Zephyr API Documentation 4.2.99
A Scalable Open Source RTOS
Loading...
Searching...
No Matches
sensor.h
Go to the documentation of this file.
1/*
2* Copyright (c) 2016 Intel Corporation
3*
4* SPDX-License-Identifier: Apache-2.0
5*/
6#ifndef ZEPHYR_INCLUDE_DRIVERS_SENSOR_H_
7#define ZEPHYR_INCLUDE_DRIVERS_SENSOR_H_
8
14
27
28#include <errno.h>
29#include <stdlib.h>
30
31#include <zephyr/device.h>
33#include <zephyr/dsp/types.h>
34#include <zephyr/rtio/rtio.h>
36#include <zephyr/types.h>
37
38#ifdef __cplusplus
39extern "C" {
40#endif
41
61
117
126
137
140
143
148
151
154
163
166
169
212
215
220
226
231};
232
306
316
390
398typedef void (*sensor_trigger_handler_t)(const struct device *dev,
399 const struct sensor_trigger *trigger);
400
407typedef int (*sensor_attr_set_t)(const struct device *dev,
408 enum sensor_channel chan,
409 enum sensor_attribute attr,
410 const struct sensor_value *val);
411
418typedef int (*sensor_attr_get_t)(const struct device *dev,
419 enum sensor_channel chan,
420 enum sensor_attribute attr,
421 struct sensor_value *val);
422
429typedef int (*sensor_trigger_set_t)(const struct device *dev,
430 const struct sensor_trigger *trig,
438typedef int (*sensor_sample_fetch_t)(const struct device *dev,
439 enum sensor_channel chan);
446typedef int (*sensor_channel_get_t)(const struct device *dev,
447 enum sensor_channel chan,
448 struct sensor_value *val);
449
462
464/* Ensure sensor_chan_spec is sensibly sized to pass by value */
465BUILD_ASSERT(sizeof(struct sensor_chan_spec) <= sizeof(uintptr_t),
466 "sensor_chan_spec size should be equal or less than the size of a machine word");
468
477static inline bool sensor_chan_spec_eq(struct sensor_chan_spec chan_spec0,
478 struct sensor_chan_spec chan_spec1)
479{
480 return chan_spec0.chan_type == chan_spec1.chan_type &&
481 chan_spec0.chan_idx == chan_spec1.chan_idx;
482}
483
500 int (*get_frame_count)(const uint8_t *buffer, struct sensor_chan_spec channel,
501 uint16_t *frame_count);
502
515 int (*get_size_info)(struct sensor_chan_spec channel, size_t *base_size,
516 size_t *frame_size);
517
542 int (*decode)(const uint8_t *buffer, struct sensor_chan_spec chan_spec, uint32_t *fit,
543 uint16_t max_count, void *data_out);
544
552 bool (*has_trigger)(const uint8_t *buffer, enum sensor_trigger_type trigger);
553};
554
585
589#define SENSOR_DECODE_CONTEXT_INIT(decoder_, buffer_, channel_type_, channel_index_) \
590 { \
591 .decoder = (decoder_), \
592 .buffer = (buffer_), \
593 .channel = {.chan_type = (channel_type_), .chan_idx = (channel_index_)}, \
594 .fit = 0, \
595 }
596
605static inline int sensor_decode(struct sensor_decode_context *ctx, void *out, uint16_t max_count)
606{
607 return ctx->decoder->decode(ctx->buffer, ctx->channel, &ctx->fit, max_count, out);
608}
609
611 size_t *frame_size);
612
619typedef int (*sensor_get_decoder_t)(const struct device *dev,
620 const struct sensor_decoder_api **api);
621
633
638
639#define SENSOR_STREAM_TRIGGER_PREP(_trigger, _opt) \
640 { \
641 .trigger = (_trigger), .opt = (_opt), \
642 }
643
644/*
645 * Internal data structure used to store information about the IODevice for async reading and
646 * streaming sensor data.
647 */
649 const struct device *sensor;
650 const bool is_streaming;
651 union {
654 };
655 size_t count;
656 const size_t max;
657};
658
674#define SENSOR_DT_READ_IODEV(name, dt_node, ...) \
675 static struct sensor_chan_spec _CONCAT(__channel_array_, name)[] = {__VA_ARGS__}; \
676 static struct sensor_read_config _CONCAT(__sensor_read_config_, name) = { \
677 .sensor = DEVICE_DT_GET(dt_node), \
678 .is_streaming = false, \
679 .channels = _CONCAT(__channel_array_, name), \
680 .count = ARRAY_SIZE(_CONCAT(__channel_array_, name)), \
681 .max = ARRAY_SIZE(_CONCAT(__channel_array_, name)), \
682 }; \
683 RTIO_IODEV_DEFINE(name, &__sensor_iodev_api, _CONCAT(&__sensor_read_config_, name))
684
704#define SENSOR_DT_STREAM_IODEV(name, dt_node, ...) \
705 static struct sensor_stream_trigger _CONCAT(__trigger_array_, name)[] = {__VA_ARGS__}; \
706 static struct sensor_read_config _CONCAT(__sensor_read_config_, name) = { \
707 .sensor = DEVICE_DT_GET(dt_node), \
708 .is_streaming = true, \
709 .triggers = _CONCAT(__trigger_array_, name), \
710 .count = ARRAY_SIZE(_CONCAT(__trigger_array_, name)), \
711 .max = ARRAY_SIZE(_CONCAT(__trigger_array_, name)), \
712 }; \
713 RTIO_IODEV_DEFINE(name, &__sensor_iodev_api, &_CONCAT(__sensor_read_config_, name))
714
715/* Used to submit an RTIO sqe to the sensor's iodev */
716typedef void (*sensor_submit_t)(const struct device *sensor, struct rtio_iodev_sqe *sqe);
717
718/* The default decoder API */
719extern const struct sensor_decoder_api __sensor_default_decoder;
720
721/* The default sensor iodev API */
722extern const struct rtio_iodev_api __sensor_iodev_api;
723
733
746__syscall int sensor_attr_set(const struct device *dev,
747 enum sensor_channel chan,
748 enum sensor_attribute attr,
749 const struct sensor_value *val);
750
751static inline int z_impl_sensor_attr_set(const struct device *dev,
752 enum sensor_channel chan,
753 enum sensor_attribute attr,
754 const struct sensor_value *val)
755{
756 const struct sensor_driver_api *api =
757 (const struct sensor_driver_api *)dev->api;
758
759 if (api->attr_set == NULL) {
760 return -ENOSYS;
761 }
762
763 return api->attr_set(dev, chan, attr, val);
764}
765
778__syscall int sensor_attr_get(const struct device *dev,
779 enum sensor_channel chan,
780 enum sensor_attribute attr,
781 struct sensor_value *val);
782
783static inline int z_impl_sensor_attr_get(const struct device *dev,
784 enum sensor_channel chan,
785 enum sensor_attribute attr,
786 struct sensor_value *val)
787{
788 const struct sensor_driver_api *api =
789 (const struct sensor_driver_api *)dev->api;
790
791 if (api->attr_get == NULL) {
792 return -ENOSYS;
793 }
794
795 return api->attr_get(dev, chan, attr, val);
796}
797
820static inline int sensor_trigger_set(const struct device *dev,
821 const struct sensor_trigger *trig,
823{
824 const struct sensor_driver_api *api =
825 (const struct sensor_driver_api *)dev->api;
826
827 if (api->trigger_set == NULL) {
828 return -ENOSYS;
829 }
830
831 return api->trigger_set(dev, trig, handler);
832}
833
852__syscall int sensor_sample_fetch(const struct device *dev);
853
854static inline int z_impl_sensor_sample_fetch(const struct device *dev)
855{
856 const struct sensor_driver_api *api =
857 (const struct sensor_driver_api *)dev->api;
858
859 return api->sample_fetch(dev, SENSOR_CHAN_ALL);
860}
861
883__syscall int sensor_sample_fetch_chan(const struct device *dev,
884 enum sensor_channel type);
885
886static inline int z_impl_sensor_sample_fetch_chan(const struct device *dev,
887 enum sensor_channel type)
888{
889 const struct sensor_driver_api *api =
890 (const struct sensor_driver_api *)dev->api;
891
892 return api->sample_fetch(dev, type);
893}
894
916__syscall int sensor_channel_get(const struct device *dev,
917 enum sensor_channel chan,
918 struct sensor_value *val);
919
920static inline int z_impl_sensor_channel_get(const struct device *dev,
921 enum sensor_channel chan,
922 struct sensor_value *val)
923{
924 const struct sensor_driver_api *api =
925 (const struct sensor_driver_api *)dev->api;
926
927 return api->channel_get(dev, chan, val);
928}
929
930#if defined(CONFIG_SENSOR_ASYNC_API) || defined(__DOXYGEN__)
931
932/*
933 * Generic data structure used for encoding the sample timestamp and number of channels sampled.
934 */
935struct __attribute__((__packed__)) sensor_data_generic_header {
938
939 /*
940 ** The number of channels present in the frame.
941 * This will be the true number of elements in channel_info and in the q31 values that
942 * follow the header.
943 */
945
948
949 /* This padding is needed to make sure that the 'channels' field is aligned */
950 int8_t _padding[sizeof(struct sensor_chan_spec) - 1];
951
954};
955
964#define SENSOR_CHANNEL_3_AXIS(chan) \
965 ((chan) == SENSOR_CHAN_ACCEL_XYZ || (chan) == SENSOR_CHAN_GYRO_XYZ || \
966 (chan) == SENSOR_CHAN_MAGN_XYZ || (chan) == SENSOR_CHAN_POS_DXYZ)
967
976#define SENSOR_CHANNEL_IS_ACCEL(chan) \
977 ((chan) == SENSOR_CHAN_ACCEL_XYZ || (chan) == SENSOR_CHAN_ACCEL_X || \
978 (chan) == SENSOR_CHAN_ACCEL_Y || (chan) == SENSOR_CHAN_ACCEL_Z)
979
988#define SENSOR_CHANNEL_IS_GYRO(chan) \
989 ((chan) == SENSOR_CHAN_GYRO_XYZ || (chan) == SENSOR_CHAN_GYRO_X || \
990 (chan) == SENSOR_CHAN_GYRO_Y || (chan) == SENSOR_CHAN_GYRO_Z)
991
1000__syscall int sensor_get_decoder(const struct device *dev,
1001 const struct sensor_decoder_api **decoder);
1002
1003static inline int z_impl_sensor_get_decoder(const struct device *dev,
1004 const struct sensor_decoder_api **decoder)
1005{
1006 const struct sensor_driver_api *api = (const struct sensor_driver_api *)dev->api;
1007
1008 __ASSERT_NO_MSG(api != NULL);
1009
1010 if (api->get_decoder == NULL) {
1011 *decoder = &__sensor_default_decoder;
1012 return 0;
1013 }
1014
1015 return api->get_decoder(dev, decoder);
1016}
1017
1036__syscall int sensor_reconfigure_read_iodev(const struct rtio_iodev *iodev,
1037 const struct device *sensor,
1038 const struct sensor_chan_spec *channels,
1039 size_t num_channels);
1040
1041static inline int z_impl_sensor_reconfigure_read_iodev(const struct rtio_iodev *iodev,
1042 const struct device *sensor,
1043 const struct sensor_chan_spec *channels,
1044 size_t num_channels)
1045{
1046 struct sensor_read_config *cfg = (struct sensor_read_config *)iodev->data;
1047
1048 if (cfg->max < num_channels || cfg->is_streaming) {
1049 return -ENOMEM;
1050 }
1051
1052 cfg->sensor = sensor;
1053 memcpy(cfg->channels, channels, num_channels * sizeof(struct sensor_chan_spec));
1054 cfg->count = num_channels;
1055 return 0;
1056}
1057
1058static inline int sensor_stream(const struct rtio_iodev *iodev, struct rtio *ctx, void *userdata,
1059 struct rtio_sqe **handle)
1060{
1061 if (IS_ENABLED(CONFIG_USERSPACE)) {
1062 struct rtio_sqe sqe;
1063
1065 rtio_sqe_copy_in_get_handles(ctx, &sqe, handle, 1);
1066 } else {
1067 struct rtio_sqe *sqe = rtio_sqe_acquire(ctx);
1068
1069 if (sqe == NULL) {
1070 return -ENOMEM;
1071 }
1072 if (handle != NULL) {
1073 *handle = sqe;
1074 }
1076 }
1077 rtio_submit(ctx, 0);
1078 return 0;
1079}
1080
1095static inline int sensor_read(const struct rtio_iodev *iodev, struct rtio *ctx, uint8_t *buf,
1096 size_t buf_len)
1097{
1098 if (IS_ENABLED(CONFIG_USERSPACE)) {
1099 struct rtio_sqe sqe;
1100
1102 rtio_sqe_copy_in(ctx, &sqe, 1);
1103 } else {
1104 struct rtio_sqe *sqe = rtio_sqe_acquire(ctx);
1105
1106 if (sqe == NULL) {
1107 return -ENOMEM;
1108 }
1110 }
1111 rtio_submit(ctx, 0);
1112
1113 struct rtio_cqe *cqe = rtio_cqe_consume_block(ctx);
1114 int res = cqe->result;
1115
1116 __ASSERT(cqe->userdata == buf,
1117 "consumed non-matching completion for sensor read into buffer %p\n", buf);
1118
1119 rtio_cqe_release(ctx, cqe);
1120
1121 return res;
1122}
1123
1137static inline int sensor_read_async_mempool(const struct rtio_iodev *iodev, struct rtio *ctx,
1138 void *userdata)
1139{
1140 if (IS_ENABLED(CONFIG_USERSPACE)) {
1141 struct rtio_sqe sqe;
1142
1144 rtio_sqe_copy_in(ctx, &sqe, 1);
1145 } else {
1146 struct rtio_sqe *sqe = rtio_sqe_acquire(ctx);
1147
1148 if (sqe == NULL) {
1149 return -ENOMEM;
1150 }
1152 }
1153 rtio_submit(ctx, 0);
1154 return 0;
1155}
1156
1169 void *userdata);
1170
1183
1184#endif /* defined(CONFIG_SENSOR_ASYNC_API) || defined(__DOXYGEN__) */
1185
1189#define SENSOR_G 9806650LL
1190
1194#define SENSOR_PI 3141592LL
1195
1204static inline int32_t sensor_ms2_to_g(const struct sensor_value *ms2)
1205{
1206 int64_t micro_ms2 = ms2->val1 * 1000000LL + ms2->val2;
1207
1208 if (micro_ms2 > 0) {
1209 return (micro_ms2 + SENSOR_G / 2) / SENSOR_G;
1210 } else {
1211 return (micro_ms2 - SENSOR_G / 2) / SENSOR_G;
1212 }
1213}
1214
1221static inline void sensor_g_to_ms2(int32_t g, struct sensor_value *ms2)
1222{
1223 ms2->val1 = ((int64_t)g * SENSOR_G) / 1000000LL;
1224 ms2->val2 = ((int64_t)g * SENSOR_G) % 1000000LL;
1225}
1226
1235static inline int32_t sensor_ms2_to_mg(const struct sensor_value *ms2)
1236{
1237 int64_t nano_ms2 = (ms2->val1 * 1000000LL + ms2->val2) * 1000LL;
1238
1239 if (nano_ms2 > 0) {
1240 return (nano_ms2 + SENSOR_G / 2) / SENSOR_G;
1241 } else {
1242 return (nano_ms2 - SENSOR_G / 2) / SENSOR_G;
1243 }
1244}
1245
1254static inline int32_t sensor_ms2_to_ug(const struct sensor_value *ms2)
1255{
1256 int64_t micro_ms2 = (ms2->val1 * INT64_C(1000000)) + ms2->val2;
1257
1258 return (micro_ms2 * 1000000LL) / SENSOR_G;
1259}
1260
1267static inline void sensor_ug_to_ms2(int32_t ug, struct sensor_value *ms2)
1268{
1269 ms2->val1 = ((int64_t)ug * SENSOR_G / 1000000LL) / 1000000LL;
1270 ms2->val2 = ((int64_t)ug * SENSOR_G / 1000000LL) % 1000000LL;
1271}
1272
1280static inline int32_t sensor_rad_to_degrees(const struct sensor_value *rad)
1281{
1282 int64_t micro_rad_s = rad->val1 * 1000000LL + rad->val2;
1283
1284 if (micro_rad_s > 0) {
1285 return (micro_rad_s * 180LL + SENSOR_PI / 2) / SENSOR_PI;
1286 } else {
1287 return (micro_rad_s * 180LL - SENSOR_PI / 2) / SENSOR_PI;
1288 }
1289}
1290
1297static inline void sensor_degrees_to_rad(int32_t d, struct sensor_value *rad)
1298{
1299 rad->val1 = ((int64_t)d * SENSOR_PI / 180LL) / 1000000LL;
1300 rad->val2 = ((int64_t)d * SENSOR_PI / 180LL) % 1000000LL;
1301}
1302
1314static inline int32_t sensor_rad_to_10udegrees(const struct sensor_value *rad)
1315{
1316 int64_t micro_rad_s = rad->val1 * 1000000LL + rad->val2;
1317
1318 return (micro_rad_s * 180LL * 100000LL) / SENSOR_PI;
1319}
1320
1327static inline void sensor_10udegrees_to_rad(int32_t d, struct sensor_value *rad)
1328{
1329 rad->val1 = ((int64_t)d * SENSOR_PI / 180LL / 100000LL) / 1000000LL;
1330 rad->val2 = ((int64_t)d * SENSOR_PI / 180LL / 100000LL) % 1000000LL;
1331}
1332
1339static inline double sensor_value_to_double(const struct sensor_value *val)
1340{
1341 return (double)val->val1 + (double)val->val2 / 1000000;
1342}
1343
1350static inline float sensor_value_to_float(const struct sensor_value *val)
1351{
1352 return (float)val->val1 + (float)val->val2 / 1000000;
1353}
1354
1362static inline int sensor_value_from_double(struct sensor_value *val, double inp)
1363{
1364 if (inp < (double)INT32_MIN || inp > (double)INT32_MAX) {
1365 return -ERANGE;
1366 }
1367
1368 int32_t val1 = (int32_t)inp;
1369 int32_t val2 = (int32_t)((inp - (double)val1) * 1000000.0);
1370
1371 val->val1 = val1;
1372 val->val2 = val2;
1373
1374 return 0;
1375}
1376
1384static inline int sensor_value_from_float(struct sensor_value *val, float inp)
1385{
1386 if (inp < (float)INT32_MIN || inp >= (float)INT32_MAX) {
1387 return -ERANGE;
1388 }
1389
1390 int32_t val1 = (int32_t)inp;
1391 int32_t val2 = (int32_t)((inp - (float)val1) * 1000000.0f);
1392
1393 val->val1 = val1;
1394 val->val2 = val2;
1395
1396 return 0;
1397}
1398
1399#ifdef CONFIG_SENSOR_INFO
1400
1401struct sensor_info {
1402 const struct device *dev;
1403 const char *vendor;
1404 const char *model;
1405 const char *friendly_name;
1406};
1407
1408#define SENSOR_INFO_INITIALIZER(_dev, _vendor, _model, _friendly_name) \
1409 { \
1410 .dev = _dev, \
1411 .vendor = _vendor, \
1412 .model = _model, \
1413 .friendly_name = _friendly_name, \
1414 }
1415
1416#define SENSOR_INFO_DEFINE(name, ...) \
1417 static const STRUCT_SECTION_ITERABLE(sensor_info, name) = \
1418 SENSOR_INFO_INITIALIZER(__VA_ARGS__)
1419
1420#define SENSOR_INFO_DT_NAME(node_id) \
1421 _CONCAT(__sensor_info, DEVICE_DT_NAME_GET(node_id))
1422
1423#define SENSOR_INFO_DT_DEFINE(node_id) \
1424 SENSOR_INFO_DEFINE(SENSOR_INFO_DT_NAME(node_id), \
1425 DEVICE_DT_GET(node_id), \
1426 DT_NODE_VENDOR_OR(node_id, NULL), \
1427 DT_NODE_MODEL_OR(node_id, NULL), \
1428 DT_PROP_OR(node_id, friendly_name, NULL)) \
1429
1430#else
1431
1432#define SENSOR_INFO_DEFINE(name, ...)
1433#define SENSOR_INFO_DT_DEFINE(node_id)
1434
1435#endif /* CONFIG_SENSOR_INFO */
1436
1464#define SENSOR_DEVICE_DT_DEFINE(node_id, init_fn, pm_device, \
1465 data_ptr, cfg_ptr, level, prio, \
1466 api_ptr, ...) \
1467 DEVICE_DT_DEFINE(node_id, init_fn, pm_device, \
1468 data_ptr, cfg_ptr, level, prio, \
1469 api_ptr, __VA_ARGS__); \
1470 \
1471 SENSOR_INFO_DT_DEFINE(node_id);
1472
1482#define SENSOR_DEVICE_DT_INST_DEFINE(inst, ...) \
1483 SENSOR_DEVICE_DT_DEFINE(DT_DRV_INST(inst), __VA_ARGS__)
1484
1491static inline int64_t sensor_value_to_deci(const struct sensor_value *val)
1492{
1493 return ((int64_t)val->val1 * 10) + val->val2 / 100000;
1494}
1495
1502static inline int64_t sensor_value_to_centi(const struct sensor_value *val)
1503{
1504 return ((int64_t)val->val1 * 100) + val->val2 / 10000;
1505}
1506
1513static inline int64_t sensor_value_to_milli(const struct sensor_value *val)
1514{
1515 return ((int64_t)val->val1 * 1000) + val->val2 / 1000;
1516}
1517
1524static inline int64_t sensor_value_to_micro(const struct sensor_value *val)
1525{
1526 return ((int64_t)val->val1 * 1000000) + val->val2;
1527}
1528
1536static inline int sensor_value_from_milli(struct sensor_value *val, int64_t milli)
1537{
1538 if (milli < ((int64_t)INT32_MIN - 1) * 1000LL ||
1539 milli > ((int64_t)INT32_MAX + 1) * 1000LL) {
1540 return -ERANGE;
1541 }
1542
1543 val->val1 = (int32_t)(milli / 1000);
1544 val->val2 = (int32_t)(milli % 1000) * 1000;
1545
1546 return 0;
1547}
1548
1556static inline int sensor_value_from_micro(struct sensor_value *val, int64_t micro)
1557{
1558 if (micro < ((int64_t)INT32_MIN - 1) * 1000000LL ||
1559 micro > ((int64_t)INT32_MAX + 1) * 1000000LL) {
1560 return -ERANGE;
1561 }
1562
1563 val->val1 = (int32_t)(micro / 1000000LL);
1564 val->val2 = (int32_t)(micro % 1000000LL);
1565
1566 return 0;
1567}
1568
1572
1578#define SENSOR_DECODER_NAME() UTIL_CAT(DT_DRV_COMPAT, __decoder_api)
1579
1587#define SENSOR_DECODER_DT_GET(node_id) \
1588 &UTIL_CAT(DT_STRING_TOKEN_BY_IDX(node_id, compatible, 0), __decoder_api)
1589
1605#define SENSOR_DECODER_API_DT_DEFINE() \
1606 COND_CODE_1(DT_HAS_COMPAT_STATUS_OKAY(DT_DRV_COMPAT), (), (static)) \
1607 const STRUCT_SECTION_ITERABLE(sensor_decoder_api, SENSOR_DECODER_NAME())
1608
1609#define Z_MAYBE_SENSOR_DECODER_DECLARE_INTERNAL_IDX(node_id, prop, idx) \
1610 extern const struct sensor_decoder_api UTIL_CAT( \
1611 DT_STRING_TOKEN_BY_IDX(node_id, prop, idx), __decoder_api);
1612
1613#define Z_MAYBE_SENSOR_DECODER_DECLARE_INTERNAL(node_id) \
1614 COND_CODE_1(DT_NODE_HAS_PROP(node_id, compatible), \
1615 (DT_FOREACH_PROP_ELEM(node_id, compatible, \
1616 Z_MAYBE_SENSOR_DECODER_DECLARE_INTERNAL_IDX)), \
1617 ())
1618
1619DT_FOREACH_STATUS_OKAY_NODE(Z_MAYBE_SENSOR_DECODER_DECLARE_INTERNAL)
1620
1621#ifdef __cplusplus
1622}
1623#endif
1624
1625#include <zephyr/syscalls/sensor.h>
1626
1627#endif /* ZEPHYR_INCLUDE_DRIVERS_SENSOR_H_ */
irp nz macro MOVR cc d
Definition asm-macro-32-bit-gnu.h:11
System error numbers.
#define DT_FOREACH_STATUS_OKAY_NODE(fn)
Invokes fn for every status okay node in the tree.
Definition devicetree.h:3000
#define RTIO_PRIO_NORM
Normal priority.
Definition rtio.h:71
static void rtio_sqe_prep_read_with_pool(struct rtio_sqe *sqe, const struct rtio_iodev *iodev, int8_t prio, void *userdata)
Prepare a read op submission with context's mempool.
Definition rtio.h:624
static int rtio_sqe_copy_in(struct rtio *r, const struct rtio_sqe *sqes, size_t sqe_count)
Copy an array of SQEs into the queue.
Definition rtio.h:1660
int rtio_sqe_copy_in_get_handles(struct rtio *r, const struct rtio_sqe *sqes, struct rtio_sqe **handle, size_t sqe_count)
Copy an array of SQEs into the queue and get resulting handles back.
static void rtio_sqe_prep_read(struct rtio_sqe *sqe, const struct rtio_iodev *iodev, int8_t prio, uint8_t *buf, uint32_t len, void *userdata)
Prepare a read op submission.
Definition rtio.h:603
static struct rtio_sqe * rtio_sqe_acquire(struct rtio *r)
Acquire a single submission queue event if available.
Definition rtio.h:1102
static void rtio_sqe_prep_read_multishot(struct rtio_sqe *sqe, const struct rtio_iodev *iodev, int8_t prio, void *userdata)
Definition rtio.h:632
static void rtio_cqe_release(struct rtio *r, struct rtio_cqe *cqe)
Release consumed completion queue event.
Definition rtio.h:1221
static struct rtio_cqe * rtio_cqe_consume_block(struct rtio *r)
Wait for and consume a single completion queue event.
Definition rtio.h:1197
int rtio_submit(struct rtio *r, uint32_t wait_count)
Submit I/O requests to the underlying executor.
#define SENSOR_G
The value of gravitational constant in micro m/s^2.
Definition sensor.h:1189
int(* sensor_attr_get_t)(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, struct sensor_value *val)
Callback API upon getting a sensor's attributes.
Definition sensor.h:418
static int sensor_decode(struct sensor_decode_context *ctx, void *out, uint16_t max_count)
Decode N frames using a sensor_decode_context.
Definition sensor.h:605
static int sensor_stream(const struct rtio_iodev *iodev, struct rtio *ctx, void *userdata, struct rtio_sqe **handle)
Definition sensor.h:1058
static int32_t sensor_rad_to_degrees(const struct sensor_value *rad)
Helper function for converting radians to degrees.
Definition sensor.h:1280
sensor_trigger_type
Sensor trigger types.
Definition sensor.h:236
sensor_attribute
Sensor attribute types.
Definition sensor.h:320
int sensor_get_decoder(const struct device *dev, const struct sensor_decoder_api **decoder)
Get the sensor's decoder API.
int(* sensor_get_decoder_t)(const struct device *dev, const struct sensor_decoder_api **api)
Get the decoder associate with the given device.
Definition sensor.h:619
static void sensor_ug_to_ms2(int32_t ug, struct sensor_value *ms2)
Helper function to convert acceleration from micro Gs to m/s^2.
Definition sensor.h:1267
static double sensor_value_to_double(const struct sensor_value *val)
Helper function for converting struct sensor_value to double.
Definition sensor.h:1339
static float sensor_value_to_float(const struct sensor_value *val)
Helper function for converting struct sensor_value to float.
Definition sensor.h:1350
int sensor_natively_supported_channel_size_info(struct sensor_chan_spec channel, size_t *base_size, size_t *frame_size)
int(* sensor_attr_set_t)(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, const struct sensor_value *val)
Callback API upon setting a sensor's attributes.
Definition sensor.h:407
static void sensor_degrees_to_rad(int32_t d, struct sensor_value *rad)
Helper function for converting degrees to radians.
Definition sensor.h:1297
static int32_t sensor_ms2_to_ug(const struct sensor_value *ms2)
Helper function to convert acceleration from m/s^2 to micro Gs.
Definition sensor.h:1254
int(* sensor_channel_get_t)(const struct device *dev, enum sensor_channel chan, struct sensor_value *val)
Callback API for getting a reading from a sensor.
Definition sensor.h:446
static int sensor_value_from_float(struct sensor_value *val, float inp)
Helper function for converting float to struct sensor_value.
Definition sensor.h:1384
static void sensor_g_to_ms2(int32_t g, struct sensor_value *ms2)
Helper function to convert acceleration from Gs to m/s^2.
Definition sensor.h:1221
static int64_t sensor_value_to_milli(const struct sensor_value *val)
Helper function for converting struct sensor_value to integer milli units.
Definition sensor.h:1513
#define SENSOR_PI
The value of constant PI in micros.
Definition sensor.h:1194
int sensor_reconfigure_read_iodev(const struct rtio_iodev *iodev, const struct device *sensor, const struct sensor_chan_spec *channels, size_t num_channels)
Reconfigure a reading iodev.
static int sensor_trigger_set(const struct device *dev, const struct sensor_trigger *trig, sensor_trigger_handler_t handler)
Activate a sensor's trigger and set the trigger handler.
Definition sensor.h:820
sensor_stream_data_opt
Options for what to do with the associated data when a trigger is consumed.
Definition sensor.h:625
static int sensor_value_from_milli(struct sensor_value *val, int64_t milli)
Helper function for converting integer milli units to struct sensor_value.
Definition sensor.h:1536
void(* sensor_trigger_handler_t)(const struct device *dev, const struct sensor_trigger *trigger)
Callback API upon firing of a trigger.
Definition sensor.h:398
static int64_t sensor_value_to_micro(const struct sensor_value *val)
Helper function for converting struct sensor_value to integer micro units.
Definition sensor.h:1524
int sensor_channel_get(const struct device *dev, enum sensor_channel chan, struct sensor_value *val)
Get a reading from a sensor device.
static int32_t sensor_ms2_to_mg(const struct sensor_value *ms2)
Helper function to convert acceleration from m/s^2 to milli Gs.
Definition sensor.h:1235
int sensor_sample_fetch(const struct device *dev)
Fetch a sample from the sensor and store it in an internal driver buffer.
void(* sensor_processing_callback_t)(int result, uint8_t *buf, uint32_t buf_len, void *userdata)
Callback function used with the helper processing function.
Definition sensor.h:1168
sensor_channel
Sensor channels.
Definition sensor.h:65
static void sensor_10udegrees_to_rad(int32_t d, struct sensor_value *rad)
Helper function for converting 10 micro degrees to radians.
Definition sensor.h:1327
static int32_t sensor_ms2_to_g(const struct sensor_value *ms2)
Helper function to convert acceleration from m/s^2 to Gs.
Definition sensor.h:1204
void sensor_processing_with_callback(struct rtio *ctx, sensor_processing_callback_t cb)
Helper function for common processing of sensor data.
static int64_t sensor_value_to_deci(const struct sensor_value *val)
Helper function for converting struct sensor_value to integer deci units.
Definition sensor.h:1491
static int sensor_value_from_micro(struct sensor_value *val, int64_t micro)
Helper function for converting integer micro units to struct sensor_value.
Definition sensor.h:1556
int sensor_sample_fetch_chan(const struct device *dev, enum sensor_channel type)
Fetch a sample from the sensor and store it in an internal driver buffer.
int(* sensor_sample_fetch_t)(const struct device *dev, enum sensor_channel chan)
Callback API for fetching data from a sensor.
Definition sensor.h:438
static int sensor_read(const struct rtio_iodev *iodev, struct rtio *ctx, uint8_t *buf, size_t buf_len)
Blocking one shot read of samples from a sensor into a buffer.
Definition sensor.h:1095
void(* sensor_submit_t)(const struct device *sensor, struct rtio_iodev_sqe *sqe)
Definition sensor.h:716
int(* sensor_trigger_set_t)(const struct device *dev, const struct sensor_trigger *trig, sensor_trigger_handler_t handler)
Callback API for setting a sensor's trigger and handler.
Definition sensor.h:429
static int32_t sensor_rad_to_10udegrees(const struct sensor_value *rad)
Helper function for converting radians to 10 micro degrees.
Definition sensor.h:1314
static int64_t sensor_value_to_centi(const struct sensor_value *val)
Helper function for converting struct sensor_value to integer centi units.
Definition sensor.h:1502
static bool sensor_chan_spec_eq(struct sensor_chan_spec chan_spec0, struct sensor_chan_spec chan_spec1)
Check if channel specs are equivalent.
Definition sensor.h:477
int sensor_attr_get(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, struct sensor_value *val)
Get an attribute for a sensor.
static int sensor_value_from_double(struct sensor_value *val, double inp)
Helper function for converting double to struct sensor_value.
Definition sensor.h:1362
static int sensor_read_async_mempool(const struct rtio_iodev *iodev, struct rtio *ctx, void *userdata)
One shot non-blocking read with pool allocated buffer.
Definition sensor.h:1137
int sensor_attr_set(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, const struct sensor_value *val)
Set an attribute for a sensor.
@ SENSOR_TRIG_OVERFLOW
Trigger fires when data overflows.
Definition sensor.h:288
@ SENSOR_TRIG_DELTA
Trigger fires when the selected channel varies significantly.
Definition sensor.h:252
@ SENSOR_TRIG_NEAR_FAR
Trigger fires when a near/far event is detected.
Definition sensor.h:254
@ SENSOR_TRIG_FREEFALL
Trigger fires when a free fall is detected.
Definition sensor.h:270
@ SENSOR_TRIG_PRIV_START
This and higher values are sensor specific.
Definition sensor.h:299
@ SENSOR_TRIG_FIFO_FULL
Trigger fires when the FIFO becomes full.
Definition sensor.h:282
@ SENSOR_TRIG_MOTION
Trigger fires when motion is detected.
Definition sensor.h:273
@ SENSOR_TRIG_STATIONARY
Trigger fires when no motion has been detected for a while.
Definition sensor.h:276
@ SENSOR_TRIG_COMMON_COUNT
Number of all common sensor triggers.
Definition sensor.h:293
@ SENSOR_TRIG_THRESHOLD
Trigger fires when channel reading transitions configured thresholds.
Definition sensor.h:261
@ SENSOR_TRIG_MAX
Maximum value describing a sensor trigger type.
Definition sensor.h:304
@ SENSOR_TRIG_DOUBLE_TAP
Trigger fires when a double tap is detected.
Definition sensor.h:267
@ SENSOR_TRIG_TILT
Trigger fires when a tilt is detected.
Definition sensor.h:285
@ SENSOR_TRIG_TIMER
Timer-based trigger, useful when the sensor does not have an interrupt line.
Definition sensor.h:241
@ SENSOR_TRIG_FIFO_WATERMARK
Trigger fires when the FIFO watermark has been reached.
Definition sensor.h:279
@ SENSOR_TRIG_TAP
Trigger fires when a single tap is detected.
Definition sensor.h:264
@ SENSOR_TRIG_DATA_READY
Trigger fires whenever new data is ready.
Definition sensor.h:243
@ SENSOR_ATTR_HYSTERESIS
Definition sensor.h:338
@ SENSOR_ATTR_FEATURE_MASK
Enable/disable sensor features.
Definition sensor.h:358
@ SENSOR_ATTR_CALIB_TARGET
Calibration target.
Definition sensor.h:352
@ SENSOR_ATTR_OFFSET
The sensor value returned will be altered by the amount indicated by offset: final_value = sensor_val...
Definition sensor.h:347
@ SENSOR_ATTR_BATCH_DURATION
Hardware batch duration in ticks.
Definition sensor.h:369
@ SENSOR_ATTR_OVERSAMPLING
Oversampling factor.
Definition sensor.h:340
@ SENSOR_ATTR_FF_DUR
Free-fall duration represented in milliseconds.
Definition sensor.h:366
@ SENSOR_ATTR_UPPER_THRESH
Upper threshold for trigger.
Definition sensor.h:329
@ SENSOR_ATTR_CONFIGURATION
Configure the operating modes of a sensor.
Definition sensor.h:354
@ SENSOR_ATTR_RESOLUTION
Definition sensor.h:373
@ SENSOR_ATTR_CALIBRATION
Set a calibration value needed by a sensor.
Definition sensor.h:356
@ SENSOR_ATTR_COMMON_COUNT
Number of all common sensor attributes.
Definition sensor.h:377
@ SENSOR_ATTR_ALERT
Alert threshold or alert enable/disable.
Definition sensor.h:360
@ SENSOR_ATTR_SLOPE_TH
Threshold for any-motion (slope) trigger.
Definition sensor.h:331
@ SENSOR_ATTR_GAIN
Definition sensor.h:371
@ SENSOR_ATTR_SAMPLING_FREQUENCY
Sensor sampling frequency, i.e.
Definition sensor.h:325
@ SENSOR_ATTR_FULL_SCALE
Sensor range, in SI units.
Definition sensor.h:342
@ SENSOR_ATTR_LOWER_THRESH
Lower threshold for trigger.
Definition sensor.h:327
@ SENSOR_ATTR_SLOPE_DUR
Duration for which the slope values needs to be outside the threshold for the trigger to fire.
Definition sensor.h:336
@ SENSOR_ATTR_MAX
Maximum value describing a sensor attribute type.
Definition sensor.h:388
@ SENSOR_ATTR_PRIV_START
This and higher values are sensor specific.
Definition sensor.h:383
@ SENSOR_STREAM_DATA_INCLUDE
Include whatever data is associated with the trigger.
Definition sensor.h:627
@ SENSOR_STREAM_DATA_NOP
Do nothing with the associated trigger data, it may be consumed later.
Definition sensor.h:629
@ SENSOR_STREAM_DATA_DROP
Flush/clear whatever data is associated with the trigger.
Definition sensor.h:631
@ SENSOR_CHAN_GAUGE_STATE_OF_HEALTH
State of health measurement in %.
Definition sensor.h:193
@ SENSOR_CHAN_PM_1_0
1.0 micro-meters Particulate Matter, in ug/m^3
Definition sensor.h:119
@ SENSOR_CHAN_DIE_TEMP
Device die temperature in degrees Celsius.
Definition sensor.h:91
@ SENSOR_CHAN_PRESS
Pressure in kilopascal.
Definition sensor.h:95
@ SENSOR_CHAN_GAUGE_TIME_TO_FULL
Time to full in minutes.
Definition sensor.h:197
@ SENSOR_CHAN_ACCEL_XYZ
Acceleration on the X, Y and Z axes.
Definition sensor.h:73
@ SENSOR_CHAN_MAGN_X
Magnetic field on the X axis, in Gauss.
Definition sensor.h:83
@ SENSOR_CHAN_O2
O2 level, in parts per million (ppm)
Definition sensor.h:130
@ SENSOR_CHAN_CURRENT
Current, in amps.
Definition sensor.h:145
@ SENSOR_CHAN_GYRO_XYZ
Angular velocity around the X, Y and Z axes.
Definition sensor.h:81
@ SENSOR_CHAN_VSHUNT
Current Shunt Voltage in milli-volts.
Definition sensor.h:142
@ SENSOR_CHAN_GREEN
Illuminance in green spectrum, in lux.
Definition sensor.h:112
@ SENSOR_CHAN_GRAVITY_VECTOR
Gravity Vector (X/Y/Z components in m/s^2)
Definition sensor.h:209
@ SENSOR_CHAN_MAGN_Z
Magnetic field on the Z axis, in Gauss.
Definition sensor.h:87
@ SENSOR_CHAN_MAGN_Y
Magnetic field on the Y axis, in Gauss.
Definition sensor.h:85
@ SENSOR_CHAN_GAUGE_DESIRED_VOLTAGE
Desired voltage of cell in V (nominal voltage)
Definition sensor.h:203
@ SENSOR_CHAN_POWER
Power in watts.
Definition sensor.h:147
@ SENSOR_CHAN_PM_2_5
2.5 micro-meters Particulate Matter, in ug/m^3
Definition sensor.h:121
@ SENSOR_CHAN_RESISTANCE
Resistance , in Ohm.
Definition sensor.h:150
@ SENSOR_CHAN_GAME_ROTATION_VECTOR
Game Rotation Vector (unit quaternion components X/Y/Z/W)
Definition sensor.h:207
@ SENSOR_CHAN_AMBIENT_LIGHT
Ambient illuminance in visible spectrum, in lux.
Definition sensor.h:104
@ SENSOR_CHAN_GAUGE_AVG_CURRENT
Average current, in amps (negative=discharging)
Definition sensor.h:173
@ SENSOR_CHAN_GYRO_Y
Angular velocity around the Y axis, in radians/s.
Definition sensor.h:77
@ SENSOR_CHAN_GAUGE_DESIRED_CHARGING_CURRENT
Desired charging current in mA.
Definition sensor.h:205
@ SENSOR_CHAN_FREQUENCY
Frequency, in Hz.
Definition sensor.h:168
@ SENSOR_CHAN_GAUGE_FULL_CHARGE_CAPACITY
Full Charge Capacity in mAh.
Definition sensor.h:183
@ SENSOR_CHAN_ROTATION
Angular rotation, in degrees.
Definition sensor.h:153
@ SENSOR_CHAN_AMBIENT_TEMP
Ambient temperature in degrees Celsius.
Definition sensor.h:93
@ SENSOR_CHAN_MAGN_XYZ
Magnetic field on the X, Y and Z axes.
Definition sensor.h:89
@ SENSOR_CHAN_GAUGE_STDBY_CURRENT
Standby current, in amps (negative=discharging)
Definition sensor.h:175
@ SENSOR_CHAN_GAUGE_MAX_LOAD_CURRENT
Max load current, in amps (negative=discharging)
Definition sensor.h:177
@ SENSOR_CHAN_ACCEL_Y
Acceleration on the Y axis, in m/s^2.
Definition sensor.h:69
@ SENSOR_CHAN_RPM
Revolutions per minute, in RPM.
Definition sensor.h:165
@ SENSOR_CHAN_GAUGE_FULL_AVAIL_CAPACITY
Full Available Capacity in mAh.
Definition sensor.h:189
@ SENSOR_CHAN_VOLTAGE
Voltage, in volts.
Definition sensor.h:139
@ SENSOR_CHAN_FLOW_RATE
Flow rate in litres per minute.
Definition sensor.h:136
@ SENSOR_CHAN_BLUE
Illuminance in blue spectrum, in lux.
Definition sensor.h:114
@ SENSOR_CHAN_LIGHT
Illuminance in visible spectrum, in lux.
Definition sensor.h:106
@ SENSOR_CHAN_GAUGE_DESIGN_VOLTAGE
Design voltage of cell in V (max voltage)
Definition sensor.h:201
@ SENSOR_CHAN_ACCEL_Z
Acceleration on the Z axis, in m/s^2.
Definition sensor.h:71
@ SENSOR_CHAN_CO2
CO2 level, in parts per million (ppm)
Definition sensor.h:128
@ SENSOR_CHAN_GAUGE_STATE_OF_CHARGE
State of charge measurement in %.
Definition sensor.h:181
@ SENSOR_CHAN_POS_DXYZ
Position change on the X, Y and Z axis, in points.
Definition sensor.h:162
@ SENSOR_CHAN_GBIAS_XYZ
Gyroscope bias (X/Y/Z components in radians/s)
Definition sensor.h:211
@ SENSOR_CHAN_GAUGE_CYCLE_COUNT
Cycle count (total number of charge/discharge cycles)
Definition sensor.h:199
@ SENSOR_CHAN_GAUGE_TEMP
Gauge temperature.
Definition sensor.h:179
@ SENSOR_CHAN_POS_DY
Position change on the Y axis, in points.
Definition sensor.h:158
@ SENSOR_CHAN_GYRO_Z
Angular velocity around the Z axis, in radians/s.
Definition sensor.h:79
@ SENSOR_CHAN_POS_DX
Position change on the X axis, in points.
Definition sensor.h:156
@ SENSOR_CHAN_GAUGE_AVG_POWER
Average power in mW.
Definition sensor.h:191
@ SENSOR_CHAN_GAUGE_TIME_TO_EMPTY
Time to empty in minutes.
Definition sensor.h:195
@ SENSOR_CHAN_PM_10
10 micro-meters Particulate Matter, in ug/m^3
Definition sensor.h:123
@ SENSOR_CHAN_GAUGE_REMAINING_CHARGE_CAPACITY
Remaining Charge Capacity in mAh.
Definition sensor.h:185
@ SENSOR_CHAN_ALL
All channels.
Definition sensor.h:214
@ SENSOR_CHAN_GAUGE_VOLTAGE
Voltage, in volts.
Definition sensor.h:171
@ SENSOR_CHAN_PROX
Proximity.
Definition sensor.h:100
@ SENSOR_CHAN_COMMON_COUNT
Number of all common sensor channels.
Definition sensor.h:219
@ SENSOR_CHAN_PRIV_START
This and higher values are sensor specific.
Definition sensor.h:225
@ SENSOR_CHAN_GYRO_X
Angular velocity around the X axis, in radians/s.
Definition sensor.h:75
@ SENSOR_CHAN_GAS_RES
Gas sensor resistance in ohms.
Definition sensor.h:134
@ SENSOR_CHAN_HUMIDITY
Humidity, in percent.
Definition sensor.h:102
@ SENSOR_CHAN_DISTANCE
Distance.
Definition sensor.h:125
@ SENSOR_CHAN_IR
Illuminance in infra-red spectrum, in lux.
Definition sensor.h:108
@ SENSOR_CHAN_MAX
Maximum value describing a sensor channel type.
Definition sensor.h:230
@ SENSOR_CHAN_POS_DZ
Position change on the Z axis, in points.
Definition sensor.h:160
@ SENSOR_CHAN_RED
Illuminance in red spectrum, in lux.
Definition sensor.h:110
@ SENSOR_CHAN_ALTITUDE
Altitude, in meters.
Definition sensor.h:116
@ SENSOR_CHAN_GAUGE_NOM_AVAIL_CAPACITY
Nominal Available Capacity in mAh.
Definition sensor.h:187
@ SENSOR_CHAN_ACCEL_X
Acceleration on the X axis, in m/s^2.
Definition sensor.h:67
@ SENSOR_CHAN_VOC
VOC level, in parts per billion (ppb)
Definition sensor.h:132
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition util_macro.h:148
#define ENOSYS
Function not implemented.
Definition errno.h:82
#define ENOMEM
Not enough core.
Definition errno.h:50
#define ERANGE
Result too large.
Definition errno.h:72
#define NULL
Definition iar_missing_defs.h:20
#define BUILD_ASSERT(EXPR, MSG...)
Definition llvm.h:51
Size of off_t must be equal or less than size of size_t
Definition retained_mem.h:29
Real-Time IO device API for moving bytes with low effort.
#define bool
Definition stdbool.h:13
__UINT32_TYPE__ uint32_t
Definition stdint.h:90
__INT32_TYPE__ int32_t
Definition stdint.h:74
#define INT32_MAX
Definition stdint.h:18
__UINT64_TYPE__ uint64_t
Definition stdint.h:91
__UINT8_TYPE__ uint8_t
Definition stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition stdint.h:105
__UINT16_TYPE__ uint16_t
Definition stdint.h:89
#define INT32_MIN
Definition stdint.h:24
#define INT16_MAX
Definition stdint.h:17
__INT64_TYPE__ int64_t
Definition stdint.h:75
__INT8_TYPE__ int8_t
Definition stdint.h:72
void * memcpy(void *ZRESTRICT d, const void *ZRESTRICT s, size_t n)
Runtime device structure (in ROM) per driver instance.
Definition device.h:510
const void * api
Address of the API structure exposed by the device instance.
Definition device.h:516
A completion queue event.
Definition rtio.h:386
void * userdata
Associated userdata with operation.
Definition rtio.h:390
int32_t result
Result from operation.
Definition rtio.h:389
API that an RTIO IO device should implement.
Definition rtio.h:525
Compute the mempool block index for a given pointer.
Definition rtio.h:515
struct rtio_sqe sqe
Definition rtio.h:516
An IO device with a function table for submitting requests.
Definition rtio.h:540
void * data
Definition rtio.h:545
A submission queue event.
Definition rtio.h:296
void * userdata
User provided data which is returned upon operation completion.
Definition rtio.h:314
uint32_t buf_len
Length of buffer.
Definition rtio.h:320
const struct rtio_iodev * iodev
Device to operation on.
Definition rtio.h:305
const uint8_t * buf
Buffer to write from.
Definition rtio.h:321
An RTIO context containing what can be viewed as a pair of queues.
Definition rtio.h:419
Sensor Channel Specification.
Definition sensor.h:458
uint16_t chan_idx
A sensor channel index.
Definition sensor.h:460
uint16_t chan_type
A sensor channel type.
Definition sensor.h:459
Definition sensor.h:935
uint64_t timestamp_ns
The timestamp at which the data was collected from the sensor.
Definition sensor.h:937
int8_t shift
Shift value for all samples in the frame.
Definition sensor.h:947
uint32_t num_channels
Definition sensor.h:944
struct sensor_chan_spec channels[0]
Channels present in the frame.
Definition sensor.h:953
Used for iterating over the data frames via the sensor_decoder_api.
Definition sensor.h:579
const struct sensor_decoder_api * decoder
Definition sensor.h:580
struct sensor_chan_spec channel
Definition sensor.h:582
const uint8_t * buffer
Definition sensor.h:581
uint32_t fit
Definition sensor.h:583
Decodes a single raw data buffer.
Definition sensor.h:490
int(* get_size_info)(struct sensor_chan_spec channel, size_t *base_size, size_t *frame_size)
Get the size required to decode a given channel.
Definition sensor.h:515
int(* get_frame_count)(const uint8_t *buffer, struct sensor_chan_spec channel, uint16_t *frame_count)
Get the number of frames in the current buffer.
Definition sensor.h:500
int(* decode)(const uint8_t *buffer, struct sensor_chan_spec chan_spec, uint32_t *fit, uint16_t max_count, void *data_out)
Decode up to max_count frames specified by chan_spec from the buffer.
Definition sensor.h:542
bool(* has_trigger)(const uint8_t *buffer, enum sensor_trigger_type trigger)
Check if the given trigger type is present.
Definition sensor.h:552
Definition sensor.h:724
sensor_get_decoder_t get_decoder
Definition sensor.h:730
sensor_attr_set_t attr_set
Definition sensor.h:725
sensor_attr_get_t attr_get
Definition sensor.h:726
sensor_trigger_set_t trigger_set
Definition sensor.h:727
sensor_sample_fetch_t sample_fetch
Definition sensor.h:728
sensor_channel_get_t channel_get
Definition sensor.h:729
sensor_submit_t submit
Definition sensor.h:731
Definition sensor.h:648
struct sensor_chan_spec *const channels
Definition sensor.h:652
size_t count
Definition sensor.h:655
struct sensor_stream_trigger *const triggers
Definition sensor.h:653
const bool is_streaming
Definition sensor.h:650
const struct device * sensor
Definition sensor.h:649
const size_t max
Definition sensor.h:656
Definition sensor.h:634
enum sensor_stream_data_opt opt
Definition sensor.h:636
enum sensor_trigger_type trigger
Definition sensor.h:635
Sensor trigger spec.
Definition sensor.h:310
enum sensor_trigger_type type
Trigger type.
Definition sensor.h:312
enum sensor_channel chan
Channel the trigger is set on.
Definition sensor.h:314
Representation of a sensor readout value.
Definition sensor.h:55
int32_t val2
Fractional part of the value (in one-millionth parts).
Definition sensor.h:59
int32_t val1
Integer part of the value.
Definition sensor.h:57
#define INT64_C(x)
Definition xcc.h:119