Zephyr API Documentation 4.1.99
A Scalable Open Source RTOS
 4.1.99
All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <zephyr/toolchain.h>
26
27#ifdef __cplusplus
28extern "C" {
29#endif
30
31/*
32 * Zephyr currently assumes the size of a couple standard types to simplify
33 * print string formats. Let's make sure this doesn't change without notice.
34 */
35BUILD_ASSERT(sizeof(int32_t) == sizeof(int));
36BUILD_ASSERT(sizeof(int64_t) == sizeof(long long));
37BUILD_ASSERT(sizeof(intptr_t) == sizeof(long));
38
48#define K_ANY NULL
49
50#if (CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES) == 0
51#error Zero available thread priorities defined!
52#endif
53
54#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
55#define K_PRIO_PREEMPT(x) (x)
56
57#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
58#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
59#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
60#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
61#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
62
63#ifdef CONFIG_POLL
64#define Z_POLL_EVENT_OBJ_INIT(obj) \
65 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
66#define Z_DECL_POLL_EVENT sys_dlist_t poll_events;
67#else
68#define Z_POLL_EVENT_OBJ_INIT(obj)
69#define Z_DECL_POLL_EVENT
70#endif
71
72struct k_thread;
73struct k_mutex;
74struct k_sem;
75struct k_msgq;
76struct k_mbox;
77struct k_pipe;
78struct k_queue;
79struct k_fifo;
80struct k_lifo;
81struct k_stack;
82struct k_mem_slab;
83struct k_timer;
84struct k_poll_event;
85struct k_poll_signal;
86struct k_mem_domain;
87struct k_mem_partition;
88struct k_futex;
89struct k_event;
90
96
97/* private, used by k_poll and k_work_poll */
98struct k_work_poll;
99typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
100
106typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
107 void *user_data);
108
124void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data);
125
144#ifdef CONFIG_SMP
145void k_thread_foreach_filter_by_cpu(unsigned int cpu,
146 k_thread_user_cb_t user_cb, void *user_data);
147#else
148static inline
149void k_thread_foreach_filter_by_cpu(unsigned int cpu,
150 k_thread_user_cb_t user_cb, void *user_data)
151{
152 __ASSERT(cpu == 0, "cpu filter out of bounds");
153 ARG_UNUSED(cpu);
154 k_thread_foreach(user_cb, user_data);
155}
156#endif
157
186 k_thread_user_cb_t user_cb, void *user_data);
187
219#ifdef CONFIG_SMP
221 k_thread_user_cb_t user_cb, void *user_data);
222#else
223static inline
224void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu,
225 k_thread_user_cb_t user_cb, void *user_data)
226{
227 __ASSERT(cpu == 0, "cpu filter out of bounds");
228 ARG_UNUSED(cpu);
229 k_thread_foreach_unlocked(user_cb, user_data);
230}
231#endif
232
241#endif /* !_ASMLANGUAGE */
242
243
244/*
245 * Thread user options. May be needed by assembly code. Common part uses low
246 * bits, arch-specific use high bits.
247 */
248
252#define K_ESSENTIAL (BIT(0))
253
254#define K_FP_IDX 1
264#define K_FP_REGS (BIT(K_FP_IDX))
265
272#define K_USER (BIT(2))
273
282#define K_INHERIT_PERMS (BIT(3))
283
293#define K_CALLBACK_STATE (BIT(4))
294
304#define K_DSP_IDX 6
305#define K_DSP_REGS (BIT(K_DSP_IDX))
306
315#define K_AGU_IDX 7
316#define K_AGU_REGS (BIT(K_AGU_IDX))
317
327#define K_SSE_REGS (BIT(7))
328
329/* end - thread options */
330
331#if !defined(_ASMLANGUAGE)
356__syscall k_thread_stack_t *k_thread_stack_alloc(size_t size, int flags);
357
371
423__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
424 k_thread_stack_t *stack,
425 size_t stack_size,
427 void *p1, void *p2, void *p3,
428 int prio, uint32_t options, k_timeout_t delay);
429
452 void *p1, void *p2,
453 void *p3);
454
468#define k_thread_access_grant(thread, ...) \
469 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), (thread), __VA_ARGS__)
470
485static inline void k_thread_heap_assign(struct k_thread *thread,
486 struct k_heap *heap)
487{
488 thread->resource_pool = heap;
489}
490
491#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
512__syscall int k_thread_stack_space_get(const struct k_thread *thread,
513 size_t *unused_ptr);
514#endif
515
516#if (K_HEAP_MEM_POOL_SIZE > 0)
529void k_thread_system_pool_assign(struct k_thread *thread);
530#endif /* (K_HEAP_MEM_POOL_SIZE > 0) */
531
551__syscall int k_thread_join(struct k_thread *thread, k_timeout_t timeout);
552
566__syscall int32_t k_sleep(k_timeout_t timeout);
567
579static inline int32_t k_msleep(int32_t ms)
580{
581 return k_sleep(Z_TIMEOUT_MS(ms));
582}
583
601
618__syscall void k_busy_wait(uint32_t usec_to_wait);
619
631bool k_can_yield(void);
632
640__syscall void k_yield(void);
641
651__syscall void k_wakeup(k_tid_t thread);
652
666__attribute_const__
668
675__attribute_const__
676static inline k_tid_t k_current_get(void)
677{
678#ifdef CONFIG_CURRENT_THREAD_USE_TLS
679
680 /* Thread-local cache of current thread ID, set in z_thread_entry() */
681 extern Z_THREAD_LOCAL k_tid_t z_tls_current;
682
683 return z_tls_current;
684#else
686#endif
687}
688
708__syscall void k_thread_abort(k_tid_t thread);
709
710k_ticks_t z_timeout_expires(const struct _timeout *timeout);
711k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
712
713#ifdef CONFIG_SYS_CLOCK_EXISTS
714
722__syscall k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread);
723
724static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
725 const struct k_thread *thread)
726{
727 return z_timeout_expires(&thread->base.timeout);
728}
729
738
739static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
740 const struct k_thread *thread)
741{
742 return z_timeout_remaining(&thread->base.timeout);
743}
744
745#endif /* CONFIG_SYS_CLOCK_EXISTS */
746
751struct _static_thread_data {
752 struct k_thread *init_thread;
753 k_thread_stack_t *init_stack;
754 unsigned int init_stack_size;
756 void *init_p1;
757 void *init_p2;
758 void *init_p3;
759 int init_prio;
760 uint32_t init_options;
761 const char *init_name;
762#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
763 int32_t init_delay_ms;
764#else
765 k_timeout_t init_delay;
766#endif
767};
768
769#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
770#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay_ms = (ms)
771#define Z_THREAD_INIT_DELAY(thread) SYS_TIMEOUT_MS((thread)->init_delay_ms)
772#else
773#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay = SYS_TIMEOUT_MS_INIT(ms)
774#define Z_THREAD_INIT_DELAY(thread) (thread)->init_delay
775#endif
776
777#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
778 entry, p1, p2, p3, \
779 prio, options, delay, tname) \
780 { \
781 .init_thread = (thread), \
782 .init_stack = (stack), \
783 .init_stack_size = (stack_size), \
784 .init_entry = (k_thread_entry_t)entry, \
785 .init_p1 = (void *)p1, \
786 .init_p2 = (void *)p2, \
787 .init_p3 = (void *)p3, \
788 .init_prio = (prio), \
789 .init_options = (options), \
790 .init_name = STRINGIFY(tname), \
791 Z_THREAD_INIT_DELAY_INITIALIZER(delay) \
792 }
793
794/*
795 * Refer to K_THREAD_DEFINE() and K_KERNEL_THREAD_DEFINE() for
796 * information on arguments.
797 */
798#define Z_THREAD_COMMON_DEFINE(name, stack_size, \
799 entry, p1, p2, p3, \
800 prio, options, delay) \
801 struct k_thread _k_thread_obj_##name; \
802 STRUCT_SECTION_ITERABLE(_static_thread_data, \
803 _k_thread_data_##name) = \
804 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
805 _k_thread_stack_##name, stack_size,\
806 entry, p1, p2, p3, prio, options, \
807 delay, name); \
808 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
809
845#define K_THREAD_DEFINE(name, stack_size, \
846 entry, p1, p2, p3, \
847 prio, options, delay) \
848 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
849 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
850 prio, options, delay)
851
882#define K_KERNEL_THREAD_DEFINE(name, stack_size, \
883 entry, p1, p2, p3, \
884 prio, options, delay) \
885 K_KERNEL_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
886 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
887 prio, options, delay)
888
898__syscall int k_thread_priority_get(k_tid_t thread);
899
925__syscall void k_thread_priority_set(k_tid_t thread, int prio);
926
927
928#ifdef CONFIG_SCHED_DEADLINE
961__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
962#endif
963
982__syscall void k_reschedule(void);
983
984#ifdef CONFIG_SCHED_CPU_MASK
998
1012
1026
1040
1051int k_thread_cpu_pin(k_tid_t thread, int cpu);
1052#endif
1053
1075__syscall void k_thread_suspend(k_tid_t thread);
1076
1088__syscall void k_thread_resume(k_tid_t thread);
1089
1103static inline void k_thread_start(k_tid_t thread)
1104{
1105 k_wakeup(thread);
1106}
1107
1134void k_sched_time_slice_set(int32_t slice, int prio);
1135
1174void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
1175 k_thread_timeslice_fn_t expired, void *data);
1176
1195bool k_is_in_isr(void);
1196
1213__syscall int k_is_preempt_thread(void);
1214
1226static inline bool k_is_pre_kernel(void)
1227{
1228 extern bool z_sys_post_kernel; /* in init.c */
1229
1230 return !z_sys_post_kernel;
1231}
1232
1267void k_sched_lock(void);
1268
1277
1290__syscall void k_thread_custom_data_set(void *value);
1291
1299__syscall void *k_thread_custom_data_get(void);
1300
1314__syscall int k_thread_name_set(k_tid_t thread, const char *str);
1315
1324const char *k_thread_name_get(k_tid_t thread);
1325
1337__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1338 size_t size);
1339
1352const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1353
1371#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1372
1385#define K_NSEC(t) Z_TIMEOUT_NS(t)
1386
1399#define K_USEC(t) Z_TIMEOUT_US(t)
1400
1411#define K_CYC(t) Z_TIMEOUT_CYC(t)
1412
1423#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1424
1435#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1436
1447#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1448
1459#define K_MINUTES(m) K_SECONDS((m) * 60)
1460
1471#define K_HOURS(h) K_MINUTES((h) * 60)
1472
1481#define K_FOREVER Z_FOREVER
1482
1483#ifdef CONFIG_TIMEOUT_64BIT
1484
1496#define K_TIMEOUT_ABS_TICKS(t) \
1497 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)CLAMP(t, 0, (INT64_MAX - 1))))
1498
1510#define K_TIMEOUT_ABS_SEC(t) K_TIMEOUT_ABS_TICKS(k_sec_to_ticks_ceil64(t))
1511
1523#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1524
1537#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1538
1551#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1552
1565#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1566
1567#endif
1568
1577struct k_timer {
1578 /*
1579 * _timeout structure must be first here if we want to use
1580 * dynamic timer allocation. timeout.node is used in the double-linked
1581 * list of free timers
1582 */
1583 struct _timeout timeout;
1584
1585 /* wait queue for the (single) thread waiting on this timer */
1586 _wait_q_t wait_q;
1587
1588 /* runs in ISR context */
1589 void (*expiry_fn)(struct k_timer *timer);
1590
1591 /* runs in the context of the thread that calls k_timer_stop() */
1592 void (*stop_fn)(struct k_timer *timer);
1593
1594 /* timer period */
1595 k_timeout_t period;
1596
1597 /* timer status */
1598 uint32_t status;
1599
1600 /* user-specific data, also used to support legacy features */
1601 void *user_data;
1602
1604
1605#ifdef CONFIG_OBJ_CORE_TIMER
1606 struct k_obj_core obj_core;
1607#endif
1608};
1609
1610#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1611 { \
1612 .timeout = { \
1613 .node = {},\
1614 .fn = z_timer_expiration_handler, \
1615 .dticks = 0, \
1616 }, \
1617 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1618 .expiry_fn = expiry, \
1619 .stop_fn = stop, \
1620 .period = {}, \
1621 .status = 0, \
1622 .user_data = 0, \
1623 }
1624
1645typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1646
1661typedef void (*k_timer_stop_t)(struct k_timer *timer);
1662
1674#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1675 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1676 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1677
1687void k_timer_init(struct k_timer *timer,
1688 k_timer_expiry_t expiry_fn,
1689 k_timer_stop_t stop_fn);
1690
1705__syscall void k_timer_start(struct k_timer *timer,
1706 k_timeout_t duration, k_timeout_t period);
1707
1724__syscall void k_timer_stop(struct k_timer *timer);
1725
1738__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1739
1757__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1758
1759#ifdef CONFIG_SYS_CLOCK_EXISTS
1760
1771__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1772
1773static inline k_ticks_t z_impl_k_timer_expires_ticks(
1774 const struct k_timer *timer)
1775{
1776 return z_timeout_expires(&timer->timeout);
1777}
1778
1789__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1790
1791static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1792 const struct k_timer *timer)
1793{
1794 return z_timeout_remaining(&timer->timeout);
1795}
1796
1807static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1808{
1810}
1811
1812#endif /* CONFIG_SYS_CLOCK_EXISTS */
1813
1826__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1827
1831static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1832 void *user_data)
1833{
1834 timer->user_data = user_data;
1835}
1836
1844__syscall void *k_timer_user_data_get(const struct k_timer *timer);
1845
1846static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1847{
1848 return timer->user_data;
1849}
1850
1868__syscall int64_t k_uptime_ticks(void);
1869
1883static inline int64_t k_uptime_get(void)
1884{
1886}
1887
1907static inline uint32_t k_uptime_get_32(void)
1908{
1909 return (uint32_t)k_uptime_get();
1910}
1911
1920static inline uint32_t k_uptime_seconds(void)
1921{
1923}
1924
1936static inline int64_t k_uptime_delta(int64_t *reftime)
1937{
1938 int64_t uptime, delta;
1939
1940 uptime = k_uptime_get();
1941 delta = uptime - *reftime;
1942 *reftime = uptime;
1943
1944 return delta;
1945}
1946
1955static inline uint32_t k_cycle_get_32(void)
1956{
1957 return arch_k_cycle_get_32();
1958}
1959
1970static inline uint64_t k_cycle_get_64(void)
1971{
1972 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
1973 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
1974 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
1975 return 0;
1976 }
1977
1978 return arch_k_cycle_get_64();
1979}
1980
1985struct k_queue {
1988 _wait_q_t wait_q;
1989
1990 Z_DECL_POLL_EVENT
1991
1993};
1994
1999#define Z_QUEUE_INITIALIZER(obj) \
2000 { \
2001 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
2002 .lock = { }, \
2003 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2004 Z_POLL_EVENT_OBJ_INIT(obj) \
2005 }
2006
2024__syscall void k_queue_init(struct k_queue *queue);
2025
2039__syscall void k_queue_cancel_wait(struct k_queue *queue);
2040
2053void k_queue_append(struct k_queue *queue, void *data);
2054
2071__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
2072
2085void k_queue_prepend(struct k_queue *queue, void *data);
2086
2103__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
2104
2118void k_queue_insert(struct k_queue *queue, void *prev, void *data);
2119
2138int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
2139
2155int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
2156
2174__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
2175
2192bool k_queue_remove(struct k_queue *queue, void *data);
2193
2208bool k_queue_unique_append(struct k_queue *queue, void *data);
2209
2223__syscall int k_queue_is_empty(struct k_queue *queue);
2224
2225static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
2226{
2227 return sys_sflist_is_empty(&queue->data_q) ? 1 : 0;
2228}
2229
2239__syscall void *k_queue_peek_head(struct k_queue *queue);
2240
2250__syscall void *k_queue_peek_tail(struct k_queue *queue);
2251
2261#define K_QUEUE_DEFINE(name) \
2262 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2263 Z_QUEUE_INITIALIZER(name)
2264
2267#ifdef CONFIG_USERSPACE
2277struct k_futex {
2279};
2280
2288struct z_futex_data {
2289 _wait_q_t wait_q;
2290 struct k_spinlock lock;
2291};
2292
2293#define Z_FUTEX_DATA_INITIALIZER(obj) \
2294 { \
2295 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2296 }
2297
2323__syscall int k_futex_wait(struct k_futex *futex, int expected,
2324 k_timeout_t timeout);
2325
2340__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2341
2343#endif
2344
2356struct k_event {
2357 _wait_q_t wait_q;
2360
2362
2363#ifdef CONFIG_OBJ_CORE_EVENT
2364 struct k_obj_core obj_core;
2365#endif
2366
2367};
2368
2369#define Z_EVENT_INITIALIZER(obj) \
2370 { \
2371 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2372 .events = 0, \
2373 .lock = {}, \
2374 }
2375
2383__syscall void k_event_init(struct k_event *event);
2384
2402__syscall uint32_t k_event_post(struct k_event *event, uint32_t events);
2403
2421__syscall uint32_t k_event_set(struct k_event *event, uint32_t events);
2422
2439__syscall uint32_t k_event_set_masked(struct k_event *event, uint32_t events,
2440 uint32_t events_mask);
2441
2454__syscall uint32_t k_event_clear(struct k_event *event, uint32_t events);
2455
2480__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2481 bool reset, k_timeout_t timeout);
2482
2507__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2508 bool reset, k_timeout_t timeout);
2509
2520static inline uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
2521{
2522 return k_event_wait(event, events_mask, false, K_NO_WAIT);
2523}
2524
2534#define K_EVENT_DEFINE(name) \
2535 STRUCT_SECTION_ITERABLE(k_event, name) = \
2536 Z_EVENT_INITIALIZER(name);
2537
2540struct k_fifo {
2541 struct k_queue _queue;
2542#ifdef CONFIG_OBJ_CORE_FIFO
2543 struct k_obj_core obj_core;
2544#endif
2545};
2546
2550#define Z_FIFO_INITIALIZER(obj) \
2551 { \
2552 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2553 }
2554
2572#define k_fifo_init(fifo) \
2573 ({ \
2574 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2575 k_queue_init(&(fifo)->_queue); \
2576 K_OBJ_CORE_INIT(K_OBJ_CORE(fifo), _obj_type_fifo); \
2577 K_OBJ_CORE_LINK(K_OBJ_CORE(fifo)); \
2578 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2579 })
2580
2592#define k_fifo_cancel_wait(fifo) \
2593 ({ \
2594 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2595 k_queue_cancel_wait(&(fifo)->_queue); \
2596 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2597 })
2598
2611#define k_fifo_put(fifo, data) \
2612 ({ \
2613 void *_data = data; \
2614 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, _data); \
2615 k_queue_append(&(fifo)->_queue, _data); \
2616 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, _data); \
2617 })
2618
2635#define k_fifo_alloc_put(fifo, data) \
2636 ({ \
2637 void *_data = data; \
2638 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, _data); \
2639 int fap_ret = k_queue_alloc_append(&(fifo)->_queue, _data); \
2640 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, _data, fap_ret); \
2641 fap_ret; \
2642 })
2643
2658#define k_fifo_put_list(fifo, head, tail) \
2659 ({ \
2660 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2661 k_queue_append_list(&(fifo)->_queue, head, tail); \
2662 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2663 })
2664
2678#define k_fifo_put_slist(fifo, list) \
2679 ({ \
2680 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2681 k_queue_merge_slist(&(fifo)->_queue, list); \
2682 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2683 })
2684
2702#define k_fifo_get(fifo, timeout) \
2703 ({ \
2704 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2705 void *fg_ret = k_queue_get(&(fifo)->_queue, timeout); \
2706 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, fg_ret); \
2707 fg_ret; \
2708 })
2709
2723#define k_fifo_is_empty(fifo) \
2724 k_queue_is_empty(&(fifo)->_queue)
2725
2739#define k_fifo_peek_head(fifo) \
2740 ({ \
2741 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2742 void *fph_ret = k_queue_peek_head(&(fifo)->_queue); \
2743 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, fph_ret); \
2744 fph_ret; \
2745 })
2746
2758#define k_fifo_peek_tail(fifo) \
2759 ({ \
2760 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2761 void *fpt_ret = k_queue_peek_tail(&(fifo)->_queue); \
2762 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, fpt_ret); \
2763 fpt_ret; \
2764 })
2765
2775#define K_FIFO_DEFINE(name) \
2776 STRUCT_SECTION_ITERABLE(k_fifo, name) = \
2777 Z_FIFO_INITIALIZER(name)
2778
2781struct k_lifo {
2782 struct k_queue _queue;
2783#ifdef CONFIG_OBJ_CORE_LIFO
2784 struct k_obj_core obj_core;
2785#endif
2786};
2787
2792#define Z_LIFO_INITIALIZER(obj) \
2793 { \
2794 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2795 }
2796
2814#define k_lifo_init(lifo) \
2815 ({ \
2816 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2817 k_queue_init(&(lifo)->_queue); \
2818 K_OBJ_CORE_INIT(K_OBJ_CORE(lifo), _obj_type_lifo); \
2819 K_OBJ_CORE_LINK(K_OBJ_CORE(lifo)); \
2820 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2821 })
2822
2835#define k_lifo_put(lifo, data) \
2836 ({ \
2837 void *_data = data; \
2838 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, _data); \
2839 k_queue_prepend(&(lifo)->_queue, _data); \
2840 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, _data); \
2841 })
2842
2859#define k_lifo_alloc_put(lifo, data) \
2860 ({ \
2861 void *_data = data; \
2862 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, _data); \
2863 int lap_ret = k_queue_alloc_prepend(&(lifo)->_queue, _data); \
2864 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, _data, lap_ret); \
2865 lap_ret; \
2866 })
2867
2885#define k_lifo_get(lifo, timeout) \
2886 ({ \
2887 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2888 void *lg_ret = k_queue_get(&(lifo)->_queue, timeout); \
2889 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, lg_ret); \
2890 lg_ret; \
2891 })
2892
2902#define K_LIFO_DEFINE(name) \
2903 STRUCT_SECTION_ITERABLE(k_lifo, name) = \
2904 Z_LIFO_INITIALIZER(name)
2905
2911#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
2912
2913typedef uintptr_t stack_data_t;
2914
2915struct k_stack {
2916 _wait_q_t wait_q;
2917 struct k_spinlock lock;
2918 stack_data_t *base, *next, *top;
2919
2920 uint8_t flags;
2921
2923
2924#ifdef CONFIG_OBJ_CORE_STACK
2925 struct k_obj_core obj_core;
2926#endif
2927};
2928
2929#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2930 { \
2931 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
2932 .base = (stack_buffer), \
2933 .next = (stack_buffer), \
2934 .top = (stack_buffer) + (stack_num_entries), \
2935 }
2936
2956void k_stack_init(struct k_stack *stack,
2957 stack_data_t *buffer, uint32_t num_entries);
2958
2959
2974__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
2975 uint32_t num_entries);
2976
2988int k_stack_cleanup(struct k_stack *stack);
2989
3003__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
3004
3025__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
3026 k_timeout_t timeout);
3027
3038#define K_STACK_DEFINE(name, stack_num_entries) \
3039 stack_data_t __noinit \
3040 _k_stack_buf_##name[stack_num_entries]; \
3041 STRUCT_SECTION_ITERABLE(k_stack, name) = \
3042 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
3043 stack_num_entries)
3044
3051struct k_work;
3052struct k_work_q;
3053struct k_work_queue_config;
3054extern struct k_work_q k_sys_work_q;
3055
3070struct k_mutex {
3072 _wait_q_t wait_q;
3075
3078
3081
3083
3084#ifdef CONFIG_OBJ_CORE_MUTEX
3085 struct k_obj_core obj_core;
3086#endif
3087};
3088
3092#define Z_MUTEX_INITIALIZER(obj) \
3093 { \
3094 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3095 .owner = NULL, \
3096 .lock_count = 0, \
3097 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
3098 }
3099
3113#define K_MUTEX_DEFINE(name) \
3114 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
3115 Z_MUTEX_INITIALIZER(name)
3116
3129__syscall int k_mutex_init(struct k_mutex *mutex);
3130
3131
3153__syscall int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout);
3154
3175__syscall int k_mutex_unlock(struct k_mutex *mutex);
3176
3183 _wait_q_t wait_q;
3184
3185#ifdef CONFIG_OBJ_CORE_CONDVAR
3186 struct k_obj_core obj_core;
3187#endif
3188};
3189
3190#define Z_CONDVAR_INITIALIZER(obj) \
3191 { \
3192 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3193 }
3194
3207__syscall int k_condvar_init(struct k_condvar *condvar);
3208
3215__syscall int k_condvar_signal(struct k_condvar *condvar);
3216
3224__syscall int k_condvar_broadcast(struct k_condvar *condvar);
3225
3243__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
3244 k_timeout_t timeout);
3245
3256#define K_CONDVAR_DEFINE(name) \
3257 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
3258 Z_CONDVAR_INITIALIZER(name)
3275struct k_sem {
3279 _wait_q_t wait_q;
3280 unsigned int count;
3281 unsigned int limit;
3282
3283 Z_DECL_POLL_EVENT
3284
3286
3287#ifdef CONFIG_OBJ_CORE_SEM
3288 struct k_obj_core obj_core;
3289#endif
3291};
3292
3297#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
3298 { \
3299 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3300 .count = (initial_count), \
3301 .limit = (count_limit), \
3302 Z_POLL_EVENT_OBJ_INIT(obj) \
3303 }
3304
3317#define K_SEM_MAX_LIMIT UINT_MAX
3318
3334__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
3335 unsigned int limit);
3336
3355__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
3356
3367__syscall void k_sem_give(struct k_sem *sem);
3368
3378__syscall void k_sem_reset(struct k_sem *sem);
3379
3389__syscall unsigned int k_sem_count_get(struct k_sem *sem);
3390
3394static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3395{
3396 return sem->count;
3397}
3398
3410#define K_SEM_DEFINE(name, initial_count, count_limit) \
3411 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3412 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3413 BUILD_ASSERT(((count_limit) != 0) && \
3414 (((initial_count) < (count_limit)) || ((initial_count) == (count_limit))) && \
3415 ((count_limit) <= K_SEM_MAX_LIMIT));
3416
3423struct k_work_delayable;
3424struct k_work_sync;
3425
3442typedef void (*k_work_handler_t)(struct k_work *work);
3443
3457void k_work_init(struct k_work *work,
3459
3474int k_work_busy_get(const struct k_work *work);
3475
3489static inline bool k_work_is_pending(const struct k_work *work);
3490
3512 struct k_work *work);
3513
3522int k_work_submit(struct k_work *work);
3523
3548bool k_work_flush(struct k_work *work,
3549 struct k_work_sync *sync);
3550
3570int k_work_cancel(struct k_work *work);
3571
3602bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3603
3614
3635 k_thread_stack_t *stack, size_t stack_size,
3636 int prio, const struct k_work_queue_config *cfg);
3637
3648void k_work_queue_run(struct k_work_q *queue, const struct k_work_queue_config *cfg);
3649
3659static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3660
3684int k_work_queue_drain(struct k_work_q *queue, bool plug);
3685
3700
3716
3732
3744static inline struct k_work_delayable *
3746
3761
3776static inline bool k_work_delayable_is_pending(
3777 const struct k_work_delayable *dwork);
3778
3793 const struct k_work_delayable *dwork);
3794
3809 const struct k_work_delayable *dwork);
3810
3839 struct k_work_delayable *dwork,
3840 k_timeout_t delay);
3841
3856 k_timeout_t delay);
3857
3894 struct k_work_delayable *dwork,
3895 k_timeout_t delay);
3896
3910 k_timeout_t delay);
3911
3937 struct k_work_sync *sync);
3938
3960
3990 struct k_work_sync *sync);
3991
3992enum {
3997 /* The atomic API is used for all work and queue flags fields to
3998 * enforce sequential consistency in SMP environments.
3999 */
4000
4001 /* Bits that represent the work item states. At least nine of the
4002 * combinations are distinct valid stable states.
4003 */
4004 K_WORK_RUNNING_BIT = 0,
4005 K_WORK_CANCELING_BIT = 1,
4006 K_WORK_QUEUED_BIT = 2,
4007 K_WORK_DELAYED_BIT = 3,
4008 K_WORK_FLUSHING_BIT = 4,
4009
4010 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
4011 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT) | BIT(K_WORK_FLUSHING_BIT),
4012
4013 /* Static work flags */
4014 K_WORK_DELAYABLE_BIT = 8,
4015 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
4016
4017 /* Dynamic work queue flags */
4018 K_WORK_QUEUE_STARTED_BIT = 0,
4019 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
4020 K_WORK_QUEUE_BUSY_BIT = 1,
4021 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
4022 K_WORK_QUEUE_DRAIN_BIT = 2,
4023 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
4024 K_WORK_QUEUE_PLUGGED_BIT = 3,
4025 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
4026 K_WORK_QUEUE_STOP_BIT = 4,
4027 K_WORK_QUEUE_STOP = BIT(K_WORK_QUEUE_STOP_BIT),
4028
4029 /* Static work queue flags */
4030 K_WORK_QUEUE_NO_YIELD_BIT = 8,
4031 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
4032
4036 /* Transient work flags */
4037
4043 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
4044
4049 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
4050
4056 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
4057
4063 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
4064
4069 K_WORK_FLUSHING = BIT(K_WORK_FLUSHING_BIT),
4070};
4071
4073struct k_work {
4074 /* All fields are protected by the work module spinlock. No fields
4075 * are to be accessed except through kernel API.
4076 */
4077
4078 /* Node to link into k_work_q pending list. */
4080
4081 /* The function to be invoked by the work queue thread. */
4083
4084 /* The queue on which the work item was last submitted. */
4086
4087 /* State of the work item.
4088 *
4089 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
4090 *
4091 * It can be RUNNING and CANCELING simultaneously.
4092 */
4094};
4095
4096#define Z_WORK_INITIALIZER(work_handler) { \
4097 .handler = (work_handler), \
4098}
4099
4102 /* The work item. */
4103 struct k_work work;
4104
4105 /* Timeout used to submit work after a delay. */
4106 struct _timeout timeout;
4107
4108 /* The queue to which the work should be submitted. */
4110};
4111
4112#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
4113 .work = { \
4114 .handler = (work_handler), \
4115 .flags = K_WORK_DELAYABLE, \
4116 }, \
4117}
4118
4135#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
4136 struct k_work_delayable work \
4137 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
4138
4143/* Record used to wait for work to flush.
4144 *
4145 * The work item is inserted into the queue that will process (or is
4146 * processing) the item, and will be processed as soon as the item
4147 * completes. When the flusher is processed the semaphore will be
4148 * signaled, releasing the thread waiting for the flush.
4149 */
4150struct z_work_flusher {
4151 struct k_work work;
4152 struct k_sem sem;
4153};
4154
4155/* Record used to wait for work to complete a cancellation.
4156 *
4157 * The work item is inserted into a global queue of pending cancels.
4158 * When a cancelling work item goes idle any matching waiters are
4159 * removed from pending_cancels and are woken.
4160 */
4161struct z_work_canceller {
4162 sys_snode_t node;
4163 struct k_work *work;
4164 struct k_sem sem;
4165};
4166
4185 union {
4186 struct z_work_flusher flusher;
4187 struct z_work_canceller canceller;
4188 };
4189};
4190
4202 const char *name;
4203
4217
4222
4232};
4233
4235struct k_work_q {
4236 /* The thread that animates the work. */
4238
4239 /* The thread ID that animates the work. This may be an external thread
4240 * if k_work_queue_run() is used.
4241 */
4243
4244 /* All the following fields must be accessed only while the
4245 * work module spinlock is held.
4246 */
4247
4248 /* List of k_work items to be worked. */
4250
4251 /* Wait queue for idle work thread. */
4252 _wait_q_t notifyq;
4253
4254 /* Wait queue for threads waiting for the queue to drain. */
4255 _wait_q_t drainq;
4256
4257 /* Flags describing queue state. */
4259
4260#if defined(CONFIG_WORKQUEUE_WORK_TIMEOUT)
4261 struct _timeout work_timeout_record;
4262 struct k_work *work;
4263 k_timeout_t work_timeout;
4264#endif /* defined(CONFIG_WORKQUEUE_WORK_TIMEOUT) */
4265};
4266
4267/* Provide the implementation for inline functions declared above */
4268
4269static inline bool k_work_is_pending(const struct k_work *work)
4270{
4271 return k_work_busy_get(work) != 0;
4272}
4273
4274static inline struct k_work_delayable *
4279
4281 const struct k_work_delayable *dwork)
4282{
4283 return k_work_delayable_busy_get(dwork) != 0;
4284}
4285
4287 const struct k_work_delayable *dwork)
4288{
4289 return z_timeout_expires(&dwork->timeout);
4290}
4291
4293 const struct k_work_delayable *dwork)
4294{
4295 return z_timeout_remaining(&dwork->timeout);
4296}
4297
4299{
4300 return queue->thread_id;
4301}
4302
4305struct k_work_user;
4306
4321typedef void (*k_work_user_handler_t)(struct k_work_user *work);
4322
4327struct k_work_user_q {
4328 struct k_queue queue;
4329 struct k_thread thread;
4330};
4331
4332enum {
4333 K_WORK_USER_STATE_PENDING, /* Work item pending state */
4334};
4335
4336struct k_work_user {
4337 void *_reserved; /* Used by k_queue implementation. */
4338 k_work_user_handler_t handler;
4340};
4341
4346#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4347#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4348#else
4349#define Z_WORK_USER_INITIALIZER(work_handler) \
4350 { \
4351 ._reserved = NULL, \
4352 .handler = (work_handler), \
4353 .flags = 0 \
4354 }
4355#endif
4356
4368#define K_WORK_USER_DEFINE(work, work_handler) \
4369 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4370
4380static inline void k_work_user_init(struct k_work_user *work,
4381 k_work_user_handler_t handler)
4382{
4383 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4384}
4385
4402static inline bool k_work_user_is_pending(struct k_work_user *work)
4403{
4404 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4405}
4406
4425static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4426 struct k_work_user *work)
4427{
4428 int ret = -EBUSY;
4429
4430 if (!atomic_test_and_set_bit(&work->flags,
4431 K_WORK_USER_STATE_PENDING)) {
4432 ret = k_queue_alloc_append(&work_q->queue, work);
4433
4434 /* Couldn't insert into the queue. Clear the pending bit
4435 * so the work item can be submitted again
4436 */
4437 if (ret != 0) {
4438 atomic_clear_bit(&work->flags,
4439 K_WORK_USER_STATE_PENDING);
4440 }
4441 }
4442
4443 return ret;
4444}
4445
4465void k_work_user_queue_start(struct k_work_user_q *work_q,
4466 k_thread_stack_t *stack,
4467 size_t stack_size, int prio,
4468 const char *name);
4469
4480static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
4481{
4482 return &work_q->thread;
4483}
4484
4491struct k_work_poll {
4492 struct k_work work;
4493 struct k_work_q *workq;
4494 struct z_poller poller;
4495 struct k_poll_event *events;
4496 int num_events;
4497 k_work_handler_t real_handler;
4498 struct _timeout timeout;
4499 int poll_result;
4500};
4501
4522#define K_WORK_DEFINE(work, work_handler) \
4523 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4524
4534void k_work_poll_init(struct k_work_poll *work,
4535 k_work_handler_t handler);
4536
4572 struct k_work_poll *work,
4573 struct k_poll_event *events,
4574 int num_events,
4575 k_timeout_t timeout);
4576
4608int k_work_poll_submit(struct k_work_poll *work,
4609 struct k_poll_event *events,
4610 int num_events,
4611 k_timeout_t timeout);
4612
4627int k_work_poll_cancel(struct k_work_poll *work);
4628
4640struct k_msgq {
4642 _wait_q_t wait_q;
4646 size_t msg_size;
4659
4660 Z_DECL_POLL_EVENT
4661
4664
4666
4667#ifdef CONFIG_OBJ_CORE_MSGQ
4668 struct k_obj_core obj_core;
4669#endif
4670};
4676#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4677 { \
4678 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4679 .lock = {}, \
4680 .msg_size = q_msg_size, \
4681 .max_msgs = q_max_msgs, \
4682 .buffer_start = q_buffer, \
4683 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4684 .read_ptr = q_buffer, \
4685 .write_ptr = q_buffer, \
4686 .used_msgs = 0, \
4687 Z_POLL_EVENT_OBJ_INIT(obj) \
4688 .flags = 0, \
4689 }
4690
4696#define K_MSGQ_FLAG_ALLOC BIT(0)
4697
4709
4710
4729#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4730 static char __noinit __aligned(q_align) \
4731 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4732 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4733 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4734 (q_msg_size), (q_max_msgs))
4735
4750void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4751 uint32_t max_msgs);
4752
4772__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
4773 uint32_t max_msgs);
4774
4785int k_msgq_cleanup(struct k_msgq *msgq);
4786
4807__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
4808
4829__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
4830
4845__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
4846
4863__syscall int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx);
4864
4874__syscall void k_msgq_purge(struct k_msgq *msgq);
4875
4886__syscall uint32_t k_msgq_num_free_get(struct k_msgq *msgq);
4887
4896__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
4897 struct k_msgq_attrs *attrs);
4898
4899
4900static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
4901{
4902 return msgq->max_msgs - msgq->used_msgs;
4903}
4904
4914__syscall uint32_t k_msgq_num_used_get(struct k_msgq *msgq);
4915
4916static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
4917{
4918 return msgq->used_msgs;
4919}
4920
4935 size_t size;
4939 void *tx_data;
4945 k_tid_t _syncing_thread;
4946#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4948 struct k_sem *_async_sem;
4949#endif
4950};
4955struct k_mbox {
4957 _wait_q_t tx_msg_queue;
4959 _wait_q_t rx_msg_queue;
4961
4963
4964#ifdef CONFIG_OBJ_CORE_MAILBOX
4965 struct k_obj_core obj_core;
4966#endif
4967};
4972#define Z_MBOX_INITIALIZER(obj) \
4973 { \
4974 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4975 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4976 }
4977
4991#define K_MBOX_DEFINE(name) \
4992 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4993 Z_MBOX_INITIALIZER(name) \
4994
5002void k_mbox_init(struct k_mbox *mbox);
5003
5023int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
5024 k_timeout_t timeout);
5025
5039void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
5040 struct k_sem *sem);
5041
5059int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
5060 void *buffer, k_timeout_t timeout);
5061
5075void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
5076
5094__syscall void k_pipe_init(struct k_pipe *pipe, uint8_t *buffer, size_t buffer_size);
5095
5096#ifdef CONFIG_PIPES
5098struct k_pipe {
5099 unsigned char *buffer;
5100 size_t size;
5101 size_t bytes_used;
5102 size_t read_index;
5103 size_t write_index;
5104 struct k_spinlock lock;
5106 struct {
5107 _wait_q_t readers;
5108 _wait_q_t writers;
5109 } wait_q;
5111 Z_DECL_POLL_EVENT
5112
5113 uint8_t flags;
5116
5117#ifdef CONFIG_OBJ_CORE_PIPE
5118 struct k_obj_core obj_core;
5119#endif
5120};
5121
5125#define K_PIPE_FLAG_ALLOC BIT(0)
5127#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
5128 { \
5129 .buffer = pipe_buffer, \
5130 .size = pipe_buffer_size, \
5131 .bytes_used = 0, \
5132 .read_index = 0, \
5133 .write_index = 0, \
5134 .lock = {}, \
5135 .wait_q = { \
5136 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
5137 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
5138 }, \
5139 Z_POLL_EVENT_OBJ_INIT(obj) \
5140 .flags = 0, \
5141 }
5142
5160#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
5161 static unsigned char __noinit __aligned(pipe_align) \
5162 _k_pipe_buf_##name[pipe_buffer_size]; \
5163 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
5164 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
5165
5178__deprecated int k_pipe_cleanup(struct k_pipe *pipe);
5179
5196__deprecated __syscall int k_pipe_alloc_init(struct k_pipe *pipe, size_t size);
5197
5217__deprecated __syscall int k_pipe_put(struct k_pipe *pipe, const void *data,
5218 size_t bytes_to_write, size_t *bytes_written,
5219 size_t min_xfer, k_timeout_t timeout);
5220
5241__deprecated __syscall int k_pipe_get(struct k_pipe *pipe, void *data,
5242 size_t bytes_to_read, size_t *bytes_read,
5243 size_t min_xfer, k_timeout_t timeout);
5244
5254__deprecated __syscall size_t k_pipe_read_avail(struct k_pipe *pipe);
5255
5265__deprecated __syscall size_t k_pipe_write_avail(struct k_pipe *pipe);
5266
5278__deprecated __syscall void k_pipe_flush(struct k_pipe *pipe);
5279
5292__deprecated __syscall void k_pipe_buffer_flush(struct k_pipe *pipe);
5293
5294#else /* CONFIG_PIPES */
5295
5300
5301struct k_pipe {
5302 size_t waiting;
5305 _wait_q_t data;
5306 _wait_q_t space;
5308
5309 Z_DECL_POLL_EVENT
5310#ifdef CONFIG_OBJ_CORE_PIPE
5311 struct k_obj_core obj_core;
5312#endif
5314};
5315
5319#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
5320{ \
5321 .buf = RING_BUF_INIT(pipe_buffer, pipe_buffer_size), \
5322 .data = Z_WAIT_Q_INIT(&obj.data), \
5323 .space = Z_WAIT_Q_INIT(&obj.space), \
5324 .flags = PIPE_FLAG_OPEN, \
5325 .waiting = 0, \
5326 Z_POLL_EVENT_OBJ_INIT(obj) \
5327}
5345#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
5346 static unsigned char __noinit __aligned(pipe_align) \
5347 _k_pipe_buf_##name[pipe_buffer_size]; \
5348 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
5349 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
5350
5351
5368__syscall int k_pipe_write(struct k_pipe *pipe, const uint8_t *data, size_t len,
5369 k_timeout_t timeout);
5370
5386__syscall int k_pipe_read(struct k_pipe *pipe, uint8_t *data, size_t len,
5387 k_timeout_t timeout);
5388
5398__syscall void k_pipe_reset(struct k_pipe *pipe);
5399
5408__syscall void k_pipe_close(struct k_pipe *pipe);
5409#endif /* CONFIG_PIPES */
5415struct k_mem_slab_info {
5416 uint32_t num_blocks;
5417 size_t block_size;
5418 uint32_t num_used;
5419#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5420 uint32_t max_used;
5421#endif
5422};
5423
5424struct k_mem_slab {
5425 _wait_q_t wait_q;
5426 struct k_spinlock lock;
5427 char *buffer;
5428 char *free_list;
5429 struct k_mem_slab_info info;
5430
5432
5433#ifdef CONFIG_OBJ_CORE_MEM_SLAB
5434 struct k_obj_core obj_core;
5435#endif
5436};
5437
5438#define Z_MEM_SLAB_INITIALIZER(_slab, _slab_buffer, _slab_block_size, \
5439 _slab_num_blocks) \
5440 { \
5441 .wait_q = Z_WAIT_Q_INIT(&(_slab).wait_q), \
5442 .lock = {}, \
5443 .buffer = _slab_buffer, \
5444 .free_list = NULL, \
5445 .info = {_slab_num_blocks, _slab_block_size, 0} \
5446 }
5447
5448
5482#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
5483 char __noinit_named(k_mem_slab_buf_##name) \
5484 __aligned(WB_UP(slab_align)) \
5485 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5486 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5487 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5488 WB_UP(slab_block_size), slab_num_blocks)
5489
5504#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5505 static char __noinit_named(k_mem_slab_buf_##name) \
5506 __aligned(WB_UP(slab_align)) \
5507 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5508 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5509 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5510 WB_UP(slab_block_size), slab_num_blocks)
5511
5533int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
5534 size_t block_size, uint32_t num_blocks);
5535
5558int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5559 k_timeout_t timeout);
5560
5570void k_mem_slab_free(struct k_mem_slab *slab, void *mem);
5571
5582static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5583{
5584 return slab->info.num_used;
5585}
5586
5597static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5598{
5599#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5600 return slab->info.max_used;
5601#else
5602 ARG_UNUSED(slab);
5603 return 0;
5604#endif
5605}
5606
5617static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5618{
5619 return slab->info.num_blocks - slab->info.num_used;
5620}
5621
5634int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats);
5635
5647int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab);
5648
5656/* kernel synchronized heap struct */
5657
5658struct k_heap {
5660 _wait_q_t wait_q;
5662};
5663
5677void k_heap_init(struct k_heap *h, void *mem,
5678 size_t bytes) __attribute_nonnull(1);
5679
5700void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5701 k_timeout_t timeout) __attribute_nonnull(1);
5702
5724void *k_heap_alloc(struct k_heap *h, size_t bytes,
5725 k_timeout_t timeout) __attribute_nonnull(1);
5726
5749void *k_heap_calloc(struct k_heap *h, size_t num, size_t size, k_timeout_t timeout)
5750 __attribute_nonnull(1);
5751
5775void *k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
5776 __attribute_nonnull(1);
5777
5788void k_heap_free(struct k_heap *h, void *mem) __attribute_nonnull(1);
5789
5790/* Hand-calculated minimum heap sizes needed to return a successful
5791 * 1-byte allocation. See details in lib/os/heap.[ch]
5792 */
5793#define Z_HEAP_MIN_SIZE ((sizeof(void *) > 4) ? 56 : 44)
5794
5811#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5812 char in_section \
5813 __aligned(8) /* CHUNK_UNIT */ \
5814 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5815 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5816 .heap = { \
5817 .init_mem = kheap_##name, \
5818 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5819 }, \
5820 }
5821
5836#define K_HEAP_DEFINE(name, bytes) \
5837 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5838 __noinit_named(kheap_buf_##name))
5839
5854#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5855 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5856
5866int k_heap_array_get(struct k_heap **heap);
5867
5897void *k_aligned_alloc(size_t align, size_t size);
5898
5910void *k_malloc(size_t size);
5911
5922void k_free(void *ptr);
5923
5935void *k_calloc(size_t nmemb, size_t size);
5936
5954void *k_realloc(void *ptr, size_t size);
5955
5958/* polling API - PRIVATE */
5959
5960#ifdef CONFIG_POLL
5961#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5962#else
5963#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5964#endif
5965
5966/* private - types bit positions */
5967enum _poll_types_bits {
5968 /* can be used to ignore an event */
5969 _POLL_TYPE_IGNORE,
5970
5971 /* to be signaled by k_poll_signal_raise() */
5972 _POLL_TYPE_SIGNAL,
5973
5974 /* semaphore availability */
5975 _POLL_TYPE_SEM_AVAILABLE,
5976
5977 /* queue/FIFO/LIFO data availability */
5978 _POLL_TYPE_DATA_AVAILABLE,
5979
5980 /* msgq data availability */
5981 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5982
5983 /* pipe data availability */
5984 _POLL_TYPE_PIPE_DATA_AVAILABLE,
5985
5986 _POLL_NUM_TYPES
5987};
5988
5989#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5990
5991/* private - states bit positions */
5992enum _poll_states_bits {
5993 /* default state when creating event */
5994 _POLL_STATE_NOT_READY,
5995
5996 /* signaled by k_poll_signal_raise() */
5997 _POLL_STATE_SIGNALED,
5998
5999 /* semaphore is available */
6000 _POLL_STATE_SEM_AVAILABLE,
6001
6002 /* data is available to read on queue/FIFO/LIFO */
6003 _POLL_STATE_DATA_AVAILABLE,
6004
6005 /* queue/FIFO/LIFO wait was cancelled */
6006 _POLL_STATE_CANCELLED,
6007
6008 /* data is available to read on a message queue */
6009 _POLL_STATE_MSGQ_DATA_AVAILABLE,
6010
6011 /* data is available to read from a pipe */
6012 _POLL_STATE_PIPE_DATA_AVAILABLE,
6013
6014 _POLL_NUM_STATES
6015};
6016
6017#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
6018
6019#define _POLL_EVENT_NUM_UNUSED_BITS \
6020 (32 - (0 \
6021 + 8 /* tag */ \
6022 + _POLL_NUM_TYPES \
6023 + _POLL_NUM_STATES \
6024 + 1 /* modes */ \
6025 ))
6026
6027/* end of polling API - PRIVATE */
6028
6029
6038/* Public polling API */
6039
6040/* public - values for k_poll_event.type bitfield */
6041#define K_POLL_TYPE_IGNORE 0
6042#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
6043#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
6044#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
6045#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
6046#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
6047#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
6048
6049/* public - polling modes */
6051 /* polling thread does not take ownership of objects when available */
6053
6056
6057/* public - values for k_poll_event.state bitfield */
6058#define K_POLL_STATE_NOT_READY 0
6059#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
6060#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
6061#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
6062#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
6063#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
6064#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
6065#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
6066
6067/* public - poll signal object */
6071
6076 unsigned int signaled;
6077
6080};
6081
6082#define K_POLL_SIGNAL_INITIALIZER(obj) \
6083 { \
6084 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
6085 .signaled = 0, \
6086 .result = 0, \
6087 }
6094 sys_dnode_t _node;
6095
6097 struct z_poller *poller;
6098
6101
6103 uint32_t type:_POLL_NUM_TYPES;
6104
6106 uint32_t state:_POLL_NUM_STATES;
6107
6110
6112 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
6113
6115 union {
6116 /* The typed_* fields below are used by K_POLL_EVENT_*INITIALIZER() macros to ensure
6117 * type safety of polled objects.
6118 */
6119 void *obj, *typed_K_POLL_TYPE_IGNORE;
6120 struct k_poll_signal *signal, *typed_K_POLL_TYPE_SIGNAL;
6121 struct k_sem *sem, *typed_K_POLL_TYPE_SEM_AVAILABLE;
6122 struct k_fifo *fifo, *typed_K_POLL_TYPE_FIFO_DATA_AVAILABLE;
6123 struct k_queue *queue, *typed_K_POLL_TYPE_DATA_AVAILABLE;
6124 struct k_msgq *msgq, *typed_K_POLL_TYPE_MSGQ_DATA_AVAILABLE;
6125 struct k_pipe *pipe, *typed_K_POLL_TYPE_PIPE_DATA_AVAILABLE;
6126 };
6127};
6128
6129#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
6130 { \
6131 .poller = NULL, \
6132 .type = _event_type, \
6133 .state = K_POLL_STATE_NOT_READY, \
6134 .mode = _event_mode, \
6135 .unused = 0, \
6136 { \
6137 .typed_##_event_type = _event_obj, \
6138 }, \
6139 }
6140
6141#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
6142 event_tag) \
6143 { \
6144 .tag = event_tag, \
6145 .type = _event_type, \
6146 .state = K_POLL_STATE_NOT_READY, \
6147 .mode = _event_mode, \
6148 .unused = 0, \
6149 { \
6150 .typed_##_event_type = _event_obj, \
6151 }, \
6152 }
6153
6169void k_poll_event_init(struct k_poll_event *event, uint32_t type,
6170 int mode, void *obj);
6171
6215__syscall int k_poll(struct k_poll_event *events, int num_events,
6216 k_timeout_t timeout);
6217
6226__syscall void k_poll_signal_init(struct k_poll_signal *sig);
6227
6233__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
6234
6245__syscall void k_poll_signal_check(struct k_poll_signal *sig,
6246 unsigned int *signaled, int *result);
6247
6272__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
6273
6294static inline void k_cpu_idle(void)
6295{
6296 arch_cpu_idle();
6297}
6298
6313static inline void k_cpu_atomic_idle(unsigned int key)
6314{
6316}
6317
6326#ifdef ARCH_EXCEPT
6327/* This architecture has direct support for triggering a CPU exception */
6328#define z_except_reason(reason) ARCH_EXCEPT(reason)
6329#else
6330
6331#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
6332#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
6333#else
6334#define __EXCEPT_LOC()
6335#endif
6336
6337/* NOTE: This is the implementation for arches that do not implement
6338 * ARCH_EXCEPT() to generate a real CPU exception.
6339 *
6340 * We won't have a real exception frame to determine the PC value when
6341 * the oops occurred, so print file and line number before we jump into
6342 * the fatal error handler.
6343 */
6344#define z_except_reason(reason) do { \
6345 __EXCEPT_LOC(); \
6346 z_fatal_error(reason, NULL); \
6347 } while (false)
6348
6349#endif /* _ARCH__EXCEPT */
6365#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
6366
6375#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
6376
6381/*
6382 * private APIs that are utilized by one or more public APIs
6383 */
6384
6388void z_timer_expiration_handler(struct _timeout *timeout);
6393#ifdef CONFIG_PRINTK
6401__syscall void k_str_out(char *c, size_t n);
6402#endif
6403
6430__syscall int k_float_disable(struct k_thread *thread);
6431
6470__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
6471
6485
6493
6502
6513
6524
6533
6542
6543#ifdef __cplusplus
6544}
6545#endif
6546
6547#include <zephyr/tracing/tracing.h>
6548#include <zephyr/syscalls/kernel.h>
6549
6550#endif /* !_ASMLANGUAGE */
6551
6552#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
static uint32_t arch_k_cycle_get_32(void)
Definition misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition misc.h:33
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition arch_interface.h:48
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition arch_interface.h:46
long atomic_t
Definition atomic_types.h:15
System error numbers.
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically get and test a bit.
Definition atomic.h:127
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition atomic.h:191
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit and test it.
Definition atomic.h:170
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition kernel.h:1955
#define K_NO_WAIT
Generate null timeout delay.
Definition kernel.h:1371
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition kernel.h:1907
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition sys_clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition kernel.h:1936
static uint32_t k_uptime_seconds(void)
Get system uptime in seconds.
Definition kernel.h:1920
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition kernel.h:1970
static int64_t k_uptime_get(void)
Get system uptime.
Definition kernel.h:1883
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition kernel.h:6294
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition kernel.h:6313
struct _dnode sys_dnode_t
Doubly-linked list node structure.
Definition dlist.h:54
struct _dnode sys_dlist_t
Doubly-linked list structure.
Definition dlist.h:50
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
uint32_t k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
static uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
Test the events currently tracked in the event object.
Definition kernel.h:2520
uint32_t k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
uint32_t k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events.
static bool sys_sflist_is_empty(const sys_sflist_t *list)
Test if the given list is empty.
Definition sflist.h:336
struct _sflist sys_sflist_t
Flagged single-linked list structure.
Definition sflist.h:54
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
int k_heap_array_get(struct k_heap **heap)
Get the array of statically defined heaps.
void * k_heap_calloc(struct k_heap *h, size_t num, size_t size, k_timeout_t timeout)
Allocate and initialize memory for an array of objects from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void * k_realloc(void *ptr, size_t size)
Expand the size of an existing allocation.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
Reallocate memory from a k_heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition kernel.h:1226
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void *mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition kernel.h:5582
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition kernel.h:5597
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition kernel.h:5617
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.
int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
int k_pipe_write(struct k_pipe *pipe, const uint8_t *data, size_t len, k_timeout_t timeout)
Write data to a pipe.
void k_pipe_close(struct k_pipe *pipe)
Close a pipe.
void k_pipe_reset(struct k_pipe *pipe)
Reset a pipe This routine resets the pipe, discarding any unread data and unblocking any threads wait...
void k_pipe_init(struct k_pipe *pipe, uint8_t *buffer, size_t buffer_size)
initialize a pipe
pipe_flags
Definition kernel.h:5296
int k_pipe_read(struct k_pipe *pipe, uint8_t *data, size_t len, k_timeout_t timeout)
Read data from a pipe This routine reads up to len bytes of data from pipe.
@ PIPE_FLAG_RESET
Definition kernel.h:5298
@ PIPE_FLAG_OPEN
Definition kernel.h:5297
void k_poll_signal_reset(struct k_poll_signal *sig)
Reset a poll signal object's state to unsignaled.
k_poll_modes
Definition kernel.h:6050
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition kernel.h:6052
@ K_POLL_NUM_MODES
Definition kernel.h:6054
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
struct _slist sys_slist_t
Single-linked list structure.
Definition slist.h:49
struct _snode sys_snode_t
Single-linked list node structure.
Definition slist.h:39
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition tracing_macros.h:366
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition util_macro.h:148
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition util.h:285
#define EBUSY
Mount device busy.
Definition errno.h:54
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition kernel.h:485
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *thread)
Get time remaining before a thread wakes up, in system ticks.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition kernel.h:579
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition kernel.h:676
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_thread_foreach_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in running on specified cpu.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
int k_thread_stack_free(k_thread_stack_t *stack)
Free a dynamically allocated thread stack.
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread)
Get time when a thread wakes up, in system ticks.
__attribute_const__ k_tid_t k_sched_current_thread_query(void)
Query thread ID of the current thread.
static void k_thread_start(k_tid_t thread)
Start an inactive thread.
Definition kernel.h:1103
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_reschedule(void)
Invoke the scheduler.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over the threads in running on current cpu without locking.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition kernel.h:106
k_thread_stack_t * k_thread_stack_alloc(size_t size, int flags)
Dynamically allocate a thread stack.
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition kernel.h:1661
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition kernel.h:1645
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition kernel.h:1807
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
#define k_ticks_to_ms_floor32(t)
Convert ticks to milliseconds.
Definition time_units.h:1707
#define k_ticks_to_sec_floor32(t)
Convert ticks to seconds.
Definition time_units.h:1611
#define k_ticks_to_ms_floor64(t)
Convert ticks to milliseconds.
Definition time_units.h:1723
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition kernel.h:4298
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition kernel.h:4269
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition kernel.h:4286
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
int k_work_queue_stop(struct k_work_q *queue, k_timeout_t timeout)
Stop a work queue.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition kernel.h:4425
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition kernel.h:4402
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition kernel.h:3442
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition kernel.h:4280
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition kernel.h:4380
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition kernel.h:4321
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition kernel.h:4480
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition kernel.h:4275
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition kernel.h:4292
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
void k_work_queue_run(struct k_work_q *queue, const struct k_work_queue_config *cfg)
Run work queue using calling thread.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition kernel.h:4049
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition kernel.h:4056
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition kernel.h:4063
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition kernel.h:4043
@ K_WORK_FLUSHING
Flag indicating a synced work item that is being flushed.
Definition kernel.h:4069
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
execution_context_types
Definition kernel.h:91
@ K_ISR
Definition kernel.h:92
@ K_COOP_THREAD
Definition kernel.h:93
@ K_PREEMPT_THREAD
Definition kernel.h:94
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
int k_thread_runtime_stats_cpu_get(int cpu, k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads on specified cpu.
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition kernel_structs.h:310
Memory Statistics.
flags
Definition parser.h:97
state
Definition parser_state.h:29
__UINT32_TYPE__ uint32_t
Definition stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition stdint.h:104
__INT32_TYPE__ int32_t
Definition stdint.h:74
__UINT64_TYPE__ uint64_t
Definition stdint.h:91
__UINT8_TYPE__ uint8_t
Definition stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition stdint.h:105
__INT64_TYPE__ int64_t
Definition stdint.h:75
Structure to store initialization entry information.
Definition init.h:66
Definition kernel.h:3182
_wait_q_t wait_q
Definition kernel.h:3183
Event Structure.
Definition kernel.h:2356
struct k_spinlock lock
Definition kernel.h:2359
uint32_t events
Definition kernel.h:2358
_wait_q_t wait_q
Definition kernel.h:2357
Definition kernel.h:2540
futex structure
Definition kernel.h:2277
atomic_t val
Definition kernel.h:2278
Definition kernel.h:5658
struct k_spinlock lock
Definition kernel.h:5661
struct sys_heap heap
Definition kernel.h:5659
_wait_q_t wait_q
Definition kernel.h:5660
Definition kernel.h:2781
Mailbox Message Structure.
Definition kernel.h:4933
k_tid_t tx_target_thread
target thread id
Definition kernel.h:4943
void * tx_data
sender's message data buffer
Definition kernel.h:4939
k_tid_t rx_source_thread
source thread id
Definition kernel.h:4941
uint32_t info
application-defined information value
Definition kernel.h:4937
size_t size
size of message (in bytes)
Definition kernel.h:4935
Mailbox Structure.
Definition kernel.h:4955
_wait_q_t tx_msg_queue
Transmit messages queue.
Definition kernel.h:4957
struct k_spinlock lock
Definition kernel.h:4960
_wait_q_t rx_msg_queue
Receive message queue.
Definition kernel.h:4959
Memory Domain.
Definition mem_domain.h:80
Memory Partition.
Definition mem_domain.h:55
Message Queue Attributes.
Definition kernel.h:4701
uint32_t used_msgs
Used messages.
Definition kernel.h:4707
size_t msg_size
Message Size.
Definition kernel.h:4703
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4705
Message Queue Structure.
Definition kernel.h:4640
size_t msg_size
Message size.
Definition kernel.h:4646
char * read_ptr
Read pointer.
Definition kernel.h:4654
uint32_t used_msgs
Number of used messages.
Definition kernel.h:4658
char * buffer_end
End of message buffer.
Definition kernel.h:4652
struct k_spinlock lock
Lock.
Definition kernel.h:4644
char * write_ptr
Write pointer.
Definition kernel.h:4656
char * buffer_start
Start of message buffer.
Definition kernel.h:4650
uint8_t flags
Message queue.
Definition kernel.h:4663
_wait_q_t wait_q
Message queue wait queue.
Definition kernel.h:4642
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4648
Mutex Structure.
Definition kernel.h:3070
uint32_t lock_count
Current lock count.
Definition kernel.h:3077
_wait_q_t wait_q
Mutex wait queue.
Definition kernel.h:3072
int owner_orig_prio
Original thread priority.
Definition kernel.h:3080
struct k_thread * owner
Mutex owner.
Definition kernel.h:3074
Object core structure.
Definition obj_core.h:121
Definition kernel.h:5301
uint8_t flags
Definition kernel.h:5307
struct ring_buf buf
Definition kernel.h:5303
_wait_q_t data
Definition kernel.h:5305
_wait_q_t space
Definition kernel.h:5306
struct k_spinlock lock
Definition kernel.h:5304
size_t waiting
Definition kernel.h:5302
Poll Event.
Definition kernel.h:6092
struct k_poll_signal * signal
Definition kernel.h:6120
struct k_pipe * pipe
Definition kernel.h:6125
uint32_t tag
optional user-specified tag, opaque, untouched by the API
Definition kernel.h:6100
struct k_fifo * fifo
Definition kernel.h:6122
struct k_msgq * msgq
Definition kernel.h:6124
struct k_queue * queue
Definition kernel.h:6123
uint32_t unused
unused bits in 32-bit word
Definition kernel.h:6112
uint32_t type
bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values)
Definition kernel.h:6103
struct k_sem * sem
Definition kernel.h:6121
uint32_t state
bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values)
Definition kernel.h:6106
uint32_t mode
mode of operation, from enum k_poll_modes
Definition kernel.h:6109
struct z_poller * poller
PRIVATE - DO NOT TOUCH.
Definition kernel.h:6097
void * obj
Definition kernel.h:6119
Definition kernel.h:6068
sys_dlist_t poll_events
PRIVATE - DO NOT TOUCH.
Definition kernel.h:6070
int result
custom result value passed to k_poll_signal_raise() if needed
Definition kernel.h:6079
unsigned int signaled
1 if the event has been signaled, 0 otherwise.
Definition kernel.h:6076
Definition kernel.h:1985
struct k_spinlock lock
Definition kernel.h:1987
_wait_q_t wait_q
Definition kernel.h:1988
sys_sflist_t data_q
Definition kernel.h:1986
Semaphore structure.
Definition kernel.h:3275
Kernel Spin Lock.
Definition spinlock.h:45
Definition thread.h:210
Thread Structure.
Definition thread.h:262
struct _thread_base base
Definition thread.h:264
struct k_heap * resource_pool
resource pool
Definition thread.h:352
struct __thread_entry entry
thread entry and parameters description
Definition thread.h:291
Kernel timeout type.
Definition sys_clock.h:65
A structure used to submit work after a delay.
Definition kernel.h:4101
struct _timeout timeout
Definition kernel.h:4106
struct k_work_q * queue
Definition kernel.h:4109
struct k_work work
Definition kernel.h:4103
A structure used to hold work until it can be processed.
Definition kernel.h:4235
sys_slist_t pending
Definition kernel.h:4249
_wait_q_t drainq
Definition kernel.h:4255
k_tid_t thread_id
Definition kernel.h:4242
_wait_q_t notifyq
Definition kernel.h:4252
uint32_t flags
Definition kernel.h:4258
struct k_thread thread
Definition kernel.h:4237
A structure holding optional configuration items for a work queue.
Definition kernel.h:4197
const char * name
The name to be given to the work queue thread.
Definition kernel.h:4202
uint32_t work_timeout_ms
Controls whether work queue monitors work timeouts.
Definition kernel.h:4231
bool essential
Control whether the work queue thread should be marked as essential thread.
Definition kernel.h:4221
bool no_yield
Control whether the work queue thread should yield between items.
Definition kernel.h:4216
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition kernel.h:4184
struct z_work_canceller canceller
Definition kernel.h:4187
struct z_work_flusher flusher
Definition kernel.h:4186
A structure used to submit work.
Definition kernel.h:4073
k_work_handler_t handler
Definition kernel.h:4082
uint32_t flags
Definition kernel.h:4093
struct k_work_q * queue
Definition kernel.h:4085
sys_snode_t node
Definition kernel.h:4079
A structure to represent a ring buffer.
Definition ring_buffer.h:49
Definition sys_heap.h:57
Definition mem_stats.h:24
Macros to abstract toolchain specific capabilities.