ETSI EN 303 645, also known as “Cyber Security for Consumer Internet of Things: Baseline Re-
quirements,” is a standard developed by the European Telecommunications Standards Institute
(ETSI).

The standard includes provisions for secure software updates, data protection, secure commu-
nication, and the minimization of exposed attack surfaces, among other things. It is part of a
broader effort to address the challenges and risks associated with IoT devices.

Full version of the standard can be found here.

Terminology

Table 1: ETSI 303645 terminology

administrator user who has the highest-privilege level possible for a user of the
device, which can mean they are able to change any configuration
related to the intended functionality.

associated services digital services that, together with the device, are part of the over-
all consumer IoT product and that are typically required to provide
the product’s intended functionality.

authentication mecha-
nism

method used to prove the authenticity of an entity.

authentication value individual value of an attribute used by an authentication mecha-
nism.

best practice cryptogra-
phy

cryptography that is suitable for the corresponding use case and
has no indications of a feasible attack with current readily avail-
able techniques.

constrained device device which has physical limitations in either the ability to pro-
cess data, the ability to communicate data, the ability to store data
or the ability to interact with the user, due to restrictions that arise
from its intended use.

consumer natural person who is acting for purposes that are outside her/his
trade, business, craft or profession.

continues on next page
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Table 1 – continued from previous page
consumer IoT device network-connected (and network-connectable) device that has re-

lationships to associated services and are used by the consumer
typically in the home or as electronic wearables.

critical security parame-
ter

security-related secret information whose disclosure or modifica-
tion can compromise the security of a security module.

debug interface physical interface used by the manufacturer to communicate with
the device during development or to perform triage of issues with
the device and that is not used as part of the consumer-facing func-
tionality

defined support period minimum length of time, expressed as a period or by an end-date,
for which a manufacturer will provide security updates.

device manufacturer entity that creates an assembled final consumer IoT product,
which is likely to contain the products and components of many
other suppliers.

factory default state of the device after factory reset or after final produc-
tion/assembly.

initialization process that activates the network connectivity of the device for
operation and optionally sets authentication features for a user or
for network access.

initialized state state of the device after initialization.
IoT product consumer IoT device and its associated services.
isolable able to be removed from the network it is connected to, where

any functionality loss caused is related only to that connectivity
and not to its main function; alternatively, able to be placed in a
self-contained environment with other devices if and only if the
integrity of devices within that environment can be ensured

logical interface software implementation that utilizes a network interface to com-
municate over the network via channels or ports.

manufacturer relevant economic operator in the supply chain (including the de-
vice manufacturer).

network interface physical interface that can be used to access the functionality of
consumer IoT via a network.

owner user who owns or who purchased the device.
personal data Any information relating to an identified or identifiable natural

person.
physical interface physical port or air interface (such as radio, audio or optical) used

to communicate with the device at the physical layer.
public security parame-
ter

security related public information whose modification can com-
promise the security of a security module.

remotely accessible intended to be accessible from outside the local network.
security module set of hardware, software, and/or firmware that implements secu-

rity functions.
security update software update that addresses security vulnerabilities either dis-

covered by or reported to the manufacturer.
sensitive security pa-
rameters

critical security parameters and public security parameters.

software service software component of a device that is used to support functional-
ity.

telemetry data from a device that can provide information to help the man-
ufacturer identify issues or information related to device usage.

unique per device unique for each individual device of a given product class or type.
user natural person or organization.
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Provisions Assessment

The following table is a self-assessment using Table B.1 from ETSI EN 303 645, specif-
ically focusing on the Zephyr RTOS as a component within IoT products.

According with ETSI 303 645, table B.1 provides a mechanism to give information
about the implementation of the provisions presented in the standard. Zephyr has
adopted the following notations used in the standard:

Table 2: ETSI 303645 Table B.1 notations

M the provision is a mandatory requirement
R the provision is a recommendation
M C the provision is a mandatory requirement and conditional
R C the provision is a recommendation and conditional
Y The provision is supported by Zephyr
N The provision is not supported by Zephyr
N/A The provision is not applicable to Zephyr or it is product makers

responsibility
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Table 3: ETSI 303645 provisions assessment using table B.1

Provision Description Status Support Detail

Provision 5.1-1 Where passwords are used and in any state other than the
factory default, all consumer IoT device passwords shall
be unique per device or defined by the user.

M C N/A

Provision 5.1-2 Where pre-installed unique per device passwords are
used, these shall be generated with a mechanism that re-
duces the risk of automated attacks against a class or type
of device.

M C N/A

Provision 5.1-3 Authentication mechanisms used to authenticate users
against a device shall use best practice cryptography, ap-
propriate to the properties of the technology, risk and us-
age.

M N/A

Provision 5.1-4 Where a user can authenticate against a device, the de-
vice shall provide to the user or an administrator a simple
mechanism to change the authentication value used.

M C N/A

Provision 5.1-5 When the device is not a constrained device, it shall have
a mechanism available which makes brute-force attacks
on authentication mechanisms via network interfaces im-
practicable.

M C N TODO

Provision 5.2-1 The manufacture shall make a vulnerability disclosure pol-
icy publicly available.

M Y Vulnerability Management

Provision 5.2-2 Disclosed vulnerabilities should be acted on in a timely
manner.

R Y Vulnerability Timeline

Provision 5.2-3 Manufacturers should continually monitor for, identify
and rectify security vulnerabilities within products and
services they sell, produce, have produced and services
they operate during the defined support period.

R Y Modules are covered

Provision 5.3-1 All software components in consumer IoT devices should
be securely updatable.

R Y Device firwmware upgrade

Provision 5.3-2 When the device is not a constrained device, it shall have
an update mechanism for the secure installation of up-
dates.

M C Y Device firwmware upgrade

continues on next page
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Table 3 – continued from previous page
Provision Description Status Support Detail

Provision 5.3-3 An update shall be simple for the user to apply. M C N/A

Provision 5.3-4 Automatic mechanisms should be used for software up-
dates.

R C N/A

Provision 5.3-5 The device should check after initialization, and then peri-
odically, whether security updates are available.

R C N/A

Provision 5.3-6 If the device supports automatic updates and/or update no-
tifications, these should be enabled in the initialized state
and configurable so that the user can enable, disable, or
postpone installation of security updates and/or update no-
tifications.

R C N/A

Provision 5.3-7 The device shall use best practice cryptography to facilitate
secure update mechanisms.

M C Y West Sign

Provision 5.3-8 Security updates shall be timely. M C N/A

Provision 5.3-9 The device should verify the authenticity and integrity of
software updates.

R C Y Functionality provided by MCUboot
<https://github.com/zephyrproject-
rtos/mcuboot>. Also see Device Firwmware
Upgrade

Provision 5.3-10 Where updates are delivered over a network interface, the
device shall verify the authenticity and integrity of each
update via a trust relationship.

M N/A

Provision 5.3-11 The manufacturer should inform the user in a recogniz-
able and apparent manner that a security update is re-
quired together with information on the risks mitigated by
that update.

R C N/A

Provision 5.3-12 The device should notify the user when the application of
a software update will disrupt the basic functioning of the
device.

R C N/A Zephyr provides this information for its up-
dates. Anyone using Zephyr in their prod-
ucts must check if they are affected

Provision 5.3-13 The manufacturer shall publish, in an accessible way that
is clear and transparent to the user, the defined support
period.

M Y Release Life Cycle and Maintenance

continues on next page
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Table 3 – continued from previous page
Provision Description Status Support Detail

Provision 5.3-14 For constrained devices that cannot have their software
updated, the rationale for the absence of software updates,
the period and method of hardware replacement support
and a defined support period should be published by the
manufacturer in an accessible way that is clear and trans-
parent to the user.

R C N/A

Provision 5.3-15 For constrained devices that cannot have their software
updated, the product should be isolable and the hardware
replaceable.

R C N/A

Provision 5.3-16 The model designation of the consumer IoT device shall
be clearly recognizable, either by labelling on the device
or via a physical interface.

M N/A

Provision 5.4-1 Sensitive security parameters in persistent storage shall be
stored securely by the device.

M N There is not secure storage within Zephyr

Provision 5.4-2 Where a hard-coded unique per device identity is used in
a device for security purposes, it shall be implemented in
such a way that it resists tampering by means such as phys-
ical, electrical or software.

M C N/A

Provision 5.4-3 Hard-coded critical security parameters in device software
source code shall not be used.

M Y Hardening Tool

Provision 5.4-4 Any critical security parameters used for integrity and au-
thenticity checks of software updates and for protection
of communication with associated services in device soft-
ware shall be unique per device and shall be produced
with a mechanism that reduces the risk of automated at-
tacks against classes of devices.

M N/A

Provision 5.5-1 The consumer IoT device shall use best practice cryptogra-
phy to communicate securely.

M Y

Provision 5.5-2 The consumer IoT device should use reviewed or eval-
uated implementations to deliver network and security
functionalities, particularly in the field of cryptography.

R Y

Provision 5.5-3 Cryptographic algorithms and primitives should be updat-
able.

R N The whole image must be updated

continues on next page
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Table 3 – continued from previous page
Provision Description Status Support Detail

Provision 5.5-4 Access to device functionality via a network interface in
the initialized state should only be possible after authenti-
cation on that interface.

R N/A

Provision 5.5-5 Device functionality that allows security-relevant changes
in configuration via a network interface shall only be ac-
cessible after authentication. The exception is for network
service protocols that are relied upon by the device and
where the manufacturer cannot guarantee what configu-
ration will be required for the device to operate.

M N/A

Provision 5.5-6 Critical security parameters should be encrypted in transit,
with such encryption appropriate to the properties of the
technology, risk and usage.

R Y

Provision 5.5-7 The consumer IoT device shall protect the confidentiality
of critical security parameters that are communicated via
remotely accessible network interfaces.

M Y

Provision 5.5-8 The manufacturer shall follow secure management pro-
cesses for critical security parameters that relate to the de-
vice.

M N/A

Provision 5.6-1 All unused network and logical interfaces shall be dis-
abled.

M Y Kconfig

Provision 5.6-2 In the initialized state, the network interfaces of the device
shall minimize the unauthenticated disclosure of security-
relevant information.

M Y

Provision 5.6-3 Device hardware should not unnecessarily expose physi-
cal interfaces to attack.

R Y Kconfig and Hardening Tool

Provision 5.6-4 Where a debug interface is physically accessible, it shall be
disabled in software.

M C Y Hardening Tool

Provision 5.6-5 The manufacturer should only enable software services
that are used or required for the intended use or operation
of the device.

R Y Kconfig and Hardening Tool

Provision 5.6-6 Code should be minimized to the functionality necessary
for the service/device to operate.

R Y Kconfig

continues on next page
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Table 3 – continued from previous page
Provision Description Status Support Detail

Provision 5.6-7 Software should run with least necessary privileges, taking
account of both security and functionality.

R Y Security Overview

Provision 5.6-8 The device should include a hardware-level access control
mechanism for memory.

R Y Memory protection

Provision 5.6-9 The manufacturer should follow secure development pro-
cesses for software deployed on the device.

R Y Security Overview and Coding guidelines

Provision 5.7-1 The consumer IoT device should verify its software using
secure boot mechanisms.

R Y Functionality provided by MCUboot
<https://github.com/zephyrproject-
rtos/mcuboot>. Also see Security Overview

Provision 5.7-2 If an unauthorized change is detected to the software, the
device should alert the user and/or administrator to the is-
sue and should not connect to wider networks than those
necessary to perform the alerting function.

R N Zephyr does not provide runtime detection
/ notification.

Provision 5.8-1 The confidentiality of personal data transiting between a
device and a service, especially associated services, should
be protected, with best practice cryptography.

R Y

Provision 5.8-2 The confidentiality of sensitive personal data communi-
cated between the device and associated services shall be
protected, with cryptography appropriate to the properties
of the technology and usage.

M Y

Provision 5.8-3 All external sensing capabilities of the device shall be doc-
umented in an accessible way that is clear and transparent
for the user.

M Y Sensing Subsystem

Provision 5.9-1 Resilience should be built in to consumer IoT devices and
services, taking into account the possibility of outages of
data networks and power.

R Y

Provision 5.9-2 Consumer IoT devices should remain operating and lo-
cally functional in the case of a loss of network access and
should recover cleanly in the case of restoration of a loss
of power.

R Y

continues on next page
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Table 3 – continued from previous page
Provision Description Status Support Detail

Provision 5.9-3 The consumer IoT device should connect to networks in
an expected, operational and stable state and in an or-
derly fashion, taking the capability of the infrastructure
into consideration.

R Y

Provision 5.10-1 If telemetry data is collected from consumer IoT devices
and services, such as usage and measurement data, it
should be examined for security anomalies.

R C N/A

Provision 5.11-1 The user shall be provided with functionality such that
user data can be erased from the device in a simple man-
ner.

M N/A

Provision 5.11-2 The consumer should be provided with functionality on
the device such that personal data can be removed from
associated services in a simple manner.

R N/A

Provision 5.11-3 Users should be given clear instructions on how to delete
their personal data.

R N/A

Provision 5.11-4 Users should be provided with clear confirmation that per-
sonal data has been deleted from services, devices and ap-
plications.

R N/A

Provision 5.12-1 Installation and maintenance of consumer IoT should in-
volve minimal decisions by the user and should follow se-
curity best practice on usability.

R N/A

Provision 5.12-2 The manufacturer should provide users with guidance on
how to securely set up their device.

R N/A

Provision 5.12-3 The manufacturer should provide users with guidance on
how to check whether their device is securely set up.

R N/A

Provision 5.13-1 The consumer IoT device software shall validate data in-
put via user interfaces or transferred via Application Pro-
gramming Interfaces (APIs) or between networks in ser-
vices and devices.

M Y Syscall verification and Coding guidelines

continues on next page
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Table 3 – continued from previous page
Provision Description Status Support Detail

Provision 6.1-1 The manufacturer shall provide consumers with clear and
transparent information about what personal data is pro-
cessed, how it is being used, by whom, and for what pur-
poses, for each device and service. This also applies to
third parties that can be involved, including advertisers.

M N/A

Provision 6.1-2 Where personal data is processed on the basis of con-
sumers’ consent, this consent shall be obtained in a valid
way.

M C N/A

Provision 6.1-3 Consumers who gave consent for the processing of their
personal data shall have the capability to withdraw it at
any time.

M N/A

Provision 6.1-4 If telemetry data is collected from consumer IoT devices
and services, the processing of personal data should be
kept to the minimum necessary for the intended function-
ality.

R C N/A

Provision 6.1-5 If telemetry data is collected from consumer IoT devices
and services, consumers shall be provided with informa-
tion on what telemetry data is collected, how it is being
used, by whom, and for what purposes.

M C N/A
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Chapter 11

Safety

These documents describe the processes, developer guidelines and requirements for ensuring
safety is addressed within the Zephyr project.

11.1 Zephyr Safety Overview

11.1.1 Introduction

This document is the safety documentation providing an overview over the safety-relevant ac-
tivities and what the Zephyr Project and the Zephyr Safety Working Group / Committee try to
achieve.

This overview is provided for people who are interested in the functional safety development
part of the Zephyr RTOS and project members who want to contribute to the safety aspects of
the project.

11.1.2 Overview

In this section we give the reader an overview of what the general goal of the safety certifica-
tion is, what standard we aim to achieve and what quality standards and processes need to be
implemented to reach such a safety certification.

11.1.3 Safety Document update

This document is a living document and may evolve over time as new requirements, guidelines,
or processes are introduced.

1. Changes will be submitted from the interested party(ies) via pull requests to the Zephyr
documentation repository.

2. The Zephyr Safety Committee will review these changes and provide feedback or accep-
tance of the changes.

3. Once accepted, these changes will become part of the document.
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11.1.4 General safety scope

The general scope of the Safety Committee is to achieve a certification for the IEC 61508 standard
and the Safety Integrity Level (SIL) 3 / Systematic Capability (SC) 3 for a limited source scope (see
certification scope TBD). Since the code base is pre-existing, we use the route 3s/1s approach
defined by the IEC 61508 standard.

Route 3s
Assessment of non-compliant development. Which is basically the route 1s with existing
sources.

Route 1s
Compliant development. Compliancewith the requirements of this standard for the avoidance
and control of systematic faults in software.

Summarization IEC 61508 standard

The IEC 61508 standard is a widely recognized international standard for functional safety of
electrical, electronic, and programmable electronic safety-related systems. Here’s an overview
of some of the key safety aspects of the standard:

1. Hazard and Risk Analysis: The IEC 61508 standard requires a thorough analysis of poten-
tial hazards and risks associated with a system in order to determine the appropriate level
of safety measures needed to reduce those risks to acceptable levels.

2. Safety Integrity Level (SIL): The standard introduces the concept of Safety Integrity Level
(SIL) to classify the level of risk reduction required for each safety function. The higher the
SIL, the greater the level of risk reduction required.

3. System Design: The IEC 61508 standard requires a systematic approach to system design
that includes the identification of safety requirements, the development of a safety plan,
and the use of appropriate safety techniques and measures to ensure that the system meets
the required SIL.

4. Verification and Validation: The standard requires rigorous testing and evaluation of the
safety-related system to ensure that it meets the specified SIL and other safety require-
ments. This includes verification of the system design, validation of the system’s function-
ality, and ongoing monitoring and maintenance of the system.

5. Documentation and Traceability: The IEC 61508 standard requires a comprehensive doc-
umentation process to ensure that all aspects of the safety-related system are fully docu-
mented and that there is full traceability from the safety requirements to the final system
design and implementation.

Overall, the IEC 61508 standard provides a framework for the design, development, and imple-
mentation of safety-related systems that aims to reduce the risk of accidents and improve overall
safety. By following the standard, organizations can ensure that their safety-related systems are
designed and implemented to the highest level of safety integrity.

11.1.5 Quality

Quality is a mandatory expectation for software across the industry. The code base of the project
must achieve various software quality goals in order to be considered an auditable code base
from a safety perspective and to be usable for certification purposes. But software quality is not
an additional requirement caused by functional safety standards. Functional safety considers
quality as an existing pre-condition and therefore the “quality managed” status should be pur-
sued for any project regardless of the functional safety goals. The following list describes the
quality goals which need to be reached to achieve an auditable code base:

1. Basic software quality standards
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a. Coding Guidelines (including: static code analysis, coding style, etc.)

b. Safety Requirements and requirements tracing

c. Test coverage

2. Software architecture design principles

a. Layered architecture model

b. Encapsulated components

c. Encapsulated single functionality (if not fitable and manageable in safety)

Basic software quality standards - Safety view

In this chapter the Safety Committee describes why they need the above listed quality goals as
pre-condition and what needs to be done to achieve an auditable code base from the safety per-
spective. Generally speaking, it can be said that all of these quality measures regarding safety
are used to minimize the error rate during code development.

Coding Guidelines The coding guidelines are the basis to a common understanding and a uni-
fied ruleset and development style for industrial software products. For safety the coding guide-
lines are essential and have another purpose beside the fact of a unified ruleset. It is also nec-
essary to prove that the developers follow a unified development style to prevent systematic
errors in the process of developing software and thus to minimize the overall error rate of the
complete software system.

Also the IEC 61508 standard sets a pre-condition and recommendation towards the use of coding
standards / guidelines to reduce likelihood of errors.

Requirements and requirements tracing Requirements and requirement management are
not only important for software development, but also very important in terms of safety. On the
one hand, this specifies and describes in detail and on a technical level what the software should
do, and on the other hand, it is an important and necessary tool to verify whether the described
functionality is implemented as expected. For this purpose, tracing the requirements down to
the code level is used. With the requirements management and tracing in hand, it can now be
verified whether the functionality has been tested and implemented correctly, thus minimizing
the systematic error rate.

Also the IEC 61508 standard highly recommends (which is like a must-have for the certification)
requirements and requirements tracing.

Test coverage A high test coverage, in turn, is evidence of safety that the code conforms pre-
cisely to what it was developed for and does not execute any unforeseen instructions. If the
entire code is tested and has a high (ideally 100%) test coverage, it has the additional advantage
of quickly detecting faulty changes and further minimizing the error rate. However, it must be
noted that different requirements apply to safety for test coverage, and various metrics must
be considered, which are prescribed by the IEC 61508 standard for the SIL 3 / SC3 target. The
following must be fulfilled, among other things:

• Structural test coverage (entry points) 100%

• Structural test coverage (statements) 100%

• Structural test coverage (branches) 100%

If the 100% cannot be reached (e.g. statement coverage of defensive code) that part needs to be
described and justified in the documentation.
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Software architecture design principles

To create and maintain a structured software product it is also necessary to consider individual
software architecture designs and implement them in accordance with safety standards because
some designs and implementations are not reasonable in safety, so that the overall software
and code base can be used as auditable code. However, most of these software architecture
designs have already been implemented in the Zephyr project and need to be verified by the
Safety Committee / Safety Working Group and the safety architect.

Layered architecture model The IEC 61508 standard strongly recommends a modular ap-
proach to software architecture. This approach has been pursued in the Zephyr project from the
beginning with its layered architecture. The idea behind this architecture is to organize modules
or components with similar functionality into layers. As a result, each layer can be assigned a
specific role in the system. This model has the advantage in safety that interfaces between dif-
ferent components and layers can be shown at a very high level, and thus it can be determined
which functionalities are safety-relevant and can be limited. Furthermore, various analyses and
documentations can be built on top of this architecture, which are important for certification and
the responsible certification body.

Encapsulated components Encapsulated components are an essential part of the architecture
design for safety at this point. The most important aspect is the separation of safety-relevant
components from non-safety-relevant components, including their associated interfaces. This
ensures that the components have no repercussions on other components.

Encapsulated single functionality (if not reasonable and manageable in safety) Another
requirement for the overall system and software environment is that individual functionalities
can be disabled within components. This is because if a function is absolutely unacceptable
for safety (e.g. complete dynamic memory management), then these individual functionalities
should be able to be turned off. The Zephyr Project already offers such a possibility through the
use of Kconfig and its flexible configurability.

11.1.6 Processes and workflow

The diagram describes the rough process defined by the Safety Committee to ensure safety in the
development of the Zephyr project. To ensure understanding, a few points need to be highlighted
and some details explained regarding the role of the safety architect and the role of the safety
committee in the whole process. The diagram only describes the paths that are possible when a
change is related to safety.

1. On the main branch, the safety scope of the project should be identified, which typically
represents a small subset of the entire code base. This subset should then be made au-
ditable during normal development on “main”, which means that special attention is paid
to quality goals (Quality) and safety processes within this scope. The Safety Architect works
alongside the Technical Steering Committee (TSC) in this area, monitoring the development
process to ensure that the architecture meets the safety requirements.

2. At this point, the safety architect plays an increasingly important role. For PRs/issues that
fall within the safety scope, the safety architect should ideally be involved in the discussions
and decisions of minor changes in the safety scope to be able to react to safety-relevant
changes that are not conformant. If a pull request or issue introduces a significant and
influential change or improvement that requires extended discussion or decision-making,
the safety architect should bring it to the attention of the Safety Committee or the Techni-
cal Steering Committee (TSC) as appropriate, so that they can make a decision on the best
course of action.
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Fig. 1: Safety process and workflow overview
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3. This section describes the certification side. At this point, the code base has to be in an “au-
ditable” state, and ideally no further changes should be necessary or made to the code base.
There is still a path from the main branch to this area. This is needed in case a serious bug
or important change is found or implemented on the main branch in the safety scope, after
the LTS and the auditable branch were created. In this case, the Safety Committee, together
with the safety architect, must decide whether this bug fix or change should be integrated
into the LTS so that the bug fix or change could also be integrated into the auditable branch.
This integration can take three forms: First either as only a code change or second as only
an update to the safety documentation or third as both.

4. This describes the necessary safety process required for certification itself. Here, the final
analyses, tests, and documents are created and conducted which must be created and con-
ducted during the certification, and which are prescribed by the certifying authority and
the standard being certified. If the certification body approves everything at this stage and
the safety process is completed, a safety release can be created and published.

5. This transition from the auditable branch to the main branch should only occur in excep-
tional circumstances, specifically when something has been identified during the certifica-
tion process that needs to be quickly adapted on the “auditable” branch in order to obtain
certification. In order to prevent this issue from arising again during the next certification,
there needs to be a path to merge these changes back into the main branch so that they are
not lost, and to have them ready for the next certification if necessary.

Important

Safety should not block the project and minimize the room to grow in any way.

Important

TODO: Find and define ways, guidelines and processes which minimally impact the daily
work of the maintainers, reviewers and contributors and also the safety architect itself. But
which are also suitable for safety.

11.2 Safety Requirements

11.2.1 Introduction

The safety committee leads the effort to gather requirements that reflect the actual state of the
implementation, following the route 3s approach of the project’s safety effort. The goal is NOT
to create new requirements to request additional features for the project.

The requirements are gathered in the separate repository: Requirement repository

11.2.2 Guidelines

Below are the guidelines for the requirements repository and the expectations of the safety com-
mittee when adding requirements to the repository.

Scope

The scope of the requirements covers the KERNEL functionalities.
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Consistency

Maintain consistency across all requirements. The language and choice of words shall be con-
sistent. (See: Syntax)

Levels of requirements in the repository

System Requirements
System requirements describe the behaviour of the Zephyr RTOS (= the system here). They
describe the functionality of the Zephyr RTOS from a very high-level perspective, without
going into details of the functionality itself. The purpose of the system requirements is to
get an overview of the currently implemented features of the Zephyr RTOS. In other words a
person writing these requirements usually has some knowledge of the Zephyr RTOS Project
as the requirements are specific to an RTOS.

Software Requirements
Software requirements refine the system-level requirements at a more granular level so
that each requirement can be tested. These requirements define the specific actions the
feature shall be able to execute and the behavior of the feature.

Requirement UID (Unique identifier) Handling

The tool used to manage requirements, strictDoc, is responsible for handling the Unique Identi-
fier (UID) associated with each requirement. To manage UIDs, follow these steps:

1. Don’t add a requirement UID and UID field for new requirements

2. After completing work on the new requirements execute: strictDoc manage auto-uid .
3. Establish links between the requirements with the new attributed UIDs if needed

After doing this, the requirements are ready and a pull request can be created. The CI in the PR
will check if the requirements UIDs are valid or if there are duplicates in it. If there are duplicates
in the PR, these need to be resolved by rebasing and re-executing the steps above.

Requirement Types

• Functional

• Non-Functional

Requirement title convention

Use short and succinct requirement titles.

Pull Request requirement repository

• Adhere to the Contribution Guidelines of the Zephyr Project.

– As long as they are applicable to the requirements repository.

• Avoid creating large commits that contain both trivial and non-trivial changes.

• Avoid moving and changing requirements in the same commit.
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Characteristics of a good requirement

• Unambiguous

• Verifiable (e.g. testable for functional requirements)

• Clear (concise, succinct, simple, precise)

• Correct

• Understandable

• Feasible (realistic, possible)

• Independent

• Atomic

• Necessary

• Implementation-free (abstract)

Characteristics of a set of requirements

• Complete

• Consistent

• Non redundant

Syntax

• Use of a recognized Requirements Syntax is recommended.

– EARS is a good reference. Particularly if you are unfamiliar with requirements writing.

– Other formats are accepted as long as the characteristics of a requirement from above
are met.
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Glossary of Terms

API
(Application Program Interface) A defined set of routines and protocols for building appli-
cation software.

application
The set of user-supplied files that the Zephyr build system uses to build an application image
for a specified board configuration. It can contain application-specific code, kernel config-
uration settings, and at least one CMakeLists.txt file. The application’s kernel configuration
settings direct the build system to create a custom kernel that makes efficient use of the
board’s resources. An application can sometimes be built for more than one type of board
configuration (including boards with different CPU architectures), if it does not require any
board-specific capabilities.

application image
A binary file that is loaded and executed by the board for which it was built. Each appli-
cation image contains both the application’s code and the Zephyr kernel code needed to
support it. They are compiled as a single, fully-linked binary. Once an application image
is loaded onto a board, the image takes control of the system, initializes it, and runs as the
system’s sole application. Both application code and kernel code execute as privileged code
within a single shared address space.

architecture
An instruction set architecture (ISA) along with a programming model.

board
A target system with a defined set of devices and capabilities, which can load and execute
an application image. It may be an actual hardware system or a simulated system running
under QEMU. A board can contain one or more SoCs. The Zephyr kernel supports a variety
of boards.

board configuration
A set of kernel configuration options that specify how the devices present on a board are
used by the kernel. The Zephyr build system defines one or more board configurations for
each board it supports. The kernel configuration settings that are specified by the build
system can be over-ridden by the application, if desired.

board name
The human-readable name of a board. Uniquely and descriptively identifies a particular
system, but does not include additional information that may be required to actually build
a Zephyr image for it. See Board terminology for additional details.

board qualifiers
The set of additional tokens, separated by a forward slash (/) that follow the board name
(and optionally board revision) to form the board target. The currently accepted qualifiers
are SoC, CPU cluster and variant. See Board terminology for additional details.
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board revision
An optional version string that identifies a particular revision of a hardware system. This
is useful to avoid duplication of board files whenever small changes are introduced to a
hardware system. See Multiple board revisions and Building for a board revision for more
information.

board target
The full string that can be provided to any of the Zephyr build tools to compile and link an
image for a particular hardware system. This string uniquely identifies the combination
of board name, board revision and board qualifiers. See Board terminology for additional
details.

CPU cluster
A group of one or more CPU cores, all executing the same image within the same address
space and in a symmetrical (SMP) configuration. Only CPU cores of the same architecture
can be in a single cluster. Multiple CPU clusters (each of one or more cores) can coexist in
the same SoC.

CPU core
A single processing unit, with its own Program Counter, executing program instructions
sequentially. CPU cores are part of a CPU cluster, which can contain one or more cores.

device runtime power management
Device Runtime Power Management (PM) refers the capability of devices to save energy
independently of the system power state. Devices will keep reference of their usage
and will automatically be suspended or resumed. This feature is enabled via the CON-
FIG_PM_DEVICE_RUNTIME Kconfig option.

idle thread
A system thread that runs when there are no other threads ready to run.

IDT
(Interrupt Descriptor Table) a data structure used by the x86 architecture to implement an
interrupt vector table. The IDT is used to determine the correct response to interrupts and
exceptions.

ISR
(Interrupt Service Routine) Also known as an interrupt handler, an ISR is a callback function
whose execution is triggered by a hardware interrupt (or software interrupt instructions)
and is used to handle high-priority conditions that require interrupting the current code
executing on the processor.

kernel
The set of Zephyr-supplied files that implement the Zephyr kernel, including its core ser-
vices, device drivers, network stack, and so on.

power domain
A power domain is a collection of devices for which power is applied and removed collec-
tively in a single action. Power domains are represented by device.

power gating
Power gating reduces power consumption by shutting off areas of an integrated circuit that
are not in use.

SoC
A System on a chip, that is, an integrated circuit that contains at least one CPU cluster (in
turn with at least one CPU core), as well as peripherals and memory.

SoC family
One or more SoCs or SoC series that share enough in common to consider them related and
under a single family denomination.

SoC series
A number of different SoCs that share similar characteristics and features, and that the
vendor typically names and markets together.
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subsystem
A subsystem refers to a logically distinct part of the operating system that handles specific
functionality or provides certain services.

system power state
System power states describe the power consumption of the system as a whole. System
power states are represented by pm_state.

variant
In the context of board qualifiers, a variant designates a particular type or configuration of
a build for a combination of SoC and CPU cluster. Common uses of the variant concept in-
clude introducing both secure and non-secure builds for platforms with Trusted Execution
Environment support, or selecting the type of RAM used in a build.

west
A multi-repo meta-tool developed for the Zephyr project. See West (Zephyr’s meta-tool).

west installation
An obsolete term for a west workspace used prior to west 0.7.

west manifest
A YAML file, usually named west.yml, which describes projects, or the Git repositories
which make up a west workspace, along with additional metadata. See Basics for general
information and West Manifests for details.

west manifest repository
The Git repository in a west workspace which contains the west manifest. Its location is
given by the manifest.path configuration option. See Basics.

west project
Each of the entries in awestmanifest, which describe a Git repository that will be cloned and
managed by west when working with the correspondingwestmanifest repository. Note that
a west project is different from a zephyr module, although many projects are also modules.
See Projects for additional information.

west workspace
A folder on your system with a .west subdirectory and a west manifest repository in it.
You clone the Zephyr source code, as well as that of its west projects onto your system by
creating a west workspace using the west init command. See Basics.

XIP
(eXecute In Place) a method of executing programs directly from long term storage rather
than copying it into RAM, saving writable memory for dynamic data and not the static pro-
gram code.

zephyr module
A Git repository containing a zephyr/module.yml file, used by the Zephyr build system to
integrate the source code and configuration files of the module into a regular Zephyr build.
Zephyr modules may be west projects, but they do not have to. See Modules (External
projects) for additional details.
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[c] Distributed Programmable Peripheral Interconnect (DPPI)

[d] Software Interrupt (SWI)

[e] Random Number Generator (RNG)

[f] AES Electronic Codebook Mode Encryption (ECB)

[g] Cipher Block Chaining (CBC) - Message Authentication Code with Counter Mode encryp-
tion (CCM)

[h] Accelerated Address Resolver (AAR)

[i] General Purpose Input Output (GPIO)

[j] GPIO tasks and events (GPIOTE)

[k] Temperature sensor (TEMP)

[l] Universal Asynchronous Receiver Transmitter (UART)

[m] Interprocess Communication peripheral (IPC)

[th-imboot] Must boot with an immutable bootloader.

[th-authrepl] Application image shall only be replaced with an authorized image.

[th-timely-update] Application updates shall be done in a timely manner.

[th-atomic-update] Application updates shall be atomic.

[th-root-certs] TLS must have a list of trusted root certificates.

[th-root-check] TLS must verify root certificate from server is valid.

[th-secret-storage] There must be a mechanism to securely store client secrets. The least amount
of code necessary shall have access to these secrets.

[th-time] System must have moderately accurate notion of the current date/time.

[th-conf] The system must receive, and keep configuration data.

[th-logs] The system must log security-related events, and either store them locally, or send to a
service.

[th-all-tls] All communications with the cloud service shall use TLS.

[th-tls-ciphers] TLS shall be configured to allow only generally agreed cipher suites (including
forward secrecy).

[th-tls-client-auth] The device shall authenticate itself with the cloud provider using one of the
methods described.

[th-entropy] The TLS layer shall use a modern, accepted cryptographic random-bit generator
seeded by an entropy source within the SoC.
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[th-initial-provision] The device shall have a per-device secret loaded before deployment.

[th-initial-secret] The initial secret shall be securely maintained, and destroyed in any external
location as soon as the device is provisioned.

[th-reprovision] Reprovisioning a device shall be done securely.

[th-destruction] Upon decommissioning, the device secret shall be rendered ineffective.
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arch_is_in_isr (C function), 3749
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arch_kernel_init (C function), 3762
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arch_mem_map (C function), 3759
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arch_smp_init (C function), 3749
arch_switch (C function), 3745
arch_switch_to_main_thread (C function), 3745
arch_syscall_invoke0 (C function), 3752
arch_syscall_invoke1 (C function), 3752
arch_syscall_invoke2 (C function), 3753
arch_syscall_invoke3 (C function), 3753
arch_syscall_invoke4 (C function), 3753
arch_syscall_invoke5 (C function), 3754
arch_syscall_invoke6 (C function), 3754
arch_syscall_oops (C function), 3756
arch_system_halt (C function), 3747
arch_timing_counter_get (C function), 656
arch_timing_cycles_get (C function), 656
arch_timing_cycles_to_ns (C function), 657
arch_timing_cycles_to_ns_avg (C function), 657
arch_timing_freq_get (C function), 657
arch_timing_freq_get_mhz (C function), 658
arch_timing_init (C function), 655
arch_timing_start (C function), 655
arch_timing_stop (C function), 655
arch_tls_stack_setup (C function), 3746
arch_user_mode_enter (C function), 3756
arch_user_string_nlen (C function), 3756
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ATOMIC_BITMAP_SIZE (C macro), 494
atomic_cas (C function), 496
atomic_clear (C function), 500
atomic_clear_bit (C function), 496
atomic_dec (C function), 498
ATOMIC_DEFINE (C macro), 494
atomic_get (C function), 498
atomic_inc (C function), 498
ATOMIC_INIT (C macro), 494
atomic_nand (C function), 501
atomic_or (C function), 500
atomic_ptr_cas (C function), 497
atomic_ptr_clear (C function), 500
atomic_ptr_get (C function), 499
ATOMIC_PTR_INIT (C macro), 494
atomic_ptr_set (C function), 499
atomic_set (C function), 499
atomic_set_bit (C function), 496
atomic_set_bit_to (C function), 496
atomic_sub (C function), 498
atomic_test_and_clear_bit (C function), 495
atomic_test_and_set_bit (C function), 495
atomic_test_bit (C function), 495
atomic_xor (C function), 501
audio_channel_t (C enum), 3195
audio_channel_t.AUDIO_CHANNEL_ALL (C enumerator), 3195
audio_channel_t.AUDIO_CHANNEL_FRONT_CENTER (C enumerator), 3195
audio_channel_t.AUDIO_CHANNEL_FRONT_LEFT (C enumerator), 3195
audio_channel_t.AUDIO_CHANNEL_FRONT_RIGHT (C enumerator), 3195
audio_channel_t.AUDIO_CHANNEL_LFE (C enumerator), 3195
audio_channel_t.AUDIO_CHANNEL_REAR_CENTER (C enumerator), 3195
audio_channel_t.AUDIO_CHANNEL_REAR_LEFT (C enumerator), 3195
audio_channel_t.AUDIO_CHANNEL_REAR_RIGHT (C enumerator), 3195
audio_channel_t.AUDIO_CHANNEL_SIDE_LEFT (C enumerator), 3195
audio_channel_t.AUDIO_CHANNEL_SIDE_RIGHT (C enumerator), 3195
audio_codec_apply_properties (C function), 3197
audio_codec_cfg (C struct), 3197
audio_codec_cfg.dai_cfg (C var), 3198
audio_codec_cfg.dai_type (C var), 3198
audio_codec_cfg.mclk_freq (C var), 3198
audio_codec_clear_errors (C function), 3197
audio_codec_configure (C function), 3196
audio_codec_error_callback_t (C type), 3193
audio_codec_error_type (C enum), 3195
audio_codec_error_type.AUDIO_CODEC_ERROR_DC (C enumerator), 3196
audio_codec_error_type.AUDIO_CODEC_ERROR_OVERCURRENT (C enumerator), 3195
audio_codec_error_type.AUDIO_CODEC_ERROR_OVERTEMPERATURE (C enumerator), 3195
audio_codec_error_type.AUDIO_CODEC_ERROR_OVERVOLTAGE (C enumerator), 3196
audio_codec_error_type.AUDIO_CODEC_ERROR_UNDERVOLTAGE (C enumerator), 3196
audio_codec_register_error_callback (C function), 3197
audio_codec_set_property (C function), 3196
audio_codec_start_output (C function), 3196
audio_codec_stop_output (C function), 3196
audio_dai_cfg_t (C union), 3197
audio_dai_cfg_t.i2s (C var), 3197
audio_dai_type_t (C enum), 3194
audio_dai_type_t.AUDIO_DAI_TYPE_I2S (C enumerator), 3194
audio_dai_type_t.AUDIO_DAI_TYPE_INVALID (C enumerator), 3194

Index 3957



Zephyr Project Documentation, Release 3.7.99

audio_pcm_rate_t (C enum), 3193
audio_pcm_rate_t.AUDIO_PCM_RATE_8K (C enumerator), 3193
audio_pcm_rate_t.AUDIO_PCM_RATE_16K (C enumerator), 3193
audio_pcm_rate_t.AUDIO_PCM_RATE_24K (C enumerator), 3193
audio_pcm_rate_t.AUDIO_PCM_RATE_32K (C enumerator), 3194
audio_pcm_rate_t.AUDIO_PCM_RATE_44P1K (C enumerator), 3194
audio_pcm_rate_t.AUDIO_PCM_RATE_48K (C enumerator), 3194
audio_pcm_rate_t.AUDIO_PCM_RATE_96K (C enumerator), 3194
audio_pcm_rate_t.AUDIO_PCM_RATE_192K (C enumerator), 3194
audio_pcm_width_t (C enum), 3194
audio_pcm_width_t.AUDIO_PCM_WIDTH_16_BITS (C enumerator), 3194
audio_pcm_width_t.AUDIO_PCM_WIDTH_20_BITS (C enumerator), 3194
audio_pcm_width_t.AUDIO_PCM_WIDTH_24_BITS (C enumerator), 3194
audio_pcm_width_t.AUDIO_PCM_WIDTH_32_BITS (C enumerator), 3194
audio_property_t (C enum), 3194
audio_property_t.AUDIO_PROPERTY_OUTPUT_MUTE (C enumerator), 3195
audio_property_t.AUDIO_PROPERTY_OUTPUT_VOLUME (C enumerator), 3194
audio_property_value_t (C union), 3198
audio_property_value_t.mute (C var), 3198
audio_property_value_t.vol (C var), 3198
auxdisplay_backlight_get (C function), 3189
auxdisplay_backlight_set (C function), 3189
auxdisplay_brightness_get (C function), 3189
auxdisplay_brightness_set (C function), 3189
auxdisplay_capabilities (C struct), 3191
auxdisplay_capabilities_get (C function), 3188
auxdisplay_capabilities.backlight (C var), 3192
auxdisplay_capabilities.brightness (C var), 3192
auxdisplay_capabilities.columns (C var), 3191
auxdisplay_capabilities.custom_character_height (C var), 3192
auxdisplay_capabilities.custom_character_width (C var), 3192
auxdisplay_capabilities.custom_characters (C var), 3192
auxdisplay_capabilities.mode (C var), 3191
auxdisplay_capabilities.rows (C var), 3191
auxdisplay_character (C struct), 3192
auxdisplay_character.character_code (C var), 3192
auxdisplay_character.data (C var), 3192
auxdisplay_character.index (C var), 3192
auxdisplay_clear (C function), 3188
auxdisplay_cursor_position_get (C function), 3187
auxdisplay_cursor_position_set (C function), 3187
auxdisplay_cursor_set_enabled (C function), 3186
auxdisplay_cursor_shift_set (C function), 3187
auxdisplay_custom_character_set (C function), 3190
auxdisplay_custom_command (C function), 3191
auxdisplay_custom_data (C struct), 3192
auxdisplay_custom_data.data (C var), 3192
auxdisplay_custom_data.len (C var), 3192
auxdisplay_custom_data.options (C var), 3192
auxdisplay_direction (C enum), 3185
auxdisplay_direction.AUXDISPLAY_DIRECTION_COUNT (C enumerator), 3186
auxdisplay_direction.AUXDISPLAY_DIRECTION_LEFT (C enumerator), 3186
auxdisplay_direction.AUXDISPLAY_DIRECTION_RIGHT (C enumerator), 3186
auxdisplay_display_off (C function), 3186
auxdisplay_display_on (C function), 3186
auxdisplay_display_position_get (C function), 3188
auxdisplay_display_position_set (C function), 3188
auxdisplay_is_busy (C function), 3190

3958 Index



Zephyr Project Documentation, Release 3.7.99

auxdisplay_light (C struct), 3191
AUXDISPLAY_LIGHT_NOT_SUPPORTED (C macro), 3185
auxdisplay_light.maximum (C var), 3191
auxdisplay_light.minimum (C var), 3191
auxdisplay_mode_t (C type), 3185
auxdisplay_position (C enum), 3185
auxdisplay_position_blinking_set_enabled (C function), 3186
auxdisplay_position.AUXDISPLAY_POSITION_ABSOLUTE (C enumerator), 3185
auxdisplay_position.AUXDISPLAY_POSITION_COUNT (C enumerator), 3185
auxdisplay_position.AUXDISPLAY_POSITION_RELATIVE (C enumerator), 3185
auxdisplay_position.AUXDISPLAY_POSITION_RELATIVE_DIRECTION (C enumerator), 3185
auxdisplay_write (C function), 3190

B
barrier_dmem_fence_full (C function), 3142
barrier_dsync_fence_full (C function), 3142
barrier_isync_fence_full (C function), 3143
bbram_api_check_invalid_t (C type), 3224
bbram_api_check_power_t (C type), 3224
bbram_api_check_standby_power_t (C type), 3224
bbram_api_get_size_t (C type), 3224
bbram_api_read_t (C type), 3225
bbram_api_write_t (C type), 3225
bbram_check_invalid (C function), 3225
bbram_check_power (C function), 3225
bbram_check_standby_power (C function), 3225
bbram_driver_api (C struct), 3227
bbram_emul_set_invalid (C function), 3226
bbram_emul_set_power_state (C function), 3227
bbram_emul_set_standby_power_state (C function), 3226
bbram_get_size (C function), 3226
bbram_read (C function), 3226
bbram_write (C function), 3226
bc12_callback_t (C type), 3229
BC12_CHARGER_MAX_CURR_UA (C macro), 3229
BC12_CHARGER_MIN_CURR_UA (C macro), 3228
BC12_CHARGER_VOLTAGE_UV (C macro), 3228
bc12_emul_set_charging_partner (C function), 3231
bc12_emul_set_pd_partner (C function), 3231
bc12_partner_state (C struct), 3230
bc12_role (C enum), 3229
bc12_role.BC12_CHARGING_PORT (C enumerator), 3229
bc12_role.BC12_DISCONNECTED (C enumerator), 3229
bc12_role.BC12_PORTABLE_DEVICE (C enumerator), 3229
bc12_set_result_cb (C function), 3230
bc12_set_role (C function), 3230
bc12_type (C enum), 3229
bc12_type.BC12_TYPE_CDP (C enumerator), 3229
bc12_type.BC12_TYPE_COUNT (C enumerator), 3230
bc12_type.BC12_TYPE_DCP (C enumerator), 3229
bc12_type.BC12_TYPE_NONE (C enumerator), 3229
bc12_type.BC12_TYPE_PROPRIETARY (C enumerator), 3230
bc12_type.BC12_TYPE_SDP (C enumerator), 3229
bc12_type.BC12_TYPE_UNKNOWN (C enumerator), 3230
bcd2bin (C function), 699
bin2bcd (C function), 699
bin2hex (C function), 699
bin_file (runners.core.RunnerConfig attribute), 197

Index 3959



Zephyr Project Documentation, Release 3.7.99

bind (C function), 2492
BINDESC_ID_APP_VERSION_MAJOR (C macro), 713
BINDESC_ID_APP_VERSION_MINOR (C macro), 713
BINDESC_ID_APP_VERSION_NUMBER (C macro), 713
BINDESC_ID_APP_VERSION_PATCHLEVEL (C macro), 713
BINDESC_ID_APP_VERSION_STRING (C macro), 713
BINDESC_ID_BUILD_DATE_STRING (C macro), 714
BINDESC_ID_BUILD_DATE_TIME_STRING (C macro), 714
BINDESC_ID_BUILD_TIME_DAY (C macro), 714
BINDESC_ID_BUILD_TIME_HOUR (C macro), 714
BINDESC_ID_BUILD_TIME_MINUTE (C macro), 714
BINDESC_ID_BUILD_TIME_MONTH (C macro), 714
BINDESC_ID_BUILD_TIME_SECOND (C macro), 714
BINDESC_ID_BUILD_TIME_STRING (C macro), 714
BINDESC_ID_BUILD_TIME_UNIX (C macro), 714
BINDESC_ID_BUILD_TIME_YEAR (C macro), 713
BINDESC_ID_C_COMPILER_NAME (C macro), 714
BINDESC_ID_C_COMPILER_VERSION (C macro), 714
BINDESC_ID_CXX_COMPILER_NAME (C macro), 714
BINDESC_ID_CXX_COMPILER_VERSION (C macro), 714
BINDESC_ID_HOST_NAME (C macro), 714
BINDESC_ID_KERNEL_VERSION_MAJOR (C macro), 713
BINDESC_ID_KERNEL_VERSION_MINOR (C macro), 713
BINDESC_ID_KERNEL_VERSION_NUMBER (C macro), 713
BINDESC_ID_KERNEL_VERSION_PATCHLEVEL (C macro), 713
BINDESC_ID_KERNEL_VERSION_STRING (C macro), 713
BINDESC_TAG_DESCRIPTORS_END (C macro), 714
BIT (C macro), 688
BIT64 (C macro), 688
BIT64_MASK (C macro), 688
BIT_MASK (C macro), 688
BITS_PER_LONG (C macro), 681
BITS_PER_LONG_LONG (C macro), 681
blinfo_lookup (C function), 1242
block_op_t (C type), 723
BOARD, 186
board, 3945
board configuration, 3945
board name, 3945
board qualifiers, 3945
board revision, 3946
board target, 3946
board_dir (runners.core.RunnerConfig attribute), 197
board_timing_counter_get (C function), 661
board_timing_cycles_get (C function), 662
board_timing_cycles_to_ns (C function), 662
board_timing_cycles_to_ns_avg (C function), 663
board_timing_freq_get (C function), 662
board_timing_freq_get_mhz (C function), 663
board_timing_init (C function), 661
board_timing_start (C function), 661
board_timing_stop (C function), 661
boot_erase_img_bank (C function), 825
boot_get_area_trailer_status_offset (C function), 826
boot_get_trailer_status_offset (C function), 826
BOOT_IMG_VER_STRLEN_MAX (C macro), 823
boot_is_img_confirmed (C function), 824
BOOT_MODE_TYPES (C enum), 1244

3960 Index



Zephyr Project Documentation, Release 3.7.99

BOOT_MODE_TYPES.BOOT_MODE_TYPE_BOOTLOADER (C enumerator), 1244
BOOT_MODE_TYPES.BOOT_MODE_TYPE_NORMAL (C enumerator), 1244
boot_read_bank_header (C function), 824
boot_request_upgrade (C function), 825
boot_request_upgrade_multi (C function), 825
BOOT_SWAP_TYPE_FAIL (C macro), 823
BOOT_SWAP_TYPE_NONE (C macro), 823
BOOT_SWAP_TYPE_PERM (C macro), 823
BOOT_SWAP_TYPE_REVERT (C macro), 823
BOOT_SWAP_TYPE_TEST (C macro), 823
BOOT_UPGRADE_PERMANENT (C macro), 824
BOOT_UPGRADE_TEST (C macro), 824
boot_write_img_confirmed (C function), 824
boot_write_img_confirmed_multi (C function), 825
bootmode_check (C function), 1244
bootmode_clear (C function), 1245
bootmode_set (C function), 1244
BT_ADDR_ANY (C macro), 2003
bt_addr_any (C var), 2006
bt_addr_cmp (C function), 2004
bt_addr_copy (C function), 2005
bt_addr_eq (C function), 2004
bt_addr_from_str (C function), 2006
BT_ADDR_IS_NRPA (C macro), 2004
BT_ADDR_IS_RPA (C macro), 2003
BT_ADDR_IS_STATIC (C macro), 2004
BT_ADDR_LE_ANONYMOUS (C macro), 2003
BT_ADDR_LE_ANY (C macro), 2003
bt_addr_le_any (C var), 2007
bt_addr_le_cmp (C function), 2004
bt_addr_le_copy (C function), 2005
bt_addr_le_create_nrpa (C function), 2005
bt_addr_le_create_static (C function), 2005
bt_addr_le_eq (C function), 2005
bt_addr_le_from_str (C function), 2006
bt_addr_le_is_identity (C function), 2005
bt_addr_le_is_rpa (C function), 2005
BT_ADDR_LE_NONE (C macro), 2003
bt_addr_le_none (C var), 2007
BT_ADDR_LE_PUBLIC (C macro), 2003
BT_ADDR_LE_PUBLIC_ID (C macro), 2003
BT_ADDR_LE_RANDOM (C macro), 2003
BT_ADDR_LE_RANDOM_ID (C macro), 2003
BT_ADDR_LE_SIZE (C macro), 2003
BT_ADDR_LE_STR_LEN (C macro), 2004
bt_addr_le_t (C struct), 2007
bt_addr_le_to_str (C function), 2006
BT_ADDR_LE_UNRESOLVED (C macro), 2003
BT_ADDR_NONE (C macro), 2003
bt_addr_none (C var), 2006
BT_ADDR_SET_NRPA (C macro), 2004
BT_ADDR_SET_RPA (C macro), 2004
BT_ADDR_SET_STATIC (C macro), 2004
BT_ADDR_SIZE (C macro), 2003
BT_ADDR_STR_LEN (C macro), 2004
bt_addr_t (C struct), 2007
bt_addr_to_str (C function), 2005
BT_APPEARANCE_AIRCRAFT_LARGE_PASSENGER (C macro), 2026

Index 3961



Zephyr Project Documentation, Release 3.7.99

BT_APPEARANCE_AIRCRAFT_LIGHT (C macro), 2026
BT_APPEARANCE_AIRCRAFT_MICROLIGHT (C macro), 2026
BT_APPEARANCE_AIRCRAFT_PARAGLIDER (C macro), 2026
BT_APPEARANCE_APPLIANCE_CLOTHES_IRON (C macro), 2025
BT_APPEARANCE_APPLIANCE_CLOTHES_STEAMER (C macro), 2026
BT_APPEARANCE_APPLIANCE_COFFEE_MAKER (C macro), 2025
BT_APPEARANCE_APPLIANCE_CURLING_IRON (C macro), 2025
BT_APPEARANCE_APPLIANCE_DRYER (C macro), 2025
BT_APPEARANCE_APPLIANCE_FREEZER (C macro), 2025
BT_APPEARANCE_APPLIANCE_HAIR_DRYER (C macro), 2025
BT_APPEARANCE_APPLIANCE_MICROWAVE (C macro), 2025
BT_APPEARANCE_APPLIANCE_OVEN (C macro), 2025
BT_APPEARANCE_APPLIANCE_REFRIGERATOR (C macro), 2025
BT_APPEARANCE_APPLIANCE_RICE_COOKER (C macro), 2026
BT_APPEARANCE_APPLIANCE_ROBOTIC_VACUUM_CLEANER (C macro), 2026
BT_APPEARANCE_APPLIANCE_TOASTER (C macro), 2025
BT_APPEARANCE_APPLIANCE_VACUUM_CLEANER (C macro), 2026
BT_APPEARANCE_APPLIANCE_WASHING_MACHINE (C macro), 2025
BT_APPEARANCE_AUDIO_SINK_BOOKSHELF_SPEAKER (C macro), 2023
BT_APPEARANCE_AUDIO_SINK_SOUNDBAR (C macro), 2023
BT_APPEARANCE_AUDIO_SINK_SPEAKERPHONE (C macro), 2023
BT_APPEARANCE_AUDIO_SINK_STANDALONE_SPEAKER (C macro), 2023
BT_APPEARANCE_AUDIO_SINK_STANDMOUNTED_SPEAKER (C macro), 2023
BT_APPEARANCE_AUDIO_SOURCE_ALARM (C macro), 2023
BT_APPEARANCE_AUDIO_SOURCE_AUDITORIUM (C macro), 2024
BT_APPEARANCE_AUDIO_SOURCE_BELL (C macro), 2023
BT_APPEARANCE_AUDIO_SOURCE_BROADCASTING_DEVICE (C macro), 2023
BT_APPEARANCE_AUDIO_SOURCE_BROADCASTING_ROOM (C macro), 2024
BT_APPEARANCE_AUDIO_SOURCE_HORN (C macro), 2023
BT_APPEARANCE_AUDIO_SOURCE_KIOSK (C macro), 2024
BT_APPEARANCE_AUDIO_SOURCE_MICROPHONE (C macro), 2023
BT_APPEARANCE_AUDIO_SOURCE_SERVICE_DESK (C macro), 2024
BT_APPEARANCE_AV_EQUIPMENT_AMPLIFIER (C macro), 2026
BT_APPEARANCE_AV_EQUIPMENT_BLURAY_PLAYER (C macro), 2027
BT_APPEARANCE_AV_EQUIPMENT_CD_PLAYER (C macro), 2027
BT_APPEARANCE_AV_EQUIPMENT_DVD_PLAYER (C macro), 2027
BT_APPEARANCE_AV_EQUIPMENT_OPTICAL_DISC_PLAYER (C macro), 2027
BT_APPEARANCE_AV_EQUIPMENT_RADIO (C macro), 2027
BT_APPEARANCE_AV_EQUIPMENT_RECEIVER (C macro), 2027
BT_APPEARANCE_AV_EQUIPMENT_SET_TOP_BOX (C macro), 2027
BT_APPEARANCE_AV_EQUIPMENT_TUNER (C macro), 2027
BT_APPEARANCE_AV_EQUIPMENT_TURNTABLE (C macro), 2027
BT_APPEARANCE_BLOOD_PRESSURE_ARM (C macro), 2013
BT_APPEARANCE_BLOOD_PRESSURE_WRIST (C macro), 2013
BT_APPEARANCE_COMPUTER_ALL_IN_ONE (C macro), 2011
BT_APPEARANCE_COMPUTER_BLADE_SERVER (C macro), 2011
BT_APPEARANCE_COMPUTER_CONVERTIBLE (C macro), 2011
BT_APPEARANCE_COMPUTER_DESKTOP_WORKSTATION (C macro), 2011
BT_APPEARANCE_COMPUTER_DETACHABLE (C macro), 2011
BT_APPEARANCE_COMPUTER_DOCKING_STATION (C macro), 2011
BT_APPEARANCE_COMPUTER_HANDHELD_PCPDA (C macro), 2011
BT_APPEARANCE_COMPUTER_IOT_GATEWAY (C macro), 2011
BT_APPEARANCE_COMPUTER_LAPTOP (C macro), 2011
BT_APPEARANCE_COMPUTER_MINI_PC (C macro), 2011
BT_APPEARANCE_COMPUTER_PALMSIZE_PCPDA (C macro), 2011
BT_APPEARANCE_COMPUTER_SERVER_CLASS (C macro), 2011
BT_APPEARANCE_COMPUTER_STICK_PC (C macro), 2011
BT_APPEARANCE_COMPUTER_TABLET (C macro), 2011

3962 Index



Zephyr Project Documentation, Release 3.7.99

BT_APPEARANCE_COMPUTER_WEARABLE_COMPUTER (C macro), 2011
BT_APPEARANCE_CONTINUOUS_GLUCOSE_MONITOR (C macro), 2028
BT_APPEARANCE_CONTROL_ACCESS_DOOR (C macro), 2020
BT_APPEARANCE_CONTROL_ACCESS_LOCK (C macro), 2020
BT_APPEARANCE_CONTROL_BATTERY_SWITCH (C macro), 2015
BT_APPEARANCE_CONTROL_BUTTON (C macro), 2014
BT_APPEARANCE_CONTROL_DOOR_LOCK (C macro), 2021
BT_APPEARANCE_CONTROL_DOUBLE_SWITCH (C macro), 2015
BT_APPEARANCE_CONTROL_ELEVATOR (C macro), 2020
BT_APPEARANCE_CONTROL_EMERGENCY_EXIT_DOOR (C macro), 2020
BT_APPEARANCE_CONTROL_ENERGY_HARVESTING_SWITCH (C macro), 2015
BT_APPEARANCE_CONTROL_ENTRANCE_GATE (C macro), 2021
BT_APPEARANCE_CONTROL_GARAGE_DOOR (C macro), 2020
BT_APPEARANCE_CONTROL_LOCKER (C macro), 2021
BT_APPEARANCE_CONTROL_MULTI_SWITCH (C macro), 2014
BT_APPEARANCE_CONTROL_PUSH_BUTTON (C macro), 2015
BT_APPEARANCE_CONTROL_ROTARY_SWITCH (C macro), 2014
BT_APPEARANCE_CONTROL_SINGLE_SWITCH (C macro), 2014
BT_APPEARANCE_CONTROL_SLIDER (C macro), 2014
BT_APPEARANCE_CONTROL_SWITCH (C macro), 2014
BT_APPEARANCE_CONTROL_TOUCH_PANEL (C macro), 2014
BT_APPEARANCE_CONTROL_TRIPLE_SWITCH (C macro), 2015
BT_APPEARANCE_CONTROL_WINDOW (C macro), 2021
BT_APPEARANCE_CYCLING_CADENCE (C macro), 2014
BT_APPEARANCE_CYCLING_COMPUTER (C macro), 2014
BT_APPEARANCE_CYCLING_POWER (C macro), 2014
BT_APPEARANCE_CYCLING_SPEED (C macro), 2014
BT_APPEARANCE_CYCLING_SPEED_CADENCE (C macro), 2014
BT_APPEARANCE_DISPLAY_EQUIPMENT_MONITOR (C macro), 2027
BT_APPEARANCE_DISPLAY_EQUIPMENT_PROJECTOR (C macro), 2027
BT_APPEARANCE_DISPLAY_EQUIPMENT_TELEVISION (C macro), 2027
BT_APPEARANCE_FAN_AXIAL (C macro), 2018
BT_APPEARANCE_FAN_CEILING (C macro), 2018
BT_APPEARANCE_FAN_DESK (C macro), 2019
BT_APPEARANCE_FAN_EXHAUST (C macro), 2019
BT_APPEARANCE_FAN_PEDESTAL (C macro), 2019
BT_APPEARANCE_FAN_WALL (C macro), 2019
BT_APPEARANCE_GENERIC_ACCESS_CONTROL (C macro), 2020
BT_APPEARANCE_GENERIC_AIR_CONDITIONING (C macro), 2020
BT_APPEARANCE_GENERIC_AIRCRAFT (C macro), 2026
BT_APPEARANCE_GENERIC_AUDIO_SINK (C macro), 2023
BT_APPEARANCE_GENERIC_AUDIO_SOURCE (C macro), 2023
BT_APPEARANCE_GENERIC_AV_EQUIPMENT (C macro), 2026
BT_APPEARANCE_GENERIC_BARCODE_SCANNER (C macro), 2012
BT_APPEARANCE_GENERIC_BLOOD_PRESSURE (C macro), 2012
BT_APPEARANCE_GENERIC_CLOCK (C macro), 2012
BT_APPEARANCE_GENERIC_COMPUTER (C macro), 2011
BT_APPEARANCE_GENERIC_CONTROL_DEVICE (C macro), 2014
BT_APPEARANCE_GENERIC_CYCLING (C macro), 2014
BT_APPEARANCE_GENERIC_DISPLAY (C macro), 2012
BT_APPEARANCE_GENERIC_DISPLAY_EQUIPMENT (C macro), 2027
BT_APPEARANCE_GENERIC_DOMESTIC_APPLIANCE (C macro), 2025
BT_APPEARANCE_GENERIC_EYEGLASSES (C macro), 2012
BT_APPEARANCE_GENERIC_FAN (C macro), 2018
BT_APPEARANCE_GENERIC_GAMING (C macro), 2028
BT_APPEARANCE_GENERIC_GLUCOSE (C macro), 2013
BT_APPEARANCE_GENERIC_HEARING_AID (C macro), 2027
BT_APPEARANCE_GENERIC_HEART_RATE (C macro), 2012

Index 3963



Zephyr Project Documentation, Release 3.7.99

BT_APPEARANCE_GENERIC_HEATING (C macro), 2020
BT_APPEARANCE_GENERIC_HID (C macro), 2013
BT_APPEARANCE_GENERIC_HUMIDIFIER (C macro), 2020
BT_APPEARANCE_GENERIC_HVAC (C macro), 2019
BT_APPEARANCE_GENERIC_INSULIN_PUMP (C macro), 2028
BT_APPEARANCE_GENERIC_KEYRING (C macro), 2012
BT_APPEARANCE_GENERIC_LIGHT_FIXTURES (C macro), 2017
BT_APPEARANCE_GENERIC_LIGHT_SOURCE (C macro), 2022
BT_APPEARANCE_GENERIC_MEDIA_PLAYER (C macro), 2012
BT_APPEARANCE_GENERIC_MEDICATION_DELIVERY (C macro), 2029
BT_APPEARANCE_GENERIC_MOTORIZED_DEVICE (C macro), 2021
BT_APPEARANCE_GENERIC_MOTORIZED_VEHICLE (C macro), 2024
BT_APPEARANCE_GENERIC_NETWORK_DEVICE (C macro), 2015
BT_APPEARANCE_GENERIC_OUTDOOR_SPORTS (C macro), 2029
BT_APPEARANCE_GENERIC_PERSONAL_MOBILITY_DEVICE (C macro), 2028
BT_APPEARANCE_GENERIC_PHONE (C macro), 2010
BT_APPEARANCE_GENERIC_POWER_DEVICE (C macro), 2021
BT_APPEARANCE_GENERIC_PULSE_OXIMETER (C macro), 2028
BT_APPEARANCE_GENERIC_REMOTE (C macro), 2012
BT_APPEARANCE_GENERIC_SENSOR (C macro), 2015
BT_APPEARANCE_GENERIC_SIGNAGE (C macro), 2028
BT_APPEARANCE_GENERIC_SPIROMETER (C macro), 2029
BT_APPEARANCE_GENERIC_TAG (C macro), 2012
BT_APPEARANCE_GENERIC_THERMOMETER (C macro), 2012
BT_APPEARANCE_GENERIC_WALKING (C macro), 2013
BT_APPEARANCE_GENERIC_WATCH (C macro), 2012
BT_APPEARANCE_GENERIC_WEARABLE_AUDIO_DEVICE (C macro), 2026
BT_APPEARANCE_GENERIC_WEIGHT_SCALE (C macro), 2028
BT_APPEARANCE_GENERIC_WINDOW_COVERING (C macro), 2022
BT_APPEARANCE_HEARING_AID_BEHIND_EAR (C macro), 2027
BT_APPEARANCE_HEARING_AID_COCHLEAR_IMPLANT (C macro), 2028
BT_APPEARANCE_HEARING_AID_IN_EAR (C macro), 2027
BT_APPEARANCE_HEART_RATE_BELT (C macro), 2012
BT_APPEARANCE_HEATING_AIR_CURTAIN (C macro), 2020
BT_APPEARANCE_HEATING_BOILER (C macro), 2020
BT_APPEARANCE_HEATING_FAN_HEATER (C macro), 2020
BT_APPEARANCE_HEATING_HEAT_PUMP (C macro), 2020
BT_APPEARANCE_HEATING_INFRARED_HEATER (C macro), 2020
BT_APPEARANCE_HEATING_RADIANT_PANEL_HEATER (C macro), 2020
BT_APPEARANCE_HEATING_RADIATOR (C macro), 2020
BT_APPEARANCE_HID_BARCODE_SCANNER (C macro), 2013
BT_APPEARANCE_HID_CARD_READER (C macro), 2013
BT_APPEARANCE_HID_DIGITAL_PEN (C macro), 2013
BT_APPEARANCE_HID_DIGITIZER_TABLET (C macro), 2013
BT_APPEARANCE_HID_GAMEPAD (C macro), 2013
BT_APPEARANCE_HID_JOYSTICK (C macro), 2013
BT_APPEARANCE_HID_KEYBOARD (C macro), 2013
BT_APPEARANCE_HID_MOUSE (C macro), 2013
BT_APPEARANCE_HID_PRESENTATION_REMOTE (C macro), 2013
BT_APPEARANCE_HID_TOUCHPAD (C macro), 2013
BT_APPEARANCE_HOME_VIDEO_GAME_CONSOLE (C macro), 2028
BT_APPEARANCE_HVAC_AIR_CURTAIN (C macro), 2019
BT_APPEARANCE_HVAC_BOILER (C macro), 2019
BT_APPEARANCE_HVAC_DEHUMIDIFIER (C macro), 2019
BT_APPEARANCE_HVAC_FAN_HEATER (C macro), 2019
BT_APPEARANCE_HVAC_HEAT_PUMP (C macro), 2019
BT_APPEARANCE_HVAC_HEATER (C macro), 2019
BT_APPEARANCE_HVAC_HUMIDIFIER (C macro), 2019

3964 Index



Zephyr Project Documentation, Release 3.7.99

BT_APPEARANCE_HVAC_INFRARED_HEATER (C macro), 2019
BT_APPEARANCE_HVAC_RADIANT_PANEL_HEATER (C macro), 2019
BT_APPEARANCE_HVAC_RADIATOR (C macro), 2019
BT_APPEARANCE_HVAC_THERMOSTAT (C macro), 2019
BT_APPEARANCE_INSULIN_PEN (C macro), 2029
BT_APPEARANCE_INSULIN_PUMP_DURABLE (C macro), 2029
BT_APPEARANCE_INSULIN_PUMP_PATCH (C macro), 2029
BT_APPEARANCE_LIGHT_FIXTURES_BAY (C macro), 2018
BT_APPEARANCE_LIGHT_FIXTURES_BOLLARD_WITH (C macro), 2017
BT_APPEARANCE_LIGHT_FIXTURES_BULB (C macro), 2018
BT_APPEARANCE_LIGHT_FIXTURES_CABINET (C macro), 2017
BT_APPEARANCE_LIGHT_FIXTURES_CEILING (C macro), 2017
BT_APPEARANCE_LIGHT_FIXTURES_CONTROLLER (C macro), 2018
BT_APPEARANCE_LIGHT_FIXTURES_DESK (C macro), 2017
BT_APPEARANCE_LIGHT_FIXTURES_DRIVER (C macro), 2018
BT_APPEARANCE_LIGHT_FIXTURES_EMERGENCY_EXIT (C macro), 2018
BT_APPEARANCE_LIGHT_FIXTURES_FLOOD (C macro), 2017
BT_APPEARANCE_LIGHT_FIXTURES_FLOOR (C macro), 2017
BT_APPEARANCE_LIGHT_FIXTURES_GARDEN (C macro), 2018
BT_APPEARANCE_LIGHT_FIXTURES_HIGH_BAY (C macro), 2018
BT_APPEARANCE_LIGHT_FIXTURES_IN_GROUND (C macro), 2017
BT_APPEARANCE_LIGHT_FIXTURES_LINEAR (C macro), 2018
BT_APPEARANCE_LIGHT_FIXTURES_LOW_BAY (C macro), 2018
BT_APPEARANCE_LIGHT_FIXTURES_PATHWAY (C macro), 2017
BT_APPEARANCE_LIGHT_FIXTURES_PENDANT (C macro), 2017
BT_APPEARANCE_LIGHT_FIXTURES_POLE_TOP (C macro), 2018
BT_APPEARANCE_LIGHT_FIXTURES_SHELVES (C macro), 2018
BT_APPEARANCE_LIGHT_FIXTURES_STREET (C macro), 2018
BT_APPEARANCE_LIGHT_FIXTURES_TROFFER (C macro), 2017
BT_APPEARANCE_LIGHT_FIXTURES_UNDERWATER (C macro), 2017
BT_APPEARANCE_LIGHT_FIXTURES_WALL (C macro), 2017
BT_APPEARANCE_LIGHT_SOURCE_FLUORESCENT_LAMP (C macro), 2022
BT_APPEARANCE_LIGHT_SOURCE_HID_LAMP (C macro), 2022
BT_APPEARANCE_LIGHT_SOURCE_INCANDESCENT_BULB (C macro), 2022
BT_APPEARANCE_LIGHT_SOURCE_LED_ARRAY (C macro), 2022
BT_APPEARANCE_LIGHT_SOURCE_LED_LAMP (C macro), 2022
BT_APPEARANCE_LIGHT_SOURCE_LOW_VOLTAGE_HALOGEN (C macro), 2022
BT_APPEARANCE_LIGHT_SOURCE_MULTICOLOR_LED_ARRAY (C macro), 2022
BT_APPEARANCE_LIGHT_SOURCE_OLED (C macro), 2022
BT_APPEARANCE_MOBILITY_POWERED_WHEELCHAIR (C macro), 2028
BT_APPEARANCE_MOBILITY_SCOOTER (C macro), 2028
BT_APPEARANCE_MOTORIZED_AWNING (C macro), 2021
BT_APPEARANCE_MOTORIZED_BLINDS_OR_SHADES (C macro), 2021
BT_APPEARANCE_MOTORIZED_CURTAINS (C macro), 2021
BT_APPEARANCE_MOTORIZED_GATE (C macro), 2021
BT_APPEARANCE_MOTORIZED_SCREEN (C macro), 2021
BT_APPEARANCE_MULTISENSOR (C macro), 2016
BT_APPEARANCE_NETWORK_ACCESS_POINT (C macro), 2015
BT_APPEARANCE_NETWORK_MESH_DEVICE (C macro), 2015
BT_APPEARANCE_NETWORK_MESH_PROXY (C macro), 2015
BT_APPEARANCE_OUTDOOR_SPORTS_LOCATION (C macro), 2029
BT_APPEARANCE_OUTDOOR_SPORTS_LOCATION_AND_NAV (C macro), 2029
BT_APPEARANCE_OUTDOOR_SPORTS_LOCATION_POD (C macro), 2029
BT_APPEARANCE_OUTDOOR_SPORTS_LOCATION_POD_AND_NAV (C macro), 2029
BT_APPEARANCE_PORTABLE_HANDHELD_CONSOLE (C macro), 2028
BT_APPEARANCE_POWER_CHARGE_CASE (C macro), 2022
BT_APPEARANCE_POWER_FLUORESCENT_LAMP_GEAR (C macro), 2022
BT_APPEARANCE_POWER_HID_LAMP_GEAR (C macro), 2022

Index 3965



Zephyr Project Documentation, Release 3.7.99

BT_APPEARANCE_POWER_LED_DRIVER (C macro), 2021
BT_APPEARANCE_POWER_OUTLET (C macro), 2021
BT_APPEARANCE_POWER_PLUG (C macro), 2021
BT_APPEARANCE_POWER_POWER_BANK (C macro), 2022
BT_APPEARANCE_POWER_STRIP (C macro), 2021
BT_APPEARANCE_POWER_SUPPLY (C macro), 2021
BT_APPEARANCE_PULSE_OXIMETER_FINGERTIP (C macro), 2028
BT_APPEARANCE_PULSE_OXIMETER_WRIST (C macro), 2028
BT_APPEARANCE_SENSOR_AIR_QUALITY (C macro), 2015
BT_APPEARANCE_SENSOR_AMBIENT_LIGHT (C macro), 2016
BT_APPEARANCE_SENSOR_CARBON_DIOXIDE (C macro), 2016
BT_APPEARANCE_SENSOR_CARBON_MONOXIDE (C macro), 2016
BT_APPEARANCE_SENSOR_CEILING_MOUNTED (C macro), 2016
BT_APPEARANCE_SENSOR_COLOR_LIGHT (C macro), 2016
BT_APPEARANCE_SENSOR_CONTACT (C macro), 2016
BT_APPEARANCE_SENSOR_ENERGY (C macro), 2016
BT_APPEARANCE_SENSOR_ENERGY_METER (C macro), 2017
BT_APPEARANCE_SENSOR_FIRE (C macro), 2016
BT_APPEARANCE_SENSOR_FLAME_DETECTOR (C macro), 2017
BT_APPEARANCE_SENSOR_FLUSH_MOUNTED (C macro), 2016
BT_APPEARANCE_SENSOR_HUMIDITY (C macro), 2015
BT_APPEARANCE_SENSOR_LEAK (C macro), 2015
BT_APPEARANCE_SENSOR_MOTION (C macro), 2015
BT_APPEARANCE_SENSOR_MULTI (C macro), 2016
BT_APPEARANCE_SENSOR_OCCUPANCY (C macro), 2016
BT_APPEARANCE_SENSOR_PROXIMITY (C macro), 2016
BT_APPEARANCE_SENSOR_RAIN (C macro), 2016
BT_APPEARANCE_SENSOR_SMOKE (C macro), 2015
BT_APPEARANCE_SENSOR_TEMPERATURE (C macro), 2015
BT_APPEARANCE_SENSOR_VEHICLE_TIRE_PRESSURE (C macro), 2017
BT_APPEARANCE_SENSOR_WALL_MOUNTED (C macro), 2016
BT_APPEARANCE_SENSOR_WIND (C macro), 2016
BT_APPEARANCE_SIGNAGE_DIGITAL (C macro), 2028
BT_APPEARANCE_SIGNAGE_ELECTRONIC_LABEL (C macro), 2028
BT_APPEARANCE_SMARTWATCH (C macro), 2012
BT_APPEARANCE_SPIROMETER_HANDHELD (C macro), 2029
BT_APPEARANCE_SPORTS_WATCH (C macro), 2012
BT_APPEARANCE_SPOT_LIGHT (C macro), 2018
BT_APPEARANCE_THERMOMETER_EAR (C macro), 2012
BT_APPEARANCE_UNKNOWN (C macro), 2010
BT_APPEARANCE_VEHICLE_AGRICULTURAL (C macro), 2025
BT_APPEARANCE_VEHICLE_BUS (C macro), 2024
BT_APPEARANCE_VEHICLE_CAMPER_OR_CARAVAN (C macro), 2025
BT_APPEARANCE_VEHICLE_CAR (C macro), 2024
BT_APPEARANCE_VEHICLE_LARGE_GOODS (C macro), 2024
BT_APPEARANCE_VEHICLE_LIGHT (C macro), 2024
BT_APPEARANCE_VEHICLE_MINIBUS (C macro), 2024
BT_APPEARANCE_VEHICLE_MOPED (C macro), 2024
BT_APPEARANCE_VEHICLE_MOTORBIKE (C macro), 2024
BT_APPEARANCE_VEHICLE_QUAD_BIKE (C macro), 2024
BT_APPEARANCE_VEHICLE_RECREATIONAL (C macro), 2025
BT_APPEARANCE_VEHICLE_SCOOTER (C macro), 2024
BT_APPEARANCE_VEHICLE_THREE_WHEELED (C macro), 2024
BT_APPEARANCE_VEHICLE_TROLLEY (C macro), 2025
BT_APPEARANCE_VEHICLE_TWO_WHEELED (C macro), 2024
BT_APPEARANCE_WALKING_IN_SHOE (C macro), 2013
BT_APPEARANCE_WALKING_ON_HIP (C macro), 2014
BT_APPEARANCE_WALKING_ON_SHOE (C macro), 2014

3966 Index



Zephyr Project Documentation, Release 3.7.99

BT_APPEARANCE_WEARABLE_AUDIO_DEVICE_EARBUD (C macro), 2026
BT_APPEARANCE_WEARABLE_AUDIO_DEVICE_HEADPHONES (C macro), 2026
BT_APPEARANCE_WEARABLE_AUDIO_DEVICE_HEADSET (C macro), 2026
BT_APPEARANCE_WEARABLE_AUDIO_DEVICE_NECK_BAND (C macro), 2026
BT_APPEARANCE_WINDOW_AWNING (C macro), 2023
BT_APPEARANCE_WINDOW_BLINDS (C macro), 2022
BT_APPEARANCE_WINDOW_CURTAIN (C macro), 2023
BT_APPEARANCE_WINDOW_EXTERIOR_SCREEN (C macro), 2023
BT_APPEARANCE_WINDOW_EXTERIOR_SHUTTER (C macro), 2023
BT_APPEARANCE_WINDOW_SHADES (C macro), 2022
bt_att_chan_opt (C enum), 2075
bt_att_chan_opt.BT_ATT_CHAN_OPT_ENHANCED_ONLY (C enumerator), 2075
bt_att_chan_opt.BT_ATT_CHAN_OPT_NONE (C enumerator), 2075
bt_att_chan_opt.BT_ATT_CHAN_OPT_UNENHANCED_ONLY (C enumerator), 2075
BT_ATT_ERR_ATTRIBUTE_NOT_FOUND (C macro), 2073
BT_ATT_ERR_ATTRIBUTE_NOT_LONG (C macro), 2074
BT_ATT_ERR_AUTHENTICATION (C macro), 2073
BT_ATT_ERR_AUTHORIZATION (C macro), 2073
BT_ATT_ERR_CCC_IMPROPER_CONF (C macro), 2074
BT_ATT_ERR_DB_OUT_OF_SYNC (C macro), 2074
BT_ATT_ERR_ENCRYPTION_KEY_SIZE (C macro), 2074
BT_ATT_ERR_INSUFFICIENT_ENCRYPTION (C macro), 2074
BT_ATT_ERR_INSUFFICIENT_RESOURCES (C macro), 2074
BT_ATT_ERR_INVALID_ATTRIBUTE_LEN (C macro), 2074
BT_ATT_ERR_INVALID_HANDLE (C macro), 2073
BT_ATT_ERR_INVALID_OFFSET (C macro), 2073
BT_ATT_ERR_INVALID_PDU (C macro), 2073
BT_ATT_ERR_NOT_SUPPORTED (C macro), 2073
BT_ATT_ERR_OUT_OF_RANGE (C macro), 2074
BT_ATT_ERR_PREPARE_QUEUE_FULL (C macro), 2073
BT_ATT_ERR_PROCEDURE_IN_PROGRESS (C macro), 2074
BT_ATT_ERR_READ_NOT_PERMITTED (C macro), 2073
BT_ATT_ERR_SUCCESS (C macro), 2073
bt_att_err_to_str (C function), 2075
BT_ATT_ERR_UNLIKELY (C macro), 2074
BT_ATT_ERR_UNSUPPORTED_GROUP_TYPE (C macro), 2074
BT_ATT_ERR_VALUE_NOT_ALLOWED (C macro), 2074
BT_ATT_ERR_WRITE_NOT_PERMITTED (C macro), 2073
BT_ATT_ERR_WRITE_REQ_REJECTED (C macro), 2074
BT_ATT_FIRST_ATTRIBUTE_HANDLE (C macro), 2074
BT_ATT_LAST_ATTRIBUTE_HANDLE (C macro), 2074
BT_ATT_MAX_ATTRIBUTE_LEN (C macro), 2074
bt_audio_active_state (C enum), 1740
bt_audio_active_state.BT_AUDIO_ACTIVE_STATE_DISABLED (C enumerator), 1740
bt_audio_active_state.BT_AUDIO_ACTIVE_STATE_ENABLED (C enumerator), 1740
BT_AUDIO_BROADCAST_CODE_SIZE (C macro), 1731
BT_AUDIO_BROADCAST_ID_MAX (C macro), 1731
BT_AUDIO_BROADCAST_ID_SIZE (C macro), 1731
BT_AUDIO_BROADCAST_NAME_LEN_MAX (C macro), 1732
BT_AUDIO_BROADCAST_NAME_LEN_MIN (C macro), 1731
BT_AUDIO_CODEC_CAP (C macro), 1733
bt_audio_codec_cap (C struct), 1745
bt_audio_codec_cap_chan_count (C enum), 1736
BT_AUDIO_CODEC_CAP_CHAN_COUNT_MAX (C macro), 1732
BT_AUDIO_CODEC_CAP_CHAN_COUNT_MIN (C macro), 1732
BT_AUDIO_CODEC_CAP_CHAN_COUNT_SUPPORT (C macro), 1732
bt_audio_codec_cap_chan_count.BT_AUDIO_CODEC_CAP_CHAN_COUNT_1 (C enumerator), 1736
bt_audio_codec_cap_chan_count.BT_AUDIO_CODEC_CAP_CHAN_COUNT_2 (C enumerator), 1736

Index 3967



Zephyr Project Documentation, Release 3.7.99

bt_audio_codec_cap_chan_count.BT_AUDIO_CODEC_CAP_CHAN_COUNT_3 (C enumerator), 1736
bt_audio_codec_cap_chan_count.BT_AUDIO_CODEC_CAP_CHAN_COUNT_4 (C enumerator), 1736
bt_audio_codec_cap_chan_count.BT_AUDIO_CODEC_CAP_CHAN_COUNT_5 (C enumerator), 1736
bt_audio_codec_cap_chan_count.BT_AUDIO_CODEC_CAP_CHAN_COUNT_6 (C enumerator), 1736
bt_audio_codec_cap_chan_count.BT_AUDIO_CODEC_CAP_CHAN_COUNT_7 (C enumerator), 1736
bt_audio_codec_cap_chan_count.BT_AUDIO_CODEC_CAP_CHAN_COUNT_8 (C enumerator), 1736
bt_audio_codec_cap_chan_count.BT_AUDIO_CODEC_CAP_CHAN_COUNT_ANY (C enumerator), 1736
bt_audio_codec_cap_frame_dur (C enum), 1735
bt_audio_codec_cap_frame_dur.BT_AUDIO_CODEC_CAP_DURATION_7_5 (C enumerator), 1735
bt_audio_codec_cap_frame_dur.BT_AUDIO_CODEC_CAP_DURATION_10 (C enumerator), 1735
bt_audio_codec_cap_frame_dur.BT_AUDIO_CODEC_CAP_DURATION_ANY (C enumerator), 1736
bt_audio_codec_cap_frame_dur.BT_AUDIO_CODEC_CAP_DURATION_PREFER_7_5 (C enumerator),

1736
bt_audio_codec_cap_frame_dur.BT_AUDIO_CODEC_CAP_DURATION_PREFER_10 (C enumerator),

1736
bt_audio_codec_cap_freq (C enum), 1734
bt_audio_codec_cap_freq.BT_AUDIO_CODEC_CAP_FREQ_8KHZ (C enumerator), 1734
bt_audio_codec_cap_freq.BT_AUDIO_CODEC_CAP_FREQ_11KHZ (C enumerator), 1734
bt_audio_codec_cap_freq.BT_AUDIO_CODEC_CAP_FREQ_16KHZ (C enumerator), 1734
bt_audio_codec_cap_freq.BT_AUDIO_CODEC_CAP_FREQ_22KHZ (C enumerator), 1735
bt_audio_codec_cap_freq.BT_AUDIO_CODEC_CAP_FREQ_24KHZ (C enumerator), 1735
bt_audio_codec_cap_freq.BT_AUDIO_CODEC_CAP_FREQ_32KHZ (C enumerator), 1735
bt_audio_codec_cap_freq.BT_AUDIO_CODEC_CAP_FREQ_44KHZ (C enumerator), 1735
bt_audio_codec_cap_freq.BT_AUDIO_CODEC_CAP_FREQ_48KHZ (C enumerator), 1735
bt_audio_codec_cap_freq.BT_AUDIO_CODEC_CAP_FREQ_88KHZ (C enumerator), 1735
bt_audio_codec_cap_freq.BT_AUDIO_CODEC_CAP_FREQ_96KHZ (C enumerator), 1735
bt_audio_codec_cap_freq.BT_AUDIO_CODEC_CAP_FREQ_176KHZ (C enumerator), 1735
bt_audio_codec_cap_freq.BT_AUDIO_CODEC_CAP_FREQ_192KHZ (C enumerator), 1735
bt_audio_codec_cap_freq.BT_AUDIO_CODEC_CAP_FREQ_384KHZ (C enumerator), 1735
bt_audio_codec_cap_freq.BT_AUDIO_CODEC_CAP_FREQ_ANY (C enumerator), 1735
bt_audio_codec_cap_type (C enum), 1734
bt_audio_codec_cap_type.BT_AUDIO_CODEC_CAP_TYPE_CHAN_COUNT (C enumerator), 1734
bt_audio_codec_cap_type.BT_AUDIO_CODEC_CAP_TYPE_DURATION (C enumerator), 1734
bt_audio_codec_cap_type.BT_AUDIO_CODEC_CAP_TYPE_FRAME_COUNT (C enumerator), 1734
bt_audio_codec_cap_type.BT_AUDIO_CODEC_CAP_TYPE_FRAME_LEN (C enumerator), 1734
bt_audio_codec_cap_type.BT_AUDIO_CODEC_CAP_TYPE_FREQ (C enumerator), 1734
bt_audio_codec_cap.cid (C var), 1745
bt_audio_codec_cap.ctlr_transcode (C var), 1745
bt_audio_codec_cap.data (C var), 1746
bt_audio_codec_cap.data_len (C var), 1746
bt_audio_codec_cap.id (C var), 1745
bt_audio_codec_cap.meta (C var), 1746
bt_audio_codec_cap.meta_len (C var), 1746
bt_audio_codec_cap.path_id (C var), 1745
bt_audio_codec_cap.vid (C var), 1746
BT_AUDIO_CODEC_CFG (C macro), 1732
bt_audio_codec_cfg (C struct), 1746
bt_audio_codec_cfg_frame_dur (C enum), 1738
bt_audio_codec_cfg_frame_dur_to_frame_dur_us (C function), 1750
bt_audio_codec_cfg_frame_dur_us_to_frame_dur (C function), 1750
bt_audio_codec_cfg_frame_dur.BT_AUDIO_CODEC_CFG_DURATION_7_5 (C enumerator), 1738
bt_audio_codec_cfg_frame_dur.BT_AUDIO_CODEC_CFG_DURATION_10 (C enumerator), 1738
bt_audio_codec_cfg_freq (C enum), 1737
bt_audio_codec_cfg_freq_hz_to_freq (C function), 1749
bt_audio_codec_cfg_freq_to_freq_hz (C function), 1749
bt_audio_codec_cfg_freq.BT_AUDIO_CODEC_CFG_FREQ_8KHZ (C enumerator), 1737
bt_audio_codec_cfg_freq.BT_AUDIO_CODEC_CFG_FREQ_11KHZ (C enumerator), 1737
bt_audio_codec_cfg_freq.BT_AUDIO_CODEC_CFG_FREQ_16KHZ (C enumerator), 1737

3968 Index



Zephyr Project Documentation, Release 3.7.99

bt_audio_codec_cfg_freq.BT_AUDIO_CODEC_CFG_FREQ_22KHZ (C enumerator), 1737
bt_audio_codec_cfg_freq.BT_AUDIO_CODEC_CFG_FREQ_24KHZ (C enumerator), 1737
bt_audio_codec_cfg_freq.BT_AUDIO_CODEC_CFG_FREQ_32KHZ (C enumerator), 1737
bt_audio_codec_cfg_freq.BT_AUDIO_CODEC_CFG_FREQ_44KHZ (C enumerator), 1737
bt_audio_codec_cfg_freq.BT_AUDIO_CODEC_CFG_FREQ_48KHZ (C enumerator), 1737
bt_audio_codec_cfg_freq.BT_AUDIO_CODEC_CFG_FREQ_88KHZ (C enumerator), 1738
bt_audio_codec_cfg_freq.BT_AUDIO_CODEC_CFG_FREQ_96KHZ (C enumerator), 1738
bt_audio_codec_cfg_freq.BT_AUDIO_CODEC_CFG_FREQ_176KHZ (C enumerator), 1738
bt_audio_codec_cfg_freq.BT_AUDIO_CODEC_CFG_FREQ_192KHZ (C enumerator), 1738
bt_audio_codec_cfg_freq.BT_AUDIO_CODEC_CFG_FREQ_384KHZ (C enumerator), 1738
bt_audio_codec_cfg_get_chan_allocation (C function), 1751
bt_audio_codec_cfg_get_frame_blocks_per_sdu (C function), 1752
bt_audio_codec_cfg_get_frame_dur (C function), 1750
bt_audio_codec_cfg_get_freq (C function), 1749
bt_audio_codec_cfg_get_octets_per_frame (C function), 1751
bt_audio_codec_cfg_get_val (C function), 1753
bt_audio_codec_cfg_meta_get_audio_active_state (C function), 1759
bt_audio_codec_cfg_meta_get_bcast_audio_immediate_rend_flag (C function), 1759
bt_audio_codec_cfg_meta_get_ccid_list (C function), 1757
bt_audio_codec_cfg_meta_get_extended (C function), 1760
bt_audio_codec_cfg_meta_get_lang (C function), 1756
bt_audio_codec_cfg_meta_get_parental_rating (C function), 1757
bt_audio_codec_cfg_meta_get_pref_context (C function), 1754
bt_audio_codec_cfg_meta_get_program_info (C function), 1756
bt_audio_codec_cfg_meta_get_program_info_uri (C function), 1758
bt_audio_codec_cfg_meta_get_stream_context (C function), 1755
bt_audio_codec_cfg_meta_get_val (C function), 1754
bt_audio_codec_cfg_meta_get_vendor (C function), 1760
bt_audio_codec_cfg_meta_set_audio_active_state (C function), 1759
bt_audio_codec_cfg_meta_set_bcast_audio_immediate_rend_flag (C function), 1759
bt_audio_codec_cfg_meta_set_ccid_list (C function), 1757
bt_audio_codec_cfg_meta_set_extended (C function), 1760
bt_audio_codec_cfg_meta_set_lang (C function), 1757
bt_audio_codec_cfg_meta_set_parental_rating (C function), 1758
bt_audio_codec_cfg_meta_set_pref_context (C function), 1755
bt_audio_codec_cfg_meta_set_program_info (C function), 1756
bt_audio_codec_cfg_meta_set_program_info_uri (C function), 1758
bt_audio_codec_cfg_meta_set_stream_context (C function), 1755
bt_audio_codec_cfg_meta_set_val (C function), 1754
bt_audio_codec_cfg_meta_set_vendor (C function), 1760
bt_audio_codec_cfg_meta_unset_val (C function), 1754
bt_audio_codec_cfg_set_chan_allocation (C function), 1751
bt_audio_codec_cfg_set_frame_blocks_per_sdu (C function), 1753
bt_audio_codec_cfg_set_frame_dur (C function), 1750
bt_audio_codec_cfg_set_freq (C function), 1750
bt_audio_codec_cfg_set_octets_per_frame (C function), 1752
bt_audio_codec_cfg_set_val (C function), 1753
bt_audio_codec_cfg_type (C enum), 1737
bt_audio_codec_cfg_type.BT_AUDIO_CODEC_CFG_CHAN_ALLOC (C enumerator), 1737
bt_audio_codec_cfg_type.BT_AUDIO_CODEC_CFG_DURATION (C enumerator), 1737
bt_audio_codec_cfg_type.BT_AUDIO_CODEC_CFG_FRAME_BLKS_PER_SDU (C enumerator), 1737
bt_audio_codec_cfg_type.BT_AUDIO_CODEC_CFG_FRAME_LEN (C enumerator), 1737
bt_audio_codec_cfg_type.BT_AUDIO_CODEC_CFG_FREQ (C enumerator), 1737
bt_audio_codec_cfg_unset_val (C function), 1753
bt_audio_codec_cfg.cid (C var), 1746
bt_audio_codec_cfg.ctlr_transcode (C var), 1746
bt_audio_codec_cfg.data (C var), 1746
bt_audio_codec_cfg.data_len (C var), 1746

Index 3969



Zephyr Project Documentation, Release 3.7.99

bt_audio_codec_cfg.id (C var), 1746
bt_audio_codec_cfg.meta (C var), 1747
bt_audio_codec_cfg.meta_len (C var), 1746
bt_audio_codec_cfg.path_id (C var), 1746
bt_audio_codec_cfg.vid (C var), 1746
BT_AUDIO_CODEC_DATA (C macro), 1732
bt_audio_codec_octets_per_codec_frame (C struct), 1745
bt_audio_codec_octets_per_codec_frame.max (C var), 1745
bt_audio_codec_octets_per_codec_frame.min (C var), 1745
BT_AUDIO_CODEC_QOS (C macro), 1733
bt_audio_codec_qos (C struct), 1747
BT_AUDIO_CODEC_QOS_FRAMED (C macro), 1733
bt_audio_codec_qos_framing (C enum), 1744
bt_audio_codec_qos_framing.BT_AUDIO_CODEC_QOS_FRAMING_FRAMED (C enumerator), 1744
bt_audio_codec_qos_framing.BT_AUDIO_CODEC_QOS_FRAMING_UNFRAMED (C enumerator), 1744
BT_AUDIO_CODEC_QOS_PREF (C macro), 1733
bt_audio_codec_qos_pref (C struct), 1748
bt_audio_codec_qos_pref.latency (C var), 1748
bt_audio_codec_qos_pref.pd_max (C var), 1749
bt_audio_codec_qos_pref.pd_min (C var), 1748
bt_audio_codec_qos_pref.phy (C var), 1748
bt_audio_codec_qos_pref.pref_pd_max (C var), 1749
bt_audio_codec_qos_pref.pref_pd_min (C var), 1749
bt_audio_codec_qos_pref.rtn (C var), 1748
bt_audio_codec_qos_pref.unframed_supported (C var), 1748
BT_AUDIO_CODEC_QOS_UNFRAMED (C macro), 1733
bt_audio_codec_qos.burst_number (C var), 1748
bt_audio_codec_qos.framing (C var), 1747
bt_audio_codec_qos.interval (C var), 1747
bt_audio_codec_qos.latency (C var), 1747
bt_audio_codec_qos.max_pdu (C var), 1747
bt_audio_codec_qos.num_subevents (C var), 1748
bt_audio_codec_qos.pd (C var), 1747
bt_audio_codec_qos.phy (C var), 1747
bt_audio_codec_qos.rtn (C var), 1747
bt_audio_codec_qos.sdu (C var), 1747
bt_audio_context (C enum), 1738
BT_AUDIO_CONTEXT_TYPE_ANY (C macro), 1732
bt_audio_context.BT_AUDIO_CONTEXT_TYPE_ALERTS (C enumerator), 1739
bt_audio_context.BT_AUDIO_CONTEXT_TYPE_CONVERSATIONAL (C enumerator), 1738
bt_audio_context.BT_AUDIO_CONTEXT_TYPE_EMERGENCY_ALARM (C enumerator), 1739
bt_audio_context.BT_AUDIO_CONTEXT_TYPE_GAME (C enumerator), 1738
bt_audio_context.BT_AUDIO_CONTEXT_TYPE_INSTRUCTIONAL (C enumerator), 1739
bt_audio_context.BT_AUDIO_CONTEXT_TYPE_LIVE (C enumerator), 1739
bt_audio_context.BT_AUDIO_CONTEXT_TYPE_MEDIA (C enumerator), 1738
bt_audio_context.BT_AUDIO_CONTEXT_TYPE_NOTIFICATIONS (C enumerator), 1739
bt_audio_context.BT_AUDIO_CONTEXT_TYPE_PROHIBITED (C enumerator), 1738
bt_audio_context.BT_AUDIO_CONTEXT_TYPE_RINGTONE (C enumerator), 1739
bt_audio_context.BT_AUDIO_CONTEXT_TYPE_SOUND_EFFECTS (C enumerator), 1739
bt_audio_context.BT_AUDIO_CONTEXT_TYPE_UNSPECIFIED (C enumerator), 1738
bt_audio_context.BT_AUDIO_CONTEXT_TYPE_VOICE_ASSISTANTS (C enumerator), 1739
bt_audio_data_parse (C function), 1744
bt_audio_dir (C enum), 1743
bt_audio_dir.BT_AUDIO_DIR_SINK (C enumerator), 1744
bt_audio_dir.BT_AUDIO_DIR_SOURCE (C enumerator), 1744
bt_audio_get_chan_count (C function), 1745
BT_AUDIO_LANG_SIZE (C macro), 1732
bt_audio_location (C enum), 1742

3970 Index



Zephyr Project Documentation, Release 3.7.99

BT_AUDIO_LOCATION_ANY (C macro), 1733
bt_audio_location.BT_AUDIO_LOCATION_BACK_CENTER (C enumerator), 1742
bt_audio_location.BT_AUDIO_LOCATION_BACK_LEFT (C enumerator), 1742
bt_audio_location.BT_AUDIO_LOCATION_BACK_RIGHT (C enumerator), 1742
bt_audio_location.BT_AUDIO_LOCATION_BOTTOM_FRONT_CENTER (C enumerator), 1743
bt_audio_location.BT_AUDIO_LOCATION_BOTTOM_FRONT_LEFT (C enumerator), 1743
bt_audio_location.BT_AUDIO_LOCATION_BOTTOM_FRONT_RIGHT (C enumerator), 1743
bt_audio_location.BT_AUDIO_LOCATION_FRONT_CENTER (C enumerator), 1742
bt_audio_location.BT_AUDIO_LOCATION_FRONT_LEFT (C enumerator), 1742
bt_audio_location.BT_AUDIO_LOCATION_FRONT_LEFT_OF_CENTER (C enumerator), 1742
bt_audio_location.BT_AUDIO_LOCATION_FRONT_LEFT_WIDE (C enumerator), 1743
bt_audio_location.BT_AUDIO_LOCATION_FRONT_RIGHT (C enumerator), 1742
bt_audio_location.BT_AUDIO_LOCATION_FRONT_RIGHT_OF_CENTER (C enumerator), 1742
bt_audio_location.BT_AUDIO_LOCATION_FRONT_RIGHT_WIDE (C enumerator), 1743
bt_audio_location.BT_AUDIO_LOCATION_LEFT_SURROUND (C enumerator), 1743
bt_audio_location.BT_AUDIO_LOCATION_LOW_FREQ_EFFECTS_1 (C enumerator), 1742
bt_audio_location.BT_AUDIO_LOCATION_LOW_FREQ_EFFECTS_2 (C enumerator), 1742
bt_audio_location.BT_AUDIO_LOCATION_MONO_AUDIO (C enumerator), 1742
bt_audio_location.BT_AUDIO_LOCATION_RIGHT_SURROUND (C enumerator), 1743
bt_audio_location.BT_AUDIO_LOCATION_SIDE_LEFT (C enumerator), 1742
bt_audio_location.BT_AUDIO_LOCATION_SIDE_RIGHT (C enumerator), 1742
bt_audio_location.BT_AUDIO_LOCATION_TOP_BACK_CENTER (C enumerator), 1743
bt_audio_location.BT_AUDIO_LOCATION_TOP_BACK_LEFT (C enumerator), 1743
bt_audio_location.BT_AUDIO_LOCATION_TOP_BACK_RIGHT (C enumerator), 1743
bt_audio_location.BT_AUDIO_LOCATION_TOP_CENTER (C enumerator), 1743
bt_audio_location.BT_AUDIO_LOCATION_TOP_FRONT_CENTER (C enumerator), 1743
bt_audio_location.BT_AUDIO_LOCATION_TOP_FRONT_LEFT (C enumerator), 1742
bt_audio_location.BT_AUDIO_LOCATION_TOP_FRONT_RIGHT (C enumerator), 1743
bt_audio_location.BT_AUDIO_LOCATION_TOP_SIDE_LEFT (C enumerator), 1743
bt_audio_location.BT_AUDIO_LOCATION_TOP_SIDE_RIGHT (C enumerator), 1743
bt_audio_metadata_type (C enum), 1740
BT_AUDIO_METADATA_TYPE_IS_KNOWN (C macro), 1732
bt_audio_metadata_type.BT_AUDIO_METADATA_TYPE_AUDIO_STATE (C enumerator), 1741
bt_audio_metadata_type.BT_AUDIO_METADATA_TYPE_BROADCAST_IMMEDIATE (C enumerator), 1741
bt_audio_metadata_type.BT_AUDIO_METADATA_TYPE_CCID_LIST (C enumerator), 1741
bt_audio_metadata_type.BT_AUDIO_METADATA_TYPE_EXTENDED (C enumerator), 1741
bt_audio_metadata_type.BT_AUDIO_METADATA_TYPE_LANG (C enumerator), 1741
bt_audio_metadata_type.BT_AUDIO_METADATA_TYPE_PARENTAL_RATING (C enumerator), 1741
bt_audio_metadata_type.BT_AUDIO_METADATA_TYPE_PREF_CONTEXT (C enumerator), 1741
bt_audio_metadata_type.BT_AUDIO_METADATA_TYPE_PROGRAM_INFO (C enumerator), 1741
bt_audio_metadata_type.BT_AUDIO_METADATA_TYPE_PROGRAM_INFO_URI (C enumerator), 1741
bt_audio_metadata_type.BT_AUDIO_METADATA_TYPE_STREAM_CONTEXT (C enumerator), 1741
bt_audio_metadata_type.BT_AUDIO_METADATA_TYPE_VENDOR (C enumerator), 1741
bt_audio_parental_rating (C enum), 1739
bt_audio_parental_rating.BT_AUDIO_PARENTAL_RATING_AGE_5_OR_ABOVE (C enumerator), 1739
bt_audio_parental_rating.BT_AUDIO_PARENTAL_RATING_AGE_6_OR_ABOVE (C enumerator), 1739
bt_audio_parental_rating.BT_AUDIO_PARENTAL_RATING_AGE_7_OR_ABOVE (C enumerator), 1740
bt_audio_parental_rating.BT_AUDIO_PARENTAL_RATING_AGE_8_OR_ABOVE (C enumerator), 1740
bt_audio_parental_rating.BT_AUDIO_PARENTAL_RATING_AGE_9_OR_ABOVE (C enumerator), 1740
bt_audio_parental_rating.BT_AUDIO_PARENTAL_RATING_AGE_10_OR_ABOVE (C enumerator), 1740
bt_audio_parental_rating.BT_AUDIO_PARENTAL_RATING_AGE_11_OR_ABOVE (C enumerator), 1740
bt_audio_parental_rating.BT_AUDIO_PARENTAL_RATING_AGE_12_OR_ABOVE (C enumerator), 1740
bt_audio_parental_rating.BT_AUDIO_PARENTAL_RATING_AGE_13_OR_ABOVE (C enumerator), 1740
bt_audio_parental_rating.BT_AUDIO_PARENTAL_RATING_AGE_14_OR_ABOVE (C enumerator), 1740
bt_audio_parental_rating.BT_AUDIO_PARENTAL_RATING_AGE_15_OR_ABOVE (C enumerator), 1740
bt_audio_parental_rating.BT_AUDIO_PARENTAL_RATING_AGE_16_OR_ABOVE (C enumerator), 1740
bt_audio_parental_rating.BT_AUDIO_PARENTAL_RATING_AGE_17_OR_ABOVE (C enumerator), 1740
bt_audio_parental_rating.BT_AUDIO_PARENTAL_RATING_AGE_18_OR_ABOVE (C enumerator), 1740

Index 3971



Zephyr Project Documentation, Release 3.7.99

bt_audio_parental_rating.BT_AUDIO_PARENTAL_RATING_AGE_ANY (C enumerator), 1739
bt_audio_parental_rating.BT_AUDIO_PARENTAL_RATING_NO_RATING (C enumerator), 1739
BT_AUDIO_PD_MAX (C macro), 1731
BT_AUDIO_PD_PREF_NONE (C macro), 1731
BT_AUDIO_UNICAST_ANNOUNCEMENT_GENERAL (C macro), 1731
BT_AUDIO_UNICAST_ANNOUNCEMENT_TARGETED (C macro), 1731
bt_bap_ascs_reason (C enum), 1765
bt_bap_ascs_reason.BT_BAP_ASCS_REASON_CIS (C enumerator), 1765
bt_bap_ascs_reason.BT_BAP_ASCS_REASON_CODEC (C enumerator), 1765
bt_bap_ascs_reason.BT_BAP_ASCS_REASON_CODEC_DATA (C enumerator), 1765
bt_bap_ascs_reason.BT_BAP_ASCS_REASON_FRAMING (C enumerator), 1765
bt_bap_ascs_reason.BT_BAP_ASCS_REASON_INTERVAL (C enumerator), 1765
bt_bap_ascs_reason.BT_BAP_ASCS_REASON_LATENCY (C enumerator), 1765
bt_bap_ascs_reason.BT_BAP_ASCS_REASON_NONE (C enumerator), 1765
bt_bap_ascs_reason.BT_BAP_ASCS_REASON_PD (C enumerator), 1765
bt_bap_ascs_reason.BT_BAP_ASCS_REASON_PHY (C enumerator), 1765
bt_bap_ascs_reason.BT_BAP_ASCS_REASON_RTN (C enumerator), 1765
bt_bap_ascs_reason.BT_BAP_ASCS_REASON_SDU (C enumerator), 1765
BT_BAP_ASCS_RSP (C macro), 1761
bt_bap_ascs_rsp (C struct), 1774
bt_bap_ascs_rsp_code (C enum), 1764
bt_bap_ascs_rsp_code.BT_BAP_ASCS_RSP_CODE_CAP_UNSUPPORTED (C enumerator), 1764
bt_bap_ascs_rsp_code.BT_BAP_ASCS_RSP_CODE_CONF_INVALID (C enumerator), 1764
bt_bap_ascs_rsp_code.BT_BAP_ASCS_RSP_CODE_CONF_REJECTED (C enumerator), 1764
bt_bap_ascs_rsp_code.BT_BAP_ASCS_RSP_CODE_CONF_UNSUPPORTED (C enumerator), 1764
bt_bap_ascs_rsp_code.BT_BAP_ASCS_RSP_CODE_INVALID_ASE (C enumerator), 1764
bt_bap_ascs_rsp_code.BT_BAP_ASCS_RSP_CODE_INVALID_ASE_STATE (C enumerator), 1764
bt_bap_ascs_rsp_code.BT_BAP_ASCS_RSP_CODE_INVALID_DIR (C enumerator), 1764
bt_bap_ascs_rsp_code.BT_BAP_ASCS_RSP_CODE_INVALID_LENGTH (C enumerator), 1764
bt_bap_ascs_rsp_code.BT_BAP_ASCS_RSP_CODE_METADATA_INVALID (C enumerator), 1765
bt_bap_ascs_rsp_code.BT_BAP_ASCS_RSP_CODE_METADATA_REJECTED (C enumerator), 1764
bt_bap_ascs_rsp_code.BT_BAP_ASCS_RSP_CODE_METADATA_UNSUPPORTED (C enumerator), 1764
bt_bap_ascs_rsp_code.BT_BAP_ASCS_RSP_CODE_NO_MEM (C enumerator), 1765
bt_bap_ascs_rsp_code.BT_BAP_ASCS_RSP_CODE_NOT_SUPPORTED (C enumerator), 1764
bt_bap_ascs_rsp_code.BT_BAP_ASCS_RSP_CODE_SUCCESS (C enumerator), 1764
bt_bap_ascs_rsp_code.BT_BAP_ASCS_RSP_CODE_UNSPECIFIED (C enumerator), 1765
bt_bap_ascs_rsp.code (C var), 1774
bt_bap_ascs_rsp.metadata_type (C var), 1774
bt_bap_ascs_rsp.reason (C var), 1774
bt_bap_base_codec_id (C struct), 1797
bt_bap_base_codec_id.cid (C var), 1797
bt_bap_base_codec_id.id (C var), 1797
bt_bap_base_codec_id.vid (C var), 1798
bt_bap_base_foreach_subgroup (C function), 1795
bt_bap_base_get_base_from_ad (C function), 1794
bt_bap_base_get_bis_indexes (C function), 1795
bt_bap_base_get_pres_delay (C function), 1794
bt_bap_base_get_size (C function), 1794
bt_bap_base_get_subgroup_bis_count (C function), 1796
bt_bap_base_get_subgroup_codec_data (C function), 1795
bt_bap_base_get_subgroup_codec_id (C function), 1795
bt_bap_base_get_subgroup_codec_meta (C function), 1796
bt_bap_base_get_subgroup_count (C function), 1795
bt_bap_base_subgroup_bis (C struct), 1798
bt_bap_base_subgroup_bis_codec_to_codec_cfg (C function), 1797
bt_bap_base_subgroup_bis.data (C var), 1798
bt_bap_base_subgroup_bis.data_len (C var), 1798
bt_bap_base_subgroup_bis.index (C var), 1798

3972 Index



Zephyr Project Documentation, Release 3.7.99

bt_bap_base_subgroup_codec_to_codec_cfg (C function), 1796
bt_bap_base_subgroup_foreach_bis (C function), 1797
bt_bap_base_subgroup_get_bis_indexes (C function), 1796
bt_bap_bass_att_err (C enum), 1763
bt_bap_bass_att_err.BT_BAP_BASS_ERR_INVALID_SRC_ID (C enumerator), 1763
bt_bap_bass_att_err.BT_BAP_BASS_ERR_OPCODE_NOT_SUPPORTED (C enumerator), 1763
bt_bap_bass_subgroup (C struct), 1775
bt_bap_bass_subgroup.bis_sync (C var), 1775
bt_bap_bass_subgroup.metadata (C var), 1775
bt_bap_bass_subgroup.metadata_len (C var), 1775
bt_bap_big_enc_state (C enum), 1763
bt_bap_big_enc_state.BT_BAP_BIG_ENC_STATE_BAD_CODE (C enumerator), 1763
bt_bap_big_enc_state.BT_BAP_BIG_ENC_STATE_BCODE_REQ (C enumerator), 1763
bt_bap_big_enc_state.BT_BAP_BIG_ENC_STATE_DEC (C enumerator), 1763
bt_bap_big_enc_state.BT_BAP_BIG_ENC_STATE_NO_ENC (C enumerator), 1763
BT_BAP_BIS_SYNC_NO_PREF (C macro), 1761
bt_bap_broadcast_assistant_add_src (C function), 1773
bt_bap_broadcast_assistant_add_src_param (C struct), 1783
bt_bap_broadcast_assistant_add_src_param.addr (C var), 1783
bt_bap_broadcast_assistant_add_src_param.adv_sid (C var), 1783
bt_bap_broadcast_assistant_add_src_param.broadcast_id (C var), 1783
bt_bap_broadcast_assistant_add_src_param.num_subgroups (C var), 1784
bt_bap_broadcast_assistant_add_src_param.pa_interval (C var), 1783
bt_bap_broadcast_assistant_add_src_param.pa_sync (C var), 1783
bt_bap_broadcast_assistant_add_src_param.subgroups (C var), 1784
bt_bap_broadcast_assistant_cb (C struct), 1781
bt_bap_broadcast_assistant_cb.add_src (C var), 1783
bt_bap_broadcast_assistant_cb.broadcast_code (C var), 1783
bt_bap_broadcast_assistant_cb.discover (C var), 1782
bt_bap_broadcast_assistant_cb.mod_src (C var), 1783
bt_bap_broadcast_assistant_cb.recv_state (C var), 1782
bt_bap_broadcast_assistant_cb.recv_state_removed (C var), 1782
bt_bap_broadcast_assistant_cb.rem_src (C var), 1783
bt_bap_broadcast_assistant_cb.scan (C var), 1782
bt_bap_broadcast_assistant_cb.scan_start (C var), 1782
bt_bap_broadcast_assistant_cb.scan_stop (C var), 1782
bt_bap_broadcast_assistant_discover (C function), 1772
bt_bap_broadcast_assistant_mod_src (C function), 1773
bt_bap_broadcast_assistant_mod_src_param (C struct), 1784
bt_bap_broadcast_assistant_mod_src_param.num_subgroups (C var), 1784
bt_bap_broadcast_assistant_mod_src_param.pa_interval (C var), 1784
bt_bap_broadcast_assistant_mod_src_param.pa_sync (C var), 1784
bt_bap_broadcast_assistant_mod_src_param.src_id (C var), 1784
bt_bap_broadcast_assistant_mod_src_param.subgroups (C var), 1784
bt_bap_broadcast_assistant_read_recv_state (C function), 1774
bt_bap_broadcast_assistant_register_cb (C function), 1772
bt_bap_broadcast_assistant_rem_src (C function), 1773
bt_bap_broadcast_assistant_scan_start (C function), 1772
bt_bap_broadcast_assistant_scan_stop (C function), 1772
bt_bap_broadcast_assistant_set_broadcast_code (C function), 1773
bt_bap_broadcast_assistant_unregister_cb (C function), 1773
bt_bap_broadcast_assistant_write_cb (C type), 1762
bt_bap_broadcast_sink_cb (C struct), 1799
bt_bap_broadcast_sink_cb.base_recv (C var), 1800
bt_bap_broadcast_sink_cb.syncable (C var), 1800
bt_bap_broadcast_sink_create (C function), 1798
bt_bap_broadcast_sink_delete (C function), 1799
bt_bap_broadcast_sink_register_cb (C function), 1798

Index 3973



Zephyr Project Documentation, Release 3.7.99

bt_bap_broadcast_sink_stop (C function), 1799
bt_bap_broadcast_sink_sync (C function), 1799
bt_bap_broadcast_source_create (C function), 1800
bt_bap_broadcast_source_delete (C function), 1802
bt_bap_broadcast_source_get_base (C function), 1802
bt_bap_broadcast_source_get_id (C function), 1802
bt_bap_broadcast_source_param (C struct), 1803
bt_bap_broadcast_source_param.broadcast_code (C var), 1803
bt_bap_broadcast_source_param.encryption (C var), 1803
bt_bap_broadcast_source_param.irc (C var), 1804
bt_bap_broadcast_source_param.iso_interval (C var), 1804
bt_bap_broadcast_source_param.packing (C var), 1803
bt_bap_broadcast_source_param.params (C var), 1803
bt_bap_broadcast_source_param.params_count (C var), 1803
bt_bap_broadcast_source_param.pto (C var), 1804
bt_bap_broadcast_source_param.qos (C var), 1803
bt_bap_broadcast_source_reconfig (C function), 1800
bt_bap_broadcast_source_start (C function), 1801
bt_bap_broadcast_source_stop (C function), 1801
bt_bap_broadcast_source_stream_param (C struct), 1802
bt_bap_broadcast_source_stream_param.data (C var), 1803
bt_bap_broadcast_source_stream_param.data_len (C var), 1802
bt_bap_broadcast_source_stream_param.stream (C var), 1802
bt_bap_broadcast_source_subgroup_param (C struct), 1803
bt_bap_broadcast_source_subgroup_param.codec_cfg (C var), 1803
bt_bap_broadcast_source_subgroup_param.params (C var), 1803
bt_bap_broadcast_source_subgroup_param.params_count (C var), 1803
bt_bap_broadcast_source_update_metadata (C function), 1801
bt_bap_ep_func_t (C type), 1790
bt_bap_ep_get_info (C function), 1766
bt_bap_ep_info (C struct), 1777
bt_bap_ep_info.can_recv (C var), 1778
bt_bap_ep_info.can_send (C var), 1777
bt_bap_ep_info.dir (C var), 1777
bt_bap_ep_info.id (C var), 1777
bt_bap_ep_info.iso_chan (C var), 1777
bt_bap_ep_info.paired_ep (C var), 1778
bt_bap_ep_info.qos_pref (C var), 1778
bt_bap_ep_info.state (C var), 1777
bt_bap_ep_state (C enum), 1763
bt_bap_ep_state.BT_BAP_EP_STATE_CODEC_CONFIGURED (C enumerator), 1763
bt_bap_ep_state.BT_BAP_EP_STATE_DISABLING (C enumerator), 1764
bt_bap_ep_state.BT_BAP_EP_STATE_ENABLING (C enumerator), 1763
bt_bap_ep_state.BT_BAP_EP_STATE_IDLE (C enumerator), 1763
bt_bap_ep_state.BT_BAP_EP_STATE_QOS_CONFIGURED (C enumerator), 1763
bt_bap_ep_state.BT_BAP_EP_STATE_RELEASING (C enumerator), 1764
bt_bap_ep_state.BT_BAP_EP_STATE_STREAMING (C enumerator), 1763
BT_BAP_PA_INTERVAL_UNKNOWN (C macro), 1761
bt_bap_pa_state (C enum), 1762
bt_bap_pa_state.BT_BAP_PA_STATE_FAILED (C enumerator), 1762
bt_bap_pa_state.BT_BAP_PA_STATE_INFO_REQ (C enumerator), 1762
bt_bap_pa_state.BT_BAP_PA_STATE_NO_PAST (C enumerator), 1763
bt_bap_pa_state.BT_BAP_PA_STATE_NOT_SYNCED (C enumerator), 1762
bt_bap_pa_state.BT_BAP_PA_STATE_SYNCED (C enumerator), 1762
bt_bap_scan_delegator_add_src (C function), 1771
bt_bap_scan_delegator_add_src_param (C struct), 1780
bt_bap_scan_delegator_add_src_param.addr (C var), 1781
bt_bap_scan_delegator_add_src_param.broadcast_id (C var), 1781

3974 Index



Zephyr Project Documentation, Release 3.7.99

bt_bap_scan_delegator_add_src_param.encrypt_state (C var), 1781
bt_bap_scan_delegator_add_src_param.num_subgroups (C var), 1781
bt_bap_scan_delegator_add_src_param.sid (C var), 1781
bt_bap_scan_delegator_add_src_param.subgroups (C var), 1781
bt_bap_scan_delegator_cb (C struct), 1776
bt_bap_scan_delegator_cb.bis_sync_req (C var), 1777
bt_bap_scan_delegator_cb.broadcast_code (C var), 1777
bt_bap_scan_delegator_cb.pa_sync_req (C var), 1776
bt_bap_scan_delegator_cb.pa_sync_term_req (C var), 1776
bt_bap_scan_delegator_cb.recv_state_updated (C var), 1776
bt_bap_scan_delegator_find_state (C function), 1771
bt_bap_scan_delegator_foreach_state (C function), 1771
bt_bap_scan_delegator_mod_src (C function), 1771
bt_bap_scan_delegator_mod_src_param (C struct), 1781
bt_bap_scan_delegator_mod_src_param.broadcast_id (C var), 1781
bt_bap_scan_delegator_mod_src_param.encrypt_state (C var), 1781
bt_bap_scan_delegator_mod_src_param.num_subgroups (C var), 1781
bt_bap_scan_delegator_mod_src_param.src_id (C var), 1781
bt_bap_scan_delegator_mod_src_param.subgroups (C var), 1781
bt_bap_scan_delegator_recv_state (C struct), 1775
bt_bap_scan_delegator_recv_state.addr (C var), 1775
bt_bap_scan_delegator_recv_state.adv_sid (C var), 1775
bt_bap_scan_delegator_recv_state.bad_code (C var), 1775
bt_bap_scan_delegator_recv_state.broadcast_id (C var), 1775
bt_bap_scan_delegator_recv_state.encrypt_state (C var), 1775
bt_bap_scan_delegator_recv_state.num_subgroups (C var), 1775
bt_bap_scan_delegator_recv_state.pa_sync_state (C var), 1775
bt_bap_scan_delegator_recv_state.src_id (C var), 1775
bt_bap_scan_delegator_recv_state.subgroups (C var), 1776
bt_bap_scan_delegator_register_cb (C function), 1770
bt_bap_scan_delegator_rem_src (C function), 1771
bt_bap_scan_delegator_set_bis_sync_state (C function), 1770
bt_bap_scan_delegator_set_pa_state (C function), 1770
bt_bap_scan_delegator_state_func_t (C type), 1762
bt_bap_stream (C struct), 1778
bt_bap_stream_cb_register (C function), 1766
bt_bap_stream_config (C function), 1766
bt_bap_stream_connect (C function), 1768
bt_bap_stream_disable (C function), 1767
bt_bap_stream_enable (C function), 1767
bt_bap_stream_get_tx_sync (C function), 1770
bt_bap_stream_metadata (C function), 1767
bt_bap_stream_ops (C struct), 1778
bt_bap_stream_ops.configured (C var), 1779
bt_bap_stream_ops.connected (C var), 1780
bt_bap_stream_ops.disabled (C var), 1779
bt_bap_stream_ops.disconnected (C var), 1780
bt_bap_stream_ops.enabled (C var), 1779
bt_bap_stream_ops.metadata_updated (C var), 1779
bt_bap_stream_ops.qos_set (C var), 1779
bt_bap_stream_ops.recv (C var), 1780
bt_bap_stream_ops.released (C var), 1779
bt_bap_stream_ops.sent (C var), 1780
bt_bap_stream_ops.started (C var), 1779
bt_bap_stream_ops.stopped (C var), 1779
bt_bap_stream_qos (C function), 1767
bt_bap_stream_reconfig (C function), 1766
bt_bap_stream_release (C function), 1769

Index 3975



Zephyr Project Documentation, Release 3.7.99

bt_bap_stream_send (C function), 1769
bt_bap_stream_send_ts (C function), 1769
bt_bap_stream_start (C function), 1768
bt_bap_stream_stop (C function), 1768
bt_bap_stream.codec_cfg (C var), 1778
bt_bap_stream.conn (C var), 1778
bt_bap_stream.ep (C var), 1778
bt_bap_stream.ops (C var), 1778
bt_bap_stream.qos (C var), 1778
bt_bap_stream.user_data (C var), 1778
bt_bap_unicast_client_cb (C struct), 1787
bt_bap_unicast_client_cb.available_contexts (C var), 1787
bt_bap_unicast_client_cb.config (C var), 1787
bt_bap_unicast_client_cb.disable (C var), 1789
bt_bap_unicast_client_cb.discover (C var), 1790
bt_bap_unicast_client_cb.enable (C var), 1788
bt_bap_unicast_client_cb.endpoint (C var), 1790
bt_bap_unicast_client_cb.location (C var), 1787
bt_bap_unicast_client_cb.metadata (C var), 1789
bt_bap_unicast_client_cb.pac_record (C var), 1789
bt_bap_unicast_client_cb.qos (C var), 1788
bt_bap_unicast_client_cb.release (C var), 1789
bt_bap_unicast_client_cb.start (C var), 1788
bt_bap_unicast_client_cb.stop (C var), 1788
bt_bap_unicast_client_discover (C function), 1785
bt_bap_unicast_client_register_cb (C function), 1785
bt_bap_unicast_group_add_streams (C function), 1784
bt_bap_unicast_group_create (C function), 1784
bt_bap_unicast_group_delete (C function), 1785
bt_bap_unicast_group_param (C struct), 1786
bt_bap_unicast_group_param.c_to_p_ft (C var), 1786
bt_bap_unicast_group_param.iso_interval (C var), 1787
bt_bap_unicast_group_param.p_to_c_ft (C var), 1787
bt_bap_unicast_group_param.packing (C var), 1786
bt_bap_unicast_group_param.params (C var), 1786
bt_bap_unicast_group_param.params_count (C var), 1786
bt_bap_unicast_group_stream_pair_param (C struct), 1786
bt_bap_unicast_group_stream_pair_param.rx_param (C var), 1786
bt_bap_unicast_group_stream_pair_param.tx_param (C var), 1786
bt_bap_unicast_group_stream_param (C struct), 1785
bt_bap_unicast_group_stream_param.qos (C var), 1786
bt_bap_unicast_group_stream_param.stream (C var), 1786
bt_bap_unicast_server_cb (C struct), 1791
bt_bap_unicast_server_cb.config (C var), 1791
bt_bap_unicast_server_cb.disable (C var), 1793
bt_bap_unicast_server_cb.enable (C var), 1792
bt_bap_unicast_server_cb.metadata (C var), 1793
bt_bap_unicast_server_cb.qos (C var), 1792
bt_bap_unicast_server_cb.reconfig (C var), 1792
bt_bap_unicast_server_cb.release (C var), 1794
bt_bap_unicast_server_cb.start (C var), 1793
bt_bap_unicast_server_cb.stop (C var), 1793
bt_bap_unicast_server_config_ase (C function), 1791
bt_bap_unicast_server_foreach_ep (C function), 1791
bt_bap_unicast_server_register_cb (C function), 1790
bt_bap_unicast_server_unregister_cb (C function), 1791
bt_bas_get_battery_level (C function), 1937
bt_bas_set_battery_level (C function), 1938

3976 Index



Zephyr Project Documentation, Release 3.7.99

bt_bond_info (C struct), 2002
bt_bond_info.addr (C var), 2002
BT_BR_CONN_PARAM (C macro), 2315
bt_br_conn_param (C struct), 2346
BT_BR_CONN_PARAM_DEFAULT (C macro), 2315
BT_BR_CONN_PARAM_INIT (C macro), 2315
bt_br_discovery_cb_t (C type), 1964
bt_br_discovery_param (C struct), 2001
bt_br_discovery_param.length (C var), 2001
bt_br_discovery_param.limited (C var), 2001
bt_br_discovery_result (C struct), 2001
bt_br_discovery_result.addr (C var), 2001
bt_br_discovery_result.cod (C var), 2001
bt_br_discovery_result.eir (C var), 2001
bt_br_discovery_result.rssi (C var), 2001
bt_br_discovery_start (C function), 1987
bt_br_discovery_stop (C function), 1987
bt_br_oob (C struct), 2001
bt_br_oob_get_local (C function), 1988
bt_br_oob.addr (C var), 2002
bt_br_set_connectable (C function), 1988
bt_br_set_discoverable (C function), 1988
BT_BUF_ACL_RX_SIZE (C macro), 2346
BT_BUF_ACL_SIZE (C macro), 2346
BT_BUF_CMD_SIZE (C macro), 2346
BT_BUF_CMD_TX_SIZE (C macro), 2347
bt_buf_data (C struct), 2349
BT_BUF_EVT_RX_SIZE (C macro), 2346
BT_BUF_EVT_SIZE (C macro), 2346
bt_buf_get_evt (C function), 2348
bt_buf_get_rx (C function), 2347
bt_buf_get_tx (C function), 2348
bt_buf_get_type (C function), 2348
BT_BUF_ISO_RX_COUNT (C macro), 2347
BT_BUF_ISO_RX_SIZE (C macro), 2347
BT_BUF_ISO_SIZE (C macro), 2346
BT_BUF_RESERVE (C macro), 2346
BT_BUF_RX_COUNT (C macro), 2347
BT_BUF_RX_SIZE (C macro), 2347
bt_buf_set_type (C function), 2348
BT_BUF_SIZE (C macro), 2346
bt_buf_type (C enum), 2347
bt_buf_type.BT_BUF_ACL_IN (C enumerator), 2347
bt_buf_type.BT_BUF_ACL_OUT (C enumerator), 2347
bt_buf_type.BT_BUF_CMD (C enumerator), 2347
bt_buf_type.BT_BUF_EVT (C enumerator), 2347
bt_buf_type.BT_BUF_H4 (C enumerator), 2347
bt_buf_type.BT_BUF_ISO_IN (C enumerator), 2347
bt_buf_type.BT_BUF_ISO_OUT (C enumerator), 2347
bt_cap_acceptor_register (C function), 1805
bt_cap_broadcast_to_unicast_param (C struct), 1820
bt_cap_broadcast_to_unicast_param.broadcast_source (C var), 1820
bt_cap_broadcast_to_unicast_param.count (C var), 1820
bt_cap_broadcast_to_unicast_param.members (C var), 1820
bt_cap_broadcast_to_unicast_param.type (C var), 1820
bt_cap_commander_broadcast_reception_start (C function), 1813
bt_cap_commander_broadcast_reception_start_member_param (C struct), 1822
bt_cap_commander_broadcast_reception_start_member_param.addr (C var), 1822

Index 3977



Zephyr Project Documentation, Release 3.7.99

bt_cap_commander_broadcast_reception_start_member_param.adv_sid (C var), 1822
bt_cap_commander_broadcast_reception_start_member_param.broadcast_id (C var), 1822
bt_cap_commander_broadcast_reception_start_member_param.member (C var), 1822
bt_cap_commander_broadcast_reception_start_member_param.num_subgroups (C var), 1822
bt_cap_commander_broadcast_reception_start_member_param.pa_interval (C var), 1822
bt_cap_commander_broadcast_reception_start_member_param.subgroups (C var), 1822
bt_cap_commander_broadcast_reception_start_param (C struct), 1822
bt_cap_commander_broadcast_reception_start_param.count (C var), 1823
bt_cap_commander_broadcast_reception_start_param.param (C var), 1822
bt_cap_commander_broadcast_reception_start_param.type (C var), 1822
bt_cap_commander_broadcast_reception_stop (C function), 1813
bt_cap_commander_broadcast_reception_stop_param (C struct), 1823
bt_cap_commander_broadcast_reception_stop_param.count (C var), 1823
bt_cap_commander_broadcast_reception_stop_param.members (C var), 1823
bt_cap_commander_broadcast_reception_stop_param.type (C var), 1823
bt_cap_commander_cancel (C function), 1813
bt_cap_commander_cb (C struct), 1820
bt_cap_commander_cb.broadcast_reception_start (C var), 1822
bt_cap_commander_cb.discovery_complete (C var), 1820
bt_cap_commander_cb.microphone_gain_changed (C var), 1821
bt_cap_commander_cb.microphone_mute_changed (C var), 1821
bt_cap_commander_cb.volume_changed (C var), 1821
bt_cap_commander_cb.volume_mute_changed (C var), 1821
bt_cap_commander_cb.volume_offset_changed (C var), 1821
bt_cap_commander_change_microphone_gain_setting (C function), 1814
bt_cap_commander_change_microphone_gain_setting_member_param (C struct), 1825
bt_cap_commander_change_microphone_gain_setting_member_param.gain (C var), 1825
bt_cap_commander_change_microphone_gain_setting_member_param.member (C var), 1825
bt_cap_commander_change_microphone_gain_setting_param (C struct), 1825
bt_cap_commander_change_microphone_gain_setting_param.count (C var), 1825
bt_cap_commander_change_microphone_gain_setting_param.param (C var), 1825
bt_cap_commander_change_microphone_gain_setting_param.type (C var), 1825
bt_cap_commander_change_microphone_mute_state (C function), 1814
bt_cap_commander_change_microphone_mute_state_param (C struct), 1824
bt_cap_commander_change_microphone_mute_state_param.count (C var), 1825
bt_cap_commander_change_microphone_mute_state_param.members (C var), 1824
bt_cap_commander_change_microphone_mute_state_param.mute (C var), 1825
bt_cap_commander_change_microphone_mute_state_param.type (C var), 1824
bt_cap_commander_change_volume (C function), 1813
bt_cap_commander_change_volume_mute_state (C function), 1814
bt_cap_commander_change_volume_mute_state_param (C struct), 1824
bt_cap_commander_change_volume_mute_state_param.count (C var), 1824
bt_cap_commander_change_volume_mute_state_param.members (C var), 1824
bt_cap_commander_change_volume_mute_state_param.mute (C var), 1824
bt_cap_commander_change_volume_mute_state_param.type (C var), 1824
bt_cap_commander_change_volume_offset (C function), 1814
bt_cap_commander_change_volume_offset_member_param (C struct), 1823
bt_cap_commander_change_volume_offset_member_param.member (C var), 1823
bt_cap_commander_change_volume_offset_member_param.offset (C var), 1823
bt_cap_commander_change_volume_offset_param (C struct), 1824
bt_cap_commander_change_volume_offset_param.count (C var), 1824
bt_cap_commander_change_volume_offset_param.param (C var), 1824
bt_cap_commander_change_volume_offset_param.type (C var), 1824
bt_cap_commander_change_volume_param (C struct), 1823
bt_cap_commander_change_volume_param.count (C var), 1823
bt_cap_commander_change_volume_param.members (C var), 1823
bt_cap_commander_change_volume_param.type (C var), 1823
bt_cap_commander_change_volume_param.volume (C var), 1823

3978 Index



Zephyr Project Documentation, Release 3.7.99

bt_cap_commander_discover (C function), 1812
bt_cap_commander_register_cb (C function), 1812
bt_cap_commander_unregister_cb (C function), 1812
bt_cap_initiator_broadcast_audio_create (C function), 1809
bt_cap_initiator_broadcast_audio_delete (C function), 1810
bt_cap_initiator_broadcast_audio_start (C function), 1809
bt_cap_initiator_broadcast_audio_stop (C function), 1810
bt_cap_initiator_broadcast_audio_update (C function), 1809
bt_cap_initiator_broadcast_create_param (C struct), 1818
bt_cap_initiator_broadcast_create_param.broadcast_code (C var), 1819
bt_cap_initiator_broadcast_create_param.encryption (C var), 1819
bt_cap_initiator_broadcast_create_param.irc (C var), 1819
bt_cap_initiator_broadcast_create_param.iso_interval (C var), 1819
bt_cap_initiator_broadcast_create_param.packing (C var), 1819
bt_cap_initiator_broadcast_create_param.pto (C var), 1819
bt_cap_initiator_broadcast_create_param.qos (C var), 1819
bt_cap_initiator_broadcast_create_param.subgroup_count (C var), 1818
bt_cap_initiator_broadcast_create_param.subgroup_params (C var), 1819
bt_cap_initiator_broadcast_get_base (C function), 1811
bt_cap_initiator_broadcast_get_id (C function), 1810
bt_cap_initiator_broadcast_stream_param (C struct), 1818
bt_cap_initiator_broadcast_stream_param.data (C var), 1818
bt_cap_initiator_broadcast_stream_param.data_len (C var), 1818
bt_cap_initiator_broadcast_stream_param.stream (C var), 1818
bt_cap_initiator_broadcast_subgroup_param (C struct), 1818
bt_cap_initiator_broadcast_subgroup_param.codec_cfg (C var), 1818
bt_cap_initiator_broadcast_subgroup_param.stream_count (C var), 1818
bt_cap_initiator_broadcast_subgroup_param.stream_params (C var), 1818
bt_cap_initiator_broadcast_to_unicast (C function), 1811
bt_cap_initiator_cb (C struct), 1814
bt_cap_initiator_cb.unicast_discovery_complete (C var), 1814
bt_cap_initiator_cb.unicast_start_complete (C var), 1815
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bt_conn_le_create_param.timeout (C var), 2338
bt_conn_le_create_param.window (C var), 2338
bt_conn_le_create_param.window_coded (C var), 2338
bt_conn_le_create_synced (C function), 2325
bt_conn_le_create_synced_param (C struct), 2338
bt_conn_le_create_synced_param.peer (C var), 2338
bt_conn_le_create_synced_param.subevent (C var), 2339
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can_set_bitrate_data (C function), 3244
can_set_mode (C function), 3247
can_set_state_change_callback (C function), 3252
can_set_timing (C function), 3245
can_set_timing_data (C function), 3244
can_start (C function), 3246
can_state (C enum), 3261
can_state_change_callback_t (C type), 3260
can_state.CAN_STATE_BUS_OFF (C enumerator), 3261
can_state.CAN_STATE_ERROR_ACTIVE (C enumerator), 3261
can_state.CAN_STATE_ERROR_PASSIVE (C enumerator), 3261
can_state.CAN_STATE_ERROR_WARNING (C enumerator), 3261
can_state.CAN_STATE_STOPPED (C enumerator), 3261
CAN_STATS_ACK_ERROR_INC (C macro), 3259
CAN_STATS_BIT0_ERROR_INC (C macro), 3258
CAN_STATS_BIT1_ERROR_INC (C macro), 3258
CAN_STATS_BIT_ERROR_INC (C macro), 3257
CAN_STATS_CRC_ERROR_INC (C macro), 3258
CAN_STATS_FORM_ERROR_INC (C macro), 3259
can_stats_get_ack_errors (C function), 3254
can_stats_get_bit0_errors (C function), 3252
can_stats_get_bit1_errors (C function), 3253
can_stats_get_bit_errors (C function), 3252
can_stats_get_crc_errors (C function), 3254
can_stats_get_form_errors (C function), 3254
can_stats_get_rx_overruns (C function), 3254
can_stats_get_stuff_errors (C function), 3253
CAN_STATS_RESET (C macro), 3259
CAN_STATS_RX_OVERRUN_INC (C macro), 3259
CAN_STATS_STUFF_ERROR_INC (C macro), 3258
CAN_STD_ID_MASK (C macro), 3255
can_stop (C function), 3247
can_timing (C struct), 3263
can_timing.phase_seg1 (C var), 3263
can_timing.phase_seg2 (C var), 3263
can_timing.prescaler (C var), 3263
can_timing.prop_seg (C var), 3263
can_timing.sjw (C var), 3263
can_transceiver_disable (C function), 3265
can_transceiver_enable (C function), 3265
can_tx_callback_t (C type), 3260
CANFD_MAX_DLC (C macro), 3256
CAP_ASYNC_OPS (C macro), 722
CAP_AUTONONCE (C macro), 722
CAP_INPLACE_OPS (C macro), 722
CAP_KEY_LOADING_API (C macro), 722
CAP_NO_IV_PREFIX (C macro), 722
CAP_OPAQUE_KEY_HNDL (C macro), 722
CAP_RAW_KEY (C macro), 722
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CAP_SEPARATE_IO_BUFS (C macro), 722
CAP_SYNC_OPS (C macro), 722
capabilities() (runners.core.ZephyrBinaryRunner class method), 199
cbc_op_t (C type), 723
cbpprintf (C function), 871
cbpprintf_external (C function), 869
cbprintf (C function), 869
cbprintf_cb (C type), 865
cbprintf_cb_local (C type), 865
cbprintf_convert_cb (C type), 865
cbprintf_fsc_package (C function), 868
CBPRINTF_MUST_RUNTIME_PACKAGE (C macro), 864
cbprintf_package (C function), 866
CBPRINTF_PACKAGE_ALIGNMENT (C macro), 864
cbprintf_package_convert (C function), 867
cbprintf_package_copy (C function), 868
CBPRINTF_STATIC_PACKAGE (C macro), 864
cbvprintf (C function), 870
cbvprintf_external_formatter_func (C type), 866
cbvprintf_package (C function), 867
cbvprintf_tagged_args (C function), 871
ccm_op_t (C type), 723
ccm_params (C struct), 726
ceiling_fraction (C macro), 685
cfb_display_param (C enum), 3314
cfb_display_param.CFB_DISPLAY_COLS (C enumerator), 3315
cfb_display_param.CFB_DISPLAY_HEIGH (C enumerator), 3314
cfb_display_param.CFB_DISPLAY_PPT (C enumerator), 3315
cfb_display_param.CFB_DISPLAY_ROWS (C enumerator), 3315
cfb_display_param.CFB_DISPLAY_WIDTH (C enumerator), 3314
cfb_draw_line (C function), 3316
cfb_draw_point (C function), 3315
cfb_draw_rect (C function), 3316
cfb_draw_text (C function), 3315
cfb_font (C struct), 3318
cfb_font_caps (C enum), 3315
cfb_font_caps.CFB_FONT_MONO_HPACKED (C enumerator), 3315
cfb_font_caps.CFB_FONT_MONO_VPACKED (C enumerator), 3315
cfb_font_caps.CFB_FONT_MSB_FIRST (C enumerator), 3315
cfb_framebuffer_clear (C function), 3316
cfb_framebuffer_deinit (C function), 3318
cfb_framebuffer_finalize (C function), 3317
cfb_framebuffer_init (C function), 3318
cfb_framebuffer_invert (C function), 3316
cfb_framebuffer_set_font (C function), 3317
cfb_get_display_parameter (C function), 3317
cfb_get_font_size (C function), 3317
cfb_get_numof_fonts (C function), 3317
cfb_invert_area (C function), 3316
cfb_position (C struct), 3318
cfb_print (C function), 3315
cfb_set_kerning (C function), 3317
cfg (runners.core.ZephyrBinaryRunner attribute), 199
char2hex (C function), 699
charger_charge_enable (C function), 3276
charger_charge_enable_t (C type), 3271
charger_charge_type (C enum), 3273
charger_charge_type.CHARGER_CHARGE_TYPE_ADAPTIVE (C enumerator), 3274
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charger_charge_type.CHARGER_CHARGE_TYPE_BYPASS (C enumerator), 3274
charger_charge_type.CHARGER_CHARGE_TYPE_FAST (C enumerator), 3274
charger_charge_type.CHARGER_CHARGE_TYPE_LONGLIFE (C enumerator), 3274
charger_charge_type.CHARGER_CHARGE_TYPE_NONE (C enumerator), 3274
charger_charge_type.CHARGER_CHARGE_TYPE_STANDARD (C enumerator), 3274
charger_charge_type.CHARGER_CHARGE_TYPE_TRICKLE (C enumerator), 3274
charger_charge_type.CHARGER_CHARGE_TYPE_UNKNOWN (C enumerator), 3273
charger_current_notifier (C struct), 3276
charger_current_notifier.current_ua (C var), 3276
charger_current_notifier.duration_us (C var), 3276
charger_current_notifier.severity (C var), 3276
charger_driver_api (C struct), 3277
charger_get_prop (C function), 3275
charger_get_property_t (C type), 3271
charger_health (C enum), 3274
charger_health.CHARGER_HEALTH_CALIBRATION_REQUIRED (C enumerator), 3275
charger_health.CHARGER_HEALTH_COLD (C enumerator), 3274
charger_health.CHARGER_HEALTH_COOL (C enumerator), 3275
charger_health.CHARGER_HEALTH_GOOD (C enumerator), 3274
charger_health.CHARGER_HEALTH_HOT (C enumerator), 3275
charger_health.CHARGER_HEALTH_NO_BATTERY (C enumerator), 3275
charger_health.CHARGER_HEALTH_OVERHEAT (C enumerator), 3274
charger_health.CHARGER_HEALTH_OVERVOLTAGE (C enumerator), 3274
charger_health.CHARGER_HEALTH_SAFETY_TIMER_EXPIRE (C enumerator), 3274
charger_health.CHARGER_HEALTH_UNKNOWN (C enumerator), 3274
charger_health.CHARGER_HEALTH_UNSPEC_FAILURE (C enumerator), 3274
charger_health.CHARGER_HEALTH_WARM (C enumerator), 3275
charger_health.CHARGER_HEALTH_WATCHDOG_TIMER_EXPIRE (C enumerator), 3274
charger_notification_severity (C enum), 3275
charger_notification_severity.CHARGER_SEVERITY_CRITICAL (C enumerator), 3275
charger_notification_severity.CHARGER_SEVERITY_PEAK (C enumerator), 3275
charger_notification_severity.CHARGER_SEVERITY_WARNING (C enumerator), 3275
charger_online (C enum), 3273
charger_online_notifier_t (C type), 3271
charger_online.CHARGER_ONLINE_FIXED (C enumerator), 3273
charger_online.CHARGER_ONLINE_OFFLINE (C enumerator), 3273
charger_online.CHARGER_ONLINE_PROGRAMMABLE (C enumerator), 3273
charger_prop_t (C type), 3270
charger_property (C enum), 3271
charger_property.CHARGER_PROP_CHARGE_TERM_CURRENT_UA (C enumerator), 3272
charger_property.CHARGER_PROP_CHARGE_TYPE (C enumerator), 3271
charger_property.CHARGER_PROP_COMMON_COUNT (C enumerator), 3273
charger_property.CHARGER_PROP_CONSTANT_CHARGE_CURRENT_UA (C enumerator), 3272
charger_property.CHARGER_PROP_CONSTANT_CHARGE_VOLTAGE_UV (C enumerator), 3272
charger_property.CHARGER_PROP_CUSTOM_BEGIN (C enumerator), 3273
charger_property.CHARGER_PROP_DISCHARGE_CURRENT_NOTIFICATION (C enumerator), 3272
charger_property.CHARGER_PROP_HEALTH (C enumerator), 3271
charger_property.CHARGER_PROP_INPUT_CURRENT_NOTIFICATION (C enumerator), 3272
charger_property.CHARGER_PROP_INPUT_REGULATION_CURRENT_UA (C enumerator), 3272
charger_property.CHARGER_PROP_INPUT_REGULATION_VOLTAGE_UV (C enumerator), 3272
charger_property.CHARGER_PROP_MAX (C enumerator), 3273
charger_property.CHARGER_PROP_ONLINE (C enumerator), 3271
charger_property.CHARGER_PROP_ONLINE_NOTIFICATION (C enumerator), 3272
charger_property.CHARGER_PROP_PRECHARGE_CURRENT_UA (C enumerator), 3272
charger_property.CHARGER_PROP_PRESENT (C enumerator), 3271
charger_property.CHARGER_PROP_STATUS (C enumerator), 3271
charger_property.CHARGER_PROP_STATUS_NOTIFICATION (C enumerator), 3272
charger_property.CHARGER_PROP_SYSTEM_VOLTAGE_NOTIFICATION_UV (C enumerator), 3272
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charger_propval (C union), 3276
charger_propval.charge_term_current_ua (C var), 3277
charger_propval.charge_type (C var), 3277
charger_propval.const_charge_current_ua (C var), 3277
charger_propval.const_charge_voltage_uv (C var), 3277
charger_propval.discharge_current_notification (C var), 3277
charger_propval.health (C var), 3277
charger_propval.input_current_notification (C var), 3277
charger_propval.input_current_regulation_current_ua (C var), 3277
charger_propval.input_voltage_regulation_voltage_uv (C var), 3277
charger_propval.online (C var), 3276
charger_propval.online_notification (C var), 3277
charger_propval.precharge_current_ua (C var), 3277
charger_propval.present (C var), 3276
charger_propval.status (C var), 3277
charger_propval.status_notification (C var), 3277
charger_propval.system_voltage_notification (C var), 3277
charger_set_prop (C function), 3275
charger_set_property_t (C type), 3271
charger_status (C enum), 3273
charger_status_notifier_t (C type), 3270
charger_status.CHARGER_STATUS_CHARGING (C enumerator), 3273
charger_status.CHARGER_STATUS_DISCHARGING (C enumerator), 3273
charger_status.CHARGER_STATUS_FULL (C enumerator), 3273
charger_status.CHARGER_STATUS_NOT_CHARGING (C enumerator), 3273
charger_status.CHARGER_STATUS_UNKNOWN (C enumerator), 3273
check_call() (runners.core.ZephyrBinaryRunner method), 199
check_output() (runners.core.ZephyrBinaryRunner method), 199
cipher_aead_pkt (C struct), 728
cipher_aead_pkt.ad (C var), 728
cipher_aead_pkt.ad_len (C var), 728
cipher_aead_pkt.tag (C var), 728
cipher_algo (C enum), 723
cipher_algo.CRYPTO_CIPHER_ALGO_AES (C enumerator), 723
cipher_begin_session (C function), 724
cipher_block_op (C function), 725
cipher_callback_set (C function), 725
cipher_cbc_op (C function), 725
cipher_ccm_op (C function), 726
cipher_completion_cb (C type), 723
cipher_ctr_op (C function), 725
cipher_ctx (C struct), 726
cipher_ctx.app_sessn_state (C var), 727
cipher_ctx.device (C var), 727
cipher_ctx.drv_sessn_state (C var), 727
cipher_ctx.flags (C var), 727
cipher_ctx.key (C var), 727
cipher_ctx.keylen (C var), 727
cipher_ctx.mode_params (C var), 727
cipher_ctx.ops (C var), 727
cipher_free_session (C function), 724
cipher_gcm_op (C function), 726
cipher_mode (C enum), 724
cipher_mode.CRYPTO_CIPHER_MODE_CBC (C enumerator), 724
cipher_mode.CRYPTO_CIPHER_MODE_CCM (C enumerator), 724
cipher_mode.CRYPTO_CIPHER_MODE_CTR (C enumerator), 724
cipher_mode.CRYPTO_CIPHER_MODE_ECB (C enumerator), 724
cipher_mode.CRYPTO_CIPHER_MODE_GCM (C enumerator), 724
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cipher_op (C enum), 723
cipher_op.CRYPTO_CIPHER_OP_DECRYPT (C enumerator), 724
cipher_op.CRYPTO_CIPHER_OP_ENCRYPT (C enumerator), 724
cipher_ops (C struct), 726
cipher_pkt (C struct), 727
cipher_pkt.ctx (C var), 728
cipher_pkt.in_buf (C var), 728
cipher_pkt.in_len (C var), 728
cipher_pkt.out_buf (C var), 728
cipher_pkt.out_buf_max (C var), 728
cipher_pkt.out_len (C var), 728
CLAMP (C macro), 686
clock_control (C type), 3232
clock_control_async_on (C function), 3234
clock_control_async_on_fn (C type), 3233
clock_control_cb_t (C type), 3232
clock_control_configure (C function), 3235
clock_control_configure_fn (C type), 3233
clock_control_driver_api (C struct), 3235
clock_control_get (C type), 3233
clock_control_get_rate (C function), 3234
clock_control_get_status (C function), 3234
clock_control_get_status_fn (C type), 3233
clock_control_off (C function), 3233
clock_control_on (C function), 3233
clock_control_set (C type), 3233
clock_control_set_rate (C function), 3235
clock_control_status (C enum), 3233
clock_control_status.CLOCK_CONTROL_STATUS_OFF (C enumerator), 3233
clock_control_status.CLOCK_CONTROL_STATUS_ON (C enumerator), 3233
clock_control_status.CLOCK_CONTROL_STATUS_STARTING (C enumerator), 3233
clock_control_status.CLOCK_CONTROL_STATUS_UNKNOWN (C enumerator), 3233
CLOCK_CONTROL_SUBSYS_ALL (C macro), 3232
clock_control_subsys_rate_t (C type), 3232
clock_control_subsys_t (C type), 3232
close (C function), 2492
close() (twister_harness.DeviceAdapter method), 268
CMSG_DATA (C macro), 2513
CMSG_FIRSTHDR (C macro), 2513
CMSG_LEN (C macro), 2513
CMSG_NXTHDR (C macro), 2513
CMSG_SPACE (C macro), 2513
cmsghdr (C struct), 2531
cmsghdr.cmsg_data (C var), 2532
cmsghdr.cmsg_len (C var), 2532
cmsghdr.cmsg_level (C var), 2532
cmsghdr.cmsg_type (C var), 2532
coap_ack_init (C function), 2764
coap_append_block1_option (C function), 2768
coap_append_block2_option (C function), 2769
coap_append_descriptive_block_option (C function), 2768
coap_append_option_int (C function), 2766
coap_append_size1_option (C function), 2769
coap_append_size2_option (C function), 2769
coap_block_context (C struct), 2779
coap_block_context.block_size (C var), 2779
coap_block_context.current (C var), 2779
coap_block_context.total_size (C var), 2779
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coap_block_has_more (C function), 2768
coap_block_size (C enum), 2761
coap_block_size_to_bytes (C function), 2767
coap_block_size.COAP_BLOCK_16 (C enumerator), 2761
coap_block_size.COAP_BLOCK_32 (C enumerator), 2761
coap_block_size.COAP_BLOCK_64 (C enumerator), 2761
coap_block_size.COAP_BLOCK_128 (C enumerator), 2762
coap_block_size.COAP_BLOCK_256 (C enumerator), 2762
coap_block_size.COAP_BLOCK_512 (C enumerator), 2762
coap_block_size.COAP_BLOCK_1024 (C enumerator), 2762
coap_block_transfer_init (C function), 2767
coap_bytes_to_block_size (C function), 2767
coap_client_cancel_requests (C function), 2783
coap_client_init (C function), 2782
coap_client_option (C struct), 2784
coap_client_option_initial_block2 (C function), 2783
coap_client_option.code (C var), 2784
coap_client_option.len (C var), 2784
coap_client_option.value (C var), 2784
coap_client_req (C function), 2782
coap_client_request (C struct), 2783
coap_client_request.cb (C var), 2783
coap_client_request.confirmable (C var), 2783
coap_client_request.fmt (C var), 2783
coap_client_request.len (C var), 2783
coap_client_request.method (C var), 2783
coap_client_request.num_options (C var), 2784
coap_client_request.options (C var), 2783
coap_client_request.path (C var), 2783
coap_client_request.payload (C var), 2783
coap_client_request.user_data (C var), 2784
coap_client_response_cb_t (C type), 2782
coap_content_format (C enum), 2761
coap_content_format.COAP_CONTENT_FORMAT_APP_CBOR (C enumerator), 2761
coap_content_format.COAP_CONTENT_FORMAT_APP_EXI (C enumerator), 2761
coap_content_format.COAP_CONTENT_FORMAT_APP_JSON (C enumerator), 2761
coap_content_format.COAP_CONTENT_FORMAT_APP_JSON_PATCH_JSON (C enumerator), 2761
coap_content_format.COAP_CONTENT_FORMAT_APP_LINK_FORMAT (C enumerator), 2761
coap_content_format.COAP_CONTENT_FORMAT_APP_MERGE_PATCH_JSON (C enumerator), 2761
coap_content_format.COAP_CONTENT_FORMAT_APP_OCTET_STREAM (C enumerator), 2761
coap_content_format.COAP_CONTENT_FORMAT_APP_XML (C enumerator), 2761
coap_content_format.COAP_CONTENT_FORMAT_TEXT_PLAIN (C enumerator), 2761
coap_core_metadata (C struct), 2779
coap_core_metadata.attributes (C var), 2779
coap_core_metadata.user_data (C var), 2779
coap_find_observer (C function), 2771
coap_find_observer_by_addr (C function), 2771
coap_find_observer_by_token (C function), 2772
coap_find_options (C function), 2765
coap_get_block1_option (C function), 2769
coap_get_block2_option (C function), 2770
coap_get_option_int (C function), 2769
coap_get_transmission_parameters (C function), 2775
coap_handle_request (C function), 2767
coap_handle_request_len (C function), 2766
coap_has_descriptive_block_option (C function), 2768
coap_header_get_code (C function), 2762
coap_header_get_id (C function), 2763
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coap_header_get_token (C function), 2762
coap_header_get_type (C function), 2762
coap_header_get_version (C function), 2762
coap_header_set_code (C function), 2762
COAP_MAKE_RESPONSE_CODE (C macro), 2756
coap_method (C enum), 2758
coap_method_t (C type), 2756
coap_method.COAP_METHOD_DELETE (C enumerator), 2758
coap_method.COAP_METHOD_FETCH (C enumerator), 2758
coap_method.COAP_METHOD_GET (C enumerator), 2758
coap_method.COAP_METHOD_IPATCH (C enumerator), 2758
coap_method.COAP_METHOD_PATCH (C enumerator), 2758
coap_method.COAP_METHOD_POST (C enumerator), 2758
coap_method.COAP_METHOD_PUT (C enumerator), 2758
coap_msgtype (C enum), 2758
coap_msgtype.COAP_TYPE_ACK (C enumerator), 2759
coap_msgtype.COAP_TYPE_CON (C enumerator), 2758
coap_msgtype.COAP_TYPE_NON_CON (C enumerator), 2758
coap_msgtype.COAP_TYPE_RESET (C enumerator), 2759
coap_next_block (C function), 2770
coap_next_block_for_option (C function), 2770
coap_next_id (C function), 2765
coap_next_token (C function), 2764
coap_notify_t (C type), 2756
coap_observer (C struct), 2776
coap_observer_init (C function), 2770
coap_observer_next_unused (C function), 2772
coap_observer.addr (C var), 2776
coap_observer.list (C var), 2776
coap_observer.tkl (C var), 2777
coap_observer.token (C var), 2776
coap_option (C struct), 2777
coap_option_num (C enum), 2756
coap_option_num.COAP_OPTION_ACCEPT (C enumerator), 2757
coap_option_num.COAP_OPTION_BLOCK1 (C enumerator), 2757
coap_option_num.COAP_OPTION_BLOCK2 (C enumerator), 2757
coap_option_num.COAP_OPTION_CONTENT_FORMAT (C enumerator), 2757
coap_option_num.COAP_OPTION_ECHO (C enumerator), 2758
coap_option_num.COAP_OPTION_ETAG (C enumerator), 2757
coap_option_num.COAP_OPTION_IF_MATCH (C enumerator), 2756
coap_option_num.COAP_OPTION_IF_NONE_MATCH (C enumerator), 2757
coap_option_num.COAP_OPTION_LOCATION_PATH (C enumerator), 2757
coap_option_num.COAP_OPTION_LOCATION_QUERY (C enumerator), 2757
coap_option_num.COAP_OPTION_MAX_AGE (C enumerator), 2757
coap_option_num.COAP_OPTION_OBSERVE (C enumerator), 2757
coap_option_num.COAP_OPTION_PROXY_SCHEME (C enumerator), 2757
coap_option_num.COAP_OPTION_PROXY_URI (C enumerator), 2757
coap_option_num.COAP_OPTION_REQUEST_TAG (C enumerator), 2758
coap_option_num.COAP_OPTION_SIZE1 (C enumerator), 2758
coap_option_num.COAP_OPTION_SIZE2 (C enumerator), 2757
coap_option_num.COAP_OPTION_URI_HOST (C enumerator), 2756
coap_option_num.COAP_OPTION_URI_PATH (C enumerator), 2757
coap_option_num.COAP_OPTION_URI_PORT (C enumerator), 2757
coap_option_num.COAP_OPTION_URI_QUERY (C enumerator), 2757
coap_option_value_to_int (C function), 2765
coap_option.delta (C var), 2777
coap_option.len (C var), 2777
coap_option.value (C var), 2777
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coap_packet (C struct), 2777
coap_packet_append_option (C function), 2765
coap_packet_append_payload (C function), 2766
coap_packet_append_payload_marker (C function), 2766
coap_packet_get_payload (C function), 2763
coap_packet_init (C function), 2764
coap_packet_is_request (C function), 2766
coap_packet_parse (C function), 2763
coap_packet_remove_option (C function), 2765
coap_packet_set_path (C function), 2764
coap_packet.data (C var), 2777
coap_packet.delta (C var), 2777
coap_packet.hdr_len (C var), 2777
coap_packet.max_len (C var), 2777
coap_packet.offset (C var), 2777
coap_packet.opt_len (C var), 2777
coap_pending (C struct), 2778
coap_pending_clear (C function), 2774
coap_pending_cycle (C function), 2774
coap_pending_init (C function), 2772
coap_pending_next_to_expire (C function), 2774
coap_pending_next_unused (C function), 2773
coap_pending_received (C function), 2773
coap_pending.addr (C var), 2778
coap_pending.data (C var), 2778
coap_pending.id (C var), 2778
coap_pending.len (C var), 2778
coap_pending.params (C var), 2778
coap_pending.retries (C var), 2778
coap_pendings_clear (C function), 2774
coap_pendings_count (C function), 2774
coap_pending.t0 (C var), 2778
coap_pending.timeout (C var), 2778
coap_register_observer (C function), 2771
coap_remove_descriptive_block_option (C function), 2768
coap_remove_observer (C function), 2771
coap_replies_clear (C function), 2774
coap_reply (C struct), 2778
coap_reply_clear (C function), 2774
coap_reply_init (C function), 2772
coap_reply_next_unused (C function), 2773
coap_reply_t (C type), 2756
coap_reply.age (C var), 2779
coap_reply.id (C var), 2779
coap_reply.reply (C var), 2779
coap_reply.tkl (C var), 2779
coap_reply.token (C var), 2779
coap_reply.user_data (C var), 2779
coap_request_is_observe (C function), 2775
coap_resource (C struct), 2776
COAP_RESOURCE_DEFINE (C macro), 2789
COAP_RESOURCE_FOREACH (C macro), 2791
coap_resource_notify (C function), 2775
coap_resource_parse_observe (C function), 2793
coap_resource_remove_observer_by_addr (C function), 2793
coap_resource_remove_observer_by_token (C function), 2794
coap_resource_send (C function), 2793
coap_resource.age (C var), 2776
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coap_resource.notify (C var), 2776
coap_resource.observers (C var), 2776
coap_resource.path (C var), 2776
coap_resource.user_data (C var), 2776
coap_response_code (C enum), 2759
coap_response_code.COAP_RESPONSE_CODE_BAD_GATEWAY (C enumerator), 2760
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coap_response_code.COAP_RESPONSE_CODE_BAD_REQUEST (C enumerator), 2759
coap_response_code.COAP_RESPONSE_CODE_CHANGED (C enumerator), 2759
coap_response_code.COAP_RESPONSE_CODE_CONFLICT (C enumerator), 2760
coap_response_code.COAP_RESPONSE_CODE_CONTENT (C enumerator), 2759
coap_response_code.COAP_RESPONSE_CODE_CONTINUE (C enumerator), 2759
coap_response_code.COAP_RESPONSE_CODE_CREATED (C enumerator), 2759
coap_response_code.COAP_RESPONSE_CODE_DELETED (C enumerator), 2759
coap_response_code.COAP_RESPONSE_CODE_FORBIDDEN (C enumerator), 2759
coap_response_code.COAP_RESPONSE_CODE_GATEWAY_TIMEOUT (C enumerator), 2760
coap_response_code.COAP_RESPONSE_CODE_INCOMPLETE (C enumerator), 2760
coap_response_code.COAP_RESPONSE_CODE_INTERNAL_ERROR (C enumerator), 2760
coap_response_code.COAP_RESPONSE_CODE_NOT_ACCEPTABLE (C enumerator), 2760
coap_response_code.COAP_RESPONSE_CODE_NOT_ALLOWED (C enumerator), 2760
coap_response_code.COAP_RESPONSE_CODE_NOT_FOUND (C enumerator), 2760
coap_response_code.COAP_RESPONSE_CODE_NOT_IMPLEMENTED (C enumerator), 2760
coap_response_code.COAP_RESPONSE_CODE_OK (C enumerator), 2759
coap_response_code.COAP_RESPONSE_CODE_PRECONDITION_FAILED (C enumerator), 2760
coap_response_code.COAP_RESPONSE_CODE_PROXYING_NOT_SUPPORTED (C enumerator), 2760
coap_response_code.COAP_RESPONSE_CODE_REQUEST_TOO_LARGE (C enumerator), 2760
coap_response_code.COAP_RESPONSE_CODE_SERVICE_UNAVAILABLE (C enumerator), 2760
coap_response_code.COAP_RESPONSE_CODE_TOO_MANY_REQUESTS (C enumerator), 2760
coap_response_code.COAP_RESPONSE_CODE_UNAUTHORIZED (C enumerator), 2759
coap_response_code.COAP_RESPONSE_CODE_UNPROCESSABLE_ENTITY (C enumerator), 2760
coap_response_code.COAP_RESPONSE_CODE_UNSUPPORTED_CONTENT_FORMAT (C enumerator), 2760
coap_response_code.COAP_RESPONSE_CODE_VALID (C enumerator), 2759
coap_response_received (C function), 2773
COAP_SERVICE_AUTOSTART (C macro), 2789
COAP_SERVICE_COUNT (C macro), 2790
COAP_SERVICE_DEFINE (C macro), 2790
COAP_SERVICE_FOREACH (C macro), 2791
COAP_SERVICE_FOREACH_RESOURCE (C macro), 2791
COAP_SERVICE_HAS_RESOURCE (C macro), 2790
coap_service_is_running (C function), 2792
COAP_SERVICE_RESOURCE_COUNT (C macro), 2790
coap_service_send (C function), 2792
coap_service_start (C function), 2791
coap_service_stop (C function), 2792
coap_set_transmission_parameters (C function), 2775
coap_transmission_parameters (C struct), 2777
coap_transmission_parameters.ack_timeout (C var), 2778
coap_transmission_parameters.coap_backoff_percent (C var), 2778
coap_transmission_parameters.max_retransmission (C var), 2778
coap_update_from_block (C function), 2770
coap_uri_path_match (C function), 2763
coap_well_known_core_get (C function), 2775
coap_well_known_core_get_len (C function), 2775
COAP_WELL_KNOWN_CORE_PATH (C macro), 2756
CONCAT (C macro), 684
COND_CODE_0 (C macro), 690
COND_CODE_1 (C macro), 689
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CONFIG_BT_MESH_BLOB_CHUNK_COUNT_MAX (C macro), 2198
CONFIG_BT_MESH_DFD_SRV_SLOT_MAX_SIZE (C macro), 2218
CONFIG_BT_MESH_DFD_SRV_SLOT_SPACE (C macro), 2218
CONFIG_BT_MESH_DFD_SRV_TARGETS_MAX (C macro), 2218
CONFIG_BT_MESH_DFU_FWID_MAXLEN (C macro), 2228
CONFIG_BT_MESH_DFU_METADATA_MAXLEN (C macro), 2228
CONFIG_BT_MESH_DFU_SLOT_CNT (C macro), 2228
CONFIG_BT_MESH_DFU_URI_MAXLEN (C macro), 2228
conn_mgr_all_if_connect (C function), 2993
conn_mgr_all_if_disconnect (C function), 2993
conn_mgr_all_if_down (C function), 2992
conn_mgr_all_if_up (C function), 2992
CONN_MGR_BIND_CONN (C macro), 3001
CONN_MGR_BIND_CONN_INST (C macro), 3001
conn_mgr_binding_get_flag (C function), 3002
conn_mgr_binding_lock (C function), 3002
conn_mgr_binding_set_flag (C function), 3002
conn_mgr_binding_unlock (C function), 3002
conn_mgr_conn_api (C struct), 3002
conn_mgr_conn_api.connect (C var), 3003
conn_mgr_conn_api.disconnect (C var), 3003
conn_mgr_conn_api.get_opt (C var), 3003
conn_mgr_conn_api.init (C var), 3003
conn_mgr_conn_api.set_opt (C var), 3003
conn_mgr_conn_binding (C struct), 3004
conn_mgr_conn_binding.ctx (C var), 3004
conn_mgr_conn_binding.flags (C var), 3004
conn_mgr_conn_binding.iface (C var), 3004
conn_mgr_conn_binding.impl (C var), 3004
conn_mgr_conn_binding.timeout (C var), 3004
CONN_MGR_CONN_DECLARE_PUBLIC (C macro), 3001
CONN_MGR_CONN_DEFINE (C macro), 3001
conn_mgr_conn_impl (C struct), 3004
conn_mgr_conn_impl.api (C var), 3004
conn_mgr_if_connect (C function), 2989
conn_mgr_if_disconnect (C function), 2989
conn_mgr_if_flag (C enum), 2988
conn_mgr_if_flag.CONN_MGR_IF_NO_AUTO_CONNECT (C enumerator), 2989
conn_mgr_if_flag.CONN_MGR_IF_NO_AUTO_DOWN (C enumerator), 2989
conn_mgr_if_flag.CONN_MGR_IF_PERSISTENT (C enumerator), 2988
conn_mgr_if_get_binding (C function), 3001
conn_mgr_if_get_flag (C function), 2991
conn_mgr_if_get_opt (C function), 2990
conn_mgr_if_get_timeout (C function), 2991
conn_mgr_if_is_bound (C function), 2989
CONN_MGR_IF_NO_TIMEOUT (C macro), 2988
conn_mgr_if_set_flag (C function), 2991
conn_mgr_if_set_opt (C function), 2990
conn_mgr_if_set_timeout (C function), 2992
conn_mgr_ignore_iface (C function), 2983
conn_mgr_ignore_l2 (C function), 2984
conn_mgr_is_iface_ignored (C function), 2984
conn_mgr_mon_resend_status (C function), 2983
conn_mgr_watch_iface (C function), 2983
conn_mgr_watch_l2 (C function), 2984
connect (C function), 2492
connect() (twister_harness.DeviceAdapter method), 268
console_getchar (C function), 715

4058 Index



Zephyr Project Documentation, Release 3.7.99

console_getline (C function), 716
console_getline_init (C function), 716
console_init (C function), 715
console_putchar (C function), 716
console_read (C function), 715
console_write (C function), 715
CONTAINER_OF (C macro), 683
CONTAINER_OF_VALIDATE (C macro), 683
coredump (C function), 738
coredump_buffer_output (C function), 738
coredump_cmd (C function), 738
coredump_cmd_copy_arg (C struct), 739
coredump_cmd_copy_arg.buffer (C var), 739
coredump_cmd_copy_arg.length (C var), 739
coredump_cmd_copy_arg.offset (C var), 739
coredump_cmd_id (C enum), 737
coredump_cmd_id.COREDUMP_CMD_CLEAR_ERROR (C enumerator), 737
coredump_cmd_id.COREDUMP_CMD_COPY_STORED_DUMP (C enumerator), 737
coredump_cmd_id.COREDUMP_CMD_ERASE_STORED_DUMP (C enumerator), 737
coredump_cmd_id.COREDUMP_CMD_INVALIDATE_STORED_DUMP (C enumerator), 737
coredump_cmd_id.COREDUMP_CMD_MAX (C enumerator), 737
coredump_cmd_id.COREDUMP_CMD_VERIFY_STORED_DUMP (C enumerator), 737
coredump_device_register_callback (C function), 3279
coredump_device_register_memory (C function), 3278
coredump_device_unregister_memory (C function), 3278
coredump_dump_callback_t (C type), 3278
coredump_mem_region_node (C struct), 3279
coredump_mem_region_node.node (C var), 3279
coredump_mem_region_node.size (C var), 3279
coredump_mem_region_node.start (C var), 3279
coredump_memory_dump (C function), 738
coredump_query (C function), 738
coredump_query_id (C enum), 736
coredump_query_id.COREDUMP_QUERY_GET_ERROR (C enumerator), 736
coredump_query_id.COREDUMP_QUERY_GET_STORED_DUMP_SIZE (C enumerator), 736
coredump_query_id.COREDUMP_QUERY_HAS_STORED_DUMP (C enumerator), 736
coredump_query_id.COREDUMP_QUERY_MAX (C enumerator), 737
counter_alarm_callback_t (C type), 3281
counter_alarm_cfg (C struct), 3286
COUNTER_ALARM_CFG_ABSOLUTE (C macro), 3280
COUNTER_ALARM_CFG_EXPIRE_WHEN_LATE (C macro), 3280
counter_alarm_cfg.callback (C var), 3287
counter_alarm_cfg.flags (C var), 3287
counter_alarm_cfg.ticks (C var), 3287
counter_alarm_cfg.user_data (C var), 3287
counter_api_cancel_alarm (C type), 3281
counter_api_get_freq (C type), 3282
counter_api_get_guard_period (C type), 3282
counter_api_get_pending_int (C type), 3282
counter_api_get_top_value (C type), 3282
counter_api_get_value (C type), 3281
counter_api_get_value_64 (C type), 3281
counter_api_set_alarm (C type), 3281
counter_api_set_guard_period (C type), 3282
counter_api_set_top_value (C type), 3281
counter_api_start (C type), 3281
counter_api_stop (C type), 3281
counter_cancel_channel_alarm (C function), 3284
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counter_config_info (C struct), 3287
COUNTER_CONFIG_INFO_COUNT_UP (C macro), 3280
counter_config_info.channels (C var), 3288
counter_config_info.flags (C var), 3288
counter_config_info.freq (C var), 3288
counter_config_info.max_top_value (C var), 3288
counter_driver_api (C struct), 3288
counter_get_frequency (C function), 3282
counter_get_guard_period (C function), 3286
counter_get_max_top_value (C function), 3283
counter_get_num_of_channels (C function), 3282
counter_get_pending_int (C function), 3285
counter_get_top_value (C function), 3285
counter_get_value (C function), 3283
counter_get_value_64 (C function), 3283
COUNTER_GUARD_PERIOD_LATE_TO_SET (C macro), 3281
counter_is_counting_up (C function), 3282
counter_set_channel_alarm (C function), 3284
counter_set_guard_period (C function), 3285
counter_set_top_value (C function), 3284
counter_start (C function), 3283
counter_stop (C function), 3283
counter_ticks_to_us (C function), 3282
counter_top_callback_t (C type), 3281
counter_top_cfg (C struct), 3287
COUNTER_TOP_CFG_DONT_RESET (C macro), 3280
COUNTER_TOP_CFG_RESET_WHEN_LATE (C macro), 3280
counter_top_cfg.callback (C var), 3287
counter_top_cfg.flags (C var), 3287
counter_top_cfg.ticks (C var), 3287
counter_top_cfg.user_data (C var), 3287
counter_us_to_ticks (C function), 3282
CPU cluster, 3946
CPU core, 3946
crc4 (C function), 1295
crc4_ti (C function), 1295
crc7_be (C function), 1294
crc8 (C function), 1292
crc8_ccitt (C function), 1294
crc16 (C function), 1291
crc16_ansi (C function), 1293
crc16_ccitt (C function), 1292
crc16_itu_t (C function), 1293
crc16_reflect (C function), 1291
crc24_pgp (C function), 1295
crc24_pgp_update (C function), 1295
crc32_c (C function), 1294
crc32_ieee (C function), 1293
crc32_ieee_update (C function), 1294
crc_by_type (C function), 1296
crc_type (C enum), 1290
crc_type.CRC4 (C enumerator), 1290
crc_type.CRC4_TI (C enumerator), 1290
crc_type.CRC7_BE (C enumerator), 1290
crc_type.CRC8 (C enumerator), 1290
crc_type.CRC8_CCITT (C enumerator), 1290
crc_type.CRC16 (C enumerator), 1290
crc_type.CRC16_ANSI (C enumerator), 1290
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crc_type.CRC16_CCITT (C enumerator), 1290
crc_type.CRC16_ITU_T (C enumerator), 1290
crc_type.CRC24_PGP (C enumerator), 1290
crc_type.CRC32_C (C enumerator), 1290
crc_type.CRC32_IEEE (C enumerator), 1290
create() (runners.core.ZephyrBinaryRunner class method), 199
crypto_driver_api (C struct), 723
crypto_query_hwcaps (C function), 723
ctr_op_t (C type), 723
ctr_params (C struct), 726

D
dac_channel_cfg (C struct), 3289
dac_channel_cfg.buffered (C var), 3289
dac_channel_cfg.channel_id (C var), 3289
dac_channel_cfg.resolution (C var), 3289
dac_channel_setup (C function), 3289
dac_write_value (C function), 3289
dai_clock_inversion (C enum), 3214
dai_clock_inversion.DAI_INVERSION_IB_IF (C enumerator), 3215
dai_clock_inversion.DAI_INVERSION_IB_NF (C enumerator), 3215
dai_clock_inversion.DAI_INVERSION_NB_IF (C enumerator), 3215
dai_clock_inversion.DAI_INVERSION_NB_NF (C enumerator), 3215
dai_clock_provider (C enum), 3214
dai_clock_provider.DAI_CBC_CFC (C enumerator), 3214
dai_clock_provider.DAI_CBC_CFP (C enumerator), 3214
dai_clock_provider.DAI_CBP_CFC (C enumerator), 3214
dai_clock_provider.DAI_CBP_CFP (C enumerator), 3214
dai_config (C struct), 3222
dai_config_get (C function), 3219
dai_config_set (C function), 3219
dai_config_update (C function), 3221
dai_config.block_size (C var), 3222
dai_config.channels (C var), 3222
dai_config.dai_index (C var), 3222
dai_config.format (C var), 3222
dai_config.link_config (C var), 3222
dai_config.options (C var), 3222
dai_config.rate (C var), 3222
dai_config.type (C var), 3222
dai_config.word_size (C var), 3222
dai_dir (C enum), 3216
dai_dir.DAI_DIR_BOTH (C enumerator), 3216
dai_dir.DAI_DIR_RX (C enumerator), 3216
dai_dir.DAI_DIR_TX (C enumerator), 3216
DAI_FORMAT_CLOCK_INVERSION_MASK (C macro), 3213
DAI_FORMAT_CLOCK_PROVIDER_MASK (C macro), 3213
DAI_FORMAT_PROTOCOL_MASK (C macro), 3213
dai_get_properties (C function), 3219
dai_probe (C function), 3218
dai_properties (C struct), 3221
dai_properties.dma_hs_id (C var), 3222
dai_properties.fifo_address (C var), 3221
dai_properties.fifo_depth (C var), 3222
dai_properties.reg_init_delay (C var), 3222
dai_properties.stream_id (C var), 3222
dai_protocol (C enum), 3214
dai_protocol.DAI_PROTO_DSP_A (C enumerator), 3214
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dai_protocol.DAI_PROTO_DSP_B (C enumerator), 3214
dai_protocol.DAI_PROTO_I2S (C enumerator), 3214
dai_protocol.DAI_PROTO_LEFT_J (C enumerator), 3214
dai_protocol.DAI_PROTO_PDM (C enumerator), 3214
dai_protocol.DAI_PROTO_RIGHT_J (C enumerator), 3214
dai_remove (C function), 3218
dai_state (C enum), 3216
dai_state.DAI_STATE_ERROR (C enumerator), 3217
dai_state.DAI_STATE_NOT_READY (C enumerator), 3216
dai_state.DAI_STATE_PAUSED (C enumerator), 3217
dai_state.DAI_STATE_PRE_RUNNING (C enumerator), 3217
dai_state.DAI_STATE_READY (C enumerator), 3216
dai_state.DAI_STATE_RUNNING (C enumerator), 3217
dai_state.DAI_STATE_STOPPING (C enumerator), 3217
dai_trigger (C function), 3220
dai_trigger_cmd (C enum), 3217
dai_trigger_cmd.DAI_TRIGGER_COPY (C enumerator), 3218
dai_trigger_cmd.DAI_TRIGGER_DRAIN (C enumerator), 3218
dai_trigger_cmd.DAI_TRIGGER_DROP (C enumerator), 3218
dai_trigger_cmd.DAI_TRIGGER_PAUSE (C enumerator), 3217
dai_trigger_cmd.DAI_TRIGGER_POST_STOP (C enumerator), 3217
dai_trigger_cmd.DAI_TRIGGER_PRE_START (C enumerator), 3217
dai_trigger_cmd.DAI_TRIGGER_PREPARE (C enumerator), 3218
dai_trigger_cmd.DAI_TRIGGER_RESET (C enumerator), 3218
dai_trigger_cmd.DAI_TRIGGER_START (C enumerator), 3217
dai_trigger_cmd.DAI_TRIGGER_STOP (C enumerator), 3217
dai_ts_cfg (C struct), 3223
dai_ts_cfg.direction (C var), 3223
dai_ts_cfg.dma_chan_count (C var), 3223
dai_ts_cfg.dma_chan_index (C var), 3223
dai_ts_cfg.dma_id (C var), 3223
dai_ts_cfg.index (C var), 3223
dai_ts_cfg.type (C var), 3223
dai_ts_cfg.walclk_rate (C var), 3223
dai_ts_config (C function), 3220
dai_ts_data (C struct), 3223
dai_ts_data.sample (C var), 3223
dai_ts_data.walclk (C var), 3223
dai_ts_data.walclk_rate (C var), 3223
dai_ts_get (C function), 3221
dai_ts_start (C function), 3220
dai_ts_stop (C function), 3220
dai_type (C enum), 3215
dai_type.DAI_AMD_BT (C enumerator), 3215
dai_type.DAI_AMD_DMIC (C enumerator), 3216
dai_type.DAI_AMD_SP (C enumerator), 3216
dai_type.DAI_IMX_ESAI (C enumerator), 3215
dai_type.DAI_IMX_SAI (C enumerator), 3215
dai_type.DAI_INTEL_ALH (C enumerator), 3215
dai_type.DAI_INTEL_ALH_NHLT (C enumerator), 3216
dai_type.DAI_INTEL_DMIC (C enumerator), 3215
dai_type.DAI_INTEL_DMIC_NHLT (C enumerator), 3216
dai_type.DAI_INTEL_HDA (C enumerator), 3215
dai_type.DAI_INTEL_HDA_NHLT (C enumerator), 3216
dai_type.DAI_INTEL_SSP (C enumerator), 3215
dai_type.DAI_INTEL_SSP_NHLT (C enumerator), 3216
dai_type.DAI_LEGACY_I2S (C enumerator), 3215
dai_type.DAI_MEDIATEK_AFE (C enumerator), 3216
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DeprecatedAction (class in runners.core), 196
dev_id_help() (runners.core.ZephyrBinaryRunner class method), 199
device (C struct), 532
device runtime power management, 3946
DEVICE_DECLARE (C macro), 526
DEVICE_DEFINE (C macro), 523
DEVICE_DT_DEFER (C macro), 524
DEVICE_DT_DEFINE (C macro), 524
DEVICE_DT_GET (C macro), 525
DEVICE_DT_GET_ANY (C macro), 525
DEVICE_DT_GET_ONE (C macro), 526
DEVICE_DT_GET_OR_NULL (C macro), 526
DEVICE_DT_INST_DEFINE (C macro), 525
DEVICE_DT_INST_GET (C macro), 525
DEVICE_DT_NAME (C macro), 524
DEVICE_DT_NAME_GET (C macro), 525
device_from_handle (C function), 528
DEVICE_GET (C macro), 526
device_get_binding (C function), 531
device_handle_get (C function), 528
DEVICE_HANDLE_NULL (C macro), 523
device_handle_t (C type), 527
device_init (C function), 531
DEVICE_INIT_DT_GET (C macro), 527
DEVICE_INIT_GET (C macro), 527
device_injected_handles_get (C function), 529
device_is_ready (C function), 531
DEVICE_NAME_GET (C macro), 523
DEVICE_PCIE_DECLARE (C macro), 3518
DEVICE_PCIE_INIT (C macro), 3518
DEVICE_PCIE_INST_DECLARE (C macro), 3518
DEVICE_PCIE_INST_INIT (C macro), 3518
device_required_foreach (C function), 529
device_required_handles_get (C function), 528
device_state (C struct), 531
device_state.init_res (C var), 532
device_state.initialized (C var), 532
device_supported_foreach (C function), 530
device_supported_handles_get (C function), 529
device_visitor_callback_t (C type), 527
DeviceAdapter (class in twister_harness), 268
device.api (C var), 532
device.config (C var), 532
device.data (C var), 532
device.deps (C var), 532
device.name (C var), 532
device.state (C var), 532
disconnect() (twister_harness.DeviceAdapter method), 268
disk_access_init (C function), 1186
disk_access_ioctl (C function), 1187
disk_access_read (C function), 1186
disk_access_register (C function), 1188
disk_access_status (C function), 1186
disk_access_unregister (C function), 1188
disk_access_write (C function), 1186
disk_info (C struct), 1189
disk_info.dev (C var), 1189
disk_info.name (C var), 1189
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disk_info.node (C var), 1189
disk_info.ops (C var), 1189
disk_info.refcnt (C var), 1189
DISK_IOCTL_CTRL_DEINIT (C macro), 1188
DISK_IOCTL_CTRL_INIT (C macro), 1188
DISK_IOCTL_CTRL_SYNC (C macro), 1188
DISK_IOCTL_GET_ERASE_BLOCK_SZ (C macro), 1187
DISK_IOCTL_GET_SECTOR_COUNT (C macro), 1187
DISK_IOCTL_GET_SECTOR_SIZE (C macro), 1187
DISK_IOCTL_RESERVED (C macro), 1187
disk_operations (C struct), 1189
DISK_STATUS_NOMEDIA (C macro), 1188
DISK_STATUS_OK (C macro), 1188
DISK_STATUS_UNINIT (C macro), 1188
DISK_STATUS_WR_PROTECT (C macro), 1188
DISPLAY_BITS_PER_PIXEL (C macro), 3303
display_blanking_off (C function), 3307
display_blanking_off_api (C type), 3303
display_blanking_on (C function), 3306
display_blanking_on_api (C type), 3303
display_buffer_descriptor (C struct), 3308
display_buffer_descriptor.buf_size (C var), 3309
display_buffer_descriptor.height (C var), 3309
display_buffer_descriptor.pitch (C var), 3309
display_buffer_descriptor.width (C var), 3309
display_capabilities (C struct), 3308
display_capabilities.current_orientation (C var), 3308
display_capabilities.current_pixel_format (C var), 3308
display_capabilities.screen_info (C var), 3308
display_capabilities.supported_pixel_formats (C var), 3308
display_capabilities.x_resolution (C var), 3308
display_capabilities.y_resolution (C var), 3308
display_driver_api (C struct), 3309
display_get_capabilities (C function), 3307
display_get_capabilities_api (C type), 3304
display_get_framebuffer (C function), 3306
display_get_framebuffer_api (C type), 3304
display_orientation (C enum), 3305
display_orientation.DISPLAY_ORIENTATION_NORMAL (C enumerator), 3305
display_orientation.DISPLAY_ORIENTATION_ROTATED_90 (C enumerator), 3305
display_orientation.DISPLAY_ORIENTATION_ROTATED_180 (C enumerator), 3305
display_orientation.DISPLAY_ORIENTATION_ROTATED_270 (C enumerator), 3305
display_pixel_format (C enum), 3304
display_pixel_format.PIXEL_FORMAT_ARGB_8888 (C enumerator), 3305
display_pixel_format.PIXEL_FORMAT_BGR_565 (C enumerator), 3305
display_pixel_format.PIXEL_FORMAT_MONO01 (C enumerator), 3304
display_pixel_format.PIXEL_FORMAT_MONO10 (C enumerator), 3305
display_pixel_format.PIXEL_FORMAT_RGB_565 (C enumerator), 3305
display_pixel_format.PIXEL_FORMAT_RGB_888 (C enumerator), 3304
display_read (C function), 3306
display_read_api (C type), 3304
display_screen_info (C enum), 3305
display_screen_info.SCREEN_INFO_DOUBLE_BUFFER (C enumerator), 3305
display_screen_info.SCREEN_INFO_EPD (C enumerator), 3305
display_screen_info.SCREEN_INFO_MONO_MSB_FIRST (C enumerator), 3305
display_screen_info.SCREEN_INFO_MONO_VTILED (C enumerator), 3305
display_screen_info.SCREEN_INFO_X_ALIGNMENT_WIDTH (C enumerator), 3305
display_set_brightness (C function), 3307
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display_set_brightness_api (C type), 3304
display_set_contrast (C function), 3307
display_set_contrast_api (C type), 3304
display_set_orientation (C function), 3308
display_set_orientation_api (C type), 3304
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espi_vwire_signal.ESPI_VWIRE_SIGNAL_SLP_S3 (C enumerator), 3325
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SLP_S4 (C enumerator), 3325
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SLP_S5 (C enumerator), 3325
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SLP_WLAN (C enumerator), 3325
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SMI (C enumerator), 3326
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SMIOUT (C enumerator), 3325
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SUS_ACK (C enumerator), 3326
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SUS_PWRDN_ACK (C enumerator), 3325
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espi_vwire_signal.ESPI_VWIRE_SIGNAL_SUS_STAT (C enumerator), 3325
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SUS_WARN (C enumerator), 3325
espi_vwire_signal.ESPI_VWIRE_SIGNAL_TARGET_BOOT_DONE (C enumerator), 3326
espi_vwire_signal.ESPI_VWIRE_SIGNAL_TARGET_BOOT_STS (C enumerator), 3326
espi_vwire_signal.ESPI_VWIRE_SIGNAL_TARGET_GPIO_0 (C enumerator), 3326
espi_vwire_signal.ESPI_VWIRE_SIGNAL_TARGET_GPIO_1 (C enumerator), 3326
espi_vwire_signal.ESPI_VWIRE_SIGNAL_TARGET_GPIO_2 (C enumerator), 3326
espi_vwire_signal.ESPI_VWIRE_SIGNAL_TARGET_GPIO_3 (C enumerator), 3326
espi_vwire_signal.ESPI_VWIRE_SIGNAL_TARGET_GPIO_4 (C enumerator), 3326
espi_vwire_signal.ESPI_VWIRE_SIGNAL_TARGET_GPIO_5 (C enumerator), 3326
espi_vwire_signal.ESPI_VWIRE_SIGNAL_TARGET_GPIO_6 (C enumerator), 3326
espi_vwire_signal.ESPI_VWIRE_SIGNAL_TARGET_GPIO_7 (C enumerator), 3326
espi_vwire_signal.ESPI_VWIRE_SIGNAL_TARGET_GPIO_8 (C enumerator), 3326
espi_vwire_signal.ESPI_VWIRE_SIGNAL_TARGET_GPIO_9 (C enumerator), 3327
espi_vwire_signal.ESPI_VWIRE_SIGNAL_TARGET_GPIO_10 (C enumerator), 3327
espi_vwire_signal.ESPI_VWIRE_SIGNAL_TARGET_GPIO_11 (C enumerator), 3327
espi_vwire_signal.ESPI_VWIRE_SIGNAL_WAKE (C enumerator), 3326
espi_write_flash (C function), 3331
espi_write_lpc_request (C function), 3329
espi_write_request (C function), 3329
ESPIPE (C macro), 77
ESRCH (C macro), 76
ETH_NET_DEVICE_DT_DEFINE (C macro), 2647
ETH_NET_DEVICE_DT_INST_DEFINE (C macro), 2647
ETH_NET_DEVICE_INIT (C macro), 2646
ETH_NET_DEVICE_INIT_INSTANCE (C macro), 2647
ethernet_api (C struct), 2659
ethernet_api.get_capabilities (C var), 2659
ethernet_api.get_config (C var), 2659
ethernet_api.get_phy (C var), 2659
ethernet_api.iface_api (C var), 2659
ethernet_api.send (C var), 2659
ethernet_api.set_config (C var), 2659
ethernet_api.start (C var), 2659
ethernet_api.stop (C var), 2659
ethernet_checksum_support (C enum), 2649
ethernet_checksum_support.ETHERNET_CHECKSUM_SUPPORT_IPV4_HEADER (C enumerator), 2649
ethernet_checksum_support.ETHERNET_CHECKSUM_SUPPORT_IPV4_ICMP (C enumerator), 2649
ethernet_checksum_support.ETHERNET_CHECKSUM_SUPPORT_IPV6_HEADER (C enumerator), 2649
ethernet_checksum_support.ETHERNET_CHECKSUM_SUPPORT_IPV6_ICMP (C enumerator), 2650
ethernet_checksum_support.ETHERNET_CHECKSUM_SUPPORT_NONE (C enumerator), 2649
ethernet_checksum_support.ETHERNET_CHECKSUM_SUPPORT_TCP (C enumerator), 2650
ethernet_checksum_support.ETHERNET_CHECKSUM_SUPPORT_UDP (C enumerator), 2650
ethernet_filter (C struct), 2658
ethernet_filter.mac_address (C var), 2658
ethernet_filter.set (C var), 2658
ethernet_filter.type (C var), 2658
ethernet_hw_caps (C enum), 2648
ethernet_hw_caps.ETHERNET_AUTO_NEGOTIATION_SET (C enumerator), 2648
ethernet_hw_caps.ETHERNET_DSA_MASTER_PORT (C enumerator), 2649
ethernet_hw_caps.ETHERNET_DSA_SLAVE_PORT (C enumerator), 2649
ethernet_hw_caps.ETHERNET_DUPLEX_SET (C enumerator), 2648
ethernet_hw_caps.ETHERNET_HW_FILTERING (C enumerator), 2648
ethernet_hw_caps.ETHERNET_HW_RX_CHKSUM_OFFLOAD (C enumerator), 2648
ethernet_hw_caps.ETHERNET_HW_TX_CHKSUM_OFFLOAD (C enumerator), 2648
ethernet_hw_caps.ETHERNET_HW_VLAN (C enumerator), 2648
ethernet_hw_caps.ETHERNET_HW_VLAN_TAG_STRIP (C enumerator), 2649
ethernet_hw_caps.ETHERNET_LINK_10BASE_T (C enumerator), 2648
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ethernet_hw_caps.ETHERNET_LINK_100BASE_T (C enumerator), 2648
ethernet_hw_caps.ETHERNET_LINK_1000BASE_T (C enumerator), 2648
ethernet_hw_caps.ETHERNET_LLDP (C enumerator), 2648
ethernet_hw_caps.ETHERNET_PRIORITY_QUEUES (C enumerator), 2648
ethernet_hw_caps.ETHERNET_PROMISC_MODE (C enumerator), 2648
ethernet_hw_caps.ETHERNET_PTP (C enumerator), 2648
ethernet_hw_caps.ETHERNET_QAV (C enumerator), 2648
ethernet_hw_caps.ETHERNET_QBU (C enumerator), 2649
ethernet_hw_caps.ETHERNET_QBV (C enumerator), 2649
ethernet_hw_caps.ETHERNET_TXINJECTION_MODE (C enumerator), 2649
ethernet_hw_caps.ETHERNET_TXTIME (C enumerator), 2649
ethernet_if_types (C enum), 2649
ethernet_if_types.L2_ETH_IF_TYPE_ETHERNET (C enumerator), 2649
ethernet_if_types.L2_ETH_IF_TYPE_WIFI (C enumerator), 2649
ethernet_lldp (C struct), 2659
ethernet_lldp.cb (C var), 2660
ethernet_lldp.iface (C var), 2660
ethernet_lldp.lldpdu (C var), 2660
ethernet_lldp.node (C var), 2659
ethernet_lldp.optional_du (C var), 2660
ethernet_lldp.optional_len (C var), 2660
ethernet_lldp.tx_timer_start (C var), 2660
ethernet_lldp.tx_timer_timeout (C var), 2660
ethernet_mgmt_raise_carrier_off_event (C function), 2955
ethernet_mgmt_raise_carrier_on_event (C function), 2955
ethernet_mgmt_raise_vlan_disabled_event (C function), 2955
ethernet_mgmt_raise_vlan_enabled_event (C function), 2955
ethernet_qav_param (C struct), 2656
ethernet_qav_param.delta_bandwidth (C var), 2656
ethernet_qav_param.enabled (C var), 2656
ethernet_qav_param.idle_slope (C var), 2656
ethernet_qav_param.oper_idle_slope (C var), 2656
ethernet_qav_param.queue_id (C var), 2656
ethernet_qav_param.traffic_class (C var), 2656
ethernet_qav_param.type (C var), 2656
ethernet_qbu_param (C struct), 2657
ethernet_qbu_param.additional_fragment_size (C var), 2658
ethernet_qbu_param.enabled (C var), 2658
ethernet_qbu_param.frame_preempt_statuses (C var), 2658
ethernet_qbu_param.hold_advance (C var), 2658
ethernet_qbu_param.link_partner_status (C var), 2658
ethernet_qbu_param.port_id (C var), 2657
ethernet_qbu_param.release_advance (C var), 2658
ethernet_qbu_param.type (C var), 2657
ethernet_qbv_param (C struct), 2656
ethernet_qbv_param.base_time (C var), 2657
ethernet_qbv_param.cycle_time (C var), 2657
ethernet_qbv_param.enabled (C var), 2657
ethernet_qbv_param.extension_time (C var), 2657
ethernet_qbv_param.gate_control (C var), 2657
ethernet_qbv_param.gate_control_list_len (C var), 2657
ethernet_qbv_param.gate_status (C var), 2657
ethernet_qbv_param.operation (C var), 2657
ethernet_qbv_param.port_id (C var), 2657
ethernet_qbv_param.row (C var), 2657
ethernet_qbv_param.state (C var), 2657
ethernet_qbv_param.time_interval (C var), 2657
ethernet_qbv_param.type (C var), 2657
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ethernet_t1s_param (C struct), 2655
ethernet_t1s_param.burst_count (C var), 2655
ethernet_t1s_param.burst_timer (C var), 2655
ethernet_t1s_param.enable (C var), 2655
ethernet_t1s_param.node_count (C var), 2655
ethernet_t1s_param.node_id (C var), 2655
ethernet_t1s_param.plca (C var), 2656
ethernet_t1s_param.to_timer (C var), 2655
ethernet_t1s_param.type (C var), 2655
ethernet_txtime_param (C struct), 2658
ethernet_txtime_param.enable_txtime (C var), 2658
ethernet_txtime_param.queue_id (C var), 2658
ethernet_txtime_param.type (C var), 2658
ETIME (C macro), 78
ETIMEDOUT (C macro), 79
ETOOMANYREFS (C macro), 80
ETXTBSY (C macro), 77
EWOULDBLOCK (C macro), 80
EXDEV (C macro), 76
exe_file (runners.core.RunnerConfig attribute), 197
exec_command() (twister_harness.Shell method), 268
EXPORT_SYMBOL (C macro), 930
extload_help() (runners.core.ZephyrBinaryRunner class method), 200

F
fcb (C struct), 1198
fcb_append (C function), 1200
fcb_append_finish (C function), 1201
fcb_append_to_scratch (C function), 1201
fcb_clear (C function), 1202
fcb_entry (C struct), 1198
fcb_entry_ctx (C struct), 1198
fcb_entry_ctx.fap (C var), 1198
fcb_entry_ctx.loc (C var), 1198
FCB_ENTRY_FA_DATA_OFF (C macro), 1198
fcb_entry.fe_data_len (C var), 1198
fcb_entry.fe_data_off (C var), 1198
fcb_entry.fe_elem_off (C var), 1198
fcb_entry.fe_sector (C var), 1198
FCB_FLAGS_CRC_DISABLED (C macro), 1198
fcb_free_sector_cnt (C function), 1202
fcb_getnext (C function), 1201
fcb_init (C function), 1200
fcb_is_empty (C function), 1202
FCB_MAX_LEN (C macro), 1198
fcb_offset_last_n (C function), 1202
fcb_rotate (C function), 1201
fcb_walk (C function), 1201
fcb_walk_cb (C type), 1200
fcb.f_active (C var), 1199
fcb.f_active_id (C var), 1199
fcb.f_align (C var), 1199
fcb.f_erase_value (C var), 1199
fcb.f_magic (C var), 1199
fcb.f_mtx (C var), 1199
fcb.f_oldest (C var), 1199
fcb.f_scratch_cnt (C var), 1199
fcb.f_sector_cnt (C var), 1199
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fcb.f_sectors (C var), 1199
fcb.f_version (C var), 1199
fcb.fap (C var), 1199
FIELD_GET (C macro), 682
FIELD_PREP (C macro), 682
file (runners.core.RunnerConfig attribute), 197
file_type (runners.core.RunnerConfig attribute), 197
FileType (class in runners.core), 196
FIXED_5V_100MA_RDO (C macro), 3099
FIXED_PARTITION_DEVICE (C macro), 1192
FIXED_PARTITION_EXISTS (C macro), 1191
FIXED_PARTITION_ID (C macro), 1192
FIXED_PARTITION_NODE_DEVICE (C macro), 1193
FIXED_PARTITION_NODE_OFFSET (C macro), 1192
FIXED_PARTITION_NODE_SIZE (C macro), 1192
FIXED_PARTITION_OFFSET (C macro), 1192
FIXED_PARTITION_SIZE (C macro), 1192
flash_address_from_build_conf() (runners.core.ZephyrBinaryRunner static method), 200
flash_api_erase (C type), 3353
flash_api_ex_op (C type), 3354
flash_api_get_parameters (C type), 3353
flash_api_pages_layout (C type), 3353
flash_api_read (C type), 3353
flash_api_read_jedec_id (C type), 3354
flash_api_sfdp_read (C type), 3354
flash_api_write (C type), 3353
flash_area (C struct), 1196
flash_area_align (C function), 1195
flash_area_cb_t (C type), 1193
flash_area_close (C function), 1193
FLASH_AREA_DEVICE (C macro), 1192
flash_area_erase (C function), 1194
flash_area_erased_val (C function), 1195
flash_area_flatten (C function), 1194
flash_area_foreach (C function), 1195
flash_area_get_device (C function), 1195
flash_area_get_sectors (C function), 1195
flash_area_has_driver (C function), 1195
flash_area_open (C function), 1193
flash_area_read (C function), 1193
flash_area_write (C function), 1194
flash_area.fa_dev (C var), 1196
flash_area.fa_id (C var), 1196
flash_area.fa_off (C var), 1196
flash_area.fa_size (C var), 1196
flash_driver_api (C struct), 3354
flash_erase (C function), 3348
FLASH_ERASE_C_EXPLICIT (C macro), 3347
FLASH_ERASE_C_SUPPORTED (C macro), 3347
FLASH_ERASE_C_VAL_BIT (C macro), 3347
FLASH_ERASE_CAPS_UNSET (C macro), 3347
FLASH_ERASE_UNIFORM_PAGE (C macro), 3347
flash_ex_op (C function), 3352
FLASH_EX_OP_IS_VENDOR (C macro), 3347
flash_ex_op_types (C enum), 3348
flash_ex_op_types.FLASH_EX_OP_RESET (C enumerator), 3348
FLASH_EX_OP_VENDOR_BASE (C macro), 3347
flash_fill (C function), 3349
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flash_flatten (C function), 3349
flash_get_page_count (C function), 3350
flash_get_page_info_by_idx (C function), 3350
flash_get_page_info_by_offs (C function), 3350
flash_get_parameters (C function), 3351
flash_get_write_block_size (C function), 3351
flash_img_buffered_write (C function), 822
flash_img_bytes_written (C function), 822
flash_img_check (C function), 822
flash_img_check (C struct), 823
flash_img_check.clen (C var), 823
flash_img_context (C struct), 823
flash_img_init (C function), 822
flash_img_init_id (C function), 822
flash_page_cb (C type), 3347
flash_page_foreach (C function), 3350
flash_pages_info (C struct), 3352
flash_pages_layout (C struct), 3354
flash_parameters (C struct), 3352
flash_parameters.erase_value (C var), 3352
flash_parameters.write_block_size (C var), 3352
flash_params_get_erase_cap (C function), 3348
flash_read (C function), 3348
flash_read_jedec_id (C function), 3351
flash_sector (C struct), 1196
flash_sector.fs_off (C var), 1196
flash_sector.fs_size (C var), 1196
flash_sfdp_read (C function), 3351
flash_write (C function), 3348
float16_t (C type), 843
float32_t (C type), 843
float64_t (C type), 843
FONT_ENTRY_DEFINE (C macro), 3314
FOR_EACH (C macro), 694
FOR_EACH_FIXED_ARG (C macro), 695
FOR_EACH_IDX (C macro), 695
FOR_EACH_IDX_FIXED_ARG (C macro), 696
FOR_EACH_NONEMPTY_TERM (C macro), 694
fprintfcb (C function), 872
freeaddrinfo (C function), 2492
fs_close (C function), 849
fs_closedir (C function), 853
fs_dir_entry_type (C enum), 847
fs_dir_entry_type.FS_DIR_ENTRY_DIR (C enumerator), 847
fs_dir_entry_type.FS_DIR_ENTRY_FILE (C enumerator), 847
fs_dir_t (C struct), 857
fs_dir_t_init (C function), 848
fs_dir_t.dirp (C var), 858
fs_dir_t.mp (C var), 858
fs_dirent (C struct), 856
fs_dirent.name (C var), 857
fs_dirent.size (C var), 857
fs_dirent.type (C var), 857
fs_file_system_t (C struct), 858
fs_file_system_t.close (C var), 859
fs_file_system_t.closedir (C var), 860
fs_file_system_t.lseek (C var), 858
fs_file_system_t.mkdir (C var), 860
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fs_file_system_t.mkfs (C var), 861
fs_file_system_t.mount (C var), 860
fs_file_system_t.open (C var), 858
fs_file_system_t.opendir (C var), 859
fs_file_system_t.read (C var), 858
fs_file_system_t.readdir (C var), 859
fs_file_system_t.rename (C var), 860
fs_file_system_t.stat (C var), 860
fs_file_system_t.statvfs (C var), 861
fs_file_system_t.sync (C var), 859
fs_file_system_t.tell (C var), 859
fs_file_system_t.truncate (C var), 859
fs_file_system_t.unlink (C var), 860
fs_file_system_t.unmount (C var), 860
fs_file_system_t.write (C var), 858
fs_file_t (C struct), 857
fs_file_t_init (C function), 847
fs_file_t.filep (C var), 857
fs_file_t.flags (C var), 857
fs_file_t.mp (C var), 857
FS_FSTAB_DECLARE_ENTRY (C macro), 847
FS_FSTAB_ENTRY (C macro), 846
fs_mgmt_group_events (C enum), 772
fs_mgmt_group_events.MGMT_EVT_OP_FS_MGMT_ALL (C enumerator), 772
fs_mgmt_group_events.MGMT_EVT_OP_FS_MGMT_FILE_ACCESS (C enumerator), 772
fs_mkdir (C function), 852
fs_mkfs (C function), 855
fs_mount (C function), 853
FS_MOUNT_FLAG_AUTOMOUNT (C macro), 846
FS_MOUNT_FLAG_NO_FORMAT (C macro), 846
FS_MOUNT_FLAG_READ_ONLY (C macro), 846
FS_MOUNT_FLAG_USE_DISK_ACCESS (C macro), 846
fs_mount_t (C struct), 856
fs_mount_t.flags (C var), 856
fs_mount_t.fs (C var), 856
fs_mount_t.fs_data (C var), 856
fs_mount_t.mnt_point (C var), 856
fs_mount_t.mountp_len (C var), 856
fs_mount_t.node (C var), 856
fs_mount_t.storage_dev (C var), 856
fs_mount_t.type (C var), 856
FS_O_APPEND (C macro), 845
FS_O_CREATE (C macro), 845
FS_O_FLAGS_MASK (C macro), 845
FS_O_MASK (C macro), 846
FS_O_MODE_MASK (C macro), 845
FS_O_RDWR (C macro), 845
FS_O_READ (C macro), 845
FS_O_TRUNC (C macro), 845
FS_O_WRITE (C macro), 845
fs_open (C function), 848
fs_opendir (C function), 852
fs_read (C function), 850
fs_readdir (C function), 853
fs_readmount (C function), 854
fs_register (C function), 855
fs_rename (C function), 849
fs_seek (C function), 850
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FS_SEEK_CUR (C macro), 846
FS_SEEK_END (C macro), 846
FS_SEEK_SET (C macro), 846
fs_stat (C function), 854
fs_statvfs (C function), 855
fs_statvfs (C struct), 857
fs_statvfs.f_bfree (C var), 857
fs_statvfs.f_blocks (C var), 857
fs_statvfs.f_bsize (C var), 857
fs_statvfs.f_frsize (C var), 857
fs_sync (C function), 851
fs_tell (C function), 851
fs_truncate (C function), 851
fs_unlink (C function), 849
fs_unmount (C function), 854
fs_unregister (C function), 856
fs_write (C function), 850
FSTAB_ENTRY_DT_MOUNT_FLAGS (C macro), 846
fuel_gauge_battery_cutoff (C function), 3359
fuel_gauge_battery_cutoff_t (C type), 3355
fuel_gauge_driver_api (C struct), 3361
fuel_gauge_driver_api.get_property (C var), 3361
fuel_gauge_get_buffer_prop (C function), 3359
fuel_gauge_get_buffer_property_t (C type), 3355
fuel_gauge_get_prop (C function), 3358
fuel_gauge_get_property_t (C type), 3355
fuel_gauge_get_props (C function), 3358
fuel_gauge_prop_t (C type), 3355
fuel_gauge_prop_type (C enum), 3356
fuel_gauge_prop_type.FUEL_GAUGE_ABSOLUTE_STATE_OF_CHARGE (C enumerator), 3356
fuel_gauge_prop_type.FUEL_GAUGE_AVG_CURRENT (C enumerator), 3356
fuel_gauge_prop_type.FUEL_GAUGE_BATTERY_CUTOFF (C enumerator), 3356
fuel_gauge_prop_type.FUEL_GAUGE_CHARGE_CURRENT (C enumerator), 3357
fuel_gauge_prop_type.FUEL_GAUGE_CHARGE_CUTOFF (C enumerator), 3356
fuel_gauge_prop_type.FUEL_GAUGE_CHARGE_VOLTAGE (C enumerator), 3357
fuel_gauge_prop_type.FUEL_GAUGE_COMMON_COUNT (C enumerator), 3358
fuel_gauge_prop_type.FUEL_GAUGE_CONNECT_STATE (C enumerator), 3356
fuel_gauge_prop_type.FUEL_GAUGE_CURRENT (C enumerator), 3356
fuel_gauge_prop_type.FUEL_GAUGE_CUSTOM_BEGIN (C enumerator), 3358
fuel_gauge_prop_type.FUEL_GAUGE_CYCLE_COUNT (C enumerator), 3356
fuel_gauge_prop_type.FUEL_GAUGE_DESIGN_CAPACITY (C enumerator), 3357
fuel_gauge_prop_type.FUEL_GAUGE_DESIGN_VOLTAGE (C enumerator), 3357
fuel_gauge_prop_type.FUEL_GAUGE_DEVICE_CHEMISTRY (C enumerator), 3358
fuel_gauge_prop_type.FUEL_GAUGE_DEVICE_NAME (C enumerator), 3358
fuel_gauge_prop_type.FUEL_GAUGE_FLAGS (C enumerator), 3356
fuel_gauge_prop_type.FUEL_GAUGE_FULL_CHARGE_CAPACITY (C enumerator), 3356
fuel_gauge_prop_type.FUEL_GAUGE_MANUFACTURER_NAME (C enumerator), 3357
fuel_gauge_prop_type.FUEL_GAUGE_PRESENT_STATE (C enumerator), 3356
fuel_gauge_prop_type.FUEL_GAUGE_PROP_MAX (C enumerator), 3358
fuel_gauge_prop_type.FUEL_GAUGE_RELATIVE_STATE_OF_CHARGE (C enumerator), 3357
fuel_gauge_prop_type.FUEL_GAUGE_REMAINING_CAPACITY (C enumerator), 3356
fuel_gauge_prop_type.FUEL_GAUGE_RUNTIME_TO_EMPTY (C enumerator), 3356
fuel_gauge_prop_type.FUEL_GAUGE_RUNTIME_TO_FULL (C enumerator), 3356
fuel_gauge_prop_type.FUEL_GAUGE_SBS_ATRATE (C enumerator), 3357
fuel_gauge_prop_type.FUEL_GAUGE_SBS_ATRATE_OK (C enumerator), 3357
fuel_gauge_prop_type.FUEL_GAUGE_SBS_ATRATE_TIME_TO_EMPTY (C enumerator), 3357
fuel_gauge_prop_type.FUEL_GAUGE_SBS_ATRATE_TIME_TO_FULL (C enumerator), 3357
fuel_gauge_prop_type.FUEL_GAUGE_SBS_MFR_ACCESS (C enumerator), 3356
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fuel_gauge_prop_type.FUEL_GAUGE_SBS_MODE (C enumerator), 3357
fuel_gauge_prop_type.FUEL_GAUGE_SBS_REMAINING_CAPACITY_ALARM (C enumerator), 3357
fuel_gauge_prop_type.FUEL_GAUGE_SBS_REMAINING_TIME_ALARM (C enumerator), 3357
fuel_gauge_prop_type.FUEL_GAUGE_STATUS (C enumerator), 3357
fuel_gauge_prop_type.FUEL_GAUGE_TEMPERATURE (C enumerator), 3357
fuel_gauge_prop_type.FUEL_GAUGE_VOLTAGE (C enumerator), 3357
fuel_gauge_prop_val (C union), 3359
fuel_gauge_prop_val.absolute_state_of_charge (C var), 3360
fuel_gauge_prop_val.avg_current (C var), 3360
fuel_gauge_prop_val.chg_current (C var), 3360
fuel_gauge_prop_val.chg_voltage (C var), 3360
fuel_gauge_prop_val.current (C var), 3360
fuel_gauge_prop_val.cutoff (C var), 3360
fuel_gauge_prop_val.cycle_count (C var), 3360
fuel_gauge_prop_val.design_cap (C var), 3361
fuel_gauge_prop_val.design_volt (C var), 3361
fuel_gauge_prop_val.fg_status (C var), 3361
fuel_gauge_prop_val.flags (C var), 3360
fuel_gauge_prop_val.full_charge_capacity (C var), 3360
fuel_gauge_prop_val.relative_state_of_charge (C var), 3360
fuel_gauge_prop_val.remaining_capacity (C var), 3360
fuel_gauge_prop_val.runtime_to_empty (C var), 3360
fuel_gauge_prop_val.runtime_to_full (C var), 3360
fuel_gauge_prop_val.sbs_at_rate (C var), 3361
fuel_gauge_prop_val.sbs_at_rate_ok (C var), 3361
fuel_gauge_prop_val.sbs_at_rate_time_to_empty (C var), 3361
fuel_gauge_prop_val.sbs_at_rate_time_to_full (C var), 3361
fuel_gauge_prop_val.sbs_mfr_access_word (C var), 3360
fuel_gauge_prop_val.sbs_mode (C var), 3360
fuel_gauge_prop_val.sbs_remaining_capacity_alarm (C var), 3361
fuel_gauge_prop_val.sbs_remaining_time_alarm (C var), 3361
fuel_gauge_prop_val.temperature (C var), 3360
fuel_gauge_prop_val.voltage (C var), 3360
fuel_gauge_set_prop (C function), 3358
fuel_gauge_set_property_t (C type), 3355
fuel_gauge_set_props (C function), 3359

G
gai_strerror (C function), 2493
GB (C macro), 687
gcm_op_t (C type), 723
gcm_params (C struct), 726
gdb (runners.core.RunnerConfig attribute), 197
GENMASK (C macro), 681
GENMASK64 (C macro), 681
GET_ARG_N (C macro), 692
GET_ARGS_LESS_N (C macro), 692
get_flash_address() (runners.core.ZephyrBinaryRunner static method), 200
get_runners() (runners.core.ZephyrBinaryRunner static method), 200
get_unused_ports() (runners.core.NetworkPortHelper method), 196
getaddrinfo (C function), 2492
getboolean() (runners.core.BuildConfiguration method), 196
gethostname (C function), 2493
getnameinfo (C function), 2493
getpeername (C function), 2492
getsockname (C function), 2492
getsockopt (C function), 2492
glcd_clear (C function), 3310
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glcd_color_select (C function), 3311
glcd_color_set (C function), 3312
glcd_cursor_pos_set (C function), 3310
glcd_display_state_get (C function), 3311
glcd_display_state_set (C function), 3310
GLCD_DS_BLINK_OFF (C macro), 3309
GLCD_DS_BLINK_ON (C macro), 3309
GLCD_DS_CURSOR_OFF (C macro), 3309
GLCD_DS_CURSOR_ON (C macro), 3309
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GLCD_FS_ROWS_1 (C macro), 3310
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glcd_input_state_get (C function), 3311
glcd_input_state_set (C function), 3311
GLCD_IS_ENTRY_LEFT (C macro), 3309
GLCD_IS_ENTRY_RIGHT (C macro), 3310
GLCD_IS_SHIFT_DECREMENT (C macro), 3309
GLCD_IS_SHIFT_INCREMENT (C macro), 3309
glcd_print (C function), 3310
gnss_data (C struct), 3371
gnss_data_callback (C struct), 3372
GNSS_DATA_CALLBACK_DEFINE (C macro), 3365
gnss_data_callback_t (C type), 3366
gnss_data_callback.callback (C var), 3372
gnss_data_callback.dev (C var), 3372
gnss_data.info (C var), 3371
gnss_data.nav_data (C var), 3371
gnss_data.utc (C var), 3371
gnss_driver_api (C struct), 3371
gnss_fix_quality (C enum), 3367
gnss_fix_quality.GNSS_FIX_QUALITY_DGNSS (C enumerator), 3368
gnss_fix_quality.GNSS_FIX_QUALITY_ESTIMATED (C enumerator), 3368
gnss_fix_quality.GNSS_FIX_QUALITY_FLOAT_RTK (C enumerator), 3368
gnss_fix_quality.GNSS_FIX_QUALITY_GNSS_PPS (C enumerator), 3368
gnss_fix_quality.GNSS_FIX_QUALITY_GNSS_SPS (C enumerator), 3368
gnss_fix_quality.GNSS_FIX_QUALITY_INVALID (C enumerator), 3367
gnss_fix_quality.GNSS_FIX_QUALITY_RTK (C enumerator), 3368
gnss_fix_status (C enum), 3367
gnss_fix_status.GNSS_FIX_STATUS_DGNSS_FIX (C enumerator), 3367
gnss_fix_status.GNSS_FIX_STATUS_ESTIMATED_FIX (C enumerator), 3367
gnss_fix_status.GNSS_FIX_STATUS_GNSS_FIX (C enumerator), 3367
gnss_fix_status.GNSS_FIX_STATUS_NO_FIX (C enumerator), 3367
gnss_get_enabled_systems (C function), 3370
gnss_get_enabled_systems_t (C type), 3365
gnss_get_fix_rate (C function), 3368
gnss_get_fix_rate_t (C type), 3365
gnss_get_navigation_mode (C function), 3369
gnss_get_navigation_mode_t (C type), 3365
gnss_get_periodic_config (C function), 3369
gnss_get_periodic_config_t (C type), 3365
gnss_get_supported_systems (C function), 3370
gnss_get_supported_systems_t (C type), 3365
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gnss_info (C struct), 3370
gnss_info.fix_quality (C var), 3371
gnss_info.fix_status (C var), 3371
gnss_info.hdop (C var), 3370
gnss_info.satellites_cnt (C var), 3370
gnss_navigation_mode (C enum), 3366
gnss_navigation_mode.GNSS_NAVIGATION_MODE_BALANCED_DYNAMICS (C enumerator), 3366
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gnss_navigation_mode.GNSS_NAVIGATION_MODE_LOW_DYNAMICS (C enumerator), 3366
gnss_navigation_mode.GNSS_NAVIGATION_MODE_ZERO_DYNAMICS (C enumerator), 3366
gnss_periodic_config (C struct), 3370
gnss_periodic_config.active_time_ms (C var), 3370
gnss_periodic_config.inactive_time_ms (C var), 3370
gnss_pps_mode (C enum), 3366
gnss_pps_mode.GNSS_PPS_MODE_DISABLED (C enumerator), 3366
gnss_pps_mode.GNSS_PPS_MODE_ENABLED (C enumerator), 3366
gnss_pps_mode.GNSS_PPS_MODE_ENABLED_AFTER_LOCK (C enumerator), 3366
gnss_pps_mode.GNSS_PPS_MODE_ENABLED_WHILE_LOCKED (C enumerator), 3366
gnss_satellite (C struct), 3372
gnss_satellite.azimuth (C var), 3372
gnss_satellite.elevation (C var), 3372
gnss_satellite.is_tracked (C var), 3372
gnss_satellite.prn (C var), 3372
gnss_satellites_callback (C struct), 3372
GNSS_SATELLITES_CALLBACK_DEFINE (C macro), 3365
gnss_satellites_callback_t (C type), 3366
gnss_satellites_callback.callback (C var), 3372
gnss_satellites_callback.dev (C var), 3372
gnss_satellite.snr (C var), 3372
gnss_satellite.system (C var), 3372
gnss_set_enabled_systems (C function), 3369
gnss_set_enabled_systems_t (C type), 3365
gnss_set_fix_rate (C function), 3368
gnss_set_fix_rate_t (C type), 3365
gnss_set_navigation_mode (C function), 3369
gnss_set_navigation_mode_t (C type), 3365
gnss_set_periodic_config (C function), 3368
gnss_set_periodic_config_t (C type), 3365
gnss_system (C enum), 3366
gnss_system.GNSS_SYSTEM_BEIDOU (C enumerator), 3367
gnss_system.GNSS_SYSTEM_GALILEO (C enumerator), 3367
gnss_system.GNSS_SYSTEM_GLONASS (C enumerator), 3367
gnss_system.GNSS_SYSTEM_GPS (C enumerator), 3367
gnss_system.GNSS_SYSTEM_IMES (C enumerator), 3367
gnss_system.GNSS_SYSTEM_IRNSS (C enumerator), 3367
gnss_system.GNSS_SYSTEM_QZSS (C enumerator), 3367
gnss_system.GNSS_SYSTEM_SBAS (C enumerator), 3367
gnss_systems_t (C type), 3365
gnss_time (C struct), 3371
gnss_time.century_year (C var), 3371
gnss_time.hour (C var), 3371
gnss_time.millisecond (C var), 3371
gnss_time.minute (C var), 3371
gnss_time.month (C var), 3371
gnss_time.month_day (C var), 3371
GNUARMEMB_TOOLCHAIN_PATH, 290, 291
GPIO_ACTIVE_HIGH (C macro), 3375
GPIO_ACTIVE_LOW (C macro), 3375
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gpio_add_callback (C function), 3392
gpio_add_callback_dt (C function), 3393
gpio_callback (C struct), 3395
gpio_callback_handler_t (C type), 3383
gpio_callback.handler (C var), 3395
gpio_callback.node (C var), 3395
gpio_callback.pin_mask (C var), 3395
GPIO_DISCONNECTED (C macro), 3373
gpio_driver_config (C struct), 3395
gpio_driver_config.port_pin_mask (C var), 3395
gpio_driver_data (C struct), 3395
gpio_driver_data.invert (C var), 3395
GPIO_DT_FLAGS_MASK (C macro), 3382
gpio_dt_flags_t (C type), 3382
GPIO_DT_INST_PORT_PIN_MASK_NGPIOS_EXC (C macro), 3381
GPIO_DT_INST_RESERVED_RANGES (C macro), 3380
GPIO_DT_INST_RESERVED_RANGES_NGPIOS (C macro), 3380
GPIO_DT_PORT_PIN_MASK_NGPIOS_EXC (C macro), 3381
GPIO_DT_RESERVED_RANGES (C macro), 3380
GPIO_DT_RESERVED_RANGES_NGPIOS (C macro), 3379
gpio_dt_spec (C struct), 3394
GPIO_DT_SPEC_GET (C macro), 3377
GPIO_DT_SPEC_GET_BY_IDX (C macro), 3376
GPIO_DT_SPEC_GET_BY_IDX_OR (C macro), 3376
GPIO_DT_SPEC_GET_OR (C macro), 3377
GPIO_DT_SPEC_INST_GET (C macro), 3378
GPIO_DT_SPEC_INST_GET_BY_IDX (C macro), 3377
GPIO_DT_SPEC_INST_GET_BY_IDX_OR (C macro), 3378
GPIO_DT_SPEC_INST_GET_OR (C macro), 3378
gpio_dt_spec.dt_flags (C var), 3394
gpio_dt_spec.pin (C var), 3394
gpio_dt_spec.port (C var), 3394
gpio_flags_t (C type), 3382
gpio_get_pending_int (C function), 3394
gpio_init_callback (C function), 3392
GPIO_INPUT (C macro), 3373
GPIO_INT_DISABLE (C macro), 3374
GPIO_INT_EDGE_BOTH (C macro), 3374
GPIO_INT_EDGE_FALLING (C macro), 3374
GPIO_INT_EDGE_RISING (C macro), 3374
GPIO_INT_EDGE_TO_ACTIVE (C macro), 3374
GPIO_INT_EDGE_TO_INACTIVE (C macro), 3374
GPIO_INT_LEVEL_ACTIVE (C macro), 3375
GPIO_INT_LEVEL_HIGH (C macro), 3374
GPIO_INT_LEVEL_INACTIVE (C macro), 3375
GPIO_INT_LEVEL_LOW (C macro), 3374
GPIO_INT_WAKEUP (C macro), 3382
gpio_is_ready_dt (C function), 3383
GPIO_MAX_PINS_PER_PORT (C macro), 3382
GPIO_OPEN_DRAIN (C macro), 3375
GPIO_OPEN_SOURCE (C macro), 3375
GPIO_OUTPUT (C macro), 3373
GPIO_OUTPUT_ACTIVE (C macro), 3374
GPIO_OUTPUT_HIGH (C macro), 3374
GPIO_OUTPUT_INACTIVE (C macro), 3374
GPIO_OUTPUT_LOW (C macro), 3374
gpio_pin_configure (C function), 3384
gpio_pin_configure_dt (C function), 3384
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gpio_pin_get (C function), 3390
gpio_pin_get_config (C function), 3386
gpio_pin_get_config_dt (C function), 3386
gpio_pin_get_dt (C function), 3390
gpio_pin_get_raw (C function), 3390
gpio_pin_interrupt_configure (C function), 3383
gpio_pin_interrupt_configure_dt (C function), 3384
gpio_pin_is_input (C function), 3385
gpio_pin_is_input_dt (C function), 3385
gpio_pin_is_output (C function), 3385
gpio_pin_is_output_dt (C function), 3386
gpio_pin_set (C function), 3391
gpio_pin_set_dt (C function), 3391
gpio_pin_set_raw (C function), 3391
gpio_pin_t (C type), 3382
gpio_pin_toggle (C function), 3391
gpio_pin_toggle_dt (C function), 3392
gpio_port_clear_bits (C function), 3389
gpio_port_clear_bits_raw (C function), 3388
gpio_port_get (C function), 3387
gpio_port_get_direction (C function), 3385
gpio_port_get_raw (C function), 3387
gpio_port_pins_t (C type), 3382
gpio_port_set_bits (C function), 3388
gpio_port_set_bits_raw (C function), 3388
gpio_port_set_clr_bits (C function), 3389
gpio_port_set_clr_bits_raw (C function), 3389
gpio_port_set_masked (C function), 3388
gpio_port_set_masked_raw (C function), 3387
gpio_port_toggle_bits (C function), 3389
gpio_port_value_t (C type), 3382
GPIO_PULL_DOWN (C macro), 3375
GPIO_PULL_UP (C macro), 3375
gpio_remove_callback (C function), 3393
gpio_remove_callback_dt (C function), 3393
gptp_call_phase_dis_cb (C function), 2970
gptp_clk_src_time_invoke (C function), 2970
gptp_clk_src_time_invoke_params (C struct), 2973
gptp_clk_src_time_invoke_params.last_gm_freq_change (C var), 2973
gptp_clk_src_time_invoke_params.last_gm_phase_change (C var), 2973
gptp_clk_src_time_invoke_params.src_time (C var), 2973
gptp_clk_src_time_invoke_params.time_base_indicator (C var), 2973
gptp_event_capture (C function), 2970
gptp_flags (C struct), 2971
gptp_flags.all (C var), 2972
gptp_flags.octets (C var), 2972
gptp_foreach_port (C function), 2970
gptp_get_domain (C function), 2970
gptp_get_hdr (C function), 2970
gptp_hdr (C struct), 2972
gptp_hdr.control (C var), 2973
gptp_hdr.correction_field (C var), 2972
gptp_hdr.domain_number (C var), 2972
gptp_hdr.flags (C var), 2972
gptp_hdr.log_msg_interval (C var), 2973
gptp_hdr.message_length (C var), 2972
gptp_hdr.message_type (C var), 2972
gptp_hdr.port_id (C var), 2972
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gptp_hdr.ptp_version (C var), 2972
gptp_hdr.reserved0 (C var), 2972
gptp_hdr.reserved1 (C var), 2972
gptp_hdr.reserved2 (C var), 2972
gptp_hdr.sequence_id (C var), 2972
gptp_hdr.transport_specific (C var), 2972
gptp_phase_dis_callback_t (C type), 2969
gptp_phase_dis_cb (C struct), 2973
gptp_phase_dis_cb.cb (C var), 2973
gptp_phase_dis_cb.node (C var), 2973
gptp_port_cb_t (C type), 2969
gptp_port_identity (C struct), 2971
gptp_port_identity.clk_id (C var), 2971
gptp_port_identity.port_number (C var), 2971
gptp_register_phase_dis_cb (C function), 2969
gptp_scaled_ns (C struct), 2971
gptp_scaled_ns.high (C var), 2971
gptp_scaled_ns.low (C var), 2971
gptp_sprint_clock_id (C function), 2970
gptp_unregister_phase_dis_cb (C function), 2970
gptp_uscaled_ns (C struct), 2971
gptp_uscaled_ns.high (C var), 2971
gptp_uscaled_ns.low (C var), 2971
GROVE_RGB_BLUE (C macro), 3310
GROVE_RGB_GREEN (C macro), 3310
GROVE_RGB_RED (C macro), 3310
GROVE_RGB_WHITE (C macro), 3310
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heap_event_types (C enum), 576
heap_event_types.HEAP_ALLOC (C enumerator), 576
heap_event_types.HEAP_EVT_UNKNOWN (C enumerator), 576
heap_event_types.HEAP_FREE (C enumerator), 577
heap_event_types.HEAP_MAX_EVENTS (C enumerator), 577
heap_event_types.HEAP_REALLOC (C enumerator), 577
heap_event_types.HEAP_RESIZE (C enumerator), 576
HEAP_ID_FROM_POINTER (C macro), 574
HEAP_ID_LIBC (C macro), 574
heap_listener (C struct), 578
heap_listener_alloc_cb_t (C type), 575
HEAP_LISTENER_ALLOC_DEFINE (C macro), 574
heap_listener_free_cb_t (C type), 576
HEAP_LISTENER_FREE_DEFINE (C macro), 574
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hex2bin (C function), 699
hex2char (C function), 699
hex_file (runners.core.RunnerConfig attribute), 197
HFP_HF_CMD_CME_ERROR (C macro), 1707
HFP_HF_CMD_ERROR (C macro), 1707
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HFP_HF_CMD_OK (C macro), 1707
HFP_HF_CMD_UNKNOWN_ERROR (C macro), 1707
HID_BOOT_IFACE_CODE_KEYBOARD (C macro), 3109
HID_BOOT_IFACE_CODE_MOUSE (C macro), 3109
HID_BOOT_IFACE_CODE_NONE (C macro), 3109
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hid_device_ops.set_report (C var), 3076
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HID_ITEM_TAG_COLLECTION (C macro), 3110
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hid_kbd_code.HID_KEY_0 (C enumerator), 3118
hid_kbd_code.HID_KEY_1 (C enumerator), 3118
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hid_kbd_code.HID_KEY_KP_9 (C enumerator), 3121
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ieee802154_attr.IEEE802154_ATTR_PHY_HRP_UWB_SUPPORTED_PRFS (C enumerator), 2688
ieee802154_attr.IEEE802154_ATTR_PHY_SUPPORTED_CHANNEL_PAGES (C enumerator), 2688
ieee802154_attr.IEEE802154_ATTR_PHY_SUPPORTED_CHANNEL_RANGES (C enumerator), 2688
ieee802154_attr.IEEE802154_ATTR_PRIV_START (C enumerator), 2688
IEEE802154_BROADCAST_ADDRESS (C macro), 2710
IEEE802154_BROADCAST_PAN_ID (C macro), 2710
ieee802154_config (C struct), 2695
IEEE802154_CONFIG_RX_SLOT_NONE (C macro), 2689
IEEE802154_CONFIG_RX_SLOT_OFF (C macro), 2689
ieee802154_config_type (C enum), 2680
ieee802154_config_type.IEEE802154_CONFIG_ACK_FPB (C enumerator), 2680
ieee802154_config_type.IEEE802154_CONFIG_AUTO_ACK_FPB (C enumerator), 2680
ieee802154_config_type.IEEE802154_CONFIG_COMMON_COUNT (C enumerator), 2688
ieee802154_config_type.IEEE802154_CONFIG_CSL_PERIOD (C enumerator), 2683
ieee802154_config_type.IEEE802154_CONFIG_ENH_ACK_HEADER_IE (C enumerator), 2686
ieee802154_config_type.IEEE802154_CONFIG_EVENT_HANDLER (C enumerator), 2681
ieee802154_config_type.IEEE802154_CONFIG_EXPECTED_RX_TIME (C enumerator), 2685
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ieee802154_config_type.IEEE802154_CONFIG_FRAME_COUNTER_IF_LARGER (C enumerator), 2682
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ieee802154_config_type.IEEE802154_CONFIG_PRIV_START (C enumerator), 2688
ieee802154_config_type.IEEE802154_CONFIG_PROMISCUOUS (C enumerator), 2681
ieee802154_config_type.IEEE802154_CONFIG_RX_ON_WHEN_IDLE (C enumerator), 2687
ieee802154_config_type.IEEE802154_CONFIG_RX_SLOT (C enumerator), 2682
ieee802154_config.ack_fpb (C var), 2696
ieee802154_config.ack_ie (C var), 2698
ieee802154_config.addr (C var), 2696
ieee802154_config.auto_ack_fpb (C var), 2696
ieee802154_config.channel (C var), 2697
ieee802154_config.csl_period (C var), 2697
ieee802154_config.duration (C var), 2697
ieee802154_config.enabled (C var), 2696
ieee802154_config.event_handler (C var), 2696
ieee802154_config.expected_rx_time (C var), 2697
ieee802154_config.ext_addr (C var), 2697
ieee802154_config.extended (C var), 2696
ieee802154_config.frame_counter (C var), 2696
ieee802154_config.header_ie (C var), 2697
ieee802154_config.mac_keys (C var), 2696
ieee802154_config.mode (C var), 2696
ieee802154_config.pan_coordinator (C var), 2696
ieee802154_config.promiscuous (C var), 2696
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ieee802154_config.purge_ie (C var), 2697
ieee802154_config.rx_on_when_idle (C var), 2696
ieee802154_config.rx_slot (C var), 2697
ieee802154_config.short_addr (C var), 2697
ieee802154_config.start (C var), 2696
ieee802154_context (C struct), 2712
ieee802154_context.ack_lock (C var), 2714
ieee802154_context.ack_requested (C var), 2713
ieee802154_context.ack_seq (C var), 2713
ieee802154_context.channel (C var), 2712
ieee802154_context.coord_ext_addr (C var), 2713
ieee802154_context.coord_short_addr (C var), 2713
ieee802154_context.ctx_lock (C var), 2714
ieee802154_context.device_role (C var), 2713
ieee802154_context.ext_addr (C var), 2712
ieee802154_context.flags (C var), 2713
ieee802154_context.linkaddr (C var), 2712
ieee802154_context.pan_id (C var), 2712
ieee802154_context.scan_ctx (C var), 2713
ieee802154_context.scan_ctx_lock (C var), 2713
ieee802154_context.sec_ctx (C var), 2712
ieee802154_context.sequence (C var), 2713
ieee802154_context.short_addr (C var), 2712
ieee802154_context.tx_power (C var), 2713
IEEE802154_DEFINE_HEADER_IE_CSL_FULL (C macro), 2672
IEEE802154_DEFINE_HEADER_IE_CSL_REDUCED (C macro), 2672
IEEE802154_DEFINE_HEADER_IE_TIME_CORRECTION (C macro), 2673
IEEE802154_DEFINE_HEADER_IE_VENDOR_SPECIFIC (C macro), 2672
IEEE802154_DEFINE_PHY_SUPPORTED_CHANNELS (C macro), 2675
ieee802154_device_role (C enum), 2710
ieee802154_device_role.IEEE802154_DEVICE_ROLE_COORDINATOR (C enumerator), 2711
ieee802154_device_role.IEEE802154_DEVICE_ROLE_ENDDEVICE (C enumerator), 2711
ieee802154_device_role.IEEE802154_DEVICE_ROLE_PAN_COORDINATOR (C enumerator), 2711
ieee802154_event (C enum), 2678
ieee802154_event_cb_t (C type), 2688
ieee802154_event.IEEE802154_EVENT_RX_FAILED (C enumerator), 2678
ieee802154_event.IEEE802154_EVENT_RX_OFF (C enumerator), 2678
ieee802154_event.IEEE802154_EVENT_TX_STARTED (C enumerator), 2678
IEEE802154_EXT_ADDR_LENGTH (C macro), 2710
IEEE802154_FCS_LENGTH (C macro), 2709
ieee802154_filter (C struct), 2695
ieee802154_filter_type (C enum), 2677
ieee802154_filter_type.IEEE802154_FILTER_TYPE_IEEE_ADDR (C enumerator), 2678
ieee802154_filter_type.IEEE802154_FILTER_TYPE_PAN_ID (C enumerator), 2678
ieee802154_filter_type.IEEE802154_FILTER_TYPE_SHORT_ADDR (C enumerator), 2678
ieee802154_filter_type.IEEE802154_FILTER_TYPE_SRC_IEEE_ADDR (C enumerator), 2678
ieee802154_filter_type.IEEE802154_FILTER_TYPE_SRC_SHORT_ADDR (C enumerator), 2678
ieee802154_filter.ieee_addr (C var), 2695
ieee802154_filter.pan_id (C var), 2695
ieee802154_filter.short_addr (C var), 2695
ieee802154_fpb_mode (C enum), 2680
ieee802154_fpb_mode.IEEE802154_FPB_ADDR_MATCH_THREAD (C enumerator), 2680
ieee802154_fpb_mode.IEEE802154_FPB_ADDR_MATCH_ZIGBEE (C enumerator), 2680
ieee802154_handle_ack (C function), 2690
ieee802154_header_ie_csl (C struct), 2693
ieee802154_header_ie_csl_full (C struct), 2692
ieee802154_header_ie_csl_full.csl_period (C var), 2692
ieee802154_header_ie_csl_full.csl_phase (C var), 2692
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ieee802154_header_ie_csl_full.csl_rendezvous_time (C var), 2692
ieee802154_header_ie_csl_reduced (C struct), 2692
ieee802154_header_ie_csl_reduced.csl_period (C var), 2693
ieee802154_header_ie_csl_reduced.csl_phase (C var), 2693
ieee802154_header_ie_csl.full (C var), 2693
ieee802154_header_ie_csl.reduced (C var), 2693
ieee802154_header_ie_element_id (C enum), 2671
ieee802154_header_ie_element_id.IEEE802154_HEADER_IE_ELEMENT_ID_CSL_IE (C enumera-

tor), 2671
ieee802154_header_ie_element_id.IEEE802154_HEADER_IE_ELEMENT_ID_HEADER_TERMINATION_1

(C enumerator), 2671
ieee802154_header_ie_element_id.IEEE802154_HEADER_IE_ELEMENT_ID_HEADER_TERMINATION_2

(C enumerator), 2671
ieee802154_header_ie_element_id.IEEE802154_HEADER_IE_ELEMENT_ID_RENDEZVOUS_TIME_IE

(C enumerator), 2671
ieee802154_header_ie_element_id.IEEE802154_HEADER_IE_ELEMENT_ID_RIT_IE (C enumera-

tor), 2671
ieee802154_header_ie_element_id.IEEE802154_HEADER_IE_ELEMENT_ID_TIME_CORRECTION_IE

(C enumerator), 2671
ieee802154_header_ie_element_id.IEEE802154_HEADER_IE_ELEMENT_ID_VENDOR_SPECIFIC_IE

(C enumerator), 2671
ieee802154_header_ie_get_element_id (C function), 2671
ieee802154_header_ie_get_time_correction_us (C function), 2671
IEEE802154_HEADER_IE_HEADER_LENGTH (C macro), 2672
ieee802154_header_ie_rendezvous_time (C struct), 2694
ieee802154_header_ie_rendezvous_time_full (C struct), 2693
ieee802154_header_ie_rendezvous_time_full.rendezvous_time (C var), 2693
ieee802154_header_ie_rendezvous_time_full.wakeup_interval (C var), 2693
ieee802154_header_ie_rendezvous_time_reduced (C struct), 2693
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ieee802154_header_ie_rendezvous_time.full (C var), 2694
ieee802154_header_ie_rendezvous_time.reduced (C var), 2694
ieee802154_header_ie_rit (C struct), 2693
ieee802154_header_ie_rit.number_of_repeat_listen (C var), 2693
ieee802154_header_ie_rit.repeat_listen_interval (C var), 2693
ieee802154_header_ie_rit.time_to_first_listen (C var), 2693
ieee802154_header_ie_set_element_id (C function), 2671
ieee802154_header_ie_time_correction (C struct), 2694
ieee802154_header_ie_time_correction.time_sync_info (C var), 2694
ieee802154_header_ie_vendor_specific (C struct), 2692
ieee802154_header_ie_vendor_specific.vendor_oui (C var), 2692
ieee802154_header_ie_vendor_specific.vendor_specific_info (C var), 2692
IEEE802154_HEADER_TERMINATION_1_HEADER_IE_LEN (C macro), 2673
ieee802154_hw_caps (C enum), 2676
IEEE802154_HW_CAPS_BITS_COMMON_COUNT (C macro), 2689
IEEE802154_HW_CAPS_BITS_PRIV_START (C macro), 2689
ieee802154_hw_caps.IEEE802154_HW_CSMA (C enumerator), 2677
ieee802154_hw_caps.IEEE802154_HW_ENERGY_SCAN (C enumerator), 2676
ieee802154_hw_caps.IEEE802154_HW_FCS (C enumerator), 2676
ieee802154_hw_caps.IEEE802154_HW_FILTER (C enumerator), 2676
ieee802154_hw_caps.IEEE802154_HW_PROMISC (C enumerator), 2676
ieee802154_hw_caps.IEEE802154_HW_RETRANSMISSION (C enumerator), 2677
ieee802154_hw_caps.IEEE802154_HW_RX_TX_ACK (C enumerator), 2677
ieee802154_hw_caps.IEEE802154_HW_RXTIME (C enumerator), 2677
ieee802154_hw_caps.IEEE802154_HW_SLEEP_TO_TX (C enumerator), 2677
ieee802154_hw_caps.IEEE802154_HW_TX_RX_ACK (C enumerator), 2677
ieee802154_hw_caps.IEEE802154_HW_TX_SEC (C enumerator), 2677
ieee802154_hw_caps.IEEE802154_HW_TXTIME (C enumerator), 2677
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ieee802154_hw_caps.IEEE802154_RX_ON_WHEN_IDLE (C enumerator), 2677
ieee802154_ie_type (C enum), 2670
ieee802154_ie_type.IEEE802154_IE_TYPE_HEADER (C enumerator), 2670
ieee802154_ie_type.IEEE802154_IE_TYPE_PAYLOAD (C enumerator), 2670
ieee802154_init (C function), 2690
ieee802154_is_ar_flag_set (C function), 2689
ieee802154_key (C struct), 2695
ieee802154_key.frame_counter_per_key (C var), 2695
ieee802154_key.key_frame_counter (C var), 2695
ieee802154_key.key_id (C var), 2695
ieee802154_key.key_id_mode (C var), 2695
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IEEE802154_PHY_A_TURNAROUND_TIME_DEFAULT (C macro), 2691
IEEE802154_PHY_BPSK_868MHZ_SYMBOL_PERIOD_NS (C macro), 2691
IEEE802154_PHY_BPSK_915MHZ_SYMBOL_PERIOD_NS (C macro), 2692
ieee802154_phy_channel_page (C enum), 2673
ieee802154_phy_channel_page.IEEE802154_ATTR_PHY_CHANNEL_PAGE_EIGHT_LRP_UWB (C enu-

merator), 2674
ieee802154_phy_channel_page.IEEE802154_ATTR_PHY_CHANNEL_PAGE_ELEVEN_OQPSK_2380 (C

enumerator), 2674
ieee802154_phy_channel_page.IEEE802154_ATTR_PHY_CHANNEL_PAGE_FIVE_OQPSK_780 (C enu-

merator), 2674
ieee802154_phy_channel_page.IEEE802154_ATTR_PHY_CHANNEL_PAGE_FOUR_HRP_UWB (C enumer-

ator), 2674
ieee802154_phy_channel_page.IEEE802154_ATTR_PHY_CHANNEL_PAGE_NINE_SUN_PREDEFINED (C
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merator), 2674
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tor), 2674
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ator), 2674
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enumerator), 2674
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ator), 2675
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ieee802154_phy_channel_range.from_channel (C var), 2694
ieee802154_phy_channel_range.to_channel (C var), 2694
IEEE802154_PHY_HRP_UWB_ERDEV (C macro), 2676
IEEE802154_PHY_HRP_UWB_ERDEV_TPSYM_SYMBOL_PERIOD_NS (C macro), 2676
ieee802154_phy_hrp_uwb_nominal_prf (C enum), 2675
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2675
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ieee802154_req_params.beacon_payload_len (C var), 2669
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773
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log_msg_generic.log (C var), 960
log_msg_get_data (C function), 958
log_msg_get_domain (C function), 958
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net_stats_udp (C struct), 2557
net_stats_udp.chkerr (C var), 2557
net_stats_udp.drop (C var), 2557
net_stats_udp.recv (C var), 2557
net_stats_udp.sent (C var), 2557
net_stats_wifi (C struct), 2564
net_stats_wifi.broadcast (C var), 2564
net_stats_wifi.bytes (C var), 2564
net_stats_wifi.errors (C var), 2564
net_stats_wifi.multicast (C var), 2564
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net_stats_wifi.sta_mgmt (C var), 2564
net_stats_wifi.unicast (C var), 2564
net_stats.bytes (C var), 2560
net_stats.ip_errors (C var), 2560
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net_tcp_seq_greater (C function), 2527
NET_TIME_MAX (C macro), 2974
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net_timeout.timer_timeout (C var), 2567
net_timeout.wrap_counter (C var), 2568
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net_traffic_class.handler (C var), 2945
net_traffic_class.stack (C var), 2945
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net_trickle_cb_t (C type), 2573
net_trickle_consistency (C function), 2574
net_trickle_create (C function), 2573
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net_trickle.cb (C var), 2575
net_trickle.double_to (C var), 2575
net_trickle.I (C var), 2575
net_trickle.Imax (C var), 2575
net_trickle.Imax_abs (C var), 2575
net_trickle.Imin (C var), 2575
net_trickle.Istart (C var), 2575
net_trickle.k (C var), 2575
net_trickle.timer (C var), 2575
net_trickle.user_data (C var), 2575
net_tuple (C struct), 2532
net_tuple.ip_proto (C var), 2532
net_tuple.local_addr (C var), 2532
net_tuple.local_port (C var), 2532
net_tuple.remote_addr (C var), 2532
net_tuple.remote_port (C var), 2532
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net_verdict (C enum), 2906
net_verdict.NET_CONTINUE (C enumerator), 2906
net_verdict.NET_DROP (C enumerator), 2906
net_verdict.NET_OK (C enumerator), 2906
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NET_VLAN_TAG_UNSPEC (C macro), 2638
net_wifi_mgmt_offload (C struct), 2752
net_wifi_mgmt_offload.wifi_drv_ops (C var), 2752
net_wifi_mgmt_offload.wifi_iface (C var), 2752
net_wifi_mgmt_offload.wifi_mgmt_api (C var), 2752
NetworkPortHelper (class in runners.core), 196
NHPOT (C macro), 687
NI_DGRAM (C macro), 2496
NI_MAXHOST (C macro), 2496
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NPF_ORIG_IFACE_UNMATCH (C macro), 2960
npf_recv_rules (C var), 2959
npf_remove_all_rules (C function), 2958
npf_remove_rule (C function), 2958
NPF_RULE (C macro), 2957
npf_rule (C struct), 2959
npf_rule_list (C struct), 2960
npf_rule_list.lock (C var), 2960
npf_rule_list.rule_head (C var), 2960
npf_rule.nb_tests (C var), 2959
npf_rule.node (C var), 2959
npf_rule.result (C var), 2959
npf_rule.tests (C var), 2959
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NPF_SIZE_BOUNDS (C macro), 2961
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npf_test (C struct), 2959
npf_test.fn (C var), 2959
ns_to_net_ptp_time (C function), 2976
NSEC_PER_MSEC (C macro), 478
NSEC_PER_SEC (C macro), 479
NSEC_PER_USEC (C macro), 478
ntohl (C macro), 2512
ntohll (C macro), 2512
ntohs (C macro), 2512
NUM_SOP_STAR_TYPES (C macro), 3688
NUM_VA_ARGS (C macro), 697
NUM_VA_ARGS_LESS_1 (C macro), 696
nvs_calc_free_space (C function), 1182
nvs_clear (C function), 1180
nvs_delete (C function), 1181
nvs_fs (C struct), 1179
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nvs_fs.ate_wra (C var), 1179
nvs_fs.data_wra (C var), 1179
nvs_fs.flash_device (C var), 1180
nvs_fs.flash_parameters (C var), 1180
nvs_fs.nvs_lock (C var), 1180
nvs_fs.offset (C var), 1179
nvs_fs.ready (C var), 1179
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nvs_sector_use_next (C function), 1182
nvs_write (C function), 1180
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onoff_cancel (C function), 1008
onoff_cancel_or_release (C function), 1009
onoff_client (C struct), 1012
onoff_client_callback (C type), 1006
ONOFF_CLIENT_EXTENSION_POS (C macro), 1005
onoff_client.notify (C var), 1012
ONOFF_FLAG_ERROR (C macro), 1004
onoff_has_error (C function), 1007
onoff_manager (C struct), 1011
onoff_manager_init (C function), 1007
onoff_manager.clients (C var), 1012
onoff_manager.flags (C var), 1012
onoff_manager.last_res (C var), 1012
onoff_manager.lock (C var), 1012
onoff_manager.monitors (C var), 1012
onoff_manager.refs (C var), 1012
onoff_manager.transitions (C var), 1012
onoff_monitor (C struct), 1012
onoff_monitor_callback (C type), 1006
onoff_monitor_register (C function), 1010
onoff_monitor_unregister (C function), 1010
onoff_monitor.callback (C var), 1013
onoff_monitor.node (C var), 1013
onoff_notify_fn (C type), 1005
onoff_release (C function), 1008
onoff_request (C function), 1007
onoff_reset (C function), 1009
ONOFF_STATE_ERROR (C macro), 1005
ONOFF_STATE_MASK (C macro), 1004
ONOFF_STATE_OFF (C macro), 1005
ONOFF_STATE_ON (C macro), 1005
ONOFF_STATE_RESETTING (C macro), 1005
ONOFF_STATE_TO_OFF (C macro), 1005
ONOFF_STATE_TO_ON (C macro), 1005
onoff_sync_finalize (C function), 1011
onoff_sync_lock (C function), 1010
onoff_sync_service (C struct), 1013
onoff_sync_service.count (C var), 1013
onoff_sync_service.lock (C var), 1013
onoff_transition_fn (C type), 1006
onoff_transitions (C struct), 1011
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ONOFF_TRANSITIONS_INITIALIZER (C macro), 1005
onoff_transitions.reset (C var), 1011
onoff_transitions.start (C var), 1011
onoff_transitions.stop (C var), 1011
openocd (runners.core.RunnerConfig attribute), 197
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openthread_api_mutex_try_lock (C function), 2716
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openthread_get_default_instance (C function), 2716
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openthread_state_changed_cb.user_data (C var), 2717
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os_mgmt_group_events (C enum), 773
os_mgmt_group_events.MGMT_EVT_OP_OS_MGMT_ALL (C enumerator), 773
os_mgmt_group_events.MGMT_EVT_OP_OS_MGMT_DATETIME_GET (C enumerator), 773
os_mgmt_group_events.MGMT_EVT_OP_OS_MGMT_DATETIME_SET (C enumerator), 773
os_mgmt_group_events.MGMT_EVT_OP_OS_MGMT_INFO_APPEND (C enumerator), 773
os_mgmt_group_events.MGMT_EVT_OP_OS_MGMT_INFO_CHECK (C enumerator), 773
os_mgmt_group_events.MGMT_EVT_OP_OS_MGMT_RESET (C enumerator), 773
OTS_OBJ_ID_DIR_LIST (C macro), 1941
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PART_OF_ARRAY (C macro), 682
PATH, 7, 8, 16, 27, 96, 131, 136, 137, 284
pcie_alloc_irq (C function), 3524
pcie_bar (C struct), 3526
pcie_bdf_t (C type), 3522
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PCIE_CONF_BAR0 (C macro), 3520
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PCIE_CONF_BAR_FLAGS (C macro), 3520
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PCIE_CONF_BAR_MEM (C macro), 3520
PCIE_CONF_BAR_NONE (C macro), 3520
PCIE_CONF_CAP_ID (C macro), 3519
PCIE_CONF_CAP_NEXT (C macro), 3519
PCIE_CONF_CAPPTR (C macro), 3519
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pcie_get_mbar (C function), 3523
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pd_augmented_supply_pdo_sink.reserved1 (C var), 3699
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PDO_MAX_DATA_OBJECTS (C macro), 3686
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PECI_GET_DIB_RD_LEN (C macro), 3527
PECI_GET_DIB_REVNUM (C macro), 3527
PECI_GET_DIB_WR_LEN (C macro), 3527
PECI_GET_TEMP_CMD_LEN (C macro), 3528
PECI_GET_TEMP_ERR_LSB_GENERAL (C macro), 3528
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PECI_RD_IAMSR_LEN_BYTE (C macro), 3529
PECI_RD_IAMSR_LEN_DWORD (C macro), 3529
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PhonyNameDueToError.BT_LE_SCAN_OPT_NONE (C enumerator), 1970
PhonyNameDueToError.BT_LE_SCAN_TYPE_ACTIVE (C enumerator), 1971
PhonyNameDueToError.BT_LE_SCAN_TYPE_PASSIVE (C enumerator), 1971
PhonyNameDueToError.BT_MESH_OOB_AUTH_REQUIRED (C enumerator), 2245
PhonyNameDueToError.BT_MESH_PROV_AUTH_CMAC_AES128_AES_CCM (C enumerator), 2244
PhonyNameDueToError.BT_MESH_PROV_AUTH_HMAC_SHA256_AES_CCM (C enumerator), 2245
PhonyNameDueToError.BT_MESH_STATIC_OOB_AVAILABLE (C enumerator), 2245
PhonyNameDueToError.BT_OTS_METADATA_REQ_ALL (C enumerator), 1949
PhonyNameDueToError.BT_OTS_METADATA_REQ_CREATED (C enumerator), 1948
PhonyNameDueToError.BT_OTS_METADATA_REQ_ID (C enumerator), 1948
PhonyNameDueToError.BT_OTS_METADATA_REQ_MODIFIED (C enumerator), 1948
PhonyNameDueToError.BT_OTS_METADATA_REQ_NAME (C enumerator), 1948
PhonyNameDueToError.BT_OTS_METADATA_REQ_PROPS (C enumerator), 1948
PhonyNameDueToError.BT_OTS_METADATA_REQ_SIZE (C enumerator), 1948
PhonyNameDueToError.BT_OTS_METADATA_REQ_TYPE (C enumerator), 1948
PhonyNameDueToError.BT_OTS_OACP_FEAT_ABORT (C enumerator), 1947
PhonyNameDueToError.BT_OTS_OACP_FEAT_APPEND (C enumerator), 1947
PhonyNameDueToError.BT_OTS_OACP_FEAT_CHECKSUM (C enumerator), 1947
PhonyNameDueToError.BT_OTS_OACP_FEAT_CREATE (C enumerator), 1947
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PhonyNameDueToError.BT_OTS_OACP_FEAT_DELETE (C enumerator), 1947
PhonyNameDueToError.BT_OTS_OACP_FEAT_EXECUTE (C enumerator), 1947
PhonyNameDueToError.BT_OTS_OACP_FEAT_PATCH (C enumerator), 1947
PhonyNameDueToError.BT_OTS_OACP_FEAT_READ (C enumerator), 1947
PhonyNameDueToError.BT_OTS_OACP_FEAT_TRUNCATE (C enumerator), 1947
PhonyNameDueToError.BT_OTS_OACP_FEAT_WRITE (C enumerator), 1947
PhonyNameDueToError.BT_OTS_OBJ_PROP_APPEND (C enumerator), 1946
PhonyNameDueToError.BT_OTS_OBJ_PROP_DELETE (C enumerator), 1946
PhonyNameDueToError.BT_OTS_OBJ_PROP_EXECUTE (C enumerator), 1946
PhonyNameDueToError.BT_OTS_OBJ_PROP_MARKED (C enumerator), 1947
PhonyNameDueToError.BT_OTS_OBJ_PROP_PATCH (C enumerator), 1947
PhonyNameDueToError.BT_OTS_OBJ_PROP_READ (C enumerator), 1946
PhonyNameDueToError.BT_OTS_OBJ_PROP_TRUNCATE (C enumerator), 1947
PhonyNameDueToError.BT_OTS_OBJ_PROP_WRITE (C enumerator), 1946
PhonyNameDueToError.BT_OTS_OLCP_FEAT_CLEAR (C enumerator), 1948
PhonyNameDueToError.BT_OTS_OLCP_FEAT_GO_TO (C enumerator), 1948
PhonyNameDueToError.BT_OTS_OLCP_FEAT_NUM_REQ (C enumerator), 1948
PhonyNameDueToError.BT_OTS_OLCP_FEAT_ORDER (C enumerator), 1948
PhonyNameDueToError.BT_QUIRK_NO_AUTO_DLE (C enumerator), 2349
PhonyNameDueToError.BT_QUIRK_NO_RESET (C enumerator), 2349
PhonyNameDueToError.BT_RFCOMM_CHAN_HFP_AG (C enumerator), 1710
PhonyNameDueToError.BT_RFCOMM_CHAN_HFP_HF (C enumerator), 1710
PhonyNameDueToError.BT_RFCOMM_CHAN_HSP_AG (C enumerator), 1710
PhonyNameDueToError.BT_RFCOMM_CHAN_HSP_HS (C enumerator), 1710
PhonyNameDueToError.BT_RFCOMM_CHAN_SPP (C enumerator), 1710
PhonyNameDueToError.BT_SDP_DISCOVER_UUID_CONTINUE (C enumerator), 1727
PhonyNameDueToError.BT_SDP_DISCOVER_UUID_STOP (C enumerator), 1727
PhonyNameDueToError.BT_UUID_TYPE_16 (C enumerator), 2431
PhonyNameDueToError.BT_UUID_TYPE_32 (C enumerator), 2431
PhonyNameDueToError.BT_UUID_TYPE_128 (C enumerator), 2431
PhonyNameDueToError.FS_EXT2 (C enumerator), 847
PhonyNameDueToError.FS_FATFS (C enumerator), 847
PhonyNameDueToError.FS_LITTLEFS (C enumerator), 847
PhonyNameDueToError.FS_TYPE_EXTERNAL_BASE (C enumerator), 847
PhonyNameDueToError.HID_REPORT_TYPE_FEATURE (C enumerator), 3075
PhonyNameDueToError.HID_REPORT_TYPE_INPUT (C enumerator), 3075
PhonyNameDueToError.HID_REPORT_TYPE_OUTPUT (C enumerator), 3075
PhonyNameDueToError.K_WORK_CANCELING (C enumerator), 358
PhonyNameDueToError.K_WORK_DELAYED (C enumerator), 358
PhonyNameDueToError.K_WORK_FLUSHING (C enumerator), 358
PhonyNameDueToError.K_WORK_QUEUED (C enumerator), 358
PhonyNameDueToError.K_WORK_RUNNING (C enumerator), 358
PhonyNameDueToError.PCIE_SCAN_CB_ALL (C enumerator), 3522
PhonyNameDueToError.PCIE_SCAN_RECURSIVE (C enumerator), 3522
pinctrl_apply_state (C function), 3727
pinctrl_apply_state_direct (C function), 3727
pinctrl_configure_pins (C function), 3727
pinctrl_dev_config (C struct), 3728
pinctrl_dev_config.reg (C var), 3728
pinctrl_dev_config.state_cnt (C var), 3728
pinctrl_dev_config.states (C var), 3728
PINCTRL_DT_DEFINE (C macro), 3725
PINCTRL_DT_DEV_CONFIG_DECLARE (C macro), 3725
PINCTRL_DT_DEV_CONFIG_GET (C macro), 3726
PINCTRL_DT_INST_DEFINE (C macro), 3726
PINCTRL_DT_INST_DEV_CONFIG_GET (C macro), 3726
PINCTRL_DT_STATE_INIT (C macro), 3728
PINCTRL_DT_STATE_PINS_DEFINE (C macro), 3728
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pinctrl_lookup_state (C function), 3726
PINCTRL_REG_NONE (C macro), 3725
pinctrl_state (C struct), 3727
PINCTRL_STATE_DEFAULT (C macro), 3725
PINCTRL_STATE_PRIV_START (C macro), 3725
PINCTRL_STATE_SLEEP (C macro), 3725
pinctrl_state.id (C var), 3728
pinctrl_state.pin_cnt (C var), 3728
pinctrl_state.pins (C var), 3728
pinctrl_update_states (C function), 3729
PM_ALL_SUBSTATES (C macro), 1067
pm_device (C struct), 1080
pm_device_action (C enum), 1075
pm_device_action_cb_t (C type), 1074
pm_device_action_failed_cb_t (C type), 1074
pm_device_action_run (C function), 1076
pm_device_action.PM_DEVICE_ACTION_RESUME (C enumerator), 1075
pm_device_action.PM_DEVICE_ACTION_SUSPEND (C enumerator), 1075
pm_device_action.PM_DEVICE_ACTION_TURN_OFF (C enumerator), 1075
pm_device_action.PM_DEVICE_ACTION_TURN_ON (C enumerator), 1075
pm_device_base (C struct), 1080
pm_device_base.action_cb (C var), 1080
pm_device_base.flags (C var), 1080
pm_device_base.state (C var), 1080
pm_device_base.usage (C var), 1080
pm_device_busy_clear (C function), 1077
pm_device_busy_set (C function), 1077
pm_device_children_action_run (C function), 1076
PM_DEVICE_DEFINE (C macro), 1072
pm_device_driver_init (C function), 1079
PM_DEVICE_DT_DEFINE (C macro), 1073
PM_DEVICE_DT_GET (C macro), 1074
PM_DEVICE_DT_INST_DEFINE (C macro), 1073
PM_DEVICE_DT_INST_GET (C macro), 1074
PM_DEVICE_GET (C macro), 1073
pm_device_init_off (C function), 1077
pm_device_init_suspended (C function), 1077
pm_device_is_any_busy (C function), 1077
pm_device_is_busy (C function), 1078
pm_device_is_powered (C function), 1079
pm_device_isr (C struct), 1080
PM_DEVICE_ISR_SAFE (C macro), 1072
pm_device_isr.base (C var), 1081
pm_device_isr.lock (C var), 1081
pm_device_on_power_domain (C function), 1078
pm_device_power_domain_add (C function), 1078
pm_device_power_domain_remove (C function), 1079
pm_device_runtime_auto_enable (C function), 1081
pm_device_runtime_disable (C function), 1082
pm_device_runtime_enable (C function), 1081
pm_device_runtime_get (C function), 1082
pm_device_runtime_is_enabled (C function), 1084
pm_device_runtime_put (C function), 1082
pm_device_runtime_put_async (C function), 1083
pm_device_runtime_usage (C function), 1084
pm_device_state (C enum), 1074
pm_device_state_get (C function), 1076
pm_device_state_str (C function), 1076
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pm_device_state.PM_DEVICE_STATE_ACTIVE (C enumerator), 1075
pm_device_state.PM_DEVICE_STATE_OFF (C enumerator), 1075
pm_device_state.PM_DEVICE_STATE_SUSPENDED (C enumerator), 1075
pm_device_state.PM_DEVICE_STATE_SUSPENDING (C enumerator), 1075
pm_device_wakeup_enable (C function), 1078
pm_device_wakeup_is_capable (C function), 1078
pm_device_wakeup_is_enabled (C function), 1078
pm_device.base (C var), 1080
pm_device.dev (C var), 1080
pm_device.event (C var), 1080
pm_device.lock (C var), 1080
pm_device.work (C var), 1080
pm_notifier (C struct), 1061
pm_notifier_register (C function), 1060
pm_notifier_unregister (C function), 1061
pm_notifier.state_entry (C var), 1062
pm_notifier.state_exit (C var), 1062
pm_policy_device_power_lock_get (C function), 1070
pm_policy_device_power_lock_put (C function), 1071
pm_policy_event (C struct), 1071
pm_policy_event_register (C function), 1069
pm_policy_event_unregister (C function), 1070
pm_policy_event_update (C function), 1070
pm_policy_latency_changed_cb_t (C type), 1067
pm_policy_latency_changed_subscribe (C function), 1069
pm_policy_latency_changed_unsubscribe (C function), 1069
pm_policy_latency_request (C struct), 1071
pm_policy_latency_request_add (C function), 1069
pm_policy_latency_request_remove (C function), 1069
pm_policy_latency_request_update (C function), 1069
pm_policy_latency_subscription (C struct), 1071
pm_policy_state_lock_get (C function), 1068
pm_policy_state_lock_is_active (C function), 1068
pm_policy_state_lock_put (C function), 1068
pm_state (C enum), 1064
pm_state_constraint (C struct), 1067
pm_state_constraint.state (C var), 1067
pm_state_constraint.substate_id (C var), 1067
pm_state_cpu_get_all (C function), 1066
PM_STATE_DT_INIT (C macro), 1062
pm_state_exit_post_ops (C function), 1072
pm_state_force (C function), 1060
pm_state_info (C struct), 1066
PM_STATE_INFO_DT_INIT (C macro), 1062
PM_STATE_INFO_LIST_FROM_DT_CPU (C macro), 1062
pm_state_info.exit_latency_us (C var), 1066
pm_state_info.min_residency_us (C var), 1066
pm_state_info.pm_device_disabled (C var), 1066
pm_state_info.substate_id (C var), 1066
PM_STATE_LIST_FROM_DT_CPU (C macro), 1063
pm_state_next_get (C function), 1061
pm_state_set (C function), 1072
pm_state.PM_STATE_ACTIVE (C enumerator), 1064
pm_state.PM_STATE_COUNT (C enumerator), 1065
pm_state.PM_STATE_RUNTIME_IDLE (C enumerator), 1064
pm_state.PM_STATE_SOFT_OFF (C enumerator), 1065
pm_state.PM_STATE_STANDBY (C enumerator), 1064
pm_state.PM_STATE_SUSPEND_TO_DISK (C enumerator), 1065
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pm_state.PM_STATE_SUSPEND_TO_IDLE (C enumerator), 1064
pm_state.PM_STATE_SUSPEND_TO_RAM (C enumerator), 1065
pm_system_resume (C function), 1061
POINTER_TO_INT (C macro), 681
POINTER_TO_UINT (C macro), 681
policy_cb_change_src_caps_t (C type), 3108
policy_cb_check_sink_request_t (C type), 3107
policy_cb_check_t (C type), 3106
policy_cb_get_rdo_t (C type), 3106
policy_cb_get_snk_cap_t (C type), 3105
policy_cb_get_src_caps_t (C type), 3107
policy_cb_get_src_rp_t (C type), 3108
policy_cb_is_ps_ready_t (C type), 3107
policy_cb_is_snk_at_default_t (C type), 3106
policy_cb_notify_t (C type), 3106
policy_cb_present_contract_is_valid_t (C type), 3107
policy_cb_set_port_partner_snk_cap_t (C type), 3108
policy_cb_set_src_cap_t (C type), 3106
policy_cb_src_en_t (C type), 3108
policy_cb_wait_notify_t (C type), 3106
poll (C function), 2492
POLLERR (C macro), 2493
pollfd (C macro), 2493
POLLHUP (C macro), 2493
POLLIN (C macro), 2493
POLLNVAL (C macro), 2493
POLLOUT (C macro), 2493
popen_ignore_int() (runners.core.ZephyrBinaryRunner method), 200
power domain, 3946
power gating, 3946
PRIkbdrow (C macro), 881
printfcb (C function), 872
ps2_callback_t (C type), 3534
ps2_config (C function), 3534
ps2_disable_callback (C function), 3535
ps2_enable_callback (C function), 3535
ps2_read (C function), 3534
ps2_write (C function), 3534
PTP_MAJOR_VERSION (C macro), 2890
PTP_MINOR_VERSION (C macro), 2890
PTP_VERSION (C macro), 2890
pwm_capture_callback_handler_t (C type), 3542
pwm_capture_cycles (C function), 3547
PWM_CAPTURE_MODE_CONTINUOUS (C macro), 3536
PWM_CAPTURE_MODE_SINGLE (C macro), 3536
pwm_capture_nsec (C function), 3548
PWM_CAPTURE_TYPE_BOTH (C macro), 3536
PWM_CAPTURE_TYPE_PERIOD (C macro), 3536
PWM_CAPTURE_TYPE_PULSE (C macro), 3536
pwm_capture_usec (C function), 3548
pwm_configure_capture (C function), 3546
pwm_cycles_to_nsec (C function), 3545
pwm_cycles_to_usec (C function), 3545
pwm_disable_capture (C function), 3547
pwm_dt_spec (C struct), 3549
PWM_DT_SPEC_GET (C macro), 3540
PWM_DT_SPEC_GET_BY_IDX (C macro), 3539
PWM_DT_SPEC_GET_BY_IDX_OR (C macro), 3540
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PWM_DT_SPEC_GET_BY_NAME (C macro), 3537
PWM_DT_SPEC_GET_BY_NAME_OR (C macro), 3538
PWM_DT_SPEC_GET_OR (C macro), 3541
PWM_DT_SPEC_INST_GET (C macro), 3541
PWM_DT_SPEC_INST_GET_BY_IDX (C macro), 3539
PWM_DT_SPEC_INST_GET_BY_IDX_OR (C macro), 3540
PWM_DT_SPEC_INST_GET_BY_NAME (C macro), 3537
PWM_DT_SPEC_INST_GET_BY_NAME_OR (C macro), 3538
PWM_DT_SPEC_INST_GET_OR (C macro), 3542
pwm_dt_spec.channel (C var), 3550
pwm_dt_spec.dev (C var), 3550
pwm_dt_spec.flags (C var), 3550
pwm_dt_spec.period (C var), 3550
pwm_enable_capture (C function), 3546
pwm_flags_t (C type), 3542
pwm_get_cycles_per_sec (C function), 3544
PWM_HZ (C macro), 3536
pwm_is_ready_dt (C function), 3549
PWM_KHZ (C macro), 3536
PWM_MSEC (C macro), 3536
PWM_NSEC (C macro), 3536
PWM_POLARITY_INVERTED (C macro), 3537
PWM_POLARITY_NORMAL (C macro), 3536
PWM_SEC (C macro), 3536
pwm_set (C function), 3544
pwm_set_cycles (C function), 3543
pwm_set_dt (C function), 3544
pwm_set_pulse_dt (C function), 3545
PWM_USEC (C macro), 3536

Q
q7_t (C type), 843
q15_t (C type), 843
q31_t (C type), 843
q63_t (C type), 843
QEMU_EXTRA_FLAGS, 48

R
rb_contains (C function), 635
RB_FOR_EACH (C macro), 634
RB_FOR_EACH_CONTAINER (C macro), 635
rb_get_max (C function), 635
rb_get_min (C function), 635
rb_insert (C function), 635
rb_lessthan_t (C type), 635
rb_remove (C function), 635
rb_visit_t (C type), 635
rb_walk (C function), 635
rbnode (C struct), 636
rbtree (C struct), 636
rbtree.lessthan_fn (C var), 636
rbtree.root (C var), 636
readline() (twister_harness.DeviceAdapter method), 268
readlines() (twister_harness.DeviceAdapter method), 268
readlines_until() (twister_harness.DeviceAdapter method), 268
recv (C function), 2492
recvfrom (C function), 2492
recvmsg (C function), 2492
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regulator_count_current_limits (C function), 3562
regulator_count_voltages (C function), 3561
regulator_disable (C function), 3560
regulator_dvs_state_t (C type), 3560
regulator_enable (C function), 3560
regulator_error_flags_t (C type), 3560
REGULATOR_ERROR_OVER_CURRENT (C macro), 3560
REGULATOR_ERROR_OVER_TEMP (C macro), 3560
REGULATOR_ERROR_OVER_VOLTAGE (C macro), 3559
regulator_get_active_discharge (C function), 3564
regulator_get_current_limit (C function), 3563
regulator_get_error_flags (C function), 3564
regulator_get_mode (C function), 3564
regulator_get_voltage (C function), 3562
regulator_is_enabled (C function), 3560
regulator_is_supported_voltage (C function), 3561
regulator_list_current_limit (C function), 3562
regulator_list_voltage (C function), 3561
regulator_mode_t (C type), 3560
regulator_set_active_discharge (C function), 3564
regulator_set_current_limit (C function), 3563
regulator_set_mode (C function), 3563
regulator_set_voltage (C function), 3562
require() (runners.core.ZephyrBinaryRunner static method), 200
RESET_BROWNOUT (C macro), 3396
RESET_CLOCK (C macro), 3397
RESET_CPU_LOCKUP (C macro), 3397
RESET_DEBUG (C macro), 3396
reset_dt_spec (C struct), 3570
RESET_DT_SPEC_GET (C macro), 3566
RESET_DT_SPEC_GET_BY_IDX (C macro), 3565
RESET_DT_SPEC_GET_BY_IDX_OR (C macro), 3566
RESET_DT_SPEC_GET_OR (C macro), 3566
RESET_DT_SPEC_INST_GET (C macro), 3567
RESET_DT_SPEC_INST_GET_BY_IDX (C macro), 3566
RESET_DT_SPEC_INST_GET_BY_IDX_OR (C macro), 3567
RESET_DT_SPEC_INST_GET_OR (C macro), 3567
reset_dt_spec.dev (C var), 3570
reset_dt_spec.id (C var), 3570
RESET_HARDWARE (C macro), 3397
reset_line_assert (C function), 3568
reset_line_assert_dt (C function), 3568
reset_line_deassert (C function), 3569
reset_line_deassert_dt (C function), 3569
reset_line_toggle (C function), 3569
reset_line_toggle_dt (C function), 3569
RESET_LOW_POWER_WAKE (C macro), 3397
RESET_PARITY (C macro), 3397
RESET_PIN (C macro), 3396
RESET_PLL (C macro), 3397
RESET_POR (C macro), 3396
RESET_SECURITY (C macro), 3396
RESET_SOFTWARE (C macro), 3396
reset_status (C function), 3568
reset_status_dt (C function), 3568
RESET_TEMPERATURE (C macro), 3397
RESET_USER (C macro), 3397
RESET_WATCHDOG (C macro), 3396
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RESULT_CONNECTION_LOST (C macro), 2833
RESULT_DEFAULT (C macro), 2833
RESULT_INTEGRITY_FAILED (C macro), 2833
RESULT_INVALID_URI (C macro), 2833
RESULT_NO_STORAGE (C macro), 2833
RESULT_OUT_OF_MEM (C macro), 2833
RESULT_SUCCESS (C macro), 2833
RESULT_UNSUP_FW (C macro), 2833
RESULT_UNSUP_PROTO (C macro), 2833
RESULT_UPDATE_FAILED (C macro), 2833
retained_mem_clear (C function), 3572
retained_mem_clear_api (C type), 3571
retained_mem_driver_api (C struct), 3572
retained_mem_read (C function), 3571
retained_mem_read_api (C type), 3571
retained_mem_size (C function), 3571
retained_mem_size_api (C type), 3571
retained_mem_write (C function), 3571
retained_mem_write_api (C type), 3571
retention_api (C struct), 1244
retention_clear (C function), 1243
retention_clear_api (C type), 1242
retention_is_valid (C function), 1243
retention_is_valid_api (C type), 1242
retention_read (C function), 1243
retention_read_api (C type), 1242
retention_size (C function), 1243
retention_size_api (C type), 1242
retention_write (C function), 1243
retention_write_api (C type), 1242
RETURN_HANDLED_CONTEXT (C macro), 239
REVERSE_ARGS (C macro), 696
ring_buf (C struct), 648
ring_buf_capacity_get (C function), 643
RING_BUF_DECLARE (C macro), 641
ring_buf_get (C function), 646
ring_buf_get_claim (C function), 645
ring_buf_get_finish (C function), 646
ring_buf_init (C function), 642
ring_buf_internal_reset (C function), 642
ring_buf_is_empty (C function), 643
RING_BUF_ITEM_DECLARE (C macro), 642
RING_BUF_ITEM_DECLARE_POW2 (C macro), 642
RING_BUF_ITEM_DECLARE_SIZE (C macro), 642
ring_buf_item_get (C function), 648
ring_buf_item_init (C function), 643
ring_buf_item_put (C function), 647
RING_BUF_ITEM_SIZEOF (C macro), 642
ring_buf_item_space_get (C function), 643
ring_buf_peek (C function), 647
ring_buf_put (C function), 645
ring_buf_put_claim (C function), 644
ring_buf_put_finish (C function), 644
ring_buf_reset (C function), 643
ring_buf_size_get (C function), 644
ring_buf_space_get (C function), 643
ROUND_DOWN (C macro), 684
ROUND_UP (C macro), 684
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rtc_alarm_callback (C type), 3556
rtc_alarm_get_supported_fields (C function), 3551
rtc_alarm_get_time (C function), 3552
rtc_alarm_is_pending (C function), 3553
rtc_alarm_set_callback (C function), 3553
rtc_alarm_set_time (C function), 3552
RTC_ALARM_TIME_MASK_HOUR (C macro), 3556
RTC_ALARM_TIME_MASK_MINUTE (C macro), 3556
RTC_ALARM_TIME_MASK_MONTH (C macro), 3556
RTC_ALARM_TIME_MASK_MONTHDAY (C macro), 3556
RTC_ALARM_TIME_MASK_NSEC (C macro), 3556
RTC_ALARM_TIME_MASK_SECOND (C macro), 3555
RTC_ALARM_TIME_MASK_WEEKDAY (C macro), 3556
RTC_ALARM_TIME_MASK_YEAR (C macro), 3556
RTC_ALARM_TIME_MASK_YEARDAY (C macro), 3556
rtc_calibration_from_frequency (C function), 3555
rtc_get_calibration (C function), 3555
rtc_get_time (C function), 3557
rtc_set_calibration (C function), 3554
rtc_set_time (C function), 3556
rtc_time (C struct), 3557
rtc_time_to_tm (C function), 3555
rtc_time.tm_hour (C var), 3557
rtc_time.tm_isdst (C var), 3558
rtc_time.tm_mday (C var), 3557
rtc_time.tm_min (C var), 3557
rtc_time.tm_mon (C var), 3557
rtc_time.tm_nsec (C var), 3558
rtc_time.tm_sec (C var), 3557
rtc_time.tm_wday (C var), 3557
rtc_time.tm_yday (C var), 3558
rtc_time.tm_year (C var), 3557
rtc_update_callback (C type), 3556
rtc_update_set_callback (C function), 3554
rtio (C struct), 1258
rtio_access_grant (C function), 1255
rtio_block_pool_alloc (C function), 1252
rtio_block_pool_free (C function), 1252
RTIO_BMEM (C macro), 1250
rtio_callback_t (C type), 1250
rtio_chain_next (C function), 1252
rtio_cqe (C struct), 1258
rtio_cqe_acquire (C function), 1253
rtio_cqe_compute_flags (C function), 1254
rtio_cqe_consume (C function), 1253
rtio_cqe_consume_block (C function), 1253
rtio_cqe_copy_out (C function), 1256
rtio_cqe_get_mempool_buffer (C function), 1254
rtio_cqe_pool (C struct), 1258
rtio_cqe_pool_alloc (C function), 1252
rtio_cqe_pool_free (C function), 1252
rtio_cqe_produce (C function), 1253
rtio_cqe_release (C function), 1254
rtio_cqe_submit (C function), 1255
rtio_cqe.flags (C var), 1258
rtio_cqe.result (C var), 1258
rtio_cqe.userdata (C var), 1258
RTIO_DEFINE (C macro), 1250
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settings_load_arg (C struct), 1163
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shell (C struct), 1148
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shell_ctx.bypass (C var), 1148
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shell_ctx.receive_state (C var), 1148
shell_ctx.selected_cmd (C var), 1148
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shell_execute_cmd (C function), 1141
SHELL_EXPR_CMD (C macro), 1133
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shell_receive_state.SHELL_RECEIVE_TILDE_EXP (C enumerator), 1137
shell_set_bypass (C function), 1142
shell_set_root_cmd (C function), 1141
shell_signal (C enum), 1138
shell_signal.SHELL_SIGNAL_KILL (C enumerator), 1138
shell_signal.SHELL_SIGNAL_LOG_MSG (C enumerator), 1138
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smbus_byte_write (C function), 3639
smbus_callback (C struct), 3643
smbus_callback_handler_t (C type), 3637
smbus_callback.addr (C var), 3643
smbus_callback.handler (C var), 3643
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SPI_DEVICE_DT_DEFINE (C macro), 3622
spi_driver_api (C struct), 3631
SPI_DT_IODEV_DEFINE (C macro), 3622
spi_dt_spec (C struct), 3630
SPI_DT_SPEC_GET (C macro), 3621
SPI_DT_SPEC_INST_GET (C macro), 3621
spi_dt_spec.bus (C var), 3631
spi_dt_spec.config (C var), 3631
SPI_FLASH_0_ID (C macro), 1191
SPI_FRAME_FORMAT_MOTOROLA (C macro), 3619
SPI_FRAME_FORMAT_TI (C macro), 3619
SPI_FULL_DUPLEX (C macro), 3619
SPI_HALF_DUPLEX (C macro), 3619
SPI_HOLD_ON_CS (C macro), 3618
spi_iodev_api (C var), 3629
spi_iodev_submit (C function), 3628
spi_is_ready_dt (C function), 3623
spi_is_ready_iodev (C function), 3628
SPI_LINES_DUAL (C macro), 3618
SPI_LINES_MASK (C macro), 3619
SPI_LINES_OCTAL (C macro), 3618
SPI_LINES_QUAD (C macro), 3618
SPI_LINES_SINGLE (C macro), 3618
SPI_LOCK_ON (C macro), 3618
SPI_MODE_CPHA (C macro), 3617
SPI_MODE_CPOL (C macro), 3617
SPI_MODE_GET (C macro), 3617
SPI_MODE_LOOP (C macro), 3617
SPI_OP_MODE_GET (C macro), 3617
SPI_OP_MODE_MASTER (C macro), 3617
SPI_OP_MODE_SLAVE (C macro), 3617
spi_operation_t (C type), 3622
spi_read (C function), 3624
spi_read_dt (C function), 3624
spi_read_signal (C function), 3627
spi_release (C function), 3629
spi_release_dt (C function), 3629
spi_rtio_copy (C function), 3628
SPI_STATS_RX_BYTES_INC (C macro), 3622
SPI_STATS_TRANSFER_ERROR_INC (C macro), 3622
SPI_STATS_TX_BYTES_INC (C macro), 3622
spi_transceive (C function), 3623
spi_transceive_cb (C function), 3625
spi_transceive_dt (C function), 3624
spi_transceive_signal (C function), 3626
spi_transceive_stats (C macro), 3622
SPI_TRANSFER_LSB (C macro), 3618
SPI_TRANSFER_MSB (C macro), 3617
SPI_WORD_SET (C macro), 3618
SPI_WORD_SIZE_GET (C macro), 3618
spi_write (C function), 3625
spi_write_dt (C function), 3625
spi_write_signal (C function), 3627
spsc (C struct), 652
spsc_acquirable (C macro), 651
spsc_acquire (C macro), 651

4218 Index



Zephyr Project Documentation, Release 3.7.99

spsc_consumable (C macro), 651
spsc_consume (C macro), 651
SPSC_DECLARE (C macro), 650
SPSC_DEFINE (C macro), 650
spsc_drop_all (C macro), 651
SPSC_INITIALIZER (C macro), 650
spsc_next (C macro), 652
spsc_peek (C macro), 652
spsc_prev (C macro), 652
spsc_produce (C macro), 651
spsc_produce_all (C macro), 651
spsc_release (C macro), 651
spsc_release_all (C macro), 651
spsc_reset (C macro), 650
spsc_size (C macro), 650
STATE_DOWNLOADED (C macro), 2833
STATE_DOWNLOADING (C macro), 2832
state_execution (C type), 1175
STATE_IDLE (C macro), 2832
STATE_UPDATING (C macro), 2833
STM32_GPIO_WKUP (C macro), 3376
STP_DECODER_TYPE2STR (C macro), 745
stream_flash_buffered_write (C function), 1204
stream_flash_bytes_written (C function), 1204
stream_flash_callback_t (C type), 1203
stream_flash_ctx (C struct), 1205
stream_flash_erase_page (C function), 1204
stream_flash_init (C function), 1203
stream_flash_progress_clear (C function), 1205
stream_flash_progress_load (C function), 1205
stream_flash_progress_save (C function), 1205
STRUCT_SECTION_COUNT (C macro), 707
STRUCT_SECTION_END (C macro), 705
STRUCT_SECTION_END_EXTERN (C macro), 705
STRUCT_SECTION_FOREACH (C macro), 707
STRUCT_SECTION_FOREACH_ALTERNATE (C macro), 707
STRUCT_SECTION_GET (C macro), 707
STRUCT_SECTION_ITERABLE (C macro), 706
STRUCT_SECTION_ITERABLE_ALTERNATE (C macro), 706
STRUCT_SECTION_ITERABLE_ARRAY (C macro), 706
STRUCT_SECTION_ITERABLE_ARRAY_ALTERNATE (C macro), 706
STRUCT_SECTION_ITERABLE_NAMED (C macro), 706
STRUCT_SECTION_ITERABLE_NAMED_ALTERNATE (C macro), 706
STRUCT_SECTION_START (C macro), 705
STRUCT_SECTION_START_EXTERN (C macro), 705
subsystem, 3947
symtab_find_symbol_name (C function), 749
symtab_get (C function), 749
symtab_info (C struct), 749
sys_cache_cached_ptr_get (C function), 3149
sys_cache_data_disable (C function), 3144
sys_cache_data_enable (C function), 3144
sys_cache_data_flush_all (C function), 3144
sys_cache_data_flush_and_invd_all (C function), 3145
sys_cache_data_flush_and_invd_range (C function), 3147
sys_cache_data_flush_range (C function), 3145
sys_cache_data_invd_all (C function), 3144
sys_cache_data_invd_range (C function), 3146

Index 4219



Zephyr Project Documentation, Release 3.7.99

sys_cache_data_line_size_get (C function), 3148
sys_cache_instr_disable (C function), 3144
sys_cache_instr_enable (C function), 3144
sys_cache_instr_flush_all (C function), 3144
sys_cache_instr_flush_and_invd_all (C function), 3145
sys_cache_instr_flush_and_invd_range (C function), 3147
sys_cache_instr_flush_range (C function), 3146
sys_cache_instr_invd_all (C function), 3145
sys_cache_instr_invd_range (C function), 3146
sys_cache_instr_line_size_get (C function), 3148
sys_cache_is_ptr_cached (C function), 3148
sys_cache_is_ptr_uncached (C function), 3149
sys_cache_uncached_ptr_get (C function), 3149
sys_clock_announce (C function), 480
sys_clock_cycle_get_32 (C function), 480
sys_clock_cycle_get_64 (C function), 481
sys_clock_disable (C function), 480
sys_clock_elapsed (C function), 480
SYS_CLOCK_HW_CYCLES_TO_NS_AVG (C macro), 479
sys_clock_idle_exit (C function), 480
sys_clock_set_timeout (C function), 479
sys_clock_tick_get (C function), 483
sys_clock_tick_get_32 (C function), 483
sys_clock_timeout_end_calc (C function), 484
sys_csrand_get (C function), 720
sys_dlist_append (C function), 628
SYS_DLIST_CONTAINER (C macro), 624
SYS_DLIST_FOR_EACH_CONTAINER (C macro), 625
SYS_DLIST_FOR_EACH_CONTAINER_SAFE (C macro), 625
SYS_DLIST_FOR_EACH_NODE (C macro), 624
SYS_DLIST_FOR_EACH_NODE_SAFE (C macro), 624
sys_dlist_get (C function), 629
sys_dlist_has_multiple_nodes (C function), 627
sys_dlist_init (C function), 626
sys_dlist_insert (C function), 628
sys_dlist_insert_at (C function), 629
sys_dlist_is_empty (C function), 627
sys_dlist_is_head (C function), 626
sys_dlist_is_tail (C function), 626
SYS_DLIST_ITERATE_FROM_NODE (C macro), 624
sys_dlist_len (C function), 629
sys_dlist_peek_head (C function), 627
SYS_DLIST_PEEK_HEAD_CONTAINER (C macro), 625
sys_dlist_peek_head_not_empty (C function), 627
sys_dlist_peek_next (C function), 627
SYS_DLIST_PEEK_NEXT_CONTAINER (C macro), 625
sys_dlist_peek_next_no_check (C function), 627
sys_dlist_peek_prev (C function), 628
sys_dlist_peek_prev_no_check (C function), 628
sys_dlist_peek_tail (C function), 628
sys_dlist_prepend (C function), 628
sys_dlist_remove (C function), 629
SYS_DLIST_STATIC_INIT (C macro), 626
sys_dlist_t (C type), 626
sys_dnode_init (C function), 626
sys_dnode_is_linked (C function), 626
sys_dnode_t (C type), 626
sys_heap_aligned_alloc (C function), 569

4220 Index



Zephyr Project Documentation, Release 3.7.99

sys_heap_aligned_realloc (C function), 570
sys_heap_alloc (C function), 569
sys_heap_free (C function), 569
sys_heap_init (C function), 568
sys_heap_print_info (C function), 571
sys_heap_realloc (C macro), 568
sys_heap_stress (C function), 571
sys_heap_usable_size (C function), 570
sys_heap_validate (C function), 570
SYS_KERNEL_VER_MAJOR (C macro), 508
SYS_KERNEL_VER_MINOR (C macro), 508
SYS_KERNEL_VER_PATCHLEVEL (C macro), 508
sys_kernel_version_get (C function), 508
sys_mem_blocks_alloc (C function), 591
sys_mem_blocks_alloc_contiguous (C function), 592
SYS_MEM_BLOCKS_DEFINE (C macro), 590
SYS_MEM_BLOCKS_DEFINE_STATIC (C macro), 590
SYS_MEM_BLOCKS_DEFINE_STATIC_WITH_EXT_BUF (C macro), 591
SYS_MEM_BLOCKS_DEFINE_WITH_EXT_BUF (C macro), 590
sys_mem_blocks_free (C function), 593
sys_mem_blocks_free_contiguous (C function), 593
sys_mem_blocks_get (C function), 592
sys_mem_blocks_is_region_free (C function), 592
sys_mem_blocks_t (C type), 591
sys_multi_heap (C struct), 574
sys_multi_heap_add_heap (C function), 572
sys_multi_heap_aligned_alloc (C function), 573
sys_multi_heap_alloc (C function), 573
sys_multi_heap_fn_t (C type), 571
sys_multi_heap_free (C function), 573
sys_multi_heap_get_heap (C function), 573
sys_multi_heap_init (C function), 572
sys_multi_heap_rec (C struct), 574
sys_multi_mem_blocks_add_allocator (C function), 593
sys_multi_mem_blocks_alloc (C function), 594
sys_multi_mem_blocks_choice_fn_t (C type), 591
sys_multi_mem_blocks_free (C function), 594
sys_multi_mem_blocks_init (C function), 593
sys_multi_mem_blocks_t (C type), 591
SYS_MUTEX_DEFINE (C macro), 411
sys_mutex_init (C function), 411
sys_mutex_lock (C function), 411
sys_mutex_unlock (C function), 411
sys_notify (C struct), 1042
sys_notify_fetch_result (C function), 1041
sys_notify_finalize (C function), 1041
sys_notify_generic_callback (C type), 1040
sys_notify_get_method (C function), 1040
sys_notify_init_callback (C function), 1042
sys_notify_init_signal (C function), 1041
sys_notify_init_spinwait (C function), 1041
sys_notify_uses_callback (C function), 1042
sys_notify_validate (C function), 1040
sys_notify.method (C union), 1043
sys_notify.method.callback (C var), 1043
sys_notify.method.signal (C var), 1043
sys_port_trace_k_condvar_broadcast_enter (C macro), 983
sys_port_trace_k_condvar_broadcast_exit (C macro), 983

Index 4221



Zephyr Project Documentation, Release 3.7.99

sys_port_trace_k_condvar_init (C macro), 982
sys_port_trace_k_condvar_signal_blocking (C macro), 983
sys_port_trace_k_condvar_signal_enter (C macro), 982
sys_port_trace_k_condvar_signal_exit (C macro), 983
sys_port_trace_k_condvar_wait_enter (C macro), 983
sys_port_trace_k_condvar_wait_exit (C macro), 983
sys_port_trace_k_fifo_alloc_put_enter (C macro), 988
sys_port_trace_k_fifo_alloc_put_exit (C macro), 988
sys_port_trace_k_fifo_alloc_put_slist_enter (C macro), 988
sys_port_trace_k_fifo_alloc_put_slist_exit (C macro), 989
sys_port_trace_k_fifo_cancel_wait_enter (C macro), 987
sys_port_trace_k_fifo_cancel_wait_exit (C macro), 987
sys_port_trace_k_fifo_get_enter (C macro), 989
sys_port_trace_k_fifo_get_exit (C macro), 989
sys_port_trace_k_fifo_init_enter (C macro), 987
sys_port_trace_k_fifo_init_exit (C macro), 987
sys_port_trace_k_fifo_peek_head_enter (C macro), 989
sys_port_trace_k_fifo_peek_head_exit (C macro), 989
sys_port_trace_k_fifo_peek_tail_enter (C macro), 989
sys_port_trace_k_fifo_peek_tail_exit (C macro), 989
sys_port_trace_k_fifo_put_enter (C macro), 988
sys_port_trace_k_fifo_put_exit (C macro), 988
sys_port_trace_k_fifo_put_list_enter (C macro), 988
sys_port_trace_k_fifo_put_list_exit (C macro), 988
sys_port_trace_k_heap_aligned_alloc_blocking (C macro), 998
sys_port_trace_k_heap_aligned_alloc_enter (C macro), 998
sys_port_trace_k_heap_aligned_alloc_exit (C macro), 998
sys_port_trace_k_heap_alloc_enter (C macro), 998
sys_port_trace_k_heap_alloc_exit (C macro), 998
sys_port_trace_k_heap_free (C macro), 998
sys_port_trace_k_heap_init (C macro), 998
sys_port_trace_k_heap_realloc_enter (C macro), 998
sys_port_trace_k_heap_realloc_exit (C macro), 999
sys_port_trace_k_heap_sys_k_aligned_alloc_enter (C macro), 999
sys_port_trace_k_heap_sys_k_aligned_alloc_exit (C macro), 999
sys_port_trace_k_heap_sys_k_calloc_enter (C macro), 999
sys_port_trace_k_heap_sys_k_calloc_exit (C macro), 1000
sys_port_trace_k_heap_sys_k_free_enter (C macro), 999
sys_port_trace_k_heap_sys_k_free_exit (C macro), 999
sys_port_trace_k_heap_sys_k_malloc_enter (C macro), 999
sys_port_trace_k_heap_sys_k_malloc_exit (C macro), 999
sys_port_trace_k_heap_sys_k_realloc_enter (C macro), 1000
sys_port_trace_k_heap_sys_k_realloc_exit (C macro), 1000
sys_port_trace_k_lifo_alloc_put_enter (C macro), 990
sys_port_trace_k_lifo_alloc_put_exit (C macro), 990
sys_port_trace_k_lifo_get_enter (C macro), 990
sys_port_trace_k_lifo_get_exit (C macro), 990
sys_port_trace_k_lifo_init_enter (C macro), 990
sys_port_trace_k_lifo_init_exit (C macro), 990
sys_port_trace_k_lifo_put_enter (C macro), 990
sys_port_trace_k_lifo_put_exit (C macro), 990
sys_port_trace_k_mbox_async_put_enter (C macro), 995
sys_port_trace_k_mbox_async_put_exit (C macro), 995
sys_port_trace_k_mbox_data_get (C macro), 995
sys_port_trace_k_mbox_get_blocking (C macro), 995
sys_port_trace_k_mbox_get_enter (C macro), 995
sys_port_trace_k_mbox_get_exit (C macro), 995
sys_port_trace_k_mbox_init (C macro), 994

4222 Index



Zephyr Project Documentation, Release 3.7.99

sys_port_trace_k_mbox_message_put_blocking (C macro), 994
sys_port_trace_k_mbox_message_put_enter (C macro), 994
sys_port_trace_k_mbox_message_put_exit (C macro), 994
sys_port_trace_k_mbox_put_enter (C macro), 994
sys_port_trace_k_mbox_put_exit (C macro), 994
sys_port_trace_k_mem_slab_alloc_blocking (C macro), 1000
sys_port_trace_k_mem_slab_alloc_enter (C macro), 1000
sys_port_trace_k_mem_slab_alloc_exit (C macro), 1001
sys_port_trace_k_mem_slab_free_enter (C macro), 1001
sys_port_trace_k_mem_slab_free_exit (C macro), 1001
sys_port_trace_k_mem_slab_init (C macro), 1000
sys_port_trace_k_msgq_alloc_init_enter (C macro), 992
sys_port_trace_k_msgq_alloc_init_exit (C macro), 992
sys_port_trace_k_msgq_cleanup_enter (C macro), 992
sys_port_trace_k_msgq_cleanup_exit (C macro), 992
sys_port_trace_k_msgq_get_blocking (C macro), 993
sys_port_trace_k_msgq_get_enter (C macro), 993
sys_port_trace_k_msgq_get_exit (C macro), 993
sys_port_trace_k_msgq_init (C macro), 992
sys_port_trace_k_msgq_peek (C macro), 993
sys_port_trace_k_msgq_purge (C macro), 994
sys_port_trace_k_msgq_put_blocking (C macro), 993
sys_port_trace_k_msgq_put_enter (C macro), 993
sys_port_trace_k_msgq_put_exit (C macro), 993
sys_port_trace_k_mutex_init (C macro), 982
sys_port_trace_k_mutex_lock_blocking (C macro), 982
sys_port_trace_k_mutex_lock_enter (C macro), 982
sys_port_trace_k_mutex_lock_exit (C macro), 982
sys_port_trace_k_mutex_unlock_enter (C macro), 982
sys_port_trace_k_mutex_unlock_exit (C macro), 982
sys_port_trace_k_pipe_alloc_init_enter (C macro), 996
sys_port_trace_k_pipe_alloc_init_exit (C macro), 996
sys_port_trace_k_pipe_buffer_flush_enter (C macro), 996
sys_port_trace_k_pipe_buffer_flush_exit (C macro), 996
sys_port_trace_k_pipe_cleanup_enter (C macro), 996
sys_port_trace_k_pipe_cleanup_exit (C macro), 996
sys_port_trace_k_pipe_flush_enter (C macro), 996
sys_port_trace_k_pipe_flush_exit (C macro), 996
sys_port_trace_k_pipe_get_blocking (C macro), 997
sys_port_trace_k_pipe_get_enter (C macro), 997
sys_port_trace_k_pipe_get_exit (C macro), 997
sys_port_trace_k_pipe_init (C macro), 996
sys_port_trace_k_pipe_put_blocking (C macro), 997
sys_port_trace_k_pipe_put_enter (C macro), 996
sys_port_trace_k_pipe_put_exit (C macro), 997
sys_port_trace_k_poll_api_event_init (C macro), 980
sys_port_trace_k_poll_api_poll_enter (C macro), 980
sys_port_trace_k_poll_api_poll_exit (C macro), 980
sys_port_trace_k_poll_api_signal_check (C macro), 980
sys_port_trace_k_poll_api_signal_init (C macro), 980
sys_port_trace_k_poll_api_signal_raise (C macro), 980
sys_port_trace_k_poll_api_signal_reset (C macro), 980
sys_port_trace_k_queue_alloc_append_enter (C macro), 984
sys_port_trace_k_queue_alloc_append_exit (C macro), 984
sys_port_trace_k_queue_alloc_prepend_enter (C macro), 985
sys_port_trace_k_queue_alloc_prepend_exit (C macro), 985
sys_port_trace_k_queue_append_enter (C macro), 984
sys_port_trace_k_queue_append_exit (C macro), 984

Index 4223



Zephyr Project Documentation, Release 3.7.99

sys_port_trace_k_queue_append_list_enter (C macro), 985
sys_port_trace_k_queue_append_list_exit (C macro), 985
sys_port_trace_k_queue_cancel_wait (C macro), 984
sys_port_trace_k_queue_get_blocking (C macro), 986
sys_port_trace_k_queue_get_enter (C macro), 986
sys_port_trace_k_queue_get_exit (C macro), 986
sys_port_trace_k_queue_init (C macro), 984
sys_port_trace_k_queue_insert_blocking (C macro), 985
sys_port_trace_k_queue_insert_enter (C macro), 985
sys_port_trace_k_queue_insert_exit (C macro), 985
sys_port_trace_k_queue_merge_slist_enter (C macro), 986
sys_port_trace_k_queue_merge_slist_exit (C macro), 986
sys_port_trace_k_queue_peek_head (C macro), 987
sys_port_trace_k_queue_peek_tail (C macro), 987
sys_port_trace_k_queue_prepend_enter (C macro), 985
sys_port_trace_k_queue_prepend_exit (C macro), 985
sys_port_trace_k_queue_queue_insert_blocking (C macro), 984
sys_port_trace_k_queue_queue_insert_enter (C macro), 984
sys_port_trace_k_queue_queue_insert_exit (C macro), 984
sys_port_trace_k_queue_remove_enter (C macro), 986
sys_port_trace_k_queue_remove_exit (C macro), 986
sys_port_trace_k_queue_unique_append_enter (C macro), 986
sys_port_trace_k_queue_unique_append_exit (C macro), 987
sys_port_trace_k_sem_give_enter (C macro), 981
sys_port_trace_k_sem_give_exit (C macro), 981
sys_port_trace_k_sem_init (C macro), 981
sys_port_trace_k_sem_reset (C macro), 981
sys_port_trace_k_sem_take_blocking (C macro), 981
sys_port_trace_k_sem_take_enter (C macro), 981
sys_port_trace_k_sem_take_exit (C macro), 981
sys_port_trace_k_stack_alloc_init_enter (C macro), 991
sys_port_trace_k_stack_alloc_init_exit (C macro), 991
sys_port_trace_k_stack_cleanup_enter (C macro), 991
sys_port_trace_k_stack_cleanup_exit (C macro), 991
sys_port_trace_k_stack_init (C macro), 991
sys_port_trace_k_stack_pop_blocking (C macro), 992
sys_port_trace_k_stack_pop_enter (C macro), 991
sys_port_trace_k_stack_pop_exit (C macro), 992
sys_port_trace_k_stack_push_enter (C macro), 991
sys_port_trace_k_stack_push_exit (C macro), 991
sys_port_trace_k_thread_abort (C macro), 975
sys_port_trace_k_thread_abort_enter (C macro), 976
sys_port_trace_k_thread_abort_exit (C macro), 976
sys_port_trace_k_thread_busy_wait_enter (C macro), 975
sys_port_trace_k_thread_busy_wait_exit (C macro), 975
sys_port_trace_k_thread_create (C macro), 974
sys_port_trace_k_thread_foreach_enter (C macro), 974
sys_port_trace_k_thread_foreach_exit (C macro), 974
sys_port_trace_k_thread_foreach_unlocked_enter (C macro), 974
sys_port_trace_k_thread_foreach_unlocked_exit (C macro), 974
sys_port_trace_k_thread_info (C macro), 977
sys_port_trace_k_thread_join_blocking (C macro), 974
sys_port_trace_k_thread_join_enter (C macro), 974
sys_port_trace_k_thread_join_exit (C macro), 974
sys_port_trace_k_thread_msleep_enter (C macro), 975
sys_port_trace_k_thread_msleep_exit (C macro), 975
sys_port_trace_k_thread_name_set (C macro), 976
sys_port_trace_k_thread_pend (C macro), 977

4224 Index



Zephyr Project Documentation, Release 3.7.99

sys_port_trace_k_thread_priority_set (C macro), 976
sys_port_trace_k_thread_ready (C macro), 977
sys_port_trace_k_thread_resume_enter (C macro), 976
sys_port_trace_k_thread_resume_exit (C macro), 976
sys_port_trace_k_thread_sched_abort (C macro), 977
sys_port_trace_k_thread_sched_lock (C macro), 976
sys_port_trace_k_thread_sched_pend (C macro), 977
sys_port_trace_k_thread_sched_priority_set (C macro), 977
sys_port_trace_k_thread_sched_ready (C macro), 977
sys_port_trace_k_thread_sched_resume (C macro), 977
sys_port_trace_k_thread_sched_suspend (C macro), 977
sys_port_trace_k_thread_sched_unlock (C macro), 976
sys_port_trace_k_thread_sched_wakeup (C macro), 977
sys_port_trace_k_thread_sleep_enter (C macro), 974
sys_port_trace_k_thread_sleep_exit (C macro), 974
sys_port_trace_k_thread_start (C macro), 975
sys_port_trace_k_thread_suspend_enter (C macro), 976
sys_port_trace_k_thread_suspend_exit (C macro), 976
sys_port_trace_k_thread_switched_in (C macro), 977
sys_port_trace_k_thread_switched_out (C macro), 976
sys_port_trace_k_thread_user_mode_enter (C macro), 974
sys_port_trace_k_thread_usleep_enter (C macro), 975
sys_port_trace_k_thread_usleep_exit (C macro), 975
sys_port_trace_k_thread_wakeup (C macro), 975
sys_port_trace_k_thread_yield (C macro), 975
sys_port_trace_k_timer_init (C macro), 1001
sys_port_trace_k_timer_start (C macro), 1001
sys_port_trace_k_timer_status_sync_blocking (C macro), 1002
sys_port_trace_k_timer_status_sync_enter (C macro), 1001
sys_port_trace_k_timer_status_sync_exit (C macro), 1002
sys_port_trace_k_timer_stop (C macro), 1001
sys_port_trace_k_work_cancel_enter (C macro), 979
sys_port_trace_k_work_cancel_exit (C macro), 979
sys_port_trace_k_work_cancel_sync_blocking (C macro), 979
sys_port_trace_k_work_cancel_sync_enter (C macro), 979
sys_port_trace_k_work_cancel_sync_exit (C macro), 979
sys_port_trace_k_work_flush_blocking (C macro), 978
sys_port_trace_k_work_flush_enter (C macro), 978
sys_port_trace_k_work_flush_exit (C macro), 979
sys_port_trace_k_work_init (C macro), 978
sys_port_trace_k_work_submit_enter (C macro), 978
sys_port_trace_k_work_submit_exit (C macro), 978
sys_port_trace_k_work_submit_to_queue_enter (C macro), 978
sys_port_trace_k_work_submit_to_queue_exit (C macro), 978
sys_port_trace_syscall_enter (C macro), 1003
sys_port_trace_syscall_exit (C macro), 1003
SYS_PORT_TRACK_NEXT (C macro), 1002
sys_poweroff (C function), 1113
sys_rand8_get (C function), 721
sys_rand16_get (C function), 721
sys_rand32_get (C function), 721
sys_rand64_get (C function), 721
sys_rand_get (C function), 720
sys_sem_count_get (C function), 405
SYS_SEM_DEFINE (C macro), 404
sys_sem_give (C function), 405
sys_sem_init (C function), 405
sys_sem_take (C function), 405

Index 4225



Zephyr Project Documentation, Release 3.7.99

sys_sflist_append (C function), 620
sys_sflist_append_list (C function), 620
SYS_SFLIST_CONTAINER (C macro), 616
sys_sflist_find_and_remove (C function), 621
SYS_SFLIST_FLAGS_MASK (C macro), 618
SYS_SFLIST_FOR_EACH_CONTAINER (C macro), 617
SYS_SFLIST_FOR_EACH_CONTAINER_SAFE (C macro), 617
SYS_SFLIST_FOR_EACH_NODE (C macro), 615
SYS_SFLIST_FOR_EACH_NODE_SAFE (C macro), 616
sys_sflist_get (C function), 620
sys_sflist_get_not_empty (C function), 620
sys_sflist_init (C function), 618
sys_sflist_insert (C function), 620
sys_sflist_is_empty (C function), 619
SYS_SFLIST_ITERATE_FROM_NODE (C macro), 616
sys_sflist_len (C function), 621
sys_sflist_merge_sflist (C function), 620
sys_sflist_peek_head (C function), 618
SYS_SFLIST_PEEK_HEAD_CONTAINER (C macro), 616
sys_sflist_peek_next (C function), 619
SYS_SFLIST_PEEK_NEXT_CONTAINER (C macro), 617
sys_sflist_peek_next_no_check (C function), 619
sys_sflist_peek_tail (C function), 618
SYS_SFLIST_PEEK_TAIL_CONTAINER (C macro), 617
sys_sflist_prepend (C function), 619
sys_sflist_remove (C function), 621
SYS_SFLIST_STATIC_INIT (C macro), 617
sys_sflist_t (C type), 618
sys_sfnode_flags_get (C function), 618
sys_sfnode_flags_set (C function), 619
sys_sfnode_init (C function), 618
sys_sfnode_t (C type), 618
sys_slist_append (C function), 613
sys_slist_append_list (C function), 613
SYS_SLIST_CONTAINER (C macro), 611
sys_slist_find (C function), 615
sys_slist_find_and_remove (C function), 615
SYS_SLIST_FOR_EACH_CONTAINER (C macro), 611
SYS_SLIST_FOR_EACH_CONTAINER_SAFE (C macro), 612
SYS_SLIST_FOR_EACH_NODE (C macro), 610
SYS_SLIST_FOR_EACH_NODE_SAFE (C macro), 610
sys_slist_get (C function), 614
sys_slist_get_not_empty (C function), 614
sys_slist_init (C function), 612
sys_slist_insert (C function), 614
sys_slist_is_empty (C function), 613
SYS_SLIST_ITERATE_FROM_NODE (C macro), 610
sys_slist_len (C function), 615
sys_slist_merge_slist (C function), 614
sys_slist_peek_head (C function), 612
SYS_SLIST_PEEK_HEAD_CONTAINER (C macro), 611
sys_slist_peek_next (C function), 613
SYS_SLIST_PEEK_NEXT_CONTAINER (C macro), 611
sys_slist_peek_next_no_check (C function), 613
sys_slist_peek_tail (C function), 612
SYS_SLIST_PEEK_TAIL_CONTAINER (C macro), 611
sys_slist_prepend (C function), 613
sys_slist_remove (C function), 614

4226 Index



Zephyr Project Documentation, Release 3.7.99

SYS_SLIST_STATIC_INIT (C macro), 612
sys_slist_t (C type), 612
sys_snode_t (C type), 612
sys_timepoint_calc (C function), 483
sys_timepoint_cmp (C function), 484
sys_timepoint_expired (C function), 484
sys_timepoint_timeout (C function), 483
sys_trace_idle (C function), 973
sys_trace_isr_enter (C function), 973
sys_trace_isr_exit (C function), 973
sys_trace_isr_exit_to_scheduler (C function), 973
sys_trace_sys_init_enter (C macro), 973
sys_trace_sys_init_exit (C macro), 973
sysbuild_conf (runners.core.ZephyrBinaryRunner property), 201
SysbuildConfiguration (class in runners.core), 197
system power state, 3947

T
T32_DIR, 98
task_wdt_add (C function), 1223
task_wdt_callback_t (C type), 1223
task_wdt_delete (C function), 1223
task_wdt_feed (C function), 1224
task_wdt_init (C function), 1223
tc_cable_plug (C enum), 3671
tc_cable_plug.PD_PLUG_FROM_CABLE_VPD (C enumerator), 3671
tc_cable_plug.PD_PLUG_FROM_DFP_UFP (C enumerator), 3671
tc_cc_polarity (C enum), 3671
tc_cc_polarity.TC_POLARITY_CC1 (C enumerator), 3671
tc_cc_polarity.TC_POLARITY_CC2 (C enumerator), 3671
tc_cc_pull (C enum), 3670
tc_cc_pull.TC_CC_OPEN (C enumerator), 3670
tc_cc_pull.TC_CC_RA (C enumerator), 3670
tc_cc_pull.TC_CC_RD (C enumerator), 3670
tc_cc_pull.TC_CC_RP (C enumerator), 3670
tc_cc_pull.TC_RA_RD (C enumerator), 3671
tc_cc_states (C enum), 3672
tc_cc_states.TC_CC_DFP_ATTACHED (C enumerator), 3672
tc_cc_states.TC_CC_DFP_DEBUG_ACC (C enumerator), 3672
tc_cc_states.TC_CC_NONE (C enumerator), 3672
tc_cc_states.TC_CC_UFP_ATTACHED (C enumerator), 3672
tc_cc_states.TC_CC_UFP_AUDIO_ACC (C enumerator), 3672
tc_cc_states.TC_CC_UFP_DEBUG_ACC (C enumerator), 3672
tc_cc_states.TC_CC_UFP_NONE (C enumerator), 3672
tc_cc_voltage_state (C enum), 3669
tc_cc_voltage_state.TC_CC_VOLT_OPEN (C enumerator), 3669
tc_cc_voltage_state.TC_CC_VOLT_RA (C enumerator), 3669
tc_cc_voltage_state.TC_CC_VOLT_RD (C enumerator), 3669
tc_cc_voltage_state.TC_CC_VOLT_RP_1A5 (C enumerator), 3669
tc_cc_voltage_state.TC_CC_VOLT_RP_3A0 (C enumerator), 3670
tc_cc_voltage_state.TC_CC_VOLT_RP_DEF (C enumerator), 3669
tc_data_role (C enum), 3671
tc_data_role.TC_ROLE_DFP (C enumerator), 3671
tc_data_role.TC_ROLE_DISCONNECTED (C enumerator), 3671
tc_data_role.TC_ROLE_UFP (C enumerator), 3671
tc_power_role (C enum), 3671
tc_power_role.TC_ROLE_SINK (C enumerator), 3671
tc_power_role.TC_ROLE_SOURCE (C enumerator), 3671

Index 4227



Zephyr Project Documentation, Release 3.7.99

tc_rp_value (C enum), 3670
tc_rp_value.TC_RP_1A5 (C enumerator), 3670
tc_rp_value.TC_RP_3A0 (C enumerator), 3670
tc_rp_value.TC_RP_RESERVED (C enumerator), 3670
tc_rp_value.TC_RP_USB (C enumerator), 3670
TC_T_CC_DEBOUNCE_MAX_MS (C macro), 3667
TC_T_CC_DEBOUNCE_MIN_MS (C macro), 3667
TC_T_DRP_MAX_MS (C macro), 3666
TC_T_DRP_MIN_MS (C macro), 3666
TC_T_DRP_TRANSITION_MAX_MS (C macro), 3666
TC_T_DRP_TRANSITION_MIN_MS (C macro), 3666
TC_T_DRP_TRY_MAX_MS (C macro), 3666
TC_T_DRP_TRY_MIN_MS (C macro), 3666
TC_T_DRP_TRY_WAIT_MAX_MS (C macro), 3666
TC_T_DRP_TRY_WAIT_MIN_MS (C macro), 3666
TC_T_ERROR_RECOVERY_SELF_POWERED_MIN_MS (C macro), 3667
TC_T_ERROR_RECOVERY_SOURCE_MIN_MS (C macro), 3668
TC_T_NO_TOGGLE_CONNECT_MAX_MS (C macro), 3668
TC_T_NO_TOGGLE_CONNECT_MIN_MS (C macro), 3668
TC_T_ONE_PORT_TOGGLE_CONNECT_MAX_MS (C macro), 3668
TC_T_ONE_PORT_TOGGLE_CONNECT_MIN_MS (C macro), 3668
TC_T_PD_DEBOUNCE_MAX_MS (C macro), 3667
TC_T_PD_DEBOUNCE_MIN_MS (C macro), 3667
TC_T_RP_VALUE_CHANGE_MAX_MS (C macro), 3668
TC_T_RP_VALUE_CHANGE_MIN_MS (C macro), 3668
TC_T_SINK_ADJ_MAX_MS (C macro), 3666
TC_T_SRC_DISCONNECT_MAX_MS (C macro), 3668
TC_T_SRC_DISCONNECT_MIN_MS (C macro), 3668
TC_T_TRY_CC_DEBOUNCE_MAX_MS (C macro), 3667
TC_T_TRY_CC_DEBOUNCE_MIN_MS (C macro), 3667
TC_T_TRY_TIMEOUT_MAX_MS (C macro), 3667
TC_T_TRY_TIMEOUT_MIN_MS (C macro), 3666
TC_T_TWO_PORT_TOGGLE_CONNECT_MAX_MS (C macro), 3669
TC_T_TWO_PORT_TOGGLE_CONNECT_MIN_MS (C macro), 3668
TC_T_VBUS_OFF_MAX_MS (C macro), 3665
TC_T_VBUS_ON_MAX_MS (C macro), 3665
TC_T_VCONN_OFF_MAX_MS (C macro), 3666
TC_T_VCONN_ON_MAX_MS (C macro), 3665
TC_T_VCONN_ON_PA_MAX_MS (C macro), 3665
TC_T_VPD_DETACH_MAX_MS (C macro), 3667
TC_T_VPD_DETACH_MIN_MS (C macro), 3667
TC_T_VPDCTDD_MAX_MS (C macro), 3669
TC_T_VPDCTDD_MIN_US (C macro), 3669
TC_T_VPDDISABLE_MIN_MS (C macro), 3669
TC_V_SINK_DISCONNECT_MAX_MV (C macro), 3665
TC_V_SINK_DISCONNECT_MIN_MV (C macro), 3665
tc_vbus_level (C enum), 3670
tc_vbus_level.TC_VBUS_PRESENT (C enumerator), 3670
tc_vbus_level.TC_VBUS_REMOVED (C enumerator), 3670
tc_vbus_level.TC_VBUS_SAFE0V (C enumerator), 3670
TCP_KEEPCNT (C macro), 2499
TCP_KEEPIDLE (C macro), 2499
TCP_KEEPINTVL (C macro), 2499
TCP_NODELAY (C macro), 2498
tcpc_alert (C enum), 3673
tcpc_alert_handler_cb_t (C type), 3672
tcpc_alert.TCPC_ALERT_BEGINNING_MSG_STATUS (C enumerator), 3673
tcpc_alert.TCPC_ALERT_CC_STATUS (C enumerator), 3673

4228 Index



Zephyr Project Documentation, Release 3.7.99

tcpc_alert.TCPC_ALERT_EXTENDED (C enumerator), 3674
tcpc_alert.TCPC_ALERT_EXTENDED_STATUS (C enumerator), 3674
tcpc_alert.TCPC_ALERT_FAULT_STATUS (C enumerator), 3673
tcpc_alert.TCPC_ALERT_HARD_RESET_RECEIVED (C enumerator), 3673
tcpc_alert.TCPC_ALERT_MSG_STATUS (C enumerator), 3673
tcpc_alert.TCPC_ALERT_POWER_STATUS (C enumerator), 3673
tcpc_alert.TCPC_ALERT_RX_BUFFER_OVERFLOW (C enumerator), 3673
tcpc_alert.TCPC_ALERT_TRANSMIT_MSG_DISCARDED (C enumerator), 3673
tcpc_alert.TCPC_ALERT_TRANSMIT_MSG_FAILED (C enumerator), 3673
tcpc_alert.TCPC_ALERT_TRANSMIT_MSG_SUCCESS (C enumerator), 3673
tcpc_alert.TCPC_ALERT_VBUS_ALARM_HI (C enumerator), 3673
tcpc_alert.TCPC_ALERT_VBUS_ALARM_LO (C enumerator), 3673
tcpc_alert.TCPC_ALERT_VBUS_SNK_DISCONNECT (C enumerator), 3673
tcpc_alert.TCPC_ALERT_VENDOR_DEFINED (C enumerator), 3674
tcpc_chip_info (C struct), 3682
tcpc_chip_info.device_id (C var), 3682
tcpc_chip_info.fw_version_number (C var), 3682
tcpc_chip_info.min_req_fw_version_number (C var), 3682
tcpc_chip_info.min_req_fw_version_string (C var), 3682
tcpc_chip_info.product_id (C var), 3682
tcpc_chip_info.vendor_id (C var), 3682
tcpc_clear_status_register (C function), 3679
tcpc_driver_api (C struct), 3682
tcpc_dump_std_reg (C function), 3678
tcpc_get_cc (C function), 3675
tcpc_get_chip_info (C function), 3681
tcpc_get_rp_value (C function), 3675
tcpc_get_rx_pending_msg (C function), 3677
tcpc_get_snk_ctrl (C function), 3680
tcpc_get_src_ctrl (C function), 3681
tcpc_get_status_register (C function), 3679
tcpc_init (C function), 3675
tcpc_is_cc_at_least_one_rd (C function), 3675
tcpc_is_cc_audio_acc (C function), 3675
tcpc_is_cc_only_one_rd (C function), 3675
tcpc_is_cc_open (C function), 3674
tcpc_is_cc_rp (C function), 3674
tcpc_is_cc_snk_dbg_acc (C function), 3674
tcpc_is_cc_src_dbg_acc (C function), 3674
tcpc_mask_status_register (C function), 3679
tcpc_select_rp_value (C function), 3675
tcpc_set_alert_handler_cb (C function), 3678
tcpc_set_bist_test_mode (C function), 3681
tcpc_set_cc (C function), 3676
tcpc_set_cc_polarity (C function), 3678
tcpc_set_debug_accessory (C function), 3679
tcpc_set_debug_detach (C function), 3680
tcpc_set_drp_toggle (C function), 3680
tcpc_set_low_power_mode (C function), 3681
tcpc_set_roles (C function), 3677
tcpc_set_rx_enable (C function), 3677
tcpc_set_snk_ctrl (C function), 3680
tcpc_set_src_ctrl (C function), 3681
tcpc_set_vconn (C function), 3677
tcpc_set_vconn_cb (C function), 3676
tcpc_set_vconn_discharge_cb (C function), 3676
tcpc_sop_prime_enable (C function), 3682
tcpc_status_reg (C enum), 3674

Index 4229



Zephyr Project Documentation, Release 3.7.99

tcpc_status_reg.TCPC_CC_STATUS (C enumerator), 3674
tcpc_status_reg.TCPC_EXTENDED_ALERT_STATUS (C enumerator), 3674
tcpc_status_reg.TCPC_EXTENDED_STATUS (C enumerator), 3674
tcpc_status_reg.TCPC_FAULT_STATUS (C enumerator), 3674
tcpc_status_reg.TCPC_POWER_STATUS (C enumerator), 3674
tcpc_status_reg.TCPC_VENDOR_DEFINED_STATUS (C enumerator), 3674
tcpc_transmit_data (C function), 3678
tcpc_vconn_control_cb_t (C type), 3672
tcpc_vconn_discharge (C function), 3676
tcpc_vconn_discharge_cb_t (C type), 3672
TFTP_BLOCK_SIZE (C macro), 2891
tftp_callback_t (C type), 2892
tftp_data_param (C struct), 2893
tftp_data_param.data_ptr (C var), 2893
tftp_data_param.len (C var), 2893
tftp_error_param (C struct), 2893
tftp_error_param.code (C var), 2894
tftp_error_param.msg (C var), 2893
tftp_evt (C struct), 2894
tftp_evt_param (C union), 2894
tftp_evt_param.data (C var), 2894
tftp_evt_param.error (C var), 2894
tftp_evt_type (C enum), 2892
tftp_evt_type.TFTP_EVT_DATA (C enumerator), 2892
tftp_evt_type.TFTP_EVT_ERROR (C enumerator), 2892
tftp_evt.param (C var), 2894
tftp_evt.type (C var), 2894
tftp_get (C function), 2892
TFTP_HEADER_SIZE (C macro), 2891
tftp_put (C function), 2893
tftpc (C struct), 2894
TFTPC_BUFFER_OVERFLOW (C macro), 2891
TFTPC_DUPLICATE_DATA (C macro), 2891
TFTPC_MAX_BUF_SIZE (C macro), 2891
TFTPC_REMOTE_ERROR (C macro), 2891
TFTPC_RETRIES_EXHAUSTED (C macro), 2891
TFTPC_SUCCESS (C macro), 2891
TFTPC_UNKNOWN_FAILURE (C macro), 2891
tftpc.callback (C var), 2894
tftpc.server (C var), 2894
tftpc.tftp_buf (C var), 2894
tgpio_pin_config_ext_timestamp (C function), 3703
tgpio_pin_disable (C function), 3703
tgpio_pin_periodic_output (C function), 3703
tgpio_pin_polarity (C enum), 3702
tgpio_pin_polarity.TGPIO_FALLING_EDGE (C enumerator), 3702
tgpio_pin_polarity.TGPIO_RISING_EDGE (C enumerator), 3702
tgpio_pin_polarity.TGPIO_TOGGLE_EDGE (C enumerator), 3703
tgpio_pin_read_ts_ec (C function), 3704
tgpio_port_get_cycles_per_second (C function), 3703
tgpio_port_get_time (C function), 3703
thread_analyzer_cb (C type), 730
thread_analyzer_info (C struct), 731
thread_analyzer_info.name (C var), 731
thread_analyzer_info.stack_size (C var), 731
thread_analyzer_info.stack_used (C var), 731
thread_analyzer_print (C function), 730
thread_analyzer_run (C function), 730

4230 Index



Zephyr Project Documentation, Release 3.7.99

thread_info_enabled (runners.core.ZephyrBinaryRunner property), 201
timeutil_sync_config (C struct), 678
timeutil_sync_config.local_Hz (C var), 678
timeutil_sync_config.ref_Hz (C var), 678
timeutil_sync_estimate_skew (C function), 676
timeutil_sync_instant (C struct), 678
timeutil_sync_instant.local (C var), 678
timeutil_sync_instant.ref (C var), 678
timeutil_sync_local_from_ref (C function), 677
timeutil_sync_ref_from_local (C function), 676
timeutil_sync_skew_to_ppb (C function), 677
timeutil_sync_state (C struct), 678
timeutil_sync_state_set_skew (C function), 676
timeutil_sync_state_update (C function), 675
timeutil_sync_state.base (C var), 679
timeutil_sync_state.cfg (C var), 679
timeutil_sync_state.latest (C var), 679
timeutil_sync_state.skew (C var), 679
timeutil_timegm (C function), 675
timeutil_timegm64 (C function), 674
timing_counter_get (C function), 654
timing_cycles_get (C function), 654
timing_cycles_to_ns (C function), 654
timing_cycles_to_ns_avg (C function), 654
timing_freq_get (C function), 654
timing_freq_get_mhz (C function), 654
timing_init (C function), 654
timing_start (C function), 654
timing_stop (C function), 654
TLS_ALPN_LIST (C macro), 2485
TLS_CERT_NOCOPY (C macro), 2486
TLS_CERT_NOCOPY_NONE (C macro), 2487
TLS_CERT_NOCOPY_OPTIONAL (C macro), 2487
TLS_CIPHERSUITE_LIST (C macro), 2485
TLS_CIPHERSUITE_USED (C macro), 2485
tls_credential_add (C function), 2509
tls_credential_delete (C function), 2510
tls_credential_get (C function), 2510
tls_credential_type (C enum), 2509
tls_credential_type.TLS_CREDENTIAL_CA_CERTIFICATE (C enumerator), 2509
tls_credential_type.TLS_CREDENTIAL_NONE (C enumerator), 2509
tls_credential_type.TLS_CREDENTIAL_PRIVATE_KEY (C enumerator), 2509
tls_credential_type.TLS_CREDENTIAL_PSK (C enumerator), 2509
tls_credential_type.TLS_CREDENTIAL_PSK_ID (C enumerator), 2509
tls_credential_type.TLS_CREDENTIAL_SERVER_CERTIFICATE (C enumerator), 2509
TLS_DTLS_CID (C macro), 2486
TLS_DTLS_CID_DISABLED (C macro), 2488
TLS_DTLS_CID_ENABLED (C macro), 2488
TLS_DTLS_CID_STATUS (C macro), 2486
TLS_DTLS_CID_STATUS_BIDIRECTIONAL (C macro), 2488
TLS_DTLS_CID_STATUS_DISABLED (C macro), 2488
TLS_DTLS_CID_STATUS_DOWNLINK (C macro), 2488
TLS_DTLS_CID_STATUS_UPLINK (C macro), 2488
TLS_DTLS_CID_SUPPORTED (C macro), 2488
TLS_DTLS_CID_VALUE (C macro), 2487
TLS_DTLS_HANDSHAKE_ON_CONNECT (C macro), 2487
TLS_DTLS_HANDSHAKE_TIMEOUT_MAX (C macro), 2486
TLS_DTLS_HANDSHAKE_TIMEOUT_MIN (C macro), 2485

Index 4231



Zephyr Project Documentation, Release 3.7.99

TLS_DTLS_PEER_CID_VALUE (C macro), 2487
TLS_DTLS_ROLE (C macro), 2485
TLS_DTLS_ROLE_CLIENT (C macro), 2487
TLS_DTLS_ROLE_SERVER (C macro), 2487
TLS_HOSTNAME (C macro), 2485
TLS_NATIVE (C macro), 2486
TLS_PEER_VERIFY (C macro), 2485
TLS_PEER_VERIFY_NONE (C macro), 2487
TLS_PEER_VERIFY_OPTIONAL (C macro), 2487
TLS_PEER_VERIFY_REQUIRED (C macro), 2487
TLS_SEC_TAG_LIST (C macro), 2485
TLS_SESSION_CACHE (C macro), 2486
TLS_SESSION_CACHE_DISABLED (C macro), 2487
TLS_SESSION_CACHE_ENABLED (C macro), 2488
TLS_SESSION_CACHE_PURGE (C macro), 2486
tool_opt_help() (runners.core.ZephyrBinaryRunner class method), 201
{TOOLCHAIN}_TOOLCHAIN_PATH, 22
TOOLCHAIN_VER, 289
TYPE_SECTION_COUNT (C macro), 705
TYPE_SECTION_END (C macro), 704
TYPE_SECTION_END_EXTERN (C macro), 704
TYPE_SECTION_FOREACH (C macro), 704
TYPE_SECTION_GET (C macro), 705
TYPE_SECTION_ITERABLE (C macro), 703
TYPE_SECTION_START (C macro), 704
TYPE_SECTION_START_EXTERN (C macro), 704

U
u8_to_dec (C function), 700
UAC2_ENTITY_ID (C macro), 3077
uac2_ops (C struct), 3078
uac2_ops.buf_release_cb (C var), 3079
uac2_ops.data_recv_cb (C var), 3079
uac2_ops.feedback_cb (C var), 3079
uac2_ops.get_recv_buf (C var), 3078
uac2_ops.sof_cb (C var), 3078
uac2_ops.terminal_update_cb (C var), 3078
uart_callback_set (C function), 3658
uart_callback_t (C type), 3656
uart_config (C struct), 3649
uart_config_data_bits (C enum), 3646
uart_config_data_bits.UART_CFG_DATA_BITS_5 (C enumerator), 3646
uart_config_data_bits.UART_CFG_DATA_BITS_6 (C enumerator), 3647
uart_config_data_bits.UART_CFG_DATA_BITS_7 (C enumerator), 3647
uart_config_data_bits.UART_CFG_DATA_BITS_8 (C enumerator), 3647
uart_config_data_bits.UART_CFG_DATA_BITS_9 (C enumerator), 3647
uart_config_flow_control (C enum), 3647
uart_config_flow_control.UART_CFG_FLOW_CTRL_DTR_DSR (C enumerator), 3647
uart_config_flow_control.UART_CFG_FLOW_CTRL_NONE (C enumerator), 3647
uart_config_flow_control.UART_CFG_FLOW_CTRL_RS485 (C enumerator), 3647
uart_config_flow_control.UART_CFG_FLOW_CTRL_RTS_CTS (C enumerator), 3647
uart_config_get (C function), 3648
uart_config_parity (C enum), 3646
uart_config_parity.UART_CFG_PARITY_EVEN (C enumerator), 3646
uart_config_parity.UART_CFG_PARITY_MARK (C enumerator), 3646
uart_config_parity.UART_CFG_PARITY_NONE (C enumerator), 3646
uart_config_parity.UART_CFG_PARITY_ODD (C enumerator), 3646
uart_config_parity.UART_CFG_PARITY_SPACE (C enumerator), 3646

4232 Index



Zephyr Project Documentation, Release 3.7.99

uart_config_stop_bits (C enum), 3646
uart_config_stop_bits.UART_CFG_STOP_BITS_0_5 (C enumerator), 3646
uart_config_stop_bits.UART_CFG_STOP_BITS_1 (C enumerator), 3646
uart_config_stop_bits.UART_CFG_STOP_BITS_1_5 (C enumerator), 3646
uart_config_stop_bits.UART_CFG_STOP_BITS_2 (C enumerator), 3646
uart_config.baudrate (C var), 3649
uart_config.data_bits (C var), 3649
uart_config.flow_ctrl (C var), 3649
uart_config.parity (C var), 3649
uart_config.stop_bits (C var), 3649
uart_configure (C function), 3647
uart_drv_cmd (C function), 3649
uart_err_check (C function), 3647
uart_event (C struct), 3662
uart_event_rx (C struct), 3661
uart_event_rx_buf (C struct), 3662
uart_event_rx_buf.buf (C var), 3662
uart_event_rx_stop (C struct), 3662
uart_event_rx_stop.data (C var), 3662
uart_event_rx_stop.reason (C var), 3662
uart_event_rx.buf (C var), 3662
uart_event_rx.len (C var), 3662
uart_event_rx.offset (C var), 3662
uart_event_tx (C struct), 3661
uart_event_tx.buf (C var), 3661
uart_event_tx.len (C var), 3661
uart_event_type (C enum), 3656
uart_event_type.UART_RX_BUF_RELEASED (C enumerator), 3658
uart_event_type.UART_RX_BUF_REQUEST (C enumerator), 3657
uart_event_type.UART_RX_DISABLED (C enumerator), 3658
uart_event_type.UART_RX_RDY (C enumerator), 3657
uart_event_type.UART_RX_STOPPED (C enumerator), 3658
uart_event_type.UART_TX_ABORTED (C enumerator), 3657
uart_event_type.UART_TX_DONE (C enumerator), 3657
uart_event.type (C var), 3662
uart_event.uart_event_data (C union), 3662
uart_event.uart_event_data.rx (C var), 3663
uart_event.uart_event_data.rx_buf (C var), 3663
uart_event.uart_event_data.rx_stop (C var), 3663
uart_event.uart_event_data.tx (C var), 3663
uart_fifo_fill (C function), 3651
uart_fifo_fill_u16 (C function), 3652
uart_fifo_read (C function), 3652
uart_fifo_read_u16 (C function), 3652
uart_irq_callback_set (C function), 3655
uart_irq_callback_user_data_set (C function), 3655
uart_irq_callback_user_data_t (C type), 3651
uart_irq_config_func_t (C type), 3651
uart_irq_err_disable (C function), 3654
uart_irq_err_enable (C function), 3654
uart_irq_is_pending (C function), 3654
uart_irq_rx_disable (C function), 3653
uart_irq_rx_enable (C function), 3653
uart_irq_rx_ready (C function), 3654
uart_irq_tx_complete (C function), 3653
uart_irq_tx_disable (C function), 3653
uart_irq_tx_enable (C function), 3653
uart_irq_tx_ready (C function), 3653
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uart_irq_update (C function), 3655
uart_line_ctrl (C enum), 3645
uart_line_ctrl_get (C function), 3648
uart_line_ctrl_set (C function), 3648
uart_line_ctrl.UART_LINE_CTRL_BAUD_RATE (C enumerator), 3645
uart_line_ctrl.UART_LINE_CTRL_DCD (C enumerator), 3645
uart_line_ctrl.UART_LINE_CTRL_DSR (C enumerator), 3645
uart_line_ctrl.UART_LINE_CTRL_DTR (C enumerator), 3645
uart_line_ctrl.UART_LINE_CTRL_RTS (C enumerator), 3645
uart_poll_in (C function), 3650
uart_poll_in_u16 (C function), 3650
uart_poll_out (C function), 3650
uart_poll_out_u16 (C function), 3650
uart_rx_buf_rsp (C function), 3660
uart_rx_buf_rsp_u16 (C function), 3660
uart_rx_disable (C function), 3661
uart_rx_enable (C function), 3659
uart_rx_enable_u16 (C function), 3660
uart_rx_stop_reason (C enum), 3645
uart_rx_stop_reason.UART_BREAK (C enumerator), 3645
uart_rx_stop_reason.UART_ERROR_COLLISION (C enumerator), 3646
uart_rx_stop_reason.UART_ERROR_FRAMING (C enumerator), 3645
uart_rx_stop_reason.UART_ERROR_NOISE (C enumerator), 3646
uart_rx_stop_reason.UART_ERROR_OVERRUN (C enumerator), 3645
uart_rx_stop_reason.UART_ERROR_PARITY (C enumerator), 3645
uart_tx (C function), 3658
uart_tx_abort (C function), 3659
uart_tx_u16 (C function), 3659
UCIFI_OBJECT_BATTERY_ID (C macro), 2830
UDC_BUF_ALIGN (C macro), 3056
UDC_BUF_GRANULARITY (C macro), 3056
UDC_BUF_POOL_DEFINE (C macro), 3056
UDC_BUF_POOL_VAR_DEFINE (C macro), 3056
udc_caps (C function), 3051
udc_device_speed (C function), 3051
udc_disable (C function), 3051
udc_enable (C function), 3050
udc_ep_buf_alloc (C function), 3055
udc_ep_buf_free (C function), 3055
udc_ep_buf_set_zlp (C function), 3055
udc_ep_clear_halt (C function), 3054
udc_ep_dequeue (C function), 3054
udc_ep_disable (C function), 3053
udc_ep_enable (C function), 3053
udc_ep_enqueue (C function), 3054
udc_ep_set_halt (C function), 3053
udc_ep_try_config (C function), 3052
udc_get_buf_info (C function), 3055
udc_host_wakeup (C function), 3052
udc_init (C function), 3050
udc_is_enabled (C function), 3050
udc_is_initialized (C function), 3050
udc_is_suspended (C function), 3050
udc_set_address (C function), 3051
udc_shutdown (C function), 3051
UDC_STATIC_BUF_DEFINE (C macro), 3056
udc_test_mode (C function), 3052
uf2_file (runners.core.RunnerConfig attribute), 197
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uhc_bus_reset (C function), 3082
uhc_bus_resume (C function), 3083
uhc_bus_suspend (C function), 3083
uhc_caps (C function), 3086
uhc_control_stage (C enum), 3081
uhc_control_stage.UHC_CONTROL_STAGE_DATA (C enumerator), 3081
uhc_control_stage.UHC_CONTROL_STAGE_SETUP (C enumerator), 3081
uhc_control_stage.UHC_CONTROL_STAGE_STATUS (C enumerator), 3081
uhc_data (C struct), 3088
uhc_data.bulk_xfers (C var), 3089
uhc_data.caps (C var), 3088
uhc_data.ctrl_xfers (C var), 3088
uhc_data.event_cb (C var), 3089
uhc_data.mutex (C var), 3088
uhc_data.priv (C var), 3089
uhc_data.status (C var), 3089
uhc_device_caps (C struct), 3088
uhc_device_caps.hs (C var), 3088
uhc_disable (C function), 3086
uhc_enable (C function), 3086
uhc_ep_dequeue (C function), 3085
uhc_ep_enqueue (C function), 3085
uhc_event (C struct), 3087
uhc_event_cb_t (C type), 3081
uhc_event_type (C enum), 3081
uhc_event_type.UHC_EVT_DEV_CONNECTED_FS (C enumerator), 3081
uhc_event_type.UHC_EVT_DEV_CONNECTED_HS (C enumerator), 3081
uhc_event_type.UHC_EVT_DEV_CONNECTED_LS (C enumerator), 3081
uhc_event_type.UHC_EVT_DEV_REMOVED (C enumerator), 3081
uhc_event_type.UHC_EVT_EP_REQUEST (C enumerator), 3082
uhc_event_type.UHC_EVT_ERROR (C enumerator), 3082
uhc_event_type.UHC_EVT_RESETED (C enumerator), 3082
uhc_event_type.UHC_EVT_RESUMED (C enumerator), 3082
uhc_event_type.UHC_EVT_RWUP (C enumerator), 3082
uhc_event_type.UHC_EVT_SUSPENDED (C enumerator), 3082
uhc_event.dev (C var), 3088
uhc_event.node (C var), 3088
uhc_event.status (C var), 3088
uhc_event.type (C var), 3088
uhc_event.xfer (C var), 3088
uhc_init (C function), 3085
uhc_is_enabled (C function), 3082
uhc_is_initialized (C function), 3082
uhc_shutdown (C function), 3086
uhc_sof_enable (C function), 3082
UHC_STATUS_ENABLED (C macro), 3081
UHC_STATUS_INITIALIZED (C macro), 3081
uhc_transfer (C struct), 3086
uhc_transfer.addr (C var), 3087
uhc_transfer.attrib (C var), 3087
uhc_transfer.buf (C var), 3087
uhc_transfer.cb (C var), 3087
uhc_transfer.ep (C var), 3087
uhc_transfer.err (C var), 3087
uhc_transfer.mps (C var), 3087
uhc_transfer.node (C var), 3087
uhc_transfer.queued (C var), 3087
uhc_transfer.setup_pkt (C var), 3087
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uhc_transfer.stage (C var), 3087
uhc_transfer.timeout (C var), 3087
uhc_transfer.udev (C var), 3087
uhc_xfer_alloc (C function), 3083
uhc_xfer_alloc_with_buf (C function), 3084
uhc_xfer_buf_add (C function), 3084
uhc_xfer_buf_alloc (C function), 3084
uhc_xfer_buf_free (C function), 3085
uhc_xfer_free (C function), 3084
UINT_TO_POINTER (C macro), 681
usb_bos_capability_lpm (C struct), 3045
usb_bos_capability_msos (C struct), 3045
usb_bos_capability_types (C enum), 3045
usb_bos_capability_types.USB_BOS_CAPABILITY_EXTENSION (C enumerator), 3045
usb_bos_capability_types.USB_BOS_CAPABILITY_PLATFORM (C enumerator), 3045
usb_bos_capability_webusb (C struct), 3045
usb_bos_descriptor (C struct), 3045
usb_bos_platform_descriptor (C struct), 3045
usb_bos_register_cap (C function), 3041
USB_BSTRING_LENGTH (C macro), 3057
usb_cancel_transfer (C function), 3041
usb_cancel_transfers (C function), 3041
usb_cfg_data (C struct), 3042
usb_cfg_data.cb_usb_status (C var), 3043
usb_cfg_data.endpoint (C var), 3043
usb_cfg_data.interface (C var), 3043
usb_cfg_data.interface_config (C var), 3043
usb_cfg_data.interface_descriptor (C var), 3043
usb_cfg_data.num_endpoints (C var), 3043
usb_cfg_data.usb_device_description (C var), 3043
usb_dc_attach (C function), 3031
usb_dc_detach (C function), 3032
usb_dc_ep_callback (C type), 3029
usb_dc_ep_cb_status_code (C enum), 3030
usb_dc_ep_cb_status_code.USB_DC_EP_DATA_IN (C enumerator), 3030
usb_dc_ep_cb_status_code.USB_DC_EP_DATA_OUT (C enumerator), 3030
usb_dc_ep_cb_status_code.USB_DC_EP_SETUP (C enumerator), 3030
usb_dc_ep_cfg_data (C struct), 3036
usb_dc_ep_cfg_data.ep_addr (C var), 3036
usb_dc_ep_cfg_data.ep_mps (C var), 3036
usb_dc_ep_cfg_data.ep_type (C var), 3036
usb_dc_ep_check_cap (C function), 3032
usb_dc_ep_clear_stall (C function), 3033
usb_dc_ep_configure (C function), 3032
usb_dc_ep_disable (C function), 3033
usb_dc_ep_enable (C function), 3033
usb_dc_ep_flush (C function), 3034
usb_dc_ep_halt (C function), 3033
usb_dc_ep_is_stalled (C function), 3033
usb_dc_ep_mps (C function), 3035
usb_dc_ep_read (C function), 3034
usb_dc_ep_read_continue (C function), 3035
usb_dc_ep_read_wait (C function), 3035
usb_dc_ep_set_callback (C function), 3034
usb_dc_ep_set_stall (C function), 3033
usb_dc_ep_synchronozation_type (C enum), 3031
usb_dc_ep_synchronozation_type.USB_DC_EP_ADAPTIVE (C enumerator), 3031
usb_dc_ep_synchronozation_type.USB_DC_EP_ASYNCHRONOUS (C enumerator), 3031
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usb_dc_ep_synchronozation_type.USB_DC_EP_NO_SYNCHRONIZATION (C enumerator), 3031
usb_dc_ep_synchronozation_type.USB_DC_EP_SYNCHRONOUS (C enumerator), 3031
usb_dc_ep_transfer_type (C enum), 3031
usb_dc_ep_transfer_type.USB_DC_EP_BULK (C enumerator), 3031
usb_dc_ep_transfer_type.USB_DC_EP_CONTROL (C enumerator), 3031
usb_dc_ep_transfer_type.USB_DC_EP_INTERRUPT (C enumerator), 3031
usb_dc_ep_transfer_type.USB_DC_EP_ISOCHRONOUS (C enumerator), 3031
usb_dc_ep_write (C function), 3034
usb_dc_reset (C function), 3032
usb_dc_set_address (C function), 3032
usb_dc_set_status_callback (C function), 3032
usb_dc_status_callback (C type), 3029
usb_dc_status_code (C enum), 3029
usb_dc_status_code.USB_DC_CLEAR_HALT (C enumerator), 3030
usb_dc_status_code.USB_DC_CONFIGURED (C enumerator), 3030
usb_dc_status_code.USB_DC_CONNECTED (C enumerator), 3030
usb_dc_status_code.USB_DC_DISCONNECTED (C enumerator), 3030
usb_dc_status_code.USB_DC_ERROR (C enumerator), 3030
usb_dc_status_code.USB_DC_INTERFACE (C enumerator), 3030
usb_dc_status_code.USB_DC_RESET (C enumerator), 3030
usb_dc_status_code.USB_DC_RESUME (C enumerator), 3030
usb_dc_status_code.USB_DC_SET_HALT (C enumerator), 3030
usb_dc_status_code.USB_DC_SOF (C enumerator), 3030
usb_dc_status_code.USB_DC_SUSPEND (C enumerator), 3030
usb_dc_status_code.USB_DC_UNKNOWN (C enumerator), 3030
usb_dc_wakeup_request (C function), 3035
usb_deconfig (C function), 3038
USB_DESC_HID (C macro), 3109
USB_DESC_HID_PHYSICAL (C macro), 3109
USB_DESC_HID_REPORT (C macro), 3109
USB_DEVICE_BOS_DESC_DEFINE_CAP (C macro), 3037
usb_disable (C function), 3038
usb_enable (C function), 3038
usb_ep_callback (C type), 3037
usb_ep_cfg_data (C struct), 3042
usb_ep_cfg_data.ep_addr (C var), 3042
usb_ep_cfg_data.ep_cb (C var), 3042
usb_ep_clear_stall (C function), 3039
usb_ep_read_continue (C function), 3040
usb_ep_read_wait (C function), 3040
usb_ep_set_stall (C function), 3039
usb_get_remote_wakeup_status (C function), 3041
USB_HID_GET_IDLE (C macro), 3109
USB_HID_GET_PROTOCOL (C macro), 3109
USB_HID_GET_REPORT (C macro), 3109
usb_hid_init (C function), 3045
usb_hid_register_device (C function), 3044
USB_HID_SET_IDLE (C macro), 3109
usb_hid_set_proto_code (C function), 3044
USB_HID_SET_PROTOCOL (C macro), 3109
USB_HID_SET_REPORT (C macro), 3109
USB_HID_VERSION (C macro), 3109
usb_interface_cfg_data (C struct), 3042
usb_interface_cfg_data.class_handler (C var), 3042
usb_interface_cfg_data.custom_handler (C var), 3042
usb_interface_cfg_data.vendor_handler (C var), 3042
usb_interface_config (C type), 3038
usb_read (C function), 3039
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usb_request_handler (C type), 3037
usb_set_config (C function), 3038
USB_STRING_DESCRIPTOR_LENGTH (C macro), 3057
USB_TRANS_NO_ZLP (C macro), 3037
USB_TRANS_READ (C macro), 3037
USB_TRANS_WRITE (C macro), 3037
usb_transfer (C function), 3040
usb_transfer_callback (C type), 3038
usb_transfer_ep_callback (C function), 3040
usb_transfer_is_busy (C function), 3041
usb_transfer_sync (C function), 3041
usb_wakeup_request (C function), 3041
usb_write (C function), 3038
usbc_bypass_next_sleep (C function), 3102
usbc_get_dpm_data (C function), 3102
usbc_policy_check_t (C enum), 3101
usbc_policy_check_t.CHECK_DATA_ROLE_SWAP_TO_DFP (C enumerator), 3101
usbc_policy_check_t.CHECK_DATA_ROLE_SWAP_TO_UFP (C enumerator), 3101
usbc_policy_check_t.CHECK_POWER_ROLE_SWAP (C enumerator), 3101
usbc_policy_check_t.CHECK_SNK_AT_DEFAULT_LEVEL (C enumerator), 3101
usbc_policy_check_t.CHECK_SRC_PS_AT_DEFAULT_LEVEL (C enumerator), 3101
usbc_policy_check_t.CHECK_VCONN_CONTROL (C enumerator), 3101
usbc_policy_notify_t (C enum), 3099
usbc_policy_notify_t.DATA_ROLE_IS_DFP (C enumerator), 3100
usbc_policy_notify_t.DATA_ROLE_IS_UFP (C enumerator), 3100
usbc_policy_notify_t.HARD_RESET_RECEIVED (C enumerator), 3100
usbc_policy_notify_t.MSG_ACCEPT_RECEIVED (C enumerator), 3100
usbc_policy_notify_t.MSG_DISCARDED (C enumerator), 3100
usbc_policy_notify_t.MSG_NOT_SUPPORTED_RECEIVED (C enumerator), 3100
usbc_policy_notify_t.MSG_REJECTED_RECEIVED (C enumerator), 3100
usbc_policy_notify_t.NOT_PD_CONNECTED (C enumerator), 3100
usbc_policy_notify_t.PD_CONNECTED (C enumerator), 3100
usbc_policy_notify_t.PORT_PARTNER_NOT_RESPONSIVE (C enumerator), 3100
usbc_policy_notify_t.POWER_CHANGE_0A0 (C enumerator), 3100
usbc_policy_notify_t.POWER_CHANGE_1A5 (C enumerator), 3100
usbc_policy_notify_t.POWER_CHANGE_3A0 (C enumerator), 3101
usbc_policy_notify_t.POWER_CHANGE_DEF (C enumerator), 3100
usbc_policy_notify_t.PROTOCOL_ERROR (C enumerator), 3100
usbc_policy_notify_t.SENDER_RESPONSE_TIMEOUT (C enumerator), 3101
usbc_policy_notify_t.SNK_TRANSITION_TO_DEFAULT (C enumerator), 3100
usbc_policy_notify_t.SOURCE_CAPABILITIES_RECEIVED (C enumerator), 3101
usbc_policy_notify_t.TRANSITION_PS (C enumerator), 3100
usbc_policy_request_t (C enum), 3099
usbc_policy_request_t.REQUEST_GET_SNK_CAPS (C enumerator), 3099
usbc_policy_request_t.REQUEST_NOP (C enumerator), 3099
usbc_policy_request_t.REQUEST_PE_DR_SWAP (C enumerator), 3099
usbc_policy_request_t.REQUEST_PE_GET_SRC_CAPS (C enumerator), 3099
usbc_policy_request_t.REQUEST_PE_GOTO_MIN (C enumerator), 3099
usbc_policy_request_t.REQUEST_PE_HARD_RESET_SEND (C enumerator), 3099
usbc_policy_request_t.REQUEST_PE_SOFT_RESET_SEND (C enumerator), 3099
usbc_policy_request_t.REQUEST_TC_DISABLED (C enumerator), 3099
usbc_policy_request_t.REQUEST_TC_END (C enumerator), 3099
usbc_policy_request_t.REQUEST_TC_ERROR_RECOVERY (C enumerator), 3099
usbc_policy_wait_t (C enum), 3101
usbc_policy_wait_t.WAIT_DATA_ROLE_SWAP (C enumerator), 3101
usbc_policy_wait_t.WAIT_POWER_ROLE_SWAP (C enumerator), 3101
usbc_policy_wait_t.WAIT_SINK_REQUEST (C enumerator), 3101
usbc_policy_wait_t.WAIT_VCONN_SWAP (C enumerator), 3101
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usbc_request (C function), 3102
usbc_set_dpm_data (C function), 3102
usbc_set_policy_cb_change_src_caps (C function), 3105
usbc_set_policy_cb_check (C function), 3103
usbc_set_policy_cb_check_sink_request (C function), 3104
usbc_set_policy_cb_get_rdo (C function), 3104
usbc_set_policy_cb_get_snk_cap (C function), 3103
usbc_set_policy_cb_get_src_caps (C function), 3104
usbc_set_policy_cb_get_src_rp (C function), 3104
usbc_set_policy_cb_is_ps_ready (C function), 3104
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usbc_set_policy_cb_notify (C function), 3103
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usbc_set_policy_cb_set_src_cap (C function), 3103
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usbc_snk_req_reply_t.SNK_REQUEST_REJECT (C enumerator), 3102
usbc_snk_req_reply_t.SNK_REQUEST_VALID (C enumerator), 3102
usbc_snk_req_reply_t.SNK_REQUEST_WAIT (C enumerator), 3102
usbc_start (C function), 3102
usbc_suspend (C function), 3102
usbc_vbus_check_level (C function), 3663
usbc_vbus_discharge (C function), 3664
usbc_vbus_driver_api (C struct), 3664
usbc_vbus_enable (C function), 3664
usbc_vbus_measure (C function), 3664
usbd_add_configuration (C function), 3062
usbd_add_descriptor (C function), 3061
usbd_bos_desc_data (C struct), 3069
usbd_bos_desc_data.utype (C var), 3069
usbd_bus_speed (C function), 3066
usbd_can_detect_vbus (C function), 3068
usbd_caps_speed (C function), 3066
USBD_CCTX_REGISTERED (C macro), 3058
usbd_cctx_vendor_req (C struct), 3071
usbd_cctx_vendor_req.len (C var), 3072
usbd_cctx_vendor_req.reqs (C var), 3072
usbd_ch9_data (C struct), 3070
usbd_ch9_data.alternate (C var), 3070
usbd_ch9_data.configuration (C var), 3070
usbd_ch9_data.ctrl_type (C var), 3070
usbd_ch9_data.ep_halt (C var), 3070
usbd_ch9_data.post_status (C var), 3070
usbd_ch9_data.setup (C var), 3070
usbd_ch9_data.state (C var), 3070
usbd_ch9_state (C enum), 3060
usbd_ch9_state.USBD_STATE_ADDRESS (C enumerator), 3061
usbd_ch9_state.USBD_STATE_CONFIGURED (C enumerator), 3061
usbd_ch9_state.USBD_STATE_DEFAULT (C enumerator), 3061
usbd_class_api (C struct), 3072
usbd_class_api.control_to_dev (C var), 3072
usbd_class_api.control_to_host (C var), 3072
usbd_class_api.disable (C var), 3072
usbd_class_api.enable (C var), 3072
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usbd_class_api.feature_halt (C var), 3072
usbd_class_api.get_desc (C var), 3073
usbd_class_api.init (C var), 3072
usbd_class_api.request (C var), 3072
usbd_class_api.resumed (C var), 3072
usbd_class_api.shutdown (C var), 3073
usbd_class_api.sof (C var), 3072
usbd_class_api.suspended (C var), 3072
usbd_class_api.update (C var), 3072
usbd_class_data (C struct), 3073
usbd_class_data.api (C var), 3073
usbd_class_data.name (C var), 3073
usbd_class_data.priv (C var), 3073
usbd_class_data.uds_ctx (C var), 3073
usbd_class_data.v_reqs (C var), 3073
usbd_class_get_ctx (C function), 3061
usbd_class_get_private (C function), 3061
usbd_config_attrib_rwup (C function), 3067
usbd_config_attrib_self (C function), 3068
usbd_config_maxpower (C function), 3068
usbd_config_node (C struct), 3069
usbd_config_node.class_list (C var), 3070
usbd_config_node.desc (C var), 3069
usbd_config_node.node (C var), 3069
usbd_config_node.str_desc_nd (C var), 3070
USBD_CONFIGURATION_DEFINE (C macro), 3058
usbd_context (C struct), 3071
usbd_context.ch9_data (C var), 3071
usbd_context.descriptors (C var), 3071
usbd_context.dev (C var), 3071
usbd_context.fs_configs (C var), 3071
usbd_context.fs_desc (C var), 3071
usbd_context.hs_configs (C var), 3071
usbd_context.hs_desc (C var), 3071
usbd_context.msg_cb (C var), 3071
usbd_context.mutex (C var), 3071
usbd_context.name (C var), 3071
usbd_context.status (C var), 3071
USBD_DEFINE_CLASS (C macro), 3060
USBD_DEFINE_MSC_LUN (C macro), 3080
USBD_DESC_BOS_DEFINE (C macro), 3059
USBD_DESC_CONFIG_DEFINE (C macro), 3059
USBD_DESC_LANG_DEFINE (C macro), 3058
USBD_DESC_MANUFACTURER_DEFINE (C macro), 3059
usbd_desc_node (C struct), 3069
usbd_desc_node.bDescriptorType (C var), 3069
usbd_desc_node.bLength (C var), 3069
usbd_desc_node.node (C var), 3069
usbd_desc_node.ptr (C var), 3069
USBD_DESC_PRODUCT_DEFINE (C macro), 3059
USBD_DESC_SERIAL_NUMBER_DEFINE (C macro), 3059
USBD_DESC_STRING_DEFINE (C macro), 3058
USBD_DEVICE_DEFINE (C macro), 3058
usbd_device_set_bcd_device (C function), 3067
usbd_device_set_bcd_usb (C function), 3066
usbd_device_set_code_triple (C function), 3067
usbd_device_set_pid (C function), 3067
usbd_device_set_vid (C function), 3066
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usbd_disable (C function), 3064
usbd_enable (C function), 3064
usbd_ep_buf_alloc (C function), 3065
usbd_ep_buf_free (C function), 3066
usbd_ep_clear_halt (C function), 3064
usbd_ep_ctrl_enqueue (C function), 3065
usbd_ep_dequeue (C function), 3065
usbd_ep_enqueue (C function), 3065
usbd_ep_is_halted (C function), 3065
usbd_ep_set_halt (C function), 3064
usbd_init (C function), 3063
usbd_is_suspended (C function), 3066
usbd_msg (C struct), 3074
usbd_msg_cb_t (C type), 3060
usbd_msg_register_cb (C function), 3063
usbd_msg_type (C enum), 3073
usbd_msg_type_string (C function), 3074
usbd_msg_type.USBD_MSG_CDC_ACM_CONTROL_LINE_STATE (C enumerator), 3074
usbd_msg_type.USBD_MSG_CDC_ACM_LINE_CODING (C enumerator), 3074
usbd_msg_type.USBD_MSG_MAX_NUMBER (C enumerator), 3074
usbd_msg_type.USBD_MSG_RESET (C enumerator), 3074
usbd_msg_type.USBD_MSG_RESUME (C enumerator), 3073
usbd_msg_type.USBD_MSG_STACK_ERROR (C enumerator), 3074
usbd_msg_type.USBD_MSG_SUSPEND (C enumerator), 3073
usbd_msg_type.USBD_MSG_UDC_ERROR (C enumerator), 3074
usbd_msg_type.USBD_MSG_VBUS_READY (C enumerator), 3073
usbd_msg_type.USBD_MSG_VBUS_REMOVED (C enumerator), 3073
usbd_msg.type (C var), 3074
USBD_NUMOF_INTERFACES_MAX (C macro), 3058
usbd_register_all_classes (C function), 3062
usbd_register_class (C function), 3062
usbd_remove_descriptor (C function), 3062
usbd_shutdown (C function), 3064
usbd_speed (C enum), 3061
usbd_speed.USBD_SPEED_FS (C enumerator), 3061
usbd_speed.USBD_SPEED_HS (C enumerator), 3061
usbd_speed.USBD_SPEED_SS (C enumerator), 3061
usbd_status (C struct), 3070
usbd_status.enabled (C var), 3070
usbd_status.initialized (C var), 3070
usbd_status.rwup (C var), 3071
usbd_status.speed (C var), 3071
usbd_status.suspended (C var), 3070
usbd_str_desc_data (C struct), 3068
usbd_str_desc_data.ascii7 (C var), 3068
usbd_str_desc_data.idx (C var), 3068
usbd_str_desc_data.use_hwinfo (C var), 3069
usbd_str_desc_data.utype (C var), 3068
usbd_str_desc_get_idx (C function), 3062
usbd_uac2_send (C function), 3078
usbd_uac2_set_ops (C function), 3078
usbd_unregister_all_classes (C function), 3063
usbd_unregister_class (C function), 3063
USBD_VENDOR_REQ (C macro), 3060
usbd_wakeup_request (C function), 3066
usbpd_cc_pin (C enum), 3693
usbpd_cc_pin.USBPD_CC_PIN_1 (C enumerator), 3693
usbpd_cc_pin.USBPD_CC_PIN_2 (C enumerator), 3693
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USEC_PER_MSEC (C macro), 478
USEC_PER_SEC (C macro), 478
utf8_lcpy (C function), 700
utf8_trunc (C function), 700
UTIL_AND (C macro), 693
UTIL_DEC (C macro), 693
UTIL_INC (C macro), 693
UTIL_OR (C macro), 693
UTIL_X2 (C macro), 693

V
variant, 3947
VENDOR_REQ_DEFINE (C macro), 3060
vfprintfcb (C function), 872
video_api_dequeue_t (C type), 3705
video_api_enqueue_t (C type), 3705
video_api_flush_t (C type), 3706
video_api_get_caps_t (C type), 3706
video_api_get_ctrl_t (C type), 3706
video_api_get_format_t (C type), 3705
video_api_set_ctrl_t (C type), 3706
video_api_set_format_t (C type), 3705
video_api_set_signal_t (C type), 3706
video_api_stream_start_t (C type), 3706
video_api_stream_stop_t (C type), 3706
video_buffer (C struct), 3712
video_buffer_aligned_alloc (C function), 3710
video_buffer_alloc (C function), 3710
video_buffer_release (C function), 3710
video_buffer.buffer (C var), 3712
video_buffer.bytesused (C var), 3712
video_buffer.driver_data (C var), 3712
video_buffer.size (C var), 3712
video_buffer.timestamp (C var), 3712
video_caps (C struct), 3711
video_caps.format_caps (C var), 3712
video_caps.min_vbuf_count (C var), 3712
VIDEO_CID_CAMERA_BRIGHTNESS (C macro), 3713
VIDEO_CID_CAMERA_COLORBAR (C macro), 3713
VIDEO_CID_CAMERA_CONTRAST (C macro), 3713
VIDEO_CID_CAMERA_EXPOSURE (C macro), 3713
VIDEO_CID_CAMERA_GAIN (C macro), 3713
VIDEO_CID_CAMERA_QUALITY (C macro), 3713
VIDEO_CID_CAMERA_SATURATION (C macro), 3713
VIDEO_CID_CAMERA_WHITE_BAL (C macro), 3713
VIDEO_CID_CAMERA_ZOOM (C macro), 3713
VIDEO_CID_HFLIP (C macro), 3713
VIDEO_CID_VFLIP (C macro), 3713
VIDEO_CTRL_CLASS_CAMERA (C macro), 3712
VIDEO_CTRL_CLASS_GENERIC (C macro), 3712
VIDEO_CTRL_CLASS_JPEG (C macro), 3712
VIDEO_CTRL_CLASS_MPEG (C macro), 3712
VIDEO_CTRL_CLASS_VENDOR (C macro), 3713
video_dequeue (C function), 3708
video_driver_api (C struct), 3712
video_endpoint_id (C enum), 3706
video_endpoint_id.VIDEO_EP_ANY (C enumerator), 3706
video_endpoint_id.VIDEO_EP_IN (C enumerator), 3707
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video_endpoint_id.VIDEO_EP_NONE (C enumerator), 3706
video_endpoint_id.VIDEO_EP_OUT (C enumerator), 3707
video_enqueue (C function), 3707
video_flush (C function), 3708
video_format (C struct), 3710
video_format_cap (C struct), 3711
video_format_cap.height_max (C var), 3711
video_format_cap.height_min (C var), 3711
video_format_cap.height_step (C var), 3711
video_format_cap.pixelformat (C var), 3711
video_format_cap.width_max (C var), 3711
video_format_cap.width_min (C var), 3711
video_format_cap.width_step (C var), 3711
video_format.height (C var), 3711
video_format.pitch (C var), 3711
video_format.pixelformat (C var), 3711
video_format.width (C var), 3711
video_fourcc (C macro), 3705
video_get_caps (C function), 3709
video_get_ctrl (C function), 3709
video_get_format (C function), 3707
video_set_ctrl (C function), 3709
video_set_format (C function), 3707
video_set_signal (C function), 3710
video_signal_result (C enum), 3707
video_signal_result.VIDEO_BUF_ABORTED (C enumerator), 3707
video_signal_result.VIDEO_BUF_DONE (C enumerator), 3707
video_signal_result.VIDEO_BUF_ERROR (C enumerator), 3707
video_stream_start (C function), 3708
video_stream_stop (C function), 3709
vprintfcb (C function), 873
vsnprintfcb (C function), 874

W
W1_CMD_MATCH_ROM (C macro), 3162
W1_CMD_OVERDRIVE_MATCH_ROM (C macro), 3163
W1_CMD_OVERDRIVE_SKIP_ROM (C macro), 3163
W1_CMD_READ_ROM (C macro), 3162
W1_CMD_RESUME (C macro), 3162
W1_CMD_SEARCH_ALARM (C macro), 3163
W1_CMD_SEARCH_ROM (C macro), 3162
W1_CMD_SKIP_ROM (C macro), 3162
w1_configure (C function), 3162
w1_crc8 (C function), 3167
W1_CRC8_POLYNOMIAL (C macro), 3163
W1_CRC8_SEED (C macro), 3163
w1_crc16 (C function), 3167
W1_CRC16_POLYNOMIAL (C macro), 3163
W1_CRC16_SEED (C macro), 3163
w1_get_slave_count (C function), 3162
w1_lock_bus (C function), 3169
w1_match_rom (C function), 3164
w1_read_bit (C function), 3160
w1_read_block (C function), 3161
w1_read_byte (C function), 3161
w1_read_rom (C function), 3164
w1_reset_bus (C function), 3160
w1_reset_select (C function), 3165
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w1_resume_command (C function), 3164
w1_rom (C struct), 3167
W1_ROM_INIT_ZERO (C macro), 3163
w1_rom_to_uint64 (C function), 3167
w1_rom.crc (C var), 3168
w1_rom.family (C var), 3168
w1_rom.serial (C var), 3168
w1_search_alarm (C function), 3166
W1_SEARCH_ALL_FAMILIES (C macro), 3163
w1_search_bus (C function), 3165
w1_search_callback_t (C type), 3163
w1_search_rom (C function), 3166
w1_settings_type (C enum), 3168
w1_settings_type.W1_SETINGS_TYPE_COUNT (C enumerator), 3169
w1_settings_type.W1_SETTING_SPEED (C enumerator), 3169
w1_settings_type.W1_SETTING_STRONG_PULLUP (C enumerator), 3169
w1_skip_rom (C function), 3164
w1_slave_config (C struct), 3168
w1_slave_config.overdrive (C var), 3168
w1_slave_config.rom (C var), 3168
w1_uint64_to_rom (C function), 3167
w1_unlock_bus (C function), 3169
w1_write_bit (C function), 3160
w1_write_block (C function), 3161
w1_write_byte (C function), 3161
w1_write_read (C function), 3165
WAIT_FOR (C macro), 687
wait_for_prompt() (twister_harness.Shell method), 269
WB_DN (C macro), 684
WB_UP (C macro), 684
wdt_callback_t (C type), 3714
wdt_disable (C function), 3715
wdt_feed (C function), 3716
WDT_FLAG_RESET_CPU_CORE (C macro), 3714
WDT_FLAG_RESET_NONE (C macro), 3714
WDT_FLAG_RESET_SOC (C macro), 3714
wdt_install_timeout (C function), 3715
WDT_OPT_PAUSE_HALTED_BY_DBG (C macro), 3714
WDT_OPT_PAUSE_IN_SLEEP (C macro), 3714
wdt_setup (C function), 3714
wdt_timeout_cfg (C struct), 3716
wdt_timeout_cfg.callback (C var), 3716
wdt_timeout_cfg.flags (C var), 3717
wdt_timeout_cfg.next (C var), 3717
wdt_timeout_cfg.window (C var), 3716
wdt_window (C struct), 3716
wdt_window.max (C var), 3716
wdt_window.min (C var), 3716
websocket_connect (C function), 2578
websocket_connect_cb_t (C type), 2577
websocket_disconnect (C function), 2579
WEBSOCKET_FLAG_BINARY (C macro), 2577
WEBSOCKET_FLAG_CLOSE (C macro), 2577
WEBSOCKET_FLAG_FINAL (C macro), 2576
WEBSOCKET_FLAG_PING (C macro), 2577
WEBSOCKET_FLAG_PONG (C macro), 2577
WEBSOCKET_FLAG_TEXT (C macro), 2577
websocket_opcode (C enum), 2577
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websocket_opcode.WEBSOCKET_OPCODE_CLOSE (C enumerator), 2578
websocket_opcode.WEBSOCKET_OPCODE_CONTINUE (C enumerator), 2577
websocket_opcode.WEBSOCKET_OPCODE_DATA_BINARY (C enumerator), 2577
websocket_opcode.WEBSOCKET_OPCODE_DATA_TEXT (C enumerator), 2577
websocket_opcode.WEBSOCKET_OPCODE_PING (C enumerator), 2578
websocket_opcode.WEBSOCKET_OPCODE_PONG (C enumerator), 2578
websocket_recv_msg (C function), 2579
websocket_register (C function), 2579
websocket_request (C struct), 2580
websocket_request.cb (C var), 2580
websocket_request.host (C var), 2580
websocket_request.http_cb (C var), 2580
websocket_request.optional_headers (C var), 2580
websocket_request.optional_headers_cb (C var), 2580
websocket_request.tmp_buf (C var), 2580
websocket_request.tmp_buf_len (C var), 2580
websocket_request.url (C var), 2580
websocket_send_msg (C function), 2578
websocket_unregister (C function), 2579
west, 3947
west installation, 3947
west manifest, 3947
west manifest repository, 3947
west project, 3947
west workspace, 3947
wifi_ap_config_param (C enum), 2731
wifi_ap_config_params (C struct), 2748
wifi_ap_config_params.max_inactivity (C var), 2748
wifi_ap_config_params.max_num_sta (C var), 2748
wifi_ap_config_params.type (C var), 2748
wifi_ap_config_param.WIFI_AP_CONFIG_PARAM_MAX_INACTIVITY (C enumerator), 2731
wifi_ap_config_param.WIFI_AP_CONFIG_PARAM_MAX_NUM_STA (C enumerator), 2731
wifi_ap_sta_info (C struct), 2747
wifi_ap_sta_info.link_mode (C var), 2747
wifi_ap_sta_info.mac (C var), 2747
wifi_ap_sta_info.mac_length (C var), 2747
wifi_ap_sta_info.twt_capable (C var), 2747
wifi_ap_status (C enum), 2735
wifi_ap_status.WIFI_STATUS_AP_AUTH_TYPE_NOT_SUPPORTED (C enumerator), 2735
wifi_ap_status.WIFI_STATUS_AP_CHANNEL_NOT_ALLOWED (C enumerator), 2735
wifi_ap_status.WIFI_STATUS_AP_CHANNEL_NOT_SUPPORTED (C enumerator), 2735
wifi_ap_status.WIFI_STATUS_AP_FAIL (C enumerator), 2735
wifi_ap_status.WIFI_STATUS_AP_OP_NOT_PERMITTED (C enumerator), 2735
wifi_ap_status.WIFI_STATUS_AP_OP_NOT_SUPPORTED (C enumerator), 2735
wifi_ap_status.WIFI_STATUS_AP_SSID_NOT_ALLOWED (C enumerator), 2735
wifi_ap_status.WIFI_STATUS_AP_SUCCESS (C enumerator), 2735
wifi_band_channel (C struct), 2738
wifi_band_channel.band (C var), 2738
wifi_band_channel.channel (C var), 2738
wifi_band_txt (C function), 2736
WIFI_CHANNEL_ANY (C macro), 2721
wifi_channel_info (C struct), 2748
wifi_channel_info.channel (C var), 2748
wifi_channel_info.if_index (C var), 2748
wifi_channel_info.oper (C var), 2748
WIFI_CHANNEL_MAX (C macro), 2721
WIFI_CHANNEL_MIN (C macro), 2721
wifi_config_ps_param_fail_reason (C enum), 2731
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wifi_config_ps_param_fail_reason.WIFI_PS_PARAM_FAIL_CMD_EXEC_FAIL (C enumerator), 2731
wifi_config_ps_param_fail_reason.WIFI_PS_PARAM_FAIL_DEVICE_CONNECTED (C enumerator),

2731
wifi_config_ps_param_fail_reason.WIFI_PS_PARAM_FAIL_DEVICE_NOT_CONNECTED (C enumera-

tor), 2731
wifi_config_ps_param_fail_reason.WIFI_PS_PARAM_FAIL_OPERATION_NOT_SUPPORTED (C enu-

merator), 2731
wifi_config_ps_param_fail_reason.WIFI_PS_PARAM_FAIL_UNABLE_TO_GET_IFACE_STATUS (C

enumerator), 2731
wifi_config_ps_param_fail_reason.WIFI_PS_PARAM_FAIL_UNSPECIFIED (C enumerator), 2731
wifi_config_ps_param_fail_reason.WIFI_PS_PARAM_LISTEN_INTERVAL_RANGE_INVALID (C enu-

merator), 2731
wifi_conn_status (C enum), 2734
wifi_conn_status.WIFI_STATUS_CONN_AP_NOT_FOUND (C enumerator), 2734
wifi_conn_status.WIFI_STATUS_CONN_FAIL (C enumerator), 2734
wifi_conn_status.WIFI_STATUS_CONN_LAST_STATUS (C enumerator), 2734
wifi_conn_status.WIFI_STATUS_CONN_SUCCESS (C enumerator), 2734
wifi_conn_status.WIFI_STATUS_CONN_TIMEOUT (C enumerator), 2734
wifi_conn_status.WIFI_STATUS_CONN_WRONG_PASSWORD (C enumerator), 2734
wifi_conn_status.WIFI_STATUS_DISCONN_FIRST_STATUS (C enumerator), 2734
wifi_connect_req_params (C struct), 2740
wifi_connect_req_params.band (C var), 2741
wifi_connect_req_params.bssid (C var), 2741
wifi_connect_req_params.channel (C var), 2741
wifi_connect_req_params.mfp (C var), 2741
wifi_connect_req_params.psk (C var), 2740
wifi_connect_req_params.psk_length (C var), 2740
wifi_connect_req_params.sae_password (C var), 2741
wifi_connect_req_params.sae_password_length (C var), 2741
wifi_connect_req_params.security (C var), 2741
wifi_connect_req_params.ssid (C var), 2740
wifi_connect_req_params.ssid_length (C var), 2740
wifi_connect_req_params.timeout (C var), 2741
WIFI_COUNTRY_CODE_LEN (C macro), 2720
wifi_disconn_reason (C enum), 2734
wifi_disconn_reason.WIFI_REASON_DISCONN_AP_LEAVING (C enumerator), 2734
wifi_disconn_reason.WIFI_REASON_DISCONN_INACTIVITY (C enumerator), 2735
wifi_disconn_reason.WIFI_REASON_DISCONN_SUCCESS (C enumerator), 2734
wifi_disconn_reason.WIFI_REASON_DISCONN_UNSPECIFIED (C enumerator), 2734
wifi_disconn_reason.WIFI_REASON_DISCONN_USER_REQUEST (C enumerator), 2734
wifi_filter (C enum), 2728
wifi_filter_info (C struct), 2747
wifi_filter_info.buffer_size (C var), 2748
wifi_filter_info.filter (C var), 2747
wifi_filter_info.if_index (C var), 2747
wifi_filter_info.oper (C var), 2748
wifi_filter.WIFI_PACKET_FILTER_ALL (C enumerator), 2728
wifi_filter.WIFI_PACKET_FILTER_CTRL (C enumerator), 2728
wifi_filter.WIFI_PACKET_FILTER_DATA (C enumerator), 2728
wifi_filter.WIFI_PACKET_FILTER_MGMT (C enumerator), 2728
wifi_frequency_bands (C enum), 2724
wifi_frequency_bands.__WIFI_FREQ_BAND_AFTER_LAST (C enumerator), 2724
wifi_frequency_bands.WIFI_FREQ_BAND_2_4_GHZ (C enumerator), 2724
wifi_frequency_bands.WIFI_FREQ_BAND_5_GHZ (C enumerator), 2724
wifi_frequency_bands.WIFI_FREQ_BAND_6_GHZ (C enumerator), 2724
wifi_frequency_bands.WIFI_FREQ_BAND_MAX (C enumerator), 2725
wifi_frequency_bands.WIFI_FREQ_BAND_UNKNOWN (C enumerator), 2725
wifi_iface_mode (C enum), 2725
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wifi_iface_mode.WIFI_MODE_AP (C enumerator), 2726
wifi_iface_mode.WIFI_MODE_IBSS (C enumerator), 2726
wifi_iface_mode.WIFI_MODE_INFRA (C enumerator), 2726
wifi_iface_mode.WIFI_MODE_MESH (C enumerator), 2726
wifi_iface_mode.WIFI_MODE_P2P_GO (C enumerator), 2726
wifi_iface_mode.WIFI_MODE_P2P_GROUP_FORMATION (C enumerator), 2726
wifi_iface_state (C enum), 2725
wifi_iface_state.WIFI_STATE_4WAY_HANDSHAKE (C enumerator), 2725
wifi_iface_state.WIFI_STATE_ASSOCIATED (C enumerator), 2725
wifi_iface_state.WIFI_STATE_ASSOCIATING (C enumerator), 2725
wifi_iface_state.WIFI_STATE_AUTHENTICATING (C enumerator), 2725
wifi_iface_state.WIFI_STATE_COMPLETED (C enumerator), 2725
wifi_iface_state.WIFI_STATE_DISCONNECTED (C enumerator), 2725
wifi_iface_state.WIFI_STATE_GROUP_HANDSHAKE (C enumerator), 2725
wifi_iface_state.WIFI_STATE_INACTIVE (C enumerator), 2725
wifi_iface_state.WIFI_STATE_INTERFACE_DISABLED (C enumerator), 2725
wifi_iface_state.WIFI_STATE_SCANNING (C enumerator), 2725
wifi_iface_status (C struct), 2741
wifi_iface_status.band (C var), 2742
wifi_iface_status.beacon_interval (C var), 2742
wifi_iface_status.bssid (C var), 2742
wifi_iface_status.channel (C var), 2742
wifi_iface_status.dtim_period (C var), 2742
wifi_iface_status.iface_mode (C var), 2742
wifi_iface_status.link_mode (C var), 2742
wifi_iface_status.mfp (C var), 2742
wifi_iface_status.rssi (C var), 2742
wifi_iface_status.security (C var), 2742
wifi_iface_status.ssid (C var), 2742
wifi_iface_status.ssid_len (C var), 2742
wifi_iface_status.state (C var), 2742
wifi_iface_status.twt_capable (C var), 2742
WIFI_INTERFACE_INDEX_MAX (C macro), 2721
WIFI_INTERFACE_INDEX_MIN (C macro), 2721
wifi_link_mode (C enum), 2726
wifi_link_mode_txt (C function), 2736
wifi_link_mode.WIFI_0 (C enumerator), 2726
wifi_link_mode.WIFI_1 (C enumerator), 2726
wifi_link_mode.WIFI_2 (C enumerator), 2726
wifi_link_mode.WIFI_3 (C enumerator), 2726
wifi_link_mode.WIFI_4 (C enumerator), 2726
wifi_link_mode.WIFI_5 (C enumerator), 2726
wifi_link_mode.WIFI_6 (C enumerator), 2726
wifi_link_mode.WIFI_6E (C enumerator), 2726
wifi_link_mode.WIFI_7 (C enumerator), 2726
WIFI_MAC_ADDR_LEN (C macro), 2721
wifi_mfp_options (C enum), 2724
wifi_mfp_options.WIFI_MFP_DISABLE (C enumerator), 2724
wifi_mfp_options.WIFI_MFP_OPTIONAL (C enumerator), 2724
wifi_mfp_options.WIFI_MFP_REQUIRED (C enumerator), 2724
wifi_mfp_txt (C function), 2736
wifi_mgmt_op (C enum), 2735
wifi_mgmt_ops (C struct), 2748
wifi_mgmt_ops.ap_config_params (C var), 2751
wifi_mgmt_ops.ap_disable (C var), 2749
wifi_mgmt_ops.ap_enable (C var), 2749
wifi_mgmt_ops.ap_sta_disconnect (C var), 2749
wifi_mgmt_ops.channel (C var), 2751
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wifi_mgmt_ops.connect (C var), 2749
wifi_mgmt_ops.disconnect (C var), 2749
wifi_mgmt_ops.filter (C var), 2750
wifi_mgmt_ops.get_power_save_config (C var), 2750
wifi_mgmt_ops.get_stats (C var), 2750
wifi_mgmt_ops.get_version (C var), 2751
wifi_mgmt_ops.iface_status (C var), 2749
wifi_mgmt_ops.mode (C var), 2751
wifi_mgmt_ops.reg_domain (C var), 2750
wifi_mgmt_ops.scan (C var), 2748
wifi_mgmt_ops.set_power_save (C var), 2750
wifi_mgmt_ops.set_rts_threshold (C var), 2751
wifi_mgmt_ops.set_twt (C var), 2750
wifi_mgmt_op.WIFI_MGMT_GET (C enumerator), 2735
wifi_mgmt_op.WIFI_MGMT_SET (C enumerator), 2735
wifi_mgmt_raise_ap_disable_result_event (C function), 2738
wifi_mgmt_raise_ap_enable_result_event (C function), 2737
wifi_mgmt_raise_ap_sta_connected_event (C function), 2738
wifi_mgmt_raise_ap_sta_disconnected_event (C function), 2738
wifi_mgmt_raise_connect_result_event (C function), 2736
wifi_mgmt_raise_disconnect_complete_event (C function), 2737
wifi_mgmt_raise_disconnect_result_event (C function), 2737
wifi_mgmt_raise_iface_status_event (C function), 2737
wifi_mgmt_raise_raw_scan_result_event (C function), 2737
wifi_mgmt_raise_twt_event (C function), 2737
wifi_mgmt_raise_twt_sleep_state (C function), 2737
wifi_mode_info (C struct), 2747
wifi_mode_info.if_index (C var), 2747
wifi_mode_info.mode (C var), 2747
wifi_mode_info.oper (C var), 2747
wifi_mode_txt (C function), 2736
wifi_operational_modes (C enum), 2727
wifi_operational_modes.WIFI_AP_MODE (C enumerator), 2727
wifi_operational_modes.WIFI_MONITOR_MODE (C enumerator), 2727
wifi_operational_modes.WIFI_PROMISCUOUS_MODE (C enumerator), 2727
wifi_operational_modes.WIFI_SOFTAP_MODE (C enumerator), 2728
wifi_operational_modes.WIFI_STA_MODE (C enumerator), 2727
wifi_operational_modes.WIFI_TX_INJECTION_MODE (C enumerator), 2727
wifi_ps (C enum), 2727
wifi_ps_config (C struct), 2745
wifi_ps_config.num_twt_flows (C var), 2745
wifi_ps_config.ps_params (C var), 2745
wifi_ps_config.twt_flows (C var), 2745
wifi_ps_get_config_err_code_str (C function), 2736
wifi_ps_mode (C enum), 2727
wifi_ps_mode_txt (C function), 2736
wifi_ps_mode.WIFI_PS_MODE_LEGACY (C enumerator), 2727
wifi_ps_mode.WIFI_PS_MODE_WMM (C enumerator), 2727
wifi_ps_param_type (C enum), 2730
wifi_ps_param_type.WIFI_PS_PARAM_LISTEN_INTERVAL (C enumerator), 2730
wifi_ps_param_type.WIFI_PS_PARAM_MODE (C enumerator), 2730
wifi_ps_param_type.WIFI_PS_PARAM_STATE (C enumerator), 2730
wifi_ps_param_type.WIFI_PS_PARAM_TIMEOUT (C enumerator), 2731
wifi_ps_param_type.WIFI_PS_PARAM_WAKEUP_MODE (C enumerator), 2730
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