Zephyr API Documentation 4.0.99
A Scalable Open Source RTOS
Loading...
Searching...
No Matches
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <zephyr/toolchain.h>
26
27#ifdef __cplusplus
28extern "C" {
29#endif
30
31/*
32 * Zephyr currently assumes the size of a couple standard types to simplify
33 * print string formats. Let's make sure this doesn't change without notice.
34 */
35BUILD_ASSERT(sizeof(int32_t) == sizeof(int));
36BUILD_ASSERT(sizeof(int64_t) == sizeof(long long));
37BUILD_ASSERT(sizeof(intptr_t) == sizeof(long));
38
48#define K_ANY NULL
49
50#if (CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES) == 0
51#error Zero available thread priorities defined!
52#endif
53
54#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
55#define K_PRIO_PREEMPT(x) (x)
56
57#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
58#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
59#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
60#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
61#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
62
63#ifdef CONFIG_POLL
64#define Z_POLL_EVENT_OBJ_INIT(obj) \
65 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
66#define Z_DECL_POLL_EVENT sys_dlist_t poll_events;
67#else
68#define Z_POLL_EVENT_OBJ_INIT(obj)
69#define Z_DECL_POLL_EVENT
70#endif
71
72struct k_thread;
73struct k_mutex;
74struct k_sem;
75struct k_msgq;
76struct k_mbox;
77struct k_pipe;
78struct k_queue;
79struct k_fifo;
80struct k_lifo;
81struct k_stack;
82struct k_mem_slab;
83struct k_timer;
84struct k_poll_event;
85struct k_poll_signal;
86struct k_mem_domain;
87struct k_mem_partition;
88struct k_futex;
89struct k_event;
90
96
97/* private, used by k_poll and k_work_poll */
98struct k_work_poll;
99typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
100
106typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
107 void *user_data);
108
124void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data);
125
144#ifdef CONFIG_SMP
145void k_thread_foreach_filter_by_cpu(unsigned int cpu,
146 k_thread_user_cb_t user_cb, void *user_data);
147#else
148static inline
149void k_thread_foreach_filter_by_cpu(unsigned int cpu,
150 k_thread_user_cb_t user_cb, void *user_data)
151{
152 __ASSERT(cpu == 0, "cpu filter out of bounds");
153 ARG_UNUSED(cpu);
154 k_thread_foreach(user_cb, user_data);
155}
156#endif
157
186 k_thread_user_cb_t user_cb, void *user_data);
187
219#ifdef CONFIG_SMP
221 k_thread_user_cb_t user_cb, void *user_data);
222#else
223static inline
224void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu,
225 k_thread_user_cb_t user_cb, void *user_data)
226{
227 __ASSERT(cpu == 0, "cpu filter out of bounds");
228 ARG_UNUSED(cpu);
229 k_thread_foreach_unlocked(user_cb, user_data);
230}
231#endif
232
241#endif /* !_ASMLANGUAGE */
242
243
244/*
245 * Thread user options. May be needed by assembly code. Common part uses low
246 * bits, arch-specific use high bits.
247 */
248
252#define K_ESSENTIAL (BIT(0))
253
254#define K_FP_IDX 1
264#define K_FP_REGS (BIT(K_FP_IDX))
265
272#define K_USER (BIT(2))
273
282#define K_INHERIT_PERMS (BIT(3))
283
293#define K_CALLBACK_STATE (BIT(4))
294
304#define K_DSP_IDX 6
305#define K_DSP_REGS (BIT(K_DSP_IDX))
306
315#define K_AGU_IDX 7
316#define K_AGU_REGS (BIT(K_AGU_IDX))
317
327#define K_SSE_REGS (BIT(7))
328
329/* end - thread options */
330
331#if !defined(_ASMLANGUAGE)
346__syscall k_thread_stack_t *k_thread_stack_alloc(size_t size, int flags);
347
361
410__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
411 k_thread_stack_t *stack,
412 size_t stack_size,
414 void *p1, void *p2, void *p3,
415 int prio, uint32_t options, k_timeout_t delay);
416
439 void *p1, void *p2,
440 void *p3);
441
455#define k_thread_access_grant(thread, ...) \
456 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), (thread), __VA_ARGS__)
457
472static inline void k_thread_heap_assign(struct k_thread *thread,
473 struct k_heap *heap)
474{
475 thread->resource_pool = heap;
476}
477
478#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
499__syscall int k_thread_stack_space_get(const struct k_thread *thread,
500 size_t *unused_ptr);
501#endif
502
503#if (K_HEAP_MEM_POOL_SIZE > 0)
516void k_thread_system_pool_assign(struct k_thread *thread);
517#endif /* (K_HEAP_MEM_POOL_SIZE > 0) */
518
538__syscall int k_thread_join(struct k_thread *thread, k_timeout_t timeout);
539
552__syscall int32_t k_sleep(k_timeout_t timeout);
553
565static inline int32_t k_msleep(int32_t ms)
566{
567 return k_sleep(Z_TIMEOUT_MS(ms));
568}
569
587
604__syscall void k_busy_wait(uint32_t usec_to_wait);
605
617bool k_can_yield(void);
618
626__syscall void k_yield(void);
627
637__syscall void k_wakeup(k_tid_t thread);
638
652__attribute_const__
654
661__attribute_const__
662static inline k_tid_t k_current_get(void)
663{
664#ifdef CONFIG_CURRENT_THREAD_USE_TLS
665
666 /* Thread-local cache of current thread ID, set in z_thread_entry() */
667 extern Z_THREAD_LOCAL k_tid_t z_tls_current;
668
669 return z_tls_current;
670#else
672#endif
673}
674
694__syscall void k_thread_abort(k_tid_t thread);
695
696k_ticks_t z_timeout_expires(const struct _timeout *timeout);
697k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
698
699#ifdef CONFIG_SYS_CLOCK_EXISTS
700
708__syscall k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread);
709
710static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
711 const struct k_thread *thread)
712{
713 return z_timeout_expires(&thread->base.timeout);
714}
715
724
725static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
726 const struct k_thread *thread)
727{
728 return z_timeout_remaining(&thread->base.timeout);
729}
730
731#endif /* CONFIG_SYS_CLOCK_EXISTS */
732
737struct _static_thread_data {
738 struct k_thread *init_thread;
739 k_thread_stack_t *init_stack;
740 unsigned int init_stack_size;
742 void *init_p1;
743 void *init_p2;
744 void *init_p3;
745 int init_prio;
746 uint32_t init_options;
747 const char *init_name;
748#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
749 int32_t init_delay_ms;
750#else
751 k_timeout_t init_delay;
752#endif
753};
754
755#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
756#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay_ms = (ms)
757#define Z_THREAD_INIT_DELAY(thread) SYS_TIMEOUT_MS((thread)->init_delay_ms)
758#else
759#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay = SYS_TIMEOUT_MS(ms)
760#define Z_THREAD_INIT_DELAY(thread) (thread)->init_delay
761#endif
762
763#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
764 entry, p1, p2, p3, \
765 prio, options, delay, tname) \
766 { \
767 .init_thread = (thread), \
768 .init_stack = (stack), \
769 .init_stack_size = (stack_size), \
770 .init_entry = (k_thread_entry_t)entry, \
771 .init_p1 = (void *)p1, \
772 .init_p2 = (void *)p2, \
773 .init_p3 = (void *)p3, \
774 .init_prio = (prio), \
775 .init_options = (options), \
776 .init_name = STRINGIFY(tname), \
777 Z_THREAD_INIT_DELAY_INITIALIZER(delay) \
778 }
779
780/*
781 * Refer to K_THREAD_DEFINE() and K_KERNEL_THREAD_DEFINE() for
782 * information on arguments.
783 */
784#define Z_THREAD_COMMON_DEFINE(name, stack_size, \
785 entry, p1, p2, p3, \
786 prio, options, delay) \
787 struct k_thread _k_thread_obj_##name; \
788 STRUCT_SECTION_ITERABLE(_static_thread_data, \
789 _k_thread_data_##name) = \
790 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
791 _k_thread_stack_##name, stack_size,\
792 entry, p1, p2, p3, prio, options, \
793 delay, name); \
794 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
795
831#define K_THREAD_DEFINE(name, stack_size, \
832 entry, p1, p2, p3, \
833 prio, options, delay) \
834 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
835 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
836 prio, options, delay)
837
868#define K_KERNEL_THREAD_DEFINE(name, stack_size, \
869 entry, p1, p2, p3, \
870 prio, options, delay) \
871 K_KERNEL_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
872 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
873 prio, options, delay)
874
884__syscall int k_thread_priority_get(k_tid_t thread);
885
911__syscall void k_thread_priority_set(k_tid_t thread, int prio);
912
913
914#ifdef CONFIG_SCHED_DEADLINE
947__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
948#endif
949
968__syscall void k_reschedule(void);
969
970#ifdef CONFIG_SCHED_CPU_MASK
984
998
1012
1026
1037int k_thread_cpu_pin(k_tid_t thread, int cpu);
1038#endif
1039
1061__syscall void k_thread_suspend(k_tid_t thread);
1062
1074__syscall void k_thread_resume(k_tid_t thread);
1075
1089static inline void k_thread_start(k_tid_t thread)
1090{
1091 k_wakeup(thread);
1092}
1093
1120void k_sched_time_slice_set(int32_t slice, int prio);
1121
1160void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
1161 k_thread_timeslice_fn_t expired, void *data);
1162
1181bool k_is_in_isr(void);
1182
1199__syscall int k_is_preempt_thread(void);
1200
1212static inline bool k_is_pre_kernel(void)
1213{
1214 extern bool z_sys_post_kernel; /* in init.c */
1215
1216 return !z_sys_post_kernel;
1217}
1218
1253void k_sched_lock(void);
1254
1263
1276__syscall void k_thread_custom_data_set(void *value);
1277
1285__syscall void *k_thread_custom_data_get(void);
1286
1300__syscall int k_thread_name_set(k_tid_t thread, const char *str);
1301
1310const char *k_thread_name_get(k_tid_t thread);
1311
1323__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1324 size_t size);
1325
1338const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1339
1357#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1358
1371#define K_NSEC(t) Z_TIMEOUT_NS(t)
1372
1385#define K_USEC(t) Z_TIMEOUT_US(t)
1386
1397#define K_CYC(t) Z_TIMEOUT_CYC(t)
1398
1409#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1410
1421#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1422
1433#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1434
1445#define K_MINUTES(m) K_SECONDS((m) * 60)
1446
1457#define K_HOURS(h) K_MINUTES((h) * 60)
1458
1467#define K_FOREVER Z_FOREVER
1468
1469#ifdef CONFIG_TIMEOUT_64BIT
1470
1482#define K_TIMEOUT_ABS_TICKS(t) \
1483 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1484
1496#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1497
1510#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1511
1524#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1525
1538#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1539
1540#endif
1541
1550struct k_timer {
1551 /*
1552 * _timeout structure must be first here if we want to use
1553 * dynamic timer allocation. timeout.node is used in the double-linked
1554 * list of free timers
1555 */
1556 struct _timeout timeout;
1557
1558 /* wait queue for the (single) thread waiting on this timer */
1559 _wait_q_t wait_q;
1560
1561 /* runs in ISR context */
1562 void (*expiry_fn)(struct k_timer *timer);
1563
1564 /* runs in the context of the thread that calls k_timer_stop() */
1565 void (*stop_fn)(struct k_timer *timer);
1566
1567 /* timer period */
1568 k_timeout_t period;
1569
1570 /* timer status */
1571 uint32_t status;
1572
1573 /* user-specific data, also used to support legacy features */
1574 void *user_data;
1575
1577
1578#ifdef CONFIG_OBJ_CORE_TIMER
1579 struct k_obj_core obj_core;
1580#endif
1581};
1582
1583#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1584 { \
1585 .timeout = { \
1586 .node = {},\
1587 .fn = z_timer_expiration_handler, \
1588 .dticks = 0, \
1589 }, \
1590 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1591 .expiry_fn = expiry, \
1592 .stop_fn = stop, \
1593 .status = 0, \
1594 .user_data = 0, \
1595 }
1596
1617typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1618
1633typedef void (*k_timer_stop_t)(struct k_timer *timer);
1634
1646#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1647 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1648 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1649
1659void k_timer_init(struct k_timer *timer,
1660 k_timer_expiry_t expiry_fn,
1661 k_timer_stop_t stop_fn);
1662
1677__syscall void k_timer_start(struct k_timer *timer,
1678 k_timeout_t duration, k_timeout_t period);
1679
1696__syscall void k_timer_stop(struct k_timer *timer);
1697
1710__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1711
1729__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1730
1731#ifdef CONFIG_SYS_CLOCK_EXISTS
1732
1743__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1744
1745static inline k_ticks_t z_impl_k_timer_expires_ticks(
1746 const struct k_timer *timer)
1747{
1748 return z_timeout_expires(&timer->timeout);
1749}
1750
1761__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1762
1763static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1764 const struct k_timer *timer)
1765{
1766 return z_timeout_remaining(&timer->timeout);
1767}
1768
1779static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1780{
1782}
1783
1784#endif /* CONFIG_SYS_CLOCK_EXISTS */
1785
1798__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1799
1803static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1804 void *user_data)
1805{
1806 timer->user_data = user_data;
1807}
1808
1816__syscall void *k_timer_user_data_get(const struct k_timer *timer);
1817
1818static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1819{
1820 return timer->user_data;
1821}
1822
1840__syscall int64_t k_uptime_ticks(void);
1841
1855static inline int64_t k_uptime_get(void)
1856{
1858}
1859
1879static inline uint32_t k_uptime_get_32(void)
1880{
1881 return (uint32_t)k_uptime_get();
1882}
1883
1892static inline uint32_t k_uptime_seconds(void)
1893{
1895}
1896
1908static inline int64_t k_uptime_delta(int64_t *reftime)
1909{
1910 int64_t uptime, delta;
1911
1912 uptime = k_uptime_get();
1913 delta = uptime - *reftime;
1914 *reftime = uptime;
1915
1916 return delta;
1917}
1918
1927static inline uint32_t k_cycle_get_32(void)
1928{
1929 return arch_k_cycle_get_32();
1930}
1931
1942static inline uint64_t k_cycle_get_64(void)
1943{
1944 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
1945 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
1946 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
1947 return 0;
1948 }
1949
1950 return arch_k_cycle_get_64();
1951}
1952
1957struct k_queue {
1960 _wait_q_t wait_q;
1961
1962 Z_DECL_POLL_EVENT
1963
1965};
1966
1971#define Z_QUEUE_INITIALIZER(obj) \
1972 { \
1973 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
1974 .lock = { }, \
1975 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1976 Z_POLL_EVENT_OBJ_INIT(obj) \
1977 }
1978
1996__syscall void k_queue_init(struct k_queue *queue);
1997
2011__syscall void k_queue_cancel_wait(struct k_queue *queue);
2012
2025void k_queue_append(struct k_queue *queue, void *data);
2026
2043__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
2044
2057void k_queue_prepend(struct k_queue *queue, void *data);
2058
2075__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
2076
2090void k_queue_insert(struct k_queue *queue, void *prev, void *data);
2091
2110int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
2111
2127int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
2128
2146__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
2147
2164bool k_queue_remove(struct k_queue *queue, void *data);
2165
2180bool k_queue_unique_append(struct k_queue *queue, void *data);
2181
2195__syscall int k_queue_is_empty(struct k_queue *queue);
2196
2197static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
2198{
2199 return sys_sflist_is_empty(&queue->data_q) ? 1 : 0;
2200}
2201
2211__syscall void *k_queue_peek_head(struct k_queue *queue);
2212
2222__syscall void *k_queue_peek_tail(struct k_queue *queue);
2223
2233#define K_QUEUE_DEFINE(name) \
2234 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2235 Z_QUEUE_INITIALIZER(name)
2236
2239#ifdef CONFIG_USERSPACE
2249struct k_futex {
2251};
2252
2260struct z_futex_data {
2261 _wait_q_t wait_q;
2262 struct k_spinlock lock;
2263};
2264
2265#define Z_FUTEX_DATA_INITIALIZER(obj) \
2266 { \
2267 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2268 }
2269
2295__syscall int k_futex_wait(struct k_futex *futex, int expected,
2296 k_timeout_t timeout);
2297
2312__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2313
2315#endif
2316
2328struct k_event {
2329 _wait_q_t wait_q;
2332
2334
2335#ifdef CONFIG_OBJ_CORE_EVENT
2336 struct k_obj_core obj_core;
2337#endif
2338
2339};
2340
2341#define Z_EVENT_INITIALIZER(obj) \
2342 { \
2343 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2344 .events = 0 \
2345 }
2346
2354__syscall void k_event_init(struct k_event *event);
2355
2371__syscall uint32_t k_event_post(struct k_event *event, uint32_t events);
2372
2388__syscall uint32_t k_event_set(struct k_event *event, uint32_t events);
2389
2404__syscall uint32_t k_event_set_masked(struct k_event *event, uint32_t events,
2405 uint32_t events_mask);
2406
2417__syscall uint32_t k_event_clear(struct k_event *event, uint32_t events);
2418
2440__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2441 bool reset, k_timeout_t timeout);
2442
2464__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2465 bool reset, k_timeout_t timeout);
2466
2475static inline uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
2476{
2477 return k_event_wait(event, events_mask, false, K_NO_WAIT);
2478}
2479
2489#define K_EVENT_DEFINE(name) \
2490 STRUCT_SECTION_ITERABLE(k_event, name) = \
2491 Z_EVENT_INITIALIZER(name);
2492
2495struct k_fifo {
2496 struct k_queue _queue;
2497#ifdef CONFIG_OBJ_CORE_FIFO
2498 struct k_obj_core obj_core;
2499#endif
2500};
2501
2505#define Z_FIFO_INITIALIZER(obj) \
2506 { \
2507 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2508 }
2509
2527#define k_fifo_init(fifo) \
2528 ({ \
2529 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2530 k_queue_init(&(fifo)->_queue); \
2531 K_OBJ_CORE_INIT(K_OBJ_CORE(fifo), _obj_type_fifo); \
2532 K_OBJ_CORE_LINK(K_OBJ_CORE(fifo)); \
2533 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2534 })
2535
2547#define k_fifo_cancel_wait(fifo) \
2548 ({ \
2549 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2550 k_queue_cancel_wait(&(fifo)->_queue); \
2551 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2552 })
2553
2566#define k_fifo_put(fifo, data) \
2567 ({ \
2568 void *_data = data; \
2569 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, _data); \
2570 k_queue_append(&(fifo)->_queue, _data); \
2571 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, _data); \
2572 })
2573
2590#define k_fifo_alloc_put(fifo, data) \
2591 ({ \
2592 void *_data = data; \
2593 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, _data); \
2594 int fap_ret = k_queue_alloc_append(&(fifo)->_queue, _data); \
2595 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, _data, fap_ret); \
2596 fap_ret; \
2597 })
2598
2613#define k_fifo_put_list(fifo, head, tail) \
2614 ({ \
2615 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2616 k_queue_append_list(&(fifo)->_queue, head, tail); \
2617 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2618 })
2619
2633#define k_fifo_put_slist(fifo, list) \
2634 ({ \
2635 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2636 k_queue_merge_slist(&(fifo)->_queue, list); \
2637 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2638 })
2639
2657#define k_fifo_get(fifo, timeout) \
2658 ({ \
2659 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2660 void *fg_ret = k_queue_get(&(fifo)->_queue, timeout); \
2661 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, fg_ret); \
2662 fg_ret; \
2663 })
2664
2678#define k_fifo_is_empty(fifo) \
2679 k_queue_is_empty(&(fifo)->_queue)
2680
2694#define k_fifo_peek_head(fifo) \
2695 ({ \
2696 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2697 void *fph_ret = k_queue_peek_head(&(fifo)->_queue); \
2698 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, fph_ret); \
2699 fph_ret; \
2700 })
2701
2713#define k_fifo_peek_tail(fifo) \
2714 ({ \
2715 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2716 void *fpt_ret = k_queue_peek_tail(&(fifo)->_queue); \
2717 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, fpt_ret); \
2718 fpt_ret; \
2719 })
2720
2730#define K_FIFO_DEFINE(name) \
2731 STRUCT_SECTION_ITERABLE(k_fifo, name) = \
2732 Z_FIFO_INITIALIZER(name)
2733
2736struct k_lifo {
2737 struct k_queue _queue;
2738#ifdef CONFIG_OBJ_CORE_LIFO
2739 struct k_obj_core obj_core;
2740#endif
2741};
2742
2747#define Z_LIFO_INITIALIZER(obj) \
2748 { \
2749 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2750 }
2751
2769#define k_lifo_init(lifo) \
2770 ({ \
2771 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2772 k_queue_init(&(lifo)->_queue); \
2773 K_OBJ_CORE_INIT(K_OBJ_CORE(lifo), _obj_type_lifo); \
2774 K_OBJ_CORE_LINK(K_OBJ_CORE(lifo)); \
2775 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2776 })
2777
2790#define k_lifo_put(lifo, data) \
2791 ({ \
2792 void *_data = data; \
2793 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, _data); \
2794 k_queue_prepend(&(lifo)->_queue, _data); \
2795 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, _data); \
2796 })
2797
2814#define k_lifo_alloc_put(lifo, data) \
2815 ({ \
2816 void *_data = data; \
2817 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, _data); \
2818 int lap_ret = k_queue_alloc_prepend(&(lifo)->_queue, _data); \
2819 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, _data, lap_ret); \
2820 lap_ret; \
2821 })
2822
2840#define k_lifo_get(lifo, timeout) \
2841 ({ \
2842 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2843 void *lg_ret = k_queue_get(&(lifo)->_queue, timeout); \
2844 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, lg_ret); \
2845 lg_ret; \
2846 })
2847
2857#define K_LIFO_DEFINE(name) \
2858 STRUCT_SECTION_ITERABLE(k_lifo, name) = \
2859 Z_LIFO_INITIALIZER(name)
2860
2866#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
2867
2868typedef uintptr_t stack_data_t;
2869
2870struct k_stack {
2871 _wait_q_t wait_q;
2872 struct k_spinlock lock;
2873 stack_data_t *base, *next, *top;
2874
2875 uint8_t flags;
2876
2878
2879#ifdef CONFIG_OBJ_CORE_STACK
2880 struct k_obj_core obj_core;
2881#endif
2882};
2883
2884#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2885 { \
2886 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
2887 .base = (stack_buffer), \
2888 .next = (stack_buffer), \
2889 .top = (stack_buffer) + (stack_num_entries), \
2890 }
2891
2911void k_stack_init(struct k_stack *stack,
2912 stack_data_t *buffer, uint32_t num_entries);
2913
2914
2929__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
2930 uint32_t num_entries);
2931
2943int k_stack_cleanup(struct k_stack *stack);
2944
2958__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
2959
2980__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
2981 k_timeout_t timeout);
2982
2993#define K_STACK_DEFINE(name, stack_num_entries) \
2994 stack_data_t __noinit \
2995 _k_stack_buf_##name[stack_num_entries]; \
2996 STRUCT_SECTION_ITERABLE(k_stack, name) = \
2997 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
2998 stack_num_entries)
2999
3006struct k_work;
3007struct k_work_q;
3008struct k_work_queue_config;
3009extern struct k_work_q k_sys_work_q;
3010
3025struct k_mutex {
3027 _wait_q_t wait_q;
3030
3033
3036
3038
3039#ifdef CONFIG_OBJ_CORE_MUTEX
3040 struct k_obj_core obj_core;
3041#endif
3042};
3043
3047#define Z_MUTEX_INITIALIZER(obj) \
3048 { \
3049 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3050 .owner = NULL, \
3051 .lock_count = 0, \
3052 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
3053 }
3054
3068#define K_MUTEX_DEFINE(name) \
3069 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
3070 Z_MUTEX_INITIALIZER(name)
3071
3084__syscall int k_mutex_init(struct k_mutex *mutex);
3085
3086
3108__syscall int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout);
3109
3130__syscall int k_mutex_unlock(struct k_mutex *mutex);
3131
3138 _wait_q_t wait_q;
3139
3140#ifdef CONFIG_OBJ_CORE_CONDVAR
3141 struct k_obj_core obj_core;
3142#endif
3143};
3144
3145#define Z_CONDVAR_INITIALIZER(obj) \
3146 { \
3147 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3148 }
3149
3162__syscall int k_condvar_init(struct k_condvar *condvar);
3163
3170__syscall int k_condvar_signal(struct k_condvar *condvar);
3171
3179__syscall int k_condvar_broadcast(struct k_condvar *condvar);
3180
3198__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
3199 k_timeout_t timeout);
3200
3211#define K_CONDVAR_DEFINE(name) \
3212 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
3213 Z_CONDVAR_INITIALIZER(name)
3222struct k_sem {
3223 _wait_q_t wait_q;
3224 unsigned int count;
3225 unsigned int limit;
3226
3227 Z_DECL_POLL_EVENT
3228
3230
3231#ifdef CONFIG_OBJ_CORE_SEM
3232 struct k_obj_core obj_core;
3233#endif
3234};
3235
3236#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
3237 { \
3238 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3239 .count = (initial_count), \
3240 .limit = (count_limit), \
3241 Z_POLL_EVENT_OBJ_INIT(obj) \
3242 }
3243
3262#define K_SEM_MAX_LIMIT UINT_MAX
3263
3279__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
3280 unsigned int limit);
3281
3300__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
3301
3312__syscall void k_sem_give(struct k_sem *sem);
3313
3323__syscall void k_sem_reset(struct k_sem *sem);
3324
3334__syscall unsigned int k_sem_count_get(struct k_sem *sem);
3335
3339static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3340{
3341 return sem->count;
3342}
3343
3355#define K_SEM_DEFINE(name, initial_count, count_limit) \
3356 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3357 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3358 BUILD_ASSERT(((count_limit) != 0) && \
3359 (((initial_count) < (count_limit)) || ((initial_count) == (count_limit))) && \
3360 ((count_limit) <= K_SEM_MAX_LIMIT));
3361
3368struct k_work_delayable;
3369struct k_work_sync;
3370
3387typedef void (*k_work_handler_t)(struct k_work *work);
3388
3402void k_work_init(struct k_work *work,
3404
3419int k_work_busy_get(const struct k_work *work);
3420
3434static inline bool k_work_is_pending(const struct k_work *work);
3435
3457 struct k_work *work);
3458
3467int k_work_submit(struct k_work *work);
3468
3493bool k_work_flush(struct k_work *work,
3494 struct k_work_sync *sync);
3495
3515int k_work_cancel(struct k_work *work);
3516
3547bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3548
3559
3580 k_thread_stack_t *stack, size_t stack_size,
3581 int prio, const struct k_work_queue_config *cfg);
3582
3592static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3593
3617int k_work_queue_drain(struct k_work_q *queue, bool plug);
3618
3633
3649
3665
3677static inline struct k_work_delayable *
3679
3694
3709static inline bool k_work_delayable_is_pending(
3710 const struct k_work_delayable *dwork);
3711
3726 const struct k_work_delayable *dwork);
3727
3742 const struct k_work_delayable *dwork);
3743
3772 struct k_work_delayable *dwork,
3773 k_timeout_t delay);
3774
3789 k_timeout_t delay);
3790
3827 struct k_work_delayable *dwork,
3828 k_timeout_t delay);
3829
3843 k_timeout_t delay);
3844
3870 struct k_work_sync *sync);
3871
3893
3923 struct k_work_sync *sync);
3924
3925enum {
3930 /* The atomic API is used for all work and queue flags fields to
3931 * enforce sequential consistency in SMP environments.
3932 */
3933
3934 /* Bits that represent the work item states. At least nine of the
3935 * combinations are distinct valid stable states.
3936 */
3937 K_WORK_RUNNING_BIT = 0,
3938 K_WORK_CANCELING_BIT = 1,
3939 K_WORK_QUEUED_BIT = 2,
3940 K_WORK_DELAYED_BIT = 3,
3941 K_WORK_FLUSHING_BIT = 4,
3942
3943 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
3944 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT) | BIT(K_WORK_FLUSHING_BIT),
3945
3946 /* Static work flags */
3947 K_WORK_DELAYABLE_BIT = 8,
3948 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
3949
3950 /* Dynamic work queue flags */
3951 K_WORK_QUEUE_STARTED_BIT = 0,
3952 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
3953 K_WORK_QUEUE_BUSY_BIT = 1,
3954 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
3955 K_WORK_QUEUE_DRAIN_BIT = 2,
3956 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
3957 K_WORK_QUEUE_PLUGGED_BIT = 3,
3958 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
3959 K_WORK_QUEUE_STOP_BIT = 4,
3960 K_WORK_QUEUE_STOP = BIT(K_WORK_QUEUE_STOP_BIT),
3961
3962 /* Static work queue flags */
3963 K_WORK_QUEUE_NO_YIELD_BIT = 8,
3964 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3965
3969 /* Transient work flags */
3970
3976 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
3977
3982 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
3983
3989 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
3990
3996 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
3997
4002 K_WORK_FLUSHING = BIT(K_WORK_FLUSHING_BIT),
4003};
4004
4006struct k_work {
4007 /* All fields are protected by the work module spinlock. No fields
4008 * are to be accessed except through kernel API.
4009 */
4010
4011 /* Node to link into k_work_q pending list. */
4013
4014 /* The function to be invoked by the work queue thread. */
4016
4017 /* The queue on which the work item was last submitted. */
4019
4020 /* State of the work item.
4021 *
4022 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
4023 *
4024 * It can be RUNNING and CANCELING simultaneously.
4025 */
4027};
4028
4029#define Z_WORK_INITIALIZER(work_handler) { \
4030 .handler = (work_handler), \
4031}
4032
4035 /* The work item. */
4036 struct k_work work;
4037
4038 /* Timeout used to submit work after a delay. */
4039 struct _timeout timeout;
4040
4041 /* The queue to which the work should be submitted. */
4043};
4044
4045#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
4046 .work = { \
4047 .handler = (work_handler), \
4048 .flags = K_WORK_DELAYABLE, \
4049 }, \
4050}
4051
4068#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
4069 struct k_work_delayable work \
4070 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
4071
4076/* Record used to wait for work to flush.
4077 *
4078 * The work item is inserted into the queue that will process (or is
4079 * processing) the item, and will be processed as soon as the item
4080 * completes. When the flusher is processed the semaphore will be
4081 * signaled, releasing the thread waiting for the flush.
4082 */
4083struct z_work_flusher {
4084 struct k_work work;
4085 struct k_sem sem;
4086};
4087
4088/* Record used to wait for work to complete a cancellation.
4089 *
4090 * The work item is inserted into a global queue of pending cancels.
4091 * When a cancelling work item goes idle any matching waiters are
4092 * removed from pending_cancels and are woken.
4093 */
4094struct z_work_canceller {
4095 sys_snode_t node;
4096 struct k_work *work;
4097 struct k_sem sem;
4098};
4099
4118 union {
4119 struct z_work_flusher flusher;
4120 struct z_work_canceller canceller;
4121 };
4122};
4123
4135 const char *name;
4136
4150
4155};
4156
4158struct k_work_q {
4159 /* The thread that animates the work. */
4161
4162 /* All the following fields must be accessed only while the
4163 * work module spinlock is held.
4164 */
4165
4166 /* List of k_work items to be worked. */
4168
4169 /* Wait queue for idle work thread. */
4170 _wait_q_t notifyq;
4171
4172 /* Wait queue for threads waiting for the queue to drain. */
4173 _wait_q_t drainq;
4174
4175 /* Flags describing queue state. */
4177};
4178
4179/* Provide the implementation for inline functions declared above */
4180
4181static inline bool k_work_is_pending(const struct k_work *work)
4182{
4183 return k_work_busy_get(work) != 0;
4184}
4185
4186static inline struct k_work_delayable *
4191
4193 const struct k_work_delayable *dwork)
4194{
4195 return k_work_delayable_busy_get(dwork) != 0;
4196}
4197
4199 const struct k_work_delayable *dwork)
4200{
4201 return z_timeout_expires(&dwork->timeout);
4202}
4203
4205 const struct k_work_delayable *dwork)
4206{
4207 return z_timeout_remaining(&dwork->timeout);
4208}
4209
4211{
4212 return &queue->thread;
4213}
4214
4217struct k_work_user;
4218
4233typedef void (*k_work_user_handler_t)(struct k_work_user *work);
4234
4239struct k_work_user_q {
4240 struct k_queue queue;
4241 struct k_thread thread;
4242};
4243
4244enum {
4245 K_WORK_USER_STATE_PENDING, /* Work item pending state */
4246};
4247
4248struct k_work_user {
4249 void *_reserved; /* Used by k_queue implementation. */
4250 k_work_user_handler_t handler;
4252};
4253
4258#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4259#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4260#else
4261#define Z_WORK_USER_INITIALIZER(work_handler) \
4262 { \
4263 ._reserved = NULL, \
4264 .handler = (work_handler), \
4265 .flags = 0 \
4266 }
4267#endif
4268
4280#define K_WORK_USER_DEFINE(work, work_handler) \
4281 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4282
4292static inline void k_work_user_init(struct k_work_user *work,
4293 k_work_user_handler_t handler)
4294{
4295 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4296}
4297
4314static inline bool k_work_user_is_pending(struct k_work_user *work)
4315{
4316 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4317}
4318
4337static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4338 struct k_work_user *work)
4339{
4340 int ret = -EBUSY;
4341
4342 if (!atomic_test_and_set_bit(&work->flags,
4343 K_WORK_USER_STATE_PENDING)) {
4344 ret = k_queue_alloc_append(&work_q->queue, work);
4345
4346 /* Couldn't insert into the queue. Clear the pending bit
4347 * so the work item can be submitted again
4348 */
4349 if (ret != 0) {
4350 atomic_clear_bit(&work->flags,
4351 K_WORK_USER_STATE_PENDING);
4352 }
4353 }
4354
4355 return ret;
4356}
4357
4377void k_work_user_queue_start(struct k_work_user_q *work_q,
4378 k_thread_stack_t *stack,
4379 size_t stack_size, int prio,
4380 const char *name);
4381
4392static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
4393{
4394 return &work_q->thread;
4395}
4396
4403struct k_work_poll {
4404 struct k_work work;
4405 struct k_work_q *workq;
4406 struct z_poller poller;
4407 struct k_poll_event *events;
4408 int num_events;
4409 k_work_handler_t real_handler;
4410 struct _timeout timeout;
4411 int poll_result;
4412};
4413
4434#define K_WORK_DEFINE(work, work_handler) \
4435 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4436
4446void k_work_poll_init(struct k_work_poll *work,
4447 k_work_handler_t handler);
4448
4484 struct k_work_poll *work,
4485 struct k_poll_event *events,
4486 int num_events,
4487 k_timeout_t timeout);
4488
4520int k_work_poll_submit(struct k_work_poll *work,
4521 struct k_poll_event *events,
4522 int num_events,
4523 k_timeout_t timeout);
4524
4539int k_work_poll_cancel(struct k_work_poll *work);
4540
4552struct k_msgq {
4554 _wait_q_t wait_q;
4558 size_t msg_size;
4571
4572 Z_DECL_POLL_EVENT
4573
4576
4578
4579#ifdef CONFIG_OBJ_CORE_MSGQ
4580 struct k_obj_core obj_core;
4581#endif
4582};
4588#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4589 { \
4590 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4591 .msg_size = q_msg_size, \
4592 .max_msgs = q_max_msgs, \
4593 .buffer_start = q_buffer, \
4594 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4595 .read_ptr = q_buffer, \
4596 .write_ptr = q_buffer, \
4597 .used_msgs = 0, \
4598 Z_POLL_EVENT_OBJ_INIT(obj) \
4599 }
4600
4606#define K_MSGQ_FLAG_ALLOC BIT(0)
4607
4619
4620
4639#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4640 static char __noinit __aligned(q_align) \
4641 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4642 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4643 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4644 (q_msg_size), (q_max_msgs))
4645
4660void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4661 uint32_t max_msgs);
4662
4682__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
4683 uint32_t max_msgs);
4684
4695int k_msgq_cleanup(struct k_msgq *msgq);
4696
4717__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
4718
4739__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
4740
4755__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
4756
4773__syscall int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx);
4774
4784__syscall void k_msgq_purge(struct k_msgq *msgq);
4785
4796__syscall uint32_t k_msgq_num_free_get(struct k_msgq *msgq);
4797
4806__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
4807 struct k_msgq_attrs *attrs);
4808
4809
4810static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
4811{
4812 return msgq->max_msgs - msgq->used_msgs;
4813}
4814
4824__syscall uint32_t k_msgq_num_used_get(struct k_msgq *msgq);
4825
4826static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
4827{
4828 return msgq->used_msgs;
4829}
4830
4845 size_t size;
4849 void *tx_data;
4855 k_tid_t _syncing_thread;
4856#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4858 struct k_sem *_async_sem;
4859#endif
4860};
4865struct k_mbox {
4867 _wait_q_t tx_msg_queue;
4869 _wait_q_t rx_msg_queue;
4871
4873
4874#ifdef CONFIG_OBJ_CORE_MAILBOX
4875 struct k_obj_core obj_core;
4876#endif
4877};
4882#define Z_MBOX_INITIALIZER(obj) \
4883 { \
4884 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4885 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4886 }
4887
4901#define K_MBOX_DEFINE(name) \
4902 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4903 Z_MBOX_INITIALIZER(name) \
4904
4912void k_mbox_init(struct k_mbox *mbox);
4913
4933int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4934 k_timeout_t timeout);
4935
4949void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4950 struct k_sem *sem);
4951
4969int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
4970 void *buffer, k_timeout_t timeout);
4971
4985void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
4986
5004__syscall void k_pipe_init(struct k_pipe *pipe, uint8_t *buffer, size_t buffer_size);
5005
5006#ifdef CONFIG_PIPES
5008struct k_pipe {
5009 unsigned char *buffer;
5010 size_t size;
5011 size_t bytes_used;
5012 size_t read_index;
5013 size_t write_index;
5014 struct k_spinlock lock;
5016 struct {
5017 _wait_q_t readers;
5018 _wait_q_t writers;
5019 } wait_q;
5021 Z_DECL_POLL_EVENT
5022
5023 uint8_t flags;
5026
5027#ifdef CONFIG_OBJ_CORE_PIPE
5028 struct k_obj_core obj_core;
5029#endif
5030};
5031
5035#define K_PIPE_FLAG_ALLOC BIT(0)
5037#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
5038 { \
5039 .buffer = pipe_buffer, \
5040 .size = pipe_buffer_size, \
5041 .bytes_used = 0, \
5042 .read_index = 0, \
5043 .write_index = 0, \
5044 .lock = {}, \
5045 .wait_q = { \
5046 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
5047 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
5048 }, \
5049 Z_POLL_EVENT_OBJ_INIT(obj) \
5050 .flags = 0, \
5051 }
5052
5070#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
5071 static unsigned char __noinit __aligned(pipe_align) \
5072 _k_pipe_buf_##name[pipe_buffer_size]; \
5073 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
5074 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
5075
5088__deprecated int k_pipe_cleanup(struct k_pipe *pipe);
5089
5106__deprecated __syscall int k_pipe_alloc_init(struct k_pipe *pipe, size_t size);
5107
5127__deprecated __syscall int k_pipe_put(struct k_pipe *pipe, const void *data,
5128 size_t bytes_to_write, size_t *bytes_written,
5129 size_t min_xfer, k_timeout_t timeout);
5130
5151__deprecated __syscall int k_pipe_get(struct k_pipe *pipe, void *data,
5152 size_t bytes_to_read, size_t *bytes_read,
5153 size_t min_xfer, k_timeout_t timeout);
5154
5164__deprecated __syscall size_t k_pipe_read_avail(struct k_pipe *pipe);
5165
5175__deprecated __syscall size_t k_pipe_write_avail(struct k_pipe *pipe);
5176
5188__deprecated __syscall void k_pipe_flush(struct k_pipe *pipe);
5189
5202__deprecated __syscall void k_pipe_buffer_flush(struct k_pipe *pipe);
5203
5204#else /* CONFIG_PIPES */
5205
5210
5211struct k_pipe {
5212 size_t waiting;
5215 _wait_q_t data;
5216 _wait_q_t space;
5218
5219 Z_DECL_POLL_EVENT
5220#ifdef CONFIG_OBJ_CORE_PIPE
5221 struct k_obj_core obj_core;
5222#endif
5224};
5225
5229#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
5230{ \
5231 .buf = RING_BUF_INIT(pipe_buffer, pipe_buffer_size), \
5232 .data = Z_WAIT_Q_INIT(&obj.data), \
5233 .space = Z_WAIT_Q_INIT(&obj.space), \
5234 .flags = PIPE_FLAG_OPEN, \
5235 .waiting = 0, \
5236 Z_POLL_EVENT_OBJ_INIT(obj) \
5237}
5254#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
5255 static unsigned char __noinit __aligned(pipe_align) \
5256 _k_pipe_buf_##name[pipe_buffer_size]; \
5257 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
5258 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
5259
5260
5277__syscall int k_pipe_write(struct k_pipe *pipe, const uint8_t *data, size_t len,
5278 k_timeout_t timeout);
5279
5295__syscall int k_pipe_read(struct k_pipe *pipe, uint8_t *data, size_t len,
5296 k_timeout_t timeout);
5297
5307__syscall void k_pipe_reset(struct k_pipe *pipe);
5308
5317__syscall void k_pipe_close(struct k_pipe *pipe);
5318#endif /* CONFIG_PIPES */
5324struct k_mem_slab_info {
5325 uint32_t num_blocks;
5326 size_t block_size;
5327 uint32_t num_used;
5328#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5329 uint32_t max_used;
5330#endif
5331};
5332
5333struct k_mem_slab {
5334 _wait_q_t wait_q;
5335 struct k_spinlock lock;
5336 char *buffer;
5337 char *free_list;
5338 struct k_mem_slab_info info;
5339
5341
5342#ifdef CONFIG_OBJ_CORE_MEM_SLAB
5343 struct k_obj_core obj_core;
5344#endif
5345};
5346
5347#define Z_MEM_SLAB_INITIALIZER(_slab, _slab_buffer, _slab_block_size, \
5348 _slab_num_blocks) \
5349 { \
5350 .wait_q = Z_WAIT_Q_INIT(&(_slab).wait_q), \
5351 .lock = {}, \
5352 .buffer = _slab_buffer, \
5353 .free_list = NULL, \
5354 .info = {_slab_num_blocks, _slab_block_size, 0} \
5355 }
5356
5357
5391#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
5392 char __noinit_named(k_mem_slab_buf_##name) \
5393 __aligned(WB_UP(slab_align)) \
5394 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5395 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5396 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5397 WB_UP(slab_block_size), slab_num_blocks)
5398
5413#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5414 static char __noinit_named(k_mem_slab_buf_##name) \
5415 __aligned(WB_UP(slab_align)) \
5416 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5417 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5418 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5419 WB_UP(slab_block_size), slab_num_blocks)
5420
5442int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
5443 size_t block_size, uint32_t num_blocks);
5444
5467int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5468 k_timeout_t timeout);
5469
5479void k_mem_slab_free(struct k_mem_slab *slab, void *mem);
5480
5491static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5492{
5493 return slab->info.num_used;
5494}
5495
5506static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5507{
5508#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5509 return slab->info.max_used;
5510#else
5511 ARG_UNUSED(slab);
5512 return 0;
5513#endif
5514}
5515
5526static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5527{
5528 return slab->info.num_blocks - slab->info.num_used;
5529}
5530
5543int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats);
5544
5556int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab);
5557
5565/* kernel synchronized heap struct */
5566
5567struct k_heap {
5569 _wait_q_t wait_q;
5571};
5572
5586void k_heap_init(struct k_heap *h, void *mem,
5587 size_t bytes) __attribute_nonnull(1);
5588
5609void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5610 k_timeout_t timeout) __attribute_nonnull(1);
5611
5633void *k_heap_alloc(struct k_heap *h, size_t bytes,
5634 k_timeout_t timeout) __attribute_nonnull(1);
5635
5658void *k_heap_calloc(struct k_heap *h, size_t num, size_t size, k_timeout_t timeout)
5659 __attribute_nonnull(1);
5660
5684void *k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
5685 __attribute_nonnull(1);
5686
5697void k_heap_free(struct k_heap *h, void *mem) __attribute_nonnull(1);
5698
5699/* Hand-calculated minimum heap sizes needed to return a successful
5700 * 1-byte allocation. See details in lib/os/heap.[ch]
5701 */
5702#define Z_HEAP_MIN_SIZE ((sizeof(void *) > 4) ? 56 : 44)
5703
5720#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5721 char in_section \
5722 __aligned(8) /* CHUNK_UNIT */ \
5723 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5724 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5725 .heap = { \
5726 .init_mem = kheap_##name, \
5727 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5728 }, \
5729 }
5730
5745#define K_HEAP_DEFINE(name, bytes) \
5746 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5747 __noinit_named(kheap_buf_##name))
5748
5763#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5764 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5765
5794void *k_aligned_alloc(size_t align, size_t size);
5795
5807void *k_malloc(size_t size);
5808
5819void k_free(void *ptr);
5820
5832void *k_calloc(size_t nmemb, size_t size);
5833
5851void *k_realloc(void *ptr, size_t size);
5852
5855/* polling API - PRIVATE */
5856
5857#ifdef CONFIG_POLL
5858#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5859#else
5860#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5861#endif
5862
5863/* private - types bit positions */
5864enum _poll_types_bits {
5865 /* can be used to ignore an event */
5866 _POLL_TYPE_IGNORE,
5867
5868 /* to be signaled by k_poll_signal_raise() */
5869 _POLL_TYPE_SIGNAL,
5870
5871 /* semaphore availability */
5872 _POLL_TYPE_SEM_AVAILABLE,
5873
5874 /* queue/FIFO/LIFO data availability */
5875 _POLL_TYPE_DATA_AVAILABLE,
5876
5877 /* msgq data availability */
5878 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5879
5880 /* pipe data availability */
5881 _POLL_TYPE_PIPE_DATA_AVAILABLE,
5882
5883 _POLL_NUM_TYPES
5884};
5885
5886#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5887
5888/* private - states bit positions */
5889enum _poll_states_bits {
5890 /* default state when creating event */
5891 _POLL_STATE_NOT_READY,
5892
5893 /* signaled by k_poll_signal_raise() */
5894 _POLL_STATE_SIGNALED,
5895
5896 /* semaphore is available */
5897 _POLL_STATE_SEM_AVAILABLE,
5898
5899 /* data is available to read on queue/FIFO/LIFO */
5900 _POLL_STATE_DATA_AVAILABLE,
5901
5902 /* queue/FIFO/LIFO wait was cancelled */
5903 _POLL_STATE_CANCELLED,
5904
5905 /* data is available to read on a message queue */
5906 _POLL_STATE_MSGQ_DATA_AVAILABLE,
5907
5908 /* data is available to read from a pipe */
5909 _POLL_STATE_PIPE_DATA_AVAILABLE,
5910
5911 _POLL_NUM_STATES
5912};
5913
5914#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5915
5916#define _POLL_EVENT_NUM_UNUSED_BITS \
5917 (32 - (0 \
5918 + 8 /* tag */ \
5919 + _POLL_NUM_TYPES \
5920 + _POLL_NUM_STATES \
5921 + 1 /* modes */ \
5922 ))
5923
5924/* end of polling API - PRIVATE */
5925
5926
5933/* Public polling API */
5934
5935/* public - values for k_poll_event.type bitfield */
5936#define K_POLL_TYPE_IGNORE 0
5937#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5938#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5939#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5940#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5941#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5942#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
5943
5944/* public - polling modes */
5946 /* polling thread does not take ownership of objects when available */
5948
5951
5952/* public - values for k_poll_event.state bitfield */
5953#define K_POLL_STATE_NOT_READY 0
5954#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5955#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5956#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5957#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5958#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5959#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
5960#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5961
5962/* public - poll signal object */
5966
5971 unsigned int signaled;
5972
5975};
5976
5977#define K_POLL_SIGNAL_INITIALIZER(obj) \
5978 { \
5979 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
5980 .signaled = 0, \
5981 .result = 0, \
5982 }
5989 sys_dnode_t _node;
5990
5992 struct z_poller *poller;
5993
5996
5998 uint32_t type:_POLL_NUM_TYPES;
5999
6001 uint32_t state:_POLL_NUM_STATES;
6002
6005
6007 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
6008
6010 union {
6011 /* The typed_* fields below are used by K_POLL_EVENT_*INITIALIZER() macros to ensure
6012 * type safety of polled objects.
6013 */
6014 void *obj, *typed_K_POLL_TYPE_IGNORE;
6015 struct k_poll_signal *signal, *typed_K_POLL_TYPE_SIGNAL;
6016 struct k_sem *sem, *typed_K_POLL_TYPE_SEM_AVAILABLE;
6017 struct k_fifo *fifo, *typed_K_POLL_TYPE_FIFO_DATA_AVAILABLE;
6018 struct k_queue *queue, *typed_K_POLL_TYPE_DATA_AVAILABLE;
6019 struct k_msgq *msgq, *typed_K_POLL_TYPE_MSGQ_DATA_AVAILABLE;
6020 struct k_pipe *pipe, *typed_K_POLL_TYPE_PIPE_DATA_AVAILABLE;
6021 };
6022};
6023
6024#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
6025 { \
6026 .poller = NULL, \
6027 .type = _event_type, \
6028 .state = K_POLL_STATE_NOT_READY, \
6029 .mode = _event_mode, \
6030 .unused = 0, \
6031 { \
6032 .typed_##_event_type = _event_obj, \
6033 }, \
6034 }
6035
6036#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
6037 event_tag) \
6038 { \
6039 .tag = event_tag, \
6040 .type = _event_type, \
6041 .state = K_POLL_STATE_NOT_READY, \
6042 .mode = _event_mode, \
6043 .unused = 0, \
6044 { \
6045 .typed_##_event_type = _event_obj, \
6046 }, \
6047 }
6048
6064void k_poll_event_init(struct k_poll_event *event, uint32_t type,
6065 int mode, void *obj);
6066
6110__syscall int k_poll(struct k_poll_event *events, int num_events,
6111 k_timeout_t timeout);
6112
6121__syscall void k_poll_signal_init(struct k_poll_signal *sig);
6122
6128__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
6129
6140__syscall void k_poll_signal_check(struct k_poll_signal *sig,
6141 unsigned int *signaled, int *result);
6142
6167__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
6168
6189static inline void k_cpu_idle(void)
6190{
6191 arch_cpu_idle();
6192}
6193
6208static inline void k_cpu_atomic_idle(unsigned int key)
6209{
6211}
6212
6221#ifdef ARCH_EXCEPT
6222/* This architecture has direct support for triggering a CPU exception */
6223#define z_except_reason(reason) ARCH_EXCEPT(reason)
6224#else
6225
6226#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
6227#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
6228#else
6229#define __EXCEPT_LOC()
6230#endif
6231
6232/* NOTE: This is the implementation for arches that do not implement
6233 * ARCH_EXCEPT() to generate a real CPU exception.
6234 *
6235 * We won't have a real exception frame to determine the PC value when
6236 * the oops occurred, so print file and line number before we jump into
6237 * the fatal error handler.
6238 */
6239#define z_except_reason(reason) do { \
6240 __EXCEPT_LOC(); \
6241 z_fatal_error(reason, NULL); \
6242 } while (false)
6243
6244#endif /* _ARCH__EXCEPT */
6260#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
6261
6270#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
6271
6276/*
6277 * private APIs that are utilized by one or more public APIs
6278 */
6279
6283void z_timer_expiration_handler(struct _timeout *timeout);
6288#ifdef CONFIG_PRINTK
6296__syscall void k_str_out(char *c, size_t n);
6297#endif
6298
6325__syscall int k_float_disable(struct k_thread *thread);
6326
6365__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
6366
6380
6388
6397
6408
6419
6428
6437
6438#ifdef __cplusplus
6439}
6440#endif
6441
6442#include <zephyr/tracing/tracing.h>
6443#include <zephyr/syscalls/kernel.h>
6444
6445#endif /* !_ASMLANGUAGE */
6446
6447#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
static uint32_t arch_k_cycle_get_32(void)
Definition misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition misc.h:33
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition arch_interface.h:48
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition arch_interface.h:46
long atomic_t
Definition atomic_types.h:15
System error numbers.
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically get and test a bit.
Definition atomic.h:127
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition atomic.h:191
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit and test it.
Definition atomic.h:170
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition kernel.h:1927
#define K_NO_WAIT
Generate null timeout delay.
Definition kernel.h:1357
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition kernel.h:1879
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition sys_clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition kernel.h:1908
static uint32_t k_uptime_seconds(void)
Get system uptime in seconds.
Definition kernel.h:1892
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition kernel.h:1942
static int64_t k_uptime_get(void)
Get system uptime.
Definition kernel.h:1855
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition kernel.h:6189
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition kernel.h:6208
struct _dnode sys_dnode_t
Doubly-linked list node structure.
Definition dlist.h:54
struct _dnode sys_dlist_t
Doubly-linked list structure.
Definition dlist.h:50
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
uint32_t k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
static uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
Test the events currently tracked in the event object.
Definition kernel.h:2475
uint32_t k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
uint32_t k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events.
struct _sflist sys_sflist_t
Flagged single-linked list structure.
Definition sflist.h:54
static bool sys_sflist_is_empty(sys_sflist_t *list)
Test if the given list is empty.
Definition sflist.h:336
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
void * k_heap_calloc(struct k_heap *h, size_t num, size_t size, k_timeout_t timeout)
Allocate and initialize memory for an array of objects from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void * k_realloc(void *ptr, size_t size)
Expand the size of an existing allocation.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
Reallocate memory from a k_heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition kernel.h:1212
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void *mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition kernel.h:5491
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition kernel.h:5506
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition kernel.h:5526
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.
int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
int k_pipe_write(struct k_pipe *pipe, const uint8_t *data, size_t len, k_timeout_t timeout)
Write data to a pipe.
void k_pipe_close(struct k_pipe *pipe)
Close a pipe.
void k_pipe_reset(struct k_pipe *pipe)
Reset a pipe This routine resets the pipe, discarding any unread data and unblocking any threads wait...
void k_pipe_init(struct k_pipe *pipe, uint8_t *buffer, size_t buffer_size)
initialize a pipe
pipe_flags
Definition kernel.h:5206
int k_pipe_read(struct k_pipe *pipe, uint8_t *data, size_t len, k_timeout_t timeout)
Read data from a pipe This routine reads up to len bytes of data from pipe.
@ PIPE_FLAG_RESET
Definition kernel.h:5208
@ PIPE_FLAG_OPEN
Definition kernel.h:5207
void k_poll_signal_reset(struct k_poll_signal *sig)
Reset a poll signal object's state to unsignaled.
k_poll_modes
Definition kernel.h:5945
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition kernel.h:5947
@ K_POLL_NUM_MODES
Definition kernel.h:5949
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
struct _slist sys_slist_t
Single-linked list structure.
Definition slist.h:49
struct _snode sys_snode_t
Single-linked list node structure.
Definition slist.h:39
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition tracing_macros.h:366
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition util_macro.h:148
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition util.h:284
#define EBUSY
Mount device busy.
Definition errno.h:54
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition kernel.h:472
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *thread)
Get time remaining before a thread wakes up, in system ticks.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition kernel.h:565
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition kernel.h:662
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_thread_foreach_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in running on specified cpu.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
int k_thread_stack_free(k_thread_stack_t *stack)
Free a dynamically allocated thread stack.
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread)
Get time when a thread wakes up, in system ticks.
__attribute_const__ k_tid_t k_sched_current_thread_query(void)
Query thread ID of the current thread.
static void k_thread_start(k_tid_t thread)
Start an inactive thread.
Definition kernel.h:1089
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_reschedule(void)
Invoke the scheduler.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over the threads in running on current cpu without locking.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition kernel.h:106
k_thread_stack_t * k_thread_stack_alloc(size_t size, int flags)
Dynamically allocate a thread stack.
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition kernel.h:1633
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition kernel.h:1617
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition kernel.h:1779
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
#define k_ticks_to_ms_floor32(t)
Convert ticks to milliseconds.
Definition time_units.h:1701
#define k_ticks_to_sec_floor32(t)
Convert ticks to seconds.
Definition time_units.h:1605
#define k_ticks_to_ms_floor64(t)
Convert ticks to milliseconds.
Definition time_units.h:1717
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition kernel.h:4210
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition kernel.h:4181
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition kernel.h:4198
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
int k_work_queue_stop(struct k_work_q *queue, k_timeout_t timeout)
Stop a work queue.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition kernel.h:4337
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition kernel.h:4314
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition kernel.h:3387
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition kernel.h:4192
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition kernel.h:4292
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition kernel.h:4233
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition kernel.h:4392
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition kernel.h:4187
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition kernel.h:4204
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition kernel.h:3982
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition kernel.h:3989
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition kernel.h:3996
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition kernel.h:3976
@ K_WORK_FLUSHING
Flag indicating a synced work item that is being flushed.
Definition kernel.h:4002
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
execution_context_types
Definition kernel.h:91
@ K_ISR
Definition kernel.h:92
@ K_COOP_THREAD
Definition kernel.h:93
@ K_PREEMPT_THREAD
Definition kernel.h:94
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
int k_thread_runtime_stats_cpu_get(int cpu, k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads on specified cpu.
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition kernel_structs.h:322
Memory Statistics.
flags
Definition parser.h:97
state
Definition parser_state.h:29
__UINT32_TYPE__ uint32_t
Definition stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition stdint.h:104
__INT32_TYPE__ int32_t
Definition stdint.h:74
__UINT64_TYPE__ uint64_t
Definition stdint.h:91
__UINT8_TYPE__ uint8_t
Definition stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition stdint.h:105
__INT64_TYPE__ int64_t
Definition stdint.h:75
Structure to store initialization entry information.
Definition init.h:103
Definition kernel.h:3137
_wait_q_t wait_q
Definition kernel.h:3138
Event Structure.
Definition kernel.h:2328
struct k_spinlock lock
Definition kernel.h:2331
uint32_t events
Definition kernel.h:2330
_wait_q_t wait_q
Definition kernel.h:2329
Definition kernel.h:2495
futex structure
Definition kernel.h:2249
atomic_t val
Definition kernel.h:2250
Definition kernel.h:5567
struct k_spinlock lock
Definition kernel.h:5570
struct sys_heap heap
Definition kernel.h:5568
_wait_q_t wait_q
Definition kernel.h:5569
Definition kernel.h:2736
Mailbox Message Structure.
Definition kernel.h:4843
k_tid_t tx_target_thread
target thread id
Definition kernel.h:4853
void * tx_data
sender's message data buffer
Definition kernel.h:4849
k_tid_t rx_source_thread
source thread id
Definition kernel.h:4851
uint32_t info
application-defined information value
Definition kernel.h:4847
size_t size
size of message (in bytes)
Definition kernel.h:4845
Mailbox Structure.
Definition kernel.h:4865
_wait_q_t tx_msg_queue
Transmit messages queue.
Definition kernel.h:4867
struct k_spinlock lock
Definition kernel.h:4870
_wait_q_t rx_msg_queue
Receive message queue.
Definition kernel.h:4869
Memory Domain.
Definition mem_domain.h:80
Memory Partition.
Definition mem_domain.h:55
Message Queue Attributes.
Definition kernel.h:4611
uint32_t used_msgs
Used messages.
Definition kernel.h:4617
size_t msg_size
Message Size.
Definition kernel.h:4613
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4615
Message Queue Structure.
Definition kernel.h:4552
size_t msg_size
Message size.
Definition kernel.h:4558
char * read_ptr
Read pointer.
Definition kernel.h:4566
uint32_t used_msgs
Number of used messages.
Definition kernel.h:4570
char * buffer_end
End of message buffer.
Definition kernel.h:4564
struct k_spinlock lock
Lock.
Definition kernel.h:4556
char * write_ptr
Write pointer.
Definition kernel.h:4568
char * buffer_start
Start of message buffer.
Definition kernel.h:4562
uint8_t flags
Message queue.
Definition kernel.h:4575
_wait_q_t wait_q
Message queue wait queue.
Definition kernel.h:4554
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4560
Mutex Structure.
Definition kernel.h:3025
uint32_t lock_count
Current lock count.
Definition kernel.h:3032
_wait_q_t wait_q
Mutex wait queue.
Definition kernel.h:3027
int owner_orig_prio
Original thread priority.
Definition kernel.h:3035
struct k_thread * owner
Mutex owner.
Definition kernel.h:3029
Object core structure.
Definition obj_core.h:121
Definition kernel.h:5211
uint8_t flags
Definition kernel.h:5217
struct ring_buf buf
Definition kernel.h:5213
_wait_q_t data
Definition kernel.h:5215
_wait_q_t space
Definition kernel.h:5216
struct k_spinlock lock
Definition kernel.h:5214
size_t waiting
Definition kernel.h:5212
Poll Event.
Definition kernel.h:5987
struct k_poll_signal * signal
Definition kernel.h:6015
struct k_pipe * pipe
Definition kernel.h:6020
uint32_t tag
optional user-specified tag, opaque, untouched by the API
Definition kernel.h:5995
struct k_fifo * fifo
Definition kernel.h:6017
struct k_msgq * msgq
Definition kernel.h:6019
struct k_queue * queue
Definition kernel.h:6018
uint32_t unused
unused bits in 32-bit word
Definition kernel.h:6007
uint32_t type
bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values)
Definition kernel.h:5998
struct k_sem * sem
Definition kernel.h:6016
uint32_t state
bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values)
Definition kernel.h:6001
uint32_t mode
mode of operation, from enum k_poll_modes
Definition kernel.h:6004
struct z_poller * poller
PRIVATE - DO NOT TOUCH.
Definition kernel.h:5992
void * obj
Definition kernel.h:6014
Definition kernel.h:5963
sys_dlist_t poll_events
PRIVATE - DO NOT TOUCH.
Definition kernel.h:5965
int result
custom result value passed to k_poll_signal_raise() if needed
Definition kernel.h:5974
unsigned int signaled
1 if the event has been signaled, 0 otherwise.
Definition kernel.h:5971
Definition kernel.h:1957
struct k_spinlock lock
Definition kernel.h:1959
_wait_q_t wait_q
Definition kernel.h:1960
sys_sflist_t data_q
Definition kernel.h:1958
Kernel Spin Lock.
Definition spinlock.h:45
Definition thread.h:207
Thread Structure.
Definition thread.h:259
struct _thread_base base
Definition thread.h:261
struct k_heap * resource_pool
resource pool
Definition thread.h:349
struct __thread_entry entry
thread entry and parameters description
Definition thread.h:288
Kernel timeout type.
Definition sys_clock.h:65
A structure used to submit work after a delay.
Definition kernel.h:4034
struct _timeout timeout
Definition kernel.h:4039
struct k_work_q * queue
Definition kernel.h:4042
struct k_work work
Definition kernel.h:4036
A structure used to hold work until it can be processed.
Definition kernel.h:4158
sys_slist_t pending
Definition kernel.h:4167
_wait_q_t drainq
Definition kernel.h:4173
_wait_q_t notifyq
Definition kernel.h:4170
uint32_t flags
Definition kernel.h:4176
struct k_thread thread
Definition kernel.h:4160
A structure holding optional configuration items for a work queue.
Definition kernel.h:4130
const char * name
The name to be given to the work queue thread.
Definition kernel.h:4135
bool essential
Control whether the work queue thread should be marked as essential thread.
Definition kernel.h:4154
bool no_yield
Control whether the work queue thread should yield between items.
Definition kernel.h:4149
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition kernel.h:4117
struct z_work_canceller canceller
Definition kernel.h:4120
struct z_work_flusher flusher
Definition kernel.h:4119
A structure used to submit work.
Definition kernel.h:4006
k_work_handler_t handler
Definition kernel.h:4015
uint32_t flags
Definition kernel.h:4026
struct k_work_q * queue
Definition kernel.h:4018
sys_snode_t node
Definition kernel.h:4012
A structure to represent a ring buffer.
Definition ring_buffer.h:40
Definition sys_heap.h:57
Definition mem_stats.h:24
Macros to abstract toolchain specific capabilities.