13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
16#if !defined(_ASMLANGUAGE)
34BUILD_ASSERT(
sizeof(
int32_t) ==
sizeof(
int));
35BUILD_ASSERT(
sizeof(
int64_t) ==
sizeof(
long long));
36BUILD_ASSERT(
sizeof(
intptr_t) ==
sizeof(
long));
49#if (CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES) == 0
50#error Zero available thread priorities defined!
53#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
54#define K_PRIO_PREEMPT(x) (x)
56#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
57#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
58#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
59#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
60#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
63#define Z_POLL_EVENT_OBJ_INIT(obj) \
64 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
65#define Z_DECL_POLL_EVENT sys_dlist_t poll_events;
67#define Z_POLL_EVENT_OBJ_INIT(obj)
68#define Z_DECL_POLL_EVENT
151 __ASSERT(cpu == 0,
"cpu filter out of bounds");
226 __ASSERT(cpu == 0,
"cpu filter out of bounds");
251#define K_ESSENTIAL (BIT(0))
263#define K_FP_REGS (BIT(K_FP_IDX))
271#define K_USER (BIT(2))
281#define K_INHERIT_PERMS (BIT(3))
292#define K_CALLBACK_STATE (BIT(4))
304#define K_DSP_REGS (BIT(K_DSP_IDX))
315#define K_AGU_REGS (BIT(K_AGU_IDX))
326#define K_SSE_REGS (BIT(7))
330#if !defined(_ASMLANGUAGE)
413 void *p1,
void *p2,
void *p3,
454#define k_thread_access_grant(thread, ...) \
455 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), (thread), __VA_ARGS__)
477#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
498__syscall
int k_thread_stack_space_get(
const struct k_thread *thread,
502#if (K_HEAP_MEM_POOL_SIZE > 0)
515void k_thread_system_pool_assign(
struct k_thread *thread);
568 return k_sleep(Z_TIMEOUT_MS(ms));
665#ifdef CONFIG_CURRENT_THREAD_USE_TLS
668 extern Z_THREAD_LOCAL
k_tid_t z_tls_current;
670 return z_tls_current;
709k_ticks_t z_timeout_expires(
const struct _timeout *timeout);
710k_ticks_t z_timeout_remaining(
const struct _timeout *timeout);
712#ifdef CONFIG_SYS_CLOCK_EXISTS
723static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
726 return z_timeout_expires(&thread->
base.timeout);
738static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
741 return z_timeout_remaining(&thread->
base.timeout);
750struct _static_thread_data {
753 unsigned int init_stack_size;
760 const char *init_name;
761#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
768#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
769#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay_ms = (ms)
770#define Z_THREAD_INIT_DELAY(thread) SYS_TIMEOUT_MS((thread)->init_delay_ms)
772#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay = SYS_TIMEOUT_MS(ms)
773#define Z_THREAD_INIT_DELAY(thread) (thread)->init_delay
776#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
778 prio, options, delay, tname) \
780 .init_thread = (thread), \
781 .init_stack = (stack), \
782 .init_stack_size = (stack_size), \
783 .init_entry = (k_thread_entry_t)entry, \
784 .init_p1 = (void *)p1, \
785 .init_p2 = (void *)p2, \
786 .init_p3 = (void *)p3, \
787 .init_prio = (prio), \
788 .init_options = (options), \
789 .init_name = STRINGIFY(tname), \
790 Z_THREAD_INIT_DELAY_INITIALIZER(delay) \
797#define Z_THREAD_COMMON_DEFINE(name, stack_size, \
799 prio, options, delay) \
800 struct k_thread _k_thread_obj_##name; \
801 STRUCT_SECTION_ITERABLE(_static_thread_data, \
802 _k_thread_data_##name) = \
803 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
804 _k_thread_stack_##name, stack_size,\
805 entry, p1, p2, p3, prio, options, \
807 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
844#define K_THREAD_DEFINE(name, stack_size, \
846 prio, options, delay) \
847 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
848 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
849 prio, options, delay)
881#define K_KERNEL_THREAD_DEFINE(name, stack_size, \
883 prio, options, delay) \
884 K_KERNEL_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
885 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
886 prio, options, delay)
927#ifdef CONFIG_SCHED_DEADLINE
963#ifdef CONFIG_SCHED_CPU_MASK
1187 extern bool z_sys_post_kernel;
1189 return !z_sys_post_kernel;
1330#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1344#define K_NSEC(t) Z_TIMEOUT_NS(t)
1358#define K_USEC(t) Z_TIMEOUT_US(t)
1370#define K_CYC(t) Z_TIMEOUT_CYC(t)
1382#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1394#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1406#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1418#define K_MINUTES(m) K_SECONDS((m) * 60)
1430#define K_HOURS(h) K_MINUTES((h) * 60)
1440#define K_FOREVER Z_FOREVER
1442#ifdef CONFIG_TIMEOUT_64BIT
1455#define K_TIMEOUT_ABS_TICKS(t) \
1456 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1469#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1483#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1497#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1511#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1529 struct _timeout timeout;
1535 void (*expiry_fn)(
struct k_timer *timer);
1538 void (*stop_fn)(
struct k_timer *timer);
1551#ifdef CONFIG_OBJ_CORE_TIMER
1556#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1560 .fn = z_timer_expiration_handler, \
1563 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1564 .expiry_fn = expiry, \
1619#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1620 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1621 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1704#ifdef CONFIG_SYS_CLOCK_EXISTS
1718static inline k_ticks_t z_impl_k_timer_expires_ticks(
1719 const struct k_timer *timer)
1721 return z_timeout_expires(&timer->timeout);
1736static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1737 const struct k_timer *timer)
1739 return z_timeout_remaining(&timer->timeout);
1776static inline void z_impl_k_timer_user_data_set(
struct k_timer *timer,
1779 timer->user_data = user_data;
1791static inline void *z_impl_k_timer_user_data_get(
const struct k_timer *timer)
1793 return timer->user_data;
1886 delta = uptime - *reftime;
1917 if (!
IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
1918 __ASSERT(0,
"64-bit cycle counter not enabled on this platform. "
1919 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
1944#define Z_QUEUE_INITIALIZER(obj) \
1946 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
1948 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1949 Z_POLL_EVENT_OBJ_INIT(obj) \
2170static inline int z_impl_k_queue_is_empty(
struct k_queue *queue)
2206#define K_QUEUE_DEFINE(name) \
2207 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2208 Z_QUEUE_INITIALIZER(name)
2212#ifdef CONFIG_USERSPACE
2233struct z_futex_data {
2238#define Z_FUTEX_DATA_INITIALIZER(obj) \
2240 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2308#ifdef CONFIG_OBJ_CORE_EVENT
2314#define Z_EVENT_INITIALIZER(obj) \
2316 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2462#define K_EVENT_DEFINE(name) \
2463 STRUCT_SECTION_ITERABLE(k_event, name) = \
2464 Z_EVENT_INITIALIZER(name);
2470#ifdef CONFIG_OBJ_CORE_FIFO
2478#define Z_FIFO_INITIALIZER(obj) \
2480 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2500#define k_fifo_init(fifo) \
2502 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2503 k_queue_init(&(fifo)->_queue); \
2504 K_OBJ_CORE_INIT(K_OBJ_CORE(fifo), _obj_type_fifo); \
2505 K_OBJ_CORE_LINK(K_OBJ_CORE(fifo)); \
2506 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2520#define k_fifo_cancel_wait(fifo) \
2522 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2523 k_queue_cancel_wait(&(fifo)->_queue); \
2524 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2539#define k_fifo_put(fifo, data) \
2541 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, data); \
2542 k_queue_append(&(fifo)->_queue, data); \
2543 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, data); \
2562#define k_fifo_alloc_put(fifo, data) \
2564 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, data); \
2565 int fap_ret = k_queue_alloc_append(&(fifo)->_queue, data); \
2566 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, data, fap_ret); \
2584#define k_fifo_put_list(fifo, head, tail) \
2586 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2587 k_queue_append_list(&(fifo)->_queue, head, tail); \
2588 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2604#define k_fifo_put_slist(fifo, list) \
2606 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2607 k_queue_merge_slist(&(fifo)->_queue, list); \
2608 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2628#define k_fifo_get(fifo, timeout) \
2630 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2631 void *fg_ret = k_queue_get(&(fifo)->_queue, timeout); \
2632 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, fg_ret); \
2649#define k_fifo_is_empty(fifo) \
2650 k_queue_is_empty(&(fifo)->_queue)
2665#define k_fifo_peek_head(fifo) \
2667 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2668 void *fph_ret = k_queue_peek_head(&(fifo)->_queue); \
2669 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, fph_ret); \
2684#define k_fifo_peek_tail(fifo) \
2686 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2687 void *fpt_ret = k_queue_peek_tail(&(fifo)->_queue); \
2688 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, fpt_ret); \
2701#define K_FIFO_DEFINE(name) \
2702 STRUCT_SECTION_ITERABLE(k_fifo, name) = \
2703 Z_FIFO_INITIALIZER(name)
2709#ifdef CONFIG_OBJ_CORE_LIFO
2718#define Z_LIFO_INITIALIZER(obj) \
2720 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2740#define k_lifo_init(lifo) \
2742 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2743 k_queue_init(&(lifo)->_queue); \
2744 K_OBJ_CORE_INIT(K_OBJ_CORE(lifo), _obj_type_lifo); \
2745 K_OBJ_CORE_LINK(K_OBJ_CORE(lifo)); \
2746 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2761#define k_lifo_put(lifo, data) \
2763 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, data); \
2764 k_queue_prepend(&(lifo)->_queue, data); \
2765 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, data); \
2784#define k_lifo_alloc_put(lifo, data) \
2786 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, data); \
2787 int lap_ret = k_queue_alloc_prepend(&(lifo)->_queue, data); \
2788 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, data, lap_ret); \
2809#define k_lifo_get(lifo, timeout) \
2811 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2812 void *lg_ret = k_queue_get(&(lifo)->_queue, timeout); \
2813 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, lg_ret); \
2826#define K_LIFO_DEFINE(name) \
2827 STRUCT_SECTION_ITERABLE(k_lifo, name) = \
2828 Z_LIFO_INITIALIZER(name)
2835#define K_STACK_FLAG_ALLOC ((uint8_t)1)
2842 stack_data_t *base, *next, *top;
2848#ifdef CONFIG_OBJ_CORE_STACK
2853#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2855 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
2856 .base = (stack_buffer), \
2857 .next = (stack_buffer), \
2858 .top = (stack_buffer) + (stack_num_entries), \
2881 stack_data_t *buffer,
uint32_t num_entries);
2962#define K_STACK_DEFINE(name, stack_num_entries) \
2963 stack_data_t __noinit \
2964 _k_stack_buf_##name[stack_num_entries]; \
2965 STRUCT_SECTION_ITERABLE(k_stack, name) = \
2966 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
2978extern struct k_work_q k_sys_work_q;
3008#ifdef CONFIG_OBJ_CORE_MUTEX
3016#define Z_MUTEX_INITIALIZER(obj) \
3018 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3021 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
3037#define K_MUTEX_DEFINE(name) \
3038 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
3039 Z_MUTEX_INITIALIZER(name)
3109#ifdef CONFIG_OBJ_CORE_CONDVAR
3114#define Z_CONDVAR_INITIALIZER(obj) \
3116 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3180#define K_CONDVAR_DEFINE(name) \
3181 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
3182 Z_CONDVAR_INITIALIZER(name)
3200#ifdef CONFIG_OBJ_CORE_SEM
3205#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
3207 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3208 .count = (initial_count), \
3209 .limit = (count_limit), \
3210 Z_POLL_EVENT_OBJ_INIT(obj) \
3231#define K_SEM_MAX_LIMIT UINT_MAX
3248__syscall
int k_sem_init(
struct k_sem *sem,
unsigned int initial_count,
3249 unsigned int limit);
3308static inline unsigned int z_impl_k_sem_count_get(
struct k_sem *sem)
3324#define K_SEM_DEFINE(name, initial_count, count_limit) \
3325 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3326 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3327 BUILD_ASSERT(((count_limit) != 0) && \
3328 ((initial_count) <= (count_limit)) && \
3329 ((count_limit) <= K_SEM_MAX_LIMIT));
3890 K_WORK_RUNNING_BIT = 0,
3891 K_WORK_CANCELING_BIT = 1,
3892 K_WORK_QUEUED_BIT = 2,
3893 K_WORK_DELAYED_BIT = 3,
3894 K_WORK_FLUSHING_BIT = 4,
3896 K_WORK_MASK =
BIT(K_WORK_DELAYED_BIT) |
BIT(K_WORK_QUEUED_BIT)
3897 |
BIT(K_WORK_RUNNING_BIT) |
BIT(K_WORK_CANCELING_BIT) |
BIT(K_WORK_FLUSHING_BIT),
3900 K_WORK_DELAYABLE_BIT = 8,
3901 K_WORK_DELAYABLE =
BIT(K_WORK_DELAYABLE_BIT),
3904 K_WORK_QUEUE_STARTED_BIT = 0,
3905 K_WORK_QUEUE_STARTED =
BIT(K_WORK_QUEUE_STARTED_BIT),
3906 K_WORK_QUEUE_BUSY_BIT = 1,
3907 K_WORK_QUEUE_BUSY =
BIT(K_WORK_QUEUE_BUSY_BIT),
3908 K_WORK_QUEUE_DRAIN_BIT = 2,
3909 K_WORK_QUEUE_DRAIN =
BIT(K_WORK_QUEUE_DRAIN_BIT),
3910 K_WORK_QUEUE_PLUGGED_BIT = 3,
3911 K_WORK_QUEUE_PLUGGED =
BIT(K_WORK_QUEUE_PLUGGED_BIT),
3914 K_WORK_QUEUE_NO_YIELD_BIT = 8,
3915 K_WORK_QUEUE_NO_YIELD =
BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3980#define Z_WORK_INITIALIZER(work_handler) { \
3981 .handler = (work_handler), \
3996#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
3998 .handler = (work_handler), \
3999 .flags = K_WORK_DELAYABLE, \
4019#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
4020 struct k_work_delayable work \
4021 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
4034struct z_work_flusher {
4045struct z_work_canceller {
4152 return z_timeout_expires(&dwork->
timeout);
4158 return z_timeout_remaining(&dwork->
timeout);
4190struct k_work_user_q {
4196 K_WORK_USER_STATE_PENDING,
4209#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4210#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4212#define Z_WORK_USER_INITIALIZER(work_handler) \
4214 ._reserved = NULL, \
4215 .handler = (work_handler), \
4231#define K_WORK_USER_DEFINE(work, work_handler) \
4232 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4246 *work = (
struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4289 struct k_work_user *work)
4294 K_WORK_USER_STATE_PENDING)) {
4302 K_WORK_USER_STATE_PENDING);
4330 size_t stack_size,
int prio,
4345 return &work_q->thread;
4357 struct z_poller poller;
4361 struct _timeout timeout;
4385#define K_WORK_DEFINE(work, work_handler) \
4386 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4435 struct k_work_poll *work,
4530#ifdef CONFIG_OBJ_CORE_MSGQ
4539#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4541 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4542 .msg_size = q_msg_size, \
4543 .max_msgs = q_max_msgs, \
4544 .buffer_start = q_buffer, \
4545 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4546 .read_ptr = q_buffer, \
4547 .write_ptr = q_buffer, \
4549 Z_POLL_EVENT_OBJ_INIT(obj) \
4557#define K_MSGQ_FLAG_ALLOC BIT(0)
4590#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4591 static char __noinit __aligned(q_align) \
4592 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4593 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4594 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4595 (q_msg_size), (q_max_msgs))
4761static inline uint32_t z_impl_k_msgq_num_free_get(
struct k_msgq *msgq)
4777static inline uint32_t z_impl_k_msgq_num_used_get(
struct k_msgq *msgq)
4807#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4809 struct k_sem *_async_sem;
4825#ifdef CONFIG_OBJ_CORE_MAILBOX
4833#define Z_MBOX_INITIALIZER(obj) \
4835 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4836 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4852#define K_MBOX_DEFINE(name) \
4853 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4854 Z_MBOX_INITIALIZER(name) \
4966#ifdef CONFIG_OBJ_CORE_PIPE
4974#define K_PIPE_FLAG_ALLOC BIT(0)
4976#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
4978 .buffer = pipe_buffer, \
4979 .size = pipe_buffer_size, \
4985 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
4986 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
4988 Z_POLL_EVENT_OBJ_INIT(obj) \
5009#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
5010 static unsigned char __noinit __aligned(pipe_align) \
5011 _k_pipe_buf_##name[pipe_buffer_size]; \
5012 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
5013 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
5077 size_t bytes_to_write,
size_t *bytes_written,
5100 size_t bytes_to_read,
size_t *bytes_read,
5154struct k_mem_slab_info {
5158#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5168 struct k_mem_slab_info info;
5172#ifdef CONFIG_OBJ_CORE_MEM_SLAB
5177#define Z_MEM_SLAB_INITIALIZER(_slab, _slab_buffer, _slab_block_size, \
5180 .wait_q = Z_WAIT_Q_INIT(&(_slab).wait_q), \
5182 .buffer = _slab_buffer, \
5183 .free_list = NULL, \
5184 .info = {_slab_num_blocks, _slab_block_size, 0} \
5221#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
5222 char __noinit_named(k_mem_slab_buf_##name) \
5223 __aligned(WB_UP(slab_align)) \
5224 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5225 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5226 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5227 WB_UP(slab_block_size), slab_num_blocks)
5243#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5244 static char __noinit_named(k_mem_slab_buf_##name) \
5245 __aligned(WB_UP(slab_align)) \
5246 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5247 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5248 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5249 WB_UP(slab_block_size), slab_num_blocks)
5273 size_t block_size,
uint32_t num_blocks);
5323 return slab->info.num_used;
5338#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5339 return slab->info.max_used;
5358 return slab->info.num_blocks - slab->info.num_used;
5417 size_t bytes) __attribute_nonnull(1);
5490 __attribute_nonnull(1);
5507#define Z_HEAP_MIN_SIZE ((sizeof(void *) > 4) ? 56 : 44)
5525#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5528 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5529 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5531 .init_mem = kheap_##name, \
5532 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5550#define K_HEAP_DEFINE(name, bytes) \
5551 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5552 __noinit_named(kheap_buf_##name))
5568#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5569 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5663#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5665#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5669enum _poll_types_bits {
5677 _POLL_TYPE_SEM_AVAILABLE,
5680 _POLL_TYPE_DATA_AVAILABLE,
5683 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5686 _POLL_TYPE_PIPE_DATA_AVAILABLE,
5691#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5694enum _poll_states_bits {
5696 _POLL_STATE_NOT_READY,
5699 _POLL_STATE_SIGNALED,
5702 _POLL_STATE_SEM_AVAILABLE,
5705 _POLL_STATE_DATA_AVAILABLE,
5708 _POLL_STATE_CANCELLED,
5711 _POLL_STATE_MSGQ_DATA_AVAILABLE,
5714 _POLL_STATE_PIPE_DATA_AVAILABLE,
5719#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5721#define _POLL_EVENT_NUM_UNUSED_BITS \
5725 + _POLL_NUM_STATES \
5741#define K_POLL_TYPE_IGNORE 0
5742#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5743#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5744#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5745#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5746#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5747#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
5758#define K_POLL_STATE_NOT_READY 0
5759#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5760#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5761#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5762#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5763#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5764#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
5765#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5782#define K_POLL_SIGNAL_INITIALIZER(obj) \
5784 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
5819 void *
obj, *typed_K_POLL_TYPE_IGNORE;
5821 struct k_sem *
sem, *typed_K_POLL_TYPE_SEM_AVAILABLE;
5826 struct k_pipe *pipe, *typed_K_POLL_TYPE_PIPE_DATA_AVAILABLE;
5831#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
5834 .type = _event_type, \
5835 .state = K_POLL_STATE_NOT_READY, \
5836 .mode = _event_mode, \
5839 .typed_##_event_type = _event_obj, \
5843#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
5847 .type = _event_type, \
5848 .state = K_POLL_STATE_NOT_READY, \
5849 .mode = _event_mode, \
5852 .typed_##_event_type = _event_obj, \
5872 int mode,
void *obj);
5948 unsigned int *signaled,
int *result);
6030#define z_except_reason(reason) ARCH_EXCEPT(reason)
6033#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
6034#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
6036#define __EXCEPT_LOC()
6046#define z_except_reason(reason) do { \
6048 z_fatal_error(reason, NULL); \
6067#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
6077#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
6090void z_timer_expiration_handler(
struct _timeout *timeout);
6103__syscall
void k_str_out(
char *c,
size_t n);
6250#include <zephyr/syscalls/kernel.h>
static uint32_t arch_k_cycle_get_32(void)
Definition misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition misc.h:33
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition arch_interface.h:48
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition arch_interface.h:46
long atomic_t
Definition atomic_types.h:15
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically get and test a bit.
Definition atomic.h:127
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition atomic.h:191
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit and test it.
Definition atomic.h:170
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition kernel.h:1900
#define K_NO_WAIT
Generate null timeout delay.
Definition kernel.h:1330
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition kernel.h:1852
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition sys_clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition kernel.h:1881
static uint32_t k_uptime_seconds(void)
Get system uptime in seconds.
Definition kernel.h:1865
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition kernel.h:1915
static int64_t k_uptime_get(void)
Get system uptime.
Definition kernel.h:1828
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition kernel.h:5996
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition kernel.h:6015
struct _dnode sys_dnode_t
Doubly-linked list node structure.
Definition dlist.h:54
struct _dnode sys_dlist_t
Doubly-linked list structure.
Definition dlist.h:50
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
uint32_t k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
static uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
Test the events currently tracked in the event object.
Definition kernel.h:2448
uint32_t k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
uint32_t k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events.
struct _sflist sys_sflist_t
Flagged single-linked list structure.
Definition sflist.h:54
static bool sys_sflist_is_empty(sys_sflist_t *list)
Test if the given list is empty.
Definition sflist.h:336
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void * k_realloc(void *ptr, size_t size)
Expand the size of an existing allocation.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
Reallocate memory from a k_heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition kernel.h:1185
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void *mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition kernel.h:5321
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition kernel.h:5336
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition kernel.h:5356
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.
int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
size_t k_pipe_read_avail(struct k_pipe *pipe)
Query the number of bytes that may be read from pipe.
int k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
Initialize a pipe and allocate a buffer for it.
void k_pipe_flush(struct k_pipe *pipe)
Flush the pipe of write data.
void k_pipe_buffer_flush(struct k_pipe *pipe)
Flush the pipe's internal buffer.
int k_pipe_cleanup(struct k_pipe *pipe)
Release a pipe's allocated buffer.
int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
Read data from a pipe.
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
Initialize a pipe.
size_t k_pipe_write_avail(struct k_pipe *pipe)
Query the number of bytes that may be written to pipe.
int k_pipe_put(struct k_pipe *pipe, const void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, k_timeout_t timeout)
Write data to a pipe.
void k_poll_signal_reset(struct k_poll_signal *sig)
Reset a poll signal object's state to unsignaled.
k_poll_modes
Definition kernel.h:5750
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition kernel.h:5752
@ K_POLL_NUM_MODES
Definition kernel.h:5754
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
struct _slist sys_slist_t
Single-linked list structure.
Definition slist.h:49
struct _snode sys_snode_t
Single-linked list node structure.
Definition slist.h:39
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition tracing_macros.h:366
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition util_macro.h:140
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition util.h:284
#define EBUSY
Mount device busy.
Definition errno.h:54
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition kernel.h:471
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *thread)
Get time remaining before a thread wakes up, in system ticks.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition kernel.h:566
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition kernel.h:663
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_thread_foreach_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in running on specified cpu.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
void k_thread_start(k_tid_t thread)
Start an inactive thread.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
int k_thread_stack_free(k_thread_stack_t *stack)
Free a dynamically allocated thread stack.
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread)
Get time when a thread wakes up, in system ticks.
__attribute_const__ k_tid_t k_sched_current_thread_query(void)
Query thread ID of the current thread.
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over the threads in running on current cpu without locking.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition kernel.h:105
k_thread_stack_t * k_thread_stack_alloc(size_t size, int flags)
Dynamically allocate a thread stack.
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition kernel.h:1606
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition kernel.h:1590
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition kernel.h:1752
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
#define k_ticks_to_ms_floor32(t)
Convert ticks to milliseconds.
Definition time_units.h:1701
#define k_ticks_to_sec_floor32(t)
Convert ticks to seconds.
Definition time_units.h:1605
#define k_ticks_to_ms_floor64(t)
Convert ticks to milliseconds.
Definition time_units.h:1717
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition kernel.h:4161
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition kernel.h:4132
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition kernel.h:4149
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition kernel.h:4288
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition kernel.h:4265
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition kernel.h:3356
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition kernel.h:4143
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition kernel.h:4243
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition kernel.h:4184
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition kernel.h:4343
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition kernel.h:4138
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition kernel.h:4155
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition kernel.h:3933
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition kernel.h:3940
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition kernel.h:3947
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition kernel.h:3927
@ K_WORK_FLUSHING
Flag indicating a synced work item that is being flushed.
Definition kernel.h:3953
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
execution_context_types
Definition kernel.h:90
@ K_ISR
Definition kernel.h:91
@ K_COOP_THREAD
Definition kernel.h:92
@ K_PREEMPT_THREAD
Definition kernel.h:93
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
int k_thread_runtime_stats_cpu_get(int cpu, k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads on specified cpu.
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition kernel_structs.h:307
flags
Definition parser.h:96
state
Definition parser_state.h:29
__UINT32_TYPE__ uint32_t
Definition stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition stdint.h:104
__INT32_TYPE__ int32_t
Definition stdint.h:74
__UINT64_TYPE__ uint64_t
Definition stdint.h:91
__UINT8_TYPE__ uint8_t
Definition stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition stdint.h:105
__INT64_TYPE__ int64_t
Definition stdint.h:75
Structure to store initialization entry information.
Definition init.h:103
_wait_q_t wait_q
Definition kernel.h:3107
Event Structure.
Definition kernel.h:2301
struct k_spinlock lock
Definition kernel.h:2304
uint32_t events
Definition kernel.h:2303
_wait_q_t wait_q
Definition kernel.h:2302
futex structure
Definition kernel.h:2222
atomic_t val
Definition kernel.h:2223
struct k_spinlock lock
Definition kernel.h:5400
struct sys_heap heap
Definition kernel.h:5398
_wait_q_t wait_q
Definition kernel.h:5399
Mailbox Message Structure.
Definition kernel.h:4794
k_tid_t tx_target_thread
target thread id
Definition kernel.h:4804
void * tx_data
sender's message data buffer
Definition kernel.h:4800
k_tid_t rx_source_thread
source thread id
Definition kernel.h:4802
uint32_t info
application-defined information value
Definition kernel.h:4798
size_t size
size of message (in bytes)
Definition kernel.h:4796
Mailbox Structure.
Definition kernel.h:4816
_wait_q_t tx_msg_queue
Transmit messages queue.
Definition kernel.h:4818
struct k_spinlock lock
Definition kernel.h:4821
_wait_q_t rx_msg_queue
Receive message queue.
Definition kernel.h:4820
Memory Domain.
Definition mem_domain.h:80
Memory Partition.
Definition mem_domain.h:55
Message Queue Attributes.
Definition kernel.h:4562
uint32_t used_msgs
Used messages.
Definition kernel.h:4568
size_t msg_size
Message Size.
Definition kernel.h:4564
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4566
Message Queue Structure.
Definition kernel.h:4503
size_t msg_size
Message size.
Definition kernel.h:4509
char * read_ptr
Read pointer.
Definition kernel.h:4517
uint32_t used_msgs
Number of used messages.
Definition kernel.h:4521
char * buffer_end
End of message buffer.
Definition kernel.h:4515
struct k_spinlock lock
Lock.
Definition kernel.h:4507
char * write_ptr
Write pointer.
Definition kernel.h:4519
char * buffer_start
Start of message buffer.
Definition kernel.h:4513
uint8_t flags
Message queue.
Definition kernel.h:4526
_wait_q_t wait_q
Message queue wait queue.
Definition kernel.h:4505
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4511
Mutex Structure.
Definition kernel.h:2994
uint32_t lock_count
Current lock count.
Definition kernel.h:3001
_wait_q_t wait_q
Mutex wait queue.
Definition kernel.h:2996
int owner_orig_prio
Original thread priority.
Definition kernel.h:3004
struct k_thread * owner
Mutex owner.
Definition kernel.h:2998
Object core structure.
Definition obj_core.h:121
Pipe Structure.
Definition kernel.h:4947
struct k_pipe::@311 wait_q
uint8_t flags
Wait queue.
Definition kernel.h:4962
_wait_q_t readers
Reader wait queue.
Definition kernel.h:4956
size_t write_index
Where in buffer to write.
Definition kernel.h:4952
size_t bytes_used
Number of bytes used in buffer.
Definition kernel.h:4950
struct k_spinlock lock
Synchronization lock.
Definition kernel.h:4953
_wait_q_t writers
Writer wait queue.
Definition kernel.h:4957
size_t size
Buffer size.
Definition kernel.h:4949
unsigned char * buffer
Pipe buffer: may be NULL.
Definition kernel.h:4948
size_t read_index
Where in buffer to read from.
Definition kernel.h:4951
Poll Event.
Definition kernel.h:5792
struct k_poll_signal * signal
Definition kernel.h:5820
uint32_t tag
optional user-specified tag, opaque, untouched by the API
Definition kernel.h:5800
struct k_fifo * fifo
Definition kernel.h:5822
struct k_msgq * msgq
Definition kernel.h:5824
struct k_queue * queue
Definition kernel.h:5823
uint32_t unused
unused bits in 32-bit word
Definition kernel.h:5812
uint32_t type
bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values)
Definition kernel.h:5803
struct k_sem * sem
Definition kernel.h:5821
uint32_t state
bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values)
Definition kernel.h:5806
uint32_t mode
mode of operation, from enum k_poll_modes
Definition kernel.h:5809
struct z_poller * poller
PRIVATE - DO NOT TOUCH.
Definition kernel.h:5797
void * obj
Definition kernel.h:5819
sys_dlist_t poll_events
PRIVATE - DO NOT TOUCH.
Definition kernel.h:5770
int result
custom result value passed to k_poll_signal_raise() if needed
Definition kernel.h:5779
unsigned int signaled
1 if the event has been signaled, 0 otherwise.
Definition kernel.h:5776
struct k_spinlock lock
Definition kernel.h:1932
_wait_q_t wait_q
Definition kernel.h:1933
sys_sflist_t data_q
Definition kernel.h:1931
Kernel Spin Lock.
Definition spinlock.h:45
Thread Structure.
Definition thread.h:259
struct _thread_base base
Definition thread.h:261
struct k_heap * resource_pool
resource pool
Definition thread.h:349
struct __thread_entry entry
thread entry and parameters description
Definition thread.h:288
Kernel timeout type.
Definition sys_clock.h:65
A structure used to submit work after a delay.
Definition kernel.h:3985
struct _timeout timeout
Definition kernel.h:3990
struct k_work_q * queue
Definition kernel.h:3993
struct k_work work
Definition kernel.h:3987
A structure used to hold work until it can be processed.
Definition kernel.h:4109
sys_slist_t pending
Definition kernel.h:4118
_wait_q_t drainq
Definition kernel.h:4124
_wait_q_t notifyq
Definition kernel.h:4121
uint32_t flags
Definition kernel.h:4127
struct k_thread thread
Definition kernel.h:4111
A structure holding optional configuration items for a work queue.
Definition kernel.h:4081
const char * name
The name to be given to the work queue thread.
Definition kernel.h:4086
bool essential
Control whether the work queue thread should be marked as essential thread.
Definition kernel.h:4105
bool no_yield
Control whether the work queue thread should yield between items.
Definition kernel.h:4100
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition kernel.h:4068
struct z_work_canceller canceller
Definition kernel.h:4071
struct z_work_flusher flusher
Definition kernel.h:4070
A structure used to submit work.
Definition kernel.h:3957
k_work_handler_t handler
Definition kernel.h:3966
uint32_t flags
Definition kernel.h:3977
struct k_work_q * queue
Definition kernel.h:3969
sys_snode_t node
Definition kernel.h:3963
Definition mem_stats.h:24