Zephyr API Documentation 4.2.99
A Scalable Open Source RTOS
Loading...
Searching...
No Matches
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
12
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <zephyr/toolchain.h>
26
27#ifdef __cplusplus
28extern "C" {
29#endif
30
31/*
32 * Zephyr currently assumes the size of a couple standard types to simplify
33 * print string formats. Let's make sure this doesn't change without notice.
34 */
35BUILD_ASSERT(sizeof(int32_t) == sizeof(int));
36BUILD_ASSERT(sizeof(int64_t) == sizeof(long long));
37BUILD_ASSERT(sizeof(intptr_t) == sizeof(long));
38
47
48#define K_ANY NULL
49
50#if (CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES) == 0
51#error Zero available thread priorities defined!
52#endif
53
54#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
55#define K_PRIO_PREEMPT(x) (x)
56
57#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
58#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
59#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
60#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
61#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
62
63#ifdef CONFIG_POLL
64#define Z_POLL_EVENT_OBJ_INIT(obj) \
65 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
66#define Z_DECL_POLL_EVENT sys_dlist_t poll_events;
67#else
68#define Z_POLL_EVENT_OBJ_INIT(obj)
69#define Z_DECL_POLL_EVENT
70#endif
71
72struct k_thread;
73struct k_mutex;
74struct k_sem;
75struct k_msgq;
76struct k_mbox;
77struct k_pipe;
78struct k_queue;
79struct k_fifo;
80struct k_lifo;
81struct k_stack;
82struct k_mem_slab;
83struct k_timer;
84struct k_poll_event;
85struct k_poll_signal;
86struct k_mem_domain;
87struct k_mem_partition;
88struct k_futex;
89struct k_event;
90
96
97/* private, used by k_poll and k_work_poll */
98struct k_work_poll;
99typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
100
105
119static inline void
121{
122#ifdef CONFIG_SCHED_THREAD_USAGE_ANALYSIS
123 thread->base.usage.longest = 0ULL;
124#endif
125}
126
127typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
128 void *user_data);
129
145void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data);
146
165#ifdef CONFIG_SMP
166void k_thread_foreach_filter_by_cpu(unsigned int cpu,
167 k_thread_user_cb_t user_cb, void *user_data);
168#else
169static inline
170void k_thread_foreach_filter_by_cpu(unsigned int cpu,
171 k_thread_user_cb_t user_cb, void *user_data)
172{
173 __ASSERT(cpu == 0, "cpu filter out of bounds");
174 ARG_UNUSED(cpu);
175 k_thread_foreach(user_cb, user_data);
176}
177#endif
178
207 k_thread_user_cb_t user_cb, void *user_data);
208
240#ifdef CONFIG_SMP
242 k_thread_user_cb_t user_cb, void *user_data);
243#else
244static inline
245void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu,
246 k_thread_user_cb_t user_cb, void *user_data)
247{
248 __ASSERT(cpu == 0, "cpu filter out of bounds");
249 ARG_UNUSED(cpu);
250 k_thread_foreach_unlocked(user_cb, user_data);
251}
252#endif
253
255
261
262#endif /* !_ASMLANGUAGE */
263
264
265/*
266 * Thread user options. May be needed by assembly code. Common part uses low
267 * bits, arch-specific use high bits.
268 */
269
273#define K_ESSENTIAL (BIT(0))
274
275#define K_FP_IDX 1
285#define K_FP_REGS (BIT(K_FP_IDX))
286
293#define K_USER (BIT(2))
294
303#define K_INHERIT_PERMS (BIT(3))
304
314#define K_CALLBACK_STATE (BIT(4))
315
325#define K_DSP_IDX 6
326#define K_DSP_REGS (BIT(K_DSP_IDX))
327
336#define K_AGU_IDX 7
337#define K_AGU_REGS (BIT(K_AGU_IDX))
338
348#define K_SSE_REGS (BIT(7))
349
350/* end - thread options */
351
352#if !defined(_ASMLANGUAGE)
377__syscall k_thread_stack_t *k_thread_stack_alloc(size_t size, int flags);
378
392
444__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
445 k_thread_stack_t *stack,
446 size_t stack_size,
448 void *p1, void *p2, void *p3,
449 int prio, uint32_t options, k_timeout_t delay);
450
473 void *p1, void *p2,
474 void *p3);
475
489#define k_thread_access_grant(thread, ...) \
490 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), (thread), __VA_ARGS__)
491
506static inline void k_thread_heap_assign(struct k_thread *thread,
507 struct k_heap *heap)
508{
509 thread->resource_pool = heap;
510}
511
512#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
533__syscall int k_thread_stack_space_get(const struct k_thread *thread,
534 size_t *unused_ptr);
535#endif
536
537#if (K_HEAP_MEM_POOL_SIZE > 0)
550void k_thread_system_pool_assign(struct k_thread *thread);
551#endif /* (K_HEAP_MEM_POOL_SIZE > 0) */
552
572__syscall int k_thread_join(struct k_thread *thread, k_timeout_t timeout);
573
587__syscall int32_t k_sleep(k_timeout_t timeout);
588
600static inline int32_t k_msleep(int32_t ms)
601{
602 return k_sleep(Z_TIMEOUT_MS(ms));
603}
604
622
639__syscall void k_busy_wait(uint32_t usec_to_wait);
640
652bool k_can_yield(void);
653
661__syscall void k_yield(void);
662
672__syscall void k_wakeup(k_tid_t thread);
673
687__attribute_const__
689
696__attribute_const__
697static inline k_tid_t k_current_get(void)
698{
699#ifdef CONFIG_CURRENT_THREAD_USE_TLS
700
701 /* Thread-local cache of current thread ID, set in z_thread_entry() */
702 extern Z_THREAD_LOCAL k_tid_t z_tls_current;
703
704 return z_tls_current;
705#else
707#endif
708}
709
729__syscall void k_thread_abort(k_tid_t thread);
730
731k_ticks_t z_timeout_expires(const struct _timeout *timeout);
732k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
733
734#ifdef CONFIG_SYS_CLOCK_EXISTS
735
743__syscall k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread);
744
745static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
746 const struct k_thread *thread)
747{
748 return z_timeout_expires(&thread->base.timeout);
749}
750
759
760static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
761 const struct k_thread *thread)
762{
763 return z_timeout_remaining(&thread->base.timeout);
764}
765
766#endif /* CONFIG_SYS_CLOCK_EXISTS */
767
771
772struct _static_thread_data {
773 struct k_thread *init_thread;
774 k_thread_stack_t *init_stack;
775 unsigned int init_stack_size;
776 k_thread_entry_t init_entry;
777 void *init_p1;
778 void *init_p2;
779 void *init_p3;
780 int init_prio;
781 uint32_t init_options;
782 const char *init_name;
783#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
784 int32_t init_delay_ms;
785#else
786 k_timeout_t init_delay;
787#endif
788};
789
790#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
791#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay_ms = (ms)
792#define Z_THREAD_INIT_DELAY(thread) SYS_TIMEOUT_MS((thread)->init_delay_ms)
793#else
794#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay = SYS_TIMEOUT_MS_INIT(ms)
795#define Z_THREAD_INIT_DELAY(thread) (thread)->init_delay
796#endif
797
798#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
799 entry, p1, p2, p3, \
800 prio, options, delay, tname) \
801 { \
802 .init_thread = (thread), \
803 .init_stack = (stack), \
804 .init_stack_size = (stack_size), \
805 .init_entry = (k_thread_entry_t)entry, \
806 .init_p1 = (void *)p1, \
807 .init_p2 = (void *)p2, \
808 .init_p3 = (void *)p3, \
809 .init_prio = (prio), \
810 .init_options = (options), \
811 .init_name = STRINGIFY(tname), \
812 Z_THREAD_INIT_DELAY_INITIALIZER(delay) \
813 }
814
815/*
816 * Refer to K_THREAD_DEFINE() and K_KERNEL_THREAD_DEFINE() for
817 * information on arguments.
818 */
819#define Z_THREAD_COMMON_DEFINE(name, stack_size, \
820 entry, p1, p2, p3, \
821 prio, options, delay) \
822 struct k_thread _k_thread_obj_##name; \
823 STRUCT_SECTION_ITERABLE(_static_thread_data, \
824 _k_thread_data_##name) = \
825 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
826 _k_thread_stack_##name, stack_size,\
827 entry, p1, p2, p3, prio, options, \
828 delay, name); \
829 __maybe_unused const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
830
834
866#define K_THREAD_DEFINE(name, stack_size, \
867 entry, p1, p2, p3, \
868 prio, options, delay) \
869 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
870 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
871 prio, options, delay)
872
903#define K_KERNEL_THREAD_DEFINE(name, stack_size, \
904 entry, p1, p2, p3, \
905 prio, options, delay) \
906 K_KERNEL_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
907 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
908 prio, options, delay)
909
919__syscall int k_thread_priority_get(k_tid_t thread);
920
946__syscall void k_thread_priority_set(k_tid_t thread, int prio);
947
948
949#ifdef CONFIG_SCHED_DEADLINE
981__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
982
1023__syscall void k_thread_absolute_deadline_set(k_tid_t thread, int deadline);
1024#endif
1025
1044__syscall void k_reschedule(void);
1045
1046#ifdef CONFIG_SCHED_CPU_MASK
1060
1074
1088
1102
1113int k_thread_cpu_pin(k_tid_t thread, int cpu);
1114#endif
1115
1137__syscall void k_thread_suspend(k_tid_t thread);
1138
1150__syscall void k_thread_resume(k_tid_t thread);
1151
1165static inline void k_thread_start(k_tid_t thread)
1166{
1167 k_wakeup(thread);
1168}
1169
1196void k_sched_time_slice_set(int32_t slice, int prio);
1197
1236void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
1237 k_thread_timeslice_fn_t expired, void *data);
1238
1240
1245
1257bool k_is_in_isr(void);
1258
1275__syscall int k_is_preempt_thread(void);
1276
1288static inline bool k_is_pre_kernel(void)
1289{
1290 extern bool z_sys_post_kernel; /* in init.c */
1291
1292 return !z_sys_post_kernel;
1293}
1294
1298
1303
1329void k_sched_lock(void);
1330
1339
1352__syscall void k_thread_custom_data_set(void *value);
1353
1361__syscall void *k_thread_custom_data_get(void);
1362
1376__syscall int k_thread_name_set(k_tid_t thread, const char *str);
1377
1386const char *k_thread_name_get(k_tid_t thread);
1387
1399__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1400 size_t size);
1401
1414const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1415
1419
1424
1433#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1434
1447#define K_NSEC(t) Z_TIMEOUT_NS(t)
1448
1461#define K_USEC(t) Z_TIMEOUT_US(t)
1462
1473#define K_CYC(t) Z_TIMEOUT_CYC(t)
1474
1485#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1486
1497#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1498
1509#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1510
1521#define K_MINUTES(m) K_SECONDS((m) * 60)
1522
1533#define K_HOURS(h) K_MINUTES((h) * 60)
1534
1543#define K_FOREVER Z_FOREVER
1544
1545#ifdef CONFIG_TIMEOUT_64BIT
1546
1558#define K_TIMEOUT_ABS_TICKS(t) \
1559 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)CLAMP(t, 0, (INT64_MAX - 1))))
1560
1572#define K_TIMEOUT_ABS_SEC(t) K_TIMEOUT_ABS_TICKS(k_sec_to_ticks_ceil64(t))
1573
1585#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1586
1599#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1600
1613#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1614
1627#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1628
1629#endif
1630
1634
1641struct k_timer {
1645
1646 /*
1647 * _timeout structure must be first here if we want to use
1648 * dynamic timer allocation. timeout.node is used in the double-linked
1649 * list of free timers
1650 */
1651 struct _timeout timeout;
1652
1653 /* wait queue for the (single) thread waiting on this timer */
1654 _wait_q_t wait_q;
1655
1656 /* runs in ISR context */
1657 void (*expiry_fn)(struct k_timer *timer);
1658
1659 /* runs in the context of the thread that calls k_timer_stop() */
1660 void (*stop_fn)(struct k_timer *timer);
1661
1662 /* timer period */
1663 k_timeout_t period;
1664
1665 /* timer status */
1666 uint32_t status;
1667
1668 /* user-specific data, also used to support legacy features */
1669 void *user_data;
1670
1672
1673#ifdef CONFIG_OBJ_CORE_TIMER
1674 struct k_obj_core obj_core;
1675#endif
1679};
1680
1684#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1685 { \
1686 .timeout = { \
1687 .node = {},\
1688 .fn = z_timer_expiration_handler, \
1689 .dticks = 0, \
1690 }, \
1691 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1692 .expiry_fn = expiry, \
1693 .stop_fn = stop, \
1694 .period = {}, \
1695 .status = 0, \
1696 .user_data = 0, \
1697 }
1698
1702
1708
1719typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1720
1735typedef void (*k_timer_stop_t)(struct k_timer *timer);
1736
1748#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1749 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1750 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1751
1761void k_timer_init(struct k_timer *timer,
1762 k_timer_expiry_t expiry_fn,
1763 k_timer_stop_t stop_fn);
1764
1782__syscall void k_timer_start(struct k_timer *timer,
1783 k_timeout_t duration, k_timeout_t period);
1784
1801__syscall void k_timer_stop(struct k_timer *timer);
1802
1815__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1816
1834__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1835
1836#ifdef CONFIG_SYS_CLOCK_EXISTS
1837
1848__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1849
1850static inline k_ticks_t z_impl_k_timer_expires_ticks(
1851 const struct k_timer *timer)
1852{
1853 return z_timeout_expires(&timer->timeout);
1854}
1855
1866__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1867
1868static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1869 const struct k_timer *timer)
1870{
1871 return z_timeout_remaining(&timer->timeout);
1872}
1873
1884static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1885{
1887}
1888
1889#endif /* CONFIG_SYS_CLOCK_EXISTS */
1890
1903__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1904
1908static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1909 void *user_data)
1910{
1911 timer->user_data = user_data;
1912}
1913
1921__syscall void *k_timer_user_data_get(const struct k_timer *timer);
1922
1923static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1924{
1925 return timer->user_data;
1926}
1927
1929
1935
1945__syscall int64_t k_uptime_ticks(void);
1946
1960static inline int64_t k_uptime_get(void)
1961{
1963}
1964
1984static inline uint32_t k_uptime_get_32(void)
1985{
1986 return (uint32_t)k_uptime_get();
1987}
1988
1997static inline uint32_t k_uptime_seconds(void)
1998{
2000}
2001
2013static inline int64_t k_uptime_delta(int64_t *reftime)
2014{
2015 int64_t uptime, delta;
2016
2017 uptime = k_uptime_get();
2018 delta = uptime - *reftime;
2019 *reftime = uptime;
2020
2021 return delta;
2022}
2023
2032static inline uint32_t k_cycle_get_32(void)
2033{
2034 return arch_k_cycle_get_32();
2035}
2036
2047static inline uint64_t k_cycle_get_64(void)
2048{
2049 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
2050 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
2051 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
2052 return 0;
2053 }
2054
2055 return arch_k_cycle_get_64();
2056}
2057
2061
2062struct k_queue {
2065 _wait_q_t wait_q;
2066
2067 Z_DECL_POLL_EVENT
2068
2070};
2071
2075
2076#define Z_QUEUE_INITIALIZER(obj) \
2077 { \
2078 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
2079 .lock = { }, \
2080 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2081 Z_POLL_EVENT_OBJ_INIT(obj) \
2082 }
2083
2087
2093
2101__syscall void k_queue_init(struct k_queue *queue);
2102
2116__syscall void k_queue_cancel_wait(struct k_queue *queue);
2117
2130void k_queue_append(struct k_queue *queue, void *data);
2131
2148__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
2149
2162void k_queue_prepend(struct k_queue *queue, void *data);
2163
2180__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
2181
2195void k_queue_insert(struct k_queue *queue, void *prev, void *data);
2196
2215int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
2216
2232int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
2233
2251__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
2252
2269bool k_queue_remove(struct k_queue *queue, void *data);
2270
2285bool k_queue_unique_append(struct k_queue *queue, void *data);
2286
2300__syscall int k_queue_is_empty(struct k_queue *queue);
2301
2302static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
2303{
2304 return sys_sflist_is_empty(&queue->data_q) ? 1 : 0;
2305}
2306
2316__syscall void *k_queue_peek_head(struct k_queue *queue);
2317
2327__syscall void *k_queue_peek_tail(struct k_queue *queue);
2328
2338#define K_QUEUE_DEFINE(name) \
2339 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2340 Z_QUEUE_INITIALIZER(name)
2341
2343
2344#ifdef CONFIG_USERSPACE
2354struct k_futex {
2356};
2357
2365struct z_futex_data {
2366 _wait_q_t wait_q;
2367 struct k_spinlock lock;
2368};
2369
2370#define Z_FUTEX_DATA_INITIALIZER(obj) \
2371 { \
2372 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2373 }
2374
2380
2400__syscall int k_futex_wait(struct k_futex *futex, int expected,
2401 k_timeout_t timeout);
2402
2417__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2418
2420#endif
2421
2427
2432
2439
2440struct k_event {
2444 _wait_q_t wait_q;
2445 uint32_t events;
2446 struct k_spinlock lock;
2447
2449
2450#ifdef CONFIG_OBJ_CORE_EVENT
2451 struct k_obj_core obj_core;
2452#endif
2456
2457};
2458
2462
2463#define Z_EVENT_INITIALIZER(obj) \
2464 { \
2465 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2466 .events = 0, \
2467 .lock = {}, \
2468 }
2472
2480__syscall void k_event_init(struct k_event *event);
2481
2499__syscall uint32_t k_event_post(struct k_event *event, uint32_t events);
2500
2518__syscall uint32_t k_event_set(struct k_event *event, uint32_t events);
2519
2536__syscall uint32_t k_event_set_masked(struct k_event *event, uint32_t events,
2537 uint32_t events_mask);
2538
2551__syscall uint32_t k_event_clear(struct k_event *event, uint32_t events);
2552
2577__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2578 bool reset, k_timeout_t timeout);
2579
2604__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2605 bool reset, k_timeout_t timeout);
2606
2626__syscall uint32_t k_event_wait_safe(struct k_event *event, uint32_t events,
2627 bool reset, k_timeout_t timeout);
2628
2648__syscall uint32_t k_event_wait_all_safe(struct k_event *event, uint32_t events,
2649 bool reset, k_timeout_t timeout);
2650
2651
2652
2663static inline uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
2664{
2665 return k_event_wait(event, events_mask, false, K_NO_WAIT);
2666}
2667
2677#define K_EVENT_DEFINE(name) \
2678 STRUCT_SECTION_ITERABLE(k_event, name) = \
2679 Z_EVENT_INITIALIZER(name);
2680
2682
2683struct k_fifo {
2684 struct k_queue _queue;
2685#ifdef CONFIG_OBJ_CORE_FIFO
2686 struct k_obj_core obj_core;
2687#endif
2688};
2689
2693#define Z_FIFO_INITIALIZER(obj) \
2694 { \
2695 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2696 }
2697
2701
2707
2715#define k_fifo_init(fifo) \
2716 ({ \
2717 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2718 k_queue_init(&(fifo)->_queue); \
2719 K_OBJ_CORE_INIT(K_OBJ_CORE(fifo), _obj_type_fifo); \
2720 K_OBJ_CORE_LINK(K_OBJ_CORE(fifo)); \
2721 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2722 })
2723
2735#define k_fifo_cancel_wait(fifo) \
2736 ({ \
2737 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2738 k_queue_cancel_wait(&(fifo)->_queue); \
2739 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2740 })
2741
2754#define k_fifo_put(fifo, data) \
2755 ({ \
2756 void *_data = data; \
2757 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, _data); \
2758 k_queue_append(&(fifo)->_queue, _data); \
2759 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, _data); \
2760 })
2761
2778#define k_fifo_alloc_put(fifo, data) \
2779 ({ \
2780 void *_data = data; \
2781 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, _data); \
2782 int fap_ret = k_queue_alloc_append(&(fifo)->_queue, _data); \
2783 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, _data, fap_ret); \
2784 fap_ret; \
2785 })
2786
2801#define k_fifo_put_list(fifo, head, tail) \
2802 ({ \
2803 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2804 k_queue_append_list(&(fifo)->_queue, head, tail); \
2805 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2806 })
2807
2821#define k_fifo_put_slist(fifo, list) \
2822 ({ \
2823 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2824 k_queue_merge_slist(&(fifo)->_queue, list); \
2825 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2826 })
2827
2845#define k_fifo_get(fifo, timeout) \
2846 ({ \
2847 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2848 void *fg_ret = k_queue_get(&(fifo)->_queue, timeout); \
2849 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, fg_ret); \
2850 fg_ret; \
2851 })
2852
2866#define k_fifo_is_empty(fifo) \
2867 k_queue_is_empty(&(fifo)->_queue)
2868
2882#define k_fifo_peek_head(fifo) \
2883 ({ \
2884 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2885 void *fph_ret = k_queue_peek_head(&(fifo)->_queue); \
2886 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, fph_ret); \
2887 fph_ret; \
2888 })
2889
2901#define k_fifo_peek_tail(fifo) \
2902 ({ \
2903 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2904 void *fpt_ret = k_queue_peek_tail(&(fifo)->_queue); \
2905 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, fpt_ret); \
2906 fpt_ret; \
2907 })
2908
2918#define K_FIFO_DEFINE(name) \
2919 STRUCT_SECTION_ITERABLE(k_fifo, name) = \
2920 Z_FIFO_INITIALIZER(name)
2921
2923
2924struct k_lifo {
2925 struct k_queue _queue;
2926#ifdef CONFIG_OBJ_CORE_LIFO
2927 struct k_obj_core obj_core;
2928#endif
2929};
2930
2934
2935#define Z_LIFO_INITIALIZER(obj) \
2936 { \
2937 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2938 }
2939
2943
2949
2957#define k_lifo_init(lifo) \
2958 ({ \
2959 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2960 k_queue_init(&(lifo)->_queue); \
2961 K_OBJ_CORE_INIT(K_OBJ_CORE(lifo), _obj_type_lifo); \
2962 K_OBJ_CORE_LINK(K_OBJ_CORE(lifo)); \
2963 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2964 })
2965
2978#define k_lifo_put(lifo, data) \
2979 ({ \
2980 void *_data = data; \
2981 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, _data); \
2982 k_queue_prepend(&(lifo)->_queue, _data); \
2983 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, _data); \
2984 })
2985
3002#define k_lifo_alloc_put(lifo, data) \
3003 ({ \
3004 void *_data = data; \
3005 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, _data); \
3006 int lap_ret = k_queue_alloc_prepend(&(lifo)->_queue, _data); \
3007 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, _data, lap_ret); \
3008 lap_ret; \
3009 })
3010
3028#define k_lifo_get(lifo, timeout) \
3029 ({ \
3030 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
3031 void *lg_ret = k_queue_get(&(lifo)->_queue, timeout); \
3032 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, lg_ret); \
3033 lg_ret; \
3034 })
3035
3045#define K_LIFO_DEFINE(name) \
3046 STRUCT_SECTION_ITERABLE(k_lifo, name) = \
3047 Z_LIFO_INITIALIZER(name)
3048
3050
3054#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
3055
3056typedef uintptr_t stack_data_t;
3057
3058struct k_stack {
3059 _wait_q_t wait_q;
3060 struct k_spinlock lock;
3061 stack_data_t *base, *next, *top;
3062
3063 uint8_t flags;
3064
3066
3067#ifdef CONFIG_OBJ_CORE_STACK
3068 struct k_obj_core obj_core;
3069#endif
3070};
3071
3072#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
3073 { \
3074 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3075 .base = (stack_buffer), \
3076 .next = (stack_buffer), \
3077 .top = (stack_buffer) + (stack_num_entries), \
3078 }
3079
3083
3089
3099void k_stack_init(struct k_stack *stack,
3100 stack_data_t *buffer, uint32_t num_entries);
3101
3102
3116
3117__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
3118 uint32_t num_entries);
3119
3131int k_stack_cleanup(struct k_stack *stack);
3132
3146__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
3147
3168__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
3169 k_timeout_t timeout);
3170
3181#define K_STACK_DEFINE(name, stack_num_entries) \
3182 stack_data_t __noinit \
3183 _k_stack_buf_##name[stack_num_entries]; \
3184 STRUCT_SECTION_ITERABLE(k_stack, name) = \
3185 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
3186 stack_num_entries)
3187
3189
3193
3194struct k_work;
3195struct k_work_q;
3196struct k_work_queue_config;
3197extern struct k_work_q k_sys_work_q;
3198
3202
3208
3213struct k_mutex {
3215 _wait_q_t wait_q;
3218
3221
3224
3226
3227#ifdef CONFIG_OBJ_CORE_MUTEX
3228 struct k_obj_core obj_core;
3229#endif
3230};
3231
3235#define Z_MUTEX_INITIALIZER(obj) \
3236 { \
3237 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3238 .owner = NULL, \
3239 .lock_count = 0, \
3240 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
3241 }
3242
3246
3256#define K_MUTEX_DEFINE(name) \
3257 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
3258 Z_MUTEX_INITIALIZER(name)
3259
3272__syscall int k_mutex_init(struct k_mutex *mutex);
3273
3274
3296__syscall int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout);
3297
3318__syscall int k_mutex_unlock(struct k_mutex *mutex);
3319
3323
3324
3326 _wait_q_t wait_q;
3327
3328#ifdef CONFIG_OBJ_CORE_CONDVAR
3329 struct k_obj_core obj_core;
3330#endif
3331};
3332
3333#define Z_CONDVAR_INITIALIZER(obj) \
3334 { \
3335 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3336 }
3337
3343
3350__syscall int k_condvar_init(struct k_condvar *condvar);
3351
3358__syscall int k_condvar_signal(struct k_condvar *condvar);
3359
3367__syscall int k_condvar_broadcast(struct k_condvar *condvar);
3368
3386__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
3387 k_timeout_t timeout);
3388
3399#define K_CONDVAR_DEFINE(name) \
3400 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
3401 Z_CONDVAR_INITIALIZER(name)
3402
3405
3411
3418struct k_sem {
3422 _wait_q_t wait_q;
3423 unsigned int count;
3424 unsigned int limit;
3425
3426 Z_DECL_POLL_EVENT
3427
3429
3430#ifdef CONFIG_OBJ_CORE_SEM
3431 struct k_obj_core obj_core;
3432#endif
3434};
3435
3439
3440#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
3441 { \
3442 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3443 .count = (initial_count), \
3444 .limit = (count_limit), \
3445 Z_POLL_EVENT_OBJ_INIT(obj) \
3446 }
3447
3451
3460#define K_SEM_MAX_LIMIT UINT_MAX
3461
3477__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
3478 unsigned int limit);
3479
3498__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
3499
3510__syscall void k_sem_give(struct k_sem *sem);
3511
3521__syscall void k_sem_reset(struct k_sem *sem);
3522
3532__syscall unsigned int k_sem_count_get(struct k_sem *sem);
3533
3537static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3538{
3539 return sem->count;
3540}
3541
3553#define K_SEM_DEFINE(name, initial_count, count_limit) \
3554 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3555 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3556 BUILD_ASSERT(((count_limit) != 0) && \
3557 (((initial_count) < (count_limit)) || ((initial_count) == (count_limit))) && \
3558 ((count_limit) <= K_SEM_MAX_LIMIT));
3559
3561
3562#if defined(CONFIG_SCHED_IPI_SUPPORTED) || defined(__DOXYGEN__)
3563struct k_ipi_work;
3564
3565
3566typedef void (*k_ipi_func_t)(struct k_ipi_work *work);
3567
3578 sys_dnode_t node[CONFIG_MP_MAX_NUM_CPUS]; /* Node in IPI work queue */
3579 k_ipi_func_t func; /* Function to execute on target CPU */
3580 struct k_event event; /* Event to signal when processed */
3581 uint32_t bitmask; /* Bitmask of targeted CPUs */
3583};
3584
3585
3593static inline void k_ipi_work_init(struct k_ipi_work *work)
3594{
3595 k_event_init(&work->event);
3596 for (unsigned int i = 0; i < CONFIG_MP_MAX_NUM_CPUS; i++) {
3597 sys_dnode_init(&work->node[i]);
3598 }
3599 work->bitmask = 0;
3600}
3601
3620int k_ipi_work_add(struct k_ipi_work *work, uint32_t cpu_bitmask,
3621 k_ipi_func_t func);
3622
3645int k_ipi_work_wait(struct k_ipi_work *work, k_timeout_t timeout);
3646
3656
3657#endif /* CONFIG_SCHED_IPI_SUPPORTED */
3658
3662
3663struct k_work_delayable;
3664struct k_work_sync;
3665
3669
3675
3682typedef void (*k_work_handler_t)(struct k_work *work);
3683
3697void k_work_init(struct k_work *work,
3699
3714int k_work_busy_get(const struct k_work *work);
3715
3729static inline bool k_work_is_pending(const struct k_work *work);
3730
3752 struct k_work *work);
3753
3762int k_work_submit(struct k_work *work);
3763
3788bool k_work_flush(struct k_work *work,
3789 struct k_work_sync *sync);
3790
3810int k_work_cancel(struct k_work *work);
3811
3842bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3843
3854
3875 k_thread_stack_t *stack, size_t stack_size,
3876 int prio, const struct k_work_queue_config *cfg);
3877
3888void k_work_queue_run(struct k_work_q *queue, const struct k_work_queue_config *cfg);
3889
3899static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3900
3924int k_work_queue_drain(struct k_work_q *queue, bool plug);
3925
3940
3957
3973
3985static inline struct k_work_delayable *
3987
4002
4017static inline bool k_work_delayable_is_pending(
4018 const struct k_work_delayable *dwork);
4019
4034 const struct k_work_delayable *dwork);
4035
4050 const struct k_work_delayable *dwork);
4051
4080 struct k_work_delayable *dwork,
4081 k_timeout_t delay);
4082
4097 k_timeout_t delay);
4098
4135 struct k_work_delayable *dwork,
4136 k_timeout_t delay);
4137
4151 k_timeout_t delay);
4152
4178 struct k_work_sync *sync);
4179
4201
4231 struct k_work_sync *sync);
4232
4233enum {
4237
4238 /* The atomic API is used for all work and queue flags fields to
4239 * enforce sequential consistency in SMP environments.
4240 */
4241
4242 /* Bits that represent the work item states. At least nine of the
4243 * combinations are distinct valid stable states.
4244 */
4245 K_WORK_RUNNING_BIT = 0,
4246 K_WORK_CANCELING_BIT = 1,
4247 K_WORK_QUEUED_BIT = 2,
4248 K_WORK_DELAYED_BIT = 3,
4249 K_WORK_FLUSHING_BIT = 4,
4250
4251 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
4252 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT) | BIT(K_WORK_FLUSHING_BIT),
4253
4254 /* Static work flags */
4255 K_WORK_DELAYABLE_BIT = 8,
4256 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
4257
4258 /* Dynamic work queue flags */
4259 K_WORK_QUEUE_STARTED_BIT = 0,
4260 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
4261 K_WORK_QUEUE_BUSY_BIT = 1,
4262 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
4263 K_WORK_QUEUE_DRAIN_BIT = 2,
4264 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
4265 K_WORK_QUEUE_PLUGGED_BIT = 3,
4266 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
4267 K_WORK_QUEUE_STOP_BIT = 4,
4268 K_WORK_QUEUE_STOP = BIT(K_WORK_QUEUE_STOP_BIT),
4269
4270 /* Static work queue flags */
4271 K_WORK_QUEUE_NO_YIELD_BIT = 8,
4272 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
4273
4277 /* Transient work flags */
4278
4284 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
4285
4290 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
4291
4297 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
4298
4304 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
4305
4310 K_WORK_FLUSHING = BIT(K_WORK_FLUSHING_BIT),
4311};
4312
4314struct k_work {
4315 /* All fields are protected by the work module spinlock. No fields
4316 * are to be accessed except through kernel API.
4317 */
4318
4319 /* Node to link into k_work_q pending list. */
4321
4322 /* The function to be invoked by the work queue thread. */
4324
4325 /* The queue on which the work item was last submitted. */
4327
4328 /* State of the work item.
4329 *
4330 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
4331 *
4332 * It can be RUNNING and CANCELING simultaneously.
4333 */
4335};
4336
4337#define Z_WORK_INITIALIZER(work_handler) { \
4338 .handler = (work_handler), \
4339}
4340
4343 /* The work item. */
4344 struct k_work work;
4345
4346 /* Timeout used to submit work after a delay. */
4347 struct _timeout timeout;
4348
4349 /* The queue to which the work should be submitted. */
4351};
4352
4353#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
4354 .work = { \
4355 .handler = (work_handler), \
4356 .flags = K_WORK_DELAYABLE, \
4357 }, \
4358}
4359
4376#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
4377 struct k_work_delayable work \
4378 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
4379
4383
4384/* Record used to wait for work to flush.
4385 *
4386 * The work item is inserted into the queue that will process (or is
4387 * processing) the item, and will be processed as soon as the item
4388 * completes. When the flusher is processed the semaphore will be
4389 * signaled, releasing the thread waiting for the flush.
4390 */
4391struct z_work_flusher {
4392 struct k_work work;
4393 struct k_sem sem;
4394};
4395
4396/* Record used to wait for work to complete a cancellation.
4397 *
4398 * The work item is inserted into a global queue of pending cancels.
4399 * When a cancelling work item goes idle any matching waiters are
4400 * removed from pending_cancels and are woken.
4401 */
4402struct z_work_canceller {
4403 sys_snode_t node;
4404 struct k_work *work;
4405 struct k_sem sem;
4406};
4407
4411
4426 union {
4427 struct z_work_flusher flusher;
4428 struct z_work_canceller canceller;
4429 };
4430};
4431
4443 const char *name;
4444
4458
4463
4473};
4474
4476struct k_work_q {
4477 /* The thread that animates the work. */
4479
4480 /* The thread ID that animates the work. This may be an external thread
4481 * if k_work_queue_run() is used.
4482 */
4484
4485 /* All the following fields must be accessed only while the
4486 * work module spinlock is held.
4487 */
4488
4489 /* List of k_work items to be worked. */
4491
4492 /* Wait queue for idle work thread. */
4493 _wait_q_t notifyq;
4494
4495 /* Wait queue for threads waiting for the queue to drain. */
4496 _wait_q_t drainq;
4497
4498 /* Flags describing queue state. */
4500
4501#if defined(CONFIG_WORKQUEUE_WORK_TIMEOUT)
4502 struct _timeout work_timeout_record;
4503 struct k_work *work;
4504 k_timeout_t work_timeout;
4505#endif /* defined(CONFIG_WORKQUEUE_WORK_TIMEOUT) */
4506};
4507
4508/* Provide the implementation for inline functions declared above */
4509
4510static inline bool k_work_is_pending(const struct k_work *work)
4511{
4512 return k_work_busy_get(work) != 0;
4513}
4514
4515static inline struct k_work_delayable *
4520
4522 const struct k_work_delayable *dwork)
4523{
4524 return k_work_delayable_busy_get(dwork) != 0;
4525}
4526
4528 const struct k_work_delayable *dwork)
4529{
4530 return z_timeout_expires(&dwork->timeout);
4531}
4532
4534 const struct k_work_delayable *dwork)
4535{
4536 return z_timeout_remaining(&dwork->timeout);
4537}
4538
4540{
4541 return queue->thread_id;
4542}
4543
4545
4546struct k_work_user;
4547
4552
4562typedef void (*k_work_user_handler_t)(struct k_work_user *work);
4563
4567
4568struct k_work_user_q {
4569 struct k_queue queue;
4570 struct k_thread thread;
4571};
4572
4573enum {
4574 K_WORK_USER_STATE_PENDING, /* Work item pending state */
4575};
4576
4577struct k_work_user {
4578 void *_reserved; /* Used by k_queue implementation. */
4579 k_work_user_handler_t handler;
4581};
4582
4586
4587#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4588#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4589#else
4590#define Z_WORK_USER_INITIALIZER(work_handler) \
4591 { \
4592 ._reserved = NULL, \
4593 .handler = (work_handler), \
4594 .flags = 0 \
4595 }
4596#endif
4597
4609#define K_WORK_USER_DEFINE(work, work_handler) \
4610 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4611
4621static inline void k_work_user_init(struct k_work_user *work,
4622 k_work_user_handler_t handler)
4623{
4624 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4625}
4626
4643static inline bool k_work_user_is_pending(struct k_work_user *work)
4644{
4645 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4646}
4647
4666static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4667 struct k_work_user *work)
4668{
4669 int ret = -EBUSY;
4670
4671 if (!atomic_test_and_set_bit(&work->flags,
4672 K_WORK_USER_STATE_PENDING)) {
4673 ret = k_queue_alloc_append(&work_q->queue, work);
4674
4675 /* Couldn't insert into the queue. Clear the pending bit
4676 * so the work item can be submitted again
4677 */
4678 if (ret != 0) {
4679 atomic_clear_bit(&work->flags,
4680 K_WORK_USER_STATE_PENDING);
4681 }
4682 }
4683
4684 return ret;
4685}
4686
4706void k_work_user_queue_start(struct k_work_user_q *work_q,
4707 k_thread_stack_t *stack,
4708 size_t stack_size, int prio,
4709 const char *name);
4710
4721static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
4722{
4723 return &work_q->thread;
4724}
4725
4727
4731
4732struct k_work_poll {
4733 struct k_work work;
4734 struct k_work_q *workq;
4735 struct z_poller poller;
4736 struct k_poll_event *events;
4737 int num_events;
4738 k_work_handler_t real_handler;
4739 struct _timeout timeout;
4740 int poll_result;
4741};
4742
4746
4751
4763#define K_WORK_DEFINE(work, work_handler) \
4764 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4765
4775void k_work_poll_init(struct k_work_poll *work,
4776 k_work_handler_t handler);
4777
4813 struct k_work_poll *work,
4814 struct k_poll_event *events,
4815 int num_events,
4816 k_timeout_t timeout);
4817
4849int k_work_poll_submit(struct k_work_poll *work,
4850 struct k_poll_event *events,
4851 int num_events,
4852 k_timeout_t timeout);
4853
4868int k_work_poll_cancel(struct k_work_poll *work);
4869
4871
4877
4881struct k_msgq {
4883 _wait_q_t wait_q;
4887 size_t msg_size;
4900
4901 Z_DECL_POLL_EVENT
4902
4905
4907
4908#ifdef CONFIG_OBJ_CORE_MSGQ
4909 struct k_obj_core obj_core;
4910#endif
4911};
4912
4915
4916
4917#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4918 { \
4919 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4920 .lock = {}, \
4921 .msg_size = q_msg_size, \
4922 .max_msgs = q_max_msgs, \
4923 .buffer_start = q_buffer, \
4924 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4925 .read_ptr = q_buffer, \
4926 .write_ptr = q_buffer, \
4927 .used_msgs = 0, \
4928 Z_POLL_EVENT_OBJ_INIT(obj) \
4929 .flags = 0, \
4930 }
4931
4935
4936
4937#define K_MSGQ_FLAG_ALLOC BIT(0)
4938
4950
4951
4970#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4971 static char __noinit __aligned(q_align) \
4972 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4973 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4974 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4975 (q_msg_size), (q_max_msgs))
4976
4991void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4992 uint32_t max_msgs);
4993
5013__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
5014 uint32_t max_msgs);
5015
5026int k_msgq_cleanup(struct k_msgq *msgq);
5027
5048__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
5049
5074__syscall int k_msgq_put_front(struct k_msgq *msgq, const void *data);
5075
5096__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
5097
5112__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
5113
5130__syscall int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx);
5131
5141__syscall void k_msgq_purge(struct k_msgq *msgq);
5142
5153__syscall uint32_t k_msgq_num_free_get(struct k_msgq *msgq);
5154
5163__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
5164 struct k_msgq_attrs *attrs);
5165
5166
5167static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
5168{
5169 return msgq->max_msgs - msgq->used_msgs;
5170}
5171
5181__syscall uint32_t k_msgq_num_used_get(struct k_msgq *msgq);
5182
5183static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
5184{
5185 return msgq->used_msgs;
5186}
5187
5189
5195
5202 size_t size;
5206 void *tx_data;
5212 k_tid_t _syncing_thread;
5213#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
5215 struct k_sem *_async_sem;
5216#endif
5217};
5218
5222struct k_mbox {
5224 _wait_q_t tx_msg_queue;
5226 _wait_q_t rx_msg_queue;
5228
5230
5231#ifdef CONFIG_OBJ_CORE_MAILBOX
5232 struct k_obj_core obj_core;
5233#endif
5234};
5235
5238
5239#define Z_MBOX_INITIALIZER(obj) \
5240 { \
5241 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
5242 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
5243 }
5244
5248
5258#define K_MBOX_DEFINE(name) \
5259 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
5260 Z_MBOX_INITIALIZER(name) \
5261
5262
5269void k_mbox_init(struct k_mbox *mbox);
5270
5290int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
5291 k_timeout_t timeout);
5292
5306void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
5307 struct k_sem *sem);
5308
5326int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
5327 void *buffer, k_timeout_t timeout);
5328
5342void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
5343
5345
5351
5361__syscall void k_pipe_init(struct k_pipe *pipe, uint8_t *buffer, size_t buffer_size);
5362
5367
5368struct k_pipe {
5369 size_t waiting;
5372 _wait_q_t data;
5373 _wait_q_t space;
5375
5376 Z_DECL_POLL_EVENT
5377#ifdef CONFIG_OBJ_CORE_PIPE
5378 struct k_obj_core obj_core;
5379#endif
5381};
5382
5386#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
5387{ \
5388 .waiting = 0, \
5389 .buf = RING_BUF_INIT(pipe_buffer, pipe_buffer_size), \
5390 .data = Z_WAIT_Q_INIT(&obj.data), \
5391 .space = Z_WAIT_Q_INIT(&obj.space), \
5392 .flags = PIPE_FLAG_OPEN, \
5393 Z_POLL_EVENT_OBJ_INIT(obj) \
5394}
5398
5412#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
5413 static unsigned char __noinit __aligned(pipe_align) \
5414 _k_pipe_buf_##name[pipe_buffer_size]; \
5415 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
5416 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
5417
5418
5435__syscall int k_pipe_write(struct k_pipe *pipe, const uint8_t *data, size_t len,
5436 k_timeout_t timeout);
5437
5453__syscall int k_pipe_read(struct k_pipe *pipe, uint8_t *data, size_t len,
5454 k_timeout_t timeout);
5455
5465__syscall void k_pipe_reset(struct k_pipe *pipe);
5466
5475__syscall void k_pipe_close(struct k_pipe *pipe);
5477
5481struct k_mem_slab_info {
5482 uint32_t num_blocks;
5483 size_t block_size;
5484 uint32_t num_used;
5485#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5486 uint32_t max_used;
5487#endif
5488};
5489
5490struct k_mem_slab {
5491 _wait_q_t wait_q;
5492 struct k_spinlock lock;
5493 char *buffer;
5494 char *free_list;
5495 struct k_mem_slab_info info;
5496
5498
5499#ifdef CONFIG_OBJ_CORE_MEM_SLAB
5500 struct k_obj_core obj_core;
5501#endif
5502};
5503
5504#define Z_MEM_SLAB_INITIALIZER(_slab, _slab_buffer, _slab_block_size, \
5505 _slab_num_blocks) \
5506 { \
5507 .wait_q = Z_WAIT_Q_INIT(&(_slab).wait_q), \
5508 .lock = {}, \
5509 .buffer = _slab_buffer, \
5510 .free_list = NULL, \
5511 .info = {_slab_num_blocks, _slab_block_size, 0} \
5512 }
5513
5514
5518
5524
5550#define K_MEM_SLAB_DEFINE_IN_SECT(name, in_section, slab_block_size, slab_num_blocks, slab_align) \
5551 BUILD_ASSERT(((slab_block_size) % (slab_align)) == 0, \
5552 "slab_block_size must be a multiple of slab_align"); \
5553 BUILD_ASSERT((((slab_align) & ((slab_align) - 1)) == 0), \
5554 "slab_align must be a power of 2"); \
5555 char in_section __aligned(WB_UP( \
5556 slab_align)) _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5557 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = Z_MEM_SLAB_INITIALIZER( \
5558 name, _k_mem_slab_buf_##name, WB_UP(slab_block_size), slab_num_blocks)
5559
5583#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
5584 K_MEM_SLAB_DEFINE_IN_SECT(name, __noinit_named(k_mem_slab_buf_##name), slab_block_size, \
5585 slab_num_blocks, slab_align)
5586
5603#define K_MEM_SLAB_DEFINE_IN_SECT_STATIC(name, in_section, slab_block_size, slab_num_blocks, \
5604 slab_align) \
5605 BUILD_ASSERT(((slab_block_size) % (slab_align)) == 0, \
5606 "slab_block_size must be a multiple of slab_align"); \
5607 BUILD_ASSERT((((slab_align) & ((slab_align) - 1)) == 0), \
5608 "slab_align must be a power of 2"); \
5609 static char in_section __aligned(WB_UP( \
5610 slab_align)) _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5611 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = Z_MEM_SLAB_INITIALIZER( \
5612 name, _k_mem_slab_buf_##name, WB_UP(slab_block_size), slab_num_blocks)
5613
5628#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5629 K_MEM_SLAB_DEFINE_IN_SECT_STATIC(name, __noinit_named(k_mem_slab_buf_##name), \
5630 slab_block_size, slab_num_blocks, slab_align)
5631
5653int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
5654 size_t block_size, uint32_t num_blocks);
5655
5678int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5679 k_timeout_t timeout);
5680
5692void k_mem_slab_free(struct k_mem_slab *slab, void *mem);
5693
5706static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5707{
5708 return slab->info.num_used;
5709}
5710
5723static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5724{
5725#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5726 return slab->info.max_used;
5727#else
5728 ARG_UNUSED(slab);
5729 return 0;
5730#endif
5731}
5732
5745static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5746{
5747 return slab->info.num_blocks - slab->info.num_used;
5748}
5749
5763
5764int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats);
5765
5779int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab);
5780
5782
5787
5788/* kernel synchronized heap struct */
5789
5790struct k_heap {
5792 _wait_q_t wait_q;
5794};
5795
5809void k_heap_init(struct k_heap *h, void *mem,
5810 size_t bytes) __attribute_nonnull(1);
5811
5832void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5833 k_timeout_t timeout) __attribute_nonnull(1);
5834
5856void *k_heap_alloc(struct k_heap *h, size_t bytes,
5857 k_timeout_t timeout) __attribute_nonnull(1);
5858
5881void *k_heap_calloc(struct k_heap *h, size_t num, size_t size, k_timeout_t timeout)
5882 __attribute_nonnull(1);
5883
5907void *k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
5908 __attribute_nonnull(1);
5909
5920void k_heap_free(struct k_heap *h, void *mem) __attribute_nonnull(1);
5921
5922/* Hand-calculated minimum heap sizes needed to return a successful
5923 * 1-byte allocation. See details in lib/os/heap.[ch]
5924 */
5925#define Z_HEAP_MIN_SIZE ((sizeof(void *) > 4) ? 56 : 44)
5926
5943#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5944 char in_section \
5945 __aligned(8) /* CHUNK_UNIT */ \
5946 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5947 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5948 .heap = { \
5949 .init_mem = kheap_##name, \
5950 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5951 }, \
5952 }
5953
5968#define K_HEAP_DEFINE(name, bytes) \
5969 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5970 __noinit_named(kheap_buf_##name))
5971
5986#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5987 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5988
5998int k_heap_array_get(struct k_heap **heap);
5999
6003
6010
6029void *k_aligned_alloc(size_t align, size_t size);
6030
6042void *k_malloc(size_t size);
6043
6054void k_free(void *ptr);
6055
6067void *k_calloc(size_t nmemb, size_t size);
6068
6086void *k_realloc(void *ptr, size_t size);
6087
6089
6090/* polling API - PRIVATE */
6091
6092#ifdef CONFIG_POLL
6093#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
6094#else
6095#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
6096#endif
6097
6098/* private - types bit positions */
6099enum _poll_types_bits {
6100 /* can be used to ignore an event */
6101 _POLL_TYPE_IGNORE,
6102
6103 /* to be signaled by k_poll_signal_raise() */
6104 _POLL_TYPE_SIGNAL,
6105
6106 /* semaphore availability */
6107 _POLL_TYPE_SEM_AVAILABLE,
6108
6109 /* queue/FIFO/LIFO data availability */
6110 _POLL_TYPE_DATA_AVAILABLE,
6111
6112 /* msgq data availability */
6113 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
6114
6115 /* pipe data availability */
6116 _POLL_TYPE_PIPE_DATA_AVAILABLE,
6117
6118 _POLL_NUM_TYPES
6119};
6120
6121#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
6122
6123/* private - states bit positions */
6124enum _poll_states_bits {
6125 /* default state when creating event */
6126 _POLL_STATE_NOT_READY,
6127
6128 /* signaled by k_poll_signal_raise() */
6129 _POLL_STATE_SIGNALED,
6130
6131 /* semaphore is available */
6132 _POLL_STATE_SEM_AVAILABLE,
6133
6134 /* data is available to read on queue/FIFO/LIFO */
6135 _POLL_STATE_DATA_AVAILABLE,
6136
6137 /* queue/FIFO/LIFO wait was cancelled */
6138 _POLL_STATE_CANCELLED,
6139
6140 /* data is available to read on a message queue */
6141 _POLL_STATE_MSGQ_DATA_AVAILABLE,
6142
6143 /* data is available to read from a pipe */
6144 _POLL_STATE_PIPE_DATA_AVAILABLE,
6145
6146 _POLL_NUM_STATES
6147};
6148
6149#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
6150
6151#define _POLL_EVENT_NUM_UNUSED_BITS \
6152 (32 - (0 \
6153 + 8 /* tag */ \
6154 + _POLL_NUM_TYPES \
6155 + _POLL_NUM_STATES \
6156 + 1 /* modes */ \
6157 ))
6158
6159/* end of polling API - PRIVATE */
6160
6161
6169
6170/* Public polling API */
6171
6172/* public - values for k_poll_event.type bitfield */
6173#define K_POLL_TYPE_IGNORE 0
6174#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
6175#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
6176#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
6177#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
6178#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
6179#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
6180
6181/* public - polling modes */
6183 /* polling thread does not take ownership of objects when available */
6185
6187};
6188
6189/* public - values for k_poll_event.state bitfield */
6190#define K_POLL_STATE_NOT_READY 0
6191#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
6192#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
6193#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
6194#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
6195#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
6196#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
6197#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
6198
6199/* public - poll signal object */
6203
6208 unsigned int signaled;
6209
6212};
6213
6214#define K_POLL_SIGNAL_INITIALIZER(obj) \
6215 { \
6216 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
6217 .signaled = 0, \
6218 .result = 0, \
6219 }
6220
6226 sys_dnode_t _node;
6227
6229 struct z_poller *poller;
6230
6233
6235 uint32_t type:_POLL_NUM_TYPES;
6236
6238 uint32_t state:_POLL_NUM_STATES;
6239
6242
6244 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
6245
6247 union {
6248 /* The typed_* fields below are used by K_POLL_EVENT_*INITIALIZER() macros to ensure
6249 * type safety of polled objects.
6250 */
6258 };
6259};
6260
6261#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
6262 { \
6263 .poller = NULL, \
6264 .type = _event_type, \
6265 .state = K_POLL_STATE_NOT_READY, \
6266 .mode = _event_mode, \
6267 .unused = 0, \
6268 { \
6269 .typed_##_event_type = _event_obj, \
6270 }, \
6271 }
6272
6273#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
6274 event_tag) \
6275 { \
6276 .tag = event_tag, \
6277 .type = _event_type, \
6278 .state = K_POLL_STATE_NOT_READY, \
6279 .mode = _event_mode, \
6280 .unused = 0, \
6281 { \
6282 .typed_##_event_type = _event_obj, \
6283 }, \
6284 }
6285
6300
6301void k_poll_event_init(struct k_poll_event *event, uint32_t type,
6302 int mode, void *obj);
6303
6346
6347__syscall int k_poll(struct k_poll_event *events, int num_events,
6348 k_timeout_t timeout);
6349
6357
6358__syscall void k_poll_signal_init(struct k_poll_signal *sig);
6359
6365__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
6366
6377__syscall void k_poll_signal_check(struct k_poll_signal *sig,
6378 unsigned int *signaled, int *result);
6379
6403
6404__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
6405
6407
6426static inline void k_cpu_idle(void)
6427{
6428 arch_cpu_idle();
6429}
6430
6445static inline void k_cpu_atomic_idle(unsigned int key)
6446{
6448}
6449
6453
6458#ifdef ARCH_EXCEPT
6459/* This architecture has direct support for triggering a CPU exception */
6460#define z_except_reason(reason) ARCH_EXCEPT(reason)
6461#else
6462
6463#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
6464#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
6465#else
6466#define __EXCEPT_LOC()
6467#endif
6468
6469/* NOTE: This is the implementation for arches that do not implement
6470 * ARCH_EXCEPT() to generate a real CPU exception.
6471 *
6472 * We won't have a real exception frame to determine the PC value when
6473 * the oops occurred, so print file and line number before we jump into
6474 * the fatal error handler.
6475 */
6476#define z_except_reason(reason) do { \
6477 __EXCEPT_LOC(); \
6478 z_fatal_error(reason, NULL); \
6479 } while (false)
6480
6481#endif /* _ARCH__EXCEPT */
6485
6497#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
6498
6507#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
6508
6512
6513/*
6514 * private APIs that are utilized by one or more public APIs
6515 */
6516
6520void z_timer_expiration_handler(struct _timeout *timeout);
6524
6525#ifdef CONFIG_PRINTK
6533__syscall void k_str_out(char *c, size_t n);
6534#endif
6535
6541
6562__syscall int k_float_disable(struct k_thread *thread);
6563
6602__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
6603
6607
6617
6625
6634
6645
6656
6665
6674
6675#ifdef __cplusplus
6676}
6677#endif
6678
6679#include <zephyr/tracing/tracing.h>
6680#include <zephyr/syscalls/kernel.h>
6681
6682#endif /* !_ASMLANGUAGE */
6683
6684#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
static uint32_t arch_k_cycle_get_32(void)
Definition misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition misc.h:33
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition arch_interface.h:48
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition arch_interface.h:46
long atomic_t
Definition atomic_types.h:15
System error numbers.
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically get and test a bit.
Definition atomic.h:127
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition atomic.h:191
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit and test it.
Definition atomic.h:170
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition kernel.h:2032
#define K_NO_WAIT
Generate null timeout delay.
Definition kernel.h:1433
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition kernel.h:1984
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition kernel.h:2013
static uint32_t k_uptime_seconds(void)
Get system uptime in seconds.
Definition kernel.h:1997
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition kernel.h:2047
static int64_t k_uptime_get(void)
Get system uptime.
Definition kernel.h:1960
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition kernel.h:6426
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition kernel.h:6445
struct _dnode sys_dnode_t
Doubly-linked list node structure.
Definition dlist.h:54
struct _dnode sys_dlist_t
Doubly-linked list structure.
Definition dlist.h:50
static void sys_dnode_init(sys_dnode_t *node)
initialize node to its state when not in a list
Definition dlist.h:219
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
uint32_t k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
uint32_t k_event_wait_all_safe(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events (safe version)
static uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
Test the events currently tracked in the event object.
Definition kernel.h:2663
uint32_t k_event_wait_safe(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events (safe version)
uint32_t k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
uint32_t k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events.
static bool sys_sflist_is_empty(const sys_sflist_t *list)
Test if the given list is empty.
Definition sflist.h:336
struct _sflist sys_sflist_t
Flagged single-linked list structure.
Definition sflist.h:54
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
int k_heap_array_get(struct k_heap **heap)
Get the array of statically defined heaps.
void * k_heap_calloc(struct k_heap *h, size_t num, size_t size, k_timeout_t timeout)
Allocate and initialize memory for an array of objects from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void * k_realloc(void *ptr, size_t size)
Expand the size of an existing allocation.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
Reallocate memory from a k_heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition kernel.h:1288
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void *mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition kernel.h:5706
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition kernel.h:5723
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition kernel.h:5745
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to the end of a message queue.
int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put_front(struct k_msgq *msgq, const void *data)
Send a message to the front of a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
int k_pipe_write(struct k_pipe *pipe, const uint8_t *data, size_t len, k_timeout_t timeout)
Write data to a pipe.
void k_pipe_close(struct k_pipe *pipe)
Close a pipe.
void k_pipe_reset(struct k_pipe *pipe)
Reset a pipe This routine resets the pipe, discarding any unread data and unblocking any threads wait...
void k_pipe_init(struct k_pipe *pipe, uint8_t *buffer, size_t buffer_size)
initialize a pipe
pipe_flags
Definition kernel.h:5363
int k_pipe_read(struct k_pipe *pipe, uint8_t *data, size_t len, k_timeout_t timeout)
Read data from a pipe This routine reads up to len bytes of data from pipe.
@ PIPE_FLAG_RESET
Definition kernel.h:5365
@ PIPE_FLAG_OPEN
Definition kernel.h:5364
void k_poll_signal_reset(struct k_poll_signal *sig)
Reset a poll signal object's state to unsignaled.
k_poll_modes
Definition kernel.h:6182
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition kernel.h:6184
@ K_POLL_NUM_MODES
Definition kernel.h:6186
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
struct _slist sys_slist_t
Single-linked list structure.
Definition slist.h:49
struct _snode sys_snode_t
Single-linked list node structure.
Definition slist.h:39
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition tracing_macros.h:366
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition util_macro.h:148
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition util.h:281
#define EBUSY
Mount device busy.
Definition errno.h:54
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
void k_thread_absolute_deadline_set(k_tid_t thread, int deadline)
Set absolute deadline expiration time for scheduler.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition kernel.h:506
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *thread)
Get time remaining before a thread wakes up, in system ticks.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition kernel.h:600
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
static void k_thread_runtime_stats_longest_frame_reset(__maybe_unused struct k_thread *thread)
Resets thread longest frame usage data for specified thread.
Definition kernel.h:120
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition kernel.h:697
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_thread_foreach_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in running on specified cpu.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
int k_thread_stack_free(k_thread_stack_t *stack)
Free a dynamically allocated thread stack.
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread)
Get time when a thread wakes up, in system ticks.
__attribute_const__ k_tid_t k_sched_current_thread_query(void)
Query thread ID of the current thread.
static void k_thread_start(k_tid_t thread)
Start an inactive thread.
Definition kernel.h:1165
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_reschedule(void)
Invoke the scheduler.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set relative deadline expiration time for scheduler.
void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over the threads in running on current cpu without locking.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition kernel.h:127
k_thread_stack_t * k_thread_stack_alloc(size_t size, int flags)
Dynamically allocate a thread stack.
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition kernel.h:1735
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition kernel.h:1719
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition kernel.h:1884
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
#define k_ticks_to_ms_floor32(t)
Convert ticks to milliseconds.
Definition time_units.h:1707
#define k_ticks_to_sec_floor32(t)
Convert ticks to seconds.
Definition time_units.h:1611
#define k_ticks_to_ms_floor64(t)
Convert ticks to milliseconds.
Definition time_units.h:1723
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition kernel.h:4539
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition kernel.h:4510
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition kernel.h:4527
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
int k_work_queue_stop(struct k_work_q *queue, k_timeout_t timeout)
Stop a work queue.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition kernel.h:4666
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition kernel.h:4643
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition kernel.h:3682
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition kernel.h:4521
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition kernel.h:4621
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition kernel.h:4562
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition kernel.h:4721
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition kernel.h:4516
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition kernel.h:4533
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
void k_work_queue_run(struct k_work_q *queue, const struct k_work_queue_config *cfg)
Run work queue using calling thread.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition kernel.h:4290
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition kernel.h:4297
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition kernel.h:4304
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition kernel.h:4284
@ K_WORK_FLUSHING
Flag indicating a synced work item that is being flushed.
Definition kernel.h:4310
#define BUILD_ASSERT(EXPR, MSG...)
Definition llvm.h:51
struct k_thread * k_tid_t
Definition thread.h:366
struct k_thread_runtime_stats k_thread_runtime_stats_t
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
int k_ipi_work_add(struct k_ipi_work *work, uint32_t cpu_bitmask, k_ipi_func_t func)
Add an IPI work item to the IPI work queue.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
void k_ipi_work_signal(void)
Signal that there is one or more IPI work items to process.
int k_ipi_work_wait(struct k_ipi_work *work, k_timeout_t timeout)
Wait until the IPI work item has been processed by all targeted CPUs.
execution_context_types
Definition kernel.h:91
@ K_ISR
Definition kernel.h:92
@ K_COOP_THREAD
Definition kernel.h:93
@ K_PREEMPT_THREAD
Definition kernel.h:94
void(* k_ipi_func_t)(struct k_ipi_work *work)
Definition kernel.h:3566
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
static void k_ipi_work_init(struct k_ipi_work *work)
Initialize the specified IPI work item.
Definition kernel.h:3593
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
int k_thread_runtime_stats_cpu_get(int cpu, k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads on specified cpu.
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition kernel_structs.h:314
Memory Statistics.
flags
Definition parser.h:97
state
Definition parser_state.h:29
__UINT32_TYPE__ uint32_t
Definition stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition stdint.h:104
__INT32_TYPE__ int32_t
Definition stdint.h:74
__UINT64_TYPE__ uint64_t
Definition stdint.h:91
__UINT8_TYPE__ uint8_t
Definition stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition stdint.h:105
__INT64_TYPE__ int64_t
Definition stdint.h:75
Definition kernel.h:3325
_wait_q_t wait_q
Definition kernel.h:3326
Event Structure.
Definition kernel.h:2440
Definition kernel.h:2683
futex structure
Definition kernel.h:2354
atomic_t val
Definition kernel.h:2355
Definition kernel.h:5790
struct k_spinlock lock
Definition kernel.h:5793
struct sys_heap heap
Definition kernel.h:5791
_wait_q_t wait_q
Definition kernel.h:5792
IPI work item structure.
Definition kernel.h:3574
Definition kernel.h:2924
Mailbox Message Structure.
Definition kernel.h:5200
k_tid_t tx_target_thread
target thread id
Definition kernel.h:5210
void * tx_data
sender's message data buffer
Definition kernel.h:5206
k_tid_t rx_source_thread
source thread id
Definition kernel.h:5208
uint32_t info
application-defined information value
Definition kernel.h:5204
size_t size
size of message (in bytes)
Definition kernel.h:5202
Mailbox Structure.
Definition kernel.h:5222
_wait_q_t tx_msg_queue
Transmit messages queue.
Definition kernel.h:5224
struct k_spinlock lock
Definition kernel.h:5227
_wait_q_t rx_msg_queue
Receive message queue.
Definition kernel.h:5226
Memory Domain.
Definition mem_domain.h:80
Memory Partition.
Definition mem_domain.h:55
Message Queue Attributes.
Definition kernel.h:4942
uint32_t used_msgs
Used messages.
Definition kernel.h:4948
size_t msg_size
Message Size.
Definition kernel.h:4944
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4946
Message Queue Structure.
Definition kernel.h:4881
size_t msg_size
Message size.
Definition kernel.h:4887
char * read_ptr
Read pointer.
Definition kernel.h:4895
uint32_t used_msgs
Number of used messages.
Definition kernel.h:4899
char * buffer_end
End of message buffer.
Definition kernel.h:4893
struct k_spinlock lock
Lock.
Definition kernel.h:4885
char * write_ptr
Write pointer.
Definition kernel.h:4897
char * buffer_start
Start of message buffer.
Definition kernel.h:4891
uint8_t flags
Message queue.
Definition kernel.h:4904
_wait_q_t wait_q
Message queue wait queue.
Definition kernel.h:4883
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4889
Mutex Structure.
Definition kernel.h:3213
uint32_t lock_count
Current lock count.
Definition kernel.h:3220
_wait_q_t wait_q
Mutex wait queue.
Definition kernel.h:3215
int owner_orig_prio
Original thread priority.
Definition kernel.h:3223
struct k_thread * owner
Mutex owner.
Definition kernel.h:3217
Object core structure.
Definition obj_core.h:121
Definition kernel.h:5368
uint8_t flags
Definition kernel.h:5374
struct ring_buf buf
Definition kernel.h:5370
_wait_q_t data
Definition kernel.h:5372
_wait_q_t space
Definition kernel.h:5373
struct k_spinlock lock
Definition kernel.h:5371
size_t waiting
Definition kernel.h:5369
Poll Event.
Definition kernel.h:6224
struct k_msgq * typed_K_POLL_TYPE_MSGQ_DATA_AVAILABLE
Definition kernel.h:6256
void * typed_K_POLL_TYPE_IGNORE
Definition kernel.h:6251
struct k_poll_signal * signal
Definition kernel.h:6252
struct k_pipe * pipe
Definition kernel.h:6257
uint32_t tag
optional user-specified tag, opaque, untouched by the API
Definition kernel.h:6232
struct k_fifo * fifo
Definition kernel.h:6254
struct k_msgq * msgq
Definition kernel.h:6256
struct k_queue * queue
Definition kernel.h:6255
uint32_t unused
unused bits in 32-bit word
Definition kernel.h:6244
struct k_pipe * typed_K_POLL_TYPE_PIPE_DATA_AVAILABLE
Definition kernel.h:6257
uint32_t type
bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values)
Definition kernel.h:6235
struct k_sem * sem
Definition kernel.h:6253
struct k_queue * typed_K_POLL_TYPE_DATA_AVAILABLE
Definition kernel.h:6255
struct k_sem * typed_K_POLL_TYPE_SEM_AVAILABLE
Definition kernel.h:6253
uint32_t state
bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values)
Definition kernel.h:6238
uint32_t mode
mode of operation, from enum k_poll_modes
Definition kernel.h:6241
struct z_poller * poller
PRIVATE - DO NOT TOUCH.
Definition kernel.h:6229
struct k_poll_signal * typed_K_POLL_TYPE_SIGNAL
Definition kernel.h:6252
void * obj
Definition kernel.h:6251
struct k_fifo * typed_K_POLL_TYPE_FIFO_DATA_AVAILABLE
Definition kernel.h:6254
Definition kernel.h:6200
sys_dlist_t poll_events
PRIVATE - DO NOT TOUCH.
Definition kernel.h:6202
int result
custom result value passed to k_poll_signal_raise() if needed
Definition kernel.h:6211
unsigned int signaled
1 if the event has been signaled, 0 otherwise.
Definition kernel.h:6208
Definition kernel.h:2062
struct k_spinlock lock
Definition kernel.h:2064
_wait_q_t wait_q
Definition kernel.h:2065
sys_sflist_t data_q
Definition kernel.h:2063
Semaphore structure.
Definition kernel.h:3418
Kernel Spin Lock.
Definition spinlock.h:45
Thread Structure.
Definition thread.h:250
struct _thread_base base
Definition thread.h:252
struct k_heap * resource_pool
resource pool
Definition thread.h:340
struct __thread_entry entry
thread entry and parameters description
Definition thread.h:279
Kernel timeout type.
Definition clock.h:65
Kernel timer structure.
Definition kernel.h:1641
A structure used to submit work after a delay.
Definition kernel.h:4342
struct _timeout timeout
Definition kernel.h:4347
struct k_work_q * queue
Definition kernel.h:4350
struct k_work work
Definition kernel.h:4344
A structure used to hold work until it can be processed.
Definition kernel.h:4476
sys_slist_t pending
Definition kernel.h:4490
_wait_q_t drainq
Definition kernel.h:4496
k_tid_t thread_id
Definition kernel.h:4483
_wait_q_t notifyq
Definition kernel.h:4493
uint32_t flags
Definition kernel.h:4499
struct k_thread thread
Definition kernel.h:4478
A structure holding optional configuration items for a work queue.
Definition kernel.h:4438
const char * name
The name to be given to the work queue thread.
Definition kernel.h:4443
uint32_t work_timeout_ms
Controls whether work queue monitors work timeouts.
Definition kernel.h:4472
bool essential
Control whether the work queue thread should be marked as essential thread.
Definition kernel.h:4462
bool no_yield
Control whether the work queue thread should yield between items.
Definition kernel.h:4457
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition kernel.h:4425
struct z_work_canceller canceller
Definition kernel.h:4428
struct z_work_flusher flusher
Definition kernel.h:4427
A structure used to submit work.
Definition kernel.h:4314
k_work_handler_t handler
Definition kernel.h:4323
uint32_t flags
Definition kernel.h:4334
struct k_work_q * queue
Definition kernel.h:4326
sys_snode_t node
Definition kernel.h:4320
A structure to represent a ring buffer.
Definition ring_buffer.h:49
Definition sys_heap.h:57
Definition mem_stats.h:24
Macros to abstract toolchain specific capabilities.