Zephyr API Documentation 4.1.99
A Scalable Open Source RTOS
 4.1.99
All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <zephyr/toolchain.h>
26
27#ifdef __cplusplus
28extern "C" {
29#endif
30
31/*
32 * Zephyr currently assumes the size of a couple standard types to simplify
33 * print string formats. Let's make sure this doesn't change without notice.
34 */
35BUILD_ASSERT(sizeof(int32_t) == sizeof(int));
36BUILD_ASSERT(sizeof(int64_t) == sizeof(long long));
37BUILD_ASSERT(sizeof(intptr_t) == sizeof(long));
38
48#define K_ANY NULL
49
50#if (CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES) == 0
51#error Zero available thread priorities defined!
52#endif
53
54#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
55#define K_PRIO_PREEMPT(x) (x)
56
57#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
58#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
59#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
60#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
61#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
62
63#ifdef CONFIG_POLL
64#define Z_POLL_EVENT_OBJ_INIT(obj) \
65 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
66#define Z_DECL_POLL_EVENT sys_dlist_t poll_events;
67#else
68#define Z_POLL_EVENT_OBJ_INIT(obj)
69#define Z_DECL_POLL_EVENT
70#endif
71
72struct k_thread;
73struct k_mutex;
74struct k_sem;
75struct k_msgq;
76struct k_mbox;
77struct k_pipe;
78struct k_queue;
79struct k_fifo;
80struct k_lifo;
81struct k_stack;
82struct k_mem_slab;
83struct k_timer;
84struct k_poll_event;
85struct k_poll_signal;
86struct k_mem_domain;
87struct k_mem_partition;
88struct k_futex;
89struct k_event;
90
96
97/* private, used by k_poll and k_work_poll */
98struct k_work_poll;
99typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
100
106typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
107 void *user_data);
108
124void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data);
125
144#ifdef CONFIG_SMP
145void k_thread_foreach_filter_by_cpu(unsigned int cpu,
146 k_thread_user_cb_t user_cb, void *user_data);
147#else
148static inline
149void k_thread_foreach_filter_by_cpu(unsigned int cpu,
150 k_thread_user_cb_t user_cb, void *user_data)
151{
152 __ASSERT(cpu == 0, "cpu filter out of bounds");
153 ARG_UNUSED(cpu);
154 k_thread_foreach(user_cb, user_data);
155}
156#endif
157
186 k_thread_user_cb_t user_cb, void *user_data);
187
219#ifdef CONFIG_SMP
221 k_thread_user_cb_t user_cb, void *user_data);
222#else
223static inline
224void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu,
225 k_thread_user_cb_t user_cb, void *user_data)
226{
227 __ASSERT(cpu == 0, "cpu filter out of bounds");
228 ARG_UNUSED(cpu);
229 k_thread_foreach_unlocked(user_cb, user_data);
230}
231#endif
232
241#endif /* !_ASMLANGUAGE */
242
243
244/*
245 * Thread user options. May be needed by assembly code. Common part uses low
246 * bits, arch-specific use high bits.
247 */
248
252#define K_ESSENTIAL (BIT(0))
253
254#define K_FP_IDX 1
264#define K_FP_REGS (BIT(K_FP_IDX))
265
272#define K_USER (BIT(2))
273
282#define K_INHERIT_PERMS (BIT(3))
283
293#define K_CALLBACK_STATE (BIT(4))
294
304#define K_DSP_IDX 6
305#define K_DSP_REGS (BIT(K_DSP_IDX))
306
315#define K_AGU_IDX 7
316#define K_AGU_REGS (BIT(K_AGU_IDX))
317
327#define K_SSE_REGS (BIT(7))
328
329/* end - thread options */
330
331#if !defined(_ASMLANGUAGE)
356__syscall k_thread_stack_t *k_thread_stack_alloc(size_t size, int flags);
357
371
423__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
424 k_thread_stack_t *stack,
425 size_t stack_size,
427 void *p1, void *p2, void *p3,
428 int prio, uint32_t options, k_timeout_t delay);
429
452 void *p1, void *p2,
453 void *p3);
454
468#define k_thread_access_grant(thread, ...) \
469 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), (thread), __VA_ARGS__)
470
485static inline void k_thread_heap_assign(struct k_thread *thread,
486 struct k_heap *heap)
487{
488 thread->resource_pool = heap;
489}
490
491#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
512__syscall int k_thread_stack_space_get(const struct k_thread *thread,
513 size_t *unused_ptr);
514#endif
515
516#if (K_HEAP_MEM_POOL_SIZE > 0)
529void k_thread_system_pool_assign(struct k_thread *thread);
530#endif /* (K_HEAP_MEM_POOL_SIZE > 0) */
531
551__syscall int k_thread_join(struct k_thread *thread, k_timeout_t timeout);
552
566__syscall int32_t k_sleep(k_timeout_t timeout);
567
579static inline int32_t k_msleep(int32_t ms)
580{
581 return k_sleep(Z_TIMEOUT_MS(ms));
582}
583
601
618__syscall void k_busy_wait(uint32_t usec_to_wait);
619
631bool k_can_yield(void);
632
640__syscall void k_yield(void);
641
651__syscall void k_wakeup(k_tid_t thread);
652
666__attribute_const__
668
675__attribute_const__
676static inline k_tid_t k_current_get(void)
677{
678#ifdef CONFIG_CURRENT_THREAD_USE_TLS
679
680 /* Thread-local cache of current thread ID, set in z_thread_entry() */
681 extern Z_THREAD_LOCAL k_tid_t z_tls_current;
682
683 return z_tls_current;
684#else
686#endif
687}
688
708__syscall void k_thread_abort(k_tid_t thread);
709
710k_ticks_t z_timeout_expires(const struct _timeout *timeout);
711k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
712
713#ifdef CONFIG_SYS_CLOCK_EXISTS
714
722__syscall k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread);
723
724static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
725 const struct k_thread *thread)
726{
727 return z_timeout_expires(&thread->base.timeout);
728}
729
738
739static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
740 const struct k_thread *thread)
741{
742 return z_timeout_remaining(&thread->base.timeout);
743}
744
745#endif /* CONFIG_SYS_CLOCK_EXISTS */
746
751struct _static_thread_data {
752 struct k_thread *init_thread;
753 k_thread_stack_t *init_stack;
754 unsigned int init_stack_size;
756 void *init_p1;
757 void *init_p2;
758 void *init_p3;
759 int init_prio;
760 uint32_t init_options;
761 const char *init_name;
762#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
763 int32_t init_delay_ms;
764#else
765 k_timeout_t init_delay;
766#endif
767};
768
769#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
770#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay_ms = (ms)
771#define Z_THREAD_INIT_DELAY(thread) SYS_TIMEOUT_MS((thread)->init_delay_ms)
772#else
773#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay = SYS_TIMEOUT_MS_INIT(ms)
774#define Z_THREAD_INIT_DELAY(thread) (thread)->init_delay
775#endif
776
777#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
778 entry, p1, p2, p3, \
779 prio, options, delay, tname) \
780 { \
781 .init_thread = (thread), \
782 .init_stack = (stack), \
783 .init_stack_size = (stack_size), \
784 .init_entry = (k_thread_entry_t)entry, \
785 .init_p1 = (void *)p1, \
786 .init_p2 = (void *)p2, \
787 .init_p3 = (void *)p3, \
788 .init_prio = (prio), \
789 .init_options = (options), \
790 .init_name = STRINGIFY(tname), \
791 Z_THREAD_INIT_DELAY_INITIALIZER(delay) \
792 }
793
794/*
795 * Refer to K_THREAD_DEFINE() and K_KERNEL_THREAD_DEFINE() for
796 * information on arguments.
797 */
798#define Z_THREAD_COMMON_DEFINE(name, stack_size, \
799 entry, p1, p2, p3, \
800 prio, options, delay) \
801 struct k_thread _k_thread_obj_##name; \
802 STRUCT_SECTION_ITERABLE(_static_thread_data, \
803 _k_thread_data_##name) = \
804 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
805 _k_thread_stack_##name, stack_size,\
806 entry, p1, p2, p3, prio, options, \
807 delay, name); \
808 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
809
845#define K_THREAD_DEFINE(name, stack_size, \
846 entry, p1, p2, p3, \
847 prio, options, delay) \
848 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
849 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
850 prio, options, delay)
851
882#define K_KERNEL_THREAD_DEFINE(name, stack_size, \
883 entry, p1, p2, p3, \
884 prio, options, delay) \
885 K_KERNEL_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
886 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
887 prio, options, delay)
888
898__syscall int k_thread_priority_get(k_tid_t thread);
899
925__syscall void k_thread_priority_set(k_tid_t thread, int prio);
926
927
928#ifdef CONFIG_SCHED_DEADLINE
961__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
962#endif
963
982__syscall void k_reschedule(void);
983
984#ifdef CONFIG_SCHED_CPU_MASK
998
1012
1026
1040
1051int k_thread_cpu_pin(k_tid_t thread, int cpu);
1052#endif
1053
1075__syscall void k_thread_suspend(k_tid_t thread);
1076
1088__syscall void k_thread_resume(k_tid_t thread);
1089
1103static inline void k_thread_start(k_tid_t thread)
1104{
1105 k_wakeup(thread);
1106}
1107
1134void k_sched_time_slice_set(int32_t slice, int prio);
1135
1174void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
1175 k_thread_timeslice_fn_t expired, void *data);
1176
1195bool k_is_in_isr(void);
1196
1213__syscall int k_is_preempt_thread(void);
1214
1226static inline bool k_is_pre_kernel(void)
1227{
1228 extern bool z_sys_post_kernel; /* in init.c */
1229
1230 return !z_sys_post_kernel;
1231}
1232
1267void k_sched_lock(void);
1268
1277
1290__syscall void k_thread_custom_data_set(void *value);
1291
1299__syscall void *k_thread_custom_data_get(void);
1300
1314__syscall int k_thread_name_set(k_tid_t thread, const char *str);
1315
1324const char *k_thread_name_get(k_tid_t thread);
1325
1337__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1338 size_t size);
1339
1352const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1353
1371#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1372
1385#define K_NSEC(t) Z_TIMEOUT_NS(t)
1386
1399#define K_USEC(t) Z_TIMEOUT_US(t)
1400
1411#define K_CYC(t) Z_TIMEOUT_CYC(t)
1412
1423#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1424
1435#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1436
1447#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1448
1459#define K_MINUTES(m) K_SECONDS((m) * 60)
1460
1471#define K_HOURS(h) K_MINUTES((h) * 60)
1472
1481#define K_FOREVER Z_FOREVER
1482
1483#ifdef CONFIG_TIMEOUT_64BIT
1484
1496#define K_TIMEOUT_ABS_TICKS(t) \
1497 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1498
1510#define K_TIMEOUT_ABS_SEC(t) K_TIMEOUT_ABS_TICKS(k_sec_to_ticks_ceil64(t))
1511
1523#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1524
1537#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1538
1551#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1552
1565#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1566
1567#endif
1568
1577struct k_timer {
1578 /*
1579 * _timeout structure must be first here if we want to use
1580 * dynamic timer allocation. timeout.node is used in the double-linked
1581 * list of free timers
1582 */
1583 struct _timeout timeout;
1584
1585 /* wait queue for the (single) thread waiting on this timer */
1586 _wait_q_t wait_q;
1587
1588 /* runs in ISR context */
1589 void (*expiry_fn)(struct k_timer *timer);
1590
1591 /* runs in the context of the thread that calls k_timer_stop() */
1592 void (*stop_fn)(struct k_timer *timer);
1593
1594 /* timer period */
1595 k_timeout_t period;
1596
1597 /* timer status */
1598 uint32_t status;
1599
1600 /* user-specific data, also used to support legacy features */
1601 void *user_data;
1602
1604
1605#ifdef CONFIG_OBJ_CORE_TIMER
1606 struct k_obj_core obj_core;
1607#endif
1608};
1609
1610#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1611 { \
1612 .timeout = { \
1613 .node = {},\
1614 .fn = z_timer_expiration_handler, \
1615 .dticks = 0, \
1616 }, \
1617 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1618 .expiry_fn = expiry, \
1619 .stop_fn = stop, \
1620 .period = {}, \
1621 .status = 0, \
1622 .user_data = 0, \
1623 }
1624
1645typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1646
1661typedef void (*k_timer_stop_t)(struct k_timer *timer);
1662
1674#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1675 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1676 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1677
1687void k_timer_init(struct k_timer *timer,
1688 k_timer_expiry_t expiry_fn,
1689 k_timer_stop_t stop_fn);
1690
1705__syscall void k_timer_start(struct k_timer *timer,
1706 k_timeout_t duration, k_timeout_t period);
1707
1724__syscall void k_timer_stop(struct k_timer *timer);
1725
1738__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1739
1757__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1758
1759#ifdef CONFIG_SYS_CLOCK_EXISTS
1760
1771__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1772
1773static inline k_ticks_t z_impl_k_timer_expires_ticks(
1774 const struct k_timer *timer)
1775{
1776 return z_timeout_expires(&timer->timeout);
1777}
1778
1789__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1790
1791static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1792 const struct k_timer *timer)
1793{
1794 return z_timeout_remaining(&timer->timeout);
1795}
1796
1807static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1808{
1810}
1811
1812#endif /* CONFIG_SYS_CLOCK_EXISTS */
1813
1826__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1827
1831static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1832 void *user_data)
1833{
1834 timer->user_data = user_data;
1835}
1836
1844__syscall void *k_timer_user_data_get(const struct k_timer *timer);
1845
1846static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1847{
1848 return timer->user_data;
1849}
1850
1868__syscall int64_t k_uptime_ticks(void);
1869
1883static inline int64_t k_uptime_get(void)
1884{
1886}
1887
1907static inline uint32_t k_uptime_get_32(void)
1908{
1909 return (uint32_t)k_uptime_get();
1910}
1911
1920static inline uint32_t k_uptime_seconds(void)
1921{
1923}
1924
1936static inline int64_t k_uptime_delta(int64_t *reftime)
1937{
1938 int64_t uptime, delta;
1939
1940 uptime = k_uptime_get();
1941 delta = uptime - *reftime;
1942 *reftime = uptime;
1943
1944 return delta;
1945}
1946
1955static inline uint32_t k_cycle_get_32(void)
1956{
1957 return arch_k_cycle_get_32();
1958}
1959
1970static inline uint64_t k_cycle_get_64(void)
1971{
1972 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
1973 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
1974 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
1975 return 0;
1976 }
1977
1978 return arch_k_cycle_get_64();
1979}
1980
1985struct k_queue {
1988 _wait_q_t wait_q;
1989
1990 Z_DECL_POLL_EVENT
1991
1993};
1994
1999#define Z_QUEUE_INITIALIZER(obj) \
2000 { \
2001 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
2002 .lock = { }, \
2003 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2004 Z_POLL_EVENT_OBJ_INIT(obj) \
2005 }
2006
2024__syscall void k_queue_init(struct k_queue *queue);
2025
2039__syscall void k_queue_cancel_wait(struct k_queue *queue);
2040
2053void k_queue_append(struct k_queue *queue, void *data);
2054
2071__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
2072
2085void k_queue_prepend(struct k_queue *queue, void *data);
2086
2103__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
2104
2118void k_queue_insert(struct k_queue *queue, void *prev, void *data);
2119
2138int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
2139
2155int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
2156
2174__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
2175
2192bool k_queue_remove(struct k_queue *queue, void *data);
2193
2208bool k_queue_unique_append(struct k_queue *queue, void *data);
2209
2223__syscall int k_queue_is_empty(struct k_queue *queue);
2224
2225static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
2226{
2227 return sys_sflist_is_empty(&queue->data_q) ? 1 : 0;
2228}
2229
2239__syscall void *k_queue_peek_head(struct k_queue *queue);
2240
2250__syscall void *k_queue_peek_tail(struct k_queue *queue);
2251
2261#define K_QUEUE_DEFINE(name) \
2262 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2263 Z_QUEUE_INITIALIZER(name)
2264
2267#ifdef CONFIG_USERSPACE
2277struct k_futex {
2279};
2280
2288struct z_futex_data {
2289 _wait_q_t wait_q;
2290 struct k_spinlock lock;
2291};
2292
2293#define Z_FUTEX_DATA_INITIALIZER(obj) \
2294 { \
2295 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2296 }
2297
2323__syscall int k_futex_wait(struct k_futex *futex, int expected,
2324 k_timeout_t timeout);
2325
2340__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2341
2343#endif
2344
2356struct k_event {
2357 _wait_q_t wait_q;
2360
2362
2363#ifdef CONFIG_OBJ_CORE_EVENT
2364 struct k_obj_core obj_core;
2365#endif
2366
2367};
2368
2369#define Z_EVENT_INITIALIZER(obj) \
2370 { \
2371 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2372 .events = 0, \
2373 .lock = {}, \
2374 }
2375
2383__syscall void k_event_init(struct k_event *event);
2384
2400__syscall uint32_t k_event_post(struct k_event *event, uint32_t events);
2401
2417__syscall uint32_t k_event_set(struct k_event *event, uint32_t events);
2418
2433__syscall uint32_t k_event_set_masked(struct k_event *event, uint32_t events,
2434 uint32_t events_mask);
2435
2446__syscall uint32_t k_event_clear(struct k_event *event, uint32_t events);
2447
2469__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2470 bool reset, k_timeout_t timeout);
2471
2493__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2494 bool reset, k_timeout_t timeout);
2495
2504static inline uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
2505{
2506 return k_event_wait(event, events_mask, false, K_NO_WAIT);
2507}
2508
2518#define K_EVENT_DEFINE(name) \
2519 STRUCT_SECTION_ITERABLE(k_event, name) = \
2520 Z_EVENT_INITIALIZER(name);
2521
2524struct k_fifo {
2525 struct k_queue _queue;
2526#ifdef CONFIG_OBJ_CORE_FIFO
2527 struct k_obj_core obj_core;
2528#endif
2529};
2530
2534#define Z_FIFO_INITIALIZER(obj) \
2535 { \
2536 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2537 }
2538
2556#define k_fifo_init(fifo) \
2557 ({ \
2558 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2559 k_queue_init(&(fifo)->_queue); \
2560 K_OBJ_CORE_INIT(K_OBJ_CORE(fifo), _obj_type_fifo); \
2561 K_OBJ_CORE_LINK(K_OBJ_CORE(fifo)); \
2562 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2563 })
2564
2576#define k_fifo_cancel_wait(fifo) \
2577 ({ \
2578 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2579 k_queue_cancel_wait(&(fifo)->_queue); \
2580 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2581 })
2582
2595#define k_fifo_put(fifo, data) \
2596 ({ \
2597 void *_data = data; \
2598 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, _data); \
2599 k_queue_append(&(fifo)->_queue, _data); \
2600 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, _data); \
2601 })
2602
2619#define k_fifo_alloc_put(fifo, data) \
2620 ({ \
2621 void *_data = data; \
2622 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, _data); \
2623 int fap_ret = k_queue_alloc_append(&(fifo)->_queue, _data); \
2624 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, _data, fap_ret); \
2625 fap_ret; \
2626 })
2627
2642#define k_fifo_put_list(fifo, head, tail) \
2643 ({ \
2644 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2645 k_queue_append_list(&(fifo)->_queue, head, tail); \
2646 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2647 })
2648
2662#define k_fifo_put_slist(fifo, list) \
2663 ({ \
2664 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2665 k_queue_merge_slist(&(fifo)->_queue, list); \
2666 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2667 })
2668
2686#define k_fifo_get(fifo, timeout) \
2687 ({ \
2688 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2689 void *fg_ret = k_queue_get(&(fifo)->_queue, timeout); \
2690 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, fg_ret); \
2691 fg_ret; \
2692 })
2693
2707#define k_fifo_is_empty(fifo) \
2708 k_queue_is_empty(&(fifo)->_queue)
2709
2723#define k_fifo_peek_head(fifo) \
2724 ({ \
2725 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2726 void *fph_ret = k_queue_peek_head(&(fifo)->_queue); \
2727 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, fph_ret); \
2728 fph_ret; \
2729 })
2730
2742#define k_fifo_peek_tail(fifo) \
2743 ({ \
2744 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2745 void *fpt_ret = k_queue_peek_tail(&(fifo)->_queue); \
2746 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, fpt_ret); \
2747 fpt_ret; \
2748 })
2749
2759#define K_FIFO_DEFINE(name) \
2760 STRUCT_SECTION_ITERABLE(k_fifo, name) = \
2761 Z_FIFO_INITIALIZER(name)
2762
2765struct k_lifo {
2766 struct k_queue _queue;
2767#ifdef CONFIG_OBJ_CORE_LIFO
2768 struct k_obj_core obj_core;
2769#endif
2770};
2771
2776#define Z_LIFO_INITIALIZER(obj) \
2777 { \
2778 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2779 }
2780
2798#define k_lifo_init(lifo) \
2799 ({ \
2800 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2801 k_queue_init(&(lifo)->_queue); \
2802 K_OBJ_CORE_INIT(K_OBJ_CORE(lifo), _obj_type_lifo); \
2803 K_OBJ_CORE_LINK(K_OBJ_CORE(lifo)); \
2804 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2805 })
2806
2819#define k_lifo_put(lifo, data) \
2820 ({ \
2821 void *_data = data; \
2822 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, _data); \
2823 k_queue_prepend(&(lifo)->_queue, _data); \
2824 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, _data); \
2825 })
2826
2843#define k_lifo_alloc_put(lifo, data) \
2844 ({ \
2845 void *_data = data; \
2846 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, _data); \
2847 int lap_ret = k_queue_alloc_prepend(&(lifo)->_queue, _data); \
2848 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, _data, lap_ret); \
2849 lap_ret; \
2850 })
2851
2869#define k_lifo_get(lifo, timeout) \
2870 ({ \
2871 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2872 void *lg_ret = k_queue_get(&(lifo)->_queue, timeout); \
2873 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, lg_ret); \
2874 lg_ret; \
2875 })
2876
2886#define K_LIFO_DEFINE(name) \
2887 STRUCT_SECTION_ITERABLE(k_lifo, name) = \
2888 Z_LIFO_INITIALIZER(name)
2889
2895#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
2896
2897typedef uintptr_t stack_data_t;
2898
2899struct k_stack {
2900 _wait_q_t wait_q;
2901 struct k_spinlock lock;
2902 stack_data_t *base, *next, *top;
2903
2904 uint8_t flags;
2905
2907
2908#ifdef CONFIG_OBJ_CORE_STACK
2909 struct k_obj_core obj_core;
2910#endif
2911};
2912
2913#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2914 { \
2915 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
2916 .base = (stack_buffer), \
2917 .next = (stack_buffer), \
2918 .top = (stack_buffer) + (stack_num_entries), \
2919 }
2920
2940void k_stack_init(struct k_stack *stack,
2941 stack_data_t *buffer, uint32_t num_entries);
2942
2943
2958__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
2959 uint32_t num_entries);
2960
2972int k_stack_cleanup(struct k_stack *stack);
2973
2987__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
2988
3009__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
3010 k_timeout_t timeout);
3011
3022#define K_STACK_DEFINE(name, stack_num_entries) \
3023 stack_data_t __noinit \
3024 _k_stack_buf_##name[stack_num_entries]; \
3025 STRUCT_SECTION_ITERABLE(k_stack, name) = \
3026 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
3027 stack_num_entries)
3028
3035struct k_work;
3036struct k_work_q;
3037struct k_work_queue_config;
3038extern struct k_work_q k_sys_work_q;
3039
3054struct k_mutex {
3056 _wait_q_t wait_q;
3059
3062
3065
3067
3068#ifdef CONFIG_OBJ_CORE_MUTEX
3069 struct k_obj_core obj_core;
3070#endif
3071};
3072
3076#define Z_MUTEX_INITIALIZER(obj) \
3077 { \
3078 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3079 .owner = NULL, \
3080 .lock_count = 0, \
3081 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
3082 }
3083
3097#define K_MUTEX_DEFINE(name) \
3098 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
3099 Z_MUTEX_INITIALIZER(name)
3100
3113__syscall int k_mutex_init(struct k_mutex *mutex);
3114
3115
3137__syscall int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout);
3138
3159__syscall int k_mutex_unlock(struct k_mutex *mutex);
3160
3167 _wait_q_t wait_q;
3168
3169#ifdef CONFIG_OBJ_CORE_CONDVAR
3170 struct k_obj_core obj_core;
3171#endif
3172};
3173
3174#define Z_CONDVAR_INITIALIZER(obj) \
3175 { \
3176 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3177 }
3178
3191__syscall int k_condvar_init(struct k_condvar *condvar);
3192
3199__syscall int k_condvar_signal(struct k_condvar *condvar);
3200
3208__syscall int k_condvar_broadcast(struct k_condvar *condvar);
3209
3227__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
3228 k_timeout_t timeout);
3229
3240#define K_CONDVAR_DEFINE(name) \
3241 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
3242 Z_CONDVAR_INITIALIZER(name)
3251struct k_sem {
3252 _wait_q_t wait_q;
3253 unsigned int count;
3254 unsigned int limit;
3255
3256 Z_DECL_POLL_EVENT
3257
3259
3260#ifdef CONFIG_OBJ_CORE_SEM
3261 struct k_obj_core obj_core;
3262#endif
3263};
3264
3265#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
3266 { \
3267 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3268 .count = (initial_count), \
3269 .limit = (count_limit), \
3270 Z_POLL_EVENT_OBJ_INIT(obj) \
3271 }
3272
3291#define K_SEM_MAX_LIMIT UINT_MAX
3292
3308__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
3309 unsigned int limit);
3310
3329__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
3330
3341__syscall void k_sem_give(struct k_sem *sem);
3342
3352__syscall void k_sem_reset(struct k_sem *sem);
3353
3363__syscall unsigned int k_sem_count_get(struct k_sem *sem);
3364
3368static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3369{
3370 return sem->count;
3371}
3372
3384#define K_SEM_DEFINE(name, initial_count, count_limit) \
3385 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3386 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3387 BUILD_ASSERT(((count_limit) != 0) && \
3388 (((initial_count) < (count_limit)) || ((initial_count) == (count_limit))) && \
3389 ((count_limit) <= K_SEM_MAX_LIMIT));
3390
3397struct k_work_delayable;
3398struct k_work_sync;
3399
3416typedef void (*k_work_handler_t)(struct k_work *work);
3417
3431void k_work_init(struct k_work *work,
3433
3448int k_work_busy_get(const struct k_work *work);
3449
3463static inline bool k_work_is_pending(const struct k_work *work);
3464
3486 struct k_work *work);
3487
3496int k_work_submit(struct k_work *work);
3497
3522bool k_work_flush(struct k_work *work,
3523 struct k_work_sync *sync);
3524
3544int k_work_cancel(struct k_work *work);
3545
3576bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3577
3588
3609 k_thread_stack_t *stack, size_t stack_size,
3610 int prio, const struct k_work_queue_config *cfg);
3611
3621static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3622
3646int k_work_queue_drain(struct k_work_q *queue, bool plug);
3647
3662
3678
3694
3706static inline struct k_work_delayable *
3708
3723
3738static inline bool k_work_delayable_is_pending(
3739 const struct k_work_delayable *dwork);
3740
3755 const struct k_work_delayable *dwork);
3756
3771 const struct k_work_delayable *dwork);
3772
3801 struct k_work_delayable *dwork,
3802 k_timeout_t delay);
3803
3818 k_timeout_t delay);
3819
3856 struct k_work_delayable *dwork,
3857 k_timeout_t delay);
3858
3872 k_timeout_t delay);
3873
3899 struct k_work_sync *sync);
3900
3922
3952 struct k_work_sync *sync);
3953
3954enum {
3959 /* The atomic API is used for all work and queue flags fields to
3960 * enforce sequential consistency in SMP environments.
3961 */
3962
3963 /* Bits that represent the work item states. At least nine of the
3964 * combinations are distinct valid stable states.
3965 */
3966 K_WORK_RUNNING_BIT = 0,
3967 K_WORK_CANCELING_BIT = 1,
3968 K_WORK_QUEUED_BIT = 2,
3969 K_WORK_DELAYED_BIT = 3,
3970 K_WORK_FLUSHING_BIT = 4,
3971
3972 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
3973 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT) | BIT(K_WORK_FLUSHING_BIT),
3974
3975 /* Static work flags */
3976 K_WORK_DELAYABLE_BIT = 8,
3977 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
3978
3979 /* Dynamic work queue flags */
3980 K_WORK_QUEUE_STARTED_BIT = 0,
3981 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
3982 K_WORK_QUEUE_BUSY_BIT = 1,
3983 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
3984 K_WORK_QUEUE_DRAIN_BIT = 2,
3985 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
3986 K_WORK_QUEUE_PLUGGED_BIT = 3,
3987 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
3988 K_WORK_QUEUE_STOP_BIT = 4,
3989 K_WORK_QUEUE_STOP = BIT(K_WORK_QUEUE_STOP_BIT),
3990
3991 /* Static work queue flags */
3992 K_WORK_QUEUE_NO_YIELD_BIT = 8,
3993 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3994
3998 /* Transient work flags */
3999
4005 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
4006
4011 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
4012
4018 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
4019
4025 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
4026
4031 K_WORK_FLUSHING = BIT(K_WORK_FLUSHING_BIT),
4032};
4033
4035struct k_work {
4036 /* All fields are protected by the work module spinlock. No fields
4037 * are to be accessed except through kernel API.
4038 */
4039
4040 /* Node to link into k_work_q pending list. */
4042
4043 /* The function to be invoked by the work queue thread. */
4045
4046 /* The queue on which the work item was last submitted. */
4048
4049 /* State of the work item.
4050 *
4051 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
4052 *
4053 * It can be RUNNING and CANCELING simultaneously.
4054 */
4056};
4057
4058#define Z_WORK_INITIALIZER(work_handler) { \
4059 .handler = (work_handler), \
4060}
4061
4064 /* The work item. */
4065 struct k_work work;
4066
4067 /* Timeout used to submit work after a delay. */
4068 struct _timeout timeout;
4069
4070 /* The queue to which the work should be submitted. */
4072};
4073
4074#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
4075 .work = { \
4076 .handler = (work_handler), \
4077 .flags = K_WORK_DELAYABLE, \
4078 }, \
4079}
4080
4097#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
4098 struct k_work_delayable work \
4099 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
4100
4105/* Record used to wait for work to flush.
4106 *
4107 * The work item is inserted into the queue that will process (or is
4108 * processing) the item, and will be processed as soon as the item
4109 * completes. When the flusher is processed the semaphore will be
4110 * signaled, releasing the thread waiting for the flush.
4111 */
4112struct z_work_flusher {
4113 struct k_work work;
4114 struct k_sem sem;
4115};
4116
4117/* Record used to wait for work to complete a cancellation.
4118 *
4119 * The work item is inserted into a global queue of pending cancels.
4120 * When a cancelling work item goes idle any matching waiters are
4121 * removed from pending_cancels and are woken.
4122 */
4123struct z_work_canceller {
4124 sys_snode_t node;
4125 struct k_work *work;
4126 struct k_sem sem;
4127};
4128
4147 union {
4148 struct z_work_flusher flusher;
4149 struct z_work_canceller canceller;
4150 };
4151};
4152
4164 const char *name;
4165
4179
4184};
4185
4187struct k_work_q {
4188 /* The thread that animates the work. */
4190
4191 /* All the following fields must be accessed only while the
4192 * work module spinlock is held.
4193 */
4194
4195 /* List of k_work items to be worked. */
4197
4198 /* Wait queue for idle work thread. */
4199 _wait_q_t notifyq;
4200
4201 /* Wait queue for threads waiting for the queue to drain. */
4202 _wait_q_t drainq;
4203
4204 /* Flags describing queue state. */
4206};
4207
4208/* Provide the implementation for inline functions declared above */
4209
4210static inline bool k_work_is_pending(const struct k_work *work)
4211{
4212 return k_work_busy_get(work) != 0;
4213}
4214
4215static inline struct k_work_delayable *
4220
4222 const struct k_work_delayable *dwork)
4223{
4224 return k_work_delayable_busy_get(dwork) != 0;
4225}
4226
4228 const struct k_work_delayable *dwork)
4229{
4230 return z_timeout_expires(&dwork->timeout);
4231}
4232
4234 const struct k_work_delayable *dwork)
4235{
4236 return z_timeout_remaining(&dwork->timeout);
4237}
4238
4240{
4241 return &queue->thread;
4242}
4243
4246struct k_work_user;
4247
4262typedef void (*k_work_user_handler_t)(struct k_work_user *work);
4263
4268struct k_work_user_q {
4269 struct k_queue queue;
4270 struct k_thread thread;
4271};
4272
4273enum {
4274 K_WORK_USER_STATE_PENDING, /* Work item pending state */
4275};
4276
4277struct k_work_user {
4278 void *_reserved; /* Used by k_queue implementation. */
4279 k_work_user_handler_t handler;
4281};
4282
4287#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4288#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4289#else
4290#define Z_WORK_USER_INITIALIZER(work_handler) \
4291 { \
4292 ._reserved = NULL, \
4293 .handler = (work_handler), \
4294 .flags = 0 \
4295 }
4296#endif
4297
4309#define K_WORK_USER_DEFINE(work, work_handler) \
4310 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4311
4321static inline void k_work_user_init(struct k_work_user *work,
4322 k_work_user_handler_t handler)
4323{
4324 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4325}
4326
4343static inline bool k_work_user_is_pending(struct k_work_user *work)
4344{
4345 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4346}
4347
4366static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4367 struct k_work_user *work)
4368{
4369 int ret = -EBUSY;
4370
4371 if (!atomic_test_and_set_bit(&work->flags,
4372 K_WORK_USER_STATE_PENDING)) {
4373 ret = k_queue_alloc_append(&work_q->queue, work);
4374
4375 /* Couldn't insert into the queue. Clear the pending bit
4376 * so the work item can be submitted again
4377 */
4378 if (ret != 0) {
4379 atomic_clear_bit(&work->flags,
4380 K_WORK_USER_STATE_PENDING);
4381 }
4382 }
4383
4384 return ret;
4385}
4386
4406void k_work_user_queue_start(struct k_work_user_q *work_q,
4407 k_thread_stack_t *stack,
4408 size_t stack_size, int prio,
4409 const char *name);
4410
4421static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
4422{
4423 return &work_q->thread;
4424}
4425
4432struct k_work_poll {
4433 struct k_work work;
4434 struct k_work_q *workq;
4435 struct z_poller poller;
4436 struct k_poll_event *events;
4437 int num_events;
4438 k_work_handler_t real_handler;
4439 struct _timeout timeout;
4440 int poll_result;
4441};
4442
4463#define K_WORK_DEFINE(work, work_handler) \
4464 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4465
4475void k_work_poll_init(struct k_work_poll *work,
4476 k_work_handler_t handler);
4477
4513 struct k_work_poll *work,
4514 struct k_poll_event *events,
4515 int num_events,
4516 k_timeout_t timeout);
4517
4549int k_work_poll_submit(struct k_work_poll *work,
4550 struct k_poll_event *events,
4551 int num_events,
4552 k_timeout_t timeout);
4553
4568int k_work_poll_cancel(struct k_work_poll *work);
4569
4581struct k_msgq {
4583 _wait_q_t wait_q;
4587 size_t msg_size;
4600
4601 Z_DECL_POLL_EVENT
4602
4605
4607
4608#ifdef CONFIG_OBJ_CORE_MSGQ
4609 struct k_obj_core obj_core;
4610#endif
4611};
4617#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4618 { \
4619 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4620 .lock = {}, \
4621 .msg_size = q_msg_size, \
4622 .max_msgs = q_max_msgs, \
4623 .buffer_start = q_buffer, \
4624 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4625 .read_ptr = q_buffer, \
4626 .write_ptr = q_buffer, \
4627 .used_msgs = 0, \
4628 Z_POLL_EVENT_OBJ_INIT(obj) \
4629 .flags = 0, \
4630 }
4631
4637#define K_MSGQ_FLAG_ALLOC BIT(0)
4638
4650
4651
4670#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4671 static char __noinit __aligned(q_align) \
4672 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4673 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4674 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4675 (q_msg_size), (q_max_msgs))
4676
4691void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4692 uint32_t max_msgs);
4693
4713__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
4714 uint32_t max_msgs);
4715
4726int k_msgq_cleanup(struct k_msgq *msgq);
4727
4748__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
4749
4770__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
4771
4786__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
4787
4804__syscall int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx);
4805
4815__syscall void k_msgq_purge(struct k_msgq *msgq);
4816
4827__syscall uint32_t k_msgq_num_free_get(struct k_msgq *msgq);
4828
4837__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
4838 struct k_msgq_attrs *attrs);
4839
4840
4841static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
4842{
4843 return msgq->max_msgs - msgq->used_msgs;
4844}
4845
4855__syscall uint32_t k_msgq_num_used_get(struct k_msgq *msgq);
4856
4857static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
4858{
4859 return msgq->used_msgs;
4860}
4861
4876 size_t size;
4880 void *tx_data;
4886 k_tid_t _syncing_thread;
4887#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4889 struct k_sem *_async_sem;
4890#endif
4891};
4896struct k_mbox {
4898 _wait_q_t tx_msg_queue;
4900 _wait_q_t rx_msg_queue;
4902
4904
4905#ifdef CONFIG_OBJ_CORE_MAILBOX
4906 struct k_obj_core obj_core;
4907#endif
4908};
4913#define Z_MBOX_INITIALIZER(obj) \
4914 { \
4915 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4916 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4917 }
4918
4932#define K_MBOX_DEFINE(name) \
4933 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4934 Z_MBOX_INITIALIZER(name) \
4935
4943void k_mbox_init(struct k_mbox *mbox);
4944
4964int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4965 k_timeout_t timeout);
4966
4980void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4981 struct k_sem *sem);
4982
5000int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
5001 void *buffer, k_timeout_t timeout);
5002
5016void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
5017
5035__syscall void k_pipe_init(struct k_pipe *pipe, uint8_t *buffer, size_t buffer_size);
5036
5037#ifdef CONFIG_PIPES
5039struct k_pipe {
5040 unsigned char *buffer;
5041 size_t size;
5042 size_t bytes_used;
5043 size_t read_index;
5044 size_t write_index;
5045 struct k_spinlock lock;
5047 struct {
5048 _wait_q_t readers;
5049 _wait_q_t writers;
5050 } wait_q;
5052 Z_DECL_POLL_EVENT
5053
5054 uint8_t flags;
5057
5058#ifdef CONFIG_OBJ_CORE_PIPE
5059 struct k_obj_core obj_core;
5060#endif
5061};
5062
5066#define K_PIPE_FLAG_ALLOC BIT(0)
5068#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
5069 { \
5070 .buffer = pipe_buffer, \
5071 .size = pipe_buffer_size, \
5072 .bytes_used = 0, \
5073 .read_index = 0, \
5074 .write_index = 0, \
5075 .lock = {}, \
5076 .wait_q = { \
5077 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
5078 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
5079 }, \
5080 Z_POLL_EVENT_OBJ_INIT(obj) \
5081 .flags = 0, \
5082 }
5083
5101#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
5102 static unsigned char __noinit __aligned(pipe_align) \
5103 _k_pipe_buf_##name[pipe_buffer_size]; \
5104 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
5105 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
5106
5119__deprecated int k_pipe_cleanup(struct k_pipe *pipe);
5120
5137__deprecated __syscall int k_pipe_alloc_init(struct k_pipe *pipe, size_t size);
5138
5158__deprecated __syscall int k_pipe_put(struct k_pipe *pipe, const void *data,
5159 size_t bytes_to_write, size_t *bytes_written,
5160 size_t min_xfer, k_timeout_t timeout);
5161
5182__deprecated __syscall int k_pipe_get(struct k_pipe *pipe, void *data,
5183 size_t bytes_to_read, size_t *bytes_read,
5184 size_t min_xfer, k_timeout_t timeout);
5185
5195__deprecated __syscall size_t k_pipe_read_avail(struct k_pipe *pipe);
5196
5206__deprecated __syscall size_t k_pipe_write_avail(struct k_pipe *pipe);
5207
5219__deprecated __syscall void k_pipe_flush(struct k_pipe *pipe);
5220
5233__deprecated __syscall void k_pipe_buffer_flush(struct k_pipe *pipe);
5234
5235#else /* CONFIG_PIPES */
5236
5241
5242struct k_pipe {
5243 size_t waiting;
5246 _wait_q_t data;
5247 _wait_q_t space;
5249
5250 Z_DECL_POLL_EVENT
5251#ifdef CONFIG_OBJ_CORE_PIPE
5252 struct k_obj_core obj_core;
5253#endif
5255};
5256
5260#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
5261{ \
5262 .buf = RING_BUF_INIT(pipe_buffer, pipe_buffer_size), \
5263 .data = Z_WAIT_Q_INIT(&obj.data), \
5264 .space = Z_WAIT_Q_INIT(&obj.space), \
5265 .flags = PIPE_FLAG_OPEN, \
5266 .waiting = 0, \
5267 Z_POLL_EVENT_OBJ_INIT(obj) \
5268}
5286#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
5287 static unsigned char __noinit __aligned(pipe_align) \
5288 _k_pipe_buf_##name[pipe_buffer_size]; \
5289 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
5290 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
5291
5292
5309__syscall int k_pipe_write(struct k_pipe *pipe, const uint8_t *data, size_t len,
5310 k_timeout_t timeout);
5311
5327__syscall int k_pipe_read(struct k_pipe *pipe, uint8_t *data, size_t len,
5328 k_timeout_t timeout);
5329
5339__syscall void k_pipe_reset(struct k_pipe *pipe);
5340
5349__syscall void k_pipe_close(struct k_pipe *pipe);
5350#endif /* CONFIG_PIPES */
5356struct k_mem_slab_info {
5357 uint32_t num_blocks;
5358 size_t block_size;
5359 uint32_t num_used;
5360#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5361 uint32_t max_used;
5362#endif
5363};
5364
5365struct k_mem_slab {
5366 _wait_q_t wait_q;
5367 struct k_spinlock lock;
5368 char *buffer;
5369 char *free_list;
5370 struct k_mem_slab_info info;
5371
5373
5374#ifdef CONFIG_OBJ_CORE_MEM_SLAB
5375 struct k_obj_core obj_core;
5376#endif
5377};
5378
5379#define Z_MEM_SLAB_INITIALIZER(_slab, _slab_buffer, _slab_block_size, \
5380 _slab_num_blocks) \
5381 { \
5382 .wait_q = Z_WAIT_Q_INIT(&(_slab).wait_q), \
5383 .lock = {}, \
5384 .buffer = _slab_buffer, \
5385 .free_list = NULL, \
5386 .info = {_slab_num_blocks, _slab_block_size, 0} \
5387 }
5388
5389
5423#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
5424 char __noinit_named(k_mem_slab_buf_##name) \
5425 __aligned(WB_UP(slab_align)) \
5426 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5427 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5428 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5429 WB_UP(slab_block_size), slab_num_blocks)
5430
5445#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5446 static char __noinit_named(k_mem_slab_buf_##name) \
5447 __aligned(WB_UP(slab_align)) \
5448 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5449 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5450 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5451 WB_UP(slab_block_size), slab_num_blocks)
5452
5474int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
5475 size_t block_size, uint32_t num_blocks);
5476
5499int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5500 k_timeout_t timeout);
5501
5511void k_mem_slab_free(struct k_mem_slab *slab, void *mem);
5512
5523static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5524{
5525 return slab->info.num_used;
5526}
5527
5538static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5539{
5540#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5541 return slab->info.max_used;
5542#else
5543 ARG_UNUSED(slab);
5544 return 0;
5545#endif
5546}
5547
5558static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5559{
5560 return slab->info.num_blocks - slab->info.num_used;
5561}
5562
5575int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats);
5576
5588int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab);
5589
5597/* kernel synchronized heap struct */
5598
5599struct k_heap {
5601 _wait_q_t wait_q;
5603};
5604
5618void k_heap_init(struct k_heap *h, void *mem,
5619 size_t bytes) __attribute_nonnull(1);
5620
5641void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5642 k_timeout_t timeout) __attribute_nonnull(1);
5643
5665void *k_heap_alloc(struct k_heap *h, size_t bytes,
5666 k_timeout_t timeout) __attribute_nonnull(1);
5667
5690void *k_heap_calloc(struct k_heap *h, size_t num, size_t size, k_timeout_t timeout)
5691 __attribute_nonnull(1);
5692
5716void *k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
5717 __attribute_nonnull(1);
5718
5729void k_heap_free(struct k_heap *h, void *mem) __attribute_nonnull(1);
5730
5731/* Hand-calculated minimum heap sizes needed to return a successful
5732 * 1-byte allocation. See details in lib/os/heap.[ch]
5733 */
5734#define Z_HEAP_MIN_SIZE ((sizeof(void *) > 4) ? 56 : 44)
5735
5752#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5753 char in_section \
5754 __aligned(8) /* CHUNK_UNIT */ \
5755 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5756 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5757 .heap = { \
5758 .init_mem = kheap_##name, \
5759 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5760 }, \
5761 }
5762
5777#define K_HEAP_DEFINE(name, bytes) \
5778 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5779 __noinit_named(kheap_buf_##name))
5780
5795#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5796 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5797
5827void *k_aligned_alloc(size_t align, size_t size);
5828
5840void *k_malloc(size_t size);
5841
5852void k_free(void *ptr);
5853
5865void *k_calloc(size_t nmemb, size_t size);
5866
5884void *k_realloc(void *ptr, size_t size);
5885
5888/* polling API - PRIVATE */
5889
5890#ifdef CONFIG_POLL
5891#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5892#else
5893#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5894#endif
5895
5896/* private - types bit positions */
5897enum _poll_types_bits {
5898 /* can be used to ignore an event */
5899 _POLL_TYPE_IGNORE,
5900
5901 /* to be signaled by k_poll_signal_raise() */
5902 _POLL_TYPE_SIGNAL,
5903
5904 /* semaphore availability */
5905 _POLL_TYPE_SEM_AVAILABLE,
5906
5907 /* queue/FIFO/LIFO data availability */
5908 _POLL_TYPE_DATA_AVAILABLE,
5909
5910 /* msgq data availability */
5911 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5912
5913 /* pipe data availability */
5914 _POLL_TYPE_PIPE_DATA_AVAILABLE,
5915
5916 _POLL_NUM_TYPES
5917};
5918
5919#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5920
5921/* private - states bit positions */
5922enum _poll_states_bits {
5923 /* default state when creating event */
5924 _POLL_STATE_NOT_READY,
5925
5926 /* signaled by k_poll_signal_raise() */
5927 _POLL_STATE_SIGNALED,
5928
5929 /* semaphore is available */
5930 _POLL_STATE_SEM_AVAILABLE,
5931
5932 /* data is available to read on queue/FIFO/LIFO */
5933 _POLL_STATE_DATA_AVAILABLE,
5934
5935 /* queue/FIFO/LIFO wait was cancelled */
5936 _POLL_STATE_CANCELLED,
5937
5938 /* data is available to read on a message queue */
5939 _POLL_STATE_MSGQ_DATA_AVAILABLE,
5940
5941 /* data is available to read from a pipe */
5942 _POLL_STATE_PIPE_DATA_AVAILABLE,
5943
5944 _POLL_NUM_STATES
5945};
5946
5947#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5948
5949#define _POLL_EVENT_NUM_UNUSED_BITS \
5950 (32 - (0 \
5951 + 8 /* tag */ \
5952 + _POLL_NUM_TYPES \
5953 + _POLL_NUM_STATES \
5954 + 1 /* modes */ \
5955 ))
5956
5957/* end of polling API - PRIVATE */
5958
5959
5968/* Public polling API */
5969
5970/* public - values for k_poll_event.type bitfield */
5971#define K_POLL_TYPE_IGNORE 0
5972#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5973#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5974#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5975#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5976#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5977#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
5978
5979/* public - polling modes */
5981 /* polling thread does not take ownership of objects when available */
5983
5986
5987/* public - values for k_poll_event.state bitfield */
5988#define K_POLL_STATE_NOT_READY 0
5989#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5990#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5991#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5992#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5993#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5994#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
5995#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5996
5997/* public - poll signal object */
6001
6006 unsigned int signaled;
6007
6010};
6011
6012#define K_POLL_SIGNAL_INITIALIZER(obj) \
6013 { \
6014 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
6015 .signaled = 0, \
6016 .result = 0, \
6017 }
6024 sys_dnode_t _node;
6025
6027 struct z_poller *poller;
6028
6031
6033 uint32_t type:_POLL_NUM_TYPES;
6034
6036 uint32_t state:_POLL_NUM_STATES;
6037
6040
6042 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
6043
6045 union {
6046 /* The typed_* fields below are used by K_POLL_EVENT_*INITIALIZER() macros to ensure
6047 * type safety of polled objects.
6048 */
6049 void *obj, *typed_K_POLL_TYPE_IGNORE;
6050 struct k_poll_signal *signal, *typed_K_POLL_TYPE_SIGNAL;
6051 struct k_sem *sem, *typed_K_POLL_TYPE_SEM_AVAILABLE;
6052 struct k_fifo *fifo, *typed_K_POLL_TYPE_FIFO_DATA_AVAILABLE;
6053 struct k_queue *queue, *typed_K_POLL_TYPE_DATA_AVAILABLE;
6054 struct k_msgq *msgq, *typed_K_POLL_TYPE_MSGQ_DATA_AVAILABLE;
6055 struct k_pipe *pipe, *typed_K_POLL_TYPE_PIPE_DATA_AVAILABLE;
6056 };
6057};
6058
6059#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
6060 { \
6061 .poller = NULL, \
6062 .type = _event_type, \
6063 .state = K_POLL_STATE_NOT_READY, \
6064 .mode = _event_mode, \
6065 .unused = 0, \
6066 { \
6067 .typed_##_event_type = _event_obj, \
6068 }, \
6069 }
6070
6071#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
6072 event_tag) \
6073 { \
6074 .tag = event_tag, \
6075 .type = _event_type, \
6076 .state = K_POLL_STATE_NOT_READY, \
6077 .mode = _event_mode, \
6078 .unused = 0, \
6079 { \
6080 .typed_##_event_type = _event_obj, \
6081 }, \
6082 }
6083
6099void k_poll_event_init(struct k_poll_event *event, uint32_t type,
6100 int mode, void *obj);
6101
6145__syscall int k_poll(struct k_poll_event *events, int num_events,
6146 k_timeout_t timeout);
6147
6156__syscall void k_poll_signal_init(struct k_poll_signal *sig);
6157
6163__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
6164
6175__syscall void k_poll_signal_check(struct k_poll_signal *sig,
6176 unsigned int *signaled, int *result);
6177
6202__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
6203
6224static inline void k_cpu_idle(void)
6225{
6226 arch_cpu_idle();
6227}
6228
6243static inline void k_cpu_atomic_idle(unsigned int key)
6244{
6246}
6247
6256#ifdef ARCH_EXCEPT
6257/* This architecture has direct support for triggering a CPU exception */
6258#define z_except_reason(reason) ARCH_EXCEPT(reason)
6259#else
6260
6261#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
6262#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
6263#else
6264#define __EXCEPT_LOC()
6265#endif
6266
6267/* NOTE: This is the implementation for arches that do not implement
6268 * ARCH_EXCEPT() to generate a real CPU exception.
6269 *
6270 * We won't have a real exception frame to determine the PC value when
6271 * the oops occurred, so print file and line number before we jump into
6272 * the fatal error handler.
6273 */
6274#define z_except_reason(reason) do { \
6275 __EXCEPT_LOC(); \
6276 z_fatal_error(reason, NULL); \
6277 } while (false)
6278
6279#endif /* _ARCH__EXCEPT */
6295#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
6296
6305#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
6306
6311/*
6312 * private APIs that are utilized by one or more public APIs
6313 */
6314
6318void z_timer_expiration_handler(struct _timeout *timeout);
6323#ifdef CONFIG_PRINTK
6331__syscall void k_str_out(char *c, size_t n);
6332#endif
6333
6360__syscall int k_float_disable(struct k_thread *thread);
6361
6400__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
6401
6415
6423
6432
6443
6454
6463
6472
6473#ifdef __cplusplus
6474}
6475#endif
6476
6477#include <zephyr/tracing/tracing.h>
6478#include <zephyr/syscalls/kernel.h>
6479
6480#endif /* !_ASMLANGUAGE */
6481
6482#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
static uint32_t arch_k_cycle_get_32(void)
Definition misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition misc.h:33
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition arch_interface.h:48
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition arch_interface.h:46
long atomic_t
Definition atomic_types.h:15
System error numbers.
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically get and test a bit.
Definition atomic.h:127
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition atomic.h:191
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit and test it.
Definition atomic.h:170
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition kernel.h:1955
#define K_NO_WAIT
Generate null timeout delay.
Definition kernel.h:1371
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition kernel.h:1907
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition sys_clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition kernel.h:1936
static uint32_t k_uptime_seconds(void)
Get system uptime in seconds.
Definition kernel.h:1920
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition kernel.h:1970
static int64_t k_uptime_get(void)
Get system uptime.
Definition kernel.h:1883
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition kernel.h:6224
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition kernel.h:6243
struct _dnode sys_dnode_t
Doubly-linked list node structure.
Definition dlist.h:54
struct _dnode sys_dlist_t
Doubly-linked list structure.
Definition dlist.h:50
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
uint32_t k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
static uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
Test the events currently tracked in the event object.
Definition kernel.h:2504
uint32_t k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
uint32_t k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events.
struct _sflist sys_sflist_t
Flagged single-linked list structure.
Definition sflist.h:54
static bool sys_sflist_is_empty(sys_sflist_t *list)
Test if the given list is empty.
Definition sflist.h:336
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
void * k_heap_calloc(struct k_heap *h, size_t num, size_t size, k_timeout_t timeout)
Allocate and initialize memory for an array of objects from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void * k_realloc(void *ptr, size_t size)
Expand the size of an existing allocation.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
Reallocate memory from a k_heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition kernel.h:1226
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void *mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition kernel.h:5523
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition kernel.h:5538
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition kernel.h:5558
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.
int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
int k_pipe_write(struct k_pipe *pipe, const uint8_t *data, size_t len, k_timeout_t timeout)
Write data to a pipe.
void k_pipe_close(struct k_pipe *pipe)
Close a pipe.
void k_pipe_reset(struct k_pipe *pipe)
Reset a pipe This routine resets the pipe, discarding any unread data and unblocking any threads wait...
void k_pipe_init(struct k_pipe *pipe, uint8_t *buffer, size_t buffer_size)
initialize a pipe
pipe_flags
Definition kernel.h:5237
int k_pipe_read(struct k_pipe *pipe, uint8_t *data, size_t len, k_timeout_t timeout)
Read data from a pipe This routine reads up to len bytes of data from pipe.
@ PIPE_FLAG_RESET
Definition kernel.h:5239
@ PIPE_FLAG_OPEN
Definition kernel.h:5238
void k_poll_signal_reset(struct k_poll_signal *sig)
Reset a poll signal object's state to unsignaled.
k_poll_modes
Definition kernel.h:5980
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition kernel.h:5982
@ K_POLL_NUM_MODES
Definition kernel.h:5984
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
struct _slist sys_slist_t
Single-linked list structure.
Definition slist.h:49
struct _snode sys_snode_t
Single-linked list node structure.
Definition slist.h:39
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition tracing_macros.h:366
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition util_macro.h:148
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition util.h:285
#define EBUSY
Mount device busy.
Definition errno.h:54
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition kernel.h:485
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *thread)
Get time remaining before a thread wakes up, in system ticks.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition kernel.h:579
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition kernel.h:676
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_thread_foreach_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in running on specified cpu.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
int k_thread_stack_free(k_thread_stack_t *stack)
Free a dynamically allocated thread stack.
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread)
Get time when a thread wakes up, in system ticks.
__attribute_const__ k_tid_t k_sched_current_thread_query(void)
Query thread ID of the current thread.
static void k_thread_start(k_tid_t thread)
Start an inactive thread.
Definition kernel.h:1103
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_reschedule(void)
Invoke the scheduler.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over the threads in running on current cpu without locking.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition kernel.h:106
k_thread_stack_t * k_thread_stack_alloc(size_t size, int flags)
Dynamically allocate a thread stack.
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition kernel.h:1661
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition kernel.h:1645
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition kernel.h:1807
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
#define k_ticks_to_ms_floor32(t)
Convert ticks to milliseconds.
Definition time_units.h:1707
#define k_ticks_to_sec_floor32(t)
Convert ticks to seconds.
Definition time_units.h:1611
#define k_ticks_to_ms_floor64(t)
Convert ticks to milliseconds.
Definition time_units.h:1723
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition kernel.h:4239
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition kernel.h:4210
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition kernel.h:4227
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
int k_work_queue_stop(struct k_work_q *queue, k_timeout_t timeout)
Stop a work queue.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition kernel.h:4366
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition kernel.h:4343
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition kernel.h:3416
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition kernel.h:4221
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition kernel.h:4321
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition kernel.h:4262
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition kernel.h:4421
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition kernel.h:4216
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition kernel.h:4233
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition kernel.h:4011
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition kernel.h:4018
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition kernel.h:4025
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition kernel.h:4005
@ K_WORK_FLUSHING
Flag indicating a synced work item that is being flushed.
Definition kernel.h:4031
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
execution_context_types
Definition kernel.h:91
@ K_ISR
Definition kernel.h:92
@ K_COOP_THREAD
Definition kernel.h:93
@ K_PREEMPT_THREAD
Definition kernel.h:94
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
int k_thread_runtime_stats_cpu_get(int cpu, k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads on specified cpu.
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition kernel_structs.h:310
Memory Statistics.
flags
Definition parser.h:97
state
Definition parser_state.h:29
__UINT32_TYPE__ uint32_t
Definition stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition stdint.h:104
__INT32_TYPE__ int32_t
Definition stdint.h:74
__UINT64_TYPE__ uint64_t
Definition stdint.h:91
__UINT8_TYPE__ uint8_t
Definition stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition stdint.h:105
__INT64_TYPE__ int64_t
Definition stdint.h:75
Structure to store initialization entry information.
Definition init.h:66
Definition kernel.h:3166
_wait_q_t wait_q
Definition kernel.h:3167
Event Structure.
Definition kernel.h:2356
struct k_spinlock lock
Definition kernel.h:2359
uint32_t events
Definition kernel.h:2358
_wait_q_t wait_q
Definition kernel.h:2357
Definition kernel.h:2524
futex structure
Definition kernel.h:2277
atomic_t val
Definition kernel.h:2278
Definition kernel.h:5599
struct k_spinlock lock
Definition kernel.h:5602
struct sys_heap heap
Definition kernel.h:5600
_wait_q_t wait_q
Definition kernel.h:5601
Definition kernel.h:2765
Mailbox Message Structure.
Definition kernel.h:4874
k_tid_t tx_target_thread
target thread id
Definition kernel.h:4884
void * tx_data
sender's message data buffer
Definition kernel.h:4880
k_tid_t rx_source_thread
source thread id
Definition kernel.h:4882
uint32_t info
application-defined information value
Definition kernel.h:4878
size_t size
size of message (in bytes)
Definition kernel.h:4876
Mailbox Structure.
Definition kernel.h:4896
_wait_q_t tx_msg_queue
Transmit messages queue.
Definition kernel.h:4898
struct k_spinlock lock
Definition kernel.h:4901
_wait_q_t rx_msg_queue
Receive message queue.
Definition kernel.h:4900
Memory Domain.
Definition mem_domain.h:80
Memory Partition.
Definition mem_domain.h:55
Message Queue Attributes.
Definition kernel.h:4642
uint32_t used_msgs
Used messages.
Definition kernel.h:4648
size_t msg_size
Message Size.
Definition kernel.h:4644
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4646
Message Queue Structure.
Definition kernel.h:4581
size_t msg_size
Message size.
Definition kernel.h:4587
char * read_ptr
Read pointer.
Definition kernel.h:4595
uint32_t used_msgs
Number of used messages.
Definition kernel.h:4599
char * buffer_end
End of message buffer.
Definition kernel.h:4593
struct k_spinlock lock
Lock.
Definition kernel.h:4585
char * write_ptr
Write pointer.
Definition kernel.h:4597
char * buffer_start
Start of message buffer.
Definition kernel.h:4591
uint8_t flags
Message queue.
Definition kernel.h:4604
_wait_q_t wait_q
Message queue wait queue.
Definition kernel.h:4583
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4589
Mutex Structure.
Definition kernel.h:3054
uint32_t lock_count
Current lock count.
Definition kernel.h:3061
_wait_q_t wait_q
Mutex wait queue.
Definition kernel.h:3056
int owner_orig_prio
Original thread priority.
Definition kernel.h:3064
struct k_thread * owner
Mutex owner.
Definition kernel.h:3058
Object core structure.
Definition obj_core.h:121
Definition kernel.h:5242
uint8_t flags
Definition kernel.h:5248
struct ring_buf buf
Definition kernel.h:5244
_wait_q_t data
Definition kernel.h:5246
_wait_q_t space
Definition kernel.h:5247
struct k_spinlock lock
Definition kernel.h:5245
size_t waiting
Definition kernel.h:5243
Poll Event.
Definition kernel.h:6022
struct k_poll_signal * signal
Definition kernel.h:6050
struct k_pipe * pipe
Definition kernel.h:6055
uint32_t tag
optional user-specified tag, opaque, untouched by the API
Definition kernel.h:6030
struct k_fifo * fifo
Definition kernel.h:6052
struct k_msgq * msgq
Definition kernel.h:6054
struct k_queue * queue
Definition kernel.h:6053
uint32_t unused
unused bits in 32-bit word
Definition kernel.h:6042
uint32_t type
bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values)
Definition kernel.h:6033
struct k_sem * sem
Definition kernel.h:6051
uint32_t state
bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values)
Definition kernel.h:6036
uint32_t mode
mode of operation, from enum k_poll_modes
Definition kernel.h:6039
struct z_poller * poller
PRIVATE - DO NOT TOUCH.
Definition kernel.h:6027
void * obj
Definition kernel.h:6049
Definition kernel.h:5998
sys_dlist_t poll_events
PRIVATE - DO NOT TOUCH.
Definition kernel.h:6000
int result
custom result value passed to k_poll_signal_raise() if needed
Definition kernel.h:6009
unsigned int signaled
1 if the event has been signaled, 0 otherwise.
Definition kernel.h:6006
Definition kernel.h:1985
struct k_spinlock lock
Definition kernel.h:1987
_wait_q_t wait_q
Definition kernel.h:1988
sys_sflist_t data_q
Definition kernel.h:1986
Kernel Spin Lock.
Definition spinlock.h:45
Definition thread.h:210
Thread Structure.
Definition thread.h:262
struct _thread_base base
Definition thread.h:264
struct k_heap * resource_pool
resource pool
Definition thread.h:352
struct __thread_entry entry
thread entry and parameters description
Definition thread.h:291
Kernel timeout type.
Definition sys_clock.h:65
A structure used to submit work after a delay.
Definition kernel.h:4063
struct _timeout timeout
Definition kernel.h:4068
struct k_work_q * queue
Definition kernel.h:4071
struct k_work work
Definition kernel.h:4065
A structure used to hold work until it can be processed.
Definition kernel.h:4187
sys_slist_t pending
Definition kernel.h:4196
_wait_q_t drainq
Definition kernel.h:4202
_wait_q_t notifyq
Definition kernel.h:4199
uint32_t flags
Definition kernel.h:4205
struct k_thread thread
Definition kernel.h:4189
A structure holding optional configuration items for a work queue.
Definition kernel.h:4159
const char * name
The name to be given to the work queue thread.
Definition kernel.h:4164
bool essential
Control whether the work queue thread should be marked as essential thread.
Definition kernel.h:4183
bool no_yield
Control whether the work queue thread should yield between items.
Definition kernel.h:4178
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition kernel.h:4146
struct z_work_canceller canceller
Definition kernel.h:4149
struct z_work_flusher flusher
Definition kernel.h:4148
A structure used to submit work.
Definition kernel.h:4035
k_work_handler_t handler
Definition kernel.h:4044
uint32_t flags
Definition kernel.h:4055
struct k_work_q * queue
Definition kernel.h:4047
sys_snode_t node
Definition kernel.h:4041
A structure to represent a ring buffer.
Definition ring_buffer.h:49
Definition sys_heap.h:57
Definition mem_stats.h:24
Macros to abstract toolchain specific capabilities.